In silico strategies to study polypharmacology of G-protein-coupled receptors Public Deposited

Downloadable Content

Download PDF
Last Modified
  • March 22, 2019
  • Hajjo, Rima M. K. I.
    • Affiliation: Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry
  • The development of drugs that simultaneously target multiple receptors in a rational way (i.e., 'magic shotguns') is regarded as a promising approach for drug discovery to treat complex, multi-factorial and multi-pathogenic diseases. My major goal is to develop and employ different computational approaches towards the rational design of drugs with selective polypharmacology towards guanine nucleotide-binding protein (G-protein)-coupled receptors (GPCRs) to treat central nervous system diseases. Our methodologies rely on the advances in chemocentric informatics and chemogenomics to generate experimentally testable hypotheses that are derived by fusing independent lines of evidence. We posit that such hypothesis fusion approach allows us to improve the overall success rates of in silico lead identification efforts. We have developed an integrated computational approach that combines Quantitative Structure-Activity Relationships (QSAR) modeling, model-based virtual screening (VS), gene expression analysis and mining of the biological literature for drug discovery. The dissertation research described herein is focused on: (1) The development of robust data-driven Quantitative Structure-Activity Relationship (QSAR) models of single target GPCR datasets that will amount to the compendium of GPCR predictors: the GPCR QSARome; (2) The development of robust data-driven QSAR models for families of GPCRs and other trans-membrane molecular targets (i.e., sigma receptors) and the application of models as virtual screening tools for the quick prioritization of compounds for biological testing across receptor families; (3) The development of novel integrative chemocentric informatics approaches to predict receptor-mediated clinical effects of chemicals. Results indicated that our computational efforts to establish a compendium of computational predictors and devise an integrative chemocentric informatics approach to study polypharmacology in silico will eventually lead to useful and reliable tools aimed at identifying and enriching chemical libraries with compounds that have the desired activities for more than one molecular target of interest.
Date of publication
Resource type
Rights statement
  • In Copyright
  • ... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the UNC Eshelman School of Pharmacy (Division of Medicinal Chemistry and Natural Products).
  • Tropsha, Alexander

This work has no parents.