Mechanisms Regulating HIV-1 Protease Activity Public Deposited

Downloadable Content

Download PDF
Last Modified
  • March 19, 2019
Creator
  • Potempa, Marc
    • Affiliation: School of Medicine, Department of Microbiology and Immunology
Abstract
  • The Human Immunodeficiency Virus Type 1 (HIV-1) Protease (PR) has no direct involvement in the early steps of HIV-1 replication. Nonetheless, it is the timely and ordered processing of the viral structural proteins by the HIV-1 PR during virion maturation that facilitates the successful completion of virus entry, reverse transcription, and integration. Though a considerable amount of research has been devoted to deciphering how the enzyme prepares a virus particle for infection, the mechanisms regulating its activities continue to remain incompletely defined. RNA serves as one putative regulatory factor, since efficient processing of the maturation intermediate p15NC requires RNA in vitro. Though previously believed relevant to only p15NC cleavage, I demonstrate that RNA enhances HIV-1 proteolysis reactions in a substrate-independent manner. The increased catalytic activity of the HIV-1 PR results from a direct interaction between RNA and the enzyme, with the magnitude of the effect dependent upon the size of the RNA molecule. Large (>400 base) RNAs accelerated proteolytic processing by over 100-fold under near-physiological conditions. This considerable change stemmed from both improved substrate recognition (Km) and turnover rate (kcat). Variability in amino acid sequence also guides HIV-1 PR activity. However, the absence of any overt patterns across HIV-1 cleavage sites has complicated the delineation of why these differences result in diverse processing efficiencies. To address this question, I generated the largest-to-date dataset of globular proteins cleaved by the HIV-1 PR in near-physiological conditions. From these data, I unravel a number of site-specific processing requirements, and identify potentially important relationships shared between multiple cleavage sites. These results additionally enabled the formation of a preliminary conceptual model for explaining processing site amino acid composition.
Date of publication
Keyword
Subject
DOI
Identifier
Resource type
Rights statement
  • In Copyright
Advisor
  • Margolis, David
  • Swanstrom, Ronald
  • De Paris, Kristina
  • Lemon, Stanley
  • Carter, Charles
Degree
  • Doctor of Philosophy
Degree granting institution
  • University of North Carolina at Chapel Hill Graduate School
Graduation year
  • 2015
Language
Publisher
Place of publication
  • Chapel Hill, NC
Access
  • There are no restrictions to this item.
Parents:

This work has no parents.

Items