Radiometric calibration methods from image sequences Public Deposited

Downloadable Content

Download PDF
Last Modified
  • March 21, 2019
Creator
  • Kim, Seon Joo
    • Affiliation: College of Arts and Sciences, Department of Computer Science
Abstract
  • In many computer vision systems, an image of a scene is assumed to directly reflect the scene radiance. However, this is not the case for most cameras as the radiometric response function which is a mapping from the scene radiance to the image brightness is nonlinear. In addition, the exposure settings of the camera are adjusted (often in the auto-exposure mode) according to the dynamic range of the scene changing the appearance of the scene in the images. Vignetting effect which refers to the gradual fading-out of an image at points near its periphery also contributes in changing the scene appearance in images. In this dissertation, I present several algorithms to compute the radiometric properties of a camera which enable us to find the relationship between the image brightness and the scene radiance. First, I introduce an algorithm to compute the vignetting function, the response function, and the exposure values that fully explain the radiometric image formation process from a set of images of a scene taken with different and unknown exposure values. One of the key features of the proposed method is that the movement of the camera is not limited when taking the pictures whereas most existing methods limit the motion of the camera. Then I present a joint feature tracking and radiometric calibration scheme which performs an integrated radiometric calibration in contrast to previous radiometric calibration techniques which require the correspondences as an input which leads to a chicken-and-egg problem as precise tracking requires accurate radiometric calibration. By combining both into an integrated approach we solve this chicken-and-egg problem. Finally, I propose a radiometric calibration method suited for a set of images of an outdoor scene taken at a regular interval over a period of time. This type of data is a challenging problem because the illumination for each image is changing causing the exposure of the camera to change and the conventional radiometric calibration framework cannot be used for this type of data. The proposed methods are applied to radiometrically align images for seamless mosaics and 3D model textures, to create high dynamic range mosaics, and to build an adaptive stereo system.
Date of publication
DOI
Resource type
Rights statement
  • In Copyright
Advisor
  • Pollefeys, Marc
Language
Access
  • Open access
Parents:

This work has no parents.

Items