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Abstract

Protein folding is governed by a variety of molecular forces including hydrophobic and ionic 

interactions. Less is known about the molecular determinants of protein stability. Here we used a 

recently developed computer algorithm (pHinder) to investigate the relationship between buried 

charge and thermostability. Our analysis revealed that charge networks in the protein core are 

generally smaller in thermophilic organisms as compared to mesophilic organisms. To 

experimentally test whether core network size influences protein thermostability, we purified 18 

paralogous Ras superfamily GTPases from yeast and determined their melting temperatures (Tm, 

or temperature at which 50% of the protein is unfolded). This analysis revealed a wide range of Tm 

values (35–63 °C) that correlated significantly (R = 0.87) with core network size. These results 

suggest that thermostability depends in part on the arrangement of ionizable side chains within a 

protein core. An improved capacity to predict protein thermostability may be useful for selecting 

the best candidates for protein crystallography, the development of protein-based therapeutics, as 

well as for industrial enzyme applications.

Graphical abstract

A fundamental goal in biological chemistry is to understand the determinants of protein 

structure and function. A particularly important objective is to identify enzymes that remain 

active for long periods of time at high temperatures in vitro. Increasing the thermostability 

of enzymes can make biochemical processes more efficient and cost-effective; reactions that 
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can be done at higher temperatures are often more resistant to chemical solvents and 

denaturants, and are less susceptible to microbial contamination. Accordingly, thermostable 

enzymes are widely used in industrial applications such as paper production and biofuel 

development. In the research laboratory, improvements in protein thermostability are almost 

always beneficial. Thermodynamic stabilization can increase the likelihood of obtaining 

crystals for protein structure determination, improve the effectiveness of protein-based 

biopharmaceuticals, and increase the efficiency of laboratory processes that use enzymes. 1,2

Historically, thermostable enzymes have been isolated from organisms that thrive at extreme 

temperatures and pressures.3 An example familiar to most molecular biologists is the DNA 

polymerase from Thermus aquaticus, commonly used in the polymerase chain reaction. 

Despite many successes, however, the reliance on thermophilic organisms has some 

drawbacks. Of the thermophilic organisms identified to date, nearly all are archaea and 

bacteria. Thus, the range of proteins from thermophilic organisms is restricted by the limited 

diversity of enzymes found in nature. Moreover, the function of proteins is often dependent 

on the host cellular environment,4 which for thermophiles can include high concentrations of 

salts, proteins, and protein stabilizers such as polyamines. Consequently, the function of a 

thermophilic protein is not necessarily preserved in vitro or in a heterologous expression 

system. These factors may account for the surprisingly weak correlation between protein 

thermostability, characterized by its Tm, and the optimal growth temperature of the host 

organism.5

Given these limitations, there is interest in alternative methods for identifying thermostable 

proteins, particularly from eukaryotes. Such methods could allow investigators to select the 

most promising candidates from newly expanded genome sequence data sets and protein 

three-dimensional structures. To that end, and as described here, we have implemented 

recently developed computational and experimental approaches to investigate the 

relationship between buried charge and protein thermostability.6,7 Using a structure-based 

algorithm called pHinder, we show that networks of buried charge residues, hereafter 

referred to as core networks, are smaller in hyperthermophilic proteins than in mesophilic 

proteins. This finding led us to predict that proteins having greater thermostability should 

contain smaller core networks. To control for variables such as protein size and disulfide 

bonding, we tested this prediction on a set of 18 Ras family paralogs from the yeast species 

Saccharomyces cerevisiae. By restricting our experiments and analysis to an evolutionarily 

related family of protein paralogs, we could demonstrate that thermostability is indeed 

correlated with core network size as well as with cysteine content.

EXPERIMENTAL PROCEDURES

Acquisition of Protein Structures

The PDB (Protein Data Bank) accession codes for the nonredundant protein chains used in 

this study (compiled on 3/11/2015) were downloaded from the National Center for 

Biotechnology Information (NCBI). Uniprot identifiers for hyperthermophilic proteins were 

obtained from the Uniprot database (www.uniprot.org) using the search term 

“hyperthermophile OR hyperthermophilic”. The resultant list of hyperthermophilic 

structures was cross-referenced against the nonredundant PDB accession codes to build a 
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unique set of hyperthermophilic protein chains. PDB identifiers for structures of Ras 

superfamily GTPases were obtained from the Pfam database (Wellcome Trust Sanger 

Institute) using the accession code PF00071. The full set of PDB identifiers used in this 

study is listed in Supplementary Data 1.

Homology Modeling

Where indicated (Table 1 and Figure 5), homology models were generated for yeast Ras 

paralogs using the Swiss-Model server (http://swissmodel.expasy.org). The primary 

sequence of each Ras paralog was obtained from the Saccharomyces Genome Database 

(www.yeastgenome.org). Models were built for each Ras paralog using the default Swiss-

model parameters and the five most similar structural templates.

pHinder Calculation

The pHinder algorithm was used to calculate the topology of ionizable groups in protein 

structures using a previously described two-step triangulation procedure.6,7 In step one, a 

Delaunay triangulation is calculated using the terminal side chain atoms of the ionizable 

residues Asp (centroid of OD1 and OD2 atoms), Glu (centroid of OE1 and OE2 atoms), His 

(centroid of ND1 and NE2 atoms), Cys (SG atom), Lys (NZ atom), and Arg (centroid of 

NH1 and NH2 atoms). The triangulation is then minimized by removing edges ≥10 Å (set by 

the pHinder parameter maxNetworkEdgeLength) and further simplified by removing 

redundant network connections. In step two, the Cα atoms of the protein are triangulated. A 

molecular surface is then calculated from the Cα triangulation by iteratively removing 

surface-exposed triangulation facets (i.e., tetrahedra) having circumspheres >6.5 Å. The 

surface facets are then regularized by iteratively subdividing facets having area >20 Å2, 

internal angles <45°, or edges 3.0 > Å The facets of the molecular surface are then used to 

classify each ionizable side chain as core (≥3.0 Å below the surface; set by the pHinder 

parameter coreCutoff), margin (<3.0 Å below and <1.05 Å above the surface; set by the 

pHinder parameter marginCutOff), or exposed (≥1.05 Å above the surface). Depth of side 

chain burial is determined by calculating the mean distance from the terminal side chain 

atom to the coordinates of the closest surface facet pair. Core networks are identified as 

contiguous runs of ionizable side chains classified as core or deep margin (defined as margin 

side chains located >2.0 Å below the molecular surface, set by the pHinder parameter 

marginCutoff CoreNetwork). Margin side chains that are connected to core and deep margin 

network nodes are also included in the core network result. The sensitivity of the core 

network versus Tm correlation (Figure 5A,B) is presented in Supplementary Figure 2 for 

pHinder parameters coreCutoff (Figure S2A), marginCutoff (Figure S2B), marginCutoff 
CoreNetwork (Figure S2C), and maxNetworkEdgeLength (Figure S2D).

Accurate structure-based pKa predictions are notoriously difficult for core and margin 

residues. pHinder offers an alternative approach that complements existing predictive 

methods. pHinder is an informatics-based algorithm that identifies topological arrangements 

of ionizable side chains likely to be important for protein structure and function. Topological 

arrangements of buried ionizable side chains (i.e., core networks) are relatively rare and are 

usually indicative of important structure-function relationships. The ionizable side chains 

included in the pHinder algorithm all have pKa values that can be shifted into the 
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physiological pH range (pH 5–8) when positioned in the protein core or margin. Like Asp 

and Glu side chains, Cys side chains are neutral/charged at pH values below/above their pKa 

values. Dehydration of Cys by burial in the protein core would tend to promote the neutral 

form of the Cys side chain and cause an upshift in its pKa value. Thus, a Cys side chain is 

less likely than an Asp or Glu side chain to be charged in the protein core and margin. 

However, there is precedent for depressed Cys pKa values in Ras proteins.8 Furthermore, 

when Cys residues are removed from the analysis of Ras paralog structures, the correlation 

between core network size and thermostability is diminished (Supplementary Figure 3). On 

the basis of these observations, we conclude that the inclusion of Cys side chains in our 

analysis was justified.

Consensus Network Analysis

Consensus networks of buried ionizable residues were calculated for each Ras family 

GTPase using a five-step procedure, as described previously.7 First, the set of 885 GTPases 

in the PDB were aligned using the cealign function in Pymol (Schrödinger). Second, core 

networks for each GTPase were calculated using pHinder. Third, core network nodes from 

the individual pHinder calculations were combined and clustered using a distance constraint 

of 0.5 Å. Fourth, a Delaunay triangulation was calculated for the set of clustered nodes using 

a 10.0 Å distance constraint. Fifth, the triangulated cluster nodes were subjected to a second 

round of iterative clustering using a refined distance constraint of 0.5 Å and a minimum 

cluster size of 90 residues. This procedure was repeated for minimum cluster sizes of 45 and 

20 residues to generate the data shown in Figure 2D.

Protein Production and Purification

The 18 Ras paralogs examined in this study were cloned directly from yeast genomic DNA 

(strain BY4741) by standard polymerase chain reaction procedure and subcloned into pLIC-

His vectors for heterologous overexpression in Escherichia coli. Sequences for the LIC-

compatible cloning primers are listed in Supplementary Table 2.

Proteins were overexpressed in E. coli (BL21 RIPL strain) using the method of 

autoinduction.9 Starter cultures in LB medium (10 g/L tryptone, 5 g/L yeast extract, 10 g/L 

NaCl, 50 µg/µL carbenicillin) were inoculated with freshly transformed bacterial colonies 

and grown overnight at 37 °C. The following day the entire starter culture was used to 

inoculate autoinduction media: 800 mL of autoclaved ZY medium (10 g/L tryptone, 5 g/L 

yeast extract), 16 mL of sterile-filtered 50× 5052 solution (25% w/v glycerol, 2.5% w/v 

glucose, 10% w/v α-lactose), 16 mL of sterile filtered 50× M buffer (1.25 M Na2HPO4, 1.25 

M KH2PO4, 2.5 M NH4Cl, 0.25 M Na2SO4), 1.6 mL of 1 M MgSO4, and 800 µL of 50 

µg/µL carbenicillin in 50% EtOH. The cultures were grown at 37 °C for 8 h to A600nm 

between 2 and 4. The temperature was then reduced to 18 °C and the cultures were left to 

grow overnight. After 16 h of growth the bacteria were harvested by centrifugation and 

resuspended in 50 mL PBS (25 mM potassium phosphate, 100 mM KCl, pH 7.0). The 

resuspended bacteria were then frozen at −20 °C.

Overexpressed Ras paralogs containing C-terminal 6xHistags were batch purified on ice 

using HIS-Select nickel affinity gel (Sigma-Aldrich, P6611). Frozen bacteria were thawed, 
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tris(2-carboxyethyl)phosphine was added (1 mM final), and cells were lysed using a Nano 

DeBEE homogenizer (Bee International, South Easton, MA) in PBS supplemented with 50 

µM GDP, 50 µM MgCl2, and 1 mM tris(2-carboxyethyl)-phosphine (PBS-GMT). Samples 

were kept at 4 °C throughout the purification. Following centrifugation at 125g, the clarified 

lysate (13 mL) was combined with 50% affinity gel slurry (1 mL) in a 15 mL conical vial 

and gently mixed end-over-end for 15 min. The affinity gel was collected by centrifugation 

and washed in 13 mL of PBS-GMT. This procedure was repeated two more times for a total 

of three washes. Protein was eluted by transferring a 2 mL slurry of protein-bound affinity 

gel to a 3 mL fritted-spin column (Thermo Scientific, 89896), and excess buffer was drained 

by gravity flow. The spin column was then capped, 2 mL of elution buffer (PBS-GMT with 

250 mM imidazole) was added, and the column was closed and gently mixed end-over-end 

for 15 min. The eluted protein sample was then transferred to a 3 mL Slide-A-Lyzer cassette 

(Thermo Scientific, 66330) and dialyzed against 4 L of PBS-GMT for 1 h. The dialysis 

cassette was then transferred to 4 L of fresh PBS-GMT and dialyzed overnight. Following 

dialysis, aliquots of the purified protein were frozen and stored at −80 °C. This procedure 

typically yielded 2 mL of protein at a concentration between 50 and 100 µM. Protein purity 

was evaluated by SDS-polyacrylamide gel electrophoresis.

Temperature Denaturation by Fast Quantitative Cysteine Reactivity (fQCR)

0.5 M stock solutions of the thiol-reactive probe 4-(aminosulfonyl)-7-fluoro-2,1,3-

benzoxadiazole (ABD; TCI America; A5597) were prepared in dimethyl sulfoxide. All 

ABD stock concentrations were confirmed spectroscopically (ε313nm = 4200 M−1 cm−1) and 

stored in 30 µL aliquots at −20 °C. fQCR reaction mixtures were prepared by diluting Ras 

protein stocks to 1 µM in cold PBS containing 50 µM GDP or GTPγS, chilled on ice, and 

combined with ABD. For unfolding reactions at pH 7.0, 5 µL of a 26 mM ABD stock 

solution (1 mM final) was combined with 125 µL of ice-cold protein sample. For unfolding 

reactions at pH 5.0, 10 µL of a 26 mM ABD stock solution (2 mM final) was combined with 

120 µL of ice-cold protein sample. Following ABD addition, the sample mixture was 

distributed in 10 µL aliquots across a 12-well PCR strip-tube (USA Scientific, 1402-2408), 

placed in a gradient thermocycler (Biometra Professional Thermocycler), heated for 3 min, 

immediately transferred to ice, and quenched by adding 2 µL of 0.1 N HCl. The ABD-

labeled samples were then transferred to a 384-well plate (Greiner, 788076) and read in a 

BMG Labtech PHERAstar plate reader using excitation and emission bandpass filters of 400 

and 500 nm. The resultant unfolding curves were fit with a two-state model of protein 

unfolding to quantify the midpoint of thermal denaturation (Tm). fQCR experiments for each 

Ras paralog were done in triplicate. Prior to fitting, the three data sets for each Ras paralog 

were used to calculate a mean fQCR-unfolding curve. The Tm values and denaturation 

profiles presented in Figure 3, Figure 5, and Supplementary Figure 1 correspond to the mean 

fQCR curve for each Ras paralog. Experimental errors for Tm values obtained by fQCR 

were derived from the uncertainty of each Tm fit parameter and in all cases were less than 

1 °C.

Temperature Denaturation by ThermoFluor

Ras protein stocks were diluted to 5 µM in PBS containing 50 µM GDP and mixed with 1.5 

µL of 500× SYPRO (Invitrogen, S-6650). This sample mixture was then distributed in 20 µL 

Isom et al. Page 5

Biochemistry. Author manuscript; available in PMC 2017 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



aliquots across a 384-well plate (Genesee 24-305W) and sealed with adhesive film 

(Bioexpress T-2417-8). An Applied Biosystems RT-PCR machine was programmed to 

record SYPRO fluorescence from 20 to 85 °C over the course of 45 min (which corresponds 

to a 3% temperature ramp speed). The resultant unfolding curves were fit with a two-state 

model of protein unfolding to quantify Tm. Thermofluor experiments for each Ras paralog 

were done in triplicate. Prior to fitting, the three data sets for each Ras paralog were used to 

calculate a mean Thermofluor unfolding curve. The Tm values and denaturation profiles 

presented in Figure 3 and Supplementary Figure 1 correspond to the mean ThermoFluor 

curve for each Ras paralog. Experimental errors for Tm values obtained by the ThermoFluor 

method were derived from the uncertainty of each Tm fit parameter, and in all cases were 

less than 1 °C.

Quantification of Tm Values

The midpoint of thermal denaturation (Tm value) for the fQCR and ThermoFluor unfolding 

curves was determined for each Ras paralog by fitting a two-state model of unfolding to the 

temperature dependence of normalized ABD or SYPRO fluorescence:

(1)

where fN and fD are linear relationships (e.g., fN = mNT + bN) that describe the temperature-

dependent fluorescence of the native (N) and denatured (D) unfolding baselines, and ΔG(T) 

is the Gibbs-Helmholtz relationship:

(2)

where ΔHm is the unfolding enthalpy, ΔCp is the heat capacity, and Tm is the midpoint of 

thermal denaturation.

RESULTS

Many factors contribute to the stability of folded proteins. Prominent examples include 

hydrogen bonding, van der Waals interactions, and the hydrophobic effect. In addition, 

charged amino acid side chains (Asp, Glu, His, Cys, Lys, and Arg) tend to be disfavored 

within hydrophobic protein cores. However, networks of buried ionizable residues occur 

regularly in nature and are often required for protein function.11–15 Because they are 

sequestered from bulk water, buried charges tend to exhibit dramatically altered pKa values 

that in some cases approach neutrality.12,13 In these situations, proteins must expend free 

energy to maintain the shifted pKa values. Thus, proteins with numerous ionizable residues 

in their cores are expected to be relatively unstable. Here we examine how the arrangement 

of buried ionizable residues affect global protein stability.
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To identify charge networks in protein cores we used an informatics-based method known as 

pHinder. The pHinder computation differs from other structure-based electrostatics 

calculations by considering only the spatial organization of ionizable groups. Previously we 

used pHinder to identify core networks of ionizable residues buried within G protein α 
subunits and showed that these networks are sensitive to physiological changes in 

intracellular pH.6,7 Furthermore, we identified a distinct core network that links the activated 

Gα subunit to the G protein-coupled receptor ligand-binding pocket, and showed that similar 

networks are present in 7-transmembrane receptors from archaea and bacteria.6 Building on 

these findings, we asked whether differences in core network size could account for 

differences in protein thermostability across species. We began by comparing a 

nonredundant set of 14253 mesophilic and 457 hyperthermophilic protein structures from 

the PDB, listed in Supplementary Data 1. As shown in Figure 1, pHinder analysis revealed a 

fairly strict upper limit to core network size within both mesophilic and hyperthermophilic 

protein chains. In mesophilic proteins (Figure 1A–C), this limit scales linearly with chain 

length and is capped at ~10% of protein size. For thermophilic proteins (Figure 1B–C), the 

core network size limit is smaller by half (~5%). On the basis of these findings we 

postulated that core network size is a prominent determinant of protein thermostability.

To further explore the relationship between core network size and thermostability, we 

focused on the Ras superfamily of small GTPases. By limiting our analysis to a single 

family of enzymes, with conserved sequence and structure, we were able to control for 

variations in protein size, ligand binding, and catalytic activity. As described in Figure 2, we 

assessed core network sizes for all 885 Ras family GTPases in the PDB. These calculations 

revealed GTPase core network sizes ranging from 0 to 17 residues, with most (95%) having 

core networks ≤10 residues (Figure 2A). Cysteine is the most frequently buried ionizable 

residue type in GTPases (52%), followed by Lys (7.4%), Asp (3.1%), Arg (2.0%), His 

(1.4%), and Glu (0.01%) (Figure 2B). Cysteine is also the most frequently buried ionizable 

residue in the set of 14253 nonredundant proteins (40.7%, Figure 2C). However, the 

occurrence of buried ionizable residues in the nonredundant protein set differs from that of 

Ras family GTPases, with His being the second most frequently buried ionizable residue 

(13.1%), followed by Asp (5.8%), Arg (5.4%), Glu (3.9%), and Lys (2.3%). Notably, the 

frequency of buried Lys residues in Ras family GTPases (7.4%) is more than 3.0-fold higher 

than in the nonredundant set of reference structures (2.3%). On the basis of these findings, 

we conclude that ionizable residues are often buried within Ras family GTPases.

We next examined the spatial conservation of buried ionizable residues within Ras family 

GTPases (Figure 2D). For this calculation we used an approach called consensus network 

analysis (CNA), which we previously developed to study the conservation of core charges in 

G protein-coupled receptors.6 Using CNA, we aligned the pHinder-calculated core networks 

for each of the 885 Ras family GTPases. We then clustered the resultant set of 4389 core 

residues into distinct spatial nodes (Figure 2D). By far, the most densely populated nodes 

corresponded to Lys (cluster size 744), Asp (cluster size 736), and Arg (cluster size 285) 

residues located within structural motifs important for GTPase function and regulation (i.e., 

the P-loop, switch I, and switch II regions). The second most densely populated nodes 

corresponded to clusters of Arg and Cys residues (cluster sizes between 100 and 250) 

located within the core of the GTPase fold. We then searched for smaller node clusters by 
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reducing the threshold cluster size from 90 (occurring in >10% of structures) to 45 (>5% of 

structures) and 20 (>2% of structures). This procedure revealed additional clusters, most of 

which contained <50 residues. On the basis of these findings, we conclude that residues 

comprising GTPase core networks are spatially conserved throughout the Ras superfamily.

Our analysis in Figure 1 compared core network size between mesophilic and 

hyperthermophilic proteins. That analysis revealed that, on average, smaller core networks 

are correlated with increased thermostability. Our analysis in Figure 2 compared available 

Ras family structures and revealed a broad range of core network sizes. Our next objective 

was to experimentally determine if core network size predicts thermostability in Ras. To 

avoid any potential bias due to evolutionary history or phylogenetic diversity, we chose to 

limit our analysis to 18 Ras paralogs from a single organism, Saccharomyces cerevisiae. 

This set of paralogs was designed to include members from each of the five Ras subfamilies 

(Ras, Rho, Ran, Rab, and Arf) and includes examples that are essential and nonessential to 

yeast survival (i.e., gene deletions that are lethal and nonlethal respectively, as indicated in 

Table 1). All 18 Ras paralogs were cloned directly from the yeast genome, overexpressed in 

E. coli, and purified via nickel affinity chromatography.

We then measured the thermostability (Tm value) of each purified Ras paralog using two 

independent methods, fast quantitative cysteine reactivity (fQCR) and Thermo-Fluor.10,16,17 

Both approaches are high-throughput and require less material than conventional methods. 

However, the labeling mechanism of each assay differs. In the fQCR experiment, Cys 

residues are labeled with a fluorogenic reagent by a mechanism that is analogous to 

hydrogen exchange.10,17 Most Cys residues in proteins are shielded from bulk solvent by 

protein structure and local sterics. Upon heating, these protected Cys residues become 

exposed and can be covalently labeled by cysteine-specific probes. In past studies we have 

shown that fQCR is applicable to proteins with one or more Cys residues and is largely 

independent of Cys microenvironment.7,10,17 In particular, the success of our previous 

studies on Gα protein subunits,7 which are similar to Ras proteins, indicated that fQCR 

could be used to systematically measure Ras thermo-stabilities. Furthermore, each Ras 

paralog contained at least one Cys residue (Table 1) and no disulfide bonds (which cannot be 

labeled by the fQCR probe). As a means of cross-validating the fQCR-derived Tm values, 

we also measured Tm values using the ThermoFluor approach. In the ThermoFluor assay, a 

proprietary fluorescent dye (SYPRO) binds to hydrophobic protein regions that become 

exposed by temperature-induced unfolding. The binding of the SYPRO dye to the protein 

leads to a fluorescence increase that serves as an indirect indicator of protein denaturation.

Representative thermostability profiles for the Ras paralogs Gsp1 and Vps21 are shown in 

Figure 3A,B. Unfolding curves for the full set of paralogs are available in Supplementary 

Figure 1. Using a two-state model of denaturation (eq 1), we analyzed each Ras paralog 

unfolding profile to quantify the midpoint of temperature unfolding (Tm value). The Tm 

values obtained from the fQCR and ThermoFluor methods were in excellent agreement 

(Figure 3C), having a correlation coefficient of 0.88. As shown in Table 1, the fQCR- and 

ThermoFluor-derived Tm values for the set of 18 Ras paralogs at pH 7.0 ranged from 35 to 

63 °C. In the fQCR data set (Figure 3D), which was used to calculate the correlations 

reported below, Tm values ranged from 41 to 63 °C. When the fQCR- and ThermoFluor-
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derived Tm values were clustered by subfamily and averaged, the Rho/Cdc42 family had the 

lowest average Tm (46 °C), followed by Ran (47 °C), Ras (52 °C), Rab (55 °C), and finally 

Sar/Arf (57 °C). The wide range of values is noteworthy considering the structural and 

catalytic similarities shared by these protein family members.

We then examined the relationship between Tm values and core network size. Structures 

have been solved for 8 of the 18 Ras paralogs tested, two of which are shown in Figure 4A–

C. For the 10 remaining GTPases, we used homology models obtained from Swiss 

Model18,19 (see Table 1). Our decision to focus on Ras family paralogs, which display a high 

degree of sequence and structural similarity, enabled us to generate reliable homology 

models. As shown in Figure 4B, nucleotides bind at a site that is proximal to the core 

networks. Network residues closest to the nucleotide-binding site (Figure 4C) include the 

conserved Asp (Asp67 in Gsp1, Asp62 in Vps21) and Lys (Lys25 in Gsp1, Lys20 in Vps21) 

located within the switch II and P-loop motifs (Figure 2D), respectively. As anticipated by 

our model, the experimentally determined Tm values of Ras family paralogs trended linearly 

with core network size (Figure 5A–B), having correlation coefficients of 0.87 and 0.86 at pH 

7.0 and 5.0, respectively. As shown in Supplementary Figure 2, the correlation between core 

network size and Tm value is largely independent of pHinder parameter set. Thus, Ras 

paralogs with larger core networks tend to be less thermostable. These findings show that 

our structure-based approach can predict relative thermostabilities among protein family 

paralogs.

The experimental data in Figure 5A,B demonstrate a strong correlation between buried 

charge networks and Ras paralog thermostability. This relationship was anticipated by our 

unbiased and comprehensive computational analysis of charged networks in protein 

structures. In order to uncover any unanticipated bias in our data, we attempted to correlate 

the observed Tm values to other protein parameters including amino acid composition, 

predicted pI, and contact order. In addition, yeast is the only organism for which there is 

comprehensive data on protein abundance and half-life, 20,21 and for which the identity of all 

essential genes is known. Of all these parameters (see Supplementary Table 1), only one 

correlated with the thermostability of the Ras paralogs. As shown in Figure 5C–D, the 

percentage of Cys residues is inversely proportional to Tm, having correlation coefficients of 

0.77 and 0.91 at pH 7.0 and pH 5.0, respectively. We speculate that the lower correlation 

coefficient is related to a temperature-dependent increase in Cys oxidation at pH 7.0. 

Cysteine oxidation is pH-dependent because it is mediated primarily by the thiolate form of 

the Cys side chain. As a result, Cys oxidation is 2 orders of magnitude faster at pH 7.0 than 

at pH 5.0. Although speculative, the tendency for Cys residues to oxidize at higher 

temperatures may also explain why Cys residues are underrepresented in thermophilic 

proteins.22 The potential effects of increased Cys oxidation at pH 7.0 do not greatly affect 

the correlation between core network size and thermostability. As reported in Supplementary 

Figure 3, pHinder calculations with and without Cys side chains give correlation coefficients 

of 0.87 and 0.73, respectively. The findings reported in Figure 5C–D show that cysteine 

content, which can be quantified directly from protein sequence, is predictive of the relative 

thermostabilities of Ras paralogs.
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Because the focus of this study was to assess the relationship between core network size and 

protein thermostability, and not binding or catalytic activity, we restricted our analysis to 

Ras paralogs in the GDP-bound state. This strategy was necessary because most Ras 

paralogs require specific guanine nucleotide exchange proteins to promote GDP release and 

GTP binding. Nucleotide exchange can also be enhanced by chelating-away the Mg2+ 

cofactor with EDTA. However, this approach could not guarantee stoichiometric nucleotide 

exchange for each of the 18 Ras paralogs studied. In one case, Cdc42, nucleotide exchange 

was spontaneous in the time frame of the fQCR experiment, which allowed us to assess the 

effects of stoichiometric nucleotide binding on Cdc42 thermostability. As show in Figure 

5E, the thermostability of yeast Cdc42 bound to GTPγS (Tm = 48 °C) is seven degrees 

higher than Cdc42 bound to GDP (Tm = 41 °C). The magnitude of this difference was 

striking given that GDP and GTPγS differ by only one phosphate group. While we cannot 

say whether this is a common feature of all Ras paralogs from yeast, these differences mirror 

those we observed previously for yeast and mammalian Gα subunits bound to GDP and 

GTPγS.7

We next investigated Ras paralog thermostability as a function of pH. As noted earlier, 

buried ionizable residues often exhibit pKa shifts that are coupled to protein stability. The 

pHinder program was designed to predict pH-sensitive and pH-sensing proteins by 

identifying these buried residues. Thus, our pHinder calculations predicted that most Ras 

family paralogs would exhibit some degree of pH sensitivity. To test this prediction, we 

remeasured the thermostability of each Ras paralog at pH 5.0 and calculated the change in 

Tm value (ΔTm) (Figure 5F). As anticipated, 14 of 18 paralogs exhibited a pH-sensitive ΔTm 

(i.e., ΔTm values > 2), with values ranging from 0 to 12 degrees. With the exception of Sar1 

and Ypt6, which lacked a pH-dependent Tm shift, Tm values were always higher at pH 5.0 

than at pH 7.0. We speculate this dependence of thermostability on pH is due to pKa shifts in 

the Asp, Lys, or phosphate groups buried within the enzyme active site. There are no 

obvious structural features that explain the pH insensitivity of the four Ras paralogs Sar1, 

Ypt6, Arf1, and Rho3. We speculate that the pH insensitivity of these Ras paralogs may be 

explained by an increase in structural dynamics. Enhanced sampling of conformational 

space tends to dampen the strength of electrostatic interactions and reduce the magnitude of 

the pKa shifts that give rise to pH-dependent changes in stability.

DISCUSSION

Understanding the determinants of protein stability is of fundamental importance in 

biochemistry and biotechnology. In a cell, proteins must be stable enough to function, but 

not so stable as to escape eventual degradation. In the laboratory, improvements in protein 

thermostability can advance applications in molecular biology, such as increasing the 

likelihood of obtaining crystals for protein structure determination. 1,2 In the clinic, 

increasing protein stability can improve the effectiveness of biopharmaceuticals.23

The isolation of Taq DNA polymerase was a particular milestone in biomedical research. 

Since that time, considerable effort has gone toward isolating and characterizing other 

potentially useful proteins from thermophilic organisms. Such proteins are usually active at 

temperatures near the optimal growth temperature of the host organism, which could be as 
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high as 121 °C.24 However, there has been relatively little progress in understanding the 

biophysical basis of protein thermostability.1,2 An early comparison of orthologous protein 

structures from thermophilic and mesophilic organisms revealed a correlation in the number 

of ion pairs and the optimal growth temperature of the host.25 A more recent analysis 

confirmed those findings and revealed an additional correlation with protein 

hydrophobicity.26 Apart from the expected phylogenetic variation, however, orthologous 

proteins from thermophiles and mesophiles are largely similar. They have similar catalytic 

mechanisms, and their three-dimensional structures are usually superimposable.1,2 Less 

attention has been paid to differences among paralogous proteins from a single organism.

In this study, our strategy was to examine networks of ionizable (acidic and basic) residues 

within protein cores. First, we observed striking differences in core network sizes when 

comparing protein structures from mesophilic and hyper-thermophilic organisms. Given that 

these proteins come from a wide range of species, have diverse structures, and have a broad 

array of biochemical functions, it was important to test whether the same relationship exists 

without these variables. To that end, we examined all available structures for a single protein 

superfamily and found that these proteins also contained a broad range of core network 

sizes. Finally, to control for potential bias due to evolutionary history or phylogenetic 

diversity, we tested the functional significance of these differences in 18 paralogous proteins 

derived from a single organism. This systematic comparison of Ras paralogs from yeast 

revealed that differences in core network size, calculated from protein structure, correlate 

with Tm values measured experimentally. It is unlikely that this correlation is limited to a 

single protein family. However, demonstrating the relationship between core network size 

and thermostability in other protein families will require future experimentation.

We selected the Ras superfamily for this study because it is ideally suited for computational 

and experimental studies of protein thermostability. More than 800 crystal structures of Ras 

proteins are available in the PDB. Furthermore, the sequence similarity of Ras family 

proteins allows for homology modeling of unknown Ras structures. Biochemically, Ras 

proteins function as compact (~200 residues) molecular switches that cycle between a GDP-

bound unactivated state and a GTP-bound activated state.27,28 Biologically, Ras proteins are 

conserved from yeast to humans and are classified into subfamilies according to the cellular 

processes they regulate.29,30 The Ras subfamily transmits signals from cell surface receptors 

to intracellular protein kinases that control cell growth and differentiation. The Rho 

subfamily regulates cytoskeletal organization and polarized cell growth. The Ran subfamily 

participates in nucleo-cytoplasmic transport and microtubule organization. And last, the 

Sar/Arf and Rab subfamilies are involved in the priming of vesicle formation and vesicle 

docking, respectively. Here we show that yeast Ras paralogs derived from these different 

subfamilies display an unexpectedly wide range of thermostabilities. These findings imply 

that temperature-dependent inactivation of selected Ras paralogs might allow the cell to 

prioritize specific cellular functions in the face of high-temperature stress.

Our decision to focus on Ras family proteins from yeast was based on some important 

considerations. From a practical point of view, yeast is used commercially for the production 

of biopharmaceuticals such as human insulin as well as for industrial conversion of complex 

carbohydrates to alcohol and other biofuels. 1,2 These processes are typically done at high 
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temperatures and under harsh solvent conditions. Moreover, yeast cells in the wild are 

exposed to a wide range of temperatures. Since they are nonmotile, yeast cannot evade these 

changes, and their constituent proteins will have evolved to tolerate high temperatures. In 

that light, we were surprised to observe such a wide range of Tm values among the 18 Ras 

paralogs tested here. If the low Tm values observed in vitro are recapitulated in vivo, some 

Ras family members may begin to denature at high (but physiological) growth temperatures 

and would require interactions with other proteins and chaperones to counteract unfolding. 

Assuming that these stability effects are the product of natural selection, such differences 

could be viewed as an ongoing experiment in directed evolution through random 

mutagenesis. 31,32

A challenge for the future is to consider the effects of protein-protein interactions on Ras 

stability. While our analysis focused on monomeric Ras proteins, Ras family proteins have 

numerous binding partners including exchange factors (promote GDP release and GTP 

binding) and GTPase activating proteins (accelerate GTP hydrolysis). Those protein-protein 

interactions are likely to influence protein conformation, core network architecture, and 

(consequently) protein thermostability. For example, we previously described a network of 

ionizable residues within G protein α subunits.7 When the G protein assembles with a 

receptor, a new core network is formed that links the GTP-binding pocket of Gα to the 

ligand binding pocket of the receptor.6

These findings show that the pHinder algorithm can predict relative thermostability among 

protein family paralogs. Prior to our analysis, investigators relied on a small group of 

bacterial and archaeal species as a source of thermostable enzymes. Despite considerable 

effort, little is known about the biophysical basis for protein stability in these organisms; 

even less in known about determinants of protein thermostability in mesophilic proteins 

from eukaryotes. By focusing on a newly recognized feature of protein architecture (core 

networks), 6,7 rather than on overall structure or sequence motifs, we have identified a novel 

determinant of protein thermostability. Using the Ras superfamily as a test case, we have 

demonstrated the predictive power of our approach.

In the longer term we hope to be able to design, and not just predict, proteins with increased 

thermostability. Although challenging, there have been some notable successes. Recently, 

computational methods were used to predict a series of point mutations that conferred 

thermostabilization, without loss of catalytic efficiency, on the enzyme cytosine deaminase 

from yeast.33 Although the authors of that work did not consider charge networks, they 

noted that future design efforts would likely benefit from modeling interactions involving 

buried polar and charged side chains, as we have done here. We anticipate that our approach 

will accelerate such efforts, as well as ongoing efforts to identify thermostable proteins for 

use as catalysts, biosensors, and therapeutics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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fQCR fast quantitative cysteine reactivity
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Figure 1. 
Core networks in mesophilic and hyperthermophilic proteins. pHinder results for core 

networks in a nonredundant set of 14253 mesophilic (A, B, gray) and 457 hyperthermophilic 

(B, purple) protein chains. (C) Comparison of core networks in mesophilic (gray) and 

hyperthermophilic (purple) protein chains having less than 250 residues.
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Figure 2. 
Core networks in Ras superfamily small GTPases. (A) pHinder results for core networks in 

885 Ras family GTPase structures. The fractional occurrence of ionizable residue types 

buried within cores of (B) Ras family GTPases and (C) 14253 nonredundant protein chains. 

(D) Spatially conserved positions of core ionizable residues (inset) within the 885 Ras 

family GTPase structures calculated by consensus network analysis. Results are shown for 

high (90 residues), medium (45 residues), and low (20 residues) thresholds for minimum 

cluster size. The displayed crystal structure corresponds to PDB code 121P (chain A).
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Figure 3. 
Thermostability of selected Ras family paralogs from yeast. (A, B) Representative thermal 

unfolding curves for the yeast paralogs Gsp1 and Vps21 measured independently by the 

fQCR (left) and ThermoFluor (right) methods. Each unfolding curve represents an average 

of three experimental replicates. Tm values were quantified by fitting a two-state model of 

thermal unfolding (eq 1) (black line) to the data. Insets show the purity of each paralog as 

assessed by SDS-PAGE. (C) Comparison of Tm values quantified by fQCR and 

ThermoFluor at pH 7.0. Linear least-squares fit of the data (black line) gives a correlation 
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coefficient (R value) of 0.88. (D) Rank-order of the averaged Tm values measured for the set 

of 18 yeast Ras family paralogs using the fQCR method at pH 7.0.
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Figure 4. 
Representative core networks in Ras family paralogs from yeast. (A) Representative pHinder 

surfaces (thin mesh) and core networks (thick lines) for the yeast Ras family paralogs Gsp1 

(3ICQ) and Vps21 (1EK0). (B) Core networks of Gspl and Vps21 in relation to their bound 

nucleotides (shown as pink mesh). (C) Detail of each core network.
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Figure 5. 
Thermostability of yeast Ras paralogs correlates with core network size and cysteine 

content. Tm values (fQCR method) for the 18 yeast Ras paralogs as a function of core 

network size (A, B), percentage of Cys residues per protein (C, D), and pH. Core network 

size as shown in panels A and B corresponds to the average core network size calculated for 

the crystal structures (black circles) or homology models (red circles) for each Ras paralog. 

Linear least-squares fit of the data (black lines) gives correlation coefficients (R values) of 

0.87 (A), 0.86 (B), 0.77 (C), and 0.91 (D). (D) Thermal unfolding curves for the yeast 

paralog Cdc42 in complex with GDP (gray, Tm = 41 °C) and GTPγS (red, Tm= 48 °C) 

measured by fQCR. Each unfolding curve represents an average of three experimental 

replicates. Tm values were quantified by fitting a two-state model of thermal unfolding (eq 

1) to the Cdc42-GDP (gray line) and Cdc42-GTPγS (red line) data. (F) pH dependence of 

thermostability for the 18 yeast Ras paralogs. Change in Tm value (ΔTm) is the difference in 

paralog thermostability at pH S.O and 7.0 (i.e., ΔTm = Tm
pHS − Tm

pH7 ) measured using the 

fQCR method.
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