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Summary

Iron is a critical and tightly regulated nutrient for both the malaria parasite and its human host. The 

importance of the relationship between host iron and the parasite has been underscored recently by 

studies showing that host iron supplementation may increase the risk of falciparum malaria. It is 

unclear what host iron sources the parasite is able to access. We developed a flow cytometry-

based method for measuring the labile iron pool (LIP) of parasitized erythrocytes using the nucleic 

acid dye STYO 61 and the iron sensitive dye, calcein acetoxymethyl ester (CA-AM). This new 

approach enabled us to measure the LIP of P. falciparum through the course of its erythrocytic life 

cycle and in response to the addition of host serum iron sources. We found that the LIP increases 

as the malaria parasite develops from early ring to late schizont stage, and that the addition of 

either transferrin or ferric citrate to culture media increases the LIP of trophozoites. Our method 

for detecting the LIP within malaria parasitized RBCs provides evidence that the parasite is able to 

access serum iron sources as part of the host vs. parasite arms race for iron.
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Each year up to 250 million clinical cases of malaria and nearly 1 million deaths from 

malaria are reported in official statistics (WHO, 2011). Plasmodium falciparum malaria is 

the most deadly of all the species of malaria that infect humans. The malaria parasite has a 

complex life cycle in the human host. Anopheles mosquitoes inject sporozoite stage P. 

falciparum parasites during a blood meal; sporozoites then migrate to the liver where they 

infect hepatocytes and multiply over a clinically silent 7–10 d period (Sinnis et al, 1996). 

During the asexual erythrocyte stage of the parasite, merozoites invade red blood cells 

(RBCs) and progress from the metabolically inactive ring stage to the metabolically active 

trophozoite stage to the schizont stage. DNA replication is initiated during the schizont stage 
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and results in the production of new merozoites that burst from the host RBC into the blood 

stream and invade new RBCs. The RBC stage of the malaria parasite is responsible for the 

morbidity and mortality associated with P. falciparum infection and is exquisitely sensitive 

to iron chelators (Ferrer et al, 2012).

Despite the essential role of iron in parasite development, it is unknown what host iron 

sources P. falciparum utilizes during any stage of the human infection. The two principal 

sources of host iron available to the parasite during the RBC stage are extra-erythrocytic 

(serum) iron and intra-erythrocytic iron. The intra-erythrocytic iron pool amounts to 100 fg 

(20 mmol/l) iron, partitioned into haemoglobin, ferritin, and the cytoplasmic labile iron pool 

(LIP). The erythrocytic LIP consists of residual cytoplasmic bioavailable iron that was not 

incorporated into haemoglobin or stored within ferritin during the maturation of erythrocyte 

precursors (Prus & Fibach, 2008a). The majority of host serum iron is bound to host protein 

transferrin (0·6–1·5 g/l), with a residual amount of iron, non-transferrin-bound iron (NTBI), 

circulating in the serum chelated by low molecular weight molecules such as citrate (Cook 

& Skikne, 1989). To date there is no evidence that P. falciparum is able to release iron from 

haem or host ferritin (Sigala & Goldberg, 2012). The relationship between the host 

erythrocyte LIP and the malaria parasite infectivity and maturation is unknown (Scholl et al, 

2005). It is unknown how the host LIP impacts the malaria parasite’s infectivity and 

maturation. The ability of the parasite to access serum iron is unclear, and data are 

conflicting (Pollack & Fleming, 1984; Haldar et al, 1986; Rodriguez & Jungery, 1986; 

Sanchez-Lopez & Haldar, 1992).

Calcein acetoxymethyl ester (CA-AM) has been widely used to examine the cytoplasmic 

LIP of mammalian cells (Breuer et al, 1995a,b, 1996; Epsztejn et al, 1997; Tenopoulou et 

al, 2007). CA-AM is non-fluorescent, non-iron binding, neutrally charged, and easily 

permeates cell membranes. Upon cellular entry, intracellular esterases cleave CA-AM into 

the green-fluorescent molecule calcein, which is then trapped within the cell. Calcein 

fluorescence is quenched by 1:1 stoichiometric binding of iron in pH range of 7–7·5 (Breuer 

et al, 1995a, 1996). The addition of non-fluorescent, high affinity iron chelators removes 

iron from calcein and consequently increases calcein fluorescence, providing an effective 

method for assessing the labile iron content of cells. Alternatively the addition of iron, 

capable of being incorporated by a cell, quenches calcein fluorescence (Tsien, 1989; Breuer 

et al, 1995b). Previous investigators have utilized a microscopy-based approach for the 

measurements of calcein fluorescence, to investigate the site of action of anti-malarial iron 

chelators and gain preliminary insight into the LIP of parasitized human erythrocytes 

(Loyevsky et al, 1999). More recently, CA-AM has been utilized to assess the LIP of the 

heterogeneous cell populations of peripheral blood and bone marrow by flow cytometry 

(Prus & Fibach, 2008b).

In the present study, we adapted the CA-AM flow cytometry method in order to assess the 

LIP of P. falciparum-infected erythrocytes (Prus & Fibach, 2008a,b). We combined the 

technique of identifying parasitized erythrocytes with the fluorescent DNA dye, SYTO 61 

(Fu et al, 2010), with the CA-AM method for assessing cellular labile iron to determine the 

LIP of P. falciparum during asexual maturation by flow cytometry. This flow cytometry 

approach allows for the analysis of the LIP of a mixed population of uninfected and P. 
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falciparum -infected erythrocytes. Furthermore, we utilized this approach to investigate the 

effect of extracellular iron sources, transferrin and ferric citrate, on the LIP of the 

erythrocytic stage of P. falciparum.

Materials and methods

Plasmodium falciparum culture

Plasmodium falciparum parasite lines FCR3-FMG (MR4, MRA-736) and Dd2 (MR4, 

MRA-156) were routinely cultured in iron-replete O-positive (O+) RBCs obtained from 

healthy individuals at the Clinical and Translational Research Center at the University of 

North Carolina, Chapel Hill, NC (approved by the University of North Carolina Institutional 

Review Board, reference 09–0559). Cultures were maintained with 2% haematocrit in 

complete media containing RPMI 1640 medium with 10% albumax II, 1 mM hypoxanthine, 

20 mmol/l L-glutamine, .45% glucose, and 10 μg/l gentamicin (ACM). Cultures were 

incubated on a shaker at 37°C in 5% O2, 5% CO2 and 90% Nitrogen. Parasite density was 

maintained between 0·5% and 10% P. falciparum parasitized RBCs (pRBCs). pRBC 

cultures were synchronized to within 4–6 h of each other by first treating cultures with 5% 

D-sorbitol to select for ring stage parasites, followed by magnetic-activated cell sorting 

(MACS) (Miltenyi Biotec, Auburn, CA, USA) isolation of haemozoin-containing 

trophozoite and schizont stage pRBCs 24 h later. pRBC cultures were next incubated with 

30 iu heparin to prevent invasion of merozoites for 18 h, at which point heparin was washed 

from cultures with subsequent incubated under normal culture conditions for an additional 

24 h before a final MACS isolation of trophozoites and schizonts was performed (Boyle et 

al, 2010). To obtain a culture with all stages (ring, trophozoite, schizont, and merozoites) 

synchronized cultures were monitored until approximately 50% of schizonts had ruptured.

Plasmodium falciparum LIP assay

Plasmodium falciparum lines FCR3-FMG or Dd2 at a parasite density of 5–10% pRBCs 

were washed twice with phosphatebuffered saline (PBS) 0. 5% Albumax II (PBS+), 

inoculated into a 96-well plate at 2 × 106 cells per well and subsequently labelled with 0·125 

umol/l calcein acetoxymethyl ester (CA-AM [Invitrogen, Grand Island, NY, USA] for 15 

min in the dark. Following CA-AM labelling, cells were washed twice with PBS+ and 

allowed to rest for 15 min under standard culture conditions in the dark. Cells were then 

labeled with 0·5 μmol/l DNA dye SYTO 61 (Invitrogen) in the presence or absence of 100 

μmol/l of iron chelators: deferiprone, dipyridyl, or deferoxamine for 1 h under standard 

culture conditions in the dark. Following incubation with SYTO 61 and iron chelators, 

unfixed cells were immediately analysed by flow cytometry using a Cytek-modified FACS-

Calibur under BSL-2 containment. For experiments assessing the impact of extracellular 

transferrin or ferric citrate on the pRBC LIP, P. falciparum cultures were incubated with 

transferrin or ferric citrate prior to CA-AM and SYTO 61 labelling. Individual experiments 

were performed in triplicate. The statistical significance for each individual experiment was 

calculated using the Student’s t-test. For experiments where data is expressed as delta mean 

fluorescence intensity (ΔMFI), ΔMFI represents the absolute difference in MFI.
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Flow cytometry analysis

Flow cytometry was performed at the UNC Flow Cytometry Core Facility, Chapel Hill, NC 

on a Cytek-modified FACS-Calibur with 2 lasers: a 30 mW 488 Diode Pumped Solid State 

laser and a 25 mW 637 red diode laser (FACS-Calibur; Becton Dickinson, Mount View CA, 

modified by Cytek Development, Freemont, CA). Channels and fluorescent probes used on 

the FACS-Calibur included: SYTO 61 (63 × nm excitation, 666·27 nm bandpass), and 

calcein (488 nm, 530/30 bandpass). Detector gain settings were varied between experiments 

to optimize signal but were kept constant within individual experiments and no 

compensation was applied to any of the channels. pRBC were gated based on the SYTO 61 

signal and detector gains for calcein fluorescence were adjusted to achieve a calcein MFI of 

10–20 for uninfected RBCs. A minimum 1000 pRBC (SYTO 61 +) events were acquired. 

FACS-Calibur data was collected using FlowJo CE (Treestar, Ashland, OR) and analysed 

with Summit v 5.1 (Beckman Coulter, Miami, Florida).

Results

Detection of LIP in P. falciparum-infected erythrocytes by flow cytometry

To assess the LIP of P. falciparum infected erythrocytes, P. falciparum (FCR3-FMG strain)-

infected erythrocyte cultures were loaded with CA-AM, stained with DNA dye SYTO 61 to 

identify parasitized RBCs (pRBCs) and finally incubated with membrane permeable iron 

chelator deferiprone to enable the determination of LIP. We first confirmed that neither 

calcein nor SYTO 61 interfered with the others’ fluorescence profile (Figure S1A, B), and 

that SYTO 61 did not interfere with calcein’s sensitivity to either iron chelator or 

extracellular iron (Figure S1C). To characterize the basal calcein fluorescence of uninfected 

and pRBCs, we examined the SYTO 61 profile of stained cells to identify uninfected (SYTO 

61 negative, R2- lower region), pRBCs infected with rings (SYTO 61 positive, R3-middle 

region) and pRBCs infected with trophozoites (SYTO 61 positive, R4-upper region) (Fig 

1A). Each of these three populations was gated upon and the basal calcein fluorescence of 

each population was determined. We observed that the pRBCs had greater steady state 

calcein basal fluorescence than uninfected erythrocytes, and calcein fluorescence increased 

with increasing parasite maturation. Compared to uninfected RBCs, the calcein fluorescence 

of ring pRBCs and trophozoite pRBCs was 18% (P < 0·02) and 153% (P < 0·0002) greater 

than uninfected RBCs respectively (Fig 1B).

Before calcein fluorescence can be made susceptible to iron quenching, cellular esterases 

must cleave the acetoxymethyl ester group from CA-AM, converting the non-fluorescent 

CA-AM molecule to the fluorescent calcein. Parasitized RBCs have greater enzymatic 

activity than uninfected RBCs (Vander Jagt et al, 1982). To assess the impact of iron on 

calcein fluorescence, we employed the use of iron chelators, which, when added to calcein-

loaded cells, chelate any iron bound to calcein. The resulting increase in calcein 

fluorescence achieved after adding an iron chelator to calcein-loaded cells represents the cell 

LIP. To assess the LIP of uninfected and pRBCs, we measured the calcein fluorescence of 

each of these populations in the absence (gray line/diagonal hatch) and presence (black line/

vertical hatch) of the iron chelator deferiprone (Fig 2A, B). The addition of deferiprone 

resulted in significant increases in calcein fluorescence in uninfected as well as in the ring 
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and trophozoite stage parasites, indicating the presence of a LIP. In addition to deferiprone, 

we employed a second membrane-permeable iron chelator (2, 2 biypridyl) and a membrane-

impermeable iron chelator (desferioxamine) to assess the LIP within uninfected RBCs, ring 

pRBCs and trophozoite pRBCs (Fig 2C). Use of the membrane-permeable iron chelator 

deferiprone resulted in ΔMFI in both ring pRBCs (ΔMFI = 4·55 ± 0·426, P < 0·005) and 

trophozoite pRBCs (ΔMFI = 15·02 ± 1·11, P < 0·005) as well as uninfected RBCs (ΔMFI = 

1·93 ± 0·12, P < 0·005). Use of a second membrane-permeable iron chelator, 2,2 biypridyl, 

resulted in an increase in ΔMFI in both ring pRBCs (ΔMFI = 3·88 ± 0·44, P < 0·005) and 

trophozoite pRBCs (ΔMFI = 16·48 ± 1–10, P < 0·005) compared to the increase in ΔMFI 

observed in uninfected RBCs (ΔMFI = 2·22 ± 0·043, P < 0·005). Utilizing membrane-

permeable iron chelators, we consistently observed 15–20% greater ΔMFI (P < 0·005) in 

ring pRBCs and 40–50% greater ΔMFI (P < 0·005) in trophozoite pRBCs as compared to 

the ΔMFI observed in uninfected RBCs in independent experiments. However, with the less 

permeable chelator, deferoxamine, an increase in ΔMFI in both ring pRBCs (ΔMFI = 3·1 ± 

0·0·21, P < 0·005) and trophozoite pRBCs (ΔMFI = 8·67 ± 0·089, P < 0·005) was seen, but 

no ΔMFI was observed in uninfected RBCs (ΔMFI = 0·19 ± 0·32, P > 1·0). This finding is 

consistent with evidence that pRBCs are more permeable than uninfected RBCs (Pouvelle et 

al, 1991; Nguitragool et al, 2011).

Characterization of LIP during maturation of P. falciparum within host RBCs

Based upon our observation that pRBCs contain a greater LIP than uninfected RBCs, and 

that labile iron appeared to increase with the maturation of the parasite from the ring stage to 

the trophozoite stage, we sought to characterize the dynamics of the LIP during maturation 

of erythrocyte stage P. falciparum. To this end, we tightly synchronized parasites to within 

4–6 h of each other by a combination of (i) ring stage selection by sorbitol treatment, (ii) 

haemozoin-containing trophozoite and schizont stage isolation by MACS and (iii) merozoite 

invasion inhibition with heparin. Following synchronization, the parasite culture was 

allowed to progress to late schizony, to the point at which at least 50% of schizonts had 

ruptured. We were able to observe uninfected, newly invaded ring stage, late stage 

trophozoites, schizonts, and free merozoites by microscopic analysis of Geimsa stained thin 

blood smears (data not shown) and flow cytometry analysis of STYO 61 stained pRBCs (Fig 

3A). We observed that the addition of the iron chelator, deferiprone, to these calcein-loaded 

parasite cultures resulted in a calcein ΔMFI that increased with parasite maturation. As 

shown in Fig 3B, compared to uninfected RBCs (ΔMFI = 80·61 ± 0·99, P < 0·0002), the 

ΔMFI was increased in ring pRBCs (ΔMFI = 95·19 ± 2·59, P < 0·0002), trophozoite pRBCs 

(ΔMFI = 162·13 ± 6·4, P < 0·0002), and schizont pRBCs (ΔMFI = 173·91 ± 16·5, P < 

0·0002). Despite differences in cytometer settings between independent experiments, the 

increase in calcein fluorescence of rings, trophozoites and schizonts was consistently 15–

20%, 40–50% and 55–60% greater than the increase observed in uninfected RBCs. There 

was little to no detectable change in calcein fluorescence in merozoites with the addition of 

deferiprone (ΔMFI = 0·963 ± 0·076) (Fig 3B). These results suggest that as erythrocyte stage 

P. falciparum parasites mature, the level of the LIP increases, in response to increased iron 

demands as the parasite becomes more metabolically active and begins to replicate DNA.
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Investigation of the impact of host serum iron sources on the LIP in P. falciparum-infected 
erythrocytes

To determine whether serum iron sources (transferrin bound iron and ferric citrate) can be 

accessed by erythrocyte stage P. falciparum and incorporated into the LIP of pRBCs, we 

incubated P. falciparum (mixed ring and trophozoite stage)-infected erythrocyte cultures 

with increasing physiological concentrations of either holo-transferrin (0·20–1·2 g/l) or 

ferric citrate (7·16–26·85 μmol/l) for 6 h. Cells were then loaded with CA-AM and 

subsequently stained with SYTO 61. The presence of both transferrin and ferric citrate in 

culture media corresponded with significant decreases in calcein fluorescence in trophozoite 

pRBC (—ΔMFI calcein), which indicates that additional iron entered the LIP and quenched 

the calcein fluorescence (Fig 4). Compared to untreated trophozoite pRBCs a decrease of 

14% (P < 0·005), 15% (P < 0·005) and 26% (P < 0·0009) was observed in the MFI calcein 

after the addition of .2 g/L, .4 g/L and 1·2 g/L human transferring, respectively. Compared to 

untreated trophozoite pRBCs a decrease of 10% (P < 0·005), 15% (P < 0·005) and 16% (P < 

0·0009) was observed in the calcein fluorescence after the addition of 7·16, 11·19 and 26·85 

μmol/l ferric citrate. No significant changes in calcein fluorescence were observed for 

uninfected RBCs or ring stage pRBC (data not shown). These results demonstrate that the 

LIP of trophozoite stage P. falciparum increases with increasing concentrations of 

transferrin and ferric citrate, this suggests that late stage parasites are capable of accessing 

serum iron in both the transferrin and non-transferrin bound form (ferric citrate).

Discussion

During the course of microbial infections, there is an arms race between the pathogen and 

host for iron. In the course of this arms race pathogens have evolved sophisticated methods 

of scavenging host iron while the host acute activation of the nutritional immune response 

effectively limits the availability of iron to invading pathogens (Skaar, 2010). Iron chelating 

agents suppress the growth of P. falciparum in vitro and in vivo (Hershko & Peto, 1988; 

Gordeuk et al, 1992). In addition, iron chelators also bolster the host innate immune 

response by synergistically acting with cytokines to increase stimulation of NO production, 

which is protective against severe malaria infection (Weiss et al, 1997; Fritsche et al, 2001). 

The importance of iron to malaria is additionally demonstrated by clinical studies that have 

documented an increased susceptibility to malaria infection in individuals given high doses 

of iron supplementation (Murray et al, 1975; Smith et al, 1989; Oppenheimer, 2001; 

Sazawal et al, 2006). The sources of host iron used by P. falciparum and the strategies used 

by the parasite to evade host nutritional immunity have remained elusive.

The labile iron pool represents the transition zone for iron between import, cellular 

utilization and storage and it is thought to change in response to the metabolic needs of the 

cell. As a cells’ metabolic demand for iron increases, it will increase the amount of iron in 

the labile iron pool. The CA-AM LIP assay measures the LIP present in uninfected RBCs 

and pRBCs. Calcein fluorescence is sensitive to iron at physiological pH 7·2–7·4 

(Tenopoulou et al, 2007). As RBC precursors mature, all their organelles are lost, producing 

an anucleate mature erythrocyte with a cytoplasm of pH 7·2–7·4 (Tenopoulou et al, 2007). 

At this pH, calcein is sensitive to iron and is able to detect the entire LIP. Upon infection of 
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the RBC, P. falciparum introduces new organelles and structures including: a nucleus, 

mitochondria, apicoplast, endoplasmic reticulum (ER) and golgi apparatus as well as a 

parasitophorous vacuole and a food vacuole with pH 3·7–6·5 (Hayward et al, 2006).

The LIP, which is detected within pRBCs using the CA-AM method, is the bioavailable/

labile iron present in the neutral pH regions of the residual RBC cytoplasm, parasitophorous 

vacuole, and parasite cytoplasm. We defined LIP as the ΔMFI of calcein that occurred with 

the addition of an iron chelator or iron source. We observed that the basal calcein 

fluorescence was greater within pRBCs than within uninfected RBCs and that fluorescence 

increased with parasite maturation. The addition of iron chelators to calceinloaded 

uninfected and pRBCs resulted in greater ΔMFI within pRBCs than uninfected RBCs, and 

the ΔMFI further increases in iron-replete increased with increasing parasite maturation. 

Interestingly, the extra-erythrocytic merozoite stage of P. falciparum had no detectable LIP. 

Our data indicate that the parasite may be able to access both intra-erythrocytic and serum 

iron. Given that total iron does not differ between uninfected and pRBCs (Marvin et al, 

2012), our observation that LIP increases with parasite maturation when it is grown in very 

low (1·79–2·685 μmol/l) iron media, suggests that the parasite may be able to release iron 

from either RBC haemoglobin or ferritin, redistributing but not altering the total cellular 

iron. Increasing LIP with parasite maturation is consistent with the increasing iron demands 

of the parasite during the trophozoite and schizont stage as the parasite’s metabolic activity 

dramatically increases and commences DNA replication. Alternatively, changes in 

intracellular iron levels may not only reflect iron consumption by the parasite but may be 

due to regulation of iron import/export in infected cells, as has been shown in macrophages 

targeted by intracellular bacteria (Nairz et al, 2007; Paradkar et al, 2008).

To provide new insight into the potential ability of P. falciparum to access serum iron, either 

transferrin or non-transferrin bound iron (ferric citrate), we measured the impact of holo-

transferrin and ferric citrate on the LIP of uninfected and pRBCs. We observed that the 

addition of increasing physiological concentrations of either ferric citrate or holo-transferrin 

increased the LIP of trophozoite pRBCs to a significantly greater degree than of ring pRBCs 

and uninfected RBC. This provides evidence that trophozoite stage pRBC can access serum 

iron sources. These results do not address whether pRBCs specifically bind or internalize 

transferrin. Rodriguez and Jungery (1986) and Haldar et al (1986) independently postulated 

the existence of a P. falciparum transferrin receptor, however such a receptor has yet to be 

isolated and cloned. Alternatively, it is well established that pRBCs are able to non-

specifically incorporate both micro- and macro-molecules from the serum (Pouvelle et al, 

1991; Nguitragool et al, 2011). Human transferrin, like other abundant serum proteins, such 

as albumin, may be non-specifically internalized into pRBCs (El Tahir et al, 2003).

Our results are relevant to the clinical question of whether host iron status and host iron 

supplementation affects risk of malarial infection. The relationship between host iron and 

the malaria parasite is complex and is tightly regulated by both host and parasite. A study 

published in 2006 that was conducted in Pemba, Zanzibar, involving more than 24,000 

children in a setting where anti-malarial treatment was not readily available, showed that 

routine supplementation with iron and folic acid increased the rates of severe illness and 

death from malaria in iron-replete children who took iron supplements (Sazawal et al, 2006). 
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Because non-transferrin bound serum iron transiently increases in iron-replete individuals 

who are given oral iron supplementation (Schümann et al, 2012), we speculated that P. 

falciparum may scavenge serum iron in order to augment intraerythrocytic growth and 

thereby potentiate the risk of malaria.

Our application of the flow cytometry based CA-AM LIP assay has revealed that the LIP 

content of infected RBCs steadily increases with increasing maturation of the intra-

erythrocytic stage of the parasite. Additionally, we demonstrated that the LIP content of late 

stage trophozoite pRBCs is increased in the presence of extracellular transferrin and ferric 

citrate. Further studies are needed to elucidate the mechanisms by which the malaria parasite 

senses, acquires, utilizes, regulates, and stores iron during the erythrocytic stage of its life 

cycle and the impact of host serum iron on these processes. Elucidation of parasite iron 

biology will provide therapeutic insights into how to augment the host innate immune 

response and may reveal targets for anti-malarial drug development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Measurement of the basal levels of CA-AM fluorescence. Calcein fluorescence of 

parasitized and uninfected RBCs was determined by assessing the calcein fluorescence of 

SYTO 61− (uninfected) and SYTO 61 + (parasitized) RBCs. Cells from P. falciparum 

(FCR3-FMG strain)-infected erythrocyte cultures were seeded in triplicate into a 96-well 

plate, loaded with CA-AM, and then stained with DNA dye SYTO 61 and analysed by flow 

cytometry. (A) Dot-plot of cell distribution of DNA stain SYTO 61 vs. calcein reveals the 

distribution of uninfected RBCs, rings and trophozoites. (B) Gates were set on uninfected 

RBCs, rings, and trophozoite populations and, mean calcein-fluorescence intensity (MFI) 

(530/330 nm) was assessed for each population. The bar graph (mean ± SD, n = 3) shows 

calcein fluorescence of uninfected and parasitized RBCs. Student’s t-test statistical analysis 

was performed comparing uninfected to parasitized cells, *P < 0·02 **P < 0·0002. Data is 

from a single representative experiment, and the experiment was performed five 

independent times with each parasite line, FCR-FMG and Dd2.
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Fig 2. 
Measurement of LIP in P. falciparum infected RBCs using flow cytometry. The LIP of 

uninfected (SYTO 61−) and parasitized RBCs (SYTO 61 +) was determined by evaluating 

the change in MFI of calcein-loaded cells achieved in the presence of different iron 

chelators. Cells from P. falciparum (FCR3-FMG strain) infected erythrocyte cultures were 

loaded with CA-AM and then incubated with DNA dye SYTO 61 in either the presence or 

absence of 100 μmol/l of the indicated iron chelator for 1 h. Cells were immediately 

analysed by flow cytometry. (A) Ring infected RBCs (B) trophozoite infected RBCs or (C) 
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uninfected RBCs following 1 h incubation in the absence (gray line/diagonal hatch) or 

presence (black line/vertical hatch) of the iron chelator, deferiprone. Black arrows denote 

the deferiprone-induced shift in calcein fluorescence. (C) Change in calcein MFI (530/330 

nm) with the addition of either deferiprone, 2,2 bipyridyl or deferoxamine in uninfected and 

ring and trophzoite parasitzed RBCs. The bar graph (mean ± SD, n = 3) shows calcein ΔMFI 

of uninfected and parasitized RBCs. Student’s t-test statistical analysis was performed 

comparing MFI calcein before and after the addition of iron chelator to cells, *P < 0·005. 

Data is from a single representative experiment using strain FCR3-FMG, and the experiment 

was performed three independent times with each parasite line, FCR3-FMG and Dd2.

Clark et al. Page 13

Br J Haematol. Author manuscript; available in PMC 2014 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig 3. 
The LIP increases as the parasite matures within the host red blood cell. The LIP of 

uninfected and different stage parasitized RBCs (pRBCs) was determined by assessing the 

change in MFI of calcein-loaded cells with the addition of the iron chelator, deferiprone. 

Cells from P. falciparum (FCR3-FMG strain)-infected erythrocyte cultures were loaded with 

CA-AM and then incubated with DNA dye SYTO 61 either in the presence or absence of 

100 μmol/l deferiprone for 1 h and analysed by flow cytometry. (A) Dot-plot of cell 

distribution of DNA stain (SYTO 61) vs. forward scatter showing the distribution of 

uninfected RBC, ring, trophozoite, schizont pRBCs and merozoites. (B) Change in calcein 

MFI (530/330 nm) with the addition of deferiprone in uninfected RBCs and RBCS infected 

with ring, trophozoite and schizont stage P. falciparum parasites and the extracellular 

merozoite stage. The change in the MFI of calcein before and after addition of deferiprone 

represents the LIP of each cell population. The bar graph (mean ± SD, n = 3) shows calcein 

ΔMFI of uninfected and parasitized RBCs. Student’s t-test statistical analysis was performed 

comparing the MFI of calcein before and after the addition of iron chelator to cells, *P < .
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0002. Data is from a single representative experiment, and the experiment was performed 

three independent times with parasite line FCR-FMG.
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Fig 4. 
Addition of human transferrin or ferric citrate increases the LIP in parasitized RBCs. Impact 

of human transferrin or ferric citrate on the LIP of RBCs infected with trophozoite stage 

parasites was determined by assessing the MFI of calcein in cells cultured in the absence and 

presence of increasing concentrations of transferrin or ferric citrate. Cells from P. 

falciparum (FCR3-FMG strain)-infected erythrocyte cultures were incubated in the presence 

or absence of increasing physiological concentrations of human transferrin (TF, 0·2-1·2 g/l) 

or ferric citrate (Fe, 7·16-26·85 μmol/l) for 6 h. Cells were then loaded with CA-AM, 

subsequently stained with DNA dye SYTO 61 and analysed by flow cytometry. The LIP 

was measured by the change in the mean fluorescence intensity of calcein following the 

addition of the exogenous iron source. The decrease in calcein fluorescence (−ΔMFI calcein 

(530/330 nm)) indicates the addition of iron to the cellular LIP that results in increased 

quenching of calcein fluorescence. The bar graph (mean ± SD, n = 3) shows calcein ΔMFI 

of trophozoite pRBCs with increasing concentrations of either transferrin or ferric citrate. 

Student’s t-test statistical analysis was performed comparing cellular calcein fluorescence of 

increasing concentrations of transferrin and ferric citrate to the addition of no iron, *P < 

0·005 **P < 0·0009. Data is from a single representative experiment, and the experiment 

was performed three independent times with parasite line FCR-FMG.
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