The cohesin loader SCC2 contains a phd finger that is required for meiosis in land plants Public Deposited

Downloadable Content

Download PDF
Creator
  • Wang, H.
    • Other Affiliation: Fudan University
  • Xu, W.
    • Other Affiliation: Fudan University
  • Sun, Y.
    • Affiliation: College of Arts and Sciences, Department of Biology
  • Lian, Q.
    • Other Affiliation: Fudan University
  • Wang, C.
    • Other Affiliation: Fudan University
  • Yu, C.
    • Other Affiliation: Fudan University
  • He, C.
    • Other Affiliation: Fudan University
  • Wang, J.
    • Other Affiliation: Fudan University
  • Ma, H.
    • Other Affiliation: Pennsylvania State University
  • Copenhaver, G.P.
    • Affiliation: College of Arts and Sciences, Department of Biology
  • Wang, Y.
    • Other Affiliation: Fudan University
Abstract
  • Cohesin, a multisubunit protein complex, is required for holding sister chromatids together during mitosis and meiosis. The recruitment of cohesin by the sister chromatid cohesion 2/4 (SCC2/4) complex has been extensively studied in Saccharomyces cerevisiae mitosis, but its role in mitosis and meiosis remains poorly understood in multicellular organisms, because complete loss-of-function of either gene causes embryonic lethality. Here, we identified a weak allele of Atscc2 (Atscc2-5) that has only minor defects in vegetative development but exhibits a significant reduction in fertility. Cytological analyses of Atscc2-5 reveal multiple meiotic phenotypes including defects in chromosomal axis formation, meiosis-specific cohesin loading, homolog pairing and synapsis, and AtSPO11-1-dependent double strand break repair. Surprisingly, even though AtSCC2 interacts with AtSCC4 in vitro and in vivo, meiosis-specific knockdown of AtSCC4 expression does not cause any meiotic defect, suggesting that the SCC2-SCC4 complex has divergent roles in mitosis and meiosis. SCC2 homologs from land plants have a unique plant homeodomain (PHD) motif not found in other species. We show that the AtSCC2 PHD domain can bind to the N terminus of histones and is required for meiosis but not mitosis. Taken together, our results provide evidence that unlike SCC2 in other organisms, SCC2 requires a functional PHD domain during meiosis in land plants.
Date of publication
Keyword
DOI
Identifier
Resource type
  • Article
Rights statement
  • In Copyright
License
  • Attribution 4.0 International
Journal title
  • PLoS Genetics
Journal volume
  • 16
Journal issue
  • 6
Language
  • English
Version
  • Publisher
ISSN
  • 1553-7390
Publisher
  • Public Library of Science
Parents:

This work has no parents.

In Collection:

Items