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Summary. The counting process with the Cox-type intensity function has been commonly used to
analyse recurrent event data. This model essentially assumes that the underlying counting process
is a time-transformed Poisson process and that the covariates have multiplicative effects on the
mean and rate functions of the counting process. Recently, Pepe and Cai, and Lawless and co-
workers have proposed semiparametric procedures for making inferences about the mean and rate
functions of the counting process without the Poisson-type assumption. In this paper, we provide a
rigorous justification of such robust procedures through modern empirical process theory. Further-
more, we present an approach to constructing simultaneous confidence bands for the mean function
and describe a class of graphical and numerical techniques for checking the adequacy of the fitted
mean and rate models. The advantages of the robust procedures are demonstrated through
simulation studies. An illustration with multiple-infection data taken from a clinical study on chronic
granulomatous disease is also provided.
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Introduction

Andersen and Gill (1982) introduced a counting process model with the Cox (1972) type of
intensity function for recurrent events. Specifically, let N*(¢) be the number of events that
occur over the interval [0, 7] and Z(-) be a p-dimensional covariate process. Also, let F, be the
o-field generated by {N*(s), Z(s): 0 < s < ¢} and A (¢) be the intensity function of N*(¢)

associated with F,, i.e.

E{dN*()IF,-} = Az(n) d1,



where dN*(¢) is the increment N*{(¢t+ df)—} — N*(¢t—) of N* over the small interval [¢,
t + d7). Then the Andersen—Gill intensity model takes the form

A1) = exp{B5 Z(1)} Xo(1), (1.1)

where \(-) is an unspecified continuous function and 3, is a p x 1 vector of regression
parameters. Under this model, N*(¢) is a time-transformed Poisson process in that N*{A'()}
is a Poisson process, where A,'(7) is the inverse function of

11
A0 = | exp (3T Z) At d
If Z is time invariant, then N*(¢) is a non-homogeneous Poisson process. Using the powerful
martingale theory, Andersen and Gill (1982) developed an elegant large sample theory for the
partial likelihood (Cox, 1975) estimation of model (1.1). These inference procedures have
been implemented in major software packages and are commonly used by practitioners.
Model (1.1) consists of two major components:

(a) E{AN*()|F,_} = E{dN*()|Z(1)};
(b) E{dN*(1)|Z(1)} = exp{ 3y Z(1)} \o(?) dt.

Assumption (a) implies that all the influence of the prior events on the future recurrence, if
there is any, is mediated through time-varying covariates at ¢, whereas assumption (b)
specifies how the covariates affect the instantaneous rate of the counting process. If Z is time
invariant, then assumption (a) corresponds to the independent increments structure of the
Poisson process.

It would be desirable to relax assumption (a) because the dependence of the recurrent
events may not be adequately captured by time-varying covariates and because no method is
available to verify this assumption. Thus, we remove assumption (a) and take assumption (b)
as the defining property of our model. Denoting E{dN*(¢)|Z(¢)} by du,(t), we express the
resulting model as

dp (1) = exp{Bg Z(0)} duo(2). (1.2)

or

t

patt) = | exp (57 2w} dpot (13)
0

where py(-) is an unknown continuous function. If Z consists of external covariates
(Kalbfleisch and Prentice (1980), page 123) only, then

pz(t) = E{N*()|Z(s): s = 0}

so u,(t) and p(¢) pertain to the mean functions of the recurrent events; otherwise, they can
only be interpreted as the cumulative rates. If Z is time invariant, then model (1.3) simplifies
to

p(0) = exp(B Z) pol2)- (1.4)

Models (1.2) and (1.4) are referred to as the proportional rates and proportional means
models.

Model (1.2) characterizes the rate of the counting process under model (1.1). Clearly,
model (1.1) implies model (1.2) with dpuy(7) = Ay(?) d¢, but not vice versa. Model (1.2) is more



versatile than model (1.1) in that it allows arbitrary dependence structures among recurrent
events and is applicable to any counting process for recurrent events. To illustrate this point,
suppose that some subjects are more prone to recurrent events than others and that this
heterogeneity can be characterized through the random-effect intensity model

Atln) =1 exp{Bo Z(D)} Ao(0), (1.5)

where 7 is an unobserved unit-mean positive random variable that is independent of Z. Given
model (1.5), model (1.2) holds whereas model (1.1) does not.

Pepe and Cai (1993) studied models in the form of equation (1.2) and advocated the use of
the rate function of recurrence after the first event. They established a large sample theory for
the semiparametric estimation of the regression parameters; however, there are some gaps
in their technical developments, especially in the proof of their lemma A.1. More recently,
Lawless and Nadeau (1995) and Lawless et al. (1997) studied the estimation of 3, and p, for
models (1.2) and (1.4), though the proofs of the asymptotic results were given for the case of
discrete times only.

In this paper, we provide a rigorous justification for the important results of Pepe and Cai
and Lawless and colleagues by appealing to modern empirical process theory. In fact, we
study a class of estimators which is a modification of those of Pepe and Cai and Lawless and
colleagues, as will be discussed at the end of Section 2. Furthermore, we show how to con-
struct simultaneous confidence bands for p(-) and covariate-specific mean functions. We also
develop numerical and graphical techniques for checking the adequacy of model (1.2). These
theoretical and methodological developments are presented in Sections 2-4, most of the
technical details being relegated to Appendix A. In Section 5, we report some simulation
results and provide an illustration with multiple-infection data taken from a clinical trial on
chronic granulomatous disease (CGD).

2. Inferences on the regression parameters

In most applications, the subject is followed for a limited amount of time so N*(-) is not
fully observed. Let C denote the follow-up or censoring time. The censoring mechanism is
assumed to be independent in the sense that

E{AN*()|Z(1), C = 1} = E{dN*()|Z(1)}

for all ¢+ = 0. Define N(t) = N*(t A C) and Y(¢) = I(C > t), where a A b = min(a, b), and I(-)
is the indicator function. For a random sample of n subjects, the observable data consist of

{Ni(')a Yl()7 Z/()} (l = 1’ EREEE) I’l).
Let

SO, 1) =" S Y1) Z(0® expl8T Z(1))
i=1

(k =0, 1, 2), where ¢®" = 1, ¢® = a and a® = aa”. Also, let Z(5, 1) = SV (3, /SO, 1),
and Z(3, t) be the limit of Z(3, t). We impose the following regularity conditions:

(@) {N:(), Yi(), Z()} (i=1, ..., n) are independent and identically distributed;

(b) Pr(C; =2 7)>0 (=1, ..., n), where 7 is a predetermined constant;

(¢) N(7)(i=1, ..., n)are bounded by a constant;

(d) Z,(-) =1, ..., n) have bounded total variations, i.e. | Z;(0)| + fOT |[dZ;(#)| < K for all
j=1,...,pandi=1, ... n where Z;is the jth component of Z; and K'is a constant.



(e) A=E[], {Z(t) — z(By, )} Y()exp{By Z(1)} duy(1)] is positive definite, where E is the
expectation.

These conditions are analogous to those of Andersen and Gill (1982), theorem 4.1. Condition
(e) holds if, at least for some interval of ¢, the distribution of Z(¢) conditional on Y(¢) = 1
does not concentrate on a (p — 1)-dimensional hyperplane.

Under model (1.1), the partial likelihood score function for 3, is U(G, 7), where

n t
u@. = 2} L {Zi(w) = Z (B, u)} dN(u). 2.1
Denote the solution to U(8, 7) =0 by 4. Under conditions (a)(e), the random vectors
Y2 U(By; 7) and n'/*(8 — f3,) are asymptotically zero mean normal with covariance matrices
A and A7" respectively, provided that model (1.1) is true (Andersen and Gill, 1982).

As mentioned in Section 1, for arbitrary counting processes, we formulate the relationship
between Z(-) and N*(-) through model (1.2) rather than through model (1.1). As shown in
Appendix A, U(G,, 1) is still centred at zero asymptotically as long as equation (1.2) holds.
Thus, we estimate (3, of model (1.2) by /3 as well. This is analogous to the use of a generalized
estimating equation with an independence working assumption for longitudinal data (Liang
and Zeger, 1986). In Appendix A.1, we show that, under model (1.2), 3 converges almost
surely to f3,.

To establish the asymptotic distribution of 3 under model (1.2), we need to derive the
corresponding distribution of U(f,, 7). Simple algebraic manipulation yields

n t

Uy, 1) = ; . {Zi(u) — Z(By, w)} dM(u), (2.2)
where
M(1) = N(1) — ; Yi(u) exp{ B Zi(u)} dpso(u).
If {N*(). . . .. N*(-)} satisfy the intensity model given in equation (I.1), then {M,(), . . .,

M, (-)} are martingales, in which case the weak convergence of U(S3,, t) follows directly from
the martingale central limit theorem (Andersen and Gill, 1982). For other counting processes,
the M; are not martingales so the martingale central limit theorem is not applicable. How-
ever, E{dM(?)|Z(t)} = 0 under model (1.2) since

dM (1) = I(C; = D[ANT(1) — exp{Bg Zi1)} duo()]-

Then, using modern empirical process theory, we show in Appendix A.2 that the process
n'? U(By, t) (0 < t < 7) converges weakly to a continuous zero-mean Gaussian process with
covariance function

S t
2.0 = E| | (20~ 2 01 M) | (20 = 20 0 TaM )], vssi
between time points s and 7. We also show in Appendix A.2 that n'/*(3 — 3,) is asymptotically
zero mean normal with covariance matrix = A~ 'S 47", where = = X(r, 7).
In general, & # A, so I' # A~'. In other words, the limiting covariance matrix for 3 under
model (1.2) generally differs from its counterpart under model (1.1). If model (1.1) holds,
which implies that model (1.2) also holds, then ¥ = 4 and consequently I' = 4"



The covariance matrix I' involves p(-). It is natural to estimate pu,(¢f) by the Aalen—
Breslow-type estimator

fio(1) = J dN(w) telo, ], 2.3)

0 nSOB, u)’

where N(u) = T, N:(u). In Appendix A.3, we show that [i,(-) converges almost surely to
1o(+) and that the covariance matrix I" can be consistently estimated by ['= 4A~'$4~", where

A=—n"oUB. /0BT ="y J {Ziu) = Z(B, w))** Yi(u) exp{BT Ziw)} dfig(w),

i=1 Jo

2=n4§}LHﬂw—Z$deMﬁOLﬂﬁw—zﬁwnuwﬁﬁ

310 = N0 = || i exp (5" Ziw) 4o
We shall refer to [ and A~ as the robust and naive covariance matrix estimators respectively.
The former is always valid whether or not the dependence structure for recurrent events is
modelled correctly, whereas the latter is not.

By incorporating a random weight function Q(3, 1) into U(, 7), we obtain the following
class of weighted estimating functions for f:

Ugts.7) =35 | 00120 - 205, ) avw, 24)
i=1 Jo

We assume that O(/3, 1) is non-negative, bounded and monotone in 7, and converges almost
surely to a continuous deterministic function ¢(¢) in ¢ € [0, 7]. (The monotonicity assumption
may be relaxed to that Q(0, -) is of bounded total variation so that it can be written as a
sum of two monotone functions, each of which is assumed to converge to a deterministic
function.) Weighted partial likelihood score functions similar to formula (2.4) have been
studied by Lin (1991) and Sasieni (1993) in the context of censored survival data. Let 3, be
the solution to Uy(B3, 7) = 0. We show in Appl)endix 1A.2 that n"/ 2(5Q — 0By) is asymptotically
zero mean normal with covariance matrix Ag ZpAdy, where

Ap = E{ L a()(Z,(1) — Z(By, D}** Y\ (1) exp{Bs Z,(1)} d/io(t)}
and

EQ=E{YQWNZNO—K%deMKWJ

0 0

4N Z1 () = 2By, 0)} dMl(v)] -

We may estimate 4, and X, consistently by replacing the unknown parameters by their
respective sample estimators, as in the case of 4 and X.

The estimator (3 always exists and is unique at least for large n because U(B, 7) is the
derivative of a concave function. In our definition of the weighted estimating functions given
in formula (2.4), the weight function Q(/3, ¢) does not involve 3, which ensures that Uy(B, 1)
remains concave. By contrast, Pepe and Cai (1993), Lawless and Nadeau (1995) and Lawless
et al. (1997) used Q(B, 1) instead of Q(B, ¢) in their weighted estimating functions. Con-
sequently, their estimating functions may have multiple roots even in the limit, and the
asymptotic properties of the resulting estimators have yet to be rigorously studied.



3. Inferences on the mean function

In this section, we assume that the covariates are external so that p, has the mean function
interpretation. As mentioned in Section 2, we may estimate p,(z) by fiy(?) given in expression
(2.3). More geAnerallyZ we may estimate j4(f) by fig(#), which is obtained from expression (2.3)
by replacing 3 with 3,. The weak convergence for /i, in continuous time has not previously
been investigated. We show in Appendix A.4 that the process V(1) = n'/ 2{/fLQ(l) — (0}
(1 < 7) is asymptotically equivalent to n~/? £, W,(r), where

" dM(u)

(1) = L = W, 04 L G Zi(u) — (. 1)) M () 3.1)

and

t

W, 1) = J 26, ) dyag(u0).

0

It then follows from the multivariate central limit theorem, together with a proof of tightness
again given in Appendix A.4, that V(¢) converges weakly to a zero-mean Gaussian process
with covariance function &(s, 1) = E{W,(s) ¥;(?)} at (s, £). A natural estimator for £(s, ?) is

£ =" 3 W(s) B (1),
i=1

where
\jjl_(t) — J M _
0 SO(By, u)

" Z(B.u)
HO.0 = | ot

H'(By. 1) A5 L 0B W (Zi() — Z(Bg. 1)) ANL (),

and A, is analogous to A. The consistency of £ is established in Appendix A.4. R

The asymptotic normality for fi,(7), together with the consistent variance estimator (7, 1),
enables us to construct pointwise confidence intervals for 1(z). Since y,(¢) is non-negative, we
consider the transformed random variable n'/ 2[log{/fLQ(t)} — log{1(2)}], whose distribution
is asymptotically equivalent to that of V(r)/uy(¢) provided that py(7) > 0. With the log-
transformation, an approximate 1 — a pointwise confidence interval for p(¢) is

fig(?) exp{£n~""7z, 5 E2(t, 1)/ pg(n)}, (3.2)

where z,,, is the upper 100a/2 percentage point of the standard normal distribution.

To construct simultaneous confidence bands for p(f) over a time interval of interest [¢;, 1,]
(0 < t; < t, < 7), we need to evaluate the distribution of the supremum of the process V() or
a related process over [¢,, £,]. It is not possible to evaluate such distributions analytically
because the limiting process of V(¢) does not have an independent increments structure even
when the N7(-) are Poisson processes. We show in Appendix A.4 that the distribution of the
process V(f) can be approximated by that of the zero-mean Gaussian process

70y =n"'? 3 (G,
=

where (G, . . ., G,) are independent standard normal variables which are independent of



{N,(), Y(), Z(")} (=1, ..., n). To approximate the distribution of V{(¢), we obtain a large
number of realizations from F() by repeatedly generating the normal random sample

(G, . .., G,) while fixing the data {N,(:), Y(-), Z,()} (i =1, . . ., n) at their observed values.
Using this simulation method, we may determine an approximate value of ¢, ,, which satisfies
V(1
Pr{ sup # < ca/z} =1-a.
n<i<n | EV2(1, 1)

Then, with the log-transformation, an approximate 1 — o simultaneous confidence band for
po(?) over [y, 1] is

fig(t) exp{xn~""c,, €, 1)/ fig(0)). (3.3)

In applications, we are often interested in estimating or predicting the mean function ()
for subjects with specific covariate value z. If all the covariates are centred at z, then p,
corresponds to p.. Thus, we may obtain a consistent estimator of u. and construct the
pointwise confidence interval or simultaneous confidence bands for p. by using the above
formulae for p, after replacing (Z,, . . ., Z,) with (Z, —z, . . ., Z, — z) in the data set.

4. Model checking techniques

Since M,(7) is the difference between the observed and model-predicted numbers of events on
the ith subject by time ¢, it is natural to use these residuals to check the adequacy of model
(1.2). Following Lin et al. (1993), we develop a class of graphical and numerical methods by
using certain cumulative sums of the M,(f). Because the basic ideas are similar to those of Lin
et al. (1993), we keep our discussion fairly brief in this section. However, it is important to
note that there is an additional technical challenge here because the recurrent event times are
correlated so the M,(¢) are not martingales.

We first consider the problem of checking the functional forms of the covariates. For this,
we assume that the covariates are time invariant. Let M, = M,(7). To check the functional
form for the jth component of Z, we may plot the M, against the Z;. To construct more
objective and formal procedures, we consider the cumulative sum of the A, over the values of
Z:

n
Wi(x) = n\/? Y IZ; < X)M.,.
i1
We show in Appendix A.5 that the null distribution of Wj(x) can be approximated by the
zero-mean Gaussian process

i=1

_ n T S a b n
W) =n'Y L { [(Z, < x) — % } AN ()G,

—f@mmﬂ”fmij}z—ﬂﬁmmﬂwmh @.1)
=1 Jo
where

n

S(B, u, x) =n"" 3 Y(u) exp(8"Z) [(Z;; < x)

i=1

and



n !
BB, t, x)=n"" Z; L Yi(u) exp (8" Z) U Z; < ) Z: — Z(B, w)} dfig(u).
In this section, the null distribution pertains to the distribution of the goodness-of-fit process
when model (1.2) holds. As in the case of ¥(-), the distribution of W,(-) may be simulated. To
assess how unusual the observed residual pattern is, we plot a few, say 20, realizations from
Wj(-) along with the observed Wj(-). Furthermore, we may complement the graphical inspec-
tion with the supremum test sup, |W(x)|. The p-value of this test is obtained by generating
a large number of, say 1000, realizations from sup, |W(x)| and comparing them with the
observed value of sup, |W(x)|.
To check the exponential link function of model (1.2), we consider the process

Wix) =n"'? 137 Z < 1M,
i=1

The null distribution of this process can be approximated by that of W.(x), which is obtained
from expression (4.1) by replacing /(Z; < x) with I(3'Z; < x). Graphical and numerical
inspections can be conducted in the same fashion as for Wj(-).

To check the proportional rates or means assumption with respect to the jth covariate
component, we consider the standardized ‘score’ process

U = ()07 2 U(B, 1),

where U3, 1) is the jth component of U(f, 7) and f)j;l is the jth diagonal element of 7'
Clearly,

no [t
UG =3 | Zwaitw,
i=1 Jo

which involves transformations of the A7,(¢). The justification for using ur¢)j=1,...p)
to check the proportional rates and means assumptions is similar to that of Lin et al. (1993)
for checking the proportional hazards assumption. We show in Appendix A.5 that the null

distribution of Uj‘(t) can be approximated by that of the zero-mean Gaussian process

no DA
Uy = (51" [/ > j {Zﬁw) - —iio)ﬁg’ ; } dM, )G,

—JNB, APy JT {Ziu) — Z(B, u)) dM,-(u)G,} ; (4.2)
0

i=1
where
J@B. y=n" il L Yi(u) exp{B" Zu)} Zj(w){Zu) — Z(B, u)} djig(u)

and Sj(-l) is the jth component of S Again, graphical and numerical inspections can be
performed by simulation.

An omnibus test for checking the overall fit of the model can be constructed from the
process

Wo(t, z) =n'> 3" I(Z, < ) M),
i=1



where the event {Z; < z} means that each of the p components of Z; is no larger than the
respective component of z. We show in Appendix A.5 that the null distribution of W,(t, z)
can be approximated by the zero-mean Gaussian process W, (¢, z), which is obtained from
expression (4.1) by replacing I(Z; < x) with I(Z; < z), 7 in the first integral with ¢ and

B(f3, T, x) with B(f, t, z). An omnibus test statistic is sup, . | W,(t, 2)I.

5. Numerical results

5.1.  Simulation studies

A series of simulation studies was conducted to assess the performance of the robust method
described in Section 2 and the corresponding method of Andersen and Gill (1982). We con-
sidered randomized clinical trials with m = n/2 patients assigned to each of the two treatment
groups. We generated recurrent event times from model (1.5) with \y(f) =1 and 3, = 0.5, Z
being the treatment indicator and 7 having a gamma distribution with mean 1 and variance o”.
The subject’s follow-up time was uniform [0, 3], which yielded an average of approximately
two observed events per subject during the trial period. We set m = 50, 100, 200 and o> = 0,
0.25, 0.5, 1. For each combination of m and o2, 10000 data sets were simulated.

For each simulated data set, we estimated 3, under two intensity models:

Az(1) = exp(ByZ) Ao(D), (5.1
Az(1) = exp{BoZ + 7o X(D)} Ao (0), (5:2)

where Z is the treatment indicator and

1 if there was an event within the interval [z — 1, 1),
X(t) = .
0 otherwise.

These models are similar to models I-III of Andersen and Gill (1982), pages 1113-1115, and
have commonly been used to analyse recurrent events for clinical trials. Of course, fitting
model (5.1) with the robust variance estimator is the same as fitting the proportional means
model

piz(2) = exp(Bo2Z) pio(2)- (53)

As discussed in Section 1, model (5.3) holds whereas models (5.1) and (5.2) do not unless
o = 0. We took 7 as the largest recurrence time so that all the data were used in the anal-
ysis.

The results of the simulation studies are displayed in Table 1. Under model (5.1), J3 is
virtually unbiased. The robust variance estimator provides a fairly accurate estimation of the
true variance of (3, and the corresponding confidence intervals have reasonable coverage
probabilities. The performance of the robust method tends to improve as m increases and as
o? decreases. For non-zero o2, the naive variance estimator underestimates the true variance
of 3, and thus the corresponding confidence intervals do not have proper coverage
probabilities. Under model (5.2), the estimator of 3, is biased downwards unless o° = 0. The
performance of the intensity-based method is not acceptable even if o> = 0.25 and worsens
rapidly as o” increases.

Simulation studies were also conducted to evaluate the inference procedures developed in
Sections 3 and 4. The results indicate that the asymptotic approximations are sufficiently
accurate for practical use.



Table 1. Summary statistics for the simulation studiest

m o’ Results for model (5.1) Results for model (5.2)
Bias SE  SEE(R) CP(R) SEE(N) CP(N) Bias SE  SEE(N) CP(N)

50 0 0.002  0.149  0.145 0942 0.148 0.949 0.004  0.153  0.151 0.951
50  0.25 0.004 0.189  0.183 0.940  0.148 0.878 —0.040 0.175  0.150 0.899
50 0.5 0.002  0.221 0.214 0.939  0.149 0.813 —0.072  0.191 0.151 0.843
50 1 0.003  0.275  0.263 0.935  0.150 0.718 —0.106  0.222  0.151 0.764
100 0 0.002  0.104  0.103 0.945  0.104 0.950 0.004  0.106  0.106 0.951
100 0.25 0.003  0.134  0.131 0.942  0.104 0.875 —0.043  0.123  0.105 0.888
100 0.5 0.001 0.157  0.153 0.943  0.104 0.807 —0.075  0.135  0.105 0.814
100 1 —0.002  0.195  0.190 0.939  0.105 0.713 —0.111 0.157  0.105 0.702
200 0 0.001 0.074  0.073 0946  0.073 0.948 0.001 0.075  0.074 0.949
200 025 0.002  0.093  0.093 0.949  0.073 0.881 —0.045 0.086  0.074 0.862
200 0.5 0.001 0.111 0.109 0.945  0.073 0.805 —0.075  0.096  0.074 0.755
200 1 0.002  0.137  0.135 0.947  0.074 0.711 —0.108  0.110  0.074 0.622

+Bias is the mean of the estimates of 3, minus f3,, SE is the standard error of the estimates of (3); SEE(R) and SEE(N)
are the means of the robust and naive standard error estimates respectively, and CP(R) and CP(N) are the coverage
probabilities of the corresponding 95% confidence intervals. The robust and naive standard error estimates are based
on [ and 47" respectively.

5.2. A real example

We now apply the methods proposed to the multiple-infection data taken from the CGD
study presented by Fleming and Harrington (1991), section 4.4. CGD is a group of inherited
rare disorders of the immune function characterized by recurrent pyogenic infections. To
evaluate the ability of gamma interferon in reducing the rate of infection, a placebo-
controlled randomized clinical trial was conducted between October 1988 and March 1989. A
total of 128 patients were enrolled into the study. By the end of the trial, 14 of 63 treated
patients and 30 of 65 untreated patients had experienced at least one infection. Of the 30
untreated patients with at least one infection, five had experienced two infections, four others
had experienced three and three patients had four or more. Of the 14 treated patients with at
least one infection, four experienced two and another had a third infection.

Let us first fit models (5.1) and (5.2) to these data. The treatment indicator Z takes the
value 1 if the subject received gamma interferon. For model (5.2), we redefine X(¢) to be the
indicator on whether or not there was an infection within the last 60 days. Model (5.1) was
previously used by Fleming and Harrington (1991), page 163, to analyse an earlier version of
the CGD data and is similar to models I and II of Andersen and Gill (1982), whereas model
(5.2) is similar to model III of Andersen and Gill. Of course, the previous researchers only
used the naive variance estimator.

The results for models (5.1) and (5.2) are shown in Table 2. The treatment variable is highly
significant, indicating that gamma interferon is effective in reducing the rate of infection.
Under model (5.1), the robust standard error estimate is considerably larger than the naive
estimate. Under model (5.2), the time-varying covariate X(-) is highly significant, the
standardized parameter estimate being 2.43; the difference between the naive and robust
standard error estimates becomes smaller, though still appreciable. This suggests that the
time-varying covariate captures part of the dependence among recurrent infections. The
estimate of the treatment effect is about 10% smaller under model (5.2). This is consistent
with the simulation results shown in Table 1 in that the estimator of the treatment effect
under model (5.2) has a negative bias if there is overdispersion. In the CGD study, as in many
other clinical trials, some patients were more prone to recurrent events than others, which



Table 2. Estimation of the treatment effect for the CGD studyf

Model Parameter Results for the naive method Results for the robust method
estimate
SEE Estimate/SEE SEE Estimate/SE
(5.1 —1.097 0.261 —4.20 0.311 —3.53
(5.2) —0.989 0.266 —3.72 0.294 —3.36
TSEE is the standard error estimate.
Table 3. Estimation of the effects of treatment and age for the CGD studyt
Covariate Parameter SEE p-value
estimate
Robust Naive Robust Naive
Treatment —1.12 0.309 0.261 0.0003 0.00002
Age —0.03 0.014 0.013 0.034 0.020

+SEE is the standard error estimate; p-value pertains to testing no covariate effect.

suggests that model (1.5) or model (5.3) is more appropriate than models (5.1) and (5.2). Note
that the test for no treatment difference based on model (5.3) is purely nonparametric in that
it does not model any aspect of the recurrent events.

For further illustration, we consider model (1.4) with Z = (Z,, Z,)", where Z, is the
treatment indicator defined above and Z, is the patient’s age at enrolment. This model would
be useful for predicting the experience of infection for patients with specific age and treatment
assignments. The estimates of the regression parameters are presented in Table 3. Again, the
naive standard error estimate for the treatment effect is much smaller than the robust
estimate, yielding a markedly smaller p-value for testing no treatment difference. Incidentally,
in both Tables 2 and 3, we let Q = 1 and 7 be the largest observed infection time.

Fig. 1 displays the estimates of the cumulative frequencies of recurrent infections for 14-
year-old patients who received gamma interferon versus those who did not receive gamma
interferon. The estimates are shown from day 4 to day 373, which are respectively the
smallest and largest infection times observed in the data set. The simultaneous confidence
bands are based on expression (3.3) with 1000 simulated realizations of ¥(-). Clearly, the
treated patients tend to have fewer infection episodes over time.

Fig. 2 summarizes the graphical and numerical results for checking the adequacy of the
assumed model: Figs 2(a) and 2(b) pertain to the functional form for age and the exponential
link function respectively, whereas Figs 2(c) and 2(d) pertain to the proportional means
assumptions with respect to treatment and age respectively. In all the plots, the observed
residual processes appear to be within the normal ranges. Thus, there is no evidence against
the model assumed.

6. Remarks

The intensity model requires the correct specification of the dependence of the recurrent
events within the same subject. In many applications, especially in a medical context, the
dependence structure is complex and unknown. Even if the dependence structure is known, it
may not be possible to fit the corresponding intensity model. Under model (1.5), for instance,
the induced intensity model for A,(7) has a very complicated form and cannot be analysed
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Fig. 1. Estimation of the cumulative frequencies of infections for 14-year-old CGD patients (a) receiving gamma
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95% confidence bands)

by the usual partial likelihood approach. To accommodate the dependence, we may add
time-varying covariates extracted from the counting process history into model (1.1). How-
ever, most dependence structures, such as the heterogeneity specified by model (1.5), cannot
be adequately characterized by simple time-varying covariates. Furthermore, the inclusion of
such time-varying covariates which are part of the response may result in biased estimation of
the overall treatment effect for randomized trials, as elucidated by Kalbfleisch and Prentice
(1980), pages 124-125, and demonstrated in Section 5.
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observed processes; — — —, simulated realizations from the null distributions; p-values pertain to the supremum
goodness-of-fit tests)

By contrast, the proposed rate and mean models allow arbitrary dependence structures. As
in the case of the intensity model, we may use the rate model with time-varying covariates
which reflect the past history of the counting process to predict the probability of another
event in the near future or to understand the dependence of the recurrent events. However, if
we are interested in predicting the recurrence experience based on base-line covariate values,
then model (1.4) can be used. Under model (1.4) or model (1.3) with external covariates
only, u, has the mean function interpretation. This quantity is particularly easy for non-
statisticians to understand.

The approach of modelling the marginal mean and rate functions for recurrent events
taken here is in the same vein as the approach of modelling the marginal hazard functions for
multivariate failure times (Wei et al., 1989). The latter uses a stratified proportional hazards
model with a separate stratum depending on the number of previous events and can only
handle a small number of recurrent events; the former treats all recurrent events of the same
subject as a single counting process. Thus, the current approach is more efficient, flexible and
parsimonious than the method of Wei er al. (1989) in handling recurrent events. Both
approaches have been implemented in major software packages, although the asymptotic
theory for the current approach was lacking.

Many applications are concerned with point processes that have arbitrary jump sizes. An



example of this kind is the accumulated cost of medical care, which has received tremendous
recent interest. In such situations, we may formulate the rate or mean of the accumulation
through model (1.2) or (1.4), whereas intensity- or hazard-based models no longer make
sense. All the results stated in this paper continue to hold when N*(-) is a point process with
positive jumps of arbitrary sizes; the proofs given in Appendix A do not rely on the counting
process feature of N*(-) at all.

The results in this paper can be extended to other rate models, including those of Pepe and
Cai (1993). In the presence of a terminal event, such as death, we may model the conditional
rate function E{dN*(¢)|D = t; Z(f)} by equation (1.2), where D is the time to the terminal
event. Then, by redefining N(7) = N*(t AD A C) and Y(f) = I(D A C = {), we can show that
the basic results in the paper hold for the conditional rate function provided that censoring
by C is independent in that

E{AN*()|DAC = t; Z(t)} = E{AN*(t)|D = t; Z(1)}.

The statistics encountered in this paper as well as in many other contexts are of the form

n

5= | o anto.
i=1
where M;(-) (i=1, . . ., n) are zero-mean processes and H(-) involves the data from all the n
subjects. If M,(-) i=1, . . ., n) are martingales and H(-) is predictable, then the asymptotic
properties for such statistics follow from martingale theory. The techniques developed in
Appendix A do not require M,(-) (i =1, . . ., n) to be martingales or H(-) to be predictable
and can be applied to a broad range of problems.

To simplify the proofs, we impose a truncation point 7 in the estimating function for .
Our simulation results indicated that it is appropriate to set 7 to be the last observed
recurrence time so that all the data are used in the inferences. In fact, it is possible to show
that the desired asymptotic results hold without the tail restriction, though the proofs would
be more tedious.

We assume that N*(-) is a continuous time process. All the inference procedures proposed
remain valid for the discrete time case. We then interpret du(f) as a mass function. The
asymptotic proofs are similar, but simpler.

Appendix A: Proofs of asymptotic results

In this appendix, we prove the asymptotic properties of the inference procedures proposed in Sections
2-4. We shall repeatedly use the assumptions described in Section 2, especially conditions (a)—(e). We
first state and prove a technical lemma which will be useful in proving the weak convergence of U(5,, 1),
V(t) and other processes.

Lemma 1. Let f, and g, be two sequences of bounded functions such that, for some constant 7,
(a) supy<, <. /(1) = f(O)] = 0, where f is continuous on [0, 7],

(b) {g,} are monotone on [0, 7] and
(c) supy<,<,lg.(t) — g(1)] = 0 for some bounded function g. Then

sup J £i(5) dg,(s) —j £(s)dg(s)| = o, (A1)
0<t<t 0 0
sup J g,(5) df,(s) —J g(s)df(s)| — 0. (A.2)
0<t<rt 0 0




Proof. It suffices to prove expression (A.1) because expression (A.2) follows from it through the
integration by parts formula. Since f, = max(f,, 0) — max(—f,, 0), we assume without loss of generality
that {f,} are all non-negative. Clearly,

1

[ 00~ [ 020 = | 16 -6 e + { | 6 dg- 10 dg(s)}.
0 0 0 0 0

The first term on the right-hand side of this equation converges uniformly to 0 in view of assumption (a)
and the fact that {g, } are monotone and uniformly bounded. Note that the uniform boundedness of {g,}
follows directly from assumptions (b) and (c). Because the convergence of g, to g is uniform, we can
extend Helly’s theorem (Serfling (1980), page 352) to show that

1+

J () dgn(s) — j £(5) dg(s)
0 0

for every ¢, where t+ = lim,,_,((r &+ A¢). Thus, lemma 8.2.3 in Chow and Teicher (1988), page 265, can
be used to conclude that the second term also converges to 0 uniformly in 7.

A.1. Consistency of 3 and 4
Define

_ T SOBHY -
3@ = |5 [ @-s0mzo o - [ e G0 b avo)

In view of conditions (a)-(d) in Section 2, we can use the strong law of large numbers and the fact that
n~' N(7) and S9(8, ¢) have bounded variations to show that X(3) converges almost surely to

T o T 0)
X =k [ 6-m" 20w - [ oe{ G avio| (A3
for every 3, where
903, 0 = ELY (0 exp{ 87 Z)(0} Zi()*]
(k=0,1,2). Clearly,
PG . an ()
S = | 120 - 26,01 0 exp 5" Z0) g

which is negative semidefinite. Thus, X(0) is concave. This implies that the convergence of X(5) to X(5)
is uniform on any compact set of 3 (Rockafellar (1970), theorem 10.8). In particular, letting B, = {3:
183 = Boll < r}, we have

sup 1X(8) — X(B)I = 0 (A4)

almost surely. It is easy to show that X is concave with dX(5,)/93 = 0 and 8*X(5,)/03* = —A under
model (1.2). Since A4 is positive definite by condition (¢), X has a unique maximizer ,. In particular,
Supgeap, (X(B)} < X(By), where 0B, ={B3: |3 — Boll =r}. This fact, together with expression (A4),
1mp11es that X(8) < X(8,) for all 3 € 9B, and all large n. Therefore, there must be a maximizer of X(3),
i.e. a solution to 9X(3)/93 = 0, say B, in the interior of B,. Because of condition (), the argument of
Jacobsen (1989), page 338, can be used to show the (global) uniqueness of 3 for all large n. Since r can
be chosen arbitrarily small, 3 must converge to 3, almost surely. The consistency of ﬁQ can be proved in
the same manner.

A.2. Weak convergence of U(By, t), Ug(3y, t), B and fq

In view of equation (2.2),



!

UBy. 1) = M (1) — J )

0
where M(7) = =1, M(1) and

n

M) =3 L Z,(u) AMi(u),

i=1

both of which are sums of independent and identically distributed zero-mean terms for fixed z. By the
multivariate central limit theorem, (n~"/? M, n~/?>M ) converges in finite dimensional distributions to a
zero-mean Gaussian process, say (W, W, ). Obviously, M(¢) is the difference of two monotone
functions in ¢. Since condition (d) in Section 2 implies that Z,(-) is bounded, we may assume without loss
of generality that Z,(-) > 0. Thus, each of the p components of J}; Z(u) dM(u) is also a difference of two
monotone functions in z. Because monotone functions have pseudodimension 1 (Pollard (1990), page
15, and Bilias et al. (1997), lemma A.2), the processes {M(f); i=1, ..., n} and {j(; Z(u) dM;(u);
i=1,..., n}are manageable (Pollard (1990), page 38, and Bilias ez al. (1997), lemma A.1). It then
follows from the functional central limit theorem (Pollard (1990), page 53) that (n~">M, n~'/*M,) is
tight and thus converges weakly to (W,,, W,,,). This weak convergence also follows from example
2.11.16 of van der Vaart and Wellner (1996), page 215. Furthermore, it can be shown that E{W,,(t) —
Wi} < K{uo(t) — po(s)}* for some constant K > 0. It then follows from the Kolmogorov—Centsov
theorem (Karatzas and Shreve (1988), page 53) that W,, has continuous sample paths under the
Euclidean distance. Likewise, W,,, also has continuous sample paths.

By the strong embedding theorem (Shorack and Wellner (1986), pages 47-48), we can obtain in a new
probability space almost sure convergence of (n~ /M, n~'?M,, D, SO) to (W, W, s 5Oy,
Clearly, S(8,, f) is a monotone function in ¢. Since Z,(-) >0 (i=1, ..., n), each component of
SW(B,, 1) is also a monotone function in ¢ It then follows from lemma 1 that

—1/2 ! dM(u) ! dWM(u)
Jo SOGy, u) L SOy, )

uniformly in ¢ almost surely. Applying lemma 1 once more, we obtain

o [ SV * By, 1)
1/2 2o 2 A0 7
" L S0y, wy) M~ L SOy, ) V-

again uniformly in ¢ almost surely. This convergence, coupled with the convergence of n~"/*M, to W,
yields the uniform convergence of n~™"/ U(f,, 1) to

!

W, (1) — J 2o 1) AW (0

0

almost surely in the new probability space and thus weakly in the original probability space. The
limiting covariance function X(s, ¢) given in Section 2 follows from a straightforward calculation.
By Taylor series expansion,

n'?(3 = By) = A7\ (Bn™'> UGBy, 1),

where A(8) = —n~' dU(3, 7)/90, and B* is on the line segment between 3 and 3,. The consistency of 3
and A(f3,) for 3, and A, together with the weak convergence of n~'/> U(f3,, 7), implies that n'/*(3 — 3,)
converges in distribution to a zero-mean normal random vector with covariance matrix = 4~ A4 ",
For future reference, we display the asymptotic approximation

W23 =By = A7 S J {Z(u) = Z(By, w)} AM(u) + 0,(1). (A.5)

i 0

i=1

For the weighted estimators, Uy(6G, 7) = fOT OB, 1)dU(B,, 1). Since O(B, f) is monotone with limit
q() and n~'* U(3,, ) converges weakly, the strong embedding theorem can again be used to show the
weak convergence of 02 Uy(By, 7). By Taylor series expansion and the consistency of 3,, we have



1/2(/3 - By = AQl ~12 Uo(By, 7) + 0,(1),

which, in view of the convergence of n~/? Uo(By, 7), is asymptotically zero mean normal with co-
variance matrix AQ EQAQ

A.3. Consistency of [i,(-) and £
B?/ the uniform strong law of ldrge numbers (Pollard (1990), page 41), n~' N(1) - E{N,(r)} and
SO, 1) » s, ¢) uniformly in ¢ and S. This entails uniform convergence of

) [ dN(w)
mw0=LﬁW@$

to

[ 260 4,

o SO, u)
under model (1.2). The derivative of fiy(f3, ) with respect to 3 is uniformly bounded for all large n and 8
in a bounded region. Therefore, the strong consistency of 3 implies that fi(¢) = fi,(3, t) converges

almost surely to j1(#) uniformly in 7. This convergence, together with the almost sure convergence of 8
and Z(06,, 1) to B, and z(f3,, 1), entails that

T T 2
L{Zﬁ)—Z@,0MU%U%—L{Zﬁ)—ﬂ@»ﬂ}m%U)

almost surely. Thus, to prove that ¥ — = almost surely, it suffices to establish that

®2

fﬁf“;zm—aaoMMﬁﬂ Sz

i=1

almost surely. The latter convergence follows from the strong law of large numbers. In addition, the
almost sure convergence of 3 and A(G,) to 3, and A implies the almost sure convergence of 4 to A.
Hence, [" converges almost surely to T.

A.4. Weak convergence of V(t) and V(t)

We make the simple decomposition

_ o[ 4N pf [ dN@ [ dN(@)
O N e ) R i e S

The first term on the right-hand side of equation (A.6) can be written as

Sipds [ dMi(w)
" ZLW%M

for t < max;(C;). By the arguments of Appendix A.2, this term is tight and equals

Sipds [ dMi(w)
" ELW%M

Taylor series expansmn shows that the second term on the right-hand side of equation (A.6) equals

—H"(5, z)n] (BQ B,), where 8 is on the line segment between 6 and f,. By lemma 1 and the
uniform strong law of large numbers (Pollard (1990), page 41), H(ﬁo, t) converges almost surely to
h(By, t) uniformly in ¢. Furthermore, analogously to equation (A.5),

+0,(1).

(B — o) = Aéln’l/zi JO q){Zi(u) = 2(By, w)} dM () + 0,(1).



Thus, the second term on the right-hand side of equation (A.6) is tight and equals
—h" (o, 04" J 4@ Zi(w) = 2By, w)) AM () + 0,(1).
i=1 Jo

Hence, V(1) =n" 2 30, ¥, (1) + 0,(1), which converges weakly to a zero-mean Gaussian process with
covariance function &. By the same arguments as those of Appendix A.3, &(s, £) — &(s, f) almost surely
uniformly in ¢ and s.

Conditionally on the data {N,(:), Y("), Z(); i=1, ..., n}, the only random components in V(f)
are (G,, ..., G,). Thus, it follows from the multivariate central limit theorem and a straightforward
covariance CdlCuldthl’l that conditionally on the data, ¥(r) converges in finite dimensional distributions
to a zero-mean Gaussian process with covariance function £. As mentioned above, £ — £ almost surely.
Therefore, V(f) converges to the same limiting distribution as V(¢) provided thdt V(1) is tight. The
tightness of ¥(7) again follows from the functional central limit theorem (Pollard (1990), page 53)
because F(f) comprises monotone functions in ¢, which are manageable.

A.5. Weak convergence of W, W,, U* and W,

The processes W;, U* and W, are all special cases of the multiparameter process
W(t, 2) =n" ”sz NZ)KZ; < z)dM (),
0

where f'is a smooth function. We shall establish the weak convergence of W under model (1.2). For
simplicity, we assume that the covariates are time invariant. By Taylor series expansion and some simple
algebra,

Sf(ﬁo: u, Z)

W(t,z)=n"""? Xj} L {f(Zi) I(Z, <z)— SO, 0)

} dMw) = Bf (8%, 1, 02 (B = ), (AT

where

=

Si(B.u,z) =n""> Yu) exp(8"Z) (Z) I(Z,; < z),

i=1

Bi(B,t,2)=n"" Zl L Y(u) exp(8' Z) f(Z) (Z; < 21 Z; — Z(B, w)} djig(u)
and $* is on the line segment between 3 and (.

By the strong consistency of 3 and fi, and the uniform strong law of large numbers, S/(By, u, z) and
B,(3*, t, z) converge almost surely to some deterministic functions, s,(8y, u, z) and b/(5,, t, z) say.
Because the first term on the right-hand side of equation (A.7) takes a similar form to U(5,, 1), its
tlghtness follows from the arguments given in Appendix A.2. In addition, the second term is tight since

2(8 = B,) converges in distribution and B(B3*, t, z) converges uniformly to b,(8y, t, z). Therefore,
W(t z) is tight.
It follows from lemma 1, equation (A.5) and the convergence of 3, S©, S and B, that

W(t, z)=n"" Y Ti(t, 2) + 0,(1),
i=1

where

S/'(ﬁoa u, Z)

Yo = | {rzinz <o - 25D

} M) — bT By 1, 214" JO (Z, — 2By, 1) dM ().

(A.8)

The multivariate central limit theorem, together with the tightness of W, then implies that W(t, z)
converges weakl1y to a zero-mean Gaussian process with covariance function E{’Y‘l(t 21, (¢, zH} at
(t, z) and (', z). By the arguments of Appendices A.3 and A.4, this covariance function can be
consistently estimated by



n! > Tt 2) T;‘(IT, ZT),
i=1

where (7, z) are obtained from expression (A.8) by replacing all the unknown parameters by their
respective sample estimators.

To establish the weak convergence of W,, we let B.(5,) = {5: |5 — 5yl < €} and suppose that, for
some e > 0, the function Pr(8TZ < x) is continuous in (3, x) € B.(8,) x [a, b]. It follows from the earlier
arguments for W(z, z) that W, (x) = W¥{B, x) + 0,(1), where

s,(8, u, x)

WHB. x) = 'fl/zi; L HI(BTZ" <0G,

} — by (B, )AHZ; = 2By, u)}} dM;(w), (A.9)

5:(B, u, x) = E{Y\(u) exp(B,Z) 1B Z, < x))

and

b(B, x) = EH Y\ (u) exp(B0Z)) I(B"Z, < x){Z, — Z(By, u)} dﬂo(“)} .

0

Since the right-hand side of equation (A.9) is a sum of independent zero-mean terms, the earlier
arguments for W(t, z) can again be used to verify the conditions including the manageability for the
functional central limit theorem (Pollard (1990), page 53). Therefore, WX(3, x) converges weakly on
B.(5y) x [a, b] to a Gaussian process and is stochastically equicontinuous (Pollard (1990), pages 52-53).
In particular, W3, x) and WX(3,, x) are asymptotically equivalent and thus converge to the same
limiting Gaussian process.

In view of equation (A.8) and by the arguments given in the second paragraph of Appendix A.4, the
distribution of W(t, z) can be approximated by the zero-mean Gaussian process

W(t, z) =n" 23 Ve, 2)G,,
=

which contains W,(x) and U ;k(t) as special cases. Likewise, the distribution of W,(x) can be approximated
by W(x). '
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