Generation of renewable mouse intestinal epithelial cell monolayers and organoids for functional analyses Public Deposited

Downloadable Content

Download PDF
  • Moorefield, Emily C
  • Ding, Shengli
  • Gentzsch, Martina
  • Blue, R. Eric
  • Quinney, Nancy L
  • Abstract Background Conditional reprogramming has enabled the development of long-lived, normal epithelial cell lines from mice and humans by in vitro culture with ROCK inhibitor on a feeder layer. We applied this technology to mouse small intestine to create 2D mouse intestinal epithelial monolayers (IEC monolayers) from genetic mouse models for functional analysis. Results IEC monolayers form epithelial colonies that proliferate on a feeder cell layer and are able to maintain their genotype over long-term passage. IEC monolayers form 3D spheroids in matrigel culture and monolayers on transwell inserts making them useful for functional analyses. IEC monolayers derived from the Cystic Fibrosis (CF) mouse model CFTR ∆F508 fail to respond to CFTR activator forskolin in 3D matrigel culture as measured by spheroid swelling and transwell monolayer culture via Ussing chamber electrophysiology. Tumor IEC monolayers generated from the ApcMin/+ mouse intestinal cancer model grow more quickly than wild-type (WT) IEC monolayers both on feeders and as spheroids in matrigel culture. Conclusions These results indicate that generation of IEC monolayers is a useful model system for growing large numbers of genotype-specific mouse intestinal epithelial cells that may be used in functional studies to examine molecular mechanisms of disease and to identify and assess novel therapeutic compounds.
Date of publication
  • doi:10.1186/s12860-018-0165-0
Resource type
  • Article
Rights holder
  • The Author(s).
  • English
Bibliographic citation
  • BMC Cell Biology. 2018 Aug 15;19(1):15
  • BioMed Central

This work has no parents.