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ABSTRACT 
 

Thomas E. Callis: The Regulation of Gene Expression During Heart Development 
and Disease 

 
(Under the direction of Dr. Da-Zhi Wang) 

 
Cardiovascular disease remains one of the most common fatal and disabling 

disorders in the United States. The development of the heart and pathological 

processes leading to heart disease are intimately linked to the regulation of gene 

expression. By understanding the complex genetic and molecular pathways 

controlling cardiac gene expression, new therapies might be developed for the 

prevention and treatment of heart disease. My research has focused upon the 

fundamental mechanisms of transcriptional and post-transcriptional regulation of 

gene expression. In particular, I have investigated how transcription factors and 

microRNAs (miRNAs) coordinate cardiac gene expression during development and 

in disease. 

Myocardin is a cardiac and smooth muscle-specific transcriptional cofactor for 

serum response factor (SRF). Myocardin potently activates target gene expression 

by tethering with SRF bound to SRF-responsive elements. However the upstream 

signaling pathways controlling myocardin activity and specificity were unknown. 

Bone Morphogenetic Proteins (BMPs) play important roles in cardiovascular 
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development and I find that Smad1, an effector of the BMP signaling pathway, 

synergistically activates myocardin-dependent cardiac gene expression. This 

discovery that myocardin participates in a BMP signaling-dependent cardiac gene 

transcriptional program helps address how myocardin transactivation of cardiac 

versus smooth muscle genes is controlled. 

Much of the current understanding of the genetic pathways controlling cardiac 

gene expression is based upon studies of transcription factors and regulatory 

enhancer sequences required for cardiac gene transcription. The discovery of 

miRNAs has further increased this complexity by adding another layer of regulation 

at the post-transcriptional level. I show that the miR-208 family, miR-208a and miR-

208b, are differentially expressed during heart development, paralleling the 

expression of their respective host genes alpha- and beta-myosin heavy chain 

(αMHC and βMHC). Using genetically engineered mice that overproduce miR-208a 

specifically in the heart or lack miR-208a altogether, I show that miR-208a is an 

important regulator of cardiac hypertrophy and cardiac conduction. Collectively, my 

studies of the transcription factor myocardin and the miR-208 family extend the 

current understanding of how cardiac gene expression is regulated during heart 

development and disease. 
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CHAPTER 1 

INTRODUCTION 



 

Mammalian Heart Development 

The heart is the first organ to form and function during mammalian development (1). 

In the mouse, heart formation begins at embryonic day 7.5 (E7.5) when a population 

of cells in the anterior lateral plate mesoderm becomes committed to a cardiogenic 

fate, a process known as cardiac specification or cardiogenesis. Two distinct 

sources of cardiac precursor cells from the primary and secondary heart fields are 

needed for cardiogenesis (2, 3). Whereas the primary heart field is essential for the 

formation of the primary heart tube, additional cardiac precursor cells are recruited 

from the secondary heart field to contribute to the future right ventricle and outflow 

tract (4, 5). These cardiac cells, which are localized to a region known as the cardiac 

crescent, migrate ventromedially to form the linear heart tube at E8.0. Shortly after 

the formation of the linear heart tube, the initiation of rhythmic contraction begins. 

Subsequent events of looping morphogenesis, chamber specification, cardiac valve 

formation, and neural crest migration give rise to the multichambered heart by E10.5 

(2, 6). Once formed, the four-chambered heart will continue to grow and mature, a 

process that includes ventricular trabeculation. Many features of vertebrate heart 

development, including morphological events and the complex genetic networks 

involved, are evolutionarily conserved from avians, fish, frog, and mice to humans, 

indicating that studying heart development and disease in those accessible animal 

model systems provides insight into human heart pathophysiology (7).  
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Transcriptional Control of Heart Development 

The embryologic events associated with heart development have been studied for 

centuries, but the relatively recent identification and characterization of cardiac 

transcription factors has provided much needed insight into the molecular 

mechanisms underlying heart development (8). Many transcription factors regulate 

cardiac gene expression during development and include: Nkx2.5 (9-12); 

homeodomain only protein (Hop) (13, 14); Myocyte enhancer factor 2C (MEF2C) 

(15-18); GATA4 (19-22); Hand1 (23); serum response factor (SRF) (24, 25); 

myocardin (26-29); and the T-box (Tbx) transcription factors Tbx1, Tbx5 and Tbx20 

(30-40). Genetic deletion studies in mouse models demonstrated critical roles for 

several of these transcription factors in different aspects and at different times during 

heart development. For example, genetic deletion of GATA4 results in embryonic 

lethality by E9.5 with disrupted heart looping and defective septation (41), while 

complete loss of Nkx2.5 in murine hearts resulted in arrested development by E10 

after heart looping and disturbed the expression of several other cardiac 

transcription factors (42). Extremely complex genetic networks have been revealed 

by careful analyses of cardiac transcription factors, in which some of these proteins 

interact with one another, as well as additional cofactors, to promote or inhibit 

expression of specific genes during heart development. For example, SRF 

associates with Nkx2.5, GATA4, and myocardin as part of a multi-component 

transcriptional regulatory complex regulating the expression of cardiac-specific 

genes (26, 43-47). One research focus within this dissertation was to better 
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understand the interplay between SRF and myocardin and how they coordinate 

cardiac gene expression. 

SRF, a MADS-box transcription factor, is an important regulator of both 

growth factor-inducible and muscle-specific genes. SRF regulates target genes by 

binding the DNA consensus sequence CC(A/T)6GG, known as a CArG box or serum 

response element (SRE) (48-50). Although SRF is ubiquitously expressed, it is 

enriched in muscle tissue during development and in adulthood (51-53). SRF is 

essential for animal development because SRF knockout mice die during early 

embryonic development (54). Recently, the in vivo function of SRF during muscle 

development was clearly documented when SRF was conditionally knocked out in 

cardiac and skeletal muscle lineages (24, 25, 55-58). Interestingly, over-expression 

of a wild type or a dominant negative form of SRF specifically in the heart results in 

cardiomyopathy, suggesting there is an obligatory role for SRF in cardiogenesis (59, 

60). It’s thought that the spectrum of genes activated by SRF is dictated by its 

differential affinity for different CArG box sequences and by its association with a 

variety of cofactors, many of which are cell type-specific and signal-responsive (61, 

62). Thus, the tissue-specific co-factors are critical for controlling SRF specificity, 

one of which is myocardin. 

Myocardin is a SAP (SAF-A/B, Acinus, PIAS) domain transcription factor (26). 

During mouse embryogenesis, myocardin is initially expressed in the cardiac 

crescent, representing one of the earliest known markers of the cardiac lineage (26). 

Myocardin expression is maintained in the atrial and ventricular chambers of the 

heart throughout embryogenesis to adulthood. In addition, myocardin is expressed in 
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a subset of vascular and visceral smooth muscle cell types (26, 63-65). Unlike other 

cardiac transcription factors, such as Nkx2.5, MEF2C and GATA4, which bind to the 

conserved DNA sequences on the regulatory regions of their target genes, 

myocardin does not bind DNA alone, but forms a stable ternary complex with SRF 

bound to DNA (26). This interaction brings the powerful transcription activation 

domain (TAD) of myocardin to SRF-dependent target genes. Target genes that can 

be significantly transactivated by myocardin include cardiac-specific gene atrial 

natriuretic factor (ANF) and smooth muscle-specific gene SM22, both known targets 

for SRF. As an SRF co-factor, myocardin potently transactivates CArG box-

containing reporter genes (26, 66). Interestingly, genetic deletion of myocardin in the 

mouse causes embryonic lethality by E10.5 with absence of smooth muscle cells but 

apparently normal cardiac development. However, the expression of myocardin in 

the heart and its ability to synergistically activate cardiac gene expression with SRF 

argues for a role in cardiac development. The lack of specific cardiac defects in 

myocardin null murine heart maybe explained, at least in part, by functional 

redundancy between myocardin and its related family members myocardin-related 

transcription factors (MRTFs) –A and –B, which share homology with the SAP, basic 

and glutamine-rich domains of myocardin (66). Whereas myocardin is expressed in 

a cardiac- and smooth muscle-specific manner, MRTF-A and MRTF-B are widely 

expressed in embryonic and adult tissues and are able to synergistically activate 

CArG box promoters (66). Given their overlapping expression patterns and their 

ability to cooperatively activate gene expression with SRF, it’s formally possibly that 

the myocardin family of transcription factors play functionally redundant roles in the 
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heart. Several experimental evidences point to the importance of myocardin in heart 

development: Expression of a dominant-negative myocardin mutant or myocardin 

knockdown by morpholino in Xenopus blocks heart development (26, 28), while 

ectopic overexpression of myocardin in Xenopus embryos leads to activation of 

ectopic cardiac gene expression. Importantly, recent evidence demonstrates 

myocardin can induce hypertrophic growth of cardiomyocytes, suggesting that 

myocardin may have a function in the adult heart and disease process cardiac 

hypertrophy (67).  

 

Transcriptional Mechanisms of Congenital Heart Disease 

Over the past decade, clinical studies have identified a number of congenital heart 

diseases (CHDs) associated with mutations in cardiac transcription factors (Table 

1.1).  CHDs threaten nearly 1% of all newborns and pose a significant threat of 

infant death; however, the underlying genetic mechanisms of many CHDs remain 

elusive.  Most likely, the majority of these defects have a basis in the complex 

process of cardiogenesis.  Heart development involves a series of highly 

coordinated events including cell proliferation, differentiation, migration and 

morphogenesis, and a number of genes involved in these processes have been 

identified as potential causes of specific cardiac anomalies.  Transcription factors 

are major regulators of developmental processes and play essential roles in 

cardiogenesis.  Six CHDs associated with deletions or mutations of transcription 

factors and the current understanding of their molecular bases are described in this 

section (Fig. 1.1).   
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DiGeorge Syndrome:  Tbx1 

The presentation of DiGeorge syndrome is one consequence of the most common 

human genetic deletion, monoallelic microdeletion of chromosome 22q11.2.  In most 

cases, the heterozygous deletion eliminates approximately 3 Mbp of the long arm of 

chromosome 22, resulting in the loss of an estimated 30 genes (68).  Recent studies 

have described highly variable clinical indications of patients with chromosome 

22q11.2 deletions, even within the same pedigree.  However, CHDs are the most 

common feature of DiGeorge syndrome, or del22q11, and may include tetralogy of 

Fallot, interruption of the aortic arch type B, ventricular septal defects, pulmonary 

atresia, or persistent truncus ateriosus (Fig. 1.1) (68, 69). 

 The use of mouse genetics has recently clarified which of the numerous 

genes deleted in del22q11 may be responsible for the DiGeorge syndrome 

phenotypes.  Targeted mutations in the mouse genome have allowed the majority of 

the DiGeorge syndrome clinical manifestations to be attributed to haploinsufficiency 

of Tbx1, one of the genes deleted in del22q11 patients (68, 70).  Tbx1 is a member 

of the T-box family of transcription factors and is involved in the patterning of the 

pharyngeal endoderm and aortic arches, as well as cardiac outflow tract 

development in a gene dosage-dependent manner (69).  Attempts to further connect 

Tbx1 to DiGeorge syndrome have led to searches for mutations in this gene in 

patients lacking the typical chromosomal deletion.  To this end, five patients have 

been identified as carrying only a Tbx1 gene mutation (71).  Though these 

individuals do not exhibit all characteristics of DiGeorge syndrome, this 
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demonstrates that mutations in human Tbx1, as in mouse, are capable of causing 

many of the defects associated with del22q11.  In an effort to understand the 

molecular mechanisms of Tbx1 function, recent observations have resulted in a 

model in which Fgf8 in the pharyngeal endoderm is regulated by Tbx1 to control the 

proper patterning of the aortic arch through epithelial-mesenchymal interactions (69).  

Additionally, Tbx1 transcription has been shown to be regulated by the sonic 

hedgehog (shh) signaling pathway via the Foxc1 and Foxc2 transcription factors 

which are expressed in the head mesenchyme and the mesenchyme surrounding 

the aortic arch arteries (69).  Together, studies such as these demonstrate signaling 

cascades by which Tbx1 is transcribed and may initiate proper patterning events; 

however, the complete mechanism of Tbx1 action remains unknown. 

 

Familial Cardiac Septal Defects: Nkx2.5 and Gata4 

Cardiac septal defects (CSDs) are a common form of CHD and are defined by a 

hole in the septal wall allowing blood transfer between the atria or ventricles.  Atrial 

septal defects (ASDs) affect over one in 1000 live births, while ventricular septal 

defects (VSDs) are the most prevalent CHD, occurring in approximately one in 300 

live births (Fig. 1.1).  Over time, persistent left-to-right shunting of blood between the 

atria or ventricles leads to pulmonary hypertension, arrhythmias, and atrial and 

ventricular dysfunction.  Fortunately, severe ASDs and VSDs can be treated by 

surgical- or catheter-based procedures that employ a prosthetic patch to close the 

defect.  Despite the high incidence of CSDs, the precise molecular mechanisms 

directing septal morphogenesis remain unclear.  However, genetic studies have 
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implicated mutations in the Nkx2.5 and GATA4 loci as genetic causes of familial 

CSDs. 

Mutant alleles of the Nkx2.5 locus correlate with ASDs in rare families in 

which the defect is inherited (Fig. 1.1) (72).  Genetic studies in a wide variety of 

organisms demonstrate that Nkx2.5 functions at many stages of cardiac 

development and in a variety of cardiac tissues (73, 74).  Complete loss of Nkx2.5 in 

mice results in early embryonic lethality with severe cardiac defects (75), while mice 

heterozygous for the Nkx2.5 allele only occasionally suffer ASDs (76).  This 

suggests that genetic modifiers are important for ASD penetrance.  Nkx2.5 interacts 

with other transcription factors associated with CHDs such as GATA4 and Tbx5, and 

many cardiac-specific genes contain Nkx2.5 binding sites in their promoters, 

highlighting the importance of Nkx2.5 in the cardiac transcriptional program (Table 

1.1) (77).  Chien et al. (2004) reported that mice harboring a ventricular muscle-cell 

restricted knockout of Nkx2.5 mimic CHD and implicated persistent BMP-10 (Bone 

Morphogenetic Protein-10) expression as playing an important role in the onset and 

progression of observed cardiac defects (78).  This study suggests that antagonizing 

BMP-10 signals could represent a new therapeutic approach to prevent progression 

of Nkx2.5-associated CHDs.  

ASDs, as well as VSDs and atrioventricular septal defects, are also 

associated with GATA4 haploinsufficiency (Fig. 1.1) (79-81).  A study of a large 

pedigree revealed a missense mutation in GATA4 linked to an autosomal dominant 

disorder where ASD was fully penetrant.  GATA4 encodes a zinc-finger transcription 

factor essential for cardiogenesis, and directly interacts with the cardiac transcription 
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factors Nkx2.5 and Tbx5 to synergistically activate cardiac gene expression (77, 82).  

Inherited mutations in GATA4 result in reduced DNA binding and transactivation of 

target genes, as well as loss of Tbx5 interaction (79).  In addition to Nkx2.5 and 

Tbx5, GATA4 associates with a variety of binding partners thought to create specific 

transcriptional complexes that confer tissue-specific gene expression during heart 

development (Table 1.1) (73, 77).  

 

Holt-Oram Syndrome:  Tbx5 

Holt-Oram syndrome (HOS) is an autosomal dominant condition that occurs in 

approximately one of every 100,000 live births.  HOS generally presents highly 

variable phenotypes including both upper limb and cardiac defects. Though rare, 

there is much to learn from its presentation of CHDs, which range from single or 

multiple ASDs and VSDs, to more complex malformations such as tetralogy of Fallot 

and hypoplastic left heart syndrome (Fig. 1.1) (83).  Mild to severe cardiac 

arrhythmias are also common (84). 

The genomic locus responsible for HOS phenotypes was previously mapped 

to chromosome 12q24.1.  Since then, HOS has been linked to more than 30 

mutations distributed throughout Tbx5, generally thought to result in Tbx5 

haploinsufficiency (83, 85).  Tbx5, like Tbx1, is a T-box containing transcription 

factor that is essential for proper vertebrate tissue patterning and differentiation (86).  

Though familial studies and studies in mouse have attempted to correlate the 

location of the many Tbx5 mutations along the locus with the wide variation in 

severity of limb and cardiac defects, there is currently insufficient evidence to 
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support such a hypothesis (83).  Currently, it is thought that loss of transactivation, 

reduced interaction with other cardiac transcription factors such as Nkx2.5, GATA4, 

and Tbx20, or mis-sorting of mutant forms of Tbx5 are main causes for HOS 

pathogenesis (Table 1.1) (73, 82, 87). 

 

Okihiro Syndrome: Sall4 

Okihiro Syndrome is an autosomal dominant condition consisting of Duane anomaly, 

radial ray defects and deafness.  The phenotype may include cardiac defects, anal 

stenosis, pigmentary disturbance, renal abnormalities, or facial asymmetries.  The 

specific cardiac defects are most often ASDs, VSDs, or tetralogy of Fallot (Fig. 1.1) 

(88, 89). 

 Familial studies of individuals affected by Okihiro syndrome have identified 

mutations in the Sall4 (spalt-like 4) gene and suggest that haploinsufficiency of this 

gene is responsible for the clinical phenotype (90-92).  Sall4 is a member of the Sal 

gene family, which encodes a group of four probable zinc-finger transcription factors 

(93).  Thus far, a total of 11 different mutations over the entire Sall4 gene have been 

described in relation to Okihiro syndrome (88, 90, 91).  In addition, Borozdin (2004) 

and colleagues demonstrated that Okihiro syndrome can also be caused by 

deletions of either the entire Sall4 gene or of single coding exons (92).  Based on 

work with the closely related Sall1, it is likely that these mutations result in truncated 

proteins, possibly having the dominant effect of an upregulated repressor (94).  

However, at this point there are no known upstream effectors or downstream targets 

of Sall4.  
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Char Syndrome: TFAP2B 

Char syndrome is an autosomal dominant trait characterized by facial dysmorphism, 

hand anomalies, and patent ductus arteriosus (Fig. 1.1).  Char syndrome has been 

mapped to chromosome 6p12-p21 and further analyses point to inherited mutations 

within the TFAP2B (transcription factor AP-2 beta) locus as a genetic cause of Char 

syndrome (95-97).  TFAP2B encodes a neural crest-related transcription factor 

belonging to the TFAP family, whose members play an important role in retinoic 

acid-induced differentiation (98).  Char syndrome likely results from abnormal neural 

crest development, as neural crest cells are important for the development of several 

affected tissues (99).  TFAP2B mutations associated with Char syndrome inhibit 

target gene activation through a dominant-negative mechanism or cause abnormal 

mRNA splicing resulting in TFAP2B haploinsufficiency (96, 97).  However, the 

precise molecular mechanisms underlying the effects of aberrant TFAP2B activity 

resulting in Char syndrome remain to be elucidated. 

 

Dilated Cardiomyopathy with Sensorineural Hearing Loss:  Eya4 

Cardiomyopathy is the leading cause of heart failure and is most commonly 

associated with a dilated cardiomyopathy (DCM) phenotype, defined by increased 

diastolic and systolic ventricular volumes and contractile dysfunction (100).  Often, 

DCM is presented in conjunction with defects of the inner ear resulting in 

sensorineural hearing loss (SNHL).  While not typically characterized as a classical 
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CHD, cardiomyopathy is discussed here as the origins of its pathophysiology may 

also result from mutations in cardiac transcription factors. 

Several studies have demonstrated that approximately 25% to 30% of DCM 

cases may be familial (100).  Until recently, the significant mortality and late onset of 

this disease hindered work to identify the genomic location of the responsible 

disease loci.  Schönberger and colleagues have identified a human mutation that 

causes dilated cardiomyopathy and associated heart failure in addition to previously 

described sensorineural hearing loss (101, 102).  The identified mutation is a 4846 

bp deletion of the human gene Eya4, one of four vertebrate orthologs of the 

Drosophila melanogaster gene eyes absent (eya) (103).  Eya4 is a transcriptional 

coactivator that interacts with members of the sine oculis family (Six1-Six6) and 

Dach transcription factors to lead to gene activation (Table 1.1) (103-105).  The 

characterization of the human mutation is supported by work in zebrafish, as 

attenuated Eya4 levels produce the morphological and hemodynamic features of 

heart failure.  In addition, Schönberger et al. (2002) demonstrate critical roles for 

Eya4-Six regulation of transcription in normal heart function (101). 

 

Potential therapeutic strategies for transcription factor-associated CHDs 

In general, transcription factors have historically been poor targets of drug therapy 

due to their nuclear localization, lack of enzymatic activity, and the difficulty 

associated with reprogramming transcriptional networks.  Presently, the most 

effective therapy for cardiac diseases is heart transplantation.  However, due to the 

shortage of organs, cost, and inaccessibility of treatment for most affected 
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individuals, this remains a limited therapeutic option.  Alternative treatment is the 

administration of drugs that improve myocardial contractility, though this treatment is 

only effective as a short-term therapy, with the 5-year survival rate using current 

agents being less then 60% (106).  More recently, new strategies have focused on 

two main approaches for treatment of transcription factor-associated heart disease, 

cardiac stem cell transplants and chemical modulators of transcriptional activity.  

The ability to isolate and propagate cell populations that can differentiate into 

cardiomyocytes in vivo offers the opportunity to treat a wide range of cardiac 

diseases.  The existence of cardiac precursor or stem cells in adults remains a 

contentious issue.  However, recent reports suggest that cardiac precursor or stem 

cells are present, albeit, in a very low number.  In addition to endogenous cardiac 

stem cells, other studies have shown that multipotential cells, most notably 

embryonic stem (ES) cells and bone marrow-derived stem cells have, under defined 

conditions, differentiated into cardiomyocytes.  Although these studies offer the 

promise of growing cells for use in repairing damaged cardiac tissue, three major 

hurdles must be overcome before stem cells can be considered as a therapy for 

cardiac disease.  First, the molecular, biochemical, and cellular properties of these 

different cell populations must be established.  Second, studies must demonstrate 

that precursor cell populations can be maintained and expanded to suitable numbers 

to be used as a cardiac therapy while maintaining their multipotentiality.  Finally, 

results must show multipotential cells, once transplanted to the heart, can give rise 

to functioning cardiomyocytes while not undergoing uncontrolled differentiation 

leading to cardiac teratomas or fibrosis (107).  
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An alternative therapeutic strategy for transcription factor-associated cardiac 

disease is to screen small chemical libraries to identify agents that either exacerbate 

or ameliorate transcription factor activities.  These agents could either act in an 

intercellular signaling cascade that turns on, off, or modifies transcription factor 

activities, most notably agents that act in the calcium or phosphate signaling 

pathways, or act directly on transcription co-factors such as histone 

acetyltransferases (HATs) or histone deactylases (HDACs) (106).  The major 

obstacle is the availability of an inexpensive, quick screen for these molecules.  

However, recent observations showing the sequence, expression, and function of 

many cardiac disease-associated transcription factors are evolutionarily conserved 

open the possibility of using fish or frog model systems as bioassays to test for 

agents that modulate these pathways. 

Given the number of transcription factors demonstrated to play essential roles 

in vertebrate cardiogenesis, the current pool of CHD-associated transcription factors 

is likely underrepresented.  It is very likely that more correlations between mutations 

in cardiac transcription factors and CHD will be made.  To this end, disruptions in the 

function of at least six cardiac transcription factors have been associated with 

human CHD.   Haploinsufficiency of the genes Tbx1, Tbx5, GATA4, and Sall4 have 

been correlated with CHDs such as DiGeorge syndrome, Holt-Oram syndrome, 

familial ASDs and VSDs and Okihiro syndrome while similar disruptions in Nkx2.5, 

TFAP2B, and Eya4 are associated with familial ASDs, Char syndrome and 

cardiomyopathies.  While the identification of genes associated with CHD is an 

important first step towards the goal of curing cardiovascular disease, it has become 
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clear that understanding the genetic pathways and the molecular mechanisms of 

transcription factors will be key to our ability to identify therapeutic agents for CHD.  

Based on our current understanding of these mechanisms and of heart development 

in general, possible treatment options may eventually grow to include cardiac stem 

cell transplants and chemical agents.  However, these possibilities lie in the future, 

and their development will rely upon studies using a variety of animal models and 

our growing knowledge of CHD.  

 

Post-transcriptional Regulation of Cardiac Gene Expression by MicroRNAs 

MicroRNAs (miRNAs) are an evolutionarily conserved class of small noncoding 

RNAs known to regulate translation of target messenger RNAs in animals (108). The 

first microRNA was discovered in 1993 in the worm Caenorhabditis elegans (109, 

110). Many scientists dismissed this discovery as a singular instance of a genetic 

oddity found only in worm. The second microRNA was discovered in worm eight 

years later, but this microRNA was found to also exist in humans and other 

mammals, drawing the attention of many scientists to these molecules (111).  In 

recent years, advances in sequencing technologies and bioinformatics have enabled 

scientists to catalog the existence of over 500 human microRNA genes (112). 

Strikingly, computer models predict that microRNAs may regulate the expression of 

more than one-third of human protein-coding genes, highlighting their potential 

importance in both human development and disease (113, 114). The discovery of 

this new and growing class of regulatory molecules has provided an additional layer 
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of spatial and temporal control of developmental and homeostatic events by altering 

levels of critical regulators within complex genetic pathways.  

  Some of the most exciting biological roles for microRNAs discovered so far 

have emerged from within the cardiovascular research community (115). Our 

laboratory and others have carefully analyzed the expression levels of hundreds of 

microRNAs in animal models of heart disease and changes were found in the levels 

of specific microRNAs (116-120). Expression profiling of microRNAs in severely 

diseased human hearts identified similar changes, indicating that microRNAs may 

play a role in heart disease. Furthermore, recent genetic studies identified roles for 

miRNAs in cardiogenesis, cardiac electrical conduction, and stress-dependent 

cardiac remodeling (121-123). The recent progress made at the intersection of the 

miRNA and cardiac muscle biology fields are more fully reviewed in Chapter 3. 

 

Research Presented in this Dissertation 

The direction of my dissertation research has been aimed at understanding the 

fundamental mechanisms of transcriptional and post-transcriptional regulation of 

gene expression. In particular, I studied how transcription factors and microRNAs 

coordinate cardiac gene expression during development and in disease.  

  A project started at the beginning of my graduate training increased our 

understanding of the regulation of myocardin, an important transcription factor 

expressed in cardiac and smooth muscle tissues. Despite the significant role of 

myocardin in controlling muscle gene expression, upstream signaling pathways that 

regulate myocardin activity remained unknown (26). Bone morphogenetic proteins 
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(BMPs) and downstream BMP signaling effectors are known to be essential for 

cardiovascular development (124-126); however, it was clear that BMP signaling 

alone was insufficient to activate the cardiac gene program because BMP signaling 

pathway components are expressed in a wide range of tissues and cell types 

outside of cardiac muscle. Indeed, the ability of BMP signaling to commit specific 

mesodermal cells to a cardiac fate requires that BMP signaling be interpreted in a 

cell type-specific mechanism. In light of the role of BMP signaling and myocardin in 

cardiovascular development, I investigated and discovered that BMP signaling could 

regulate myocardin-mediated cardiac gene expression. This work along with a 

collaborator’s concurrent study addressed an important question facing the 

cardiovascular field (29, 127): how does myocardin discriminate between cardiac- 

and smooth muscle-specific genes? The answer appears to be, at least in part, that 

myocardin’s target specificity is determined by which upstream signaling pathways 

and their downstream effectors interact with myocardin. This work is presented in 

Chapter 2.  

   After completing the BMP-myocardin study, my major research direction has 

centered on miRNA biology as it relates to cardiac muscle biology. Despite the 

prevalence of miRNAs found within mammalian genomes, miRNAs are a relatively 

new and understudied class of molecules, thus very few miRNAs have been 

assigned specific biological roles. Of the miRNAs reported as having muscle-specific 

expression patterns, miR-208 was reported as being solely expressed in cardiac 

muscle (128). I broadly hypothesized that the heart-specific expression pattern of 

miR-208 and its sequence conversation across species was indicative of an 
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important function in the heart. To identify a biological role for miR-208, I initiated 

studies of miR-208 using cardiomyocytes in vitro, genetic analyses in the mouse in 

vivo, and combined bioinformatics and experimental approaches to identify direct 

molecular targets of miR-208. I find that the miR-208 family, consisting of miR-208a 

and miR-208b, are differentially expressed during heart development, paralleling the 

expression of their respective host genes alpha- and beta-myosin heavy chain 

(αMHC and βMHC). Expression of miR-208a and miR-208b are subject to thyroid 

hormone regulation like their host genes, and miR-208b is induced during cardiac 

hypertrophy concurrent with βMHC expression, indicating that these intronic miRNAs 

are co-regulated with their respective host genes. In an effort to understand the 

function of miR-208a in the adult heart, I created genetic miR-208a gain- and loss-

of-function mouse models. Through careful analysis of these mice, I found evidence 

that the miR-208 family is a key regulator of cardiac remodeling. Overproduction of 

miR-208a in transgenic mouse hearts induced hypertrophic growth and increased 

both βMHC and miR-208b expression levels. Conversely, deletion of miR-208a from 

the mouse genome resulted in lower levels of βMHC expression in the adult heart, 

providing complementary genetic evidence that miR-208a is involved in regulating 

βMHC expression. miR-208a and miR-208b share similar sequence identity and 

appear to repress the translation of the same regulatory targets, including Thyroid 

hormone associated protein 1 (Thrap1) and myostatin, two negative regulators of 

muscle growth and hypertrophy. From these studies, I proposed a model where the 

miR-208 family fine-tunes the expression of anti-hypertrophy genes and regulates 

hypertrophic growth during normal and pathological conditions. Interestingly, the 
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miR-208 also appears to be an important regulator of the cardiac conduction system. 

These novel findings contribute new knowledge to our understanding of the genetic 

networks important for cardiovascular pathophysiology. The work on the miR-208 

family is presented in Chapters 4 and 5.  
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Figure 1.1. Congenital heart defects associated with mutations in cardiac 
transcription factors.  Mutations in cardiac transcription factors such as Tbx1, 
Nkx2.5, Gata4, Tbx5, Sall4, and TFAP2B have been associated with multiple 
human congenital heart defects including atrial septal defects (ASD), ventricular 
septal defects (VSD), tetralogy of Fallot (TOF), conduction system defects (CD), 
hypoplastic left heart (HLH), pulmonary atresia (PA), patent ductus arteriosus 
(PDA), tricuspid atresia (TA), and truncus arteriosus (TRA). Schematic shows the 
relative position of each defect. 
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Table 1.1 Human congenital heart diseases, associated transcription factors 
and molecular interactions 

 

Human Clinical 
Manifestation 

Associated 
Transcription 

Factor 

Co-factors/ 
Upstream 
Molecules 

Potential 
Downstream 

Cardiac Genes 
References 

DiGeorge 
Syndrome Tbx1 

VEGF, 
FOXc1, 
FOXc2 

Fgf8  (68-71, 73, 
74, 77) 

Familial ASD Nkx2.5 GATA4, Tbx5 

Nppa/ANF, Bnp, 
eHand, Mef2C 

Mlc2V, Msx2, N-
Myc 

 (72-77, 82) 

Familial 
ASD/VSD GATA4 

FOG2, 
GATA6, 
MEF2C, 
NFATc4, 

Nkx2.5, SRF, 
Tbx5 

Nppa/ANF, α/β-
MHC, Cardiac a-

actin, Cardiac 
TnC,Cardiac TnI, 

Gata6, Nkx2.5 

(73, 74, 77, 
79-82)  

Holt-Oram 
Syndrome Tbx5 GATA4, 

Nkx2.5, Tbx20 

Nppa/ANF, Cx40, 
Gata4, Hey2, 
Irx4, Mlc2v, 

Nkx2.5 

 (73, 74, 77, 
82-87) 

Okihiro 
Syndrome Sall4 Unknown Unknown (73, 88-94) 

Char Syndrome TFAP2B Unknown Unknown (82, 95-97) 

Dilated 
Cardiomyopathy 

with 
Sensorineural 
Hearing Loss 

Eya4 SIX, DACH Unknown  (73, 101-
105) 

Abbreviations:  VEGF-vascular endothelial growth factor; FOXc1/2-human forkhead-box 
subfamily c1/2; GATA-GATA binding protein; TBX-T-box; FOG2-friend of GATA; MEF2C-
myocyte enhancer factor 2C isoform; NFATc4-nuclear factor of activated T cells, cytoplasmic, 
calcineurin-dependent-4; NKX2.5-NK2-related homeobox; SRF-serum response factor; Fgf8-
fibroblast growth factor 8; Nppa/ANF-natriuretic peptide precursor a/atrial natriuretic factor; 
Bnp-brain natriuretic peptide; eHAND-heart- and neural crest derivatives-expressed 1; mlc2v-
myosin light chain-2 ventricular isoform; Msx2-muscle segment homeobox 2; N-Myc-
neuroblastoma-myelocytomatosis viral-related oncogene; α/β-MHC-alpha-, beta- myosin heavy 
chain; TnC-troponin C; TnI-troponin I; Cx40-connexin 40; Hey2-hairy/enhancer of split-related 
with YRPW motif-2; Irx4-iroquois 4 
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Abstract 

Bone morphogenetic proteins (BMPs) play important roles in cardiovascular 

development. However, how BMP signaling pathways regulate cardiac gene 

expression is less clear. We have previously identified myocardin as a cardiac and 

smooth muscle-specific transcriptional cofactor for serum response factor (SRF). 

Myocardin potently activates target gene expression by tethering with SRF bound to 

SRF-responsive elements, the CArG box. Here, we show that Smad1, an effector of 

the BMP signaling pathway, synergistically activates myocardin-dependent cardiac 

gene expression. Interestingly, the CArG box is necessary and sufficient to mediate 

such synergy whereas no obvious Smad Binding Element (SBE) appears to be 

involved. Consistent with their functional interaction, we find that myocardin and 

Smad1 proteins interact directly. Furthermore, myocardin protein levels were 

dramatically increased by BMP-2 treatment in cardiomyocytes. These findings 

suggest myocardin participates in a BMP signaling-dependent cardiac gene 

transcriptional program. 
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Introduction 

Myocardin is a serum response factor (SRF) cofactor expressed in cardiac and 

smooth muscle cell lineages (1). Although myocardin lacks intrinsic DNA binding 

ability, it forms a stable ternary complex with SRF to potently activate muscle-

specific genes through the consensus sequence CC(A/T)6GG, known as a CArG 

box (1-3). In addition to activating cardiac gene expression and the cardiogenesis 

program, myocardin is also a potent transactivator for smooth muscle cell (SMC) 

differentiation and smooth muscle (SM) related gene expression (1, 4-15). Despite 

the significant role of myocardin in controlling muscle gene expression, upstream 

signaling pathways that regulate myocardin activity remain unknown. 

Bone morphogenetic proteins (BMPs) are growth and differentiation factors of 

the transforming growth factor β (TGF-β) superfamily (16). Signaling by this 

superfamily is mediated by Smad proteins.  There are three classes of Smads: 

receptor-regulated Smads (R-Smads), co-Smad (Smad4), and inhibitory Smads. To 

date, three R-Smads (Smad1, 5, and 8) participate in BMP signaling (17). Once 

activated, R-Smads form a heteromeric complex with Smad4 that translocates into 

the nucleus to regulate expression of BMP-responsive genes (17). Smad proteins 

bind DNA relatively weakly, but are strongly recruited to specific target genes by 

interacting with other transcription factors (17).  

BMPs and downstream BMP signaling effectors are essential for cardiovascular 

development (18-23). However, it is clear BMP signaling alone is insufficient to 

activate the cardiac gene program since BMP signaling pathway components are 

expressed in a wide range of tissues and cell types outside of cardiac muscle. 
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Indeed, the ability of BMP signaling to commit specific mesodermal cells to a cardiac 

fate requires the interpretation of BMP signaling in a cell-type specific mechanism. 

How BMP signaling interacts with cardiac transcriptional networks is largely 

unknown. In light of the role of BMP signaling and myocardin in cardiovascular 

development, we investigated whether BMP signaling might regulate myocardin-

mediated cardiac gene expression. 

In this report, we show that Smad1 synergistically activates myocardin-

dependent cardiac gene expression. Interestingly, the CArG box is necessary and 

sufficient for such synergy, whereas no obvious Smad Binding Elements (SBEs) are 

involved. Consistent with their functional interaction, myocardin and Smad1 proteins 

physically interact. Myocardin transactivity was repressed by Smad7, an inhibitory 

Smad, and enhanced by constitutively activated ALK3, a type I BMP receptor. 

Furthermore, myocardin protein expression was dramatically induced by BMP-2 

treatment in cardiomyocytes. These findings suggest a role for BMP signaling in 

regulating myocardin expression and activity to control cardiac gene expression. 
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Materials and Methods 

Plasmid constructs 

Myocardin and SRF expression plasmids are described (1, 24). Myocardin C-

terminal deletion mutants (M1, M2 and M3) were cloned into a pcDNA expression 

vector with a N-terminal Myc tag. Myocardin and Smad1 cDNAs were cloned into 

pGEX-KG vector to generate GST-fusion proteins. Smad1, Smad4, Smad7, and 

constitutively active (Q233D) ALK3 (ALK3 QD) expression plasmids are 

described.(25-28) Smad1 cDNA was subcloned into pM1 vector to make GAL4-

Smad1 fusion protein.  

 

Cell culture and luciferase reporter assays 

Alpha-cardiac actin (α-CA) (29), myosin light chain 2V (MLC2V) (30), alpha-myosin 

heavy chain (α-MHC) (1), and  atrial natriuretic factor (ANF) (1) promoter luciferase 

reporters are described. The Nkx2.5 promoter and Smad Binding Element (SBE) 

mutations are described and were cloned into pGL3 (31). Truncated ANF luciferase 

reporters were generated by cloning the –406, –226, –115 to +70 regions of the ANF 

promoter into pGL3. The –115 ANF reporter was further truncated by deleting the –5 

to +70 region. The ANF SBE mutation (–5 to –2) was generated by site-directed 

mutagenesis. COS7 cells were cultured as described (1). Neonatal rat 

cardiomyocytes were prepared as described (32). Reporter assays were conducted 

in triplicate at least two times in 12 well plates. Transfections were performed with 

either Fugene6 (Roche) or Lipofectamine (Invitrogen) reagents. Unless otherwise 

indicated, 100 ng of reporter and 200 ng of activator plasmids were used. A CMV-

40



 

 
 
 

lacZ reporter was used as an internal control to normalize for transfection 

efficiencies, and total amount of DNA per well was kept constant by adding the 

corresponding amount of empty expression vector. Statistical analysis was 

performed using the Student t test; comparisons were considered significant where 

P < 0.05. 

 

GST-protein Pulldown assays 

GST alone, GST-Smad1, and GST-myocardin proteins were expressed and purified 

as described  and used for in vitro binding assays (14). Smad1 and myocardin 

proteins were in vitro translated (Promega) and [35S] labeled. Pulldowns were 

performed by incubating radiolabeled proteins with bead-bound GST-fusion proteins 

in buffer (20 mM Tris, pH 7.3, 150 mM NaCl, 0.5% NP-40, and protease inhibitors) 

for 2 hours at 4°C, followed by three washes in the same buffer. Samples were 

analyzed by SDS-PAGE and autoradiography.  

 

Co-Immunoprecipitation (Co-IP) and Western blotting assays 

COS7 cells were transfected with Myc-myocardin and Flag-Smad1 plasmids in 10 

cm plates. After 48 hours post-transfection, whole cell extracts were prepared in 1 ml 

of PBS buffer containing 1 mM EDTA, 0.5% Triton X-100, 1 mM PMSF, and 

protease inhibitors. Extracts were cleared by 10,000 x g centrifugation for 10 min, 

incubated with anti-Flag M2 affinity gel resin (Sigma) for 2 hours at 4°C, then 

washed 3 times in the same buffer, and samples were subsequently analyzed by 
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SDS-PAGE and Western blot analysis using anti-Myc (A-14, Santa Cruz, 1:2500) or 

anti-Flag (M2, Sigma, 1:2500) antibodies. 

 

Electrophoretic mobility shift assay (EMSA) 

EMSAs were performed essentially as described using the c-fos CArG probe (33). 

Complementary oligonucleotides were annealed and labeled using Klenow 

polymerase and [α-32P]dCTP. Labeled probe was incubated with in vitro translated 

SRF, Myc-tagged myocardin, and/or Smad1 proteins in gel shift buffer (10 mM Tris 

pH 7.5, 50 mM KCl, 1 mM DTT, 1 mM EDTA, 5% glycerol) with poly(dI-dC). 

Antibody supershift experiments were performed with anti-SRF (G-20, Santa Cruz) 

or anti-Myc. DNA-protein complexes were separated by gel electrophoresis on a 5% 

nondenaturing polyacrylamide gel and visualized by autoradiography. 

 

BMP response assay 

After serum starving overnight, cardiomyocytes were treated with (or without 

treatment in control) 20 ng/ml recombinant BMP-2 (R&D Systems) for 48 hours, then 

harvested in 200 µl lysis buffer composed of PBS containing 0.5% Triton X-100, 1 

mM EDTA, 1 mM PMSF, and protease inhibitors. Twenty µl of lysate was loaded 

onto SDS-PAGE for Western blot analysis. Antibodies used were anti-myocardin 

(sc-21559, Santa Cruz, 1:1000); anti-MEF2 (sc-313, Santa Cruz, 1:1000); anti-SRF 

(sc-335, Santa Cruz, 1:2500); anti-α-actinin (sc-17829, Santa Cruz, 1:2500); anti-β-

tubulin (T-4026, Sigma, 1:5000).  
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Results 

Synergistic activation of cardiac promoters by myocardin and Smad proteins 

Smad1 is a downstream effector of BMP signaling that mediates target gene 

transcription; we therefore tested whether myocardin and Smad1 might activate 

cardiac gene expression in a cooperative manner. Whereas myocardin strongly 

activated the ANF promoter luciferase reporter ((1) and Fig. 2.1a), co-expression of 

myocardin and Smad1 synergistically activated this reporter in COS7 cells. In 

contrast, Smad1 by itself did not significantly activate the ANF reporter (Fig 2.1a). 

Myocardin and Smad1 also synergistically activated the ANF reporter in 

cardiomyocytes (Fig. 2.1g). Similarly, myocardin and Smad1 synergistically 

activated all other cardiac promoter reporters tested (Fig. 2.1b-e). Since Smad1 is 

known to heterodimerize with Smad4, we investigated the effects of Smad4 on 

myocardin/Smad1 synergy and found that Smad4 further increased 

myocardin/Smad1 activation (Fig. 2.1e).   

To rule out the possibility that the myocardin/Smad1 synergy observed was an 

indirect effect mediated through SRF, we tested whether myocardin and GAL4-

Smad1 fusion protein, could activate a GAL4-dependent luciferase reporter (UAS-

luciferase). GAL4-Smad1 and myocardin activated the UAS-luciferase reporter in a 

dosage-dependent manner (Fig. 2.1f). Similarly, Smad1 synergized with GAL4-

myocardin fusion protein to activate the UAS-luciferase reporter (data not shown). 

These results suggest myocardin/Smad1 synergy is directly mediated by myocardin 

and Smad1 interaction. Together, we conclude BMP signaling mediator Smad1 

dramatically enhances myocardin transactivation of cardiac promoters.  
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CArG box is necessary and sufficient to mediate myocardin and Smad1 

synergy 

Deletion analysis of the ANF promoter was performed to determine the minimal 

region required for myocardin/Smad1 functional interaction. Co-expression of 

myocardin and Smad1 increased activation of the ANF reporter ~5-fold higher than 

myocardin alone (Fig. 2.2a). Truncating the ANF promoter to –406 to +70 did not 

significantly affect the activation by myocardin alone or the synergy between 

myocardin and Smad1 (Fig. 2.2a). The –226 to +70 ANF reporter, which excluded 

one of the two CArG boxes present within the ANF promoter (CArG-far, –397 to –

77), dramatically decreased the activation of this reporter by myocardin alone (data 

not shown), however, the synergy between myocardin and Smad1 was unaffected 

(Fig. 2.2a). Further deletion of the ANF promoter (–115 to +70) only slightly reduced 

reporter activation by myocardin and Smad1 (Fig. 2.2a). Thus, the –115 to +70 

region of the ANF promoter, containing a single CArG box, is sufficient to mediate 

myocardin/Smad1 synergy.  

To test whether the CArG box is required for Smad1 and myocardin functional 

interaction, the two CArG boxes within the ANF promoter luciferase reporter were 

mutated (1). Whereas myocardin and Smad1 could synergistically activate the ANF 

luciferase reporter with a CArG-far mutation, such synergy was abolished by double 

CArG mutations (Fig. 2.2a). These data indicate Smad1 and myocardin functional 

interaction is CArG box-dependent. 
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To determine if the CArG box is sufficient to mediate myocardin/Smad1 synergy, 

we used a luciferase reporter controlled by four tandem copies of a consensus CArG 

box (1). Myocardin alone activated the 4XCArG reporter ~200 fold, whereas Smad1 

and myocardin increased activation to ~625 fold (Fig. 2.2b). Thus, we conclude the 

CArG box is necessary and sufficient to mediate myocardin and Smad1 synergy.  

 

Smad Binding Element (SBE) is not required for myocardin and Smad1 

synergy  

Most Smads weakly interact with DNA through a Smad Binding Element (SBE) 

sequence within the promoter of responsive genes (34). The ANF –115 to +70 

promoter region does not contain a consensus SBE (AGAC GTCT), but does have 

three AGAC, a half-SBE previously shown to be sufficient for Smad MH1 domain 

binding (Fig. 2.3a) (35, 36). However, Smad1 or Smad4 did not bind to the three 

AGAC and flanking ~10 bp by electrophoretic mobility shift assay (data not shown). 

Mutating the AGAC closest to the TATAA box (–5 to –2), the only AGAC identified in 

the promoter region within the –115 to +70 of the ANF regulatory region (the other 

two are in the 5’ UTR of this gene, Fig. 2.3a), did not affect activation by myocardin 

and Smad1 (Fig. 2.3b). Myocardin and Smad1 synergistically activated a truncated 

ANF reporter (–115 to –5) where all three AGAC sites were deleted (data not 

shown), suggesting the SBE site is not required for myocardin and Smad1 synergy. 

Furthermore, we found that Smad1 did not activate a luciferase reporter controlled 

by 6X SBE from SM22, nor could Smad1 synergize with myocardin on this reporter 

(data not shown). Finally, we tested whether Smad1 and myocardin could activate 
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the Nkx2.5 promoter luciferase reporter containing a SBE mutation (31). As shown in 

Fig. 2.3c, SBE mutation did not affect the synergy of Smad1 and myocardin. 

Together, these data demonstrate that Smad1 can synergistically activate cardiac 

target gene expression with myocardin in a SBE-independent manner.  

 

Myocardin and Smad1 interact directly 

COS7 cells were co-transfected with expression plasmids encoding Flag-tagged 

Smad1 and Myc-tagged myocardin (or singly transfected with each of those 

constructs in controls). Anti-Flag antibodies were used to immunoprecipitate Smad1. 

Anti-Myc antibodies were then used to detect the presence of associated myocardin. 

The interaction of myocardin and Smad1 was detected in lysates prepared from cells 

expressing both proteins (Fig. 2.4a). Such interaction was further confirmed using a 

series of C-terminal deletion myocardin mutants (Fig. 2.4b). 

To test whether myocardin and Smad1 interact directly in vitro, we performed 

GST-fusion protein pulldown assays. GST-Smad1 protein was bacterially expressed 

and immobilized to glutathione-agarose beads and incubated with in vitro translated 

radiolabeled myocardin. Myocardin specifically interacted with GST-Smad1 but not 

with GST alone (Fig. 2.4c).  

To confirm the specificity of such interaction as well as to determine the region 

of myocardin that mediates Smad1 interaction, we generated a deletion series of 

GST-myocardin fusion proteins and tested their interaction with Smad1 by pulldown 

assay. Radiolabeled Smad1 specifically interacted with amino acids (aa) 1-560 and 

129-689 of myocardin, but not with GST alone or with aa 382-670 or aa 669-935 of 
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myocardin (Fig. 2.5a). This result suggests Smad1 directly interacts with myocardin 

at a region between aa 129 to aa 560 (Fig. 2.5b). We have previously identified 

several conserved domains within this region of myocardin protein, including the 

basic domain (aa 243-260), Q domain (aa 287-320), and SAP domain (380-414) (1, 

24). We therefore tested whether the functional interaction of myocardin and Smad1 

is affected by mutations in those domains by luciferase reporter assay. Basic domain 

mutation completely abolished myocardin transactivation as well as its synergy with 

Smad1 (data not shown). Deletion of the SAP domain or Q domain dramatically 

decreased the synergy of myocardin and Smad1 (Fig. 2.5c). The mutations did not 

alter the expression of those proteins (Fig. 2.5c). Together, these data demonstrate 

a direct interaction between myocardin and Smad1 and suggest such physical 

interaction is important for their synergistic activation of cardiac promoters. 

 

Smad proteins did not directly affect formation of the myocardin/SRF/CArG 

complex  

Myocardin does not bind to DNA directly, instead it is recruited to target genes by 

forming a stable complex with its cofactor SRF bound to DNA element, the CArG 

box (1). The interaction of myocardin and Smad1 led us to examine whether Smad1 

directly associates with myocardin/SRF protein complexes bound to CArG box. 

Electrophoretic mobility shift assays (EMSAs) were performed using a radiolabled 

oligonucleotide containing a consensus CArG box.  Addition of in vitro translated 

SRF to the labeled probe resulted in a specific band (Fig. 2.6, lane 2). Addition of 

both SRF and Myc-tagged myocardin resulted in an additional specific band 
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corresponding to the myocardin/SRF/CArG complex (Fig. 2.6, lane 7). This 

myocardin/SRF/CArG complex was diminished when anti-Myc antibodies were 

added (Fig. 2.6, lane 13), demonstrating it contained myocardin.  Similarly, both 

SRF and myocardin/SRF complexes were supershifted by anti-SRF antibodies, 

demonstrating these complexes contained SRF (Fig. 2.6, lane 14). However, when 

in vitro translated Smad1 was added to the incubation mixtures, the SRF/CArG or 

myocardin/SRF/CArG complexes were neither supershifted nor diminished (Fig. 2.6, 

lanes 8). A similar result was obtained despite a several-fold increase in the amount 

of Smad1 relative to the fixed amounts of SRF and myocardin (Fig. 2.6, lanes 11 

and 12). We also found Smad4 alone or Smad1 plus Smad4 could not affect the 

myocardin/SRF/CArG complex (Fig. 2.6, lanes 9 and 10). These results indicate, 

under the experimental conditions employed, Smad1 is not a stable component of 

the myocardin/SRF/CArG complex.  

 

Myocardin activity is modulated by BMP signaling  

Interestingly, BMP signaling can be antagonized by inhibitory Smad6 and Smad7 

(16, 17). Smad7 repressed myocardin transactivation cardiac α-actin and ANF 

promoters in a dosage-dependent fashion (Fig. 2.7a and 2.7b), presumably by 

interfering with activation of endogenous BMP signaling components. Constitutively 

activated ALKs activate BMP signaling in the absence of BMP ligands (25). To test 

whether upstream BMP signaling components stimulate myocardin transactivity, we 

employed a constitutively activated BMP receptor, ALK3 QD, in luciferase reporter 

assays.  ALK3 QD stimulated myocardin transactivation of the cardiac α-actin and 
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Nkx2.5 reporters (Fig. 2.7c and 2.7d).  While stimulation of myocardin transactivity 

by ALK3 QD is comparable to Smads 1 and 4, co-transfection of both ALK3 QD and 

Smads1/4 with myocardin further increased the activation of the Nkx2.5 reporter 

(Fig. 2.7d). Those results suggest myocardin transactivity is stimulated by BMP 

signaling originating from the cell surface.  

 

BMP signaling increases myocardin protein expression  

BMPs induce the expression of cardiac transcription factor Nkx2.5 and other cardiac 

markers in treated chick embryos (20), as well as the P19CL6 cell line (21, 22). We 

asked whether BMPs have the same effect upon myocardin expression. Neonatal 

rat cardiomyocytes treated with BMP-2 dramatically increased myocardin and MEF2 

protein expression, but not of SRF or α-actinin (Fig. 2.8). BMP-2 did not induce 

global protein synthesis, as β-tubulin protein expression was unchanged in BMP-2 

treated cardiomyocytes (Fig. 2.8). This result demonstrates BMP signaling induces 

myocardin expression in cardiomyocytes and suggests a positive feedback 

mechanism for BMP signaling and myocardin to activate cardiac genes.  
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Discussion 

In this report, we identified the molecular interaction of myocardin and the BMP 

signaling pathway to synergistically activate cardiac gene expression. Along with the 

accompanying study demonstrating that myocardin and TGF-β signaling pathway 

synergistically activate smooth muscle (SM) gene expression, our results clearly 

establish that myocardin is involved in TGF-β superfamily signaling pathways that 

regulate cardiac and SM specific gene expression. 

 

Transactivation of cardiac gene expression by myocardin and BMP signaling 

 We have recently uncovered several mechanisms by which myocardin regulates 

cardiac and SM gene expression. GATA4 represses or activates myocardin-

mediated transactivation depending on the specificity of target genes (37). 

Myocardin transactivity is also positively and negatively regulated by p300 and 

HDAC5, suggesting an additional layer of regulation at the chromatin level (14). 

Interestingly, myocardin is also involved in a molecular switch controlling SRF-

dependent cell differentiation versus proliferation processes, where myocardin 

directly competes with Elk1 for SRF association and target gene activation (15). 

Together, those studies indicate the transcriptional activity of myocardin is tightly 

controlled.  

In this study, we demonstrated myocardin transactivation of cardiac gene 

expression is modulated by BMP signaling through a protein-protein interaction 

between myocardin and BMP downstream effector Smad1, providing another novel 

mechanism in which myocardin is integrated into an important signaling pathway to 
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regulate gene expression. Most importantly, we found BMP signaling was also able 

to induce expression of myocardin, suggesting a potential positive feedback 

mechanism. This mechanism could be used where both myocardin and BMP initiate 

early cardiac gene expression, whereas myocardin is later employed for the 

maintenance of the cardiac program. Interestingly, such mechanisms exist in 

skeletal muscle and other biological systems (38, 39).  

 

SBE-dependency or SBE-independency?  

The synergy between Smad1 and myocardin in activating the ANF promoter 

appears to be SBE-independent. Those results were distinct from the response of 

Smad3 and myocardin, which synergistically activate a SBE controlled reporter (40). 

In contrast, myocardin and Smad1 synergistically activated a luciferase reporter 

driven by four CArG box copies, where absolutely no SBE is involved. These data 

suggest Smad1 can activate cardiac gene expression independently of inherent 

DNA binding. Similar SBE-independent mechanisms have been recently reported for 

a variety of target genes regulated by BMP/Smads (41-43).  

Then how does Smad1 activate target gene expression independent of DNA 

binding? Several mechanisms may apply: Smad1 could be recruited by myocardin 

and SRF to the CArG boxes in the ANF promoter. However, whereas we detected 

protein-protein interaction between myocardin and Smad1 in vitro and in vivo, we 

were unable to obtain evidence for the formation of a potential ternary complex 

among those proteins bound to DNA under our experimental conditions. 

Interestingly, some SRF cofactors are suggested to enhance the affinity of SRF/DNA 
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association, despite not forming a stable ternary complex with SRF bound to DNA 

(3, 44). Our data suggest that Smad1 enhances the activity of the myocardin/SRF 

transcriptional complex through alternative mechanisms. Those include the 

recruitment of coactivators, such as p300, or by repelling transcriptional repressors 

from this transcriptional complex. It will be important to investigate how the physical 

and functional interaction of endogenous Smad1 and myocardin proteins is 

influenced by BMP signaling as we cannot rule out the possibility that Smad1 might 

affect myocardin/SRF/CArG complex formation in a BMP-dependent manner. 

 

Cardiac or Smooth Muscle? 

Myocardin is a cardiac and smooth muscle-specific transcriptional cofactor for SRF 

and activates target gene expression in a CArG-dependent manner (1, 3). It is 

currently unclear how myocardin discriminates between cardiac and smooth muscle 

target genes, though the SAP domain has been suggested to be involved (1). In this 

study, we showed myocardin and Smad1 interact directly to synergistically activate 

cardiac reporter gene expression. Such activation requires the CArG-box and 

appears to be SBE-independent. Additionally, the functional interaction between 

myocardin and Smad1 was completely abolished in SRF null embryonic stem cells 

(data not shown), further supporting the notion of CArG box/SRF-dependency. We 

suggest the target specificity (cardiac versus smooth muscle) for myocardin is 

determined, at least in part, by which upstream signals, TGF-β or BMP, and their 

downstream effectors, Smad3 or Smad1, are used. This hypothesis is consistent 

with the notion that BMPs are key regulators for cardiac gene expression, whereas 
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TGF-β appears to play a significant role in controlling smooth muscle cell gene 

expression (18, 45, 46). Interestingly, the SAP domain of myocardin appears 

involved in mediating the functional interaction between myocardin and Smad1 since 

SAP domain mutation dramatically decreased the synergy of myocardin and Smad1 

on a CArG-dependent reporter gene (Fig. 2.5c). Together, our data suggest the 

SAP domain of myocardin may serve as a nodal point to integrate BMP signaling 

pathway in activating myocardin-mediated cardiac gene expression. Future 

investigation, in particular in vivo studies, will be needed to further clarify this issue. 

Nevertheless, our studies establish a direct molecular and functional interaction 

between myocardin and BMP signaling and suggest a molecular mechanism for the 

transcriptional regulation of the cardiac gene program. Given the importance of 

myocardin and BMPs, it is intriguing to speculate mutations in either molecule or 

disruption of their functional interaction may contribute to human cardiovascular 

diseases.  

53



Figure 2.1

B C
Fo

ld
 A

ct
iv

at
io

n

A ANF-luc

Smad1
Myocardin

+
+

+
+

ED

-
- -

- 0

5

10

15

20

25

30

35

Smad1
Myocardin

+
+

+
+

Fo
ld

 A
ct

iv
at

io
n

α-MHC-luc

-
-

-
-

0

200

400

600

800

1000

Smad1
Myocardin

+
+

+
+

α-CA-luc

Fo
ld

 A
ct

iv
at

io
n

-
-

-
-

0

5

10

15

20

25

Fo
ld

 A
ct

iv
at

io
n

Smad1
Myocardin

+
+

+
+

MLC2V-luc

-
-

-
-

F

0
1
2
3
4
5
6
7
8

-
GAL4-Smad1
Myocardin

+
-

++--
-
-

Fo
ld

 A
ct

iv
at

io
n

UAS-luc
Fo

ld
 A

ct
iv

at
io

n

Smad1
Smad1/4
Myocardin

+
+

Nkx2.5-luc

-
-

-
-

0

5

10

15

20

25

30

-- -

-
-
+ + +

+
- +

-

0

50

100

150

200

250

ANF-luc

Fo
ld

 A
ct

iv
at

io
n

Smad1
Myocardin

+
+

+
+

-
- -

-

cardiomyocytes

0

20

40

60

80

100

120
G

*
*

*
**

*
*

*

*

Figure 2.1.  Synergistic activation of cardiac promoters by myocardin and 
Smad1. Luciferase reporters controlled by (A) ANF, (B) α-MHC, (C) MLC2V, (D) 
α-CA, and (E) Nkx2.5 promoters were transfected into COS7 cells with Smad1 
and/or myocardin expression plasmids. (F) COS7 cells were transfected with 
UAS-luciferase reporter and/or GAL4-Smad1 and myocardin (400 and 800 ng as 
indicated) expression plasmids. (G) Cardiomyocytes were transfected with ANF 
luciferase reporter with Smad1 and/or myocardin expression plasmids. Values 
are the fold-increase in luciferase activity relative to activation of the reporter 
alone. Error bars represent standard deviation of at least two experiments. 
Student t test, P < 0.05: *myocardin alone vs myocardin plus Smad1.  
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Figure 2.2

Figure 2.2 CArG box is necessary and sufficient to mediate myocardin and 
Smad1 synergy. (A) COS7 cells were transfected with the indicated ANF 
promoter luciferase reporters and/or myocardin and Smad1 expression plasmids. 
Values are the fold-increase of luciferase activity by myocardin and Smad1 
(black bars) relative to luciferase activity by myocardin alone (gray bars), which is 
assigned the value of 1. (B) A luciferase reporter controlled by four copies of a 
consensus CArG box were transfected into COS7 cells with myocardin and/or 
Smad1 expression plasmids. Values are the fold-increase in luciferase activity 
relative to activation of the reporter alone. Error bars represent standard 
deviation of at least two experiments. Student t test, P < 0.05: *myocardin alone 
vs myocardin plus Smad1. 
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Figure 2.3. Smad Binding Element (SBE) is not required for myocardin and 
Smad1 synergy.  (A) The DNA sequence of the –115 to +70 region of the ANF 
promoter. Underlined are CArG-near, TATA  box, the mutated half-SBE site, and 
two other half-SBE sites (AGAC) within the 5’ untranslated region (UTR). (B) 
Luciferase reporters controlled by the ANF promoter (gray bars) or the ANF 
promoter with mutated half-SBE (black bars) were transfected into COS7 cells 
with myocardin and/or Smad1 expression plasmids. (C) A luciferase reporter 
controlled by the Nkx2.5 promoter containing SBE mutations was transfected into 
COS7 cells with myocardin and/or Smad1 expression plasmids. Values are the 
fold-increase in luciferase activity relative to activation of the reporter alone. Error 
bars represent standard deviation of at least two experiments. Student t test, P < 
0.05: *myocardin alone vs myocardin plus Smad1. 
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Figure 2.4. Myocardin and Smad1 interact directly.  (A) 
Myocardin immunoprecipitates with Smad1. COS7 cells were 
transfected with plasmids encoding Flag-tagged Smad1 
and/or Myc-tagged myocardin as indicated. Smad1 was 
immunoprecipitated by anti-Flag antibodies, and anti-Myc 
antibodies were used to detect the presence of myocardin in 
the immunoprecipitates by Western blot (WB) analysis (top 
panel). One-fifteenth of cell extracts were directly 
immunoblotted to detect the presence of myocardin and 
Smad1 proteins (middle panels). One-fifteenth of superants 
(after immunoprecipitation) were immunoblotted to detect 
myocardin proteins (bottom panel). (B) Myc-tagged myocardin 
aa 1-274 (M1), aa 1-351 (M2), and aa 1-421 (M3) were 
detected in Flag-Smad1 immunoprecipitates (top panel). Ten 
percent of cell extracts were directly immunoblotted to detect 
the presence of truncated myocardin proteins or Smad1 
(middle panels). One-fifteenth of supernatants (after 
immunoprecipitation) were immunoblotted to detect truncated 
myocardin proteins (bottom panel). (C) Myocardin specifically 
interacted with GST-Smad1, but not with GST alone. 
Coomassie stained proteins corresponding to the amount of 
GST and GST-Smad1 protein used in the pulldown assay are 
shown below the autoradiograph and 5% of the input protein 
is shown left.  
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Figure 2.5. Myocardin and Smad1 interaction is required for 
transactivity. (A) Smad1 interacts with GST fused to 
myocardin aa 1-560 and aa 129-689, but not with aa 328-670 
nor aa 669-935, nor with GST alone. Coomassie stained 
proteins corresponding to the amounts of GST and GST-
myocardin protein used in the pulldown assay are shown 
directly below the autoradiograph and 1% of the input protein 
is shown left. (B) Myocardin and Smad1 interaction summary. 
Myocardin domains abbreviated as follows: NTD, amino-
terminal domain; ++, basic domain; Q, a stretch of glutamine 
residues; SAP, SAF A/B, Acinus, PIAS domain; TAD, 
transactivation domain. (C) A luciferase reporter controlled by 
four copies of a consensus CArG box and expression 
plasmids for myocardin, myocardin ∆SAP domain, or 
myocardin ∆Q domain, and/or Smad1 were transfected into 
COS7 cells. Values are the luciferase activity by myocardin or 
myocardin mutants, and Smad1 (black bars) relative to the 
activation of reporter by myocardin alone or myocardin 
mutants (gray bars). Error bars represent standard deviation 
of at least two experiments. Student t test, P < 0.05: 
*myocardin alone vs myocardin plus Smad1. Myc-tagged 
myocardin, myocardin∆SAP,  and myocardin∆Q protein 
expression are shown by Western blot. 
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Figure 2.6. Smad proteins did not affect the formation of the 
myocardin/SRF/CArG complex. SRF,  Myc-tagged myocardin, 
and Flag-tagged Smad1 and Smad4 proteins were in vitro 
translated and incubated with radiolabeled CArG probe, as 
described in Materials and Methods. Protein-DNA complexes 
were separated by non-denaturing PAGE and analyzed by 
autoradiography. Anti-SRF and anti-Myc antibodies were 
indicated. Asterisk denotes non-specific band.  
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Figure 2.7

Figure 2.7. Myocardin activity is modulated by BMP signaling.  
Myocardin and/or Smad7 (100, 150, and 200 ng) expression 
plasmids and (A) α-CA or (B) ANF luciferase reporter were 
transfected into COS7 cells. Values are the percent luciferase 
activity relative to activation of the reporter by myocardin 
alone. (C) The α-CA or Nkx2.5 luciferase reporter, Smads 1 
and 4, ALK3 QD, and/or myocardin expression plasmids were 
transfected into COS7 cells. Values are the fold-increase in 
luciferase activity relative to activation of the reporter alone. 
Error bars represent standard deviation of at least two 
experiments. Student t test, P < 0.05: *myocardin alone vs 
myocardin plus Smad7, Smad1/4, or ALK3 QD; **myocardin 
alone vs myocardin plus Smad1/4 and ALK3 QD.  
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Figure 2.8. Myocardin protein level is increased in BMP-2 
treated cardiomyocytes. Rat neonatal cardiomyocytes were 
treated with 20 ng/ml BMP-2 (or without in negative control) 
for 48 hours prior to harvesting and lysate production for SDS-
PAGE and Western Blot analysis with indicated antibodies, as 
described in Materials and Methods. 
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CHAPTER 3 

MICRORNAS: A NEW PARADIGM FOR THE REGULATION  
OF CARDIAC GENE EXPRESSION 

 



 

Introduction 

MicroRNAs (miRNAs) are an evolutionarily conserved class of small regulatory 

RNAs that have recently gained status as important regulators in cardiac 

developmental and pathology processes. They are genomically encoded and are 

initially transcribed as part of much longer molecules that become processed into a 

mature ~22 nucleotide-long form. MiRNAs are generally regarded as negative 

regulators of gene expression that inhibit translation and/or promoting mRNA 

degradation by base pairing to complementary sequences within protein-coding 

messenger RNA (mRNA) transcripts (1-3). Although not yet a well-established 

phenomenon, some evidence suggest miRNAs may function to enhance translation 

under particular circumstances (4).  Hundreds of human miRNA genes have been 

identified and bioinformatic analyses indicate that miRNAs may the regulate 

expression of more than one-third of human protein-coding genes (5), highlighting 

the potential magnitude of their influence upon gene expression.  

Heart development and pathology are intimately linked to the regulation of 

complex genetic pathways, and much effort has been expended in attempts to 

understand the molecular mechanisms underlying these pathways with the ultimate 

goal of improving the prognosis of heart patients (6). Much of our current 

understanding of how cardiac gene expression is controlled is at the level of 

transcriptional regulation, in which transcription factors associate with their 

regulatory DNA elements (enhancer/promoter sequences) to activate gene 

expression (7). The regulation of cardiac gene expression is complex, with individual 

cardiac genes being controlled by multiple independent enhancers that direct very 
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restricted expression patterns in the heart. MiRNAs have reshaped our view of how 

cardiac gene expression is regulated by increasing this complexity even further by 

adding another layer of regulation at the post-transcriptional level. Here, we review 

recent progress in understanding the role of miRNAs in heart development and 

disease. 

The global role of miRNA function in the heart has been addressed by 

conditionally inhibiting miRNA maturation in the murine heart, and has revealed that 

miRNAs play an essential role during development (8, 9). miRNA expression 

profiling studies demonstrate that the expression of specific miRNAs changes in 

diseased human hearts, pointing to their involvement in cardiomyopathies (10, 11). 

Furthermore, studies on specific miRNAs in animal models have identified distinct 

roles for miRNAs both during heart development and under pathological conditions, 

including the regulation of key factors important for cardiogenesis, the hypertrophic 

growth response, and cardiac conductance (9, 12-16). Cumulatively, these findings 

clearly indicate that miRNAs are important regulators of gene expression in heart 

development, function and pathology. These understudied and previously unknown 

relationships between miRNAs and heart biology also suggest the potential for 

miRNAs as diagnostic markers and therapeutic targets in human cardiovascular 

disease. 

 

Biology of microRNAs 

A little over ten years ago, the lin-4 gene, which controls the timing of C. elegans 

larval development, was discovered to unexpectedly produce a 21-nucleotide long 
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noncoding RNA that suppressed lin-14 protein expression without noticeably 

affecting lin-14 mRNA levels. This small RNA was found to base pair to 

complementary sites in the 3’ untranslated region (UTR) of lin-14 mRNA and 

negatively affect its translation (17, 18). Although this phenomenon was initially 

treated as a genetic oddity and virtually ignored for nearly a decade, we now 

recognize that thousands of these small RNAs, now called miRNAs, similar to lin-4 

exist in the genomes of divergent species and post-transcriptionally regulate gene 

expression.  

miRNAs are part of the RNA interference (RNAi) pathway, the general term 

for RNA-guided regulation of gene expression that is conserved in most eukaryotes 

(19). Another class of non-coding RNAs, known as small interfering RNAs (siRNAs) 

also shares common downstream components of the RNAi pathway with miRNAs. 

Although mature miRNAs and siRNAs are structurally similar and both negatively 

regulate gene expression, their origins and upstream processing pathways differ 

significantly: miRNAs are genomically encoded whereas siRNAs arise from foreign 

dsRNA, and miRNAs undergo more extensive post-transcriptional processing than 

siRNAs (20, 21). The RNAi pathway is thought to have first evolved using siRNAs as 

a form of innate immunity against viruses and later endogenously encoded miRNAs 

were selected as beneficial post-transcriptional regulators of gene expression. The 

discovery of RNAi and miRNAs offers a new paradigm for understanding the control 

of gene expression during development and disease. Indeed, miRNAs are now 

recognized to regulate gene expression in a variety of fundamental biological 
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processes including cell proliferation, differentiation, apoptosis, tumorigenesis, and 

recently have been linked to cardiac hypertrophy and disease (22-24). 

 

miRNA biogenesis and mechanism of miRNA function 

miRNAs arise endogenously from independent transcriptional units or from within 

the introns of messenger RNA (mRNA) transcripts (Fig. 3.1) (25). miRNAs are 

initially part of immature primary transcripts that undergo extensive post-

transcriptional processing to yield mature miRNAs, whose lengths are approximately 

18 to 24 nucleotides. The lengths of the primary transcripts range from several 

hundred to several thousand nucleotides and may harbor a single miRNA or 

sometimes several (26). Mature miRNAs become part of the RNA-induced silencing 

complex (RISC) that facilitates miRNA-mediated regulation of gene expression 

through complementary base-pairing between a miRNA and sequence(s) within the 

3’ untranslated region (UTR) of targeted mRNAs (27, 28). The majority of animal 

miRNAs base pair imperfectly to their targeted mRNAs, which generally results in 

suppression of translation (25). The mechanism underlying this suppression is 

thought to occur at the initiation step of translation, where the RISC component 

Ago2 precludes binding of eIF4E, an essential translation factor, to the 7-

methylguanosine cap of a targeted mRNA (1). Interestingly, miRNAs have also been 

shown to affect stability of targeted mRNAs and mediate their degradation (2). 

Furthering our understanding of gene expression regulation by miRNAs has been 

their connection to discrete cytoplasmic foci called processing bodies (P-bodies), 

which are sites of programmed mRNA degradation (29-33). Components of RISC, 
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miRNAs and their targeted mRNAs have been shown to co-localize to P-bodies, 

suggesting that miRNAs may mediate both translation suppression and mRNA 

degradation by directing targeted mRNAs to P-bodies. Moreover, release of mRNAs 

targeted by miRNAs from P-bodies and subsequent re-expression of those mRNAs 

indicate that P-bodies may also function as mRNA storage centers (34). Major 

advances have been made towards understanding the mechanisms underlying the 

RNAi phenomenon; nevertheless many aspects of miRNA biogenesis, trafficking of 

RNAi machinery, RISC assembly, and the mechanisms underlying RISC function 

await clarification. 

 

Identification and expression of miRNAs 

A variety of experimental approaches have been used to identify miRNAs and study 

their expression patterns. The cloning and sequencing of small RNAs from size 

fractioned RNA samples has uncovered many miRNAs that are tissue-specifically 

expressed (35, 36). Complementing small RNA cloning approaches, bioinformatics 

screens that searched genomic databases for the characteristic stem-loop structures 

of precursor miRNAs have predicted the existence of hundreds of mammalian 

miRNAs (37, 38). Other techniques, such as northern blotting, real-time RT-PCR, in 

situ hybridization, and repressible in vivo reporter transgenes have been adapted to 

verify such predictions and study the expression patterns of specific miRNAs (39-

41).  Recently, a comprehensive sequencing of over 250 small RNA libraries 

revealed additional new miRNAs and documented the expression patterns of most 

miRNAs (42).  
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To facilitate the analysis of global miRNA expression, microarray technology 

has been implemented with great success to quickly analyze the expression of 

hundreds of miRNA genes simultaneously (11, 43-46).  These types of studies have 

shown that miRNA expression, like that of protein-coding genes, is highly regulated 

according to the cell’s developmental lineage and stage: whereas some miRNAs are 

ubiquitously expressed, others are expressed in a cell- and tissue-specific manner 

(47), implying that miRNAs may participate in a variety of biological processes.   

 

Prediction and validation of miRNA regulatory targets      

Identifying the targets of specific miRNAs will be the key to our understanding the 

precise roles of miRNAs. Most animal miRNAs are imperfectly complementary to 

their target site, which thwarts using simple homology searches to identify animal 

miRNA target sites. To overcome this obstacle, several computational methods have 

been developed that incorporate sequence conservation and characteristics of 

known miRNA targets as criteria to predict new animal miRNA targets (12, 48-53). A 

major determinant for miRNA targeting is the perfect or near perfect complementary 

base pairing between the second and eighth nucleotides of the miRNA with its 

mRNA target site, known as the “seed” region. Other factors also deemed important 

for miRNA targeting include additional base pairing in the 3’ portion of the miRNA 

and the degree of local AU nucleotide content flanking the target site (12, 53). The 

positive influence of increased AU content is attributed to a weaker secondary 

structure in the vicinity of the target site thus offering increased accessibility to RISC 

(12, 53). Computational approaches taking these determinants into account, as well 
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as sequence conservation of the target sites, have successfully predicted 

mammalian miRNA target sites, albeit the set of predictions produced for any 

particular miRNA almost certainly contains many false positives. Any prediction must 

be verified experimentally and, most importantly, placed into a relevant biological 

context before being considered a valid target.  Given the vast number of known 

miRNAs and their potentially thousands of regulatory targets, it is hoped that a direct 

and facile method to identify miRNA target genes, possibly employing a proteomics-

based strategy or from functional screening of cDNA libraries composed of 3’ UTRs 

of regulatory target genes, will become available.  

 

Regulation of miRNA expression in skeletal and cardiac muscle tissues 

Several microRNA genes are specifically expressed or highly enriched in skeletal 

and/or cardiac muscle. The expression of muscle-specific miRNAs miR-1, miR-133, 

miR-206, and miR-208a, appears largely regulated by well-established and 

evolutionarily conserved muscle transcriptional networks involving SRF, MyoD, 

Twist, MEF2, and myocardin (12, 46, 54, 55). For example, miR-1 was highly 

conserved during evolution and, in addition to mouse and human, it is found in the 

genomes of organisms as diverse as worm, fly, zebrafish, and chicken. The 

pathways controlling miR-1 expression also appear highly conserved: Drosophila 

miR-1 expression in the presumptive and early mesoderm occurs downstream of 

Twist and MEF2, two transcription factors that are major regulators of mammalian 

muscle development (12, 55). In vertebrates, there are two polycistronic genes that 

encode miR-1 along with miR-133 (46). Accordingly, the expression of miR-1 and 
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miR-133 mirror one another in skeletal and cardiac muscle, where they are solely 

expressed. Their muscle-specific expression pattern is explained by promoter 

analyses demonstrating that both miR-1/miR-133 loci have upstream enhancers with 

SRF binding sites, and that myocardin activity increases the expression of those 

promoters in the heart, whereas as their skeletal muscle expression is controlled by 

MyoD (12, 46). Similarly, MyoD, a transcription factor sufficient to activate the 

program of skeletal muscle differentiation, stimulates the skeletal muscle-specific 

expression of miR-206 (56).   

In contrast to miR-1, miR-133, and miR-206, which are expressed as 

independent transcriptional units, miR-208a is encoded by an intron of its host gene 

alpha myosin heavy chain (αMHC) (16). More than 127 human miRNAs have been 

identified within the introns of protein-coding genes, and findings support the idea 

that these intronic miRNAs are generally co-expressed with their host genes (16, 26, 

43, 57). In agreement, both miR-208a and αMHC are heart-specific and concurrently 

expressed during development, suggesting that their expression is controlled by a 

common regulatory element. The promoter region of the αMHC gene contains 

several binding elements important for muscle-specific gene expression, such 

GATA4 and MEF2 site, and thyroid hormone signaling is also known to play an 

important role in controlling αMHC expression. Collectively, these studies indicate 

that muscle miRNA expression is under tight spatial and temporal regulation by 

transcriptional networks important for muscle gene expression.  
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MicroRNAs are required for normal heart development and function 

Dicer is an endonuclease in the miRNA biogenesis pathway that is required to fully 

process miRNAs to their mature, active form (Fig. 3.1). One approach taken to 

understand the importance of miRNAs during development has been to disrupt Dicer 

function in mice and zebrafish, thus effectively removing all mature functional 

miRNAs (58-60). Dicer deletion in mice caused arrested development during 

gastrulation before the body plan was fully configured, suggesting that miRNA 

function is critical for early development (58). Similarly, creation of Dicer zebrafish 

mutants resulted in abnormal morphogenesis during gastrulation with somitogenesis 

and heart development both proving abnormal (59, 60). These genetic studies have 

provided convincing evidence that miRNAs are required for animal development. 

To better understand the role of miRNAs in specific tissues, studies that 

conditionally deleted Dicer from the mouse genome using the Cre-LoxP system 

have further supported a crucial role for miRNAs in development (8, 9, 61-64).  

Cardiac-specific deletion of Dicer, using Cre-recombinase controlled by the αMHC 

promoter, did not affect specification or patterning of the mouse heart (8). However, 

the hearts of those mice exhibited aberrant cardiac contractile protein expression 

and profound sarcomere disarray coupled with significantly reduced cardiac function, 

and rapidly progressed to dilated cardiomyopathy, heart failure, and post-natal 

lethality (8). The cardiac phenotype associated with the Dicer mutant mice 

resembles the human clinical features of dilated cardiomyopathy and heart failure. 

Intriguingly, low levels of Dicer protein have been reported in human failing hearts, 
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suggesting the involvement of miRNAs in dilated cardiomyopathies and heart failure 

in human patients (8).  

 In contrast, the use of Cre-recombinase controlled by the Nkx2.5 promoter, 

which is expressed in the developing mouse heart, to delete Dicer instead led to 

embryonic lethality with defects in heart morphogenesis (9). The embryonic versus 

postnatal lethality observed in those studies likely reflects differences in the spatial-

temporal expression patterns of the Nkx2.5-Cre and αMHC-Cre transgenes within 

the mouse heart. Aberrant tissue morphogenesis has also been observed in Dicer-

deficient skin (61), skeletal muscle (62), limb (63), and lung (64). On a cautionary 

note, the interpretation that a global loss of miRNAs is solely responsible for the 

observed Dicer deletion phenotypes hinges upon whether or not Dicer serves any 

critical roles outside of miRNA biogenesis.  

 

Genetic studies of specific microRNAs reveal distinct roles in the 

developmental heart 

The conditional deletion of Dicer from the heart presumably down-regulated all 

cardiac-expressed miRNAs. In order to understand the contribution of specific 

miRNAs in cardiac development several groups have undertaken gain- and loss-of-

function studies on individual miRNAs (9, 12, 16, 46). The outcomes of those studies 

clearly indicate that single miRNAs are capable of playing crucial and specific roles 

in both cardiac development and function (Fig. 3.2).  

miR-1 and miR-133 are highly conserved and found expressed in the 

musculature of flies, mice, and humans. miR-1 and miR-133 are produced from the 
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same polycistronic transcripts, which are encoded by two separate genes in the 

genomes of both mouse and human; e.g. miR-1-1 and miR-133a-2 are clustered on 

mouse chromosome 2, while miR-1-2 and miR-133a-1 are clustered on mouse 

chromosome 18 (46). Well-known muscle transcriptional networks consisting of 

SRF/myocardin for cardiac muscle expression and MyoD/MEF2 for skeletal muscle 

expression have been demonstrated to regulate the expression of these muscle-

specific miRNA genes (12, 46, 54).  

In the developing mouse heart, overexpression of miR-1 caused defective 

ventricular myocyte proliferation (12), while introduction of miR-1 into developing 

Xenopus embryos also interfered with heart development (46). The reported 

phenotypes of other transgenic mice that overexpress miRNAs specifically in the 

heart range from benign to castastrophic: miR-214 caused no apparent cardiac 

defects, miR-195 induced hypertrophic growth in the adult heart, while miR-24 

overexpression resulted in embryonic lethality (11). 

Complementing the overexpression studies of miR-1, Zhao and colleagues 

targeted the mouse miR-1-2 gene for deletion, one of the two miR-1 genes 

expressed in skeletal and cardiac muscle (9). Although separate genes encode miR-

1-1 and miR-1-2, they are identical in sequence and thus appear to target the same 

mRNAs. However some questions seem to remain regarding the temporal and 

spatial expression patterns, which appear largely overlapping (9, 12, 40, 46).  The 

authors report that approximately half of miR-1-2 null animals die by weaning age 

and some suffer from incomplete ventricular septation, indicative of abnormal 

cardiac morphogenesis. Analysis of miR-1-2 null animals in utero found pericardial 
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edema, consistent with embryonic myocardial dysfunction. The miR-1-2 null animal 

phenotype suggests that miR-1-2 plays non-redundant roles with miR-1-1 in the 

heart despite their apparent overlapping expression patterns. Previously, miR-1 was 

found to promote skeletal muscle myogenesis (46), however loss of miR-1-2 did not 

appear to affect skeletal muscle development by gross morphological analysis. 

Potentially, the different requirement for miR-1 in cardiac versus skeletal muscle 

development might reflect a difference in the tissue-specific genes that are targeted. 

It would certainly be exciting to know whether deletion of miR-1-1 invokes a similar 

phenotype as miR-1-2 deletion, and whether deletion of both miR-1 genes causes a 

more severe cardiac phenotype and/or affects skeletal muscle development.  

Identifying the targets of specific miRNAs is a prerequisite for understanding 

the precise molecular mechanisms underlying their function. Most animal miRNAs 

are partially complementary to their target sites, which thwart simple homology 

searches to identify target sequences. In response, several bioinformatic prediction 

algorithms that weigh various criteria, including sequence conservation and thermal 

stability, were developed and are proving an indispensable guide for advancing 

miRNA research (5, 49, 65).   However, these in silico predictions require 

experimental testing and to date only a handful of miRNA targets with roles in the 

heart have been validated in biological systems (Table 3.1). One such validated 

target of miR-1 in the heart is Hand2, an important cardiac transcription factor whose 

genetic ablation in the mouse produced a similar failure in ventricular myocyte as 

miR-1 overexpression in the developing mouse heart (66). Accordingly, miR-1 

overexpression reduced Hand2 protein levels, while Hand2 was conversely up-
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regulated in the miR-1-2 null animals (9, 12).  Although the targeting of Hand2 

partially explains the phenotypes observed in the gain- and loss-of-function miR-1 

animal studies, like most miRNAs, miR-1 has been predicted to target hundreds of 

genes. Future studies aimed at determining physiologically relevant targets directly 

regulated by miRNAs are clearly needed. 

 

MicroRNA expression during cardiac remodeling 

The heart is very sensitive to many stimuli and stresses, and even slight 

perturbations during cardiogenesis or in the adult heart can result in catastrophic 

consequences. The major response of the heart to biomechanical stress and 

pathological stimuli is to undergo extensive cardiac remodeling known as 

hypertrophic growth (67). Cardiac hypertrophy is defined by an increase in myocyte 

size and/or myofibrillar volume without a change in myocyte number and helps to 

sustain cardiac output in the face of such stress. Cardiac hypertrophy is also 

accompanied by re-activation of fetal cardiac genes normally expressed in the heart 

before birth. The reactivation of cardiac fetal genes in post-natal cardiomyocytes 

suggests the molecular events that control cardiac gene expression during 

development are redeployed to regulate hypertrophic growth or heart regeneration 

(68). Although hypertrophy induced by pathological stimuli is an adaptive 

mechanism that is beneficial in the short term, prolonged hypertrophy has adverse 

consequences associated with heart failure and sudden death (69). 

Several groups have implemented microarray technology to analyze the 

expression of hundreds of miRNA genes simultaneously (10, 11, 45, 70). Studies 
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profiling miRNA expression using mice with thoracic aortic-banded hearts or with 

constitutively activated calcineurin signaling, two models of pathological cardiac 

hypertrophy, demonstrate that the expression of miRNAs are both up and down 

regulated during cardiac hypertrophy (11, 45, 70). Profiling studies in human 

samples reveal that changes in miRNA expression also occurs in human failing 

hearts, including the up-regulation of miRNAs normally expressed in the developing 

heart (10, 11). Furthermore, functional analyses using both gain- and loss-of-

function approaches in mice have begun to establish a correlation between miRNAs 

and cardiac hypertrophy by demonstrating that stress-regulated miRNAs can both 

positively and negatively influence the cardiac hypertrophic growth response (11, 15, 

16). 

 

MicroRNAs modulate cardiac hypertrophy 

miR-195 is up-regulated during cardiac hypertrophy in both human and mouse 

hypertrophic hearts and was found sufficient to induce hypertrophic growth in 

cultured rat cardiomyocytes (11). Furthermore, overexpression of miR-195 in mouse 

hearts induced hypertrophy within several weeks after birth. Continued miR-195 

overexpression led to dilated cardiomyopathy and heart failure in young mice (11). 

The mechanisms underlying miR-195 is not yet clear as no target genes have yet 

been verified. miR-214 is also up-regulated during hypertrophy, however transgenic 

mice overexpressing miR-214 caused no abnormal phenotype in the heart (11). 

These studies indicate that some miRNAs, but not others, are sufficient to induce 

cardiac hypertrophy. Clearly, future loss-of-function studies to determine if these 
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miRNAs are necessary for the hypertrophic response, as well identification of their 

target genes, is worthy of pursuit. 

Unlike miR-195 and miR-214, miR-1 and miR-133 are down-regulated during 

hypertrophy (11, 15, 71). Their matching expression patterns are not surprising since 

miR-1 and miR-133 are both transcribed together from the same polycistronic 

genes. Overexpression of miR-1 or miR-133 inhibited hypertrophic growth in an in 

vitro model of cardiac hypertrophy using primary cardiomyocytes (15, 71). 

Conversely, prolonged inhibition of miR-133 in vivo using chemically-modified 

oligonucleotides antisense to miR-133, delivered by an osmotic minipump implanted 

into the mouse heart, was sufficient to cause a marked hypertrophic response (15). 

While miR-1 expression is down-regulated during cardiac hypertrophy (11, 15, 71), 

additional genetic studies are needed to clearly demonstrate a direct role for miR-1 

in the regulation of cardiac hypertrophy. Both miR-1 and miR-133 are proposed to 

regulate expression of growth-related genes (12, 15, 71), suggesting that these 

miRNAs may act as growth suppressors that are relieved during cardiac 

hypertrophy. Intriguingly, a recent report suggested that miR-1 and miR-133 may 

also play a distinct role in the regulation of cardiomyocyte apoptosis: while miR-1 

seems to be pro-apoptotic, miR-133 appears anti-apoptotic (72). Clearly, 

understanding how miRNAs and their regulatory targets integrate into relevant 

genetic pathways is the crux for future studies.   

miR-208a is expressed specifically in the heart and was recently deleted from 

the mouse genome by van Rooij and colleagues (16). miR-208a null animals were 

viable and appeared normal without any apparent gross developmental defects.  
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However, the miR-208a null animals exhibited a slight reduction in contractility at two 

months of age, and a continued reduction in cardiac function in later life. Although 

miR-208a does not appear to be necessary for cardiogenesis, a requirement for 

miR-208a in the cardiac hypertrophic growth response was identified. The loss of 

miR-208a protects mice against cardiac hypertrophy and up-regulation of βMHC 

induced by hypothyroidism, activated calcineurin signaling and cardiac pressure-

overload induced stress (16).  Those results suggest that the genetic pathways 

coordinating cardiac hypertrophy share a common component regulated by miR-

208a. One such candidate proposed is thyroid hormone receptor associated protein 

1 (Thrap1), a co-factor of the thyroid hormone nuclear receptor, which can positively 

and negatively influence transcription. The 3’ untranslated region (3’UTR) of Thrap1 

is directly targeted by miR-208a and Thrap1 protein levels were found elevated in 

miR-208a null hearts, suggesting that miR-208a may function, at least in part, by 

regulating the expression of a thyroid hormone signaling pathway component (16). 

Those observations linked miRNA function to classical hormone-regulated muscle 

physiology and are likely to bring about a renaissance in this important research 

field.  

miR-21, a miRNA implicated in tumor-related cell growth and apoptosis (73-

75), is consistently reported up-regulated in response to agonist-induced cardiac 

hypertrophy in cell culture experiments and in pressure-overload induced 

hypertrophy in vivo  (11, 45, 70, 71). However, the exact nature of miR-21 function 

remains unclear. Inhibition of miR-21 using antisense oligonucletides was reported 

to suppress agonist-induced hypertrophic growth in primary cardiomyocytes (70). 
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Whereas inhibition of miR-21 using locked nucleic acid-modified miR-21 antisense 

oligonucleotides stimulated hypertrophic growth in vitro (45). While the basis for 

these differences is unclear, it is interesting to note that other studies on miR-21 

function also appear contradictory: miR-21 was reported to stimulate cell growth 

(74),  while also reported to activate apoptosis and inhibit cell proliferation (73, 75). 

Clearly, further genetic studies and delineation of the molecular pathways modulated 

by miR-21 in different biological systems are needed to better understand the 

biological function of this miRNA.  

Collectively, emerging evidence has established miRNAs, in particular miR-1, 

miR-21, miR-133, miR-195, and miR-208a, as newly identified players in animal 

models of cardiac hypertrophy. The establishment of the hypertrophic miRNA 

signature has yielded many hitherto unrecognized candidate genes involved in 

cardiac hypertrophy that await further scrutiny. Given the complexity of the cardiac 

remodeling occurring during hypertrophy, the identification of specific targets for 

miRNAs involved in the hypertrophic response will provide insight into the molecular 

mechanisms underlying this disease process. 

 

MicroRNAs regulate cardiac conduction system components 

The electrical conduction system, which is required to maintain proper heart 

rhythmicity, is composed of specialized muscle cells and distinct sets of ion 

channels. Functional defects in the conduction system can result in arrhythmias, 

which may occur from congenital disorders and often accompany heart disease. The 

consequences of arrhythmias vary from silent defects to sudden and unexpected 
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death. Interestingly, recent studies have pointed to two miRNAs, miR-1 and miR-

133, which have been implicated in cardiac development, muscle proliferation and 

differentiation, as regulating components of the cardiac conduction system and 

having the potential to induce arrhythmias (13, 14).  

Interestingly, miR-1 levels are elevated in human hearts with coronary artery 

disease and infarcted rat hearts (14). Further investigation revealed that 

overexpression of miR-1 in both normal and infarcted rat hearts slowed cardiac 

conduction and lead to arrhythmias. Those effects appear to be mediated, at least in 

part, through post-transcriptional repression of potassium channel subunit KCNJ2 

and gap junction protein connexin 43 (14).  Conversely, blocking miR-1 function by 

releasing chemically-modified oligonucleotides antisense to miR-1 in infarcted rat 

hearts inhibited arrhythmogenesis (14). The homeodomain transcription factor Irx5, 

which regulates cardiac repolarization by repressing potassium channel KCND2, has 

also been identified as a direct miR-1 target (9), further supporting a role for miR-1 in 

cardiac conduction.  

Similar to miR-1, miR-133 is down-regulated in failing human hearts as well 

as in several animal models of cardiac hypertrophy (11, 15, 71), however miR-133 

was found elevated in a rabbit model of diabetes (13). The elevated miR-133 levels 

occurred concurrently with lowered protein levels, but without reduction in mRNA 

levels, of ether-a-go-go (ERG), a cardiac potassium ion channel important for 

myocyte repolarization and associated with congenital arrhythmias. A target site 

partially complementary to miR-133 was identified within the 3’UTR of ERG, 

indicating that miR-133 may directly regulate ERG expression. In support, 
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introduction of miR-133 into isolated cardiomyocytes reduced ERG expression post-

transcriptionally and accordingly delayed myocyte repolarization.  Collectively, an 

emerging portrait has come to the central stage where muscle miRNAs are playing a 

much larger and broader role in the regulation of the cardiovascular system, 

including cellular proliferation and differentiation, apoptosis, cardiomyocyte 

hypertrophy and cardiac conduction. 

 

MicroRNAs as novel heart disease genes 

Congenital heart disease affects nearly 1% of all newborns and is responsible for 

more deaths in the first year of life than any other birth defect (76). Over the past 

decade, clinical studies have identified a number of congenital heart diseases 

associated with mutations in specific genes, with the majority those reported 

mutations affecting cardiac transcription factors and structural proteins (77, 78). 

Given the increasingly important roles being identified for miRNAs in heart 

development and function, we speculate that mutations in miRNA genes or their 

targeted sequences will be correlated to congenital heart disease in humans. A 

proof-of-principle lies in the identification of a single nucleotide polymorphism that 

affected the 3’UTR of the myostatin transcript in Texel sheep, which are known for 

their exceptional muscularity (79). Myostatin is a well-known repressor of skeletal 

muscle growth and mutant alleles of myostatin are associated with abnormally large 

skeletal muscles in animals and humans (80, 81). This particular single nucleotide 

polymorphism in Texel sheep myostatin created an aberrant miR-1 target site, so 

that the highly expressed and muscle-specific miR-1 repressed the myostatin 

86



 

expression at the translational level (79). While not directly related to heart disease, 

this evidence provides convincing evidence that single nucleotide polymorphisms 

affecting miRNA function could act as causative factors for human heart disease.  

The movement towards next-generation high-throughput sequencing technologies 

that will enable scientists to rapidly sequence entire genomes may identify allelic 

mutations in miRNA genes and/or their target sites associated with human disease 

(82). 

 

microRNAs as novel therapeutic targets 

Given their profound role in the cardiovascular system, the question is whether 

miRNAs are good targets for therapeutic applications. In fact, several properties of 

miRNAs could make them clinically relevant: Firstly, miRNA expression changes 

have been documented in diseased hearts, making miRNAs likely biomarkers or 

diagnosis indicators for cardiovascular disease. Secondly, miRNAs are small 

molecules, making their in vivo delivery feasible (83, 84). Thirdly, single miRNAs are 

predicted to have multiple mRNA targets (many into the hundreds) and most 

importantly, some of those miRNA regulatory targets seem to work in a concert to 

control a common pathway and/or biological function. This will make miRNAs much 

more efficient tools to target a disease pathway/process. Yet this feature of miRNAs 

could be a two-edged sword that brings about “off-target” side effects. For example, 

miR-133 is thought to repress cardiac hypertrophy, raising the possibility for a 

therapeutic application where synthetic miR-133 molecules are introduced into 

patients to control pathological hypertrophy (15). However, the overexpression of 
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miR-133 has been shown to induce arrhythmias (13). Clearly, caution and future 

studies directed at understanding the pathways regulated by cardiac miRNAs are 

needed before clinical treatments be seriously considered.   

 

Concluding remarks 

The biology of miRNAs is a young research area and as an emerging field, there are 

many more questions than answers. miRNAs are now conceived as ‘tiny players 

with big roles’ in diverse biological processes. Within the cardiovascular research 

field, studies in animal models demonstrate that miRNAs are required for proper 

heart development and function. The involvement of miRNAs in human heart 

disease is evidenced by dysregulated expression of miRNAs and Dicer, a miRNA 

pathway component, in human failing hearts. The expression signatures of miRNAs 

in disease may eventually provide an additional diagnostic tool to assess heart 

disease. Future studies aimed at understanding how miRNAs are integrated into the 

complex genetic networks important for heart disease is prerequisite for their 

development as potential therapeutic targets. In the course of taking miRNAs to 

heart, we face big challenges but with the big promise that miRNAs may provide us 

powerful tools to battle cardiovascular disease.  
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and/or
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Figure 3.1. MicroRNA biogenesis and mechanism.  (a) MiRNA biogenesis 
begins with the transcription of primary-miRNAs by RNA polymerase II from 
independent transcriptional units with lengths ranging from several hundred to 
several thousand nucleotides that may encode a single miRNA or sometimes two 
or more miRNAs. In addition to independent transcriptional units, some miRNAs 
originate from within the introns of mRNA transcripts. (b) Primary-miRNAs enter 
the miRNA-processing pathway and undergo nuclear cleavage by the 
Microprocessor complex in which RNase III endonucleases Drosha and DGCR8 
produce an approximately 70-nucleotide long intermediate precursor-miRNA 
whose hallmarks are a stem-loop-like structure and a staggered cut at the stem-
loop base. (c) Exportin-5 recognizes the staggered cut and exports the 
precursor-miRNA to the cytoplasm. (d) Once cytoplasmic, Dicer, another 
RNAase III endonuclease, cleaves both stem arms of the precursor-miRNA and 
generates a miRNA duplex. A single stem arm of the resulting ~22-nt duplex is 
selectively incorporated into the RNA-induced silencing complex (RISC), while 
the other stem arm is presumably degraded. (e) Regulation of target gene 
expression by a miRNA-loaded RISC is facilitated by miRNA complementary 
base pairing to target sequence(s) within the 3’ UTR of target mRNAs. Generally 
in animals perfect or near-perfect complementary base pairing between RISC-
bound miRNA and targeted mRNA results in immediate mRNA cleavage. 
However the vast majority of animal miRNAs are imperfectly complementary to 
their targeted mRNAs, which has been shown to suppress translation as well as 
affect stability of targeted mRNAs and mediate their degradation. 

Figure 3.1
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Arrhythmias
(miR-1, miR-133)

Myocyte hyperplasia
(miR-1-2)

Ventricular septation defect
(miR-1-2)

Cardiac hypertrophy
miR-1, miR-21, miR-133, 

miR-195, miR-208( (

Figure 3.2

Figure 3.2. Known roles of miRNAs in heart development and function. Recent 
studies have demonstrated an association of several miRNAs with various 
cardiac defects. miR-1 contributes to numerous cardiac abnormalities, including 
arrhythmias,  defective ventricular septation, cardiac hypertrophy and myocyte 
hyperplasia, while miR-133 was shown to have arrhythmogenic potential and 
play a role in cardiac hypertrophy. Additionally miR-21, miR-195, and miR-208 
are indicated in the control cardiac hypertrophy. It is expected that more miRNAs 
will be added to this growing list. 
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Table 3.1. Experimentally validated targets of cardiac -expressed microRNAs. 
 

microRNA Expression Pattern Validated Targets References 
miR-1 Heart, Skeletal 

Muscle 
Cdk9, Delta, Fibronectin, GJA1, Hand2, Irx5, 
KCNJ2, HDAC4, HSP60, HSP70, KCNE1, nPTB, 
RasGAP, Rheb 

(12, 24, 25, 
36, 49-51) 

    
miR-21 Heart, Spleen, 

Small Intestine, 
Colon 

PTEN, TPM1 (52, 53) 

    
miR-133 Heart, Skeletal 

Muscle 
Caspase-9, Cdc42, ERG, KCNQ1, nPTB, RhoA, 
SRF, WHSC2 

(13, 15, 24, 
36, 51) 

    
miR-208 Heart Thrap1 (16) 
Abbreviations: Cdc42, Cell division cycle 42; Cdk9, Cyclin-dependent kinase 9; ERG, Ether-a-go-go 
potassium channel; GJA1, Gap junction protein alpha 1; Hand2, Heart and neural crest derivatives 
expressed 2; HSP60, heat-shock protein 60; HSP70, heat-shock protein 70; HDAC4, Histone 
deacetylase 4; Irx5, iroquois homeobox protein; KCNE1, Potassium voltage-gated channel, Isk-related 
family, member 1; KCNJ2, Potassium inwardly-rectifying channel, subfamily J, member 2; KCNQ1, 
Potassium voltage-gated channel, KQT-like subfamily, member 1; nPTB, polypyrimidine tract-binding 
protein 2; PTEN, phosphatase and tensin homolog; RasGAP, Ras GTPase-activating protein; Rheb, 
Ras homolog enriched in brain; RhoA,  Ras homolog A; SRF, Serum response factor; Su(fu), 
suppressor of fused; Thrap1, thyroid hormone receptor associated protein 1; TPM1, tropomyosin 1; 
WHSC2, Wolf-Hirschhorn syndrome candidate 2. 
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ELEVATED MICRORNA EXPRESSION PROVIDES A FEED-FORWARD 
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Abstract 

Chronic heart disease is often associated with cardiac remodeling accompanied by 

maladaptive hypertrophic growth. Despite intensive investigation, the molecular 

mechanisms underlying hypertrophy are not well understood. Here we show that the 

miR-208 family, miR-208a and miR-208b, are differentially expressed in the heart, 

paralleling the expression of their respective host genes alpha- and beta-myosin 

heavy chain (αMHC and βMHC). Cardiac overexpression of miR-208a is sufficient to 

induce hypertrophy and βMHC/miR-208b expression, which results in pronounced 

repression of miR-208 regulatory targets Thyroid hormone associated protein 1 and 

myostatin, two negative regulators of muscle growth and hypertrophy. We further 

found miR-208a-induced βMHC expression is restricted to a subset of 

cardiomyocytes associated with fibrosis, providing an explanation why reactivation of 

fetal gene expression is not beneficial. Together, our studies uncover a novel 

miRNA-dependent feed-forward mechanism where miRNAs repress anti-

hypertrophy genes and modulate hypertrophic growth during normal and 

pathological conditions. 
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Introduction 

MicroRNAs (miRNAs or miRs) are a conserved class of ~22-nucleotide long 

noncoding RNA molecules that regulate gene expression through complementary 

base pairing with the 3’ untranslated region (UTR) of targeted mRNAs (1). miRNAs 

are thought to provide a post-transcriptional layer of spatial and temporal control of 

developmental and homeostatic events by altering levels of critical regulators within 

complex genetic pathways (2-4). We and others have shown that miRNAs play 

important roles in cardiogenesis, electrical conduction, and stress-dependent cardiac 

remodeling (5-7). Recent studies describe dysregulated miRNA expression in animal 

models of cardiac hypertrophy and in failing human hearts (8-12), indicating that 

miRNAs were previously unrecognized factors in the regulation of the hypertrophic 

growth response.  

Cardiac hypertrophy, defined broadly as heart enlargement resulting from 

increased cardiomyocyte size, is initially an adaptive response of the heart to 

increased demand for cardiac output during chronic physiological or pathological 

stress (13). Although initially beneficial, pathological cardiac remodeling caused by 

prolonged hypertrophic growth is associated with heart failure and sudden death 

(14).  Most treatments of heart failure aim to attenuate or even reverse maladaptive 

cardiac remodeling to improve heart patient prognosis. A paradigm in cardiac 

hypertrophy is activation of a gene program including cardiac hormone atrial 

natriuretic factor (ANF) and re-expression of fetal cardiac beta-myosin heavy chain 

(βMHC) (13, 14). However, the molecular events that induce hypertrophy and 
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modulate hypertrophic gene expression are not well defined, nor is the significance 

of the changes fully understood.   

Here we show that cardiac-specific miR-208a and miR-208b are 

developmentally and pathologically regulated. We find that adult isoform miR-208a is 

sufficient to induce cardiac remodeling and regulate the expression of hypertrophy 

pathway components, including specific up-regulation of βMHC. Conversely, genetic 

deletion of miR-208a resulted in decreased βMHC expression. We find that miR-

208a and miR-208b share similar sequence identity and repress the same target 

genes involved in repressing hypertrophy. Taken together, our data suggests a feed-

forward mechanism where miR-208a and miR-208b repress the expression of anti-

hypertrophy genes and regulate hypertrophic growth during normal and pathological 

conditions. 
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Materials and Methods 

Northern blot analysis and RT-PCR 

RNA analyses by miRNA Northern blot, semi-quantitative RT-PCR, and quantitative 

RT-PCR were essentially performed as described (15-17). 

 

Generation of miR-208a transgenic mice  

All procedures were approved by and performed in accordance with the 

University of North Carolina Institutional Animal Care and Use Committee. A 

genomic fragment encoding the miR-208a precursor and flanking region was 

amplified by PCR using mouse genomic DNA as a template. This fragment was 

cloned into the pUHG10-3 tetracycline responsive vector plasmid at the XbaI site. A 

2 kb fragment containing tetracycline-responsive element (TRE), miR-208a 

precursor, and SV40 poly signal was excised by XhoI/AseI digestion and purified. 

The TRE-miR-208a gene was injected into the pronuclei of C57/Bl6 X C3H hybrid 

embryos and implanted into pseudo-pregnant recipient females by the University of 

North Carolina Animal Models Core. Five TRE-miR-208 founders were established 

and crossed with C57BL/6 and expanded. Separate strains derived from two 

founders were maintained by mating animals heterozygous for TRE-miR-208a or 

αMHC-tTA that expresses heart-specific tTA controlled by the heart-specific alpha 

myosin heavy chain (αMHC) promoter (kindly provided by Dr. Glenn I. Fishman, 

New York University) (18). Single transgenic animals genotyped αMHC-tTA (referred 

to as ‘control’ throughout this study) were compared to double transgenic littermates 

genotyped αMHC-tTA/TRE-miR-208 (referred to as ‘miR-208a Tg’). Oligonucleotide 
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sequences available upon request.  

 

Generation of miR-208a null mice 

The miR-208a targeting vector was generated by digesting a 4.5 kb fragment (5’ 

arm) with NheI/XhoI and ligated upstream of a positive selection neomycin cassette 

flanked by loxP sites. A 1.8 kb fragment (3’ arm) was digested with PmeI/NotI and 

ligated downstream of the neomycin cassette and upstream of a negative selection 

thymidine kinase cassette. Targeted ES-cells were identified by PCR and Southern 

blot analyses and used for blastocyst injection by the University of North Carolina 

Animal Models Core. The resulting chimeric mice were bred to C57BL/6 mice to 

obtain germline transmission of the floxed allele. Subsequently, the neomycin 

cassette was excised by breeding to mice that ubiquitously express Cre 

recombinase (19).  

 

Pressure-overload induced hypertrophy model 

Male C57BL6 mice (6–8 wk old) were subjected to pressure overload by thoracic 

aortic banding (TAB) (8). Mice were sacrificed after 3 weeks banding and hearts 

harvested for RNA extraction. 

 

Histological analysis of miR-208a transgenic mice 

Histological analyses of heart tissues were performed according to standard 

procedures. Samples were stained with H&E for routine examination and agglutinin-

wheat germ-TRITC conjugate to identify sarcolemmal membranes so that myofiber 
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diameter could be quantified. Antibodies against desmin (AB17156, Abcam) were 

used to visualize sarcomeric structure. Images were collected on an epifluorescent 

microscope (Eclipse E800, Nikon). Quantification of cardiomyocyte surface area was 

performed using ImageJ software (NIH) on fluorescent micrographs from 4 hearts 

per genotype using ~225 cells per heart across multiple sections.  

 

Transthoracic echocardiography 

Unanaesthetized mice were restrained on a temperature-controlled mouse board 

(Indus Instruments) and echocardiography was performed on 208a Tg and control 

mice using a Vevo 660 ultrasound system (Visual Sonics) equipped with a 30-MHz 

transducer.   An echocardiographer blind to animal genotype captured two-

dimensional parasternal long axis views of the left ventricle. From this view, an M-

mode cursor was positioned perpendicular to the interventricular septum and the 

posterior wall of the left ventricle at the level of the papillary muscles. The following 

measurements were obtained for systole and diastole using 4 cardiac cycles 

averaged: interventricular septal thickness, left ventricular posterior wall thickness, 

left ventricular internal diameter, heart rate and fractional shortening. 

 

Pressure-volume loops in anesthetized mice  

Mice were placed in a supine position, secured on the operating table, anesthetized 

with inhaled isoflurane (3% for induction and 1-2% for maintenance) and connected 

to a rodent ventilator after endotracheal intubation. Cardiac catheterization was 

performed using a 1.4 French (0.46 mm) conductance catheter (Millar Instruments) 
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inserted retrograde through the right carotid artery into the left ventricle. The catheter 

shaft was gently rotated to achieve optimal placement of the tips along the axis of 

the left ventricle. After catheter placement, steady-state pressure and volume 

measurements were recorded at baseline. Data were recorded digitally at 1,000 Hz 

and analyzed with PVAN software (Millar Instruments). 

 

Immunoblotting and immunostaining 

Immunoblotting and immunostaining was essentially performed as described (15) 

using antibodies to βMHC (M8421, Sigma), MHC (MF20, University of Iowa DSHB), 

myostatin (AB3239, Chemicon), Thrap1 (gift from Dr. Robert G. Roeder, Rockefeller 

University), β−tubulin (C4585, Sigma) and GAPDH (AB374, Chemicon). 

 

Cultured cardiomyocyte experiments 

Preparation of neonatal rat cardiomyocytes was as described (16). Cardiomyoyctes 

were treated with triiodothyronine (T3, Sigma) essentially as described (20). 

Antisense 2’O-methyl-modified oligonucleotides were transfected using 

Lipofectamine (Invitrogen). Cardiomyocytes were transduced with miR-208a 

expressing adenovirus at MOI 10. Immunostaining performed using antibodies 

against a-actinin (A5044, Sigma), βMHC (M8421, Sigma), and ANF (sc-20158, 

Santa Cruz Biotechnology). For fluorescence intensity analysis, individual 

cardiomyocytes (at least 100 cell bodies per condition) were measured on a 0-255 

gray-value scale using ImageJ software (NIH). The intensity of immunostaining was 

reported as the fold change in mean gray value ± SEM. 
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Confocal analysis of hearts from miR-208a Tg; YFP-βMHC mice 

The miR-208a Tg line was bred with the YFP-βMHC reporter line. The YFP-βMHC 

mice harbor a YFP-βMHC fusion allele that allows precise and accurate assessment 

of βMHC expression in adult hearts (17). Hearts from heterozygous triple transgenic 

mice expressing YFP-βMHC, tTA and miR-208a (YFP-βMHC; αMHC-tTA; TRE-miR-

208a) were compared to heterozygous double transgenic littermates expressing 

YFP-βMHC and tTA (YFP-βMHC; αMHC-tTA). Paraformaldehyde-fixed hearts were 

sectioned with a vibrotome at 150-mm thicknesses. Individual sections were treated 

with sodium borohydride (1 mg/ml in PBS) for 30 minutes to reduce fixative-induced 

fluorescence. Sections were stained with Alexa Fluor 633-agglutinin wheat germ and 

analyzed with a FV500 confocal microscope (Olympus). Morphometric analyses 

were conducted on coronal sections using individual cell areas from the left 

ventricular free wall that were traced with ImageJ software. 

 

Cloning and expression of miR-208a, miR-208b, and miR-124. 

Genomic fragments of miR-208a, miR-208b, and miR-124 precursors were amplified 

by PCR using mouse genomic DNA as a template. Primer sequences are available 

upon request. PCR products were cloned into pcDNA(+)3.1 vector (Invitrogen) and 

miRNA expression was confirmed by Northern blot analysis of transfected 293T cells 

(Fugene6, Roche). 

 

 

108



 

 
 

Luciferase assays  

A modified pGL3-control vector (pGL3cm) for 3’ UTR-luciferase reporter assays was 

described previously (15). A 575 bp fragment of the Thrap1 3’ UTR was amplified 

from a mouse cDNA library and cloned downstream of the luciferase gene to create 

the luc-Thrap1 construct.  Duplication of the two Thrap1 target sites was 

accomplished by PCR subcloning a portion of the Thrap1 3’ UTR directly into the 

initial Thrap1 construct to create luc-Thrap1 4x. Seed region mutations were 

generated by site-directed mutagenesis (Fig. 5.9). The luc-myostatin 4x reporter 

construct was generated by annealing oligionucleotides encoding two mouse miR-

208 target sites separated by 10 bp and cloning them in tandem downstream of the 

luciferase gene. To confirm miRNA expression in the reporter assays, we generated 

miRNA sensor constructs consisting of perfectly complementary sequences to miR-

208a or miR-124 directly downstream of the luciferase gene. Reporter assays were 

conducted using human embryonic kidney 293T cells in triplicate at least three times 

in 24 well plates. Transfections were performed with 50 ng of reporter and 50, 100, 

150 ng of miRNA plasmids (Fugene6, Roche). A CMV-lacZ reporter was used as an 

internal control to normalize for transfection efficiencies, and total amount of DNA 

per well was kept constant by adding the corresponding amount of empty expression 

vector. 
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Statistics  

Values are reported as means ± SEM, unless indicated otherwise. The two-tailed 

Mann-Whitney test was used for comparing two means (Prism; GraphPad). Values 

of P < 0.05 were considered statistically significant.  
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Results 

Cardiac Myosin Heavy Chain Genes Encode Intronic miRNAs 

The cardiac αMHC and βMHC isoforms are the major contractile proteins in 

cardiomyocytes. They differ primarily in their ability to convert ATP to mechanical 

work at different rates, and their relative protein expression ratio affects contractility 

of the cardiac sacromeres (21-24). During development, the αMHC and βMHC 

isoforms are expressed in a developmental stage-specific manner (25). In mouse 

hearts, the slower isoform βMHC is fetal-specific while the faster isoform αMHC 

becomes the predominant isoform in the adult heart. In humans and other large 

mammals, βMHC expression continues into adulthood. However, the expression of 

βMHC increases during pathological remodeling of both mouse and human hearts, 

which is thought to negatively impact cardiac function (14). Interestingly, an intron 

from each of the αMHC and βMHC genes host a conserved miRNA, respectively 

miR-208a and miR-208b (Fig. 4.1a) miR-208a expression was detected specifically 

in the adult mouse heart (Fig. 4.1b), and could be detected at very low levels in the 

heart as early as embryonic day 13.5 (E13.5) (Fig. 4.1c). The switch from fetal 

isoform βMHC to the adult isoform αMHC in mouse occurs shortly after birth (Fig. 

4.1d). We found that a similar switch from miR-208b to miR-208a expression also 

occurs, suggesting they are co-transcribed with their MHC host genes (Fig. 4.1d). 

miR-208a and miR-208b are of similar sequence with identical seed regions (Fig. 

4.1a), which suggests they might be functionally redundant (26). However, miR-208b 

was not detectable in the adult heart, indicating that if miR-208a and miR-208b do 

target the same mRNAs, they do so at different developmental stages. 
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Thyroid hormone signaling is a well-known regulator of αMHC and βMHC 

transcription (27). A surge of circulating thyroid hormone that occurs shortly after 

birth represses βMHC expression and activates αMHC expression though negative 

and positive cis-acting elements within their respective promoters. We treated 

isolated rat cardiomyocytes with thyroid hormone and observed reduced βMHC/miR-

208b expression, while dramatically inducing αMHC/miR-208a expression (Fig. 

4.1e). Together, those data suggest that the intronic miR-208 family and their MHC 

host genes are co-expressed and regulated by common transcriptional events and 

signaling pathways.  

 

Cardiac Overexpression of miR-208 Is Sufficient to Drive Cardiac Hypertrophy 

In an effort to understand the function of miR-208a in the adult heart, we 

overexpressed miR-208a specifically in the heart under the control of the α-myosin 

heavy chain (αMHC) promoter using a bigenic system. An advantage of this strategy 

is that miR-208a is overexpressed specifically at the same time and place it would 

normally be expressed. The overexpression strategy consisted of a transgene 

encoding miR-208a downstream of a tetracycline-responsive promoter (TRE-miR-

208a) and a second transgene encoding the tetracycline-controlled transactivator 

protein driven by the αMHC promoter (αMHC-tTA) (18). Using this system, we found 

that cardiac-specific overexpression of miR-208a does not cause embryonic 

lethality, thus administration of tetracycline to delay transgene expression was 

unnecessary. Multiple founder TRE-miR-208a transgenic lines were established. 

Primary analyses indicated that miR-208a is overexpressed at similar levels, 
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therefore we combined results from the studies of different transgenic lines. 

Throughout our studies, we compared heterozygous mice carrying the αMHC-tTA 

and TRE-miR-208a transgenes (simply referred to hereafter as ‘miR-208a Tg’) to 

mice heterozygous for αMHC-tTA (referred to hereafter as ‘control’). 

 Northern blot analysis showed miR-208a levels were ~4-fold higher in miR-

208a Tg hearts compared to control hearts (Fig. 4.2a). The gross heart morphology 

of 4 month-old miR-208a Tg hearts was dramatically larger relative to control 

littermates (Fig. 4.2b). Accordingly, the heart to body weight ratios of miR-208a Tg 

animals were significantly higher compared to control animals (Fig. 4.2c). 

Histological sectioning and H&E staining revealed the appearance of enlarged 

chambers and thickened ventricular walls in the miR-208a Tg hearts, suggestive of 

hypertrophic growth (Fig. 4.2d). Analysis of desmin, an intermediate filament found 

near the sarcomeric Z line, revealed no changes in the integrity of the sarcomeric 

structure of miR-208a Tg cardiomyocytes (Fig. 4.2e). Quantitative measurement of 

miR-208a Tg cardiomyocytes revealed a 52% increase in cell size relative to 

controls (Fig. 4.2f). Together, these results indicate that miR-208a overexpression in 

the mouse heart induced hypertrophic growth.  

Analysis of cardiac function by echocardiography on 3 month-old animals 

revealed that miR-208a Tg hearts displayed thickening of the ventricular walls 

(anterior wall in diastole and systole, posterior wall in diastole), an increase in left 

ventricular diameter (left ventricular diameter in diastole and systole) and 

deterioration in cardiac function, as indicated by decreased fractional shortening 

(Fig. 4.2g, Table 4.1). Cardiac output, a measure of contractile performance, was 
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assessed by invasive hemodynamic monitoring and found consistently decreased in 

miR-208a Tg mice, though the difference was not statistically significant (Fig. 4.2h). 

We also measured cardiac function in 7 month-old animals and obtained similar 

results (Table 4.2).  

A molecular hallmark of cardiac hypertrophy is the up-regulation of βMHC and 

cardiac hormone ANF in the adult heart (13, 14). Consistent with hypertrophic 

growth, we observed increased expression of βMHC transcripts and proteins, by 

real-time PCR and western blot analyses respectively, in miR-208a Tg hearts (Fig. 

4.3a,b). Unexpectedly, no significant changes in ANF transcript levels were detected 

(Fig. 4.3a).  

Changes in the expression levels of specific miRNAs have been reported in 

diseased human hearts and in animal models of heart disease, pointing to their 

potential roles in cardiomyopathies (8-12). Since βMHC expression is a hallmark of 

cardiac hypertrophy and because βMHC and miR-208b appear to be co-regulated, 

we surmised that miR-208b expression would also increase during cardiac 

hypertrophy. Using a mouse model of cardiac hypertrophy, in which the aorta was 

surgically constricted to produce chronic pressure overload, we indeed found miR-

208b expression induced during hypertrophic growth (Fig. 4.3c). As another 

molecular indicator of hypertrophic growth, we analyzed the expression of miRNAs 

whose expression levels were reported altered in cardiac hypertrophy. Consistent 

with previous studies reporting decreased miR-1, miR-133 and miR-29a expression 

levels in cardiac hypertrophy (8-12), the expression levels of those miRNAs were 

also found decreased in miR-208a Tg hearts relative to control hearts (Fig. 4.3d). 
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However, while miR-125b levels were consistently reported as elevated in cardiac 

hypertrophy (9-11), its expression appeared unaltered in miR-208a Tg hearts. 

Together, those data demonstrate that miR-208a induced hypertrophic growth 

without affecting all aspects of the hypertrophic growth response pathway. 

We also determined whether the effects of miR-208a overexpression on 

hypertrophy could be recapitulated in vitro using isolated rat neonatal 

cardiomyocytes. Cardiomyocytes were transduced with miR-208a expressing or 

control adenoviruses, then immunostained for α-actinin or βMHC (Fig. 4.3e). 

Consistent with the role of miR-208a in the induction of cardiac hypertrophy in vivo, 

overexpression of miR-208a in isolated cardiomyocytes increased cell size and 

βMHC expression, but did not affect ANF levels (Fig. 4.3e-h). Conversely, 

knockdown of miR-208a by introducing chemically modified oligonucleotides (2’O-

methyl modified) into isolated cardiomyocytes resulted in decreased bMHC 

expression, but the size of cardiomyocytes and ANF expression were not affected 

(Fig. 4.3e-h).  Taken together, these results using in vivo and in vitro strategies 

suggest that miR-208a influences subset of genes important in cell growth rather 

than activating a broader hypertrophic pathway. 

 

Spatial Distribution of βMHC in miR-208a Tg Hearts Is Focal 

Increased βMHC expression during cardiac hypertrophy is a well-established 

phenomenon and is thought to contribute to the overall poor functioning of the 

hypertrophic heart (22, 23, 28). To better assess the effects of miR-208a on the 

expression of βMHC, we employed a mouse strain harboring a βMHC indicator 
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allele, in which the yellow fluorescent protein (YFP) sequence is fused to the βMHC 

gene (17). We bred this allele into the miR-208a transgenic line. The YFP-βMHC 

was highly expressed in neonatal cardiomyocytes and essentially absent in adult 

hearts, which mimics wild type βMHC allele expression  ((17), Fig. 4.4a and data not 

shown). We observed dramatically increased YFP-βMHC protein levels in the miR-

208a Tg hearts (Fig. 4.4a and 4.5). However, YFP-βMHC expression did not 

increase in all cardiomyocytes.   Rather it was intensely up-regulated only in areas 

associated with interstitial fibrosis (Fig. 4.4b,c), which is consistent with previous 

report where the distribution of βMHC was analyzed and found correlated with 

fibrosis in an animal model of cardiac hypertrophy (17). Thus, even though miR-

208a is presumably overexpressed in all cardiomyocytes, βMHC re-expression 

occurs only in subset of cardiomyocytes associated with fibrosis.   

 We next tested whether βMHC re-expression correlated with the miR-208a-

induced hypertrophic growth of individual cardiomyocytes.  To do this, we compared 

the cell areas of miR-208a Tg/YFP-βMHC cardiomyocytes to control YFP-βMHC 

cardiomyocytes lacking the miR-208a transgene. No association between the state 

of YFP-βMHC expression and cell area increase was observed. Thus, 

cardiomyocytes from miR-208a Tg hearts were significantly larger than the 

cardiomyocytes from control hearts (Fig. 4.4d) independently of whether they were 

positive or negative for YFP-βMHC expression. Taken together, these observations 

demonstrate that βMHC expression is not an obligate component of miR-208a-

induced hypertrophic growth, and that overexpression of miR-208a alone is sufficient 
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to induce hypertrophic growth in cardiomyocytes even when they show no changes 

in βMHC expression. 

 

Targeted Deletion of miR-208a Alters Cardiac Gene Expression  

Having demonstrated that miR-208a is sufficient for hypertrophy and βMHC 

expression, we sought to examine the miR-208a loss-of-function mouse phenotype. 

We replaced the genomic sequence encoding miR-208a by homologous 

recombination with a neomycin selection cassette flanked by loxP sites (Fig. 4.6a,b). 

The selection cassette was subsequently excised by Cre-mediated recombination, 

leaving only a small footprint of exogenous DNA in place of miR-208a (Fig. 4.6c). 

Since miR-208a is located within an intron of the αMHC gene, we confirmed the 

splicing pattern of the αMHC transcript was unaffected by the mutant miR-208a 

allele (Fig. 4.8).  

Progeny resulting from mating miR-208a+/- mice were viable and born in an 

expected Mendelian ratio (Fig. 4.7a). miR-208a expression was halved in miR-208+/- 

hearts compared to the wild type hearts, and undetectable in miR-208-/- hearts (Fig. 

4.7b). Hearts of 12 to 16 week-old miR-208-/- mice did not display any gross 

morphological abnormalities and appeared normal compared to wild type littermates 

(data not shown). Furthermore, no differences in heart weight to body weight ratios 

were observed when comparing miR-208-/- and wild type mice (Fig. 4.7c). Those 

results are consistent with a recent report in which miR-208a was shown not 

required for normal heart development and function (5). 
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Consistent with the role of miR-208a in the regulation of cardiac hypertrophic 

growth and βMHC expression, we found that βMHC transcript and protein levels 

were significantly reduced, while αMHC and ANF transcript levels were unchanged 

in 208-/- hearts (Fig. 4.7d,e). This result is complementary to the elevation of βMHC 

transcript and protein levels observed in miR-208a Tg hearts (Fig. 4.3a,b). Together, 

those genetic data provide convincing evidence that miR-208a is important for 

regulation of βMHC expression. We also examined the expression of miRNAs that 

were up-regulated in miR-208a Tg hearts (Fig. 4.3d). Surprisingly, we found the 

expression of those miRNAs unchanged in miR-208a-/- hearts, indicating that their 

expression is not dependent upon miR-208a (Fig. 4.7f). 

 

miR-208a and miR-208b repress the expression of Thrap1 and myostatin 

Utilizing the web-based ‘Targetscan’ database, we selected several predicted miR-

208a target genes for experimental scrutiny (29, 30). A target site located in the 3’ 

UTR of Thyroid hormone associated protein 1 (Thrap1) is among the most heavily 

weighted targets for miR-208a and was chosen for study since thyroid hormone 

signaling is a known repressor of βMHC transcription (31, 32). Upon closer 

inspection of the Thrap1 3’ UTR, we identified a second conserved miR-208a target 

site located ~60 bp downstream of the first target site (Fig. 4.9a and 4.11a).  

In addition, myostatin, a member of the transforming growth factor-β family, is 

a predicted miR-208a regulatory target and harbors a single miR-208a target site in 

its 3’ UTR (Fig. 4.9a and 4.11c). Myostatin is abundantly expressed by skeletal 

muscle and acts as an important repressor of hypertrophic growth (33, 34). 
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Myostatin is secreted into the plasma as a latent form and acts systemically (35). 

Myostatin is also expressed in heart muscle, although to a much lesser degree than 

found in skeletal muscle, and genetic inactivation of myostatin in mice has been 

recently linked to cardiac hypertrophy (36-40). 

As a first step towards determining which genes are targeted by miR-208a 

and miR-208b, we cloned genomic fragments encoding miR-208a, miR-208b, and 

miR-124 into plasmids for overexpression in cultured cells (Fig. 4.9b). We 

hypothesized that similar sequence and identical seed region of miR-208a and miR-

208b would enable them to repress similar sets of genes, while miR-124 is a brain-

specific miRNA and served as a control miRNA for specificity.  

Thrap1 is part of the thyroid hormone nuclear receptor complex and can 

positively and negatively influence transcription (41, 42); thus we reasoned that 

repression of Thrap1 by miR-208a might account for the increased βMHC 

expression in miR-208a Tg hearts (Fig. 4.3a,b). In agreement this notion, co-

transfection of a luciferase gene with the Thrap1 3’UTR cloned immediately 

downstream (luc-Thrap1) and the miR-208a expression plasmid in cultured cells 

resulted in repressed luciferase activity (Fig. 4.9c). Expression of miR-124 with luc-

Thrap1 had no such effect upon luciferase activity, indicating that miR-208a 

repression of luc-Thrap1 was specific. To further confirm such specificity, we 

mutated the candidate miR-208a target sites (luc-Thrap1 mutant), which resulted in 

the complete loss of miR-208a mediated repression (Fig. 4.9c and 4.11b). As we 

predicted from the sequence similarity shared by miR-208a and miR-208b, we found 

that miR-208b also repressed the luc-Thrap1 luciferase activity (Fig. 4.9c). As 
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another demonstration of miR-208a and miR-208b targeting of Thrap1 and to test 

whether increasing the number of target sites would also increase the degree of 

repression, we duplicated the Thrap1 target sites downstream of the luciferase gene 

(luc-Thrap1 4x).  Indeed, increasing target site number resulted in a pronounced 

decrease in luciferase activity, indicating that target site number is an important 

factor for miRNA-mediated repression (Fig. 4.10a).  

In order to directly test whether miR-208a could repress the expression of 

myostatin, we constructed four repeats of the myostatin target sequence 

downstream of a luciferase gene (luc-myostatin 4x) and co-transfected with miRNA 

expression plasmids. Co-transfection of either miR-208a or miR-208b and luc-

myostatin 4x plasmids repressed luciferase activity (Fig. 4.10b). Co-transfection of 

miR-124 and luc-myostatin 4x plasmids caused no decrease in luciferase activity 

and confirmed that miR-208a and miR-208b specifically target the myostatin 3’ UTR 

(Fig. 4.10b).  

 To determine whether Thrap1 and myostatin were regulated in vivo by miR-

208a, we tested whether their expression was altered in our miR-208a gain- and 

loss-of-function mouse models. The transcript levels of Thrap1 and myostatin 

appeared unchanged in the miR-208a Tg and 208a-/- hearts (Fig. 4.11d). However, 

the protein levels of Thrap1 and myostatin were repressed in miR-208a Tg hearts 

compared to control hearts (Fig. 4.10c). Conversely, the protein levels of Thrap1 

and myostatin were elevated in miR-208-/- hearts compared to hearts from wild type 

littermates (Fig. 4.10c). Taken together, these observations demonstrated that 

Thrap1 and myostatin are bona fide miR-208a targets.  
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Discussion 

Increased expression of βMHC is a common feature of cardiac hypertrophy and 

heart failure (13, 14). The αMHC to βMHC isoform shift that occurs during cardiac 

disease reduces contractile performance and is thought be a maladaptive response 

(22, 23, 28). The shift towards βMHC is reversible under particular conditions that 

are associated with improved cardiac performance, including the regression of 

hypertrophy and human patients that respond favorably to beta-blocker therapy (43-

47). Furthermore, mutations in the βMHC gene are commonly associated with 

hypertrophic cardiomyopathies (48). It is recognized that therapies that inhibit the 

maladaptive features of hypertrophy might be useful in improving the function of the 

diseased heart (14). However, the development of such therapies has been limited 

by an incomplete understanding of the molecular mechanisms underlying the 

maladaptive features of hypertrophy.  

In this report, we show that miR-208a is an essential regulator of cardiac 

remodeling. Our experiments demonstrate that miR-208a is sufficient to induce 

cardiac hypertrophy. The hypertrophic growth induced by miR-208a is accompanied 

by increased βMHC expression. In contrast, deletion of miR-208a resulted in 

decreased βMHC expression in the adult heart, providing genetic evidence that miR-

208a modulates βMHC expression. An important part of our study is the finding that 

βMHC is induced in a patchy pattern in miR-208a Tg hearts. Strikingly, up-regulated 

βMHC expression in miR-208a Tg hearts is tightly associated with regional fibrosis, 

similar to what we have previously found in renin-induced hypertrophy (17). The 
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strong correlation of re-expression of βMHC and fibrosis development may explain 

why such reactivation of ‘fetal’ genes is associated with a maladaptive phenotype.  

Further studies to understand how miR-208a regulates βMHC expression, as well as 

fibrosis, will likely shed light on the biology of cardiac hypertrophy.  

Our findings demonstrate that miR-208a post-transcriptionally represses 

expression of Thrap1, a component of the thyroid hormone nuclear receptor 

complex. Thyroid hormone signaling has long been an established regulator of 

cardiac myosin heavy chain isoform expression: a surge of circulating thyroid 

hormone occurring after birth transcriptionally represses βMHC expression while 

activating αMHC expression (31, 32). Studies have also shown that excessive 

administration of thyroid hormone leads to the development of cardiac hypertrophy, 

but the molecular mechanism was elusive (49-52). Our findings, in which increasing 

the level of miR-208a in transgenic hearts reduced Thrap1 levels and induced 

hypertrophic growth, provide a link between the action of miR-208a and thyroid 

hormone in cardiac hypertrophy. We also found that miR-208a post-transcriptionally 

represses the expression of myostatin, a well-known repressor of hypertrophic 

growth. However, it’s unlikely that myostatin repression is solely responsible for the 

hypertrophy observed in miR-208a Tg hearts since genetic deletion of myostatin 

results in a comparatively mild cardiac hypertrophy phenotype (36). Myostatin 

repression is instead likely one of several additive factors contributing to miR-208a-

induced hypertrophy.  

Intriguingly, miR-208a induced hypertrophy has also increased the expression 

level of miR-208b in hypertrophic hearts. Since both miR-208a and miR-208b likely 
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target similar mRNAs, we speculate the outcome of increasing miR-208 family levels 

beyond the normal miR-208 threshold increasingly represses miR-208 regulatory 

target genes. The induction of miR-208b expression during hypertrophy suggests a 

feed-forward mechanism in which miR-208b and miR-208a cooperatively promote 

hypertrophy by repressing Thrap1 and myostatin (Fig. 4.10d). Our results, which 

provide genetic evidence that miR-208a modulates βMHC expression and is 

sufficient to induce hypertrophy, are consistent with a recent study showing that 

miR-208a is necessary for the hypertrophic growth response (5). Together, our 

studies support a role for miR-208a in repressing anti-hypertrophy genes as part of 

the genetic program needed for hypertrophic growth. We anticipate that inhibition of 

miR-208a may be a viable therapeutic strategy to repress βMHC expression and 

could remove some of the maladaptive features of hypertrophy. 
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Figure 4.1 Expression of miR-208a and miR-208b parallels the expression of 
their respective host genes αMHC and βMHC. (a) miR-208a is encoded by 
intron 29 of the αMHC gene, while miR-208b is encoded by intron 31 of the 
βMHC gene. miR-208a and miR-208b are highly conserved and share similar 
sequence identity (asterisks). (b) Detection of mature and precursor miR-208a 
in adult mouse tissues. (c) Detection of mature and precursor miR-208a in 
embryonic day 13.5 (E13.5), E16.5 and neonatal tissues by Northern analysis. 
(d) Upper left, αMHC and βMHC transcripts were detected in E16.5, postnatal 
day 0 (P0), P5, P10 and adult mouse hearts by RT-PCR. Lower left, miR-208a and 
miR-208b expression was detected in the samples by Northern analysis. Right, 
relative levels of miR-208a and miR-208b during heart development (e) Upper, 
αMHC and βMHC transcripts were detected in isolated rat neonatal cardiomyocytes 
following treatment with thyroid hormone (T3) by RT-PCR. Lower, miR-208a and 
miR-208b were detected by Northern analysis.

124



4.5
4

3.5
3

2.5
2

1.5
1

0.5
0

Control 208a Tg

pre-miR

miR-208a

U6
m

iR
-2

08
a 

fo
ld

 c
ha

ng
e

a

Control
208a Tg

b

d

Control 208a Tg

Control 208a Tg

c

0
1
2
3
4
5
6
7

Control 208a Tg

H
w

/B
w

 (m
g/

g)

Control 208a Tgg h

C
ar

di
ac

 o
ut

pu
t

 (µ
l/m

in
)

Control 208a Tg

Control 208a Tg

C
el

l a
re

a
fo

ld
 c

ha
ng

e

Control 208a Tg

f

0
2000
4000
6000
8000

10000
12000

*

Control 208a Tg
e

0

0.5

1.0

1.5

2.0

*

Figure 4.2

Figure 4.2 Hearts of miR-208a transgenic mice undergo hypertrophic growth. (a) 
Northern analysis showing ~4-fold increase of miR-208a expression in hearts of 
miR-208a Tg animals compared to control littermates. U6 serves as loading 
control. (b) Gross morphology of miR-208a Tg hearts is enlarged compared to 
control hearts. Scale bars are 1 millimeter. (c) Heart to body weight ratios 
(Hw/Bw) of 4 month-old miR-208a Tg mice (n = 22) are significantly (P < 7 x 10-5) 
higher than controls (n = 19). (d) Macroscopic view of H&E stained histological 
sections (upper, sagittal; lower, transverse) from control and miR-208a Tg hearts. 
Scale bars are 1 millimeter. (e) Sacromeric structure of cardiomyocytes 
visualized by desmin staining of histological sections. (f) Histological sections 
were stained with wheat germ agglutinin-TRITC conjugate to determine cell size. 
Mean cardiomyocyte size of miR-208a Tg hearts (n = 930) were significantly 
larger (P < 9 x 10-50) than control cardiomyocytes (n = 926). (g) Representative 
M-mode echocardiographs from conscious control and miR-208a Tg mice. (h) 
Cardiac output calculated from pressure-volume loop recordings of 3 month-old 
mice (n = 5 each genotype).  
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Figure 4.3

Figure 4.3 miR-208a overexpression induces hypertrophic growth (a) Transcripts 
for αMHC, βMHC and ANF were detected by real-time PCR in 4 month-old hearts 
from control and miR-208a Tg mice (n = 5 each genotype). Values presented as 
the fold change in expression ± SEM. *, P < 0.01. (b) Western blot analysis of total 
MHC and βMHC protein levels in adult control and miR-208a transgenic hearts. (c) 
Upper, αMHC, βMHC and ANF transcripts were detected in wild type hearts 
following 3 weeks thoracic aortic banding (TAB) or surgical sham hearts as 
controls by RT-PCR. Lower, miR-208a and miR-208b were detected by Northern 
analysis. U6 serves as loading control. (d) Northern analysis of indicated miRNAs 
using hearts from control and miR-208a Tg mice. (e-h) Isolated rat neonatal 
cardiomyocytes were transduced with miR-208a and control adenoviruses (Ad-208 
and Ad-Cntl, respectively), or transfected with oligonucleotides antisense to miR-
208a or control oligonucleotides (2’Ome-208a and 2’Ome-Cntl, respectively), as 
indicated. (e) Cardiomyocytes stained for α-actinin or βMHC proteins. (f) Mean cell 
areas ± SEM of a-actinin immunostained cardiomyocytes treated with 
adenoviruses or oligonucleotides, as indicated (n = 100 cells each condition; *, P < 
4 x 10-12). (g) Mean fluorescent intensities ± SEM of βMHC immunostained 
cardiomyocytes treated with adenoviruses or oligonucleotides, as indicated (n = 
100 cells each condition; *, P < 3 x 10-7). (h) Cardiomyocytes treated with 
adenoviruses or antisense 2’O-methyl oligonucleotides, as indicated, were scored 
for ANF staining (n = ~425 cells each condition).  
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Figure 4.4 Distribution of βMHC-YFP fusion protein in miR-208a transgenic 
hearts. (a) Confocal fluorescent images of coronal sections from control and miR-
208a Tg hearts. (b) Papillary muscle from control and miR-208a Tg hearts 
imaged with a 20x objective for βMHC-YFP (green) expression and wheat germ 
agglutinin-TRITC staining (red). (c) Representative fluorescent images of βMHC-
YFP expression in (green) an area of interstitial fibrosis (red) in miR-208a Tg 
hearts. (d) Mean cell areas ± SEM of cardiomyocytes from miR-208a Tg; βMHC-
YFP versus control; βMHC-YFP hearts. Cells measured for area were also 
scored for presence or absence of βMHC-YFP expression (n = 100 each 
genotype; *, P < 0.001).  
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Figure 4.5. Confocal microscopy for YFP detection on serial coronal 
sections from control; YFP-βMHC and miR-208a Tg; YFP-βMHC  
hearts (from left to right, top to bottom: apex to the top of the ventricles).

Figure 4.5
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Figure 4.6 Deletion of miR-208a from mouse genome. (a) 
Strategy to delete miR-208a from intron 31 of the αMHC gene 
by homologous recombination. The miR-208a coding 
sequence (green bar) was replaced by a neomyocin selection 
cassette (Neo) flanked by loxP sites (red triangles). The 
selection cassette was excised from the germline by mating to 
mice that ubiquitously express Cre recombinase, creating a 
mutant allele that contained a single loxP sequence in place 
of miR-208a. Genotyping PCR primers and 5’ probes as 
marked. (b) The occurrence of the intended recombination 
event in mouse embryonic stem cells was confirmed by PCR 
and Southern analyses. (c) The increased length of the 
mutant allele was the basis for a PCR-based genotyping 
strategy.  
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Figure 4.7 Expression of βMHC is decreased in 208a-/- 
hearts. (a) Genotypes of progeny from mating miR-208a+/- 

mice were born in Mendelian ratio (n = 128).  (b) Northern 
analysis for miR-208a expression in hearts from wild type 
(miR-208+/+), miR-208+/- and miR-208-/- mice. (c) Heart weight 
to body weight ratios of 4 month-old wild type and miR-208-/- 
mice (n = 25 each genotype). (d) Transcripts for aMHC, 
βMHC and ANF were detected by real-time PCR in hearts 
from wild type and 208-/-mice (n = 5 each genotype). Values 
presented as the fold change in expression ± SEM. *, P < 
0.01. (e) Western analysis of total MHC and βMHC protein 
levels in hearts from wild type and miR-208-/- mice. (i) 
Northern analysis of indicated miRNAs using hearts from wild 
type, miR-208+/- and 208-/- mice.  
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Figure 4.9 miR-208a and miR-208b target Thrap1 and myostatin.  
(a) Sequence alignment between miR-208a and candidate binding sites 
in the 3’ UTR of Thrap1 or Myostatin. (b) Northern analysis 
demonstrating miR-208a, miR-208b and miR-124 expression plasmids 
produce mature miRNAs when transfected into 293T cells. To tal RNA 
from mouse brain, neonatal and adult hearts included as controls. U6 
serves as loading control. (c) 293T cells were transfected with a 
luciferase reporter designed to detect miR-208a expression (208a 
sensor), along with the indicated miRNA expression plasmids. A Thrap1 
3’ UTR (luc-Thrap1) and a mutated Thrap1 3’ UTR (luc-Thrap1 mutant) 
were also tested. Values are luciferase activity ± SD relative to the 
luciferase activity of reporters co-transfected with empty expression 
plasmid.  
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Figure 4.10 miR-208a and miR-208b repress the expression of Thrap1 
and myostatin. (a) A luciferase reporter with duplicated Thrap1 binding 
sites (luc-Thrap1 4x) was co-transfected with indicated miRNA 
expression plasmids and luciferase activity determined. (b) A luciferase 
reporter with four repeats of the putative myostatin binding site was co-
transfected with indicated miRNA expression plasmids and luciferase 
activity determined. (c) Western blot analysis for Thrap1 and myostatin 
protein levels in hearts from 4 month-old miR-208a Tg versus control 
animals and miR-208 null versus wild type animals. GAPDH serves as 
loading control. (d) A model for miR-208 family function during normal 
and stress-induced hypertrophic growth conditions. In the normal adult 
heart, miR-208a is the predominant miR-208 member and helps fine-
tune the expression of anti-hypertrophy genes Thrap1 and myostatin. 
During hypertrophic growth, bMHC is induced and accompanied by 
increased miR-208b expression, which raises the level of total miR-208 
family members above the normal threshold for maintenance of Thrap1 
and myostatin expression levels. The additive effect of miR-208a and 
miR-208b on repressing expression of anti-hypertrophy genes further 
promotes hypertrophic growth in feed-forward manner. 
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Table 4.1. Echocardiography of Dimensions and Function  
of 3 month-old miR-208a trangenic mice. 

 
 Control 208a Tg 
  n = 10 n = 10 
BW (g) 25.0 ± 1.14 26.1 ± 1.24 

LV mass index (mg) 107 ± 1.45 163 ± 6.33** 

LV mass index/BW (mg/g) 3.94 ± 0.09 6.04 ± 0.24** 

HR (bpm) 713 ± 8.9 697 ± 12.3 

IVSTD (mm) 0.93 ± 0.01 1.11 ± 0.04** 

IVSTS (mm) 1.55 ± 0.02 1.73 ± 0.04* 

PWTD (mm) 0.85 ± 0.03 1.00 ± 0.03* 

PWTS (mm) 1.60 ± 0.03 1.48 ± 0.06 

LVEDD (mm) 3.2 ± 0.03 3.5 ± 0.09** 

LVESD (mm) 1.48 ± 0.03 2.0 ± 0.07** 

FS% 51.7 ± 0.77 41.2 ± 1.16** 
Transthoracic echocardiography on unanesthetized mice. Data are mean ± SEM. BW, body weight; 
LV, left ventricular; HR, heart rate; IVSTD, interventricular septal thickness in diastole; IVSTS, 
interventricular septal thickness in systole; PWTD, posterior wall thickness in diastole; PWTS, 
posterior wall thickness in systole; LVEDD, LV end-diastolic dimension; LVESD, LV end-systolic 
dimension. LV mass index was calculated as (external LV diameter in diastole3 – LV end-diastolic 
dimension3) x 1.055. Fractional shortening (FS) was calculated as (LV end-diastolic dimension – LV 
end-systolic dimension)/LV end-diastolic. *, P < 0.001; **, P < 0.0001. 
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Table 4.2. Echocardiography of Dimensions and Function  
of 7 month-old miR-208a transgenic mice. 

 
 Control miR-208a Tg 
  n = 5 n = 5 

BW (g) 28.7 ± 1.58 33.7 ± 2.97 

LV mass index (mg) 104 ± 4.10 169 ± 10.1*** 

LV mass index/BW (mg/g) 3.67 ± 0.24 5.60 ± 0.22** 

HR (bpm) 666 ± 15.1 672 ± 18.7 

IVSTD (mm) 0.89 ± 0.03 1.16 ± 0.10** 

IVSTS (mm) 1.42 ± 0.08 1.79 ± 0.10** 

PWTD (mm) 0.89 ± 0.02 1.17 ± 0.09** 

PWTS (mm) 1.39 ± 0.06 1.55 ± 0.11 

LVEDD (mm) 3.2 ± 0.04 3.4 ± 0.11* 

LVESD (mm) 1.62 ± 0.04 1.9 ± 0.10** 

FS% 49.5 ± 0.71 41.495 ± 0.33*** 
Transthoracic echocardiography on unanesthetized mice. Data are mean ± SEM. BW, body weight; 
LV, left ventricular; HR, heart rate; IVSTD, interventricular septal thickness in diastole; IVSTS, 
interventricular septal thickness in systole; PWTD, posterior wall thickness in diastole; PWTS, 
posterior wall thickness in systole; LVEDD, LV end-diastolic dimension; LVESD, LV end-systolic 
dimension. LV mass index was calculated as (external LV diameter in diastole3 – LV end-diastolic 
dimension3) x 1.055. Fractional shortening (FS) was calculated as (LV end-diastolic dimension – LV 
end-systolic dimension)/LV end-diastolic. *, P < 0.01; **, P < 0.001; ***, P < 0.0001.  
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CHAPTER 5 

MIR-208A IS A REGULATOR OF CARDIAC CONDUCTION 

 

 

 

 



 

 
 

Abstract 

The highly coordinated passage of electrical impulses through the cardiac 

conduction system is essential for proper heartbeat rhythm. Functional defects in the 

cardiac conduction system result in arrhythmias that affect millions of people and are 

associated with sudden cardiac death. Despite intensive investigation, the molecular 

mechanisms that underlie the development and maintenance of the cardiac 

conduction system are not well understood. In this chapter, we investigate the role of 

miR-208a in the cardiac conduction system. We find that overexpression of miR-

208a induces cardiac arrhythmias in the adult mouse. Conversely, we demonstrate 

miR-208a is required to maintain proper cardiac conduction using a mouse model in 

which miR-208a was genetically deleted. Molecular analyses reveal that miR-208a 

gain- or loss-of-function results in dysregulated expression of key cardiac conduction 

system components. Furthermore, miR-208a appears to directly regulate the 

expression of the calcium ion channel subunit CACNB2. Our results provide genetic 

evidence for miR-208a as an important regulator of the cardiac conduction system 

and reveal a novel role for the miR-208 family in the adult mouse heart. 
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Introduction 

The rhythmic heartbeat is the result of highly coordinated electrical impulses that are 

propagated throughout the myocardium by a specialized network of cells collectively 

known as the cardiac conduction system (1). The electrical impulses that pace the 

heart originate at the sinoatrial (SA) node and are transmitted throughout the atria 

then converge on the atrioventricular (AV) node. The transmission of the electrical 

impulses from the atria to the ventricles are briefly delayed by slow conducting 

myocytes in the AV node to provide sufficient time for ventricular filling between the 

sequential contractions of the atria and ventricles. Past the AV node, electrical 

impulses are rapidly conducted throughout the ventricles via the His bundle and 

fascicular branches of the Purkinje fibers, which results in coordinated ventricular 

contraction. Functional defects in the conduction system affects millions of people 

and results in arrhythmias, which may occur from congenital disorders and often 

accompany heart disease (2). While familial arrhythmias are linked to numerous 

sequence variants in cardiac ion channels, sequence variants in cardiac 

transcription factors are also linked to arrhythmogenesis and point to the importance 

of gene expression regulation for proper cardiac conduction (3). However, our 

understanding of the genetic networks that direct development and function of the 

cardiac conduction system is incomplete. 

 MicroRNAs (miRNAs) are a class of small RNA molecules that post-

transcriptionally regulate gene expression and their recent discovery has added a 

new regulatory paradigm to our understanding of genetic networks (4). Roles for 
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heart-expressed miRNAs are now known in cardiogenesis, the hypertrophic growth 

response, as well as for proper cardiac conduction (5-10).  

We and others previously found that the miR-208 family of microRNAs 

(miRNAs) is an important regulator of cardiac hypertrophy (see Chapter 4 and (10)). 

The miR-208 family consists of miR-208a and miR-208b, which are respectively 

encoded within an intron of the α- and β-myosin heavy chain genes (α- and βMHC). 

The expression patterns of miR-208a and miR-208b are developmentally regulated: 

miR-208a is predominately postnatally expressed, while miR-208b expression 

occurs mostly during development but becomes up-regulated in the adult mouse 

heart during hypertrophy. The miR-208 family regulates hypertrophic growth by fine-

tuning the expression of anti-hypertrophy genes during normal and pathological 

conditions (see Chapter 4).  

In this chapter, I demonstrate that the miR-208a is a regulator of the cardiac 

conduction system. I find that overexpression of miR-208a in adult mouse hearts 

induces AV conduction block defects, while its genetic deletion leds to SA 

conduction block defects. Molecular analyses reveals that modification of miR-208a 

levels results in dysregulated expression of key cardiac conduction system 

components, including cardiac transcription factors and ion channels. Furthermore, 

miR-208a directly regulates the expression of the calcium ion channel subunit 

CACNB2. Collectively, this study demonstrates that miR-208a is an important 

regulator of the cardiac conduction system and suggests important 

pathophysiological functions for miR-208a, in addition to cardiac hypertrophy. 
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Materials and Methods 

Surface electrocardiograms 

All procedures were approved by and performed in accordance with the 

University of North Carolina Institutional Animal Care and Use Committee. 

The miR-208a transgenic and miR-208a knockout mouse lines were described 

previously (see Materials and Methods in Chapter 4). For the transgenic mouse 

studies, single transgenic animals genotyped αMHC-tTA (referred to as ‘control’ 

throughout this study) were compared to double transgenic littermates genotyped 

αMHC-tTA/TRE-miR-208 (referred to as ‘miR-208a Tg’). Mice were anesthetized 

with 1-2% isoflurane in 700 ml 02/minute via facemask (following induction chamber 

containing 5% isoflurane).  Rectal temperature was monitored and maintained at 

37C using a heat pad and heat lamp. Baseline Lead I electrocardiograms were 

recorded for about 3 minutes at 2k Hz from needle electrodes inserted 

subcutaneously into the each limb. Recordings were analyzed using the ECG 

module of Chart5 software (ADInstruments) and corrected QT (QTc) intervals were 

calculated using a murine formula (11).  

 

Transcript analyses, immunoblotting, and immunostaining 

RNA analyses by quantitative RT-PCR were essentially performed as described (12-

14). Immunoblotting and immunostaining was essentially performed as described 

(12) using antibodies against connexin-40 (36-4900, Zymed), connexin-43 (C8093, 

Sigma), Hsp70 (SPA-815, Stressgen), GATA4 (sc-1237, Santa Cruz), Hop (a kind 
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gift from Dr. Eric Olson, University of Texas South Western), βtubulin (C4585, 

Sigma) and GAPDH (AB374, Chemicon). 

 

Constructs and luciferase assays 

Expression plasmids encoding miR-208a, and miR-208b were described previously 

(see Materials and Methods in Chapter 4). A modified pGL3-control vector (pGL3cm) 

for 3’ UTR-luciferase reporter assays was described previously (12). The luc-

CACNB2 4x reporter construct was generated by annealing oligionucleotides 

encoding two mouse miR-208 target sites separated by 10 bp and cloning them in 

tandem downstream of the luciferase gene. To confirm miRNA expression in the 

reporter assays, we employed miRNA sensor constructs consisting of perfectly 

complementary sequences to miR-208a directly downstream of the luciferase gene. 

Reporter assays were conducted using human embryonic kidney 293T cells in 24 

well plates. All experiments were repeated in triplicate at least three times. 

Transfections were performed with 50 ng of reporter and 50, 100, 150 ng of miRNA 

plasmids (Fugene6, Roche). A CMV-lacZ reporter was used as an internal control to 

normalize for transfection efficiencies, and total amount of DNA per well was kept 

constant by adding the corresponding amount of empty expression vector. 

 

Statistics  

Values are reported as means ± SEM, unless indicated otherwise. The two-tailed 

Mann-Whitney test was used for comparing two means (Prism; GraphPad). Values 

of P < 0.05 were considered statistically significant.  
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Results 

miR-208a overexpression induced atrioventricular conduction blocks 

We overexpressed miR-208a specifically in the heart under the control of the α-

myosin heavy chain (αMHC) promoter using a bigenic system consisting of a 

transgene encoding miR-208a downstream of a tetracycline-responsive promoter 

(TRE-miR-208a) and a second transgene encoding the tetracycline-controlled 

transactivator protein driven by the αMHC promoter (αMHC-tTA) (see Chapter 4 and 

(15)). In this study, heterozygous mice carrying the αMHC-tTA and TRE-miR-208a 

transgenes (simply referred to hereafter as ‘miR-208a Tg’) were compared to mice 

heterozygous for αMHC-tTA (referred to hereafter as ‘control’). Northern blot 

analysis previously showed miR-208a levels are ~4-fold higher in miR-208a Tg 

hearts compared to control hearts (see Chapter 4, Fig. 4.2).  

We previously observed that miR-208a overexpression induced hypertrophic 

growth accompanied by decreased cardiac function (see Chapter 4, Fig. 4.2). To 

determine whether miR-208a overexpression disturbed other aspects of heart 

physiology, we recorded surface electrocardiograms (ECGs) of 1, 4, and 6-month 

old miR-208a Tg and control mice (Table 5.1). Analysis of the ECG recordings 

showed significantly prolonged PR intervals in miR-208a Tg mice compared with 

control mice at all time points (Table 5.1 and Fig. 5.1a). No significant differences 

were detected in other ECG parameters, such as QRS, QT, or QTc intervals (Table 

5.1). The PR interval is the period of time between the onset of atrial depolarization 

and the onset of ventricular depolarization; abnormal prolongation of the PR interval 

is clinically termed first-degree AV block. Interestingly, approximately 30% of the 
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miR-208a Tg mice suffer Mobitz II second-degree AV blocks in which one or more of 

the electrical impulses from the atria unexpectedly fail to pass through the AV node 

to the ventricles, causing failures in ventricular contraction (Fig. 5.1b,c). Second-

degree AV blocks appear on the ECG tracings as P-waves (atrial depolarizations) 

without subsequent occurrence of QRS complexes (ventricular depolarizations) (Fig. 

5.1b). Taken together, the development of progressive heart blocks in miR-208a Tg 

mice demonstrates that miR-208a overexpression causes cardiac conduction 

abnormalities and suggests miR-208a regulates cardiac conduction system 

components.  

 

miR-208a is necessary for normal cardiac conduction 

We and others previously found that genetic deletion of miR-208a does not affect 

viability or cause any readily apparent gross morphological heart defects, but is 

required for stress-dependent heart growth (Chapter 4 and (10)). To determine 

whether miR-208a is also required during normal conditions, we monitored heart 

function of 4-month old miR-208-/- and wild type littermates by surface ECGs and 

found that miR-208a is necessary for proper cardiac conduction. Similar to miR-208a 

Tg animals, surface ECG analysis revealed prolonged PR intervals in miR-208a-/- 

mice compared with wild type animals (Table 5.2). However, approximately 80% of 

the miR-208a-/- mice suffered partial and complete SA blocks accompanied by 

junctional escape rhythms (Fig. 5.2a-c). The junctional escape rhythm is a protective 

mechanism whereby a secondary pacemaker maintains heartbeat rhythm. The SA 

blocks appears on the ECG tracings as missing P-waves preceding QRS complexes 
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(Fig. 5.2a,b). We also recorded and analyzed surface ECGs using 1-month old 

animals and obtained similar results (data not shown). Collectively, the ECG 

analyses of miR-208a transgenic and null mice demonstrate that miR-208a is an 

important component of the cardiac conduction system.  

 

miR-208a regulates expression of cardiac connexins 

Normal conduction is mediated by the orderly propagation of electrical impulses from 

one cardiomyocyte to the next. The connexin proteins are gap junction proteins 

required for this propagation and their altered expression is a common feature in a 

variety of chronic human heart diseases associated with increased risk of 

arrhythmias and sudden death (16-19). Mouse models have demonstrated that 

deficiencies in either connexin 43 (Cx43) or connexin 40 (Cx40) results in cardiac 

conduction defects (20). Cx43 is expressed in cardiomyocytes throughout the heart, 

whereas Cx40 expression is restricted to the atria and the specialized 

cardiomyocytes that constitute the His bundle and its branches as well as the 

Purkinje fibers (20). We hypothesized that abnormal connexin protein expression 

might account for, at least in part, the cardiac conduction defects induced by altered 

miR-208a levels. 

 We evaluated the expression of Cx43 and Cx40 in hearts from 4-month old 

miR-208a Tg and miR-208a-/- mice. Western blot analysis of hearts from miR-208a 

Tg mice showed increased Cx43 and Cx40 protein levels compared with control 

hearts (Fig. 5.3a). Conversely, miR-208a-/- hearts showed decreased Cx43 and 

Cx40 protein levels compared with wild type hearts (Fig. 5.3b). Transcript analysis 
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by real-time PCR did not reveal any readily apparent changes to Cx43 transcript 

levels in either miR-208a Tg hearts or miR-208a-/- hearts, nor were Cx40 transcript 

levels affected in miR-208a Tg hearts (Fig. 5.3c,d). However, Cx40 transcript levels 

were markedly decreased in miR-208-/- hearts compared with wild type (Fig. 5.3d), 

indicating that miR-208a is required for Cx40 transcription. We also observed Cx43 

expression by fluorescent immunohistochemistry and found Cx43 proteins localized 

to the cell membrane in both miR-208a Tg and miR-208a-/- hearts (Fig. 5.4a,b).  The 

complementary phenotypes of increased or decreased connexin protein levels 

resulting from respective increased or decreased miR-208a levels indicates that 

miR-208a is required to maintain proper levels of connexin proteins in the adult 

mouse heart.  

 

Loss of miR-208a abolished expression of Hop in the heart 

The transcription factor homeodomain-only protein (Hop) is highly expressed within 

the adult murine conduction system and its genetic deletion resulted in postnatal 

conduction defects accompanied by a loss of Cx40 expression (21). Therefore, we 

speculated that the decreased Cx40 expression observed in miR-208a-/- hearts 

might partially stem from reduced Hop expression. We evaluated Hop transcripts 

levels by real-time PCR using hearts from 4-month old animals and found Hop 

expression abolished in miR-208a-/- mice (Fig. 5.5a). Accordingly, Hop protein was 

also undetectable in miR-208a-/- hearts (Fig. 5.5b). While decreased Hop levels in 

miR-208a-/- hearts might account for decreased Cx40 expression, the genetic 

deletion of Hop does not reportedly affect Cx43 expression (21). Furthermore, Cx40 
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and Cx43 expression levels increased in miR-208a Tg hearts without any 

accompanying changes to Hop expression levels (Figs. 5.3a,c, 5.5c and data not 

shown). Taken together, these observations indicate that Hop is not directly targeted 

by miR-208a and suggests that an undetermined miR-208a regulatory target exists 

upstream of Hop, Cx43, and Cx40.  

 

miR-208a regulates GATA4 expression 

The cardiac transcription factor GATA4 is expressed within the cardiac conduction 

system of the adult heart and was previously shown to transactivate the promoter of 

Cx40 (23, 24). The 3’ untranslated region (3’UTR) of GATA4 mRNA contains a 

predicted miR-208a target site (25), thus we predicted that the miR-208a gain- and 

loss-of-function phenotypes might partially result from irregular GATA4 protein 

expression. In support, the protein levels of GATA4 in 4-month old hearts from miR-

208a Tg compared with control mice appeared decreased, while no changes in 

transcript level were observed (Fig. 5.5b). Conversely, GATA4 protein levels were 

increased in hearts from miR-208-/- mice compared with wild type mice (Fig. 5.5d). 

No changes in GATA4 transcript levels were observed in miR-208a Tg or miR-208-/- 

mice, indicting that the changes in GATA4 expression occurs post-transcriptionally 

(Fig. 5.5a,c).  Together, these observations indicate that GATA4 is post-

transcriptionally regulated by miR-208a. Further analyses are needed to confirm 

whether this regulation is conferred through the predicted miR-208a target site 

located within the 3’UTR of GATA4. GATA4 and Nkx2.5 were previously shown to 

synergistically activate Cx40 expression, while Tbx5 suppresed such interaction 
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(24). Therefore, it would also be interesting to test whether the counterintuitive 

increase in Cx40 expression that is accompanied by decreased GATA4 expression 

in those miR-208a Tg animals could be explained by simultaneous expression 

changes in GATA4 cofactors or repressors.  

 

Increased miR-208a levels decreased Hsp70 expression in the heart 

The cytosolic heat shock protein 70 (Hsp70) facilitates degradation of Cx43 by the 

proteosome in cardiomyocytes under normal and stress conditions (22). To 

determine whether miR-208a overexpression might alter Hsp70 expression, real-

time PCR analysis was applied and found Hsp70 transcript levels significantly 

decreased in miR-208a Tg hearts compared with controls (Fig. 5.5c). Accordingly, 

western blot analysis showed Hsp70 protein levels down-regulated in miR-208a Tg 

hearts compared with controls (Fig. 5.5d). This data suggests that increased Cx43 

and Cx40 protein levels in miR-208a Tg animals might stem from reduced protein 

turnover as the result of decreased Hsp70 levels. In agreement with deficient post-

transcriptional regulation, no significant changes to Cx43 or Cx40 transcript levels 

were detected by real-time PCR analysis of miR-208a Tg hearts compared with 

controls (Fig. 5.3c). No changes to Hsp70 transcript or protein levels were detected 

in miR-208-/- hearts compared with wild type hearts (Fig. 5.5a,b), indicating that miR-

208a is not required to maintain Hsp70 expression levels.  
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miR-208a directly regulates L-type calcium ion channel CACNB2 expression 

L-type calcium ion channels are heterotetrameric complexes that allow for 

depolarization induced calcium influx into the cytosol during excitation-contraction 

coupling (26). During excitation-contraction coupling in cardiomyocytes, voltage-

gated L-type calcium channels are opened in response to transient action potentials 

and allow calcium ions to enter the cell. This increase in intracellular calcium occurs 

at localized regions near calcium-sensitive ryanondine receptors, which become 

activated and release large amounts of calcium stored within the sacroplasmic 

reticulum into the cytoplasm. The resulting surge of cytosolic calcium binds troponin-

C resulting in a conformational that allows actin-myosin binding and sarcomeric 

contraction. Thus, L-type calcium channels are responsible for providing the ‘trigger’ 

calcium required for excitation-contraction coupling.  

L-type calcium channels are composed of at least three subunits: α1, β, and 

α2/δ. The β subunit encoded by CACNB2 modulates calcium channel activity in the 

heart and enables trafficking of the pore forming α subunit to the cell surface by 

masking an endoplasmic retention signal (27). Recently, a sequence variant in 

CACNB2 was clinically linked to an inherited arrhythmia associated with sudden 

cardiac death (28). The 3’ UTR of CACNB2 harbors a predicted miR-208a target site 

(25), therefore we predicted that miR-208a might fine-tune CACNB2 expression and 

that overexpression or deletion of miR-208a might result in aberrant CACNB2 levels 

and lead to arrhythmogenesis.  

The predicted miR-208a target site is evolutionarily conserved in mammals 

and is located approximately 600 bp downstream of the CACNB2 stop codon (Fig. 
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5.6a). We previously cloned genomic fragments encoding miR-208a, miR-208b, and 

miR-124 into plasmids for overexpression in cultured cells (see Chapter 4). We 

hypothesized that similar sequence and identical seed region of miR-208a and miR-

208b would enable them to repress similar sets of genes, while miR-124 is a brain-

specific miRNA and served as a control miRNA for specificity. In order to directly test 

whether miR-208a could repress the expression of CACNB2, we constructed four 

repeats of the CACNB2 target sequence downstream of a luciferase gene (luc-

CACNB2 4x) and co-transfected with miRNA expression plasmids. Consistent with 

our prediction of miR-208a-mediated regulation, co-transfection of either miR-208a 

or miR-208b represses luc-CACNB2 4x luciferase activity (Fig. 5.6b). Co-

transfection of miR-124 and luc-CACNB2 4x plasmids resulted to no decrease in 

luciferase activity, confirming that miR-208a and miR-208b specifically target the 

CACNB2 3’ UTR (Fig. 5.6b).  

 
Discussion 

 

In this chapter, we show that miR-208a is an essential regulator of the cardiac 

conduction system. Our experiments demonstrate that miR-208a is sufficient to 

induce cardiac arrhythmias, while miR-208a is also required to maintain proper 

cardiac conduction. Increased Cx43 and Cx40 expression accompany the 

arrhythmias induced in the adult heart by miR-208a overexpression. Conversely, 

deletion of miR-208a resulted in decreased Cx43 and Cx40 expression, providing 

genetic evidence that miR-208a is an important regulatory component of the cardiac 

conduction system.  
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An important part of our study is the finding that Hop expression is abolished 

in miR-208a-/- hearts. Genetic deletion of miR-208a partially phenocopies reports of 

Hop-/- mice in that adult hearts from both knockout lines appear structurally normal 

but suffer arrhythmias accompanied by decreased Cx40 transcript and protein levels 

(21). However, differences also exist between those two knockout lines: 

approximately half of the Hop-/- mice are embryonic lethal and deletion of Hop did 

affect Cx43 expression, while miR-208a mice are fully viable and have reduced 

Cx43 expression. The arrhythmias that present also differ: the conduction defect in 

Hop-/- mice occurs below the AV node, while the miR-208a-/- conduction defect 

appears to occur above the AV node. How the arrhythmias in Hop-/- and miR-208a-/- 

animals manifest might reflect their differential expression of connexin proteins.  

We and others previously found that miR-208a is both sufficient and 

necessary for cardiac hypertrophy (see Chapter 4 and (10)). Our present finding that 

miR-208a is required to maintain Hop expression may help to explain the blunted 

hypertrophic growth response of miR-208a-/- hearts (10). Unlike most homeobox 

transcription factors, Hop does not bind DNA directly. Instead, Hop recruits histone 

deacetylase 2 (HDAC2) and inhibits the transcriptional activity of serum response 

factor (SRF) in cardiomyocytes (29-31). Interestingly, Hop overexpression was 

reported to induce cardiac hypertrophy and is proposed to inhibit an antihypertrophy 

gene program in the adult heart (31). A potential explanation for the inability of miR-

208a-/- hearts to undergo hypertrophic may stem from the lack of Hop protein 

available to repress this antihypertrophy gene program. Indeed, we and others have 

proposed that miR-208a fine-tunes the expression of so-called antihypertrophy 
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genes, which may include miR-208a targets Thrap1 and myostatin (see Chapter 4 

and (10, 32)). Further studies to understand how miR-208a regulates the expression 

of Hop and connexin proteins will likely shed light on the biology of cardiac 

hypertrophy and conduction.  

Our findings suggest that miR-208a post-transcriptionally represses the 

expression of CACNB2, a cardiac subunit of the L-type calcium ion channel (Fig. 

5.5b). L-type calcium channels are critical for excitation-contraction coupling and 

defects affecting their function have been clinically linked to arrhythmias (28, 33). 

We speculate that modification of miR-208a levels directly affects CACNB2 

expression, which participates in the arrhythmogenesis occurring in the miR-208a 

gain- and loss-of-function animals. While experimental validation of the predicted 

miR-208a target within the CACNB2 3’ UTR using an in vitro reporter assay is 

useful, the confirmation of such repression in a whole animal system remains 

untested. While we have previously used miR-208a Tg and miR-208-/- mice to 

support direct miR-208a regulation of Thrap1 and myostatin (see Chapter 4), 

presently no antibodies of sufficient quality against CACNB2 are commercially 

available at present to enable such analysis. It is our hope to develop or acquire this 

regent in the future to determine whether miR-208a-mediated regulation of CACNB2 

is relevant in vivo. 

Recent studies have pointed to two miRNAs, miR-1 and miR-133, which are 

implicated in cardiac development, muscle proliferation and differentiation, as 

regulating components of the cardiac conduction system and having the potential to 

induce arrhythmias (7, 8). Our results, which provide genetic evidence that miR-
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208a is an important regulatory component of the cardiac conduction system, adds 

to the growing cardiovascular genetic network in which microRNAs are becoming 

known as critical players for the regulation of cardiomyocyte hypertrophy and cardiac 

conduction. Whatever the precise molecular mechanisms underlying the miR-208a 

conduction defect or its role in the hypertrophic growth response turns out to be, it’s 

clear that miR-208a is a component of very complex genetic network work that will 

take much effort to fully understand. 
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Figure 5.1
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Second Degree AV Block Penetrance

Figure 5.1 miR-208a overexpression is sufficient to induce 
arrhythmias. (a) Representative waveforms in lead I indicate 
the location and relative duration of PR intervals in 4-month 
old miR-208a transgenic and control mice. (b) Representative 
electrocardiograms in lead I of 4-month old miR-208a 
transgenic and control mice. Asterisks mark missing QRS 
complexes and indicate occurrences of second-degree 
atrioventricular block. (c) The number and percentage of 
second-degree atrioventricular (AV) blocks that were detected 
in 1, 4, and 6-month old miR-208a transgenic and control 
mice. 
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Figure 5.2
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Figure 5.2 miR-208a is necessary for proper cardiac 
conduction. (a) Representative waveforms in lead I from miR-
208a null (-/-) and wild type (+/+) mice indicate the normal 
position of the P-wave. (b) Representative electrocardiograms 
in lead I from 4-month old miR-208a null (-/-) and wild type 
(+/+) mice. Asterisks mark presence of P-wave. (c) The 
number and percentage of 4-month old miR-208a null (-/-) and 
wild type (+/+) mice with second-degree sinoatrial (SA) blocks 
during electrocardiographic screening. 
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Figure 5.3
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Figure 5.3 miR-208a regulates expression of cardiac 
connexins. Western blot analyses of connexin 43 (Cx43) and 
connexin 40 (Cx40) proteins using hearts from 4-month old (a) 
miR-208a transgenic and control mice or (b) wild type (+/+) 
and miR-208a null (-/-) mice. βtubulin serves as loading 
control. Transcripts for Cx43 and Cx40 were detected by real-
time PCR in hearts from (c) miR-208a transgenic and control 
mice (n = 5 each genotype) or (d) wild type (+/+) and miR-
208a null (-/-) mice (n = 5 each genotype). Values presented 
as the fold change in expression ± SEM. *, P < 0.01.  

βtubulin
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Figure 5.4
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Figure 5.4 Histological sections were stained for Cx43 
proteins (green) and WGA-TRITC (red) was used to visualize 
cell borders in (a) miR-208a transgenic and control mice or (b) 
wild type (+/+) and miR-208a null (-/-) mice. DAPI staining 
(blue) used to visualize nuclei. 
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Figure 5.5
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Figure 5.5 miR-208a overexpression and deletion causes 
aberrant cardiac gene expression (a) Transcripts for Hop, 
Hsp70, and GATA4  were detected by real-time PCR in hearts 
from wild type (+/+) and miR-208a null (-/-) mice (n = 5 each 
genotype). Values presented as the fold change in expression 
± SEM. *, P < 0.01. (b) Western blot analyses of Hop, Hsp70, 
and GATA4 p roteins using hearts from 4-month old wild type 
(+/+) and miR-208a null (-/-) mice. βtubulin serves as loading 
control. (c) Transcripts for Hop, Hsp70, and GATA4  were 
detected by real-time PCR in hearts from miR-208a 
transgenic and control mice (n = 5 each genotype). Values 
presented as the fold change in expression ± SEM. *, P < 
0.01. (d) Western blot analyses of Hsp70 and GATA4  proteins 
using hearts from 4-month old miR-208a transgenic and 
control mice. βtubulin serves as loading control. 

βtubulin
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Figure 5.6
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Figure 5.6 miR-208a and miR-208b repress the expression of 
CACNB2. (a) Sequence alignment between miR-208a and 
evolutionarily conserved candidate binding site in the 3’ UTR 
of CACNB2. Asterisks denote sequence conservation.  
(b) 293T cells were transfected with a luciferase reporter 
designed to detect miR-208a expression (208a sensor), along 
with the indicated miRNA expression plasmids and luciferase 
activity determined. A luciferase reporter with four repeats of 
the putative CACNB2 binding site was also co-transfected 
with indicated miRNA expression plasmids and luciferase 
activity determined. Values are luciferase activity ± SD relative 
to the luciferase activity of reporters co-transfected with empty 
expression plasmid.  
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Table 5.1

Summary of miR-208a Transgenic Surface ECG Findings

1 Month
Control (n=6) 453 ± 26 34 ± 1 9 ± 1 51 ± 1 44 ± 1

208a Tg (n=7) 405 ± 27 49 ± 3** 11 ± 1 53 ± 1 43 ± 2
4 Month

Control (n=11) 500 ± 24 38 ± 1 9 ± 0 48 ± 2 43 ± 1
208a Tg (n=16) 460 ± 17 46 ± 2** 9 ± 1 50 ± 2 43 ± 1

6 Month
Control (n=6) 425 ± 25 40 ± 2 10 ± 1 54 ± 2 45 ± 2

208a Tg (n=7) 436 ± 15 51 ± 3* 11 ± 1 59 ± 2 50 ± 2
*P < 0.05, **P < 0.01

QTc (ms)HR (bpm) PR (ms) QRS (ms) QT (ms)
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Summary of miR-208a Knockout Surface ECG Findings

4 Month
WT (n=8) 491 ± 22 37 ± 1 9 ± 0 53 ± 1 48 ± 1

208a    (n=10) 503 ± 22 49 ± 1* 11 ± 1 50 ± 2 54 ± 2
*P < 0.001

QTc (ms)HR (bpm) PR (ms) QRS (ms) QT (ms)

Table 5.2

-/-

166



References
 
 

1.  Mikawa, T. and R. Hurtado (2007) Development of the cardiac conduction 
system. Semin Cell Dev Biol 18, 90-100 

 
2.  Rosamond, W., K. Flegal, K. Furie, A. Go, K. Greenlund, N. Haase, S.M. 

Hailpern, M. Ho, V. Howard, B. Kissela, S. Kittner, D. Lloyd-Jones, M. 
McDermott, J. Meigs, C. Moy, G. Nichol, C. O'Donnell, V. Roger, P. Sorlie, J. 
Steinberger, T. Thom, M. Wilson, and Y. Hong (2008) Heart disease and 
stroke statistics--2008 update: a report from the American Heart 
Association Statistics Committee and Stroke Statistics Subcommittee. 
Circulation 117, e25-146 

 
3.  Mandel, E.M., T.E. Callis, D.Z. Wang, and F.L. Conlon (2005) 

Transcriptional mechanisms of congenital heart disease. Drug Discov 
Today 2, 33-38 

 
4.  Filipowicz, W., S.N. Bhattacharyya, and N. Sonenberg (2008) Mechanisms 

of post-transcriptional regulation by microRNAs: are the answers in 
sight? Nat Rev Genet 9, 102-14 

 
5.  Zhao, Y., J.F. Ransom, A. Li, V. Vedantham, M. von Drehle, A.N. Muth, T. 

Tsuchihashi, M.T. McManus, R.J. Schwartz, and D. Srivastava (2007) 
Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in 
mice lacking miRNA-1-2. Cell 129, 303-17 

 
6.  Zhao, Y., E. Samal, and D. Srivastava (2005) Serum response factor 

regulates a muscle-specific microRNA that targets Hand2 during 
cardiogenesis. Nature 436, 214-20 

 
7.  Xiao, J., X. Luo, H. Lin, Y. Zhang, Y. Lu, N. Wang, Y. Zhang, B. Yang, and Z. 

Wang (2007) MicroRNA miR-133 represses HERG K+ channel expression 
contributing to QT prolongation in diabetic hearts,. J Biol Chem 282, 
12363-7 

 
8.  Yang, B., H. Lin, J. Xiao, Y. Lu, X. Luo, B. Li, Y. Zhang, C. Xu, Y. Bai, H. 

Wang, G. Chen, and Z. Wang (2007) The muscle-specific microRNA miR-1 
regulates cardiac arrhythmogenic potential by targeting GJA1 and 
KCNJ2. Nat Med 13, 486-91 

 
9.  Care, A., D. Catalucci, F. Felicetti, D. Bonci, A. Addario, P. Gallo, M.L. Bang, 

P. Segnalini, Y. Gu, N.D. Dalton, L. Elia, M.V. Latronico, M. Hoydal, C. 
Autore, M.A. Russo, G.W. Dorn, 2nd, O. Ellingsen, P. Ruiz-Lozano, K.L. 
Peterson, C.M. Croce, C. Peschle, and G. Condorelli (2007) MicroRNA-133 
controls cardiac hypertrophy. Nat Med 13, 613-8 

167



 

 
 

 
10.  van Rooij, E., L.B. Sutherland, X. Qi, J.A. Richardson, J. Hill, and E.N. Olson 

(2007) Control of stress-dependent cardiac growth and gene expression 
by a microRNA. Science 316, 575-9 

 
11.  Mitchell, G.F., A. Jeron, and G. Koren (1998) Measurement of heart rate 

and Q-T interval in the conscious mouse. Am J Physiol 274, H747-51 
 
12.  Chen, J.F., E.M. Mandel, J.M. Thomson, Q. Wu, T.E. Callis, S.M. Hammond, 

F.L. Conlon, and D.Z. Wang (2006) The role of microRNA-1 and 
microRNA-133 in skeletal muscle proliferation and differentiation. Nat 
Genet 38, 228-33 

 
13.  Callis, T.E., D. Cao, and D.Z. Wang (2005) Bone morphogenetic protein 

signaling modulates myocardin transactivation of cardiac genes. Circ 
Res 97, 992-1000 

 
14.  Pandya, K., H.S. Kim, and O. Smithies (2006) Fibrosis, not cell size, 

delineates beta-myosin heavy chain reexpression during cardiac 
hypertrophy and normal aging in vivo. Proc Natl Acad Sci U S A 103, 
16864-9 

 
15.  Passman, R.S. and G.I. Fishman (1994) Regulated expression of foreign 

genes in vivo after germline transfer. J Clin Invest 94, 2421-5 
 
16.  Dupont, E., T. Matsushita, R.A. Kaba, C. Vozzi, S.R. Coppen, N. Khan, R. 

Kaprielian, M.H. Yacoub, and N.J. Severs (2001) Altered connexin 
expression in human congestive heart failure. J Mol Cell Cardiol 33, 359-
71 

 
17.  Kaprielian, R.R., M. Gunning, E. Dupont, M.N. Sheppard, S.M. Rothery, R. 

Underwood, D.J. Pennell, K. Fox, J. Pepper, P.A. Poole-Wilson, and N.J. 
Severs (1998) Downregulation of immunodetectable connexin43 and 
decreased gap junction size in the pathogenesis of chronic hibernation 
in the human left ventricle. Circulation 97, 651-60 

 
18.  Kostin, S., M. Rieger, S. Dammer, S. Hein, M. Richter, W.P. Klovekorn, E.P. 

Bauer, and J. Schaper (2003) Gap junction remodeling and altered 
connexin43 expression in the failing human heart. Mol Cell Biochem 242, 
135-44 

 
19.  Sepp, R., N.J. Severs, and R.G. Gourdie (1996) Altered patterns of cardiac 

intercellular junction distribution in hypertrophic cardiomyopathy. Heart 
76, 412-7 

 

168



 

 
 

20.  Lo, C.W. (2000) Role of gap junctions in cardiac conduction and 
development: insights from the connexin knockout mice. Circ Res 87, 
346-8 

 
21.  Ismat, F.A., M. Zhang, H. Kook, B. Huang, R. Zhou, V.A. Ferrari, J.A. Epstein, 

and V.V. Patel (2005) Homeobox protein Hop functions in the adult 
cardiac conduction system. Circ Res 96, 898-903 

 
22.  Laing, J.G., P.N. Tadros, K. Green, J.E. Saffitz, and E.C. Beyer (1998) 

Proteolysis of connexin43-containing gap junctions in normal and heat-
stressed cardiac myocytes. Cardiovasc Res 38, 711-8 

 
23.  Takebayashi-Suzuki, K., L.B. Pauliks, Y. Eltsefon, and T. Mikawa (2001) 

Purkinje fibers of the avian heart express a myogenic transcription 
factor program distinct from cardiac and skeletal muscle. Dev Biol 234, 
390-401 

 
24.  Linhares, V.L., N.A. Almeida, D.C. Menezes, D.A. Elliott, D. Lai, E.C. Beyer, 

A.C. Campos de Carvalho, and M.W. Costa (2004) Transcriptional 
regulation of the murine Connexin40 promoter by cardiac factors Nkx2-
5, GATA4 and Tbx5. Cardiovasc Res 64, 402-11 

 
25.  Griffiths-Jones, S., H.K. Saini, S. van Dongen, and A.J. Enright (2008) 

miRBase: tools for microRNA genomics. Nucleic Acids Res 36, D154-8 
 
26.  Bodi, I., G. Mikala, S.E. Koch, S.A. Akhter, and A. Schwartz (2005) The L-

type calcium channel in the heart: the beat goes on. J Clin Invest 115, 
3306-17 

 
27.  Bichet, D., V. Cornet, S. Geib, E. Carlier, S. Volsen, T. Hoshi, Y. Mori, and M. 

De Waard (2000) The I-II loop of the Ca2+ channel alpha1 subunit 
contains an endoplasmic reticulum retention signal antagonized by the 
beta subunit. Neuron 25, 177-90 

 
28.  Antzelevitch, C., G.D. Pollevick, J.M. Cordeiro, O. Casis, M.C. Sanguinetti, Y. 

Aizawa, A. Guerchicoff, R. Pfeiffer, A. Oliva, B. Wollnik, P. Gelber, E.P. 
Bonaros, Jr., E. Burashnikov, Y. Wu, J.D. Sargent, S. Schickel, R. 
Oberheiden, A. Bhatia, L.F. Hsu, M. Haissaguerre, R. Schimpf, M. Borggrefe, 
and C. Wolpert (2007) Loss-of-function mutations in the cardiac calcium 
channel underlie a new clinical entity characterized by ST-segment 
elevation, short QT intervals, and sudden cardiac death. Circulation 115, 
442-9 

 
29.  Chen, F., H. Kook, R. Milewski, A.D. Gitler, M.M. Lu, J. Li, R. Nazarian, R. 

Schnepp, K. Jen, C. Biben, G. Runke, J.P. Mackay, J. Novotny, R.J. 
Schwartz, R.P. Harvey, M.C. Mullins, and J.A. Epstein (2002) Hop is an 

169



 

 
 

unusual homeobox gene that modulates cardiac development. Cell 110, 
713-23 

 
30.  Shin, C.H., Z.P. Liu, R. Passier, C.L. Zhang, D.Z. Wang, T.M. Harris, H. 

Yamagishi, J.A. Richardson, G. Childs, and E.N. Olson (2002) Modulation of 
cardiac growth and development by HOP, an unusual homeodomain 
protein. Cell 110, 725-35 

 
31.  Kook, H., J.J. Lepore, A.D. Gitler, M.M. Lu, W. Wing-Man Yung, J. Mackay, 

R. Zhou, V. Ferrari, P. Gruber, and J.A. Epstein (2003) Cardiac hypertrophy 
and histone deacetylase-dependent transcriptional repression mediated 
by the atypical homeodomain protein Hop. J Clin Invest 112, 863-71 

 
32.  van Rooij, E., N. Liu, and E.N. Olson (2008) MicroRNAs flex their muscles. 

Trends Genet 24, 159-66 
 
33.  Splawski, I., K.W. Timothy, L.M. Sharpe, N. Decher, P. Kumar, R. Bloise, C. 

Napolitano, P.J. Schwartz, R.M. Joseph, K. Condouris, H. Tager-Flusberg, 
S.G. Priori, M.C. Sanguinetti, and M.T. Keating (2004) Ca(V)1.2 calcium 
channel dysfunction causes a multisystem disorder including 
arrhythmia and autism. Cell 119, 19-31 

 
 

170



CHAPTER 6 

CONCLUSIONS AND FUTURE DIRECTIONS 



 

This dissertation describes original research focused upon roles for transcription 

factors and microRNAs in coordinating cardiac gene expression during heart 

development and disease. Genetically engineered mouse models were developed 

and characterized using diverse molecular, biochemical, histological, and 

physiological approaches, and protein structure-function and gene expression 

studies were conducted. The key findings include discovery of a signaling pathway 

that regulates myocardin transactivation of cardiac genes and the identification of a 

microRNA sufficient to induce pathological cardiac remodeling and necessary for 

proper cardiac conduction. Conclusions and potential future directions to extend 

those findings are summarized below. 

 

BMP SIGNALING AND MYOCARDIN 

The BMP signaling transduction pathway, where Smad1 plays an important role in 

transmitting signals from the plasma membrane to the nucleus, is essential for 

cardiac development (1). Since Smad proteins are ubiquitously expressed, it is not 

clear how the BMP signaling pathway specifically regulates cardiac development. As 

described in Chapter 2, my studies demonstrate myocardin transactivation of cardiac 

gene expression is modulated by BMP signaling through a protein-protein interaction 

between myocardin and BMP downstream effector Smad1, providing another novel 

mechanism in which myocardin is integrated into an important signaling pathway to 

regulate gene expression. Intriguingly, BMP signaling was also able to induce 

expression of myocardin, suggesting a potential positive feedback mechanism. 
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These results suggest myocardin may serve as a cardiac-specific cofactor of Smad1 

to convey the BMP signaling pathway to cardiac lineages 

Key Results 

• Smad1 enhances myocardin transactivation of cardiac gene expression. 

• SRF binding site CArG is necessary for such interaction, whereas Smad 

Binding Elements are not.  

• Myocardin and Smad1 directly interact, and such physical interaction is 

important for their synergistic activation of cardiac promoters.  

• BMP treatment induces myocardin expression in cardiomyocytes. 

 

Future Directions 

In order to better define the molecular nature of myocardin-Smad1 interaction, 

systematic mapping of the regions/domains of myocardin and Smad1 mediate their 

association could achieved using a combination of coimmunoprecipitation and GST 

fusion protein pull-down assays. Site-directed mutagenesis could also be applied to 

further define the essential domains/residues required for these protein-protein 

interactions.  

  The role of Smad1 phosphorylation in the interaction between Smad1 and 

myocardin is another important issue for further investigation. Smad1 is 

phosphorylated directly by BMP receptors on serine residues in its carboxy-terminus 

and becomes transcriptional active. Mutations of those serine residues are reported 

to prevent Smad1 accumulation in the nucleus and loss of its transcriptional activity 

(2). Does Smad1 phosphorylation play a role in the synergistic activation of cardiac 
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genes by myocardin and Smad1? To address this question, phospho-defective 

Smad1 mutants could be tested for functional and/or physical interaction with 

myocardin using coimmunoprecipiation and luciferase reporter assays. 

  It is not yet known whether the Smad1 and myocardin interaction is BMP-

responsive. This might be determined through coimmunoprecipation assays that 

assess whether the endogenous physical interaction between Smad1 and 

myocardin is increased by BMP treatment in cardiomyocytes.  

  Finally and most crucially, the biological relevance of the molecular interaction 

between myocardin and Smad1 is unknown. This issue could be resolved in mouse 

models using gene replacement strategies to introduce specific mutations into 

myocardin and/or Smad1 at sites found necessary for their physical and functional 

interaction in vitro. If myocardin is indeed a tissue-specific interpreter of BMP 

signaling important for cardiac gene expression during cardiogenesis, such genetic 

dissection of the Smad1-myocardin interaction would provide much-needed insight 

into the mechanisms underlying how extracellular signals initiated by cytokines or 

growth factors can activate gene expression programs in a tissue/organ-specific 

manner. 

 

MIR-208 AND ITS REGULATORY ROLES IN THE HEART 

miRNAs are an evolutionarily conserved class of small noncoding RNAs known to 

regulate translation of target messenger RNAs in animals (3). Hundreds of miRNA 

genes exist within the mammalian genomes and roles for miRNAs are suggested in 

remarkably diverse biological processes, however most miRNAs remain 
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uncharacterized. As described in Chapters 4 and 5, gain- and loss-of-function 

mouse models were developed to study the role of miR-208a in the heart. Analyses 

of these mice suggest the miR-208 family act as a fulcrum in the balance between 

normal and hypertrophic growth. Furthermore, we found miR-208a necessary for 

maintenance of cardiac conduction in the adult mouse heart. 

 

Key Points 

• The miR-208 family, consisting of miR-208a and miR-208b, are differentially 

expressed during heart development, paralleling the expression of their 

respective host genes αMHC and βMHC. The expression of miR-208a and 

miR-208b expression are co-regulated with their host genes in response to 

hormonal signaling and pathological stress.  

• Cardiac overexpression of miR-208a induced hypertrophic growth and 

cardiac arrhythmias, while its genetic deletion showed miR-208a necessary 

for proper cardiac conduction. 

• Overexpression of miR-208a induced βMHC and miR-208b expression, as 

well as gap junction proteins Cx40 and Cx43. Loss of miR-208a resulted in 

lowered βMHC, Cx40, and Cx43 expression, providing complementary 

genetic evidence that miR-208a is a regulator of those genes.  

• Both miR-208a and miR-208b share similar sequence identity and appear to 

repress the translation of the same regulatory targets, which include Thrap1, 

myostatin, and potentially GATA4 and L-type calcium ion channel subunit 

CACNB2. 
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• Taken together, these studies indicate miR-208a is an important regulator of 

gene expression in the adult heart and is required for proper heart function.  

 

Future Directions 

Does the miR-208 family have a developmental function? 

A burning question remaining for the miR-208 family is whether it has a role in the 

developing heart. In the mouse heart, αMHC and βMHC expression starts during 

formation of the linear heart tube, but during αMHC expression becomes restricted 

to atria during morphogenesis while βMHC is expressed throughout the embryonic 

heart (4). Thus, it is not entirely surprising these studies found miR-208b is the 

predominant miR-208 family member expressed in the developing heart (Fig. 6.1). 

Gene targeting studies that delete miR-208b from its host intron within the βMHC 

gene should be undertaken to identify its potential roles during development.  Is 

miR-208b necessary for proper heart development? In the adult heart miR-208a is 

required for stress-induced cardiac remodeling but is not required under basal 

conditions. It’s difficult to propose a firm hypothesis for miR-208b function from those 

results since the gene expression programs and dynamic processes occurring in 

developing versus adult hearts are different (5, 6). The proposed roles for miRNAs in 

gene expression regulation include fine-tuning the expression of targeted mRNAs 

that produce protein products important for a particular tissue and for reducing 

transcriptional noise by helping turning over ‘mis-expressed’ mRNAs (7-10). 

Microarray analysis for mRNA expression using miR-208a null hearts by the Olson 

laboratory found particular skeletal muscle genes were up-regulated in cardiac 
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tissue in the absence of miR-208a (11). The mRNAs of those up-regulated genes 

don’t harbor predicted miR-208a binding sites, indicating the up-regulation of those 

genes is a secondary effect. This result suggests miR-208a is responsible for fine-

tuning expression of a particular transcriptional network component important for 

differentiating between skeletal versus cardiac gene expression in the adult heart. It 

would be interesting to identify that targeted component and also test whether miR-

208b plays a similar role in the developing heart.  

 

How does miR-208a regulate βMHC expression?  

An interesting finding from the studies described within this dissertation was the up-

regulation of βMHC expression in the hypertrophic miR-208a transgenic hearts, but 

not of the cardiac hormone ANF, which is often up-regulated in hypertrophic hearts. 

The specific up-regulation of βMHC expression suggests miR-208a is involved in a 

regulatory network specific for cell growth, rather than activating a more general 

hypertrophic pathway involving ANF. The basal level of βMHC expression was found 

reduced in miR-208a null hearts, providing further convincing genetic evidence that 

miR-208a is important for βMHC expression. Furthermore, one of the direct targets 

identified for miR-208a is a component of the thyroid hormone signaling pathway, 

which is known to negatively regulate βMHC gene expression through cis-acting 

promoter elements.  

Is Thrap1 the critical miR-208a target responsible for changes in βMHC 

expression? One might address this using a gene replacement strategy that 

destroys the two miR-208a binding sites in the Thrap1 3’ UTR. If Thrap1 is a critical 
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regulator of βMHC expression and is ‘fine-tuned’ by miR-208a, then deletion of miR-

208a binding sites should have the same effect as miR-208a deletion. Our current 

model predicts that deleting the miR-208a binding sites in Thrap1 would raise 

Thrap1 protein levels and decrease βMHC expression. Destruction of those binding 

sites is also expected to relieve Thrap1 repression observed in miR-208a Tg hearts 

and result in normal βMHC expression levels.  

If the hypothesis that Thrap1 is the critical mediator of miR-208a-mediated 

βMHC expression regulation is shown false, then an unidentified regulator of βMHC 

and miR-208a target likely exists. The identification of biologically relevant targets is 

a big issue facing the miRNA field as most researchers currently rely on 

bioinformatic predictions, which contain many false positives but also might miss 

many relevant target sites as the current algorithms search only 3’ UTRs instead of 

the full-length mRNA sequences. The utility of mRNA microarrays to identify targets 

is also somewhat limited as miRNAs may repress the translation of, rather than 

mediate the degradation of, their targeted mRNAs. As discussed in Chapter 3, it’s 

hoped a direct and facile method to identify miRNA target genes, possibly employing 

a proteomics-based strategy or from functional screening of cDNA libraries 

composed of 3’ UTRs of regulatory target genes, will become available and advance 

the miRNA field. 

 Why does βMHC up-regulation in the miR-208a transgenic hearts occur 

predominately in regions of fibrosis? The correlation of βMHC expression and 

fibrosis was recently described in other animal models of cardiac hypertrophy, thus 

the phenomenon is not unique to miR-208a-induced hypertrophy.  The molecular 
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mechanisms and physiological significance of this correlation is unclear. Chronic 

βMHC transgene expression in adult cardiomyocytes alone does not led to fibrosis 

(12), while stretch-induced stress of isolated cardiomyocytes is sufficient to stimulate 

βMHC in the absence of fibrosis (13). The localized structural remodeling caused by 

fibrosis that surrounds cardiomyocytes changes how those cardiomyocytes are 

normally stretched during contraction and might help explain the stimulus for βMHC 

up-regulation in fibrotic areas. The observation that βMHC expression occurred in 

specific regions within miR-208a transgenic hearts suggests that βMHC up-

regulation is a secondary effect as a result of hypertrophic growth and the 

accompanying fibrosis (Fig. 4.4). On the other hand, genetic deletion of miR-208a 

decreased the basal level of βMHC expression (Fig. 4.10), and argues that miR-

208a regulation of βMHC does not result solely from fibrosis. Furthermore, 

overexpression of miR-208a in isolated cardiomyocytes increased βMHC expression 

in the absence of fibrosis (Fig. 4.3). It appears that, at least in vivo, ubiquitous miR-

208a overexpression is sufficient to induce hypertrophic growth, but not βMHC 

expression, throughout the heart. This hypertrophic growth results in fibrotic lesions 

and the cardiomyocytes in those areas consequentially up-regulate βMHC 

expression because of mechanical stress. Although miR-208a overexpression alone 

is insufficient to ubiquitously up-regulate βMHC expression in vivo, miR-208a is 

required to maintain basal βMHC expression in the adult mouse as demonstrated by 

miR-208a null hearts (Fig. 4.10). Future studies, perhaps utilizing laser dissection to 

facilitate the molecular analysis of individual cardiomyocytes specifically in fribrotic 
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regions, are clearly needed to better characterize the βMHC-fibrosis phenomenon 

and may provide additional insight into miR-208a regulation of βMHC expression.  

 

Do miR-208 expression levels and distribution allow for a threshold model?   

The miR-208 regulation of hypertrophy threshold model presented in Chapter 4 

proposed that miR-208a fine-tunes anti-hypertrophy gene expression during basal 

conditions, and that βMHC and its hosted gene miR-208b increases during cardiac 

hypertrophy and assists in the repression of anti-hypertrophy genes (Fig. 4.10).  The 

threshold model stipulates that miR-208a and miR-208b cooperatively promote 

hypertrophic growth by repressing anti-hypertrophy gene expression. Two conditions 

that determine whether this threshold model is viable are 1) the ratio of miR-208 

molecules to target mRNA molecules and 2) whether the miR-208 molecules and 

target mRNA molecules are present in the same cells. Regarding the first issue, the 

average number of miR-208a or miR-208b molecules per heart cell can be 

estimated by quantitative RT-PCR, as could the number of mRNAs of a particular 

target gene (14). However, determining how many genes are targeted is remains 

difficult since the miRNA field currently relies on imperfect prediction algorithms to 

locate potential miRNA target sites, as discussed in Chapter 3. It’s also worth noting 

that most predicted target genes targeted by multiple miRNAs. Despite those 

confounding combinatorial issues, one might predict that if miR-208a molecules 

targets Thrap1 and several other genes under basal conditions, miR-208a is likely 

expressed at a higher copy number than any single targeted mRNA. Because miR-

208a is co-expressed with a core component of the sarcomere (αMHC), it’s not 
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surprising our northern blot analyses show abundant miR-208a expression in the 

adult heart during basal conditions. The high expression level suggests miR-208a is 

present in sufficient quantity to repress or ‘fine-tune’ expression of many target 

genes. During hypertrophy, the increase of miR-208b levels is relatively low 

compared to pre-existing miR-208a levels, however it’s formally possible this 

increase is sufficient to ‘tip the balance’ of miR-208a and miR-208b molecules to 

mRNA target molecules towards repression rather than maintenance. The second 

issue for the threshold model mentioned above is whether miR-208 molecules and 

target mRNA molecules are present in the same cells. The issue is important since 

the heart is not a homogeneous organ. αMHC and therefore miR-208a are 

ubiquitously expressed throughout cardiomyocytes in the adult mouse heart. In 

contrast, we observe that βMHC and miR-208b expression occurs in discrete 

regions associated with fibrosis during hypertrophy, rather than ubiquitously 

throughout the myocardium. Since hypertrophic growth occurs throughout the 

myocardium, this focal expression pattern of miR-208b argues against the threshold 

model since total miR-208 levels are not raised to enable cooperative repression of 

anti-hypertrophy gene expression in all hypertrophic cardiomyocytes. Instead of the 

threshold model, does miR-208a instead act to buffer anti-hypertrophy gene 

expression during basal conditions? Interestingly, mouse hearts that lack miR-208a 

are unable to respond hypertrophic stimuli (11), suggesting that post-transcriptional 

regulation by miR-208a is critical for repression of the anti-hypertrophy program. 

Given that mature miRNAs are a component of a multi-protein complex, it would be 

interesting to test whether miR-208a activity is subject to hypertrophic signaling; i.e. 
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does hypertrophy stimuli increase the ability of pre-existing miR-208a to repress 

target gene expression?  

 

Could miR-208a be therapeutically targeted to modulate βMHC expression? 

The up-regulation of βMHC that occurs during cardiac disease reduces contractile 

performance and is thought be a maladaptive response (12, 15, 16). The shift 

towards βMHC is reversible under particular conditions that are associated with 

improved cardiac performance, including the regression of hypertrophy and in 

human patients that respond favorably to beta-blocker therapy (17-21). Thus it is 

intriguing to speculate reducing miR-208 family levels may inhibit the maladaptive 

features of hypertrophy, like βMHC expression, and improve function of the diseased 

heart. In support of this notion, the Olson laboratory reported miR-208a null hearts 

fail to undergo hypertrophic growth or up-regulate βMHC expression in response to 

pressure overload-induced hypertrophy (11). A remaining question is whether 

reducing miR-208 family levels reverses the hypertrophic growth process and two 

potential strategies are conceivable to answer it. The first strategy might inhibit 

endogenous miR-208 family members with chemically-modified oligonucleotides 

antisense to miR-208a and/or miR-208b delivered through an osmotic minipump 

implanted into the mouse heart. This approach was previously reported for miR-133 

inhibition in the mouse heart (22). In this manner, whether sustained delivery of miR-

208 inhibitors regresses hypertrophic growth could be tested in a banded heart 

hypertrophy model. A second strategy might employ an inducible gene deletion 

system in which the miR-208a and/or miR-208b alleles are immediately flanked by 
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LoxP sequences. Introduction of these floxed miR-208 alleles into a drug-inducible 

Cre recombinase mouse line would create a power genetic tool to test the 

requirement for miR-208 in sustaining hypertrophic growth. Evidence from either 

strategy demonstrating a requirement for miR-208 in hypertrophic growth 

maintenance would prompt further investigation of miR-208 as a novel therapeutic 

target in the fight against heart disease.  

 

How does miR-208a regulate of cardiac conduction?  

As discussed in Chapter 5, I identified miR-208a as an important regulatory 

molecule necessary for proper cardiac conduction in the adult mouse heart. miR-

208a modulates the expression of gap junction proteins Cx40 and Cx43, whose 

misexpression are associated with cardiac arrhythmias. However, the precise 

molecular mechanisms underlying miR-208a mediated regulation of cardiac 

conduction system components are not yet clear. I believe the answer will likely be 

found by identifying cardiac transcription factors whose expressions are post-

transcriptionally fine-tuned miR-208a. Indeed, we already found GATA4 and Hop, 

well-known regulators in the cardiac conduction system, are respectively up-

regulated and down-regulated in miR-208a-/- hearts. The 3’UTR of GATA4 harbors a 

predicted miR-208a binding site and further studies are needed to confirm whether 

miR-208a directly targets that site. In support of miR-208a-mediated post-

transcriptional regulation, we found GATA4 protein levels, but not transcript levels, 

are down-regulated in miR-208a Tg hearts. Interestingly, Hop appeared 

transcriptionally down-regulated in miR-208a-/- hearts, as both transcript and protein 

183



 

levels were lower compared with wild type hearts. Analysis of Nkx2.5, a well-known 

cardiac conduction system transcriptional regulator, may explain the change in Hop 

expression (23). Genetic deletion of Nkx2.5 in the adult mouse heart results in AV 

block and down-regulation of Hop expression (24). Nkx2.5 binds the Hop promoter 

and transactivates its expression (25). Although Nkx2.5 is not a predicted direct miR-

208a target, Nkx2.5 transcription is directly regulated by GATA4 (26), suggesting 

that miR-208a might indirectly fine-tune Nkx2.5 expression via post-trancriptional 

repression of GATA4. This implies that miR-208a post-transcriptional regulates 

GATA4 expression, which in turn affects Nkx2.5 and Hop expression. In this way, 

altering the expression of miR-208a would affect the delicate regulation of potent 

cardiac transcription factors and result in the dramatic phenotypes observed in the 

miR-208 transgenic and knockout mouse lines. Additional studies are needed to test 

and further define this intriguing possibility. 

 Why does miR-208a-mediated repression of Hop expression not fully 

recapitulate the Hop-/- phenotype? Inactivation of mouse Hop resulted in partially 

penetrant embryonic lethality with developmental cardiac defects (25). Mice that 

survive to adult display conduction defects with decreased Cx40 expression, 

whereas Cx43 expression is unaffected (27). In miR-208a-/- mice, no embryonic 

lethality is observed, Hop expression is absent in adult hearts, conduction defects 

are present and both Cx40 and Cx43 are down-regulated. What might account for 

these differences? Hop is expressed throughout the developing heart, but is 

restricted to the cardiac conduction system in the adult heart (25, 27). As described 

in Chapter 4, miR-208b is highly expressed in the developing heart, while miR-208a 
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expression is activated shortly after birth. Thus, presumably deletion of miR-208a 

would not affect Hop expression during development, which helps to account for the 

lack of embryonic lethality in miR-208a-/- mice. In adult mouse hearts, Hop and Cx40 

are expressed in the specialized myocytes of the cardiac conduction system, while 

αMHC/miR-208a and Cx43 are expressed throughout the myocardium. Thus, the 

loss of miR-208a might affect both Hop and Cx40 in the cardiac conduction system 

and Cx43 in the working myocardium, further accounting for the phenotypic 

differences observed between Hop and miR-208a mice. It would be interesting to 

test whether genetic deletion of miR-208b recapitulates the embryonic phenotype 

observed in Hop-/- mice.  

 What’s the consequence of reduced Hsp70 expression in miR-208a 

transgenic hearts? Hsp70 proteins are important for protein quality control, including 

monitoring proper protein folding and mediating protein degradation (28). Hsp70 

transcript and protein levels are reduced in adult miR-208a transgenic hearts (Fig. 

5.3). Hsp70 was previously shown to mediate connexin protein turnover, therefore 

reduced Hsp70 expression may partially account for the increased connexin protein 

levels observed in miR-208a transgenic heart (29). However, genetic deletion of 

miR-208a lowered connexin protein levels without affecting Hsp70 expression, 

providing complementary genetic evidence that miR-208a is a regulator of connexin 

expression.  It’s presently not clear whether decreased Hsp70 levels is an obligate 

component of increased connexin expression in miR-208a transgenic hearts, but this 

might be addressed by simultaneously over-expressing Hsp70 and miR-208a in the 

adult mouse heart. Is reduced Hsp70 expression in miR-208a transgenic hearts 
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responsible for the hypertrophic phenotype? Although adult Hsp70-/- mice do present 

a mild hypertrophic phenotype (30), miR-208a transgenic hearts suffer a more 

severe hypertrophic phenotypic with a relatively minor reduction in Hsp70 

expression. This indicates reduced Hsp70 expression is not the critical factor for the 

hypertrophic growth observed in miR-208a transgenic hearts. Hsp70 is 

cardioprotective during ischemic injury (28), so it might be interesting to test whether 

miR-208a overexpression and the subsequent reduction in Hsp70 expression 

confers more susceptibility to ischemic injury. Given the growing interest within the 

biomedical research community to pursue miRNAs as therapeutic targets, 

knowledge of such potential ‘off-target’ effects will become very important. 

 

How many roles for miR-208 in the heart? 

Although the research presented in this dissertation focused on miR-208 in cardiac 

hypertrophy and cardiac conduction, and reported that miR-208 post-

transcriptionally regulates the expression of Thrap1, myostatin, and CACNB2, it’s 

very likely that miR-208a regulates the expression of other genes and is involved in 

other physiological processes. In support of miR-208a having additional roles, 

bioinformatic algorithms predict target sites for miR-208a targets in over 140 genes 

(31, 32).  To gain insight into the potential roles for miR-208a using those 

predictions, I first removed genes of unknown function and excluded genes 

exclusively expressed outside of muscle tissue from the pool of predicted targets. 

The remaining 90 predicted target genes are associated with diverse fundamental 

processes including gene expression, metabolism, and signal transduction (Fig. 
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6.1). Strikingly, 35% of the miR-208a predicted genes are linked to transcription and 

include the cardiac transcription factors GATA4 and SP3. It is intriguing to speculate 

that miR-208a may influence the expression critical transcription factors to invoke 

potent biological responses. The Wang laboratory is currently closely examining the 

predicted pool of miR-208a targets and experimentally determining which are 

biologically relevant. Whatever the precise molecular mechanisms underlying miR-

208a function, it’s clear that miR-208a is a component of very complex genetic 

network work important for proper heart function and will take much effort to fully 

understand. 
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 Transcription 35%

 Signal Transduction 27%

 Protein Transport 6%

 mRNA processing 8%

 Metabolism 6%

 Translation 4%

 Other 15%

90 filtered predicted miR-208a target genes

TargetScan algorithm results:
144 predicted miR-208a target genes

 
Filter 1: subtract targets without predicted/assigned function (-38 sites).

 Filter 2:  subtract targets expressed exclusively outside muscle (-16 sites).

Figure 6.1

Figure 6.1. Target predictions suggest diverse roles for miR-208a. Predicted 
target genes for miR-208a were obtained electronically from the TargetScan 
database. The 144 predicted target genes were classified by gene ontology (GO) 
using the Open Biomedical Ontologies database and expression patterns were 
found in published literature or determined using the National Center for 
Biotechnology Information gene expression omnibus (GEO) database. The 
predicted target gene pool was filtered by two criteria: 1) 38 predicted target 
genes were excluded because they lacked assigned or predicted function. 2) 16 
predicted target genes were excluded because they are reportedly expressed 
outside of muscle tissue and presumably play no role in the heart. The remaining 
90 predicted target genes are represented in the pie chart by gene ontology 
classification.  
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