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Integrin engagement stimulates the activity of numerous

signaling molecules, including the Rho family of GTPases,

tyrosine phosphatases, cAMP-dependent protein kinase and

protein kinase C, and stimulates production of PtdIns(4,5)P2.

Integrins promote actin assembly via the recruitment of

molecules that directly activate the actin polymerization

machinery or physically link it to sites of cell adhesion.
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Abbreviations
Arp2/3 actin-related protein 2/3

cAMP cyclic AMP

CHO Chinese hamster ovary

Crk chicken tumor virus 10 regulator of kinase

DOCK180 180-kDa protein downstream of CRK

ECM extracellular matrix

FAK focal adhesion kinase

GEF guanine nucleotide exchange factor
GAP GTPase-activating protein

GDI guanine nucleotide dissociation inhibitor

ILK integrin-linked kinase

MAP mitogen-activated protein

PAK p21-activated protein kinase

PtdIns(4,5)P2 phosphatidylinositol-4,5-bisphosphate

PINCH particularly interesting new Cys-His protein

PIP 5-kinase phosphatidylinositol 4-phosphate, 5-kinase

PIX PAK-interacting exchange factor

PKA cAMP-dependent protein kinase

PKC protein kinase C

PTP protein tyrosine phosphatase

SCAR suppressor of cAMP receptor

SHP-2 Src homology region 2 containing PTP-2

SHPS-1 SHP substrate-1

SFK Src family kinase

WAVE WASP family verprolin-homologous protein

WASP Wiskott–Aldrich syndrome protein

Introduction
Twelve years ago, the discovery that integrin engagement

stimulates tyrosine phosphorylation of several proteins

ushered in an era of extensive research on the signaling

that occurs downstream from integrins. Many signaling

pathways that emanate from integrin engagement or

clustering have been identified and the pace of discovery

in this field has not slowed down. This is not surprising

given that adhesion to the extracellular matrix (ECM)

influences the growth, differentiation, survival, morphol-

ogy and migratory properties of cells. We suspect that

more pathways remain to be uncovered. In this brief

review we will restrict our focus to a few selected topics,

particularly concentrating on the signaling pathways

downstream from integrin engagement that impact on

the organization of the cytoskeleton and on cell migration.

Three dimensions versus two
Although there is a long history of studying the behavior

of cells in collagen gels, most work on integrins has

involved cells grown on 2D surfaces coated with ECM

components derived from serum; these components may

be synthesized by the cells themselves or applied by the

experimenter. In such cultures, integrins are prominently

concentrated in matrix adhesions, which include focal

complexes, focal adhesions and fibrillar adhesions. These

structures have been discussed elsewhere [1]. Briefly,

focal complexes are small transient adhesions at the cell

periphery, regulated by Rac or Cdc42. Under the influ-

ence of RhoA activity and tension, focal complexes grow

in size to become focal adhesions — larger, more stable

structures. Fibrillar adhesions — adhesions made to

fibronectin fibrils — contain the a5b1 integrin and a

subset of the proteins found in focal adhesions [2]. Of

these structures, focal adhesions are often the most pro-

nounced in 2D cultures but are rarely seen in vivo and are

much less apparent in cells growing in 3D ECMs [3].

Focal adhesions continue to provide a valuable model for

studying the organization of and signaling from relatively

stable integrin aggregates, but attention has recently been

directed to studying integrin organization and signaling in

3D situations. Unlike cells on 2D surfaces, which have a

spread morphology, fibroblasts in 3D matrices develop

elongated or stellate morphologies and migrate more

rapidly. These cells develop 3D-matrix adhesions that

resemble fibrillar adhesions, both in their dimensions and

in that the integrin a5b1 is present, but unlike fibrillar

adhesions these matrix adhesions are rich in paxillin, focal

adhesion kinase (FAK) and phosphotyrosine [3]. Surpris-

ingly, phosphorylation of the major FAK phosphorylation

site (Y397) was not detected, suggesting that the signaling

pathways downstream from integrins may differ in 2D

and 3D cultures [3].

The physical state of the matrix affects the structure of

the adhesions and the morphology of cells, and it is
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possible that this is a major factor contributing to the

differences between 2D and 3D cultures. On rigid 2D

surfaces focal adhesions are favored [4,5], whereas fibrillar

adhesions develop when a pliable fibronectin matrix is

remodeled to form fibrils [5]. In 3D collagen gels, fibro-

blasts at low density display a stellate or dendritic mor-

phology and adhesions to the matrix appear to be

diffusely distributed over the cell surface [6�]. At high

cell density fibroblasts contract the collagen gels, thereby

increasing their rigidity. Under these conditions, struc-

tures similar or equivalent to focal adhesions develop in a

RhoA-dependent manner [6�]. These results raise the

possibility that the development of a rigid matrix result-

ing from the initial contractile activity of the cells leads to

subsequent isometric tension that may somehow elevate

RhoA activity.

Integrin-mediated regulation of Rho family
GTPases
With respect to cytoskeletal organization and cell migra-

tion, signaling from integrin-mediated adhesion is typi-

cally characterized by two phases. Early adhesion is

associated with pathways that stimulate protrusion

whereas mature adhesions are associated with the devel-

opment of tension. The early phase leads to Rac and

Cdc42 activation and to actin polymerization. The later

phase leads to RhoA activation, increased contractility

and the transmission of tension to the sites of integrin

ligation. These pathways are often antagonistic and the

biphasic nature and timing of this response can be a

source of complexity and confusion.

Regulation of Rac and Cdc42

During adhesion and spreading on an ECM, cells extend

filopodia and lamellipodia, structures regulated by Cdc42

and Rac, respectively. Integrin-mediated adhesion acti-

vates Cdc42 and Rac [7] and for Rac this requires an intact

b integrin subunit [8,9]. Rho family GTPases are active

when GTP-bound and inactive when bound to GDP.

Activation is catalyzed by guanine nucleotide exchange

factors (GEFs) and inactivation is promoted by GTPase-

activating proteins (GAPs) that stimulate the intrinsic

GTPase activity of the Rho proteins. One example of a

GEF activated downstream from integrin engagement is

Vav1 [10], but its expression is restricted to hematopoietic

cell types. However, the closely related GEF Vav2 is

widely distributed and an obvious candidate for activation

downstream from integrins (Figure 1). Using tyrosine

Figure 1
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Integrin-mediated activation of Rac and Cdc42. In response to integrin engagement, several tyrosine kinases are activated, including FAK and Src.

These tyrosine kinases phosphorylate substrates, leading to the activation of Rac and Cdc42 (only Rac is indicated). The phosphorylated proteins

include the following: GEFs (yellow circles), which activate Rac and Cdc42, such as Vav; adaptor protein complexes (blue circles) such as paxillin and

PKL or p130Cas, Crk, and ELMO that bind GEFs such as PIX or DOCK180. Alternatively, integrins trigger translocation of RhoGDI-bound Rac–GTP to

the plasma membrane where active Rac is liberated and available to interact with effectors.
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phosphorylation as an indicator of activation, evidence

was presented that Vav2 is activated downstream from

growth factor receptors but not from integrins [11,12].

Nevertheless, a dominant-negative form of Vav2 blocked

lamellipodium formation and spreading on fibronectin,

which is consistent with Vav2 having a role in Rac

activation following integrin engagement [13]. Interest-

ingly, an elevation in tyrosine phosphorylation was not

seen in response to adhesion, which is consistent with the

earlier work and suggests that changes to multiple phos-

phorylation sites might have masked an elevation in

phosphorylation of the site(s) associated with activation,

or that Vav2 activation occurs by other means.

Other pathways downstream of integrins that lead to Rac

activation may also be involved. Both p130cas and pax-

illin associate with FAK and both have been linked to Rac

activation. Tyrosine phosphorylation of p130cas promotes

a complex of Crk, ELMO and DOCK180 [14–18,19��]
(Figure 1). Recent work has revealed that DOCK180 is a

Rac GEF, even though it lacks the Dbl-homology/pleck-

strin-homology tandem domains characteristic of conven-

tional Rho-family GEFs [19��,20��]. Another complex

also associates with paxillin: this complex includes

PKL (GIT) and Pak-interacting exchange factor (PIX),

the latter being a conventional Rac GEF (reviewed in

[21]) (Figure 1). Deciphering the relative importance of

the different pathways that potentially lead to Rac activa-

tion following integrin engagement will be important.

Integrin-mediated activation of Rac and other Rho-family

proteins may involve not only GEF activation but also

targeting of the GTP-bound protein to sites of adhesion.

Del Pozo and coworkers have found that a fraction of

active Rac is sequestered by RhoGDI and that this active

Rac is selectively released close to sites of integrin-

mediated adhesion, allowing it to interact with effectors

in this region of the cell [22��]. It will be interesting to

determine how this is achieved and whether localized

release of active Rho family members from RhoGDI is a

general mechanism.

Regulation of RhoA

Integrin engagement leads to a transient depression in

RhoA activity [23] and it has been argued that this

promotes lamellipodial extension during cell migration

[24]. The dip in RhoA activity requires Src, FAK and

p190RhoGAP [25,26]. A role for paxillin phosphorylation

has also been indicated in this decrease in RhoA activity.

When two of the paxillin phosphorylation sites (Y31 and

Y118) were mutated, the depression in RhoA activity was

abolished and the cells showed premature formation of

stress fibers [27�]. These authors demonstrated that the

phosphorylation of these two tyrosines, which is induced

by integrin-mediated adhesion, generates a binding site

for p120RasGAP, displacing it from its binding partner

p190RhoGAP. Evidence was presented that p190Rho-

GAP freed from p120RasGAP was activated and hence

contributed to the decrease in RhoA activity [27�]. How-

ever, whether the interaction of p120RasGAP with

p190RhoGAP inhibits or increases the latter’s activity

remains controversial. Interestingly, the decrease in

RhoA activity is seen even with cells in suspension that

bind soluble-peptide integrin ligands [25], a situation in

which FAK does not become activated and paxillin does

not become phosphorylated on these tyrosine residues.

This suggests that the phosphorylation of paxillin cannot

be the sole mechanism of regulation and that phosphor-

ylation of p190RhoGAP may also be important [25].

Nevertheless, paxillin phosphorylation may contribute

to the depression of RhoA activity when cells adhere

to fibronectin, which results in a more robust inhibition of

the RhoA response than is seen in cells in suspension

stimulated with soluble ligands.

Examination of the time-course of RhoA activity in

response to cells adhering to fibronectin reveals that

the initial dip is followed by activation [23]. Engagement

of non-integrin receptors such as syndecan-4 may con-

tribute to this response [28–30], but integrins have also

been observed to contribute to activation. Here, different

responses have been observed with different integrins.

O’Connor and colleagues observed that engagement or

clustering of a6b4 resulted in stimulation of RhoA activ-

ity, in contrast to the depression induced by clustering b1

integrins [31]. Engagement of avb3 on astrocytes by

Thy-1 was shown to stimulate assembly of focal adhe-

sions and stress fibers, which is consistent with RhoA

activation occurring downstream from this integrin [32].

Direct evaluation of the effect of b1 and b3 integrins on

RhoA activity was performed in Chinese hamster ovary

(CHO) cells in which these integrins were overexpressed

[33�]. In this system, overexpression of b3 resulted in a

pronounced increase in Rho–GTP levels when the cells

were plated on fibronectin or fibrinogen, whereas b1

overexpression had no effect. Somewhat surprisingly,

expression of a b1/b3 chimera in which a heptapeptide

sequence from the b1 extracellular-I-domain-like struc-

ture was replaced by the equivalent sequence from theb3

integrin resulted in stimulation of Rho activity [33�]. A

different result was found using cells deficient in b1

integrins [34��]. Using either GD25 or GE11 cells, re-

expression of b1 subunits stimulated RhoA activity,

whereas b3 had no effect. Although the results were

the opposite in the two studies, both studies found that

the extracellular domain was critical. A possible explana-

tion for the opposite results is the different cell types

used by these two groups. It is easy to imagine that the

requirements of a particular integrin may differ in dif-

ferent cell types, and that in some situations, but not

others, it is advantageous for the integrin to be coupled to

Rho activation. The large number of RhoGEFs and their

variable expression in different cell types may provide

cell-type specificity when coupling integrins to Rho
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activation. The significance of the extracellular domains

of the integrins in this coupling remains unclear.

Integrins and protein tyrosine phosphatases
Integrin-mediated adhesion induces the tyrosine phos-

phorylation of many proteins. The consequences of this

tyrosine phosphorylation and the kinases involved have

commanded much attention. By comparison, the protein

tyrosine phosphatases (PTPs) have been much less

studied, although several recent papers suggest that this

is changing. Early work indicated that integrin-mediated

adhesion results in a bulk inhibition of PTP activity that

parallels the increase in tyrosine phosphorylation seen in

response to adhesion [35]. Sastry and coworkers, however,

have found that PTP–PEST is stimulated upon integrin-

mediated adhesion [36�]. This PTP had previously been

shown to act on various focal adhesion targets such as

p130cas [37] and paxillin [38], but not on FAK. Both

overexpression and deletion of PTP–PEST inhibit cell

migration [39,40], suggesting that a fine balance in the

level of tyrosine phosphorylation of relevant substrates

regulates cell migration. PTP–PEST overexpression

inhibits protrusive activity and this has been related to

a depression in Rac activity [36�]. As mentioned above,

the tyrosine phosphorylation of both p130cas and paxillin

has been linked to Rac activation, and so PTP–PEST

may be affecting Rac activity by dephosphorylating these

known targets.

One PTP that has been associated both with integrin-

mediated signaling and with regulating RhoA activity is

SHP-2 (Src homology region 2 containing PTP-2). Per-

turbation of SHP-2 levels or activity has effects on adhe-

sion, cytoskeletal organization and cell migration [41–45].

Conflicting results have been obtained with respect to

SHP-2’s effect on Rho activity, with some groups detect-

ing activation [45,46] and others inhibition [47,48]. It is

difficult to reconcile these differences; however, it is

possible that in different cellular contexts SHP-2 acts

on different targets that influence RhoA activity in oppo-

site directions (Figure 2). Recent work has identified

p190BRhoGAP as a potential target for SHP-2 [49��].
Here tyrosine phosphorylation has been associated with

increased GAP activity and so the action of SHP-2 to

decrease p190 activity will result in elevated RhoA activity

[49��]. By contrast, the activity of some GEFs (e.g. the Vav

family, PDZ–RhoGEF and leukemia-associated Rho-

GEF) is stimulated by tyrosine phosphorylation [50–52].

Although Vav2 has broad specificity for Rho family

GTPases in vitro, in vivo the phenotype resulting from

activated Vav2 varies with cell type, often suggesting

increased Rac activity but at other times increased RhoA

activity as well [12]. SHP-2 will exert an inhibitory effect on

RhoGEFs that are stimulated by tyrosine phosphorylation.

One of the substrates for SHP-2 is the transmembrane

protein SHP substrate 1 (SHPS-1, also known as SIRPa1),

which becomes tyrosine-phosphorylated in response to

integrin-mediated adhesion by FAK and Src family

kinases [53]. SHPS-1 binds SHP-2, thereby targeting

SHP-2 to the membrane, where it may act on other

tyrosine-phosphorylated proteins. Expression of a trun-

cated form of SHPS-1 lacking most of the cytoplasmic

domain and unable to bind SHP-2 results in cells with

increased stress fibers [45]. Contrary to expectations

these cells exhibit reduced rather than elevated RhoA

activity [45]. The reason for this paradoxical result has

not been resolved.

Figure 2
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Model for the potential regulation of Rho activity by tyrosine phosphatases. Left: a tyrosine phosphorylated activated GEF (green ovals) is

dephosphorylated by a tyrosine phosphatase (shown in pink). The GEF is unable to catalyze the exchange of GTP for GDP and Rho is left in the

inactive GDP-bound form (purple circles). Right: the phosphatase dephosphorylates a GAP (orange ovals), inactivating it, and Rho–GTP levels

accumulate (purple starbursts).
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In some situations, engagement of integrins with their

ligands promotes integrin association with lipid rafts

(reviewed in [54]). SHP-2 is targeted to rafts in response

to integrin binding to its ligands [55��]. Significantly, the

use of a double palmitoylation signal to target SHP-2 to

lipid rafts in cells in suspension stimulates FAK tyrosine

phosphorylation and other pathways normally triggered

by integrin engagement [55��]. Targeting SHP-2 to lipid

rafts also affected Rho activity: the resting level of active

Rho was elevated, but a dip in activity was still observed

in response to adhesion to fibronectin. Interestingly,

when a catalytically dead form of SHP-2 was targeted

to lipid rafts, the level of Rho activity returned to more

normal levels, but the adhesion-induced dip was abol-

ished. These results led the authors to conclude that

SHP-2 can function as both a positive and negative

regulator of RhoA activity [55��]. The elevation of Rho

activity by SHP-2 in lipid rafts could be explained by the

regulation of p190RhoGAP phosphorylation and activity

[49��]. However, the fact that catalytically inactive SHP-2

blocks the adhesion-induced dip in Rho activity suggests

that p190RhoGAP is not becoming activated in this

situation. It would be possible to explain this observation

if, in response to integrin engagement, SHP-2 promotes

Src activation by removing Src’s inhibitory C-terminal

phosphate [43]. The catalytically inactive SHP-2 would

block this pathway and thereby prevent the tyrosine phos-

phorylation of p190RhoGAP and consequent depression of

Rho activity. The different observations obtained with

SHP-2 illustrate the complexity of these pathways and

how PTPs may act at multiple sites in a pathway, often

generating paradoxical results (illustrated in Figure 2).

PTPa, another PTP implicated in promoting cell spread-

ing [56] and found in focal adhesions [57], removes

inhibitory phosphates from the C-terminal tyrosines of

Src family kinases (SFKs) [56,58]. Cells lacking PTPa
reveal decreased FAK phosphorylation, particularly on

tyrosine 397, the autophosphorylation site, leading to the

suggestion that PTPa activity lies between integrin

engagement and FAK activation in the pathway [59�].
Strong support for this idea comes from another study in

which PTPa has been found to physically associate with

the integrin avb3 but not with a5b1 [60��]. This work built

on earlier studies showing that avb3 integrin signaling via a

Src family kinase is involved in the reinforcement of

integrin–cytoskeleton linkages [61]. The decrease in focal

adhesions seen in the PTPa null cells, together with their

decreased development of force transmitted to avb3 integ-

rins [60��], suggests that PTPa may normally contribute to

the activation of RhoA downstream from avb3 integrin

engagement. In preliminary work, our laboratory has

confirmed that PTPa null cells exhibit decreased

RhoA–GTP levels when plated on fibronectin (Eller-

broek and Burridge, unpublished observations). As men-

tioned earlier, in some cells b3 integrin engagement

activates RhoA [33�] and it seems likely this occurs via

a PTPa/SFK pathway. At first, this seems to conflict with

the idea that SFKs downstream from integrin engage-

ment depress RhoA activity via p190RhoGAP [25]; how-

ever, an explanation is suggested by the finding of von

Wichert and coworkers that it is Fyn rather than Src that

becomes activated by PTPa downstream of avb3 integrin

occupancy [60��]. These investigators found that over-

expression of Src in cells expressing PTPa actually

depressed focal-adhesion formation, whereas this was

not seen with Fyn [60��]. Together these results suggest

a model in which the initial depression of RhoA activity

occurs via integrin-mediated activation of Src leading to

elevated p190RhoGAP activity, whereas the slower

increase in RhoA activity occurs as a result of PTPa’s

activation of Fyn (Figure 3). Presumably this involves a

RhoGEF that is stimulated by tyrosine phosphorylation.

It will be interesting to determine whether other integrins

may also couple to PTPa in some situations or cell types,

and whether this may account for the elevation of RhoA

Figure 3
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Role of Src family kinases in the inhibition and reactivation of Rho

activity. During the first 10–30 minutes of adhesion via some integrins,

the activity of Rho is transiently suppressed. The pathway to inhibition
involves c-Src-dependent phosphorylation and activation of

p190RhoGAP. This GAP triggers the hydrolysis of GTP bound to Rho

rendering it inactive. With other integrins, or with the same integrins at

later times (45–90 minutes) of adhesion, the levels of Rho–GTP increase

as a result of PTPa activating the tyrosine kinase, Fyn, which

presumably phosphorylates and activates a RhoGEF.
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activity downstream from a5b1 integrins observed by

Danen and coworkers [34��].

Integrin regulation of cAMP/PKA
The activity of cAMP-dependent protein kinase (PKA)

regulates the cytoskeleton both by inhibiting contractility

and by stimulating protrusion. PKA can inhibit actin–

myosin contractility in several ways. It can phosphorylate

the Ga13 subunit of heterotrimeric G proteins, leading to

decreased downstream RhoGEF activation [62]; it can

directly phosphorylate the C terminus of RhoA, resulting

in an increased binding to RhoGDI and thereby terminate

RhoA activity [63,64]; and finally, it can phosphorylate and

inactivate myosin light chain kinase [65]. All these beha-

viors lead to decreased actin–myosin contractility. In addi-

tion, PKA has been shown to phosphorylate and inhibit

vasodilator-stimulated phosphoprotein (VASP) [66] and

p21-activated protein kinase (PAK) [67], and to activate

Rac1 and Cdc42 [68,69]. Increased levels of cAMP or

activation of PKA in cells inhibit RhoA activation [70]

and lead to loss of stress fibers and focal adhesions [63].

Conversely, inhibition of PKA results in formation of stress

fibers [71,72] and allows adhesion-independent mitogen-

activated protein (MAP) kinase activation [66].

While PKA regulates adhesion, integrin ligation and cell

adhesion in turn are potent regulators of PKA activity.

Detachment of cells causes a transient activation of PKA

[66], probably through a relaxation-dependent mechan-

ism [73]. The detachment-dependent activation of PKA

prevents anchorage-independent activation of MAP

kinase by inactivating PAK [67]. PKA activity in sus-

pended cells, however, returns to baseline levels within

60–90 minutes. Somewhat surprisingly, adhesion will also

activate PKA [66,68]. The time-course of this correlates

with the activation of Rac and Cdc42 [7,74], the inactiva-

tion of RhoA [23], and the timing of membrane protru-

sions during cell spreading. Similarly, ligand-dependent

clustering of b1 integrins by function-blocking b1 anti-

bodies or soluble-peptide integrin ligands induces activa-

tion of PKA [75,76]. As with the detachment-dependent

activation of PKA, the attachment-dependent activation

of PKA is transient [66,68] and the later reduction in PKA

activity allows cells to form stress fibers and focal adhe-

sions, adhere firmly, and sustain survival signals, possibly

through MAP kinase signaling [67,71,72]. The deactiva-

tion, at least in endothelial cells, is matrix- and integrin-

dependent: integrins a1b1, a2b1, or a5b1 can support

inactivation but a6b1 or aVb3 cannot [71,72].

An interplay between integrins and protein
kinase C
Protein kinase C (PKC) a was one of the first signaling

molecules identified in focal adhesions [77] and subse-

quent work has established that isoforms of PKC become

activated following adhesion to the ECM and cell spread-

ing [78–80,81�]. For example, in muscle cells activation of

PKCe is followed sequentially by activation of PKCa and

PKCd [81�]. Whereas activation of PKC promotes cell

spreading and focal adhesion formation in fibroblasts

[28], it should be noted that PKC stimulation (e.g. by

phorbol esters) induces disruption of focal adhesions in

epithelial cells [82,83]. In fibroblasts, early work estab-

lished that adhesion to the cell-binding domain of fibro-

nectin mediated by a5b1 is insufficient for cells to

develop focal adhesions, but assembly of these structures

could be stimulated by PKC activation or by the addition

of the heparin-binding domain of fibronectin (reviewed

in [84]). The relevant proteoglycan responsible for

promoting focal adhesion assembly was identified as

syndecan-4, a transmembrane proteoglycan that binds

to the heparin-binding domain of fibronectin (reviewed

in [84]). Syndecan-4 localizes to focal adhesions and

PKCa binds to syndecan-4’s cytoplasmic domain

(reviewed in [84]). Recent work has revealed an inter-

esting level of complexity. Whereas the integrin a5b1

requires PKCa activation via syndecan-4 for focal adhe-

sions to develop, the integrin a4b1, which binds to

another site in fibronectin, does not [85��]. Other inter-

esting differences exist between these two integrins,

such as the binding of paxillin by the a4 cytoplasmic

domain [86], which prompts the question of whether the

recruitment of paxillin or some other protein by a4b1

fulfills functions that may be supplied by PKCa activa-

tion downstream from a5b1 engagement. Downstream

from syndecan-4 engagement, multiple studies have

implicated RhoA activation as well as PKC activation

[29,87], raising the possibility that PKC may be upstream

of RhoA. This has recently been validated with the

demonstration that the RhoA-GEF p115 is a substrate

for and stimulated by PKCa [88].

Regulation of PtdIns(4,5)P2 by integrin
signaling
The activities of many cytoskeletal proteins are regulated

by phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2).

Downstream from integrins, both vinculin and talin

undergo a conformational change on binding this mole-

cule. With vinculin, this exposes cryptic binding sites for

other proteins, including talin [89–91], whereas talin’s

interaction with PtdIns(4,5)P2 promotes its binding to

the cytoplasmic domain of b1 integrin subunit [92].

Significantly, integrin-mediated adhesion stimulates

PtdIns(4,5)P2 synthesis [93]. In part, this may occur via

stimulation of PI5-kinase by Rho and Rac, although the

mechanism by which this could occur is not well under-

stood. Recent work has revealed another pathway. Inde-

pendently, two groups have found that one PIP 5-kinase

splice isoform localizes to focal adhesions by binding to

talin and that this interaction stimulates its activity

[94��,95��]. In one case, the direct interaction was found

to stimulate PIP 5-kinase activity, whereas in the other

case localization to focal adhesions resulted in activation

by FAK phosphorylation. This phosphorylation of PIP
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5-kinase not only stimulated catalytic activity but also

increased its association with talin [94��]. The binding of

PIP 5-kinase to talin and its consequent activation should

elevate PtdIns(4,5)P2 levels in the local region where

integrins are clustered. The positive feedback mechan-

ism suggested by these findings should contribute to the

assembly of these integrin-based complexes. Indeed,

expression of a kinase-dead form of the relevant PIP

5-kinase isoform blocked recruitment of FAK to focal

adhesions. The local increase in PtdIns(4,5)P2 in the

vicinity of integrin engagement may also stimulate actin

polymerization, as discussed below.

Regulation of actin assembly by integrins
Several of the prominent integrin-associated structural

proteins (talin, vinculin and a-actinin) bind F-actin, but

relatively little polymerization of actin has been detected

in focal adhesions. As mentioned above, localized

PtdIns(4,5)P2 synthesis in focal adhesions may contribute

to the assembly of protein complexes and the binding of

actin at these sites. It may also promote the limited

polymerization that occurs in focal adhesions by dissociat-

ing capping proteins from the barbed ends of actin fila-

ments [96] or by other mechanisms. Much more

polymerization of actin occurs at the leading edge of

cells, which is also the region where integrins first engage

their ligands. The major nucleator of actin polymerization

is the actin-related protein 2/3 (Arp2/3) complex. Recent

work has established a link between the Arp2/3 complex

and new sites of integrin engagement that is mediated by

the Arp2/3 complex binding to vinculin [97�] (Figure 4a).

This interaction is transient, being confined to the newest

adhesions and not seen in more mature focal adhesions.

The association is regulated by phosphatidylinositol-3-

kinase and Rac activity. Cells deficient in vinculin show

decreased spreading and formation of lamellipodia, phe-

notypes corrected by re-expression of wildtype vinculin

but not of vinculin unable to bind the Arp2/3 complex

[97�]. Although this interaction does not stimulate actin

polymerization by the Arp2/3 complex, it does recruit the

Arp2/3 complex to sites of integrin clustering.

Other mechanisms for linking actin polymerization to

integrins have also been identified. Key regulators of

the Arp2/3 complex are members of the Wiskott–Aldrich

syndrome protein (WASP) family of proteins, including

WASP, N-WASP and WAVE/SCAR proteins. N-WASP

has been identified in b1-integrin immunoprecipitates

and was released under conditions stimulating actin poly-

merization and protrusion [98]. The WASP proteins sti-

mulate the Arp2/3 complex after they have undergone a

conformational change in which the C-terminal domain is

exposed, enabling it to bind the Arp2/3 complex. WASP

and N-WASP are activated by binding to Cdc42 or Nck,

whereas WAVE/SCAR is activated downstream from Rac

or Nck [99,100,101��]. Nck also binds to WIP, a WASP-

interacting protein that promotes actin polymerization

[102]. A link between Nck and integrins has been iden-

tified via the LIM domain protein, PINCH, which binds

integrin-linked kinase (ILK), which in turn associates

with integrin b subunit cytoplasmic domains [103]

(Figure 4b). Significantly, the action of WASP on Arp2/

3-induced actin polymerization is stimulated by

PtdIns(4,5)P2, which, as mentioned above, is synthesized

by enzymes recruited to sites of integrin engagement by

binding talin [94��,95��].

Figure 4
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Links between the actin polymerization machinery and integrins. (a) Activated Arp2/3 complex binds directly to the hinge region of vinculin, an

adhesion molecule that is recruited to integrins via an interaction with talin. Binding of the Arp2/3 complex to vinculin does not stimulate the activity of

the Arp2/3 complex, but rather localizes polymerization to new sites of integrin adhesion. (b) Actin polymerization is stimulated at sites of integrin

clustering via recruitment of a complex of proteins, including ILK–PINCH and Nck. Nck binds and activates WASP proteins, which in turn recruit and

activate the Arp2/3 complex.
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The above observations suggest that the machinery for

nucleating actin polymerization can be linked in various

ways to integrins and may be particularly active where

integrins are newly engaged with the ECM. Superim-

posed on these physical links between integrins and the

Arp2/3 complex is the activation of Rac and Cdc42 down-

stream from integrin ligation. The local activation of

these GTPases will further stimulate WASP or WAVE/

SCAR in the vicinity of integrin–ligand binding. Addi-

tionally, selective release of activated Rac from the

sequestering protein RhoGDI has been reported to occur

where integrins mediate adhesion to the ECM [22��].
Together, these pathways should synergize to promote

actin polymerization at sites of new adhesion.

Conclusions
Progress in the field of integrin-mediated signaling has

been substantial in the last couple of years, but much still

remains to be learned. The apparent complexity of many

of the signaling pathways downstream from integrin

ligation reflects in part the transition from an early

response, associated with Rac/Cdc42 activation and mem-

brane protrusion, to a late response, associated with RhoA

activation and the generation of tension. The develop-

ment of live cell imaging techniques should contribute to

resolving many of the spatial and temporal complexities

downstream from integrin engagement. Biosensors are

being designed and tested that will visualize specific

signaling events, such as activation of Rho GTPases,

kinases and phosphatases, within living cells in real time.

This technology promises to revolutionize the field by

allowing signaling pathways to be visualized locally

within cells as integrin ligation occurs, matures and is

terminated.
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