Compositional Analysis Techniques For Multiprocessor Soft Real-Time Scheduling Public Deposited

Downloadable Content

Download PDF
Last Modified
  • March 20, 2019
  • Leontyev, Hennadiy
    • Affiliation: College of Arts and Sciences, Department of Computer Science
  • The design of systems in which timing constraints must be met (real-time systems) is being affected by three trends in hardware and software development. First, in the past few years, multiprocessor and multicore platforms have become standard in desktop and server systems and continue to expand in the domain of embedded systems. Second, real-time concepts are being applied in the design of general-purpose operating systems (like Linux) and attempts are being made to tailor these systems to support tasks with timing constraints. Third, in many embedded systems, it is now more economical to use a single multiprocessor instead of several uniprocessor elements; this motivates the need to share the increasing processing capacity of multiprocessor platforms among several applications supplied by different vendors and each having different timing constraints in a manner that ensures that these constraints were met. These trends suggest the need for mechanisms that enable real-time tasks to be bundled into multiple components and integrated in larger settings. There is a substantial body of prior work on the multiprocessor schedulability analysis of real-time systems modeled as periodic and sporadic task systems. Unfortunately, these standard task models can be pessimistic if long chains of dependent tasks are being analyzed. In work that introduces less pessimistic and more sophisticated workload models, only partitioned scheduling is assumed so that each task is statically assigned to some processor. This results in pessimism in the amount of needed processing resources. In this dissertation, we extend prior work on multiprocessor soft real-time scheduling and construct new analysis tools that can be used to design component-based soft real-time systems. These tools allow multiprocessor real-time systems to be designed and analyzed for which standard workload and platform models are inapplicable and for which state-of-the-art uniprocessor and multiprocessor analysis techniques give results that are too pessimistic.
Date of publication
Resource type
Rights statement
  • In Copyright
  • Anderson, James H.
  • Open access

This work has no parents.