Degree-Driven Design of Geometric Algorithms for Point Location, Proximity, and Volume Calculation Public Deposited

Downloadable Content

Download PDF
Last Modified
  • March 22, 2019
  • Millman, David L.
    • Affiliation: College of Arts and Sciences, Department of Computer Science
  • Correct implementation of published geometric algorithms is surprisingly difficult. Geometric algorithms are often designed for Real-RAM, a computational model that provides arbitrary precision arithmetic operations at unit cost. Actual commodity hardware provides only finite precision and may result in arithmetic errors. While the errors may seem small, if ignored, they may cause incorrect branching, which may cause an implementation to reach an undefined state, produce erroneous output, or crash. In 1999 Liotta, Preparata and Tamassia proposed that in addition to considering the resources of time and space, an algorithm designer should also consider the arithmetic precision necessary to guarantee a correct implementation. They called this design technique degree-driven algorithm design. Designers who consider the time, space, and precision for a problem up-front arrive at new solutions, gain further insight, and find simpler representations. In this thesis, I show that degree-driven design supports the development of new and robust geometric algorithms. I demonstrate this claim via several new algorithms. For n point sites on a UxU grid I consider three problems. First, I show how to compute the nearest neighbor transform in O(U^2) expected time, O(U^2) space, and double precision. Second, I show how to create a data structure in O(n log Un) expected time, O(n) expected space, and triple precision that supports O(log n) time and double precision post-office queries. Third, I show how to compute the Gabriel graph in O(n^2) time, O(n^2) space and double precision. For computing volumes of CSG models, I describe a framework that uses a minimal set of predicates that use at most five-fold precision. The framework is over 500x faster and two orders of magnitude more accurate than a Monte Carlo volume calculation algorithm.
Date of publication
Resource type
Rights statement
  • In Copyright
  • Snoeyink, Jack
  • Doctor of Philosophy
Graduation year
  • 2012

This work has no parents.