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ABSTRACT

Richard Leigh Longland: Investigation of the s-Process Neutron 8urce 22Ne+a.
(Under the direction of Dr. Christian lliadis.)

Neutron capture processes are associated with the production of moshédeheavier than iron. The
s-process is one such scenario for this nucleosynthesis, in whictonsuwre captured at a slower
rate thang-decay occurs, resulting in the enrichment of nuclei along the nucldlay\at stability.

An important reaction that can produce these neutrofdNg(a,n)*>Mg. Uncertainties in the rate of
this reaction and its competirigNe(e,~)?*Mg reaction hinder our understanding of nucleosynthe-
sis in AGB stars and massive stars, the favoured sites for the s-prodégsut improved nuclear
physics input, constraints on the structure of these stars cannot béyrelmgdtied from observational
evidence.

In the present study, th#Ne+« reactions were investigated. A nuclear resonance fluorescence
experiment was performed on the compoudfllig nucleus. The experiment used linearly polarised
photons to excit€é’Mg and the emitted-rays were analysed to find the properties of excited states,
thus improving our understanding of the resonance properties féf Me}-« reactions. The findings
of the experiment were incorporated into a re-evaluation of literature datahich rates and their
associated uncertainties were calculated with a novel Monte Carlo methdds &athe order of
10 times lower than the literature values were obtained for’the(o,)?**Mg reaction, while the
22Ne(o,n)**Mg was in agreement with the most recent results. The uncertainties of éatkian
rates were reduced by an order of magnitude.

In order to further clarify the current literature data, direct measurdsnafrboth reactions should
be performed in the future. In the present work, a novel method forméteng the resonance strength
for the E!2 = 479 keV resonance iR?Ne(p;)**Na was developed. This new strengthuof =
0.524(51) eV significantly reduce®’Ne target stoichiometry uncertainty, which was one of the largest

sources of uncertainty in direétNe+« cross section measurements.
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1 Introduction

1.1 The s-Process

GALACTIC abundances of elements heavier than iron are difficult to explain usimgezhparti-

cle reactions that fuel stars. Charged particle reaction cross sectiensrgies corresponding
to hydrostatic stellar burning environments become prohibitively small forregtion of nuclei with
masses larger than ~ 60. At low temperatures, this is because the Coulomb barrier, which dom-
inates the nuclear reaction cross sections, increases dramatically with prottoer. At high tem-
peratures, nucleosynthesis favours the nuclei residing aroundvitaoh have the smallest binding
energy per nucleon. How were nuclei heavier thlrz 60 made? The answer to this question lies
in neutral particle reactions. Reactions involving neutrons are not limited®gwomb barrier and
therefore can have rather large cross sections, even at relativenexgies.

The seminal paper by Burbidge, Burbidge, Fowler and HoBlerp7] envisioned two extreme
scenarios when considering neutron capture in stellar environmentsn evtéch neutrons are cap-
tured relatively slowly, and one in which they are captured rapidly. Tlese&nown as the s- and
r-process, respectively. The s-process occurs when neutginreaoccurs on a time scale that is
slower than the3-decay rate of unstable nuclei, while the r-process occurs at nelaunre rates
that are much larger than thiedecay rate, hence producing highly neutron rich nuclei. The r-goce
is thought to be responsible for the production of long-lived, high maskensuch ag3°U and?3?Th
as well as the broad peaks visible in the solar system abundance distribatiorasses ol ~ 130
and A =~ 190. For more discussion on the r-process, the reader is referred to[Beaf$7, 11i07] and
references therein.

Nuclei are produced in the s-process by slow neutron capturedatetay as illustrated in Fig.



%6Sr 87Sr 8Sr |- = ¥Sr
84Rb ‘Sst‘b 86Rb - - = 87Rb - - = 88Rb
SZKI. SSKI. 84KI. 85KI‘ L= SGKI. L = 87Kr

Figure 1.1: The s-process path near the rubidium isotopes. Also shosvpaasible branchings (dashed arrows)
in the s-process path, which lead to differing abundandesdtetween rubidium isotopes, depending on the
neutron flux.

1.1 Starting from®3Kr, for example, a neutron can be captured to produce the stikitésotope. A
further neutron capture produc&¥r, which can eithep3-decay to**Rb or capture another neutron
to produce®Kr. Such locations are referred to as “branchings” in the s-procat$s {f a higher flux
of neutrons is available, the branching*r will be larger.

By considering solar system abundances of “s-only” nuclei (nucéidhn only be produced by
the s-process), it can be shown that there are two main contributiongécssg nucleosynthesis; the
“main” and the “weak” components. The main s-process component isnsigbe for the creation
of nuclei in the mass range of > 90, which requires a relatively low flux of neutrons over a long
time period. The weak component enhances abundances in the massfranged0, which requires
an efficient neutron capture process, but only for a short peridiongf. In the following section, the

sites best describing these scenarios will be discussed.

1.2 Stellar Sites of the s-Process

1.2.1 AGB Stars

Asymptotic Giant Branch (AGB) stars are thought to produce the main coemparf the s-

process. Moderate mass stai3(//, < M < 8My), including the sun, will all eventually be-
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Figure 1.2: Hertzsprung-Russel diagram of the evolution ofa = 5M star Hab04. Plotted are the
luminosity of the star and the surface temperature, or golNote that temperature increases to the left of the
x-axis. The thick line is the evolutionary track of the staefer to the text for details on the labels.

come AGB stars with ages depending on initial mass. In the following, the evolafia typical
M = 5M, star will be discussed by following the surface temperature and luminosityeastéin
evolves. A Hertzsprung-Russel (HR) diagram of this evolution, whiotsghe luminosity of the star
against the surface temperature (colour) is shown in E@.Once the star has formed, and is burn-
ing hydrogen in the core, it will reside in a region on the HR diagram knosvtha main sequence
(straight line in Fig.1.2). At point (1), high temperatures in the core cause the convectivdagere
of the star to expand, leading to cooling on the surface. This happeaadmethe stellar envelope is
opaque, and radiation released from nuclear reactions is absorlibd iyer layers of the envelope,
causing them to expand. Note that the star spends approximately 90% ofats tlie main sequence.

At point (2), after on the order of0? — 10'° years hydrogen in the core will be exhausted, and the
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Figure 1.3: The internal structure of an AGB star. On the left side of tigeife, the mass of the star is plotted.
The right hand side plots the radius. Note that the core ofthecontains 50% of the mass (in the present
example), but only about 1% of the radius of the star as indithy the small mark a® = 0.017R.

star will move towards point (3) on the diagram before hydrogen shetlibg ignites, expanding the
envelope once again. Between points (4) and (5) (the red giant Braahell burning adds material
(“He) to the core, thereby increasing the temperature and pressure inréhantid helium burning
is ignited at point (5), causing a rapid surface temperature increaseeagydas deposited into the
envelope towards point (6). As helium is burned in the core, the enveldpexpand once again to
point (7), where helium is exhausted in the core. At this point in the evolatidine star, helium and
hydrogen will burn intermittently in shells around a carbon-oxygen coreutjin point (8). During
this final stage of evolution, the star will lose mass rapidly in the form of stelladweventually
producing a planetary nebula. The carbon-oxygen core will remainadsta dwarf. In this pulsing
stage, the star appears very close to the red giant branch, givingstiaeséheir name of Asymptotic
Giant Branch stars.

The internal structure of an AGB star is shown in Flg3. During this phase of the stars life,
hydrogen and helium are burning intermittently in shells surrounding the ©¢6, separated by a
helium layer. The helium layer is the important region for the s-processin®the intermittent

burning stage, known as the Thermally Pulsing (TP) stage, the helium shdduwm in short bursts,



followed by long quiescent hydrogen burning stages. During eacle palldredge-up episode occurs,
which dredges processed material out of the helium shell and into thectrerenvelope of the star.
Thermal pulses are shown schematically in Higk

During a thermal pulse, while helium is being converted ilG in the helium burning shell,
a convective zone between the helium and hydrogen shell arises. oflieative zone mixe$>C
and 0 (He-burning ashes) into the helium layer, and adds protons from tti@den shell. The
sequenceé’C(p;y)®N(31v)'3C can occur, thus creating'aC rich pocket. The abundant helium can
then react with>C to produce neutrons though th&C(a.,n)!%0O reaction. This reaction is one of the
main sources of neutrons in AGB stars, and because of the long time padoégeated exposures,
it is thought to be responsible for the majority of the main s-process componen

During the thermal pulse, temperatures in the base of the convective eoamb high enough to
ignite a second neutron sour@@Ne(a, n)2°Mg . The?2Ne is produced from*N, which is in high
abundance in the star, ViaN(a.,7)'®F(51v) 180(a,y)?2Ne. This source is expected to produce a high
flux of neutrons, but only for a fraction of the time of thé&C source, especially for low mass AGB
stars. Thé?Ne(«, n)2°Mg reaction and its competing reactiéiNe(«, )2Mg are therefore thought
to influence mainly the branchings in the s-process path. These braachitite s-process track can
be analysed very precisely in pre-solar grains. Note that recent st[@i06 Lug08 of rubidium
enhancement in AGB stars suggest that in higher mass AGB staféNbgy, n)2°Mg reaction could
be the dominant s-process neutron source. Improved reaction rate testicam help determine at

what mass thé>Ne+« reactions start to dominate the s-process neutron production.

1.2.2 Massive Stars

The lifetime of a massive statl{ = 11M) is considerably different than that of the lower
mass stars discussed previously. The HR diagram fof & 25M, star is shown in Figl.5. The
total lifespan of these stars is much shorter than that of lower mass stérs- (107 years [li07]),
most of which is spent burning hydrogen on the main sequence (part Elg. 1.5). Following core
hydrogen exhaustion, helium will be consumed in the core at point (2)thetitar reaches point (3)
in the figure. The star will then remain at point (3) as a supergiant stdergning core carbon, neon,

oxygen, and finally silicon burning. Following silicon burning, the star willéha characteristic onion
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Figure 1.4: Details of a thermal pulse showing the hydrogen and heliumibg shells as well as the dredge-up
episode. During the “on” stage, the helium shell will ignisetting up a convective zone in the helium layer
(shown as a shaded region in the figure). Once the heliumristiell is extinguished, the convective envelope
will expand into the helium layer, mixing material upwarasthe surface of the star. In the “off” stage, the
hydrogen shell will become active, adding material to tHeuinelayer until the helium shell re-ignites, repeating
the process.
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Figure 1.5: HR diagram for a\ = 25M, star. The scale is not equal to that in Fig2 Massive stars are
some of the most luminous stellar objects. See Eigfor a description of HR diagrams.

structure, with an iron core surrounded by layers of increasingly lightetei. Eventually, the star’'s
core will collapse, resulting in a supernova.

During the core hydrogen burning stage of a massive star, hydrogendsssed into helium via
the CNO-cycles. This process enriches thH content in the core to a mass density on the order
of 1% [Ili07, Arn96]. This enrichment occurs becaus® is a bottleneck in the CNO cycle. Once
core helium burning sets in, tHéN is processed intd’Ne through the reaction chatiN(a,y)'®F
(611)0(a,v)**>Ne. This chain will enrich thé?Ne content of the star towards the end of the core
helium burning phase to approximatelNe:*He= 1 : 10. As the core temperature increases to
T =~ 0.15 GK, the??Ne(a, n)2°Mg neutron source will start to produce neutrons, which drive the weak
component of the s-process. Note that any remaifiiNg after core helium burning can produce a
second flux of neutrons during carbon burning (which producegiaddl a-particles). Massive stars

are thought to be responsible for the production of nidkke, and over 50% of th&? Mg and?Mg



in the universe Arn96]. The s-process in massive stars is also thought to be a large contributor

relatively rare nuclides, such 8%S,37Cl, and*°Ar.

1.3 The*Ne(a,n)**Mg s-Process Neutron Source

The 22Ne(a, n)2°Mg and?2Ne(«, v)**Mg reactions are important in s-process neutron produc-
tion. While the??’Ne(«, n)2°Mg reaction is a neutron source, its compettible(, v)?*°Mg reaction
will serve to reduce the neutron flux available for the s-process, andiigftire equally important. In
massive stars, the reaction rates determine the neutron flux available fee#tkecomponent of the
s-process, while in AGB stars the reactions provide a high flux of nesifimma short period of time,
affecting mainly branchings in the s-process path.

Since the early 1980’s, a number of studies have attempted to measuregbs@rtons of both
reactions in the energy region of interest. Direct measurements 6fe«, n)2°Mg reaction were
made by Refs Wol89, Har91, Dro93 Gie93 Jae01h All of those studies but one (RefGje93) were
performed using a gas target (the Rhinoceros system) at the IngtitStrahlenphysik in Stuttgart,
Germany. The lowest measured resonance is locaté&fat= 832 keV, which resides at the upper
edge of the effective burning region f@ = 0.3 GK. An additional E'2* = 633 keV resonance
was believed to have been sedrd91], which was later determined to be background from the
10B(a,n)!3N reaction Pro93. This expected resonance has provided a fair about of controirers
the field (fuelled by the apparent need for a resonance in this eneggynrgfhe0q), and multiple
studies (including the present work) have attempted a search 818 Jae01bUga07.

Although the?2Ne(a, v)?Mg reaction plays an equally important role in neutron production,
it has been studied significantly less. The only study close to the eneripn negdevant in stellar
nucleosynthesis is that of Re¥Wpl89], which was performed in coincidence with #Ne(a, n)?*Mg
measurement. The lowest measured resonance in this reaction wasedbsgrii® = 828 keV.

The*2Ne(a, n)?*Mg and??Ne(a, +v)?°Mg reaction rates have significant uncertainties at the tem-
peratures of interest in AGB stars and massive stars (I3 GK). The effects of these uncertainties
on nucleosynthesis have been studied in AGB stars and massive stagayaRet al. [Pig0g and

The et al. [The0Q, respectively. Both studies find that the current uncertainties in thessetions



produce uncertainties of up to a factor of 10 in the abundances of keneats on the s-process path.

A recent re-evaluation of the rates of both reactions was made in Raf0§, which showed
significant uncertainties at the temperatures relevant for s-proces®ngroduction in AGB stars.
Their result also showed that the uncertainties in%tée(, n)2°Mg and??Ne(a, v)?*Mg reaction
rates affect the production ratios ®Mg and?Mg significantly. This is especially important because
the magnesium isotopic ratios can be precisely measured in pre-solar [gtiai0s].

Observed branchings in the s-process path around rubiddeed9 from spectroscopic studies
of AGB stars also suggest&ar0g that our current understanding of the mechanics of AGB stars is
incomplete. Their study showed that the&C neutron source cannot provide the flux of neutrons nec-
essary to enhance rubidium. Constraints provided by those studiessstiggteat lower metallicities,
the 22Ne(a, n)?°Mg reaction could, indeed, be the main neutron source in AGB staig0g. With
improved understanding of téNe(a, n)2>Mg and??Ne(«, v)25Mg reaction rates, AGB star models
can be better constrained for calculation of the s-process.

In massive stars, th&Ne(a, n)?>Mg and??Ne(a, v)?°Mg reactions directly influence the effi-
ciency of the weak s-process component. Sensitivity studies by Re¢0[] have shown that the
rates of these reactions also influence the amourité remaining in the core following helium
burning. Remaining®Ne will later produce neutrons during the carbon burning stage. Hawigve
later stages, more neutron poisons will be present in the core, redueimdfitiency of the s-process
[W0003. This s-process efficiency was found to depend on several adletors including convec-
tion models used in the calculations. Improvements in nuclear physics inputhesafore, help to
constrain massive star models, and improve our understanding of th@smements.

The neutron flux in stellar environments is an important factor influencing theuat of ma-
terial that is produced in the s-process. Consequently, the reactionfréte neutron producing
22Ne(a, n)2°Mg reaction and its competingNe(«, v)?°Mg reaction must be well known if compar-
isons between nucleosynthesis models and observations are to prowide tediable information on
the interior structure of stars. The goal of the current work is to impraweuaderstanding of these
reactions.

An overview of experimental methods used in the present work will bengiveCh. 4. Detector

characterisation required to analyse cross section data reliably will lezilokd. The production



of targets used for direct cross section measurements will be detailedlassvagher experimental
considerations relevant to the present work.

Studying excited states in the compound nuckéig can improve our understanding of possible
resonances that cannot be measured directly’Mg(~,v)?°Mg experiment performed to measure
the quantum numbers of excited states in the compdtivd nucleus will be described in CB.

Direct measurements of tHéNe(a, v)?Mg and?2Ne(«, n)?*Mg reactions must be made to re-
solve inconsistencies in the data presented in the literature. In order to iengireect measurements,
target stoichiometries must be known to high precision. The analysis of gxgifanctions arising
from implanted targets, whose stoichiometry varies with depth in the target, igsdisd in Ch3.
Using this formalism, a new excitation function analysis technique used to firstdlehiometry of
implanted??Ne targets is discussed in C&. This new technique is essential for determining the
quantity of>2Ne available fo??Ne+« reaction cross section studies.

Improved statistical determination of reaction rates from measured quantitiasmprove the
definition of reaction rates used in stellar models. These improvements willyctaifstraints on
processes occurring in these stars. The theoretical treatment of reeatts in stellar environments
will be discussed in Chz, along with a new formalism for calculating statistically meaningful un-
certainties on rates. This new formalism will then be applied to the calculatioredétest reaction
rates for the??Ne(a, v)?**Mg and??Ne(a, n)2°Mg reactions, which is discussed in detail in Gh.

Conclusions are formed in CB.
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2 Reaction Rates

2.0.1 Introduction

THERMONUCLEAR reaction rates describe the rate at which a nuclear reaction occurs im stella
environments. Reaction rates are found by convoluting the cross settaraction with the
energy distribution of particles in the star. This convolution results in anageereaction rate per
particle pair for a given reaction, which is dependent on the temperattine environment.

Reaction rate formalism is a well understood topic of nuclear astrophy&iesreader is referred
to Ref. [Ili07] for a more detailed discussion than is presented here. The uncertafirtéestion rates,
however, are poorly understood because of the complexity of the cadmdanvolved. Prior to this
work, the most statistically rigorous treatment of reaction rate uncertaintispesiormed by Ref.
[Tho99. Their method, however, was simplified to an analytical form by utilising stasiséipproxi-
mations, which are not valid in many cases. Their method also contained nticsttyisneaningful
treatment of upper-limits on reaction rate parameters (e.g., resonanagtistleost astrophysically
important reactions occur at low bombarding energies. The Coulomb battigese energies causes
the reaction cross section to be small, hence many cross sections hawenaohbasured at the en-
ergies corresponding to nuclear burning. Upper limit cross sectioresthiatorically been incorrectly
treated in reaction rate determination. In order to reliably predict reacties end their associated
uncertainties, upper-limit cross sections must be correctly treated.

In this chapter, a new formalism will be presented for calculating reacti@s @nd their associ-
ated uncertainties. Statistically meaningful definitions for high and low uringrteoundaries will
be formed (in contrast to the old “upper limit” and “lower limit” reaction rates tyficased by the
nuclear astrophysics community), and upper-limit quantities in the cross sedgtide given a sta-

tistically meaningful treatment. All energies in this chapter will be given in théreesf-mass frame



unless otherwise stated. Only laboratory thermonuclear reaction rate®witiisidered (i.e., thermal

target excitations will be disregarded).

2.1 Reaction Rate Formalism

The reaction rate per particle pair in a medium of temperaflirés given by

(ov) = \/5(145;)3/2/0 Eo(E)e PIFT4E (2.1)

where . is the reduced mass of the reacting particles= MoM,;/(My + M;),; M; refer to the
masses of the particleg; is the Boltzmann constanf is the centre-of-mass energy between the
reacting particles; and(FE) is the reaction cross section at relative enefgy|nspection of Eq.4.1)
reveals that the reaction rate is dependent on the cross section asiarfafienergy.

The strategy for determining reaction rates from E1) depends on the nature of the cross
section. Under the assumption of non-interfering cross section contmiistitithe cross section can
be separated into non-resonant and resonant parts. Each coniribiltibe discussed separately in

the following sections.

2.1.1 Non-resonant Reaction Rates

Smoothly varying reaction cross sections can be written by

o(E) = %e’QWWS(E) 2.2)
wherer is the Sommerfeldt parameter, given byn = \/%ZOZleQ/h (Z; is the atomic number
of the nuclei); andS(F) is the astrophysical S-factor. The S-factor is the slowly varying funation

energy that remains once th¢ £ and s-wave Coulomb barrier penetration energy dependence are

In cases where this assumption is not valid (e.g., when interfereriaede rate contributions is significant), other
methods such as R-matrix theory must be used to calculate reaction rates.
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removed from the cross sectrSubstituting Eq.Z.2) into Eq. @.1), we obtain

8 1 o _
(ov) = \/;(kT)W /0 e 2MS(B)e FIFTgE (2.3)

The integrand of this equation is dominated by two terms: the Gamow facts¥!, and the Boltz-
mann factore— /5T . The former of these increases with energya¥’ /7, while the latter decreases
ase—F. The overlap between the tails of these functions produces the Gamoywygak determines
the energy range at which reactions will occur in the stellar environmerg. Gdmow peak can be

approximated by a Gaussian function with centrdig)and1/e width (A Ey) given by

Mo M, 1/3
Ey =0.1220 ZQZQT2> 2.4
0 ( 0 1]\40_‘_]\4—1 9 ( )
oy MoMy _\'°
AE, =0.2368 | 72721 T 25
0 ( 0“1 AL + My 9) (2.5)

whereTy is the temperature in GK. The astrophysical s-factor can be approximataedaylor ex-

pansion around zero energy
1
S(E) ~ 5(0) + §'(0)E + 55"(0)E? (2.6)

where the derivativesY(0) and S”(0)) are with respect t&. Following this approximation, Egs.

(2.2) and @.6) can be substituted into ER.() to provide an analytical expression for the reaction

rate:
4.339 x 108 My + M .
(ov)nr = YA ]\040M1 1 Sefte 72(To/To, uor)? (2.7)
MoM; 1\Y?

— 42487 | 7272 071~ 2.

T 87<01M0—|—M1T9 (8)
B 5 50 35 15"(0) /., 89

Seff = S(0) 1+E+ 5(0) <E0+36/{7T> —|—§ 5(0) EO—F%E()]{T (2.9)

The last factor in Eq.4.7) is an artificial addition to prevent this expression from becoming unpalsic

at high temperatures (i.e., where the Gamow peak assumption is no longeovalitere resonances

2Note that the notion of an astrophysical S-factor is also applicable toaasorpss sections. In these cases, however,
the S-factor will no longer be a smoothly varying function.
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dominate the cross section).

2.1.2 Resonant Reaction Rates

The cross section arising from an isolated resonance is described BrehtdNigner formula
[Bre3q,
_ N Tu(E)y(B)
4n (E-E.)?2+T(E)%/4

oaw(E) (2.10)

I'.(E), T'y(F), andI'(E) are the energy dependent entrance channel, exit channel, andaxtal p

widths respectively. The factar is the spin factor,

20 + 1
- 2.11
YT @+ DI+ 1) (2.11)

whereJ andJ; are the resonance and particle spins, respectivalythe deBroglie wavelength at the

resonance energy defined by,

- (2.12)

Substituting the Breit-Wigner resonant cross section into Ed),(the reaction rate per particle pair

becomes

e EIRTqR (2.13)

(ov) =

V2rh? > L (ETy(E)
(ukT)3/2w/o (E—E,)2+T(E)/4

Narrow Resonances

If the partial widths]';, and Boltzmann factor,~2/*T'| do not vary significantly with energy over
the width of the resonance, it can be considered to be narrow. Thelpadibs in Eq. .13 are then

replaced with energy independent quantities

o) = 2 [ (2.14)
T T kTR Jo (B B2+ T(E)/A |
3/2
_ (;}:T) hgw%e—Ey/kT’ (2.15)
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where the resonance strength is defined by

wy=w—F (2.16)

Note that the resonance strength is proportional to the maximum cross sexctitylied by the res-
onance widthy « omax- I'). Furthermore, the reaction rate for an ensemble of narrow resosance

can be summed incoherently,

2 8/2
(ov) = (Mka) 12 Z(wy)ie_E’"/kT (2.17)

Wide Resonances

If the partial widths and Boltzmann factor vary significantly with energy, 2313 must be
integrated numerically. In the following discussion, a transition to a uniquedia#d will be assumed.
In reaction rate calculations, this assumption is a good approximation if the daointraasition is
considered. The particle partial width for channés$

h2

PJE):QEEER4Ew§ (2.18)

where the channel radiug, is defined byR = 1.25(A(1]/3 + A}/:)’); 93 is the dimensionless reduced

width; andP,(E) is the penetration factor calculated from Coulomb wave functions by

P
P = ) + 62(m) G

wherep = 0.21874- R-/uE; andF andG are Coulomb wave functions. The dimensionless reduced

width is proportional to a spectroscopic factst,
2 _ 2 2
02 = CS62, (2.20)

whereC'is an isospin Clebsch-Gordan coefficient @ﬁgis the dimensionless single-particle reduced

width, which can be calculated numerically. See R#T] for more details on calculating this
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guantity.

From Egs. 2.18-(2.20), it becomes obvious that the energy dependence of charged pantiste ¢
sections arises from the Coulomb barrier, whose energy dependedescisbed by the penetration
factor. The charged particle partial width can now be scaled with respehe partial width at the

resonance energy;,, by,

(2.21)

It should be noted that these equations can also be applied to subthnesturdnces.
The energy dependent partial width foryeray follows a similar procedure. The-ray partial
width for a single transition is

) sm(L+1) (E,\**
I (@, E,) = M (m) B(&L) (2.22)

wherew denotes either electric or magnetic radiatidnis the multipolarity of they-ray; £, is the
transition energy; and the double factorial is define@ds+ 1)!! =1-3-5...- (2L + 1). They-ray

partial width as a function of the incoming particle enerfy,s therefore

E+Q-E; >2L+1 (2.23)

[y (E) =Ty (Er) (Er-i-Q—Ef

whereQ is the entrance particle separation energy (Q-value)iand the final excitation energy of

the~-decay.

2.1.3 Interfering Resonances

If two or more broad resonances with the same spin and parity are clogbdogeenergy, their
amplitudes may interfere. In the case of two interfering resonances wifis sections; andos,

respectively, the total cross section in the presence of interferenRelizg

0(E) =o01(FE)+ 02(F) £2/01(E)oa(E) cos(61 — d2) (2.24)
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The phase shift§; can be calculated by

_ I'i(E)
d; = arctan [Q(E—E”)] (2.25)

The reaction rate arising from two interfering resonances is found bgtguting Eq. 2.24) into Eq.
(2.1) and integrating numerically. If interference is occurring between masgnances,'tN(p,y)!°O

is a good example), other methods such as R-matrix theory, must be usatlttoefieaction rate.

2.2 Monte Carlo Reaction Rates

The equations outlined in Se2 provide an array of tools for calculating thermonuclear reaction
rates given estimates for the cross section paramefgrs.y etc.). A problem arises, however, when
the uncertainties of the reaction rates are needed. With developments intoappawer in the last
decade or so, the demand for statistically meaningful reaction rate untiegamincreasing greatly.

It is becoming possible to perform stellar model calculations in relatively little timtds hcrease
in modelling speed allows sensitivity studies to be performed, in which the reaeiies are varied
within their uncertainties to find the influence on nucleosynthesis in stars.

In the present work, a Monte Carlo method is used to calculate the readiiaimeertainties aris-
ing from uncertain input parameters. The general strategy of Monte @acertainty propagation
is the following: (i) Simultaneously sample from the probability density distributmrefich uncer-
tain parameter (these samples must be chosen independently to avoidtiomsgldii) Perform the
calculation of the reaction rate using the sampled values and record it. (ii@aRsfeps (i)-(ii) many
times (on the order of 5000). These three steps will result in a distributioeaattion rates, which
can be interpreted as the probability distribution of the reaction rate. Extnagtioncertainties from
the distribution will be discussed later. While input parameter sampling is benfgrped, care must
be taken to consider correlations in parameters. For example, particlel padihs depend on the
penetration factor through ER.(L8), which is an energy dependent quantity. The individual energy

samples must, therefore, be propagated through the partial width calculafioly account for the

3Throughout this work, care is taken to refer to the temmsertaintyanderror correctly. The termerror refers to a
quantity that is believed to be incorrect, whereasertaintyrefers to the statistical spread of a parameter.
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energy uncertainty correlation.

Note that Ref. Tho9g states that a Monte Carlo method would take on the ordéiotalcula-
tions to calculate uncertainties in this way (whé&r@and NV are the number of random samples and
uncertain parameters, respectively). However, this number of calawatsoonly necessary if the
contribution of each input uncertainty needs to be known. In the presmk{ only final reaction rate
uncertainties are desired, so the number of calculations needed is eth@htamber of samples,.

In order to proceed with using Monte Carlo sampling to calculate reaction nartainties, the
sampling distributions must be defined for each uncertain parameter. Adveefiew of statistical
distributions relevant to reaction rate calculation is in AppendixOnce a reaction rate distribution
has been determined, an appropriate mathematical description must betdoprebent the result.
In the following, the statistical distributions used for each uncertain parameflebe discussed,

followed by details on the mathematical description used for the final rea@feruncertainties.

2.2.1 Statistical Distributions for Nuclear Physics Input
Resonance Energies

Resonance energies are assumed to have Gaussian distributed utiegrt@ilre reasons for this
assumption are twofold. Firstly, most resonance energies are determamedthie front edge of thick
target yield curves. In this case, the resonance energy is determomadafisum of uncertain pa-
rameters such as individual magnet calibrations. The central limit thedesghat the sum of
independent continuous random variahilgsvith meansu; and uncertainties; becomes a Gaussian
random variable in the limit ok — oo. Secondly, for low energy resonances the energy can be found
by measuring the excitation energy of the compound nucléus (£, — Q). This case involves the
subtraction of two Gaussian distributed variables, which is also expectesl Gabssian. Note that
there is a finite probability of calculating a negative resonance energgreTib no contradiction in

this situation, because the resonance can be treated as a subthrestodohce.
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Resonance Strengths

Resonance strengths are assigned lognormal uncertainties. Totandery this is, consider
the experimental methods for determining these quantities. A resonancgtistierestimated by
one of two methods; (i) direct measurement, and (ii) estimation from partial svidithermined in
other experiments (such as particle transfer measurements). In theaiestacresonance strength is
calculated from the product of many unknown quantities. An example of tthig iesonance strength
determination from the maximum yield of a thick target for ayjgeaction,

NW

~Nf——— 2.26
Y N (0)B (2.26)

wheree is the stopping powery, and .V, are the number of measureerays and incoming protons,
respectivelyy is the detector efficiency3 is the branching ratio, antd” is the angular correlation
for a detector at anglé,. Each of these quantities are expected to have Gaussian uncertaingées. Th
central limit theorem states that the product of normally distributed quantisedtsen a lognormally
distributed quantity. The second case considered is also expected téogaeemally distributed
uncertainties because partial widths are determined through similar meansasi#scribed above.
Once a lognormal distribution has been selected to describe the probabititipudien of reso-
nance strengths, an important question arises: how are quoted ungestaomverted into lognormal
parameters? To answer this question, first consider the expectatioravalwariance of a lognormal

distribution defined in AppendiA:
Elz] = e(2uto)/2, Viz] = e(2uto?) [6‘72 - 1} (2.27)

where the lognormal parametersand o represent the mean and standard deviatiomaf. The

lognormal parameters are, therefore, defined by

1= In(E[z]) — %m (1 + g[ﬁ) . o= \/m <1 + ;/[EZL) (2.28)

These parameters can now be found from literature values by assokitgd results with the
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expectation value and the square root of the variance.

Note that a lognormal distribution is not defined for negative values @his feature is advanta-
geous because it removes the finite probability of unphysical negalives/that arise when Gaussian
uncertainties are used. This is especially true for partial width measuremeénth typically have
uncertainties of close to 50% associated with them. A 50% Gaussian uncergsatis in a 5%

probability of the partial width being below zero.

Nonresonant S-factors

Nonresonant S-factors are calculated following the parametrisation alittingq. .6). A log-
normal distribution is assumed for the effective S-facky. Typical uncertainties of 40% to 50%
are assumed for the nonresonant component of the cross sectidi2.Z8jare used to convert these

to lognormal parameters.

Interfering Resonances

Frequently, the sign of interference between wide resonances (sd2.E4)) is not known. A
binary distribution is sampled in this case, which will sample equally between sfght and—1 as
the number of samples approaches infinity. This will lead to a double-peaketion rate probability
density function. Clearly, in these cases, the probability density functiomwailbe described by a
simple analytical function. However, in most cases, this effect will be cloned with other cross

section contributions, and the total reaction rate distribution will lose this depddéed structure.

2.2.2 Upper Limits

The problem of calculating reaction rates using resonance strength lirpjis will now be dis-
cussed. The standard practice in nuclear astrophysics is to assumeethattlrestimate of a reso-
nance strength is 10% of a measured upper limit. The assumption is then matteethrat value
of the resonance strength has a uniform probability of residing betwererend the measured upper
limit. Upper and lower bounds on the resonance strength are calculategtosse limits. These as-

sumptions imply a mean resonance strength value of exacllpf the measured upper limit, which
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contradicts the predictions of nuclear statistical models. In the presek} these models are taken as
a starting point to construct a physically motivated treatment of upper limitefmmance strengths.
Resonance strength upper limits arise from two possible situations. Firsthgch sheasurement
was performed with no observed signal above background. Secamdigdirect measurement, such
as a transfer measurement was performed to measure a particle partial Whéthatter case will be

discussed first.

Upper Limits of Partial Widths

Recall that particle partial widths are determined by the dimensionless kaidth, 62, in Egs.
(2.18 and @.20. Similarly, ~v-ray partial widths are determined from the reduced transition prob-
ability, B, in Eq. 2.22. These quantities are related to the square of nuclear Hamiltonian matrix
elements, which in turn is an integral over the nuclear configuration spawwesufficiently complex
wave functions, the matrix elements will arise from the sum over many contritsjtemch of which
has a randomly distributed sign. The central limit theorem, therefore, didtaea nuclear matrix
element will have an expectation value of zero, with approximately Gausisigitdted uncertainties.
The square of the nuclear matrix element is, therefore, expected to pawbability density function
that follows a chi-squared distribution with one degree of freedom (See/). For a more detailed
discussion of this issue (including verification studies), the reader igeefeo Refs. Por56 Lon1(.

The probability density function describing observables that are relatdu: tequares of nuclear
matrix elements is known as a Porter-Thomas distribution, where the ratio afadbheato its local
mean value is given by the chi-squared distribution with one degree afdnee The dimensionless

reduced width therefore, follows a probability density function given by

f(@?) — \/70976702/(2@2» (229)

wherec is a normalisation factor, an@?) is the average local mean value of the reduced width. That
is, the mean value of the dimensionless reduced width for a specific nuclearsnel spin, orbital
angular momentum etc. The problem in using the Porter-Thomas distributidhearalculation of

partial width probability density functions now becomes one of collecting gnalata to find(6?)

21



for every case needed. In the present work, the partial widths weeened from the data presented
in Ref. [Dra94 and references therein. The widths (1127 proton widths ando3f@rticle widths)
were averaged globally because of the lack of available data for localf feagery (-value, nucleus
and so on. More detail is presented in Reféefw10a Lonl1(. The average values were found to be
(62) = 0.0045 and(#Z) = 0.010 for protons andr-particles, respectively.

Although, in principle, the same arguments can be made-fay reduced transition probabilities,
estimates for the mean valug3), were more elusive. However, upper limits fpiray partial widths
are less crucial in reaction rate calculations and were, therefore, onmittediie present work.

Now that a form for the probability density function of reduced widths hesnbdefined, the
guestion of including experimental upper limits can be addressed. Fribguem experiment will
measure an upper limit for a spectroscopic factor, which can be coduwertereduced width through
Eg. 2.20. It should be clear that these upper limits, as with any experimental rebaits, some
probability density function associated with them. However, probability defisitgtions for upper
limit measurements are rarely reported in the literature. In the absence ofinfommation, the
present work will use a sharp truncation of the Porter-Thomas distributitreaipper limit. That is

e PIRE) if 92 < 62,

fo)=14 Vo2 (2.30)
0 if 62 > 62,

wheref?, is the measured upper limit of the reduced width.

Upper Limits on Resonance Strengths

During a direct search for a resonance, an upper limit can also beeepbno signal is observed.
The calculation of upper limits and their corresponding confidence limits is astwedied subject.
The reader is referred to Ref$\N§r0Q ZhuQ7, Cou0§ and references therein for an introduction to
the subject. In the field of nuclear astrophysics, however, confidénis are rarely quoted. In the
present work, the following strategy for incorporating upper limits fronediisearches is used: (i) the
upper limit,w,,;, is assumed to arise from the entrance particle partial width; (this is a reasonable

assumption for charged patrticle reactions at low energies, wheresgossns are determined by the
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Coulomb batrrier); (ii) the partial width is used to calculate a reduced widtleupit, 651; (i) the
probability density function used for sampling is calculated from EB@.

At this point, all of the necessary probability density functions needetifante Carlo reaction
rate calculations are described. The next step is to perform the calcsladiot analyse the reaction

rate distributions.

2.2.3 Monte Carlo Sampling and Analysis

The general strategy for Monte Carlo uncertainty propagation was odiithe beginning of this
section. In Se.2.], the statistical distributions to be sampled for each input parameter wererchos
A computer codeRat esMC, was written to perform the Monte Carlo sampling over the distributions
and to analyse the final rate distribution. The code is capable of calculategon rates through any
of the methods described in S&1, including integration of wide resonances and interfering pairs
of resonances. Upper limits in resonance parameters are treatediagdorthe method described in
Sec.2.2.2

Once the reaction rate sampling has been performed, an ensemble otficiadm rates exits. It
will have a probability density distribution that can be analysed to extracrigéise statistics (mean,
median, variance etc.). An example of a reaction rate probability density distrbfor 10,000
samples is shown in Fig@.1for the reaction rate arising from a fictitious resonanc® ie(«, v)?°Mg
at £, = 300(15) keV with wy = 4.1 £ 0.2 eV at a temperature &f = 0.45 GK. Part (a) shows a
histogram of the reaction rate probability density distribution and showslgladognormal shape.
Part (b) shows the cumulative distribution, which is obtained by summing gaah part (a), and
normalising to a maximum height of unity. Part (b) also illustrates the method utilisethtton
reaction rate uncertainties from the distribution. For the recommended neaeti®, the median
reaction rate is used. The median is a useful statistic because exactly trafazlculated rates are
lying above this value and half below. Note that the mean is not used for tlepfiesentation of
rates in the present work because it is strongly affected by outliers iretiation rate distribution.
Thus it was decided that the mean rate was not a good representationre¢tinemended rate. The
low and high (not the “maximum” and “minimum” rates commonly used in nuclear dsfsps)

reaction rates are obtained by considering a 68% coverage probabiigye are several methods for
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Figure 2.1: Reaction rate probability density distribution and cop@sding cumulative distribution from the
fictitious resonance described in the text. The dashed Bhew the 16th, 50th, and 84th percentiles of the
reaction rate.
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obtaining these coverage probabilities, such as finding the coveragmitiiatises the range of the
uncertainties, or one that is centred on the median. In the present werlgthto 84" percentiles

are used. Note that in reality, the reaction rates are not initially binned wdleunlating a cumulative
distribution to avoid the loss of information that arises from the binning pofae07.

Although a low, high and median rate are useful quantities, they do nossetly contain all the
information on the probability density. It was mentioned already that compugistellar modelling
is becoming advanced enough that sensitivity studies on nuclear rezatiésrare feasible. For these
sensitivity studies to produce reliable results, the reaction rates shoukhiy@es! according to the
probability density. It would be inconvenient, however, to publish histograf the reaction rates (for
every reaction, at each temperature, with 1000 bins each). A moremient@pproach would be to
approximate the reaction rate probability distribution with a simple analytical fumchioorder to find
such a function, consider the following three examples: (i) the reactiorigaeminated by a non-
resonant S-factor. Hence, the reaction rate is directly proportiorfakt Eq. 2.7), which in turn is
described by lognormal uncertainties. (ii) the rate is dominated by a singlearse. If the resonance
strength dominates the uncertainties, the reaction rate will be distributeddauraeo a lognormal
probability distribution. If the resonance energy (normally distributed) daiem the uncertainties,
the rate will also be distributed lognormally. This is because the resonaecgyeenters through
anefr term; (iii) finally, consider the case where the rate has contributions frony mesonances.
The central limit theorem states that the sum of many uncertainties will be disuliligcording to a
Gaussian. However, a lognormal distribution approximates a Gaussiafowalicertainties of less
than about 20%. Although these examples do not offer proof that théaraate can be described by
a lognormal distribution, they suggest that in most cases, it is a goodxap@tion. The calculation
of the lognormal parameters for the reaction rate distribution now becomega inatter. The

lognormal parameters are calculated by

p = Elln(z)], o = V[n(z)] (2.31)

whereE|y| andV [y] signify the expectation value and variance of their argumgmespectively. The

expressions in Eq2(31) were used to generate the smooth line in Rida, which shows excellent
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T (GK) Low rate Median rate Highrate | lognormaly  lognormale A-D

0.100 4.2%10°'0 241x10°% 1.37x10°%® | -1.985<10"91 1.75x10t%0 2.77x10°%!
0.110  1.0%10°% 4.95x10°% 2.40x10°97 | -1.682<10"%" 1.59x10t%0 2.75x10° %!
0.120  1.4%10°%7 6.08x10°97 2.59x1079% | -1.431x10"%" 1.46x10t%0 2.73x107%!
0.130 1.3%10°% 502<10°% 1.91x107% | -1.220<10"9"  1.34x10t%0 2.72x10° %!
0.140 8.7%10°% 3.04x107% 1.05x107% | -1.040<10M" 1.25x10t%0 2.70x107%!
0.150  4.5X%10°% 1.44x10°% 4.58<10°% | -8.845¢<10M%0 1.17x10t% 2.68x107 9!
0.160 1.8%10°% 557x10°% 1.65x10°% | -7.491x10v% 1.09x107° 2.65x107 %!
0.180 2.06107% 523x10°% 1.38x10°%? | -5.250<10v%0 9.72x10°%! 2.61x107%!
0.200  1.3x10°2 3.10x10°2 7.40x10°“2 | -3.473<10"° 8.75<10°% 2.57x10°%!
0.250 3.6x10°' 7.20x10°°" 1.45x10"%0 | -3.254x10° ' 7.00x10°%' 2.49x10° %!
0.300  3.1%10M%° 559x10% 10.00x10"% | 1.723x10t% 5.84x10°%1 2.47x10°%!
0.350  1.4%10M0' 2.33x10"%' 3.84x10"°! | 3.150x10t%% 5.01x10°% 2.48x10°Y!
0.400  4.2%10™' 6.62<10"°"  1.03x10M92 | 4.193x10t%% 4.39x10°%' 2.51x10°%!

Table 2.1: Example reaction rates for the fictiorfZNe(x,v)?Mg reaction described in the text.

agreement with the shape of the distribution (the reader should be awatbiths not a fit to the
data, but the solid line is calculated directly from Eds3(Q). A good measure of the applicability of

a lognormal approximation is the Anderson-Darling statfstig p, is calculated by

n

2t —1
tap = —n — Z - (In F(y;) + In[1 — F(yp+1-i)]
i=1

(2.32)

wheren is the number of sampleg; are the samples (arranged in ascending order), fansl the
cumulative distribution of a standard normal function (i.e., a Gaussian ceotreero). Although,
statistically speaking, an A-D value greater than unity represents deviationd lognormal distri-
bution, in the present work it was found that the distribution doesvisiitly deviate from lognormal
until A-D exceeds ap ~ 30. The A-D statistic is published along with all other values to provide
a reference to the reader. An example reaction rate output table for thiedis reaction discussed
above is shown in Tal2.1 Note thatt 4p is less that unity at all temperatures. This good agreement

supports argument (ii) above.

“The Anderson-Darling statistic is more useful thagastatistic because it does not require binning of the data, which
results in a loss of information as previously described.

26



2.3 Conclusions

A Monte Carlo reaction rate uncertainty propagation cétd,es MC has been written to compute
reaction rates. The code is capable of calculating the reaction rate ar@mgén-resonant S-factors,
narrow resonances, wide resonances, subthreshold resonandé@sterfering resonance pairs. Upper
limits in particle partial widths have been treated in a statistically meaningful maonené first
time. The code calculates a reaction rate distribution at a range of temperatuneg = 0.01 GK
to 10 GK, which is suitable for all astrophysical situations. At each temperasix parameters are
output; the low, median, and high reaction rates; two parametead o) describing the position
and spread of a lognormal approximation; and an Anderson-Darlingtetatislescribe how well the
lognormal approximation follows the rate distribution.

The code will be used as a specific example to calculate the reaction raté&etf, v)*°Mg and
22Ne(a, n)2°Mg in Ch.7. For a more detailed discussion of the Monte Carlo method, which is outside

the scope of this work, the reader is referred to Redr{10.
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3 Yield Curve Analysis

3.1 Introduction

N UCLEAR reaction cross sections are needed to calculate thermonuclear reatm(sese chap-
ter2). In an experiment, the quantity measured is a yield, not the cross seclieryidld is a

convolution of the cross section with other factors such as the beamyespepd and a finite target
thickness. The study of yield curves is important for: (i) deriving annavikn cross section from a
measured yield; and (ii) obtaining the depth concentration profile of a tditgetcross section is well
known.

The study of a target as a function of depth is known as depth profilingti@ofiling with nar-
row nuclear resonances is a particularly useful non-destructive methprobing targets, which has
become more powerful with improvements in computing power in the last fewddsdaef. Mau83.
Advanced deconvolution methods for obtaining the distribution of nucleiifdbatsate are summarised
in Ref. McG91]. The depth profiling formalism will be discussed in the following. All enesgiee

in the centre-of-mass frame unless otherwise stated.

3.2 Excitation Functions from Nuclear Resonances

An excitation function for a nuclear reaction is obtained by measuring the gisedda range of

incident beam energies. The measured yield is defined as:

, Number of reactions
vield = Number of incident particles (31




For a radiative capture reaction, the experimental yiglidan be calculated by measuring the inten-

sity of y-rays with a germanium detector:

(&

I
2 W(0)BQ’

(3.2)

wheree is the elementary charge? is the full-energy peak efficiency for the measuneday; W (0)

is the angular correlation function at detector anglith respect to the beam directiol3 is the
cross section fraction that is carried by the obseryedy (e.g., the branching ratio for a primary
transition);/ is the number of counts observed in the full-energy peak;@mslthe measured beam
charge accumulated on the target.

The yield depends on the measured cross section as well as on the ridhe¢éanget containing
the reacting nuclei. Understanding the effect of the target on the meiagetd is critical for extract-
ing resonance strengths or cross sections from excitation functiona.t&get with a varying atomic
concentration with depth, the yield will depend on the location in the targetentherreactions occur.
For narrow resonances, most of the reactions will occur at a depthmatsl by the incident beam
energy and the energy loss in the target. A finite beam resolution andyesieaggling of the incident
beam in the target serve to broaden the excitation function.

In the following, an implanted target will be considered. Implanted targetsisbof a substrate
(“target backing”), into which target nuclei have been implanted. Thisadlyiperformed by acceler-
ating the ions of interest, and focusing them onto the substrate. The nufmieactons originating

from a nuclear reaction in an implanted target per incident beam particledn by Mau83:

(e = | Tdp / " e [C(2)o(B)go(B: Bos )] (3.3)

whereC(x) is the concentration profile of the target nuclei (cij1 o (E) is the cross section of the
reaction at energyF; and go(E; Eo; x) is the energy spread law (i.e., the probability) of a beam
particle having an energy af, given an average incident enerdy,, at depthx. The beam spread

at the surface of the target (= 0) is the beam spread of the incident beam, with the energy spread

increasing due to straggling as the beam traverses the target. The beay gpread in the target
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can be expressed as a convolution of two functidi(gy), which describes the beam spread of the
incident beam; and(u; ), which describes the straggling of the beam energy (the probability density
function of the beam patrticles having an enetgst depthz). Equation 8.3) can now be expressed

as a set of convolution integrals:
Y(Eo) = o(Eo) x h(E0) « | N(@)g(Eviz)ds (3.4)
0

Convolution integrals are defined as:

a(x) xb(x) = /OO a(z — 2")b(2")da’ (3.5)
:/_OO a(z")b(x — 2')da’ (3.6)

The excitation function resulting from a varying ion concentration at diffietarget depths can
be described by dividing the target into many thin depth slices. Using thi®sippation, the yield
from a nuclear reaction is obtained from a sum over the contributionsabf keger,i, of the target
[Mau83:

Y (Eo) = Y NiF;(Eo) (3.7)

Here,Ej is the mean beam energy; is the target atom concentration in each layer (in units of nuclei
per cnt); and F;(Ey) is the convolution function of the cross sectioti /), beam energy profile, and

energy straggling in the targe¥lpu83:

Eo , o)
F(B) = [ a(Ba-EYaE [~ o(BnE - B)ap (3.8)

The beam spread function(E’ — E)dFE, is expected to be Gaussian in shape, and describes the
probability of a beam particle having an energy betwé&eanddE at a depth corresponding to an
energy ofE’. The integral over negative enerdy becomes truncated & = 0 because the cross
section at these energies is zero. The straggling functigiti, — E')dE’ (defined at each layer,

1), describes the probability of a beam particle having an energy betWweéanddE’ at a depth of

x;. Straggling effects can be computationally intensive to calcuReée(8 Mau87. However, beam
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particles typically undergo many collisions with electrons, losing typically séwesV of energy in
the thick targets used in nuclear astrophysics experiments. In thesetbasesntral limit theorem of

statistics states that energy straggling can be approximated by a Gaussigonf(Pez08. Thus:

1 (E' — E)Z]
WE —E) = = 3.9
(8= )~ | - 39
L (Bo—E' = A)?
gi(Ey — E') = oz exp [ 207, (3.10)

The adjustable parameters ando; define the beam energy width and straggling rate, respectively.
The average energy loss of the beam patrticles at dgpidenoted by\;, and is given by the integral

(sum) of the total linear stopping powel /dx, up to that location:

i dE
A,‘ = Z(xj — :L‘j_l)i (3.11)
j=1

dacj

Previous work frequently assumed a constant total linear stopping ptee87. This is only valid
if (i) the beam does not lose too much energy in the target so that the stqupireg for pure layers
is nearly energy-independent, and (ii) the ion concentrations do nptsigmificantly over the depth
of the target. For example, if a given species is implanted in high doses rggualarstrongly varying
depth concentration, then the second assumption is not valid, and the tgiingtgpower of the
material cannot be assumed to be constant, even if the energy lost in theisardatively small.

For a sample produced by implanting spegigato a substrate of specigsthe energy lost per
unit path-length is given by:

dE

P P

q

N is the number of atoms per émS is the stopping cross section (&v? /atom); N 4 is Avogadro’s
number; M is the atomic mass in amu; and the mass density (omg) of atoms is denoted by.
In general, the stopping cross sections depend on energy. In ordetdomine the densitigs the

nature of the implanted region must be known. Here, the implanted atoms areesst be located
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in inter-lattice spacings, resulting in an overall material density increase:

pq(xi) =pg = const (3.13)

N e PaMp
polar) =€) "4

(3.14)

where{(x;) is the stoichiometry (i.e., the number ratio of implanted to substrate atdi)sy,) at
depthz;; p, is the mean density of the pure substrate material (without spgcies

Depth profiling is usually performed with narrow nuclear resonancesselpeaked shapes pro-
vide sufficient depth resolution. As will be seen later, in the present Wwkneasured resonances
have total widths on the order of tens of eV. Narrow resonance cext®ss, for which the partial
widths can be assumed to be energy-independent over the total resamiaith, can be described by

the Breit-Wigner formula described in Séxl:

2
o(E) N FC{‘? (3.15)
dr (E - E,.)*+T12/4
2
AT g , (3.16)
4 (E—E,)"+T12/4
with
e+ (3.17)

(27p +1)(25: + 1)

wherel',, Ty, andI" are the entrance particle partial width, exit photon partial width, and the total
width, respectivelyE, is the resonance energy, j, andj; are the spin of the resonance, projectile
and target nucleus, respectively; angl is the resonance strength:

I
T

wy =w

(3.18)

If the resonance used for depth profiling is sufficiently narrow with eesfo the beam energy spread

(i.e.,I' <« 03), the convolution of cross section and beam spread functions irBEB).can be simpli-
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fied:

/OO dE o(E)h(E' — E)

A2 > h(E' — E)
="—wT E
A T

=2 wyh(E' — E,) (3.19)

For the assumption of a narrow resonance, the yield in Bg#. énd 3.8) can then be written as:

Y(Ey) = /\;uw Z Niﬁ /EO dE exp [—(E,_?)T exp [— (o - EQI _ A:)*
- vOs\/Ti JE =0 20} 204z,
(3.20)
This general equation for the yield curve arising from a target stoichigntleat varies as a function
of depth can be used to analyse experimentally measured yield curvesoirhaism is useful for
extracting stoichiometry profiles of the implanted targets used in nuclear hg#iop experiments.
More importantly, it allows for extracting absolute resonance strengths.

An example of using a simultaneous fit to both stoichiometry and resonanogtstris given
in Ch. 6. The formalism outlined above will be used to extract #ig° = 479 keV strength in
22Ne(p, n)?3Na by implanting??Ne into an aluminium and measuring theAl +p yield curve.

If the implanted region of the target has a uniform depth profile, this treatofexcitation func-

tions is changed somewhat. The general yield in B becomes

Y(EU):/EO aE [ dg " [U(E)f(Eo—Ei)g(Ei—E E')dE (3.21)
Eo—AE E;=0 =0 L€(E) 7

whereAE is now the target thickness in units of energy. A beam particle will lose arageesnergy
of AE as it traverses the implantation region of the target. By assuming an isolated/masonance
(Breit-Wigner cross section) far, two useful quantities can be found from Eg§.22): (i) the maxi-
mum yield height, and (ii) the yield integral. The maximum yield height for a thicketla@y £/ — o)
is

1 A2

Ymax = — 5wy (3.22)
Er 2
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wheree,. is the effective stopping power in the target region (i.e., the total stoppingipper target
nucleus);\, is the deBroglie wavelength; angy is the strength of the resonance. This equation is
useful in determining a resonance strength if a target is sufficiently thakally AF > 15 keV) and
its stoichiometry is well known. If a target is not thick enough, Bj2() can be integrated to provide
the expression

_AEX

Ay = —wy (3.23)
er 2

A more detailed discussion of yield curves can be found in Rigd7].
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4 Experimental Methods

4.1 Laboratory Equipment

EXPERIMENTSWGI’e performed at the Laboratory for Experimental Nuclear Astrojgsyf{& ENA)
at the Triangle Universities Nuclear Laboratory. A floor plan of the labany is shown in
Fig. 4.1 LENA is dedicated to the measurement of low energy cross sections neievauclear
astrophysics.

The accelerator used in the present studies was a 1 MV Van de Grhfatgelerator which is
capable of accelerating protons aneparticles to energies of approximately = 150 to 800 keV
(assuming singly ionised atoms). The analysing magnet slit control systeonilkrl in Sec4.3
constrains the beam energy, resulting in an energy uncertainty on teeafrel; = 0.5 keV. The
beam is focused onto a target thick enough to stop all incident particlestafrdets usually consist
of thin tantalum sheets with the reaction nuclei of interest implanted into them. Baaemts on
target of up tol = 150 uA (approximatelyl0'* particles/s) are achievable with the JN accelerator
(the other accelerator, an electron cyclotron resonance ion sourcapable of delivering beams of
up to several mA to the target). The beam current is measured directlytirertarget chamber,
which is electronically isolated. Secondary electron suppression allowectmrate beam current
measurement. A liquid-nitrogen cooled copper cold trap serves to redatansinant buildup on the
surface of the target, and de-ionised water is used for target coollmgytarget chamber is shown in
Fig.4.2

The main LENA detectors consist of a 135% high purity germanium (HPGexte and a
Nal(TI) scintillator annulus surrounding the target chamber. The HP@ectbe is placed as close

to the target as possible (1.1 cm from target to detector face) in ordewés e maximum possible
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Figure 4.1: The Laboratory for Experimental Nuclear Astrophysics (LAANCharged particles (usually protons
or a-particles) are accelerated in one of the two acceleratorssisting of a 1 MV JN Van de Graaff and a 200
kV Electron Cyclotron Resonance (ECR) source. An analysiagnet is used to select the desired beam energy
and particle species, which are focused onto the targettsiiiat the far right of the figure.
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Figure 4.2: Schematic representation of the target chamber used ixgegient. A copper cold trap serves to
reduce contaminant buildup on the surface of the targetsandndary electron suppression allows for accurate
beam current measurement. Beam current is measured difiecti the target chamber, which is electronically
isolated. De-ionised water is used for target cooling.
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Figure 4.3: The HPGe detector, detailing the geometry of the detecystat:

solid angle, thus maximising the detection efficiency. A scale image of the HR&aates shown in

Fig. 4.3 A Nal(Tl) annulus surrounds the HPGe detector and covers a lahgeasgle to maximise

coincidence efficiencies. It consists of 16 optically isolated Nal(Tl) segsneach with their own
photomultiplier tube, arranged in an annulus of 35.7 cm outer diameter, 11li8hendiameter, and
33.0 cm length. The target is located at the geometric centre of the annuiesdetectors are en-
closed in a lead shield, which, in turn is surrounded by a five-sided aiméidence plastic scintillator
shield. This setup is shown in Fig.4.

The passive lead shield consists of a box of 25 mm thick lead, supportéd bym thick alu-
minium. A compromise is made between passive shield thickness and weiglderatisns. It
should be noted that the Nal(Tl) annulus also provides some amountsifgakielding to the HPGe
detector. The plastic scintillator muon shield, which reduces backgrounmdsoriginating from cos-
mic rays, consists of a five-sided shield of Bicron BC-408 plastic scintilldegep with optical fibre
readouts. This readout method is used because the size and arrahgétherscintillators doesn’t
allow for practical use of light guides. The optical fibres used are BIBGF 91A multiclad wave-
length shifting (WLS) fibres. This not only makes the apparatus much stuhdiethe attenuation
coefficient in the WLS fibres is lower than for waveguides, giving bettdit §geld. See Ref.lon0g

for more details on the muon shield at LENA.
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Figure 4.4: Experimental setup of detectors consisting ¢f3amm long by90 mm diameter HPGe crystal,
centred inside a Nal(Tl) annulus of inside and outside dtamseof118 mm and357 mm, respectively. These
are surrounded by a lead box, which is surroundedgm thick scintillator plates. Dimensions in the figure
are given in mm.
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4.2 HPGe Detectors

High Purity Germanium (HPGe) detectors are commonly used in nuclear pleggeriments for
the measurement of-rays. Although they typically have lower intrinsic efficiencies and costsemor
than scintillation detectors, the vast improvement in energy resolution over dtectors is essential
when high precision data are needed .

In this section, the characterisation of a HPGe detector is described in ddiadlute efficiency
determination is described in Sekc2.1 Determination of angular correlation coefficients for detector
solid angle corrections is outlined in Sdc2.2 Detector energy calibration is performed in S&2.3
and the summing correction formalism, which must be considered carefullygia $lid angle (high

detection efficiency) situations, is provided in Sé2.4

4.2.1 HPGe Detector Efficiencies

When analysing data to calculate cross sections of reactions, it is import&nbvo the full
energy peak efficiency of the detector in order to relate the number aftddtphotons to the number
emitted in the reaction. The total efficiency of the detector is also importantibedgenters directly
into calculations concerning the “summing out” of peaks (see below). Thisrsng out correction
affects the peak count rate considerably if the detector is placed in cosealry to a target (see Sec.
4.2.1for more details on coincidence summing effects). It is possible to measupedékeand total
efficiencies of a detector by using single line radioactive sources, bsitttneasurements always rely
on the activity of the source, which cannot always be known with certaifiyg sum-peak method
provides a technique for determining absolute efficiencies at a singlgyeriéris efficiency data point

can then be used to normalise efficiencies measured with other radioamiiees and reaction data.

The Sum-Peak Method for Determining Detector Efficiencies

The following method for calculating detector efficiencies from a two stepamesis named the
sum-peak methodim03]. If a detector is placed in close geometry with a decaying nucleus, coin-
cident summing can occukKho89. This effect results when multiple-rays from the same decay

are detected within the detector’s resolving time. The result of this is a cotithvis registered at
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the energy sum of the individuatrays. If each of the-rays are fully detected, the registered count
arrives in a peak known as the “sum-peak”. This phenomenon is shokig.i4.5.

The process of coincidence summing can be used to find analytical sxpres$or the full energy
peak efficiencies arising from a simple two step decay. An example of a tp@aseade is the decay
of 69Co to%°Fe, which is nearly ideal for the sum-peak method. The nuéfi@® decays by emitting
two ~-rays with equal intensity ak, = 1173 and1332 keV (note that the ground state branching
ratio is very small2 - 10~8 [Bow74]). This decay provides a simple relationship between the counts
in the full energy peaks and the detector efficiencies. The number otsduthe two full energy

peaks, N; and Ny, in the sum peak, ), and the total number of counts; k the spectrum, are:

Ny1 = Noeb; [1— Wip(0)el,] (4.1)
Ny2 = Nogly [1 — Wi (0)el,] (4.2)
Nys = Noe? 1 e2o W, (0) (4.3)
N: = No [e51 + 55 — 51855 Wu(6)] (4.4)

where N is the total number of decays‘:r is the total efficiency (the probability that theray deposits
any energy in the detector)} is the peak efficiency (the probability that theray is fully detected);
and W,.(#) is the solid angle corrected angular correlation coefficient calculated tissnpeak Q-
coefficient fory-ray 1, and the total Q-coefficient forray 2; W;; (wherei andj can bep for peak
efficiency ort for total efficiency) is calculated by:

o 5 (Mi~@i 4 A 1)i2)
Wij(0°) = 14 505 Qs + Qi QY (4.5)

The Q-coefficients are calculated from the geometry of the detectorg, Ge? is the Q-coefficient
for y-ray 1 andQ(® is the Q-coefficient for-ray 2. See Sec.2.2for more details on the calcula-
tion of Q-coefficients. The fractions i are obtained from the direction-direction correlation for a
cascade decay{ — 2T — 0T). The reader is referred to ReKim03] for more details. Simula-
tions show that the angular correlation coefficigmt,; (0°) is approximately equal for peak and total

efficiencies, sal/;;(0°) ~ W(0°).
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Figure 4.5: Schematic showing the concept of coincidence summing irtectbe. Three possibilities are: (i)
The firsty-ray (1) is fully detected, while the seconds) does not enter the detector, resulting in a count at
the energy ofy; (F2 — E4). (i) 71 is fully detected, andy, also enters the detector, leaving a portion of its
energy. This situation results in a count being removed filoepeak at’s — F, and added into the Compton
continuum atty, — Ey + d2 (02 is the amount of energy that deposited). (iii) Bothy-rays are fully detected
by the counter. In this case, a count will be registered astime of their energiedy-.
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The peak and total efficiency can be found by solving E419) € (4.4) and assuming that the total
efficiencies are approximately equalfay = 1173 and 1332 keV (i.e.,gt71 ~ 532 for °Co). This

assumption has been shown to be correct to within 3% with Monte Carlo simulatiba®fficiencies

are:
1 N, N2
&) = L R— (4.6)
W (0) \| NeNy2Nys + Ny N2,
1 1 N1 N.
T y1iVy2
€ = — 4.7
W) W) \/ NiNy3 + NyiNyo (@.7)

To calculate the total number of counts in the spectrug),the room background contribution
first needs to be subtracted. Once this has been performed, the speeeds to be extrapolated
to zero energy, below the low-energy discriminator threshold. This is @gnextrapolations from
higher energies assuming that the Compton edge is relatively flat in this reégtbough this is only
an approximation, the fraction of counts in this region compared to the total euofilcounts in the
spectrum is very small.

An additional correction must be made to the measured efficiencies to ddoogource geom-
etry. When a source is placed on the face of the target backing (uswoalbjsting of 1/2 mm thick
tantalum), the source is further from the detector than a beam inducedtbreaccurring within the
first few um of the target face. This is shown schematically in Bigh. Reactions resulting from a
beam hitting the target will also have a larger diameter, on the order of 1 croorfect for this ge-
ometrical effect, Monte Carlo simulations are performed for both situationbteiroa scaling factor
between the two. This factor is then applied to th€o sum-peak efficiencies.

In order to obtain good precision in the efficiencies using these methodsgued sum peak
statistics need to be obtained. For example, in order to obtain uncertaintiessahbn 5% in the

efficiency, sum peak statistics need to be known to less than 1%.

Peak Efficiencies at a Range of Energies for HPGe

Although the sum peak method is useful for finding peak efficiencies fvavdine sources, other
methods must be used to find efficiencies at a range of energies. Radicaurces, such a&8Co,

emit a large range of high intensiyrays of energies between 263 keV and 3612 kButj74. These
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Figure 4.6: Geometry of (i) &°Co source on the face of a target backing and (ii) accelefztad hitting an
implanted target. In order to correct measured efficientbesccount for this difference in geometry, Monte-
Carlo simulations of both situations are performed to abtascaling factor. The dimensions in this figure are
not to scale.

radioactive sources are suitable for finding efficiencies at a rangaefies without having to use
multiple sources. However, coincidence summing becomes a concerneagltode addressed. The
summing correction codes described in Se2.4can be used to find peak efficiencies from measured
intensities.

A summing correction computer codaynp, has been written in order to correct peak efficiencies
for complicated decay schemes. The code is described in more detail id.3€c.For the electron
capture decay 0f°Co to°°Fe, there are 13 energy levels that need to be taken into account. Arfurthe
complications arises because of an 18,3%decay creating 511 ke¥Y-rays. However, it is possible
to add extra artificial levels in the decay scheme to produce 51hkedys for coincidence summing.
These levels are populated with the feeding fraction known for the leweéample, thés, = 2481
keV level has an 18.1% feeding fraction). The artificial levels decay wittaaching ratio of 1.0 to the
level they correspond to. For example, a artificial stateat= 2992 keV will decay (withE, = 511
keV) to the £, = 2481 keV level 100% of the time. This has the result of 511 keVvays being
emitted in coincidence with decays from that level. Onlyays with good statistical uncertainties
from an overnight acquisition should be used in the peak efficiency latilwn, while the 1360 keV

line is omitted because of strong contamination from summing of the 846 keV dnkkdllines.
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The summing correction code was also used with/i}€ = 278 keV resonance if*N(p,y)'°0,
which illustrates the effect of coincidence summing. This has the most inBusmthe ground state
transition (summing-in), as shown in the peak efficiencies of&igat E, ~ 7.6 MeV. Lower energy

transitions also undergo more summing out because peak efficienciesgetjthays are higher.
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Figure 4.7: Peak efficiencies calculated from a measurement of the 278dsonance in*N(p,y)'°0. This is

a good example of the large effect of coincidence summingraZBumming-in increases the perceived count
rate in the ground state transition dramatically. The fultlapen symbols correspond to uncorrected, and
corrected efficiencies, respectively.

There is a large dependence of the peak efficiencies on the disintegratioaupplied to the
code. Energies that experience summing-in are affected more than titbssumming-out effects.
Therefore deviations in the disintegration rate create large fluctuations idatiaepoints. Hence,
the disintegration rate must be known to high accuracy. The same precesied to calculate peak
efficiencies from"N(p,y)'°O was used with thé&!2® = 326 keV resonance A" Al(p,7)*4Si.

In order to normalise the peak efficiency curves to the absolute Sum-Hieaney from®Co, a
bootstrapping method was applied. Initially, the peak efficiencie2*foo were fit with an analytical
expressionTra99

In[eP(E)] = a+bIn(E) + c(In(E))? (4.8)

The fit is used to find the efficiencies &t, = 1173 and1332 keV, which are used to normaliSéCo

efficiencies to the absoluf€Co measurements. This procedure is then repeated wittif{p,7)'°O
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data points, followed by”Al(p,v)?”Si. This procedure yields reliable absolute peak efficiencies be-
tween a few hundred keV and about 10 MeV.

The peak efficiency curve obtained from the procedure describdtbisrsin Fig.4.8. There is
some scatter in the efficiency data points, which is partially caused by thexampations used for
treating 511 keVy-rays from®°Co decay. Contaminants such H€o, which has a substantially
longer half life than®®Co, could also be contributing to this scatter through random summing ef-
fects. Random summing from the strongest lines can also contribute to ttier sitdead-time in the
electronics is appreciable.

Monte Carlo simulations usinGeant 4 are useful for finding efficiencies at energies between
experimental data points, and for extrapolating to higher or lower enertjiesrder to produce an
accurate Monte Carlo efficiency curve, minor adjustments are typically matie tdetector geom-
etry [Hel03 Lon0g to correct for small manufacturing uncertainties in the crystal positionthén
present study, however, the detector dimensions are known througimau@ed Tomography (CT)
scan of the detectoar1(. Following that procedure, the relative peak efficiency was foundeto b
accurate to within a few percent when extrapolating betweer= 4 and 11 MeV. The Monte Carlo
efficiency curve is represented by a solid line in Ei@. The geometry used in tiigeant 4 efficiency

calculations is shown in Figd.9-4.10

Total Efficiency Calculations for HPGe

Total efficiencies are important for the summing correction of spectrageeet.2.4. Although
Compton scattereg-rays do not contribute to the full energy peak, they can give ride touhmgrsng-
out of other full energy peaks, thus lowering the number of countsreéde For this reason, it is
important to know the total efficiency of the HPGe detector.

Itis possible to calculate the total efficiency of the detector using the lineauatien coefficients
for germanium and integrating over the volume of the detector (see Figade. This has been
performed for a cylindrical Nal(Tl) detectoBpl80], but it is a simple matter to improve the method

to account for the contact pin hole in the HPGe crystal. This correction atsdo only 2% for the
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Figure 4.8: Peak efficiency curve for the LENA HPGe detector. F&€o, some scattered data points can
be observed. This is probably caused by random summing wipluiities in the source, as well as summing
with 511 keV annihilation radiation. Statistical error ban the Geant 4 calculations are smaller than the

data points. Error bars in measured efficiencies arise froth btatistical counting uncertainties and from the
summing correction procedure, which includes branchitig tancertainties.
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Figure 4.9: Geant 4 geometry used for the efficiency simulations of the HPGealeteat LENA. Shown is
the entire geometry used. Green material represents dete¢tPGe and Nal(Tl). White represents structural
material (detector housing, aluminium supports etc.); sigghifies lead; and black material shows the plastic
scintillator muon shield.
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Figure 4.10: Geant 4 geometry used for the efficiency simulations of the HPGedletext LENA. Shown in
this figure is a close up of the target chamber assembly. Tdosgtry is crucial in the determination for both
peak and total efficiencies.
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Figure 4.11: Determination of the Total Efficiency. Two separate intégexe required for the path lengths.

One for they-rays passing through the back face of the detector, and amihéd v-rays passing through the
sides.

LENA HPGe crystal. The equation for the total efficiency is:

el =e.—a (4.9)
where
01 —
L[ oo )]
% { /9 19 <1 ~exp <Si_n’“zg + CO’;EZ@)» sin(@)d&] (4.10)
03 _
e 2[[ (o) ]
+% [ /9 54 <1 —exp (S;‘(‘g) - "(:Sie_) d)>> sin(@)d@} (4.11)

andy is the linear attenuation coefficient for germaniunis the thickness of the detectdk, is the
radius of the detector, andlis the distance of the source from the detector. In the contact pin hole

correction ternmy, [ is the length of the contact pin hole andk its radius. Furthermore,

R R
f, = arctan (d+t> A5 = arctan <d> (4.12)

This integral needs to be evaluated numerically and yields a good estimatite fiotal efficiency of
the detector. The geometry for the angles used in this calculation is shown . Flg
This method is generalised to all energies by fitting a curve to attenuationcieefiilata Boo9q.

This way, an expression for the linear attenuation coeffigieat a function of energy can be obtained.
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Figure 4.12: Curve fitted to attenuation coefficients for germanium

A 14 order polynomial fit to data acquired from Boone et Bb§9q is accurate between 15 keV and
15 MeV to within 3% (See Figt.12). This fitis used with Eqs4(9)-(4.11) by replacing the coefficient
u with the energy-dependent fit. This method can also be adapted forIN@é¢€ctors using the same
fitting function.

As a test of these calculationGeant 4 calculations can be performed in the same way as for
the full energy peak efficiencies by only taking the HPGe crystal intowatcand removing all sur-
rounding material. The results of this comparison are shown in&I3 The agreement between
calculations and simulations is remarkable. However, the efficiencies daldwéh Egs. 4.9)-(4.11)
are consistently low owing to the fact that this method assumesythays travel in straight lines
through the crystal with no scattering. Once the full detector geometry dad included (detector
housing, target chamber etc.), the calculations outlined above are na ladeguate because they
do not include scattering and absorption of photons in the surroundingialafiéhis is an important
effect, especially at high photon energies, where the photons carr sctitdhe HPGe detector from
the surrounding material, thus increasing the total efficiency. The peefenethod of obtaining total
efficiencies is therefore to normalise the Monte Carlo total efficiencies todperienentalf®Co sum-
peak efficiency. After correction for dead-time in the electronics, theltegield the total efficiency

curve seen in Figd.14 The figure includes two sets Geant 4 simulations, one with the full detec-
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Figure 4.13: Total efficiency vs. energy for our Germanium detector. Titedration method yields a curve
that is very close to the GEANT4 simulations. The GEANT4 dation is for the HPGe crystal only, i.e., it
disregards surrounding material.

tor geometry, including the Nal(TI) annulus and target chamber, the oftteed1PGe crystal only.
The effect of surrounding material on the total detection efficienciespsaiglly important at high
and low energies. At high energies, for example, simulations including thggometry are found to
have a 50% higher efficiency than simulations of the crystal only. Both @&sehsve been adjusted

to the experimental efficiency found frothCo.

4.2.2 Q-Coefficients for HPGe Detector

Angular correlation attenuation coefficients (Q-coefficients) are rebmdhe sum-peak method
of efficiency calculations. They are used to correct theoretical angateelation coefficients for solid

angle detector effects. They are also important, therefore, for anglgsasured angular correlations.
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Figure 4.14: Geant 4 total efficiency curve for a HPGe detector adjusted to expenital data. Two simula-
tions are included, one for the full detector geometry, amotizer for the crystal only.
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Angular correlation coefficients are calculated fra&o[80, Kim03],

Qr = Jk/Jo (4.13)

Jp = /OemawSin(G)Pk(COSG)si(H)dG (4.14)

wheref is the incident angle of the-ray with respect to the detector axi,... is the maximum
angle subtended by the detector from the source (seedHid); P (cos6) is a k™ order Legendre
polynomial; and:; () is the efficiency of the detector for a highly collimated source at an ahdke
sum-peak efficiency calculations, the Q-coefficients for both the pedkatal efficiencies must be
known in principle. For the total efficiency Q-coefficients, approximatmerical calculations such
as those in Sed.2.1can be used. Q-coefficients are obtained with a code derived fronfiklef03],
where the coefficients are calculated from the geometry of the detectathanihear attenuation
coefficient, u, of germanium at that energy. The Q-coefficients foe= 1,2, 3,4 for a range of
energies are shown in Fig.15 However, for precision work, Monte Carlo methods should be used
for the reasons outlined in Set2.1

In order to calculate the peak and total efficiency Q-coefficients usingt®Garlo simulations,
several methods are availiable. One method is to find the efficiency of thetaless a function of
incident angle usin@eant 4 to simulate a collimated source at a range of energies. These efficiencies
can then be used with Eg4.(L4) to calculate the Q-coefficients of the detector. This method, applied
to peak effeiciency Q-coefficients, agrees with those quoted by Ref6y to within 1%. Peak
efficiency Q-coefficients have been calculated in the geometry shown iMdHig for a range of
energies. The results are presented in Ei@6

An alternative method for obtaining peak and total efficiency Q-coeffisiénto use a post-
processing analysis technique alongsidéeant 4 simulation. The simulation is used to produce
a file with tracking information on every event that occurs in the detectorogt processing code
written inr oot can analyse the file to calculate the Q-coefficients. Each time a full enesaly pe

event (for peak Q-coefficients) is registered in the code, the initial asfglee y-ray is recorded. The
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Figure 4.15: Total efficiency Q-coefficients for 135% Ge detector at a cletesource distance of 1.65 cm. The
total efficiency coefficients were calculated numericakyng linear attenuation coefficients.
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Q-coefficient is calculated through,
1
QL = N E Py, (cos0;) (4.15)

where N is the total number of full energy peak evenfg; is the k" order Legendre polynomial;
andd; is the initial angle of each fully detectegray (i.e., the angle at which it was emitted from
the source). This equation is equivalent to E418, and is also applicable to total efficiency Q-
coefficients. The advantage of using this method is that it accounts farmtterial surrounding the

detector without assuming spherical symmetry in the system.

4.2.3 Detector Energy Calibration

The HPGe pulse height spectrum is calibrated with radioactive sourecesoam background
lines. The room background lines used are #i¢ and 2°*TI decay lines atz, = 1460.822(6)
keV [Cam04 and £, = 2614.529(10) keV [Mar07], respectively. A°Co source provides energy
calibration peaks at energies betwden= 200 and3600 keV [Jun99 while a'37Cs source provides
an extra energy calibration point &, = 661.657(3) keV [Bro07]. The amplifier and ADC are
known to be linear, so extrapolation of an energy calibration from theseyies to those required in
an experiment (usually on the order of ab&ut = 10 MeV) is justifiable. Additionally, the excitation
energies of states in nuclei of interest in nuclear astrophysics aréyused known. If the energy of
a state is required to better accuracy, extra energy calibration pointstoltds=energy of interest are
encouraged.

The energy calibration was performed by a least squares linear fit toatlae dhe calibration
obtained is

E,=aC+b (4.16)

where(C' is the channel number in the pulse height spectrum.
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4.2.4 Summing Correction
Introduction

Numerical methods for treating coincidence summing were first developecdfis. RI1cC75
Geh77 Deb79. These methods were then generalised into matrix form in FE&f{9(Q, which is
useful for integration into a code for simple and fast summing correctiom.nfewe details of this
method, see Refgem9(. The following summing correction formalism can be used to correct mea-
sured spectra, for branching ratio determination, and for full-eneegk efficiency determination.

Three codessum sunb, andsunp were written to perform these tasks.

Formalism

Consider a simple generalised decay scheme @&itj}) with n excited energy levels. In this ex-
ample, a four level decay scheme£ 4) for a radioactive source decay is considered. In radioactive
decay the product is an excited nucleus, which can have a differergyerThis distribution of initial
excitated states is represented by the feeding fractigng,He v-ray branching ratios of each decay
from level j to leveli are denoted by ;.

In order to analyse the decay scheme in the presence of coincidence gyntineise feeding
fractions and branching ratios need to be converted into matrix form. Téudirfg fractions can be

represented in the form of a row vectér,

f=(fofi-- fa), (4.17)

The branching ratios are represented by(an+ 1) x (n + 1) matrix, x. The rows represent j, the

starting level, and the columns represent i, the ending level. Following thi®ation, matrix element
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Figure 4.17: A simple decay scheme representing the possible decaysrofitan excited nucleus. The feeding
fractions, f,,, describe the population probability of each excited staelx ;; are the branching ratios for the
decay of statg to statei.

X;; represents the-ray branching ratio from level j to level i:

0
10 0

X=1 myp z21 0 (4.18)
Tno Inpl Tp2 ... 0

Now, three other matrices, e andb, which are functions ok, can be defined:

Qg =  Tg5 - Z-:?i (419)
€ = Ty 8}; (420)
J J J

Where,sﬁ.’i is the peak efficiency of the detector for measuringthmy decay from level j to level i,
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andszi is the total efficiency. Using these matrices, two more can be defined:

A= >a (4.22)
k=1
B = E+) b (4.23)
k=1

WhereE is the unit matrix. Two more matrices can now be defined:

N = diag([f B]) (4.24)

M = diag(Bj) (4.25)

The “diag” in Eq. (4.24) means that the row matrix obtained from theB calculation is converted
into the diagonal elements of &n + 1) x (n + 1) square matrix. Similarly, Eq4(25 converts the
first column of theB matrix into an n+1 square matrix.

These matrices can now be combined to find the measured peak intensitieb gfreg, S.

S= RNAM (4.26)

where R is the disintegration rate (i.e., the total number of decaying nucleg) mEtrixA contains
information about the observed peak intensities including summing-in effé@syvides the feeding
to a level both from the feeding fractions and from decays from higheg Istates. MatrisM provides
information about the-ray decay originating from each level. TogetHdrandM act on matrixA to
provide the summing-out effects. This is all scaled by R to provide the whbdéntensities of each
~-ray.

The matrixS is not particularly useful in itself because it contains the observed peéaksities
in the presence of coincidence summing. These values are the intensitie®thatbe observed in
an experimental spectrum. In orderdorrectfor coincidence summing, E¢ 26 must be expanded

into different orders of correction. For examp®&? is the matrixS with no summing correction and
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S is Swith summing corrections for only 2 coincident peaks. Using this expansion,

A® = 3 (4.27)
B® = E+) % (4.28)
k=1
N© = diag ([f : B<0>} ) (4.29)
MO — E (4.30)
Eg. @.26 can now be written as,
S=R (N<0>A<°> + D) , (4.31)

Where,
D=NOA® (M-M?)+NO (A-AO)M+ (N-NO)aM  (432)

D is known as the correction matrix and contains all of the coincidence summingriafion. From
this information several coincidence summing corrected quantities can beeathtahe sum corrected
peak intensitied,, can be found using the branching ratio information xhe feeding fractions fJ,

the efficiencies of the detectar’ andsﬁ-) and the disintegration rate, R.

Ji

Ii=R [N“%} (4.33)

The disintegration rate can be found using the observed peak intensities jmetbence of co-
incidence summingg;;), the efficiencies, the feeding fractions and the branching ratios. USing

(4.31),
Sji = Rj; N®AO 1 D| (4.34)

ji
A matrix of disintegration rates is obtained from this calculation, which varabse of statistical
errors in the observed peak intensities. A value for R is obtained by gingréhese values. The
median of the rates is used for this purpose, because it is less affectedibys in the rates.

If the observed peak intensities, branching ratios, feeding fractigsisitegration rate and total
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efficiency of the detector are known, it is possible to calculate the suneated peak efficiency.
Calculating the peak efficiency in this way is extremely useful because ke sedjoactive source
with a range ofy-ray energies can be used to produce an efficiency curve. E® @nd @.34)

yield:
P 4.35
8]1 Iji [N(O C]ji’ ( )

where |;; is calculated from Egq4.33. Unfortunately, the peak efficiencies are also contained in the

correction matrixP, so iterative methods are required. Initiallyjs assumed to be zero so E4.35

becomes:
P S]Z
€ = T (4.36)

These values for the peak efficiency can then be used to calculate aahexnfarD from Egs. 4.19
to (4.32 , which in turn can be used with Eg4.85 to recalculate the peak efficiencies. Desired
accuracy of peak efficiencies can be obtained by repeating this pnaciteratively.

A similar method has been developed to calculate unknown branching raitgstbe peak and

total efficiencies, feeding fractions, observed values and disintegnatie. This method uses a form

of Eq. @.3)):
AW = S5if B~ Dji (4.37)
NGO
Ji
where,
A0
Tji = zf (438)

Once again, this method involves an iterative search wbei® first assumed to be zero. EQq.
(4.37) is used to find the uncorrected branching ratios, which are then utilised to calculate values
for D. These values can then be used to find the branching ratios and the ite@tiomues until a

desired level of accuracy is achieved.

Summing Correction Codes

Several codes have been written to implement these methods. The firstaroelets a spectrum

for coincidence summing, corrects a single peak (useful for yield measamnts) or calculates the

62



disintegration rate. The second code calculates the sum correctedfficak@es from the branching

ratios, feeding fractions, observed peak intensities and a disintegratenThe third code program
is designed to calculate the branching ratios of a decay if the generduséwd the level scheme
is known. This latter code is designed to only be used for resonancioreawith 100% feeding to

the top level. It requires an input of observed peak intensities, effigem@nd a disintegration. The
code also has the feature of being able to hold known branching ratissacm@nd just calculate the
unknown branches. The programs all use the same input file (Se¢. E8y.

Number of Energy Levels

N—Level/

Total Number of Reactions 4

/

Reactions Feeding Fractions
3345748 1000
Energy of Levels

Energy Levels
0.0 0.0 0.0
5183.0 0.0 0.0 ) _ )
1676.0 0.0 00 = Errorin Feeding Fractions
6793.0 0.0 0.0
7556.0 1.0 0.0
Branching Ratio
B-Values _—
1 0 1.0 0.0
2 0 1.0 0.0
3 0 1.0 0.0 D Error in Branching Ratio
Starting Levels 4 0 0.017 0.001
T4 1 01772 0.0005
4 2 0.5866 0.0005
4 3 0.2192 0.0005

Number of Observed counts in Pea
Observed Values -

Ending Level 0 6560.0 100.0
18220.0  150.0
6415.0 123.0

2069.0 500
12038.0  130.0 \
58367.0  300.0

30181.0 200.0 Error in Observed Counts

A ADDONPR
WNEFE OOOo

Figure 4.18: Sample input file for the decay of tHéN(p,y)'°O reaction.

The peak intensity correction program has been tested with a simple, thabfeticlevel decay
scheme. The summing effects can also be calculated by hand by consielehrgray individually
and accounting for every possible decay route that could lead to summiagsamming-out. This is
relatively simple for a four level decay scheme and can be calculated wiffdeace. The results for
calculation by hand were found to be identical to those obtained by runnéngrtigram. This code
can also be tested using the radioactive deca3?@b, which has a many level decay scheme and

results in very complicated summing effects. Summing correction for this dedtegne would be
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almost impossible without the aid of a sum correction code. This decay saébémnther complicated
by 5T -decay, which can produce 511 keV annihilation radiation. These camtin any of the decay
~-rays. The 511 keV annihilation radiation is assumed to originate from thettaagd not from the
surrounding material.

In order to account for summing effects involving annihilation radiation, itosgible to create a
decay scheme fo°Co by arbitrarily adding levels 511 keV above each of the levels that arbyfe
BT-decay. These artificial levels are fed with the same feeding fractionrabdaactual level. For
example the?, = 2085 keV excited state iA°Fe is populated by -decay with a feeding fraction of
18.1%. To account for coincident 511 keV summing effects, a level iscGtmthe decay scheme at
E, = 2085+ 511 = 2596 keV with a feeding of 0.181. These extra states are then given a brgnchin
ratio of 1.0 to the level they represent (i.e., thig = 2596 keV state will decay to th&, = 2085 keV
state with a branching ratio of 1.0). This has the result of 511 ke¥®ys being emitted in coincidence
with v-ray decays from that level.

A decay scheme fo¥*Co can be built in this manner using the branching ratios, feeding fractions,
and energy levels found in Refiyn99. The calculated peak intensities in the presence of coincidence
summing are then compared to the actual observed peak intensitiegl (F9g. Although some of
the points do not agree with the observed values, most of the points aghée evror. The points
that disagree are mainly caused by summing with 511 ke¥ys and impurities in the source (for
example, thé®Co source had a largéCo contamination).

A more complicated decay scheme was used to test the single peak correntitari of the peak
intensity correction program. The 519 keV resonancé’@(p;y)'®F has a 13 level decay scheme,
which would be extremely hard to correct by hand. The literature 519 lesdnmance strength is
wy = 1.37 x 1072 £ 0.22 x 10~2 [New10H. With no summing correction, the 4975 keV peak
contains20821 + 155 counts, which corresponds to a resonance strengthyef 5.3 x 10~2. When
the peak was corrected for coincidence summing effects, the numbeunfscovas31837 + 3728,
65% larger than the observed number of counts. This yielded a resms&eagth ofoy = 1.3 X
107240.2 x 1072, in excellent agreement with the literature. The large error in the correcteder
of counts originates from uncertainties in the branching ratios of the dedagme. This example

highlights the large effect summing can have when using high efficiencgtdete
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Figure 4.19: Ratio of calculated peak intensity to observed intensit}’i@o decay. The peaks at 1360 keV,
1462 keV and 2212 keV appear considerably lower than exgedire 1360 keV peak is largely affected by
511 keV~-rays.

The peak efficiency summing correction code is further described indS2d. Hence the infor-
mation will not be repeated in this discussion.

The third code calculates branching ratios of resonant reactions in éserme of coincidence
summing. This program is not intended to be applied to radioactive soumcehjch the levels are
populated according to the feeding fractions; 100% feeding to the highesgy level is required, as
in resonance reactions. THe® = 278 keV resonance in*N(p,y)'?O was used to test this code,
owing to its simple decay schem&$91] for which the summing can also be calculated analytically.
The code was developed so that well known branching ratios in the daralge held constant and
only unknown branches will be calculated. AHN(p,y)'®*O measurement was performed at LENA
for the E!3 = 278 keV resonance. After running the code with the observed intensities tihhem

experiment, the branching ratios were compared with the literature valuesxpedmental results.
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Transition Branching Ratio| Literature Value
E; (keV) E; (keV) Present
5183 0 1.0£0.0 1.0£0.0
6176 0 1.0£0.0 1.0£0.0
6793 0 1.0£0.0 1.0£0.0
7556 0 0.0192 +0.0019 | 0.016 £ 0.001
7556 7583 | 0.1705+ 0.0022 | 0.171 4+ 0.002
7556 6176 | 0.5851 +0.0046 | 0.578 + 0.003
7556 6793 | 0.2252 £+ 0.0021 | 0.229 £ 0.003

Table 4.1: Branching Ratios calculated from tHéN(p,y)!°O resonance. The uncertainties in the present
results to not include efficiency uncertainties, which amtdo about 5%. The literature values are taken from
Ref. Imb0g.

Feedback

Accelerato@

Figure 4.20: Schematic of the slit control system used to control the beaengy at LENA. If the beam energy
becomes too low, for example, the beam will be deflected mpr&d magnet (whose field is precisely main-
tained). A current imbalance will be measured between tgh hnd low energy slits causing the accelerator
voltage to be increased.

Every decay branch agreed with the literature values within uncertaingesT&bled.1).

4.3 Analysing Magnet Energy Calibrations

The beam energy delivered to a target in the LENA laboratory is seledtledavhorizontal slit
system on the target side of an analysing magnet. The current measutteg gits is balanced with
the aid of a feedback circuit, which controls the terminal voltage. This syistshiown schematically
in Fig. 4.20

Prior to an experiment in which the beam energy must be known, the arglysignet used to
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Target| E®(keV) E, (keV) wy (eV)
B0 | 150.9 (2) 5789 9.7 x 10~ 4
ZTAlL | 222.7 (4) 11719 4.2(3) x 1075
Mg | 292.12 (9) 8552  7.0(12) x 1073
ZTAI | 292.6 (4) 11867 2.33(13) x 1074
Na | 308.75(6) 11989 0.105(19)
ZTAl | 326.6 (4) 11899  1.8(1) x 1073
ZTAl | 405.5(3) 11976 8.63(52) x 1073
Mg | 462.6 (5) 8716 0.035(11)
ZTAl | 654.65(4) 12216 0.110(9)

Table 4.2: Standard resonances used for analysing magnet calibratibmesonance energies and strengths
are from Ref. [1i10]

select the beam energy must be calibrated. The procedure for this iestalilished, and involves
measuring several resonances with well-known resonance eneYgs curves for each resonance
listed in Tab4.2were measured. Ayield curve fitting code (see Se?).was used to find the magnetic
field that corresponded to the front edge of each resonance (ampéxé shown in Fig4.21). The

field, B is related to beam energk;, through [li07]

E = aB? (4.39)

Fitting Eq. @.39 provided the calibration constant for the magnet.

4.4 Target Implantation

Implanted targets are frequently used at LENA. They consist of a bagckaterial (usually a thin
tantalum sheet) with the nuclei of interest implanted into it. An Eaton ion implanter witbdified
end station (located at the University of North Carolina at Chapel Hill) igl tsémplant ions into tar-
get backings. The ion implanter accelerates ions from pressuriseaties o implantation energies
betweenFEio, = 20 keV and= 100 keV (assuming singly ionised particles). A9@nalysing magnet
(with a quoted selectivity of /100) is used to mass separate the beam to ensure pure implantation of
the ion of interest (see Fig.22. The incident dose of particles is estimated by integrating the beam

current on the backing, assuming singly charged incident ions.
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Figure 4.21: Sample yield curve for thé&'® = 326 keV resonance if”Al(p,7)?*Si. The front edge of the
yield curve defines the magnetic field that corresponds toebenance energy.

Cold Trap

/Analysing Magnet )

oV ‘
— |
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J

Figure 4.22: Schematic of the Eaton N200 ion implanter, which was usedniglanting ions into target
backings used for depth profiling. The ion source is held atrestant voltage of 20 kV above the acceleration
voltage for beam extraction.
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4.4.1 Target Thickness

The thickness of a target is usually quoted in units of energy, and pomeds to the amount of
energy that will be lost as beam particles traverse the implanted regiondéeRired thickness of an
implanted target depends on the experiment to be performed. Two situatioreevant for stopping
targets (i.e., the beam will stop in the target backing) used at LENA: (ipnaresonance strengths;
a thick target A E' =~ 20 keV) is required to ensure that all beam particles will interact in the target
region; and (ii) a slowly varying cross section; a thin target{ < 10 keV) is required to measure
the shape of the cross section accurately.

Once a target thickness (in units of energy) has been chosen to lite8tesexperiment, the
implantation energy (energy of incident ions on a backing) needed taipeothe target must be
calculated. Estimates for implantation energies are best performed with thethelstopping power
codeSRI M[Zie04. The user must first calculate the physical depth of a target thatspmnels to
the energy loss required. For example?’ile is to be implanted into a tantalum substrate to produce
aAFE = 15 keV thick target at proton energies @ah = 400 keV, SRI Mwould be run for protons
incident on a Ne-Ta compound Bf?° = 400 keV andE/2 = 385 keV. The difference in ranges is an
approximate measure for how thick the implanted region must be (80 nm in thigpéx)a The next
step is to calculate the implantation energy?8ifle incident on pure tantalum required to produce
a target of the desired physical thickness. Once adgaith,Mis used to find the beam energy of
22Ne required to reproduce a range equal to that found in the first steig.iffiplantation energy is
E'3b — 140 keV for this example. Note that target thicknesses are not required to beaat value,
in general, so the approximate calculations outlined above are adequatedacing the targets used
at LENA. The actual thickness of the targets are then found usingwaespnance yield curves (Ch.

3).

4.4.2 Dose Calculations

The number of ions implanted into a target depends on the beam current, fatiglarvolume,
implantation time and implantation efficiency. The required ddggis calculated using the simple

geometry shown in Figd.23 The implantation volume is constrained by a collimator placed approx-
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Backing

Implanted Region

Figure 4.23: Geometry used to calculate required dose in implantedtargée target ions are implanted into
a thick target backing to a depth éfand a radiug defined by a collimator.

imately 20 cm away from the target, and by the thickness of target desioedhé-present work, the
implantation region diameter was 2.5 cm. The number of backing substrate at@nis,a volume,

V, defined by’ = d - r? is given by:
_ mVNa

N
b A,

(4.40)

wherep, is the backing substrate density (g ¢, 4, is the atomic mass of the backing atoms, and

N4 is Avogadro’s number. The number of required implanted idWis,is therefore

Ne = &Ny (4.41)

where¢ is the stoichiometry of the final implanted target. The stoichiometry achievedchdspmn
the implanted ion as well as the backing substrate, which cannot typicallyeloéctad. Examples
of experimentally determined stoichiometries can be found in R&7]. For the case of’Ne ions
implanted in tantalum, a stoichiometry of approximately:Tée- 1 : 3 should be achievable. The

required incident beam charge to implawitions is given by

Q=—" (4.42)

where( is the implanted charge as read from the target, samglthe sputtering ratio. Implantation

efficiency is not typically known. However, all experiments performetEtA require a saturated

70



target in order to maximise count rates of astrophysically important reactiéosthis reason, the
implantation efficiency is assumed to be a conservative 25%.%4¢e implanted into a tantalum

backing to produce A E = 15 keV thick for protons at,, ~ 400 keV, a dose of approximately 0.25

C is therefore required.
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D Mg(y)* Mg

5.1 Introduction

A T a typical temperature nedf = 300 MK, which is relevant for neutron production in mas-
sive stars and AGB stars, the Gamow peakdeparticle capture od’Ne occurs neaf, =
600 keV. At these low bombarding energies, the Coulomb barrier dominates-fheaticle partial
width and, therefore, the reaction cross section decreases dramatiithljaereasing energy. A con-
sequence of the low cross section is the difficulty to mea&ie+« reactions directly. The lowest
measured resonance is located&P = 830 keV [Wol89, Jae01h Other methods must be utilised to
obtain the properties of low energy resonances in order to estimate religlieon production rates
in stellar environments.
Prior to the present work, the nuclear properties of levels betweemiparticle threshold at

S, = 10615 keV and the lowest directly observed resonankg & 11319 keV) have been mea-
sured through neutron capture;particle transfer, and photo-neutron studiBef69 Gla86 Wal92,
Gie93 K02, Uga07. In addition to these works, Nuclear Resonance Fluorescence (8#pE}iments
using bremsstrahlung beamBdr84 Sch09, and inelastic proton scattering experiment4og76
Cra89 have observed two states in the excitation energy region of interesf at 10649 keV
(J™ = 11) [Ber84 Sch09 and E, = 11154 keV (J = 1)) [Mos76 Cra89 Sch09. The reso-
lution of Ref. [Cra89 was approximately 60 keV. Th&" state observed in that experiment could
therefore be attributed to a number of excited states in this energy regiamsfé€r measurements
(*?Ne(°Li, d)?°Mg) [Uga07 Gie93 have also studied low spin states betweendhgarticle and neu-
tron thresholds if°Mg. Alpha-particle transfer studies typically yield excitation energy unoeies

in excess of several keV and, furthermore, do not provide unambgggoantum numbers to excited



states. A>Mg(, v)?Mg measurement with a polarised, mono-energetiay beam can be useful
for significantly improving uncertainties of tiéNe(a, v)?°Mg and??Ne(«, n)2°Mg reaction rates.
The High-Intensityy-ray Source (H{S) at the Triangle Universities Nuclear Laboratory (TUNL),
utilising a linearly polarised-ray beam, is perfectly suited for this purpose.

Here, experimental results of the spin and parity measurements of dipoke istéte photoexci-
tation?°Mg(~,v)**Mg reaction are presented. These measurements were made in the egéagy r
important to astrophysical reaction rate calculations. The experimentag setliscussed in Sec-
tion 5.2 Section5.3 outlines the theory needed to interpsetay angular correlation measurements.
The results of the experiment are presented in Seé&idnA discussion follows in SectioB.5, and

conclusions are given in Sectiéng.

5.2 Experimental Setup

5.2.1 Photon Beam

The properties of excited states in a nucleus can be probed with highygrtestpns. A photon
beam is used to excite the ground state nucleus to the desired energy, while-éxcitationy-rays
are observed. These beams can be produced in a variety of wayky, Rirslear reactions can be used
to produce mono-energeticrays. However, only those energies allowed by the nuclear structure o
the compound nucleus used will be available, hence tuningraly energies is not possible. This
method therefore has very limited applicability. Secondly, the most common methmnduising
bremsstrahlung radiatidrio excite the nucleus. Bremsstrahlung radiation is produced when a dharge
particle is accelerated in a high electric field, commonly an electron being thefley the field of
an atomic nucleus. Although this method can produce a high flux of radiatierphbton energy
distribution is continuous. This creates complications in the analysjsray partial widths because
the exact shape of the bremsstrahlung energy distribution must be kmewiggly. In addition, decays
to other excited states are usually unresolvable because the continaougiergy profile will excite
lower lying states in the nucleus directly. A third method of producing photamisas by Compton

scattering laser photons from relativistic electrons. The present wak performed at the HE

0riginating from the German wordsremser{to brake) andstrahlung(radiation)
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Figure 5.1: Design schematic of the DFEL facility. The 4 target rooms are located to the right of the figure.
Figure obtained from Ref\el].

facility, which utilises the latter method. The advantages of using Compton scgtsee as follows:
(i) a mono-energetic beam (an energy spread of about 3% of the besngyE can be produced; (ii)
the beam can be highly (aimost 100%) polarised; and (iii) a high intensityatbpk (07 photons/s
incident on the sample) can be achieved.

The photon beam at HE is produced using the Duke Free Electron Laser (DFEL). The beam
production and transportation occurs in four main parts: an electronggtoiiag, a magnetic undu-
lator, a resonating cavity, and the target area. An outline of the beanugiiod follows, and more
information can be found in RefsChro6 Lit97, Wel09 and references therein. A design schematic

of the DFEL facility is shown in Fig5.1

The Electron Storage Ring

The electron storage ring is a 107 m long “racetrack” shaped ring thafpialde of accelerating
electrons up to 1.2 GeV. The electron bunches are supplied by a 183€8&-band radio frequency
linear accelerator. During HIS operation, the storage ring contains two electron bunches, separated
by half the ring length. An electron current of about 40 mA in the storaggisisufficient to produce

107+/s on the sample.
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Figure 5.2: Schematic diagram of a wiggler system. The alternating ratgfield produces a characteristic
photon beam in the downstream direction.

The Magnetic Undulator

The magnetic undulator, an optical klystron, produces a polarised pligam. Commonly
known as a “wiggler”, the oscillator consists of a set of magnets that aatelthe electron bunches
transverse to the beam direction. This motion transverse to the beam dingcithrces coherent light
emission by the electrons. Unlike in conventional lasers, there is no lasingimeldence the term
“free electron laser”. Figur®.2 shows an example of the wiggler principle. The general equation

governing the intensity;, of radiation from an accelerating charged particle is givenJag 9§

d?r e2w?

dwd  4n2c

[e’s) 2
/ n x (n x §) e t-nr®)/e) gy (5.1)

o0

where: w is the frequency of emitted radiatiof?, is the solid anglen is a unit vector towards the
emission directionp = v/c, wherev is the velocity of the particle; ancl(t) is the position of the
particle as a function of time.

If the electron is relativistic, the radiation is emitted in a narrow cone in the direcfienotion.
Provided the angle of motion is less than that of the light cone, an obséneges “downstream” will
observe a continuous beam of photons. This photon beam will have altgpiergy, E, depending on

the electron energy and wiggler magnetic field properi@s94g:

chkyy?

E =~ (1+aZ) (5.2)

w

where: ¢ is the speed of lighth is Planck’s Constantk,, is the undulator wave number, which is
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obtained from the magnet spacingis the relativistic Doppler shift of the electrons; aag is the
normalised rms vector potential of the undulator, which is related to the strefititt magnetic field.
The DFEL undulator hak,, = 62.8 m~!, anda,, is variable from zero td.1 by varying the magnetic
field. The photon energy spread depends on the number of magnetidgeritne undulator, N, and

is given by: AE/E ~ 1/N. The transverse motion of the electrons will produce linearly polarised

photons, with the polarisation vector transverse to the magnetic field anddiesation [Car94.

The Resonating Cavity

The resonating cavity is an optical cavity that captures the photons prdduthe undulator. Fig.
5.3 shows the cavity arrangement in relation to the electron storage ring andiatmd The cavity
consists of two mirrors on either end of the undulator section of the stomage These mirrors are
separated by one half of the storage ring length. Therefore, the ghatitimpass back through the
undulator when the electron bunch has made a full circuit. The mirrors eandved to ensure an
even number of wavelengths in the cavity so that the electric field of the phptorides additional
force on the electrons, further stimulating emission. These photons willfeeed to as the laser
photons. The number of laser photons stored in the resonating cavitgaehn about0'3 photons

[Car9g, which corresponds to about 15 W beam power.

Electron
/’-
Bunch Storage Ring
Undulator
7777777777777777777777 oo i NN EEENERER ' 2
Optical Cavity
Buncl HHNEEENEEEEN

Figure 5.3: Representation of the resonating cavity in the DFEL. Thécaptavity is tuned so that the elec-
tron and photon bunches reach the undulator simultaneotiiig creates lasing as the photon electric fields
stimulate coherent photon emission from the electrons.

If a second electron bunch is added to the storage ring, separatedhieofinst by half the ring

length, high energy photons can be produced. As the second eleaimoh teaches the undulator, it
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will meet the laser photon bunch travelling in the opposite direction. The Consgtttering of laser
photons off these relativistic electrons produces high energy phottnah are polarised in the same

plane as the laser photons. In an electron’s rest frame, the ed€r@f, a scattered photon is:
y mec?E

E = .
mec? + E (1 + cosf)’ (-3)

where: E' is the incoming laser photon energyi,. is the electron rest mass; afids the scattering

energy. The differential cross section of scattering is given by the KNeshina Eqn. (Kle29]):

do EN (. E—FE')?
W <E> <‘5 aoft 4+ 4EE/) > (4)

where: r, is the electron radiusr{ = 2.8 x 107! m); E and E’ are the incoming and outgoing
photon energiesz* ande are the polarisation vectors of the incoming laser photons and outgoing
photons, respectively. Applying these equations to the situation of lowggrErotons scattering
from relativistic electrons results in a high energy photon beam. Negle@uoul effects, the photon
beam will have an energy of abo(y?)E'®. Consider, for example, an electron energy of about
500 MeV and photon energy of 3 eV. In this case, photons will be preduwath energies on the
order of 11 MeV. The photon beam will be concentrated to a narrow eigeed with the electron
bunch direction. An example can be seen in Fig. 7kdéR9], where most of the beam is within one
thousandth of a radian of the electron beam direction. Equafic) ¢hows that the photon energy
depends on the scatter angle. Consequently, placing collimators downs@edune the beam energy

width desired on the sample.

The Target Area

The target area is located about fifty metres downstream of where-thgs are produced in
the undulator. It is split into two main rooms: the “collimator hut’, and the “gammadtalhe
collimators are used to select the width of the beam. Selecting a narrowergreéila restricts the
energy width and intensity of the beam. The gamma vault, situated downstreamthie collimator

hut, is where experimental setups are placed. A sensitive beam imagke gdaced in the gamma
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vault for accurate alignment of the beam to within a few millimetres. Accurattophmeam alignment
enables the use of smaller samples because it can be ensured that theeamtireavels through the

active area of the sample.

Parameters used in the Experiment

The storage ring of the HIS facility was operated with two electron bunches at an energy of
E.- =515 — 530 MeV and a current of .- ~ 45 mA. The collimator size used, which defines the
diameter of the beam incident on the sample, amounts to 1.91 cm, resulting in @&bergy spread
of about 200 keV at a beam energy of 11.0 MeV. The intensity of the 10@2arly polarised photon
beam at the sample was abdwf’ s='. Four incidenty-ray beam energies were used throughout
the experiment: 10.8, 11.0, 11.2 and 11.4 MeV. A beam dump downstreamttieopsample reduced

Compton scattering into the detectors.

5.2.2 Samples

The sample consisted of magnesium-oxide (MgO) powder, enriched to(8%4in 2°Mg. The
24Mg and**Mg compositions were 0.41(2)% and 0.18(4)%, respectively. In addaispectroscopic
analysis of the sample, performed at Oak Ridge National Laboratory wéwided the sample, re-
vealed only small impurities with a concentration in excess of 10 parts per million: (fO ppm);
and zinc (20 ppm). Impurities of less than 10 ppm could not be detected imrnbhtsis, and are
irrelevant for the present work. The total sample mass amounted to 16dt8.6orresponding to a
26Mg mass of 10162.5 mg. The sample was contained in a polycarbonate cydirmtritainer with
0.16 cm thick walls and end caps, with an inner cavity of 2.30 cm in diameter.A8cc in length.
The sample container was suspended in a sample holder consisting of arplgstiith a fishing line
lattice as shown in Figh.4. The fishing line held the sample in place in the centre of the beam line
while minimising material that could create scattering events. In addition, a hataggesium oxide
("MgO) sample (79%*Mg, 11%>*Mg, 10%>°Mg), housed in an identical polycarbonate container,
was used for background measurements and energy calibrations’®Mg®© sample had a mass of

4.349.
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Figure 5.4: The 26MgO sample suspended in the sample holder. The sample hmidsists of a ring with
fishing line to suspend the sample. This reduces the amoumtatdrial available for Compton scattering,
which would produce background in the detectors.

5.2.3 Detectors

Four High Purity Germanium (HPGe) detectors with relative efficienciesOéb Gvere used in
the measurements. The detectors were arranged around the samplevasirsiag. 5.5. Three
detectors, two vertical and one horizontal, were positioned perpendioulae incident beam, while
one detector, the “out-of-plane” detector, was located outside the \giticee. These positions were
chosen in order to determine the spins and paritie$ diig excited states unambiguously, as will be
discussed in Sectidb.3.

Each detector was placed at a distance of about 10 cm from the cerbre sdmple. After po-
sitioning, they-ray beam was aligned with a high resolution beam imager to ensure honwagene
beam intensity across the sample. Small detector geometry differencesategraccounted for by
using Monte-Carlo simulations and radioactive source measurements arzbwdiscussed in Sec.
5.4.1 The internal geometry of the detectors is shown in Bi§, and dimensions provided by the
manufacturer are tabulated in Tdhl Each detector had a passive shield and absorber comprised
of lead and copper. The purpose of the absorbers was to redugéuatans from low energy back-

ground and 511 keV annihilatiopr-rays produced in the sample. A copper plate, approximately 1 m
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Beam

Figure 5.5: The detector setup used for energy and spin-parity measumsnof2°Mg excited states. The
sample was placed at the centre of the array consisting of@@% HPGe detectors, where the labels “V”,
“H”, and “O” represent the vertical, horizontal and outy@i&ne detectors, respectively. The dark grey cylinders
shown on the detector front faces are passive lead and cesppds. The detector labels correspond to the
indicies referred to in the text.
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Figure 5.6: Schematic of the internal HPGe geometry. Shown is the HP@&sadr(of length L and diameter
D) mounted in an aluminium end cap. The crystal has a contagtemgth | and diameter d).

Detector| L(cm) D (cm) I(cm) d(cm)
1 8.90 6.46 7.27 1.12
2 7.75 6.82 7.09 1.17
3 6.83 6.97 6.00 0.99
4 8.05 6.80 7.31 0.93

Table 5.1: HPGe crystal geometries as shown in FHd.

downstream of the sample was used to Compton scatter beam photons inthteamadl 35% HPGe
detector, which was placed 4 m downstream of the sample. This detectausZtut of the beam

so that it cannot be reached directly by the incident beam. A lead shieiddoite sample prevents
scattering from the sample into theé &etector. Through Monte-Carlo simulations, the photon flux can
be reconstructed by matching the Compton scattering spectrum measured35%d1PGe detector.
This detector can also be moved into the beam to measure the beam enéitgy(lpro fluxes must

be used for this to avoid overloading the detector).

5.3 Nuclear Resonance Fluorescence

A linearly polarised photon beam incident onJa = 07 target nucleus, such &Mg, gives
rise to a distinct radiation pattern depending on the quantum numbers of dltedestatesBie53.
The observed intensity pattern is referred to as polarisation-directioaelaton. This type of angular
correlation is described in detail in ReBip53. The detector geometry was similar to the one used

in earlier experiments at the H$ facility (see Ref.\Wel09 and references therein). The only change
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performed in the present work was to move one of the horizontal detemtord the vertical plane to
a backward angle. This change was necessary to unambiguously digtithgtween radiation from
J = 1andJ = 2 excited states (see below).

For an incident linearly polariseg-ray beam, the angular correlation function, which is pro-
portional to the probability of de-excitation in a particular direction, for pamsitions (i.e., those

involving unique quantum numbers) is given IBi¢53:

Wineon(0, @) =Y Fu(L1, Ly, j1, §) Fu(La, L2, ja, §)

1/2
> cos (2¢) P12 (cos(0))

X [Pn(COS(H)) -+ (_1)01 <L11L11|n2> <(TL _ 2)]

Fn(Lm L:pjaaj) - (_1)ja7j71\/(2j + 1)(2La + 1)(2[/:1) <La1L:1 - l‘n())W(ijaL;; nja)
(5.5)

wheren is an even integer ranging from 0 tgnax = min(2j + 1,2L; + 1,2Ly + 1); the subscripts
‘1" and ‘2’ refer to the first (incident beam) and second (detected@i®) radiations (the incident
beam has known polarisation}t., 1L/, — 1|n0) is a Clebsch-Gordan coefficiei¥; (jjL,L.;nj.) is
a Racah coefficient?, (cos ) is ann'" order Legendre polynomial; and” (cos(#)) is ann'" order
associated Legendre polynomial;, j andj» correspond to the initial, intermediate and final state
spin, respectivelyl,; and L, are the excitation and de-excitatiorray multipolarities, respectively;
ando; = 0 for electric transitionsg; = 1 for magnetic transitions. The angles in E§.5) are defined
as follows: (i) 6 is the angle of the emitted radiation with respect to the direction of the incoming
photon ray beam. (ii}p is the angle between the polarisation plane of the incoming radiation (the
horizontal plane in our experiment), and the plane defined by the directidtmancoming~-ray
beam and the normal to the plane defined by the incomingy beam and the emitted radiation
direction. A sample decay scheme and the ang@lkasd¢ are shown in Fig5.7.

The angular correlations for the most important spin sequences of nekeva the present work

are given below (the threé™ values refer to the sample ground stdig)( the intermediate excited
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Figure 5.7: (a) Sample level scheme, showing excitation and de-eiaitaif a nucleus. (b) Definition of
the coordinate system used in EB.5). The angl®) is defined as the angle between the emitted radiation and
the incomingy-ray beam. Angley is the angle between the polarisation plane of the incomkungy beam,
and the plane defined by the direction of the incomjagy beam and the normal to the plane defined by the
incoming~-ray beam and the emitted radiation direction. For examipliie emittedy-ray is detected in a
counter located in the horizontal plane= 90°.

state, and the final state, respectively):

0F —1* -0t Wiheony(8, ¢) =1 + % [Pg(cos ) + %(—l)alPZ(Q) (cos9) cos(2¢)] (5.6)

0t -2 -0t Wiheor(0, ¢) =1 + |:154P2(COS 0) + §P4(cos 9)]
— (=1 [258P2(2)(cos 0) — %Pf)(cos «9)} cos(2¢)

(5.7)

1
0t -1+ =2t Wtheory(e,gb)zw{

50 iP2(Cos ) + L(—l)‘”PQ(Z) (cosf) cos(2¢)}

10 /2
(5.8)

For the detector positions shown in Fig7, Egs. 6.6)—(5.8) yield values folVineor(0, ¢) that are
listed in Tab.5.2 Finite solid angle effects were accounted for using Monte Carlo simulatibmes.

adjusted, experimentally expected, angular correlatibag(d, ¢) are also listed in Talb.2
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Wineory(#, @) Wagi(0, ¢)
Sequence H \% @) H \% O
0F —1"—0" 150 O 150| 1.47 0.04 1.47
0f—1-—=0t 0 150 0.75|0.04 1.47 0.75
0F -2 -0t 250 O 0 | 236 0.07 0.08
0f—2-—0" 0 250 1.25|0.06 231 1.22
0f -1t -2t 105 0.90 105|105 0.90 1.05
0F —1-—2% 090 1.05 0.975 0.90 1.05 0.97

Table 5.2: Angular correlations for spin sequences that are relevanthfe present analysis. The detectors
were placed as follows: the horizontal detector (“H”)@t¢) = (90°, 90°); the two vertical detectors (“V”) at
(0,¢) = (90°,0°); and the out-of-plane detector (“O”) &, ¢) = (135°,90°) (see Fig5.7). Columns 2, 3,
and 4 list the theoretical angular correlations, calcdatsing Eq. $.5). Columns 5, 6, and 7 show the adjusted
angular correlationsVaqi(6, ¢), accounting for finite detector and sample solid angle edfec

In order to better visualise the angular correlations, expected radiatiterisafor sample spin
sequences are shown in Fig8 Consider first the sequenée — 1~ — 0%, shown in the upper
left panel of Fig.5.8. No intensity is observed by the horizontal detector (H), maximum intensity
is observed by the vertical detector (V), and some intensity is observéuebyut-of-plane detector
(O). A very different radiation pattern is observed for the spin seqeémn — 1T — 07 (upper
right panel). Maximum intensity is now observed in both the horizontal anebplane detectors,
and no intensity is observed in the vertical detector. Consider now)the: 2 — 0% sequence
(lower left panel). The vertical and horizontal detectors observe dheegntensity ratios as for the
0T — 17 — 07 spin sequence, and thus could not distinguish the excitation/éf & 1+ or 2+
intermediate state based on these two detectors alone. This was the reasodetbgtor was placed
out of the vertical plane: it detects no intensity faaintermediate state, whereas maximum intensity
is observed for & intermediate state. The radiation patterns are distinct, and lead to unambiguous

spin-parity assignments for the intermediate (excffiddg) state.

5.4 Procedure and Results

Incident beam energies df, = 10.8, 11.0, 11.2 and 11.4 MeV were used to populate excited
states in*®Mg. For each energy, the beam was incident on the sample for approkiniat@ours.

Additionally, measurements were performed on a naftiflgO sample at the same incident photon
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Figure 5.8: The angular correlation distributions for sample spin ssges 0™ — 1= — 0%, 0t — 1T —
0,07 — 2% — 0%, and0™ — 1= — 2*. The labels refer to the detector position (“V": verticahpk; “H":
horizontal plane; and “O”: out-of-plane). The out-of-ptadetector is shown &t = 45° rather tharf = 135°
for reasons of clarity (the distributions are symmetricuardd = 90°).

beam energies as for tRBMgO sample, but for only half of the acquisition time. These data are im-
portant for two purposes: (i) for background peak identification fsample impurities, particularly
from 2*Mg, as well as from the container; and (i) for the detector energy cdidraThe background
runs helped us to unambiguously assign observed transitiof$/g. The beam energy spread had
a full width at half maximum of about 2%, corresponding to 200 keWWat= 11.0 MeV. This res-
olution was determined by first inserting beam attenuators into the photon toesaduce the flux

to acceptable limits, and then inserting the 135% HPGe detector. The beagy spezad could be
extracted from the high-energy part of the detected spectrum, whicleasisaffected by the detector

response (that is, from Compton scattered events and pair-prodyetays).
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5.4.1 Detector Calibrations

Energy calibrations of the HPGe detectors were performed using roakgimund lines and
with nuclear reactions. Well-known room background lines below 3 M&X,(2°8TI) were used
as low energy calibration points. In addition, spectra usiilgO were recorded by populating
the well-known?*Mg excited state af, = 9967.8(3) keV, which decays to the first excited state
at £, = 1368.675(6) keV [End9@ with the emission of nearly isotropic radiation. This isotropic
radiation yields a further energy calibration point.

During the experiment, gain instabilities caused peaks to shift in the speatwerastimes. Fig.
5.9 shows an example of this gain shift. These shifts meant that the calibratiorffhdg could not
be used without first applying a correction to the spectra recordeddsgchn the experiment, there
were two sets of runs: the calibration run in which decays ffélig were observed, and the data runs
containing room background lines. The data runs could initially be calibsgbat all background
peak channeld{;, wherei refers to the run number) coincide with the calibration run chanmélg)(
The second energy calibration using room background’ahigy could then be applied.

The initial calibration between data rurisand calibration run was performed according to

Ceal = a;C; + by, (5.9

wherea; andb; are the calibration coefficients needed to shift the channels of each torthose of

the calibration run. The energ¥;, is related to the calibration run through:

E =aCea+b (5.10)

Combining these equations gives an expression with which each run dadiNadually calibrated:

E = q;aC; + (abi + b) (5.11)

The parameters are obtained through separate linear model leastssfjisaod known background

~y-ray lines and the one-ray observed if*Mg(y,7). The known background lines used were from
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Figure 5.9: Effect of gain shift on detected peaks. The shift occurredndurun number 6, and occurred
suddenly because two distinct peaks are visible for that fiims shift appears in all detectors. The cause of
such shifts has not been found.

208T] at E, = 1460.851(6) keV [Cam04, and from?°K at E, = 2614.529(10) keV [Mar07.

Detector efficiencies must be known in order to obtain spin-parity assigisraed decay branch-
ing ratios. A combination of radioactive source measurements and Momke <daulations was used
to obtain the full-energy peak efficiencies of the detectors (escapea ek not used in the analy-
sis). The radioactive sources used w&@o and*Co, which yield efficiencies up to abofit, = 3.5
MeV. The sum-peak metho#&[m03] was used witl{’Co to obtain absolute efficiencies, independent
of source activities.

Coincidence summing also occurs in the efficiency measurement of deoays®Co. In this
case, however, the effect can be assumed to be negligible becausedlyasihighly fragmented and
the solid angles of the detectors are relatively small. For example, i#? @@ spectrum for detector
1, the number of counts observed in the sum-pdak+ 1173 + 1332 keV) was 0.2% of the number
of counts in the E = 1173 keV peak. Any summing out effects, where counts are lost from a peak
caused by coincidence summing, will therefore be negligible. "@® full energy peak efficiencies
were then normalised to those measured Witho. The photo-peak efficiency of a detector can be
approximated byTra99:

In (/) = a + bIn(E,) + cln(E,)?, (5.12)
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Figure 5.10: The full energy peak efficiencies of the four detectors usedfe quantum number assignments
of excited states ifMg. Detector 3 has consistently lower efficiencies becadsesal5° placement; the
diameter of the beam pipe requires that the detector is mwvadurther distance from the sample.

This approximation for the photo-peak efficiency is fit to tH€o data. The value of the fit at E=
1173 keV was used to normalise th&Co efficiencies to th€°Co data. The normalised photo-peak
efficiencies of the four detectors are shown in Fd.O

Monte Carlo simulations were then used to extrapolate full-energy pealkegffies to higher
energies covered in the present experiment. The Monte-Carlo codefarsthis experiment was
Geant4 Ago03. A schematic of the geometry used in the simulation is shown in &yl The
entire setup, including all four detectors was included in the simulations. Tomiated for Compton
scatteredy-rays from one detector to another. The beam pipe was also included gintiéations
to account for scattering of beam photons into the detectors. The effatdbmic absorption ofy-
rays in the sample was accounted for by including an extended MgO sauggh emittedy-ray s

isotropically.
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Figure 5.11: Geometry used in the Geant4 efficiency simulations. Seddexietails.

Simulations were performed at a variety of energies, up to about 12 Me/sé&parate simulations
for 69Co were also performed. One using an extended source, and onpdottaource, to simulate
the radioactive source measurements. This enables the correction ofithe measurements to allow
for a finite sample size. The simulated efficiencies can then be normalised @dibaative source
measurements. The normalisation factors needed to match simulated efficigiticiegperimental
efficiencies are shown in tab%3. In addition to an absolute normalisation of simulated efficiencies,
the normalisation as a function of energy was calculated. If the normalisatiant onstant over the
energy range covered by radioactive sources, the geometry usezlsmthlation does not accurately
reflect that of the true detector setup and efficiencies cannot be reéiatrgpolated to high energies.
Figure5.12shows the ratio of simulated and experimental photo-peak efficiencié$Goras a func-
tion of energy, which shows a slope consistent with unity. The simulatedeeities, therefore, agree
with experimental efficiencies. To reduce the uncertainties in the fit, a monesaxgestudy would be
required, which is outside the scope of the current project.

The results of the simulations are shown in figbr&3 Detection efficiencies for individual full-
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Detector| Normalisation
eP el
1 1.0157 1.0538
2 1.0668 1.0730
3 1.0368 1.1556
4 0.9513 1.0299

Table 5.3: The normalisation factors needed to match simulated anerewpntal efficiencies.
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Figure 5.12: Ratio of simulated and experimental peak efficiencies \wenergy. The solid line represents
a linear fit to the ratios, while the dotted lines represestuhcertainties of the fit. The fit parameters for the
equationk = aE + b area = 1.4(1.6) x 1075 andb = 1.010(20).
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Figure 5.13: Peak efficiencies for the four 60% HPGe detectors, as siediiatGeant4 (upper panel). These
efficiencies have been normalised to tH€o experimental point a., = 1173 keV, which in turn is corrected
for finite sample size. Differences in absolute magnitudefi€iency are because of differences in detector
sizes, as shown in tabfel The lower panel shows the agreement of simulated efficsneith measuretf Co
photo-peak efficiencies for detector 1.
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energy peaks were obtained by cubic spline interpolation between simulditedérgy peak efficien-
cies. The uncertainty of full-energy peak efficiencies nBar= 11 MeV, arising from uncertainties

in both detector geometry and other experimental uncertainties were astube8%.

5.4.2 Excitation Energies

All v-ray energies measured in the experiment were corrected for both sadoand Doppler
shift. The recoil shift reduces the energy of an emitiechy because momentum and energy conser-
vation dictates that as an excited nucleus decays, it must recoil in thei@pgiosction to they-ray
emission with some share of the decay energy. By considering the cemiigssfbefore and after the

decay, one obtains for energy and momentum:

E, = Ep+E, (5.13)
E’Y
0=+ V2mpEp, (5.14)

whereE, = E; — E; is the energy difference between initidl;, and final,E;, states;E, is the
detectedy-ray energy;np is the mass of the decaying nucleus; dglis the energy of the recoiling
nucleus. Solving these equations, the transition energy is:

E2

E, = FEy 4+ —— 5.15
vt 2mpc? (5.15)

For calibration purposesy-ray energy is required and Eqrb.15 can be rearranged into a Taylor

series, with the result
E}

E,.~F,—
7 Y 29mpe?

(5.16)

The Doppler shift of emitted-rays occurs because the excited nucleus will have momentum in
the direction of the photon beam (provided that is does not slow dowmeébdéraying). The out-of-
plane detector will therefore measure a smajleay energy. The Doppler shift ofaray with energy
E., detected at anglis given by:

AEp = %E7 cos b, (5.17)
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wherev is the velocity of the recoiling nucleus. Using the momentum conservation in(Eqd), the

Doppler shift becomes:

AEp = cos (5.18)

mpc?
Peak energies were obtained from the centre-of-mass (first momerdglofoeak in the spectra.
This method is preferable to fitting a Gaussian because of the low numbeurtsda the peaks. The

peaks are not normally distributed for low count rates, so the centroighedlr and its uncertainty are

defined by:

Zn—1 T;Yi
c—2i= (5.19)
21:1 Yi

_ X yi(zi = C)?
(n—1) 25z vi

(5.20)

Oc

wherex; is the energy of channel(; = 1 corresponds to the first channel of the peak), anid the
number of counts in that channel.

To obtain the excitation energy, a weighted average of the excitation enelgesed from all
detectors was performed. The uncertainties in obseyvey energies arise from statistical uncertain-
ties and uncertainties in the energy calibration. Almost every ground stagitios that was observed
was accompanied by one or more de-excitations to intermediate states. Ttad@xenergy uncer-
tainties could be reduced by including the energies of these intermediate ategitidns. For each
transition observed, the-ray energy was corrected for the recoil and Doppler shifts. Talllshows
the comparison between the presently derived excitation energies and theitee/alues. It can be

seen the the new,. values agree with previous results, but the uncertainties are significamiles.

5.4.3 Quantum Numbers and Branching Ratios

Quantum numbers of the observed states were assigned by analysirgséneea radiation pat-
tern. Note that intensity was was observed at the locations where thettbalbaagular correlation
W (0, ¢) is zero because of finite solid angle effects. Such effects were modeilegl Monte Carlo
simulations (Sed.4.1) and could be accounted for.

The efficiency corrected measured full energy peak intensities, nosddtighe theoretical angu-

93



Excitation Energy (keV)

Present Endog [KO2] [Uga07 [Sch09
10573.3(8) 10567 (3)
10647.3 (8) 10646 (2) 10648.8 (5)
10805.7 (7)  10805.9 (4) 10808 (20)
10949.1 (8) 10945 (3) 10953 (25)
11153.5 (10) 11153.2(2) 11153.386 (86) 11153.8 (12)

Table 5.4: Excitation energies if®Mg for states populated in the present experiment. Showm ais the
excitation energies reported in the literature. Excitagmergies from RefHnd98 are compiled from original
sources.

lar correlations for each ground state transition are shown in3:&b.Comparison to théVgj(6, ¢)
values listed in Talb.2 was performed by normalising the highest observed intensity to the adjusted
theoretical angular correlation expected in that detector. The normalisaisrperformed in this
way becauséV,q(0, ¢) describes the theoretical scaling of detected intensities between detectors f
a chosen spin-sequence. After normalisation, comparison of obsieteedities with the theoretical
angular correlations in Tab.2immediately reveals the spin sequence that gives rise to the observed
intensities. These comparisons are shown in Bi@4 for four of the ground state transitions listed
in Tab.5.5. The unambiguoud™ assignments are consistent with previolisassignments or re-
strictions, except for one case (see below). Branching ratios warelaged from the observed peak
intensities and corrected for angular correlations and detector effieeentables.6shows the branch-
ing ratios observed in the experiment. They agree with previous measusefBer84 Wal92), with
one exception that is discussed below. In addition, the relatively low bagkd from the monoen-
ergeticy-ray beam allowed for resolving additional, weaker decay branchpepilated states. The
observed decay schemes for each incident beam energy are shbigs.i5.165.19

Sample spectra, which were recorded at a beam energy of 11.2 Meyiooximately 11 hours,
are shown in Figs.15 The decay of two states &, = 11154 keV andFE, = 10949 keV is observed,
which will be used to illustrate the assignment of quantum numbers to excited.sizeeay of the
populated state df, = 11154 keV is observed to the ground state | as well as the excited state at
E, = 3589 keV (01). Approximately equal intensity (after proper efficiency correctiongpisd in

the horizontal and out-of-plane detectors, and no intensity in the vergtattbrs. According to the
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Present Results LiteratureJ™ Assignments
E, Iy lv lo J™ | [End9§ [Gla8q [UgaO07 [Sch09
10573 <12 147Q3) <13 1
10647 1.45(3) 0.044(9) 1.47(3)1" 1t 1+
10805 <05 147(4) <09 17| (0t —4™) N
10949 <04 147(1) 06(3) 1- (4-17) N
11154 1.47(9) 0.015(7) 1.44(9)1" 1~ 1

Table 5.5: Observed ground state transition intensities (efficiermyerted) and resulting quantum numbers
for excited states iR°Mg; I v o refers to the relative intensity (normalised to the angatarelations) observed
in the horizontal, vertical and out-of-plane detectorpesgively; the label, “N”, refers to natural parity (i.e.,
J™=07%,17,2T,...). The upper limits listed here correspond to 90% Gaussiafidence limits.
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Figure 5.14: Efficiency corrected, measured intensities (circles) lfier four ground state transitions listed in
Tab.5.5 compared to the adjusted theoretical angular correlaijdashed lines) from columns 5, 6, and 7 in
Tab. 5.2 for the assigned spin-parities. The measured intensitesi@malised so that the highest intensity
for each transition equals the maximum adjusted theotediogular correlation. Upper limit assignments are
indicated with arrows.
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Figure 5.15: Observed spectra in the horizontal (“H”), vertical (“V")nd out-of-plane (“O”) detectors,
recorded with ay-ray beam energy off, = 11.2 MeV. Decays to the ground state and excited states are
shown from theF,, = 11154 keV (11) and E, = 10949 keV (1~) states. The broad peak in the lower panel is
the beam profile obtained from the zero degree detectort(arpiscale). See the text for more discussion.
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Initial Excited State, E, (keV), J©
10573 10647 10806 10949 11154
E., (keV) JT 1- 1t 1~ 1~ 1t
0 0t | 0.47(10) 0.876(27) 0.218(61) 0.138(19) 0.688 (81)

1809  2* 0.0155(18) 0.782(87) 0.572(29) 0.029 (4)
2938 2t 0.0636 (30) 0.135(13)
3589  0F 0.047 (7) 0.110 (22)
4333 2t 0.108 (96) 0.077 (11)
4972 0% | 0.528 (91) 0.0162 (13) 0.096 (24)
5292 2t 0.0163 (13)
7100  2* 0.0124 (12)

Table 5.6: Observed branching ratios from excited states®ibg. The initial excitation energyE,.,, spin-
parity, JT, and branching ratia3.,, are from the present work. The final excitation enefgy, , and spin-parity,
J, are from Ref. End9q.

expected angular correlations, summarised in Baband shown in Fig5.8, both of these observed
~-rays must arise from a* — 1T — 0% spin sequence and the state is thus assigffee= 1.
Decay from theF,, = 10949 keV excited state to the first excited statefat= 1809 keV (J™ = 27)

can also be seen in Fi$.15 This decay is observed with similar intensity in all detectors. The
radiation pattern is consistent with an expected pattern €or a» 1~ — 27 spin sequence (Tab.2

and Fig.5.8). Thus, this state can be assigned an unambiguous spin-pavify-efl—.

5.5 Discussion

Five excited states were observed in this experiment. The relatively low eiced background
at the HhS facility, coupled with good separation of states, allowed for observativery weak
branching ratios (Talh.6) and for the assignment of unambiguous quantum numbers for eveatgaxc
state observed in the study. Previously, two of the states had unknowtuguaumbers, and large
energy uncertainties, which have now been determined with significantly wagnorecision. One
additional state had previously assigned quantum numbers, which ava shide inconsistent with
the current results. A detailed discussion of individual states followsibelo

The state observed &, = 10573 keV was previously been observediat = 10567(3) keV in

inelastic proton scatteringos7q. The quantum numbers of the state have been determined to be
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Figure 5.16: The observed decay scheme®Mg obtained with an incident-ray beam energy of E =
10.8 MeV. The observed intensities (corrected for detector iefficies) are proportional to the displayed arrow
widths. For clarity, the 10647 keY-ray is displayed with one tenth of its true intensity. Theplayedy-ray

energies are approximate in this figure.
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Figure 5.17: The observed decay scheme®Mg obtained with an incident-ray beam energy of E =
11.0 MeV. The observed intensities (corrected for detector iefficies) are proportional to the displayed arrow
widths. The displayed-ray energies are approximate in this figure.
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Figure 5.18: The observed decay scheme?Mg obtained with an incident-ray beam energy of E =
11.2 MeV. The observed intensities (corrected for detector iefficies) are proportional to the displayed arrow
widths. The displayed-ray energies are approximate in this figure.
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Figure 5.19: The observed decay scheme?Mg obtained with an incident-ray beam energy of E =
11.4 MeV. The observed intensities (corrected for detectoriefficies) are proportional to the displayed arrow
widths. The displayed-ray energies are approximate in this figure.
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J™ = 17 in the present experiment, where none were assigned previouslyctngrto the ground
state and to the excited statefat = 4972 keV were observed for the first time in the present work.

The state afs,, = 10647 keV has previously been observed@t = 10646(2) keV with J™ = 17
and a mean lifetime of,,, = 110(30) [End9§, and by Ref. §ch09 at £, = 10648.8(5) keV. The
current analysis agrees with the energy and quantum number assigrforethis state. Only the
ground state transition has previously been measured bydaig Ber84. In total, five decays from
this level were resolved, the strongest of which is the ground state tramsitithh a branching ratio of
87.6 (27)%.

The state aF’, = 10806 keV was previously observed in a thermal neutron capture experiment
on?>Mg at E, = 10805.9(4) keV [Wal97 and ina-particle transfer measurements GiNe atE, =
10808(20) keV [Uga07. The neutron capture experiment placed restrictions on this state’suqnan
numbers by observing the decay to the first excited state. aFparticle transfer work assigned
natural parity. In the present work, an unambigud@is= 1~ assignment is obtained, consistent with
the literature restrictions. The observed decay scheme agrees with fRaf.¢¥Val92, but resolves
an additional weak branch to the ground state.

Levels near thels, = 10950 keV state have previously been observed in three experiments:
26Mg(p,p)**Mg at E, = 10950 keV [Mos76, ?>Ne(Li,d)?’Mg at £, = 10953(25) keV [Uga01,
and?3Na(a,py)**Mg at £, = 10943(2) keV [Gla8§. The current unambiguous assignment/éf=
17 is consistent with the natural parity assignment made irotiparticle transfer measurement, but
is inconsistent with the decay observed in Reéflg8q. That work reports secondary decaystp =
7953 keV (J™ = 57) with a branching ratio of 64.5%, and 16, = 9169 keV (J™ = 67) with a
branching ratio of 36.5%. Empirical ruleEfd9q lead toJ™ = (4T — 77) for the decaying state.
Giesenet al. [Gie9]3 also observed a state at 10.95 MeV, and assigfied §2*,37,47"). The most
likely explanation for the disagreement to the preséhiassignment is the presence of a doublet at
this energy, as suggested by Réfgp07. Since there is not enough information to determine which
of these states has the largearticle width seen by ReflJga07, ?2Ne+a thermonuclear reaction
rate calculations should be performed using the obsetwpdrticle width as an upper limit for both
states.

The excited state observed Bt = 11154 keV corresponds to &Ne(x,n)*>Mg resonance at
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E. (lab) ~ 630 keV, believed to have been seen by Relso91, Har91], but later proven to be caused

by background fromi!B [Dro93. An expected resonance at this location has since been treated as the
most important expected contribution to tHée(x,n)?>Mg reaction rate, and has been searched for
repeatedly Gie93 Jae01bDro93 Uga07. A state near this energy has also been observed through
inelastic proton scattering &, = 11156 keV [Mos7§ and F,, = 11150 keV [Cra89, photo-neutron
studies af, = 11153.8 keV [Ber6g, neutron capture of’Mg at £, = 11153.387(86) keV [K02,

and photo-excitation experimen®dr84 Sch09. The proton scattering experiment of Re¥1¢s7q

and photo-excitation experiments did not assign quantum numbers, bubtk@fRef. Ber69 sug-
gested a spin-parity of* = 1~. Ref. [Cra89 made a spin-parity assignment.6f = 1*. However,
excitation energy uncertainties of about 60 keV in that experiment lead tmaityoregarding which
excited state was observed. In the current work, this state was otlseitrevery good statistics and
energy resolution, as shown in Fig.15 The present angular correlation measurements using 100%
linearly polarised photon beam assign an unambigutus- 1" value to this level. This finding is
significant since it rules out any contributions of this unnatural parityl lEvéhe 22Ne+« reaction
rates. No branchings to secondary excited states were observed lirexpleeiments. A total of four

branchings were observed from this level (Talf).

5.6 Conclusion

The 22Ne(o,7)*°Mg and 2?Ne(a,n)*?Mg reactions, which are important for s-process neutron
production, proceed through excited states in the compound nuéfdg: The important excitation
energy region irfMg, corresponding to relevant resonance$’iNe+c«, ranges from thev-particle
threshold atS, = 10615 keV to E, ~ 11600 keV. Many of the states in this energy region have
uncertain excitation energies and quantum numbers, which are essegtilients for reaction rate
calculations.

A 25Mg(v,v)?Mg experiment was performed at the+8 facility with y-ray beam energies of
E,=10.8,11.0, 11.2 and 11.4 MeV to determine the quantum numbers of exciteslintételg. In
total, five excited states were identified, wily = 10573.3(8) keV (J™ = 17), E, = 10647.3(8)
keV (J© = 1), E, = 10805.7(7) keV (J™ = 17), E, = 10949.1(8) keV (J™ = 17), and
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E, = 11153.5(10) keV (J™ = 1T). The excited states &, = 10806 keV andE, = 10949 keV
have previously been observeddnparticle transfer studies with undetermined quantum numbers.
The present results for these states, which are located below the nduishold, are expected to
significantly influence thé’Ne(x,)**Mg reaction rate. The unnatural parity state observefl,at
11154 keV was previously believed to be an important resonance if*tie+« reactions. However,

the present results show that this state is irrelevant for neutron productibe s-process.
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6 22Ne(p,y)*’Na Resonance Strength

6.1 Introduction

N UCLEAR reaction rates of many important stellar burning processes are dominatexsdyy
nances in the reaction cross section. Many resonance strengthgfiareceeactions involving
noble gases have been measured previously using implanted targets,iwhesst cases, the target
backing was a thins 0.5 mm thick) tantalum sheet. In such cases, it is notoriously difficult to obtain
absolute strengths since the stoichiometry of the implanted region must be kmowder to extract

a strength from a thick-target excitation function.

Measurements of astrophysically important reactions are typically pertbahéow beam en-
ergies, corresponding to low nuclear burning temperatures in stellaroemvéants. However, the
only absolutely measured strength’fiNe(p;)**Na corresponds to the!2® = 1278 keV resonance
[Kei77], which is beyond the reach of most low energy accelerators. For te@eace, the stoi-
chiometry of the implanteé’Ne targets was obtained with Rutherford back-scattering, requiring spe-
cialised equipment not widely available in low-energy accelerator labéeatdriere a novel method
is presented for extracting absolute resonance strengths at low bdantharergies from measured
excitation functions.

This new method, based on material depth profiling, is applied to the measureitiea £/2° =
479 keV resonance iR?Ne(p;)?3Na. The experiment utilises a target composed?dfe ions im-
planted into an aluminium substrate. By measuring the well-knEﬁH = 406 keV resonance in
27Al(p,7)?8Si and theE!® = 479 keV resonance if?Ne(p;)**Na simultaneously, the absolute
strength of the latter resonance can be obtained independently fromdiekiye of absolute beam

currents, absolute detector efficiencies, or the stoichiometry of the taf@etaining a resonance



strength independently of the target stoichiometry, which introduces sytiteunaertainties that are
difficult to quantify, is a significant advantage of this method.

For more information on the theory of depth profiling of an implanted substsate chapteB.
Throughout this work, kinematic quantities are given in the centre-of-medesence frame, unless

stated otherwise.

6.2 Excitation Functions from an Implanted Aluminium Substrate

In the present work??>Ne ions were implanted into a thick aluminium sheet yields of the narrow
resonances ai'?® = 406 keV in 27Al(p,7)?8Si and atE'?° = 479 keV resonance if’Ne(p;)**Na
were measured simultaneously. For both resonances, the yield is giveq. l3.20. In the follow-
ing, the implanted speciep ?2Ne) will be denoted by the subscript 22, and the substrate species
(¢ =%7Al) by the subscript 27.

Since the implanted?Ne ions are concentrated near the surface of the aluminium sheet, a well-
defined peak-shape is expected fortfide+p yield curve. On the other hand, theAl +p yield curve
will reveal an interesting structure. In the pure aluminium region, beyoedntiplanted®>Ne depth,
the 2"Al4-p yield will be at a maximumg, = 0 in Eq. 3.12). However, in the*’Ne implanted
region, poo # 0 and thus the energy losa;, in Eq. 3.20 increases, resulting in a smaller yield.
Therefore, a step in the excitation function is expected caused by the intbtagien near the surface
of the target. The situation is shown schematically in Bid.

The general strategy was the following: (i) fit E§.Z0 to the measured’Al+p yield curve,
including the step on the front edge; this allowed the extraction of the stoichigraier) = Naa /N,
which enters through Eqs3.(11)-(3.14) together with the absolute normalisation of the yield. (ii) with
the stoichiometny (z) and the absolute yield normalisation factor determined from the previous step,
Eqg. 3.20 was fit to the measuredNe+p yield curve. The resonance strengti#ite+p is left as a

free parameter to be extracted from the fit.
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Figure 6.1: Schematic showing the effect of implanting neon ions intalaminium substrate. Incident protons
with energiest, are captured by’ Al nuclei in the implanted region, which is close to the sudaf the target.
The increased total stopping cross section in this regiadddo a decreased yield (E®.Z0). Beams with
energies of;, react deeper inside the target in a region of pure aluminiline. yield at these energies is higher
compared to the implanted region. Note, however, that foivargincident energy the depth of a reaction
occurring in a region of pure aluminium will be affected byethnergy loss (or total stopping power) in the
implanted region.

6.3 Experimental Equipment

6.3.1 Implanted Target

The backing used for the experiment was a 1 mm thick aluminium sheet (99%)puThe
backing was cleaned thoroughly with acetone and ethanol before implantdie@22Ne ions were
implanted into the backing using the implanter described in &dc.The ion implanter accelerated
neon ions from a pressurised natural nepr2{% =+ 0.03% molar fraction o??Ne) gas bottle to an
energy of 100 keV. The incident dose ‘BNe was estimated by integrating the beam current on the
backing, assuming singly charged incidéfile ions. The beam current on the backing amounted
to about 20uA on average. The total accumulated charge was 0.26 C (correspandirgyx 108
incident??Ne ions) over a circular implantation region of 2.5 cm diameter. A liquid nitrogeiec

trap reduced contamination buildup (such as carbon and fluorine) oty .

6.3.2 Setup

Depth profiling of the implanted aluminium backing was conducted at the Ladrgrimr Exper-
imental Nuclear Astrophysics (LENA), located at the Triangle Universitiaslear Laboratory. The
1 MV Van de Graaff accelerator described in S&d.was used to accelerate proton beams to energies

in the range OEII,ab = 400 — 505 keV with a total integrated beam charge on targetdf.13 C over a
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beam spot of about 1 cm diameter. Secondary electron suppresssaappied for the beam current
measurement as shown in Fgg2 In addition, a liquid nitrogen-cooled trap reduced contaminant
buildup on the target surface. The beam current was kept to a minimubn(A) to ensure that the

target did not degrade.

6.3.3 Detector

Capturey-rays from the excited compound nucléf$i and?3Na) were detected using1&5 %
relative efficiency HPGe detector. The detector was located aivib respect to the beam direction
at a distance of 3.0 cm from the centre of the target. The target and detem® surrounded by at
least 5 cm of lead in all directions to reduce background caused byoenvéantal sources and from
x-rays produced by the accelerator.

The energy signals from the detector were amplified with an Ortec 572 specpy amplifier and
recorded with a CAEN 785 ADC. Detector dead times were monitored with arc @d@ precision
pulse generator throughout the experiment and were kept below 3%.

The detector efficiencies, used both for peak intensity normalisation anslfoming correc-
tions, were obtained by three methods: radioactive source measuremesioisant (py) reactions,
and Monte-Carlo simulations usil@@ant 4 [Ago03. First, the Sum-Peak methokim03] was used
with %°Co to find the absolute full-energy peak and total efficiencids,at- 1173 and1332 keV that
do not depend on knowledge of the absolute source activity. Subsdguether radioactive sources
(°Co, '52Eu) were used to obtain relative full-energy peak efficiencies up.to= 3.5 MeV. The
E'3b — 278 keV resonance in*N(p,)'°O was used to extend the full-energy peak efficiency curve
uptoE, = 7.5 MeV. Itis important to note that because of the close detector geometrypallimen-
tal full-energy peak efficiencies had to be corrected for coincidencersng effects. The corrections
were performed using the codd=NASum[Lon0g], which is based on the formulation described in
Ref. [Sem90. Following the experimental determination of full-energy peak efficiendlesexperi-
mental data points were interpolated us{Bggnt 4 simulations. Total detection efficiencies, which
were needed for coincidence summing corrections, were also obtaine@awtit 4 and normalised

to the%“Co data. More details on detector characterisation can be found i Ch.
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Figure 6.2: Sampley-ray spectrum, obtained at a beam energy of 490 keV with annagtated charge of

2 x 1073 C on target. The target consisted BNe ions implanted into aluminium and thus resonances in
the 27Al(p,7)?®Si and??Ne(p;)**Na reactions were excited simultaneously. Major peaksaielled by the
decaying nucleus’tNa in blue;?®Si in red), while the label “B” denotes background.

6.4 Procedure and Analysis

6.4.1 Yield Curves

Yield curves were measured simultaneously forthal(p,v)?®Si and??Ne(p;y)?3Na reactions at
incident proton energies CEI';"‘b = 400 — 505 keV. A sampley-ray spectrum, obtained at an incident
beam energy of2® = 490 keV, is shown in Fig6.2 The observed in-beamrays arise from the
narrow resonances &2 = 406 keV in 2"Al4-p and atE!® = 479 keV in 2?2Ne+p .

The?"Al+p resonance has a target spinjef 5/2 and thus the angular correlation is expected to
be approximately isotropic. Considering, in addition, that the detector watdet, = 55°, where
the Legendre polynomialJffcos #) = 0, an angular correlation factor é¥57(6#) = 1 can safely be
adopted in Eq.3.2). Additionally, the?’Ne+-p resonance ab'®® = 479 keV has a spin of = 1/2
and thusiVq(0) is unity in Eq. 3.2).
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TAl(p,7)*Si

The E!2 = 405.5(3) keV resonancedy = 8.63(52) x 10~ eV) [Pow9§ was used to measure the
27Al(p,v)?8Si yield curve. Relatively small beam currents § A) were required to avoid damage to
the target. The resulting low counting statistics for the primary transitions waffigient for reliable
depth profiling. Thus the much stronger secondary decay from theficied statel(779 keV— 0),
which carries 98% of the decay strength, was used for this purposedishdvantage of monitoring
secondary decays in a measurement with an infinitely thick target (i.e., ail pagicles stop in the
aluminium) is that lower energy resonances’il+-p may contaminate the measured yield. The
E'3 — 326 keV resonance iR”Al+p resonance«y = 1.8(1) x 1073 eV [lli10]) is of particular
importance and had to be accounted for. This was achieved by calculagirexplected maximum
yield for an infinitely thick target using Eq3(2). The expected contribution to the total79 keV— 0
intensity was then estimated using the branching ratios from Ri€D]and amounted to about 16%
of the maximum yield. This contribution to the decay strength was subtractedtfre measured
intensities. Note that the first data point in tHeé\l+p yield curve is consistent with zero, validating
this method of subtracting contamination from other resonances. Anothemagce i’ Al+p at
E'3 — 447 keV (wy = 1.50(13) x 1073 eV [1li10]) had to be considered as well. To avoid fitting the
cumulative yield from twa” Al +p resonances{!®® = 406 keV andE'2® = 447 keV) simultaneously,
data points near the higher energy resonance tE}j‘H = 445 to 475 keV were removed from the
analysis. The expected yield of t#2° = 447 keV resonance was then subtracted from data points
aboveE'? = 475 keV. The resulting yield curve, after these corrections have been dpjgishown

in Fig. 6.3a and will be discussed later.

2Ne(p;y)*Na

The primary ground state transition of tHg2® = 479.3(8) keV resonance it>Ne(p;)**Na
[End9Q was used to measure the yield curve shown in Bi§b. The yield was calculated with
Eq. 3.2. For the branching ratio of the ground state transitig2b8 keV— 0) a weighted average
of the literature results which are in mutual agreeméesih,(= 0.46 and Bas = 0.48 respectively)

[Mey73 Pii71] was adopted.
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Yield Curve Analysis

The predicted step close to the front edge of4f#d +p yield curve (Fig6.3a), resulting from the
22Ne concentration near the target surface, is clearly observed??Ne=-p yield curve (Fig.6.30),
on the other hand, shows a smooth peak, consistent with expectation8.&ebeviation from the
expected step shape (Fig.1) in Fig. 6.3a and from a sharp front edge A® = 479 keV in Fig.
6.3 is because th&Ne was not implanted in a uniform layer at the front of the target, but rather
a varying concentration with depth, as shown in gk It should be noted that an approximately 40
nm thick layer of aluminium oxideJJ91 will affect the shape of the yield curve. 8RI Mcalculation
reveals that the energy loss difference with and without the aluminium oxjée ia less that 0.5
keV and, therefore, outside the resolution of the present experimepteffdct of the oxide layer is
lessened because of the I3&Ne density close to the surface of the aluminium substrate (see Fig.
6.4).

Two codes were written to analyse the yield curves obtained in the experimbatfirst code
assumed an implantation profile that varied with depth according to a Gausstdabution. This
code was used for proof-of-concept purposes since the analfgicarequired less fitting parameters
and hence less computation time. The second code was written to f&.26). 1 the measured yield
curves. The least-squares fitting method of McGlenal.[McG91]] was used to determine the depth
profile of 22Ne implanted into Al. The concentration profile of implanted atoms was constréined
a smoothly varying function by adding corrections to the log—likelihood functithe log-likelihood

function for a profile grid ofM slices, which are fit taV data points, is given by,

N+M+1-B B
X2 = Xgata"i' Z W]—N Z N22j,N+b,1Pb (61)
J=N+1 b=1

where,

(; — )2
Xéata: Z zT
7 7

Here, x3.:, 1S the log-likelihood function calculated from the deviation of fitted poimtsto experi-
mental pointsg;, assuming uncertainties of in the data;N,,, denotes thé2Ne ion concentration at

each grid point;B and P, are fixed parameters for controlling the smoothness of the profile}iand
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Figure 6.3: Best fits to the?” Al+p and??’Ne+p yields. (a) Best fit to theZ!®® = 406 keV resonance in
27Al(p,v)?Si. The absolute yield height has been corrected for othetactinant resonances as discussed in
Sec.6.4.1 The yield normalisatiom in Eq. (6.2 is extracted from the measured yield points ab&R =
480 keV. (b) Best fit to thes'3 = 479 keV resonance if*Ne(p;y)?>Na. The absolute height of the yield curve
is left as a free parameter in the fit, which determines thenasce strength. Note that there are more high
energy data points in tiféNe-+p yield curve than in thé” Al +p yield curve. This is because sofTél +p data

points were removed because of contamination from othengetxces (see Seg.4.1). These contaminants do
not affect the’?Ne+p yield.

are weights, which were adjusted manually in order to control the smoothhéss profile. As in
Ref. [McG9]1], B = 4andP, = —1, 3, —3, 1 were chosen to obtain a quadratic smoothness between
every four points with?” = 20 1.

The strength of th&!2® = 479 keV resonance i#*Ne(p;)?>Na was determined from the follow-

ing procedure (outlined already in S&2). Initially, the yield for the?” Al 4-p reaction was calculated,

1A two-step minimisation was employed to find the best fit depth profile. Theydm—Fletcher-Goldfarb—Shanno
(BFGS) method Nlas9Q was used for the initial parameter search, while the Nelder-Mead grebésed searchiNel65
was adopted to finely tune the minimisation. Finite difference second teesavere employed to estimate uncertainties
in the fit parameters.
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Figure 6.4: Stoichiometry profile£(z), of implanted®?Ne ions in the aluminium backing as obtained from a
fit to the 27 Al +p yield curve in Fig6.3a. The concentration profile simulated wBRI M which is normalised

to the maximum height of the data points, is shown as a dagied |

which is given by Egs.3.2) and @.20 as:

Yar(Eo) =A <1> Iy (Ey)

5376227 rel D27
A2 1 [P (E' — E,)? (FEo — E' — A;)?
= Nop —— dE = = _
w2 2moL0s ; 277 /T 5 —o P 207 o 202x;

(6.2)

where(e5-Q27)rel is the product of the relative peak efficiency and relative accumulatedyehand
A denotes their combined absolute normalisation factor. The absolute strétigehf® = 406 keV
resonance is labelled byy,7. From the measured Al +-p yield curve (Fig6.3a), the fitting parame-
ters A and¢(z) (affecting the energy losd; according to Eg3.11) were extracted.

The stoichiometryé = Noy/No7, as a function of depth that was extracted by fittingthal +p
yield is shown in Fig6.4. The stoichiometry profile is overlaid with the simulated profile (dashed line)
of 100 keV ?2Ne ions implanted into an aluminium substrate, as obtained from the Monte-Carlo io
transport codSRI M[Zie04. There is reasonable agreement between measured and sinfdideed
depth profiles. Note that the maximum stoichiometry amounts to a number ratio: @l Nel : 2.

Once the stoichiometry profilg, and constantd, were extracted from th& Al +p yield curve,
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the2?Ne+p yield curve was fit. Thé?Ne+p yield is given by:

e
Yoo(Ey) =A| ——— Iy (E
22(Ep) <5§2322Q22>re| 22(Ep)
2 1 (B (E' — E,)? (Eo — E' — A;)?
= L Noo, —— dE T — !
2 or a0, zl: 2T e eXp[ 20 ]exp{ 202w

(6.3)

At this stage, the only fitting parameter is the strength ofHée+p resonanceypys,. There are
several advantages of using the method outlined above. Firstly, onlyestitiector efficiencies need
to be known. These relative efficiencies have been shown in Bafl[] to be accurate to within a
few percent. Secondly, only the relative accumulated charge needskioolan. Note that above
E'3 — 480 keV the same runs were used to analyse?ée+p and?”Al+p yields, and thus the
beam charge, Q, cancels completely. Fitting Bq3)(to the measured yield shown in Fig.30 gave
the strength of thés!2® = 479 keV resonance i?’Ne+p , for which a value ofoy = 0.524(51) eV
was found.

The uncertainty budget for the extracted strength of ilfi = 479 keV resonance iR*Ne+p is
presented in Tal.1 The uncertainty in the reference resonance strenfgff? & 406 keV in 27 Al+p
) is 6% [Pow9§. The Geant 4 simulations used to derive relative detector efficiencies are shown to
be accurate to within a few percent for extrapolation in the energy range e- 4 —11 MeV [Carlq.
Relative uncertainties of 2% were therefore assigned to detection effiegert iterature values for the
primary branching ratios iR?Ne+p contribute 5% to the resonance strength uncertainty. Stopping
power uncertainties in the energy regions of interest were estimated f@matia compiled on the
SRIM website Zie04. The stopping power uncertainties f&tAl+p and?’Ne+p were estimated
to be 4% and 3%, respectively. The stopping powers affect the yieldtfBAl+p and*>Ne+p
yield curves through Eq3(1]). Since the energy loss enters in the exponential of both B{3.g4nd
(6.3), the importance of the stopping power uncertainties is lessened, resultiegpinance strength
uncertainty contributions of just 2% and 1%, respectively. In addition tdainties affecting the
resonance strength, the effect of a different implantation model wastigaged. In this model, the

implanted®’Ne atoms replaced aluminium atoms during implantation, resulting in a constant numbe
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Source Uncertainty inw-yss (%)
Referenceé”Al+p Strength 6
Relative Efficiencies
Branching Ratios

Stopping Powers (Al)
Stopping Powers (Ne)

Fitting

Total 10

GF NN

Table 6.1: Uncertainty budget for the extractég}?® = 479 keV resonance strength fANe+p .

density for the implanted material. Equatio®sld and @.14) are then replaced by,

p21(xi) =paz(1 — &(z)) (6.4)

par M.
o) =() 2

(6.5)

This model was found to only affect the width of the extracted profile, whigettital number of
implanted nuclei and hence the resonance strength remains approximately constant. All uncer-
tainties were summed in quadrature. The total uncertainty in the extralt®e- 479 keV resonance

strength in*2Ne(p;y)?>Na amounted to 10%.

6.5 Discussion

All previously measured strengths for ti#2® = 479 keV resonance if*?Ne+p were normalised
relative to higher lying resonances in tfiée-+p reaction. In the present work, the resonance strength
has been determined independently of other resonancésley-p, with no dependence on absolute
detector efficiencies or absolute beam charge integration. A comparfisoa wew result with values
derived from the literature is shown in Fi§.5.

The value obtained by Meyet al. [Mey73 was normalised to thé&?Ne+p , E!2® = 640 keV
resonance strength from ReDU 71]. The rather large uncertainty is dominated by the uncertainty
of that reference resonance. The valuevgf= 0.45(10) eV (+20%) in Endt [End9Q, on the other
hand, was obtained by normalising the resonance strengths from ktegiefMey7J to the absolute

strength of the?Ne+p E'2® = 1278 keV resonance reported by Keinonenhal. [Kei77]. Another
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Figure 6.5: Comparison of present result (shown in red) for tAE® = 479 keV resonance strength in
22Ne(p;)**Na to previously published results. The labels Meyer, Riifgan, and Endt refer to RefsMey73,
[Pii71], and [End9q, respectively.

relative measurement was performed by Piipariaeal. [Pii71], but unfortunately, no uncertainties
are quoted for the relative yield of thE'2° = 479 keV resonance. For comparison, a relative yield
uncertainty of 30% was used (by considering their statement that relaéick yncertainties were
between 10% and 50%), and their strength was normalised to the resuK&imonenet al. [Kei77].

As is apparent from Fig6.5, the present result has significantly improved the uncertainty of the
E'3 — 479 keV resonance strength fiNe+p , from a previous value near 30% to 10%. The new
technique removes any systematic uncertainty caused by the target stoithjovhéch is difficult to
quantify using traditional methods.

It was already mentioned in the introduction that the new value foFiffe= 479 keV resonance
strength in??Ne+-p is important in two respects. Firstly, it will reduce the rate uncertainties of the
22Ne(p;y)?3Na reaction since the strengths of the low-energy resonances cambemalised relative
to the present precisely measured strengtdd8? = 479 keV, and thus improve predictions of hydro-
gen burning nucleosynthesis. Secondly, the present strength caeti¢audetermine more reliable
stoichiometries for implanteé!Ne -Ta targets that have been employed in measurements of the im-
portant?2Ne(o,7)*Mg and??Ne(a,n)*?Mg s-process neutron source reactions. New thermonuclear

reaction rates fof>?Ne+p and*?Ne+a will be published elsewhere.

116



6.6 Summary

A novel method for measuring reliable resonance strengths has beenyechpBy implanting
22Ne ions into a thick aluminium backing, and simultaneously measuring*the +p and?"Al+p
reactions, the strength of thB2° = 479 keV resonance if?Ne(p;)?*Na was determined to be
w7y = 0.524(51) eV. The new formalism allows for finding the implantation profile’8ifle in a thick
aluminium target backing. This novel approach significantly reduceeértaiaties in the desired
resonance strength arising from the cancellation of several systempéidraental uncertainties. The
well known E!2° = 406 keV resonance iR”Al(p,7)*®Si was used as a reference. The new precise
value for the?2’Ne+p resonance strength is important for estimating reliable thermonuclear reactio
rates for the hydrogen burning 6fNe and for the normalisation of tHéNe+p s-process reaction

rates.
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7 2Ne+a Rates

7.1 Introduction

N UCLEI heavier thard =~ 60 can be produced through neutron capture in stars. The s-process is
one mechanism for this production, where the neutron flux is an importetot & the amount

of material that is produced. Consequently, the reaction rates of thengurtsducing reactions must

be well known if comparisons between nucleosynthesis models and atisas/are ever to provide us
with reliable information on the interior structure of stars. For the case 6ftie(x,n)*>Mg reaction,

its competing reactio®Ne(,7)?Mg also plays an indirect role in the production of neutrons. Both
of these reactions have significant uncertainties at the temperatures rektnte these stars (%

0.1 — 0.3 GK). The effects of these uncertainties have been studied in AGB stdmnassive stars

by Pignarariet al. [Pig0g and Theet al. [The0Q, respectively. Both studies find that the current
uncertainties in thé?’Ne+« reactions produce variations of up to a factor of 10 in the abundances of
key elements in the s-process.

In the present work, the tw&Ne+« reactions are analysed carefully to find the best estimates
for the current uncertainties in the reactions. Throughout this sectignifisant problems in the
experimental data will be highlighted as they are encountered. In additiofotonation from direct
measurements of the reactions, data frerparticle transfer reactionsdie93 Uga07 and neutron
capture data oF’Mg [Wei76, K02] will be considered. The separation energies from the compound
26Mg nucleus used in the following analysis &g = 10614.787(33) keV and@,, = 11093.083(83)
keV.

The derived reaction rates will be compared with previous results. Méfgreht estimates of

the 2?Ne+-a rates can be found in the literature. Thus to avoid confusion, the presehktwill



concentrate on reaction rate comparisons to (i) the lagsérimentateaction rates (i.e., the latest
studies that presented reaction rates along with a new cross section emasyrand (ii) the NACRE
compiled reaction rate®\ng99. The reason for this is that most nucleosynthesis modelling codes use
the NACRE rates as input. Note that the reaction rates of Karetkad[Kar0g will not be discussed
in the present work because they add little new information.

Throughout this chapter, all energies are presented in the cenimass-frame unless otherwise

stated.

7.2 Excited States irf®Mg

In order to take the tails of wide resonances into account at low tempesatiuedNACRE compila-
tion [Ang99 used the total width upper limits of the resonances as measured in Rei89, Dro93.

In the present analysis, total widths as measured by R&fsi7p, K02 are used when available. In
order to integrate wide resonances in théle(a, v)?Mg and??Ne(a, n)2Mg reactions, their cor-
responding excited states in tA&Mg compound nucleus must be identified. In this section, these
identifications will be discussed. Following this identification, the specificxateach reaction will

be discussed separately.

The directly measured resonance strengths intiNe(«, v)?°Mg reaction are adopted from
Wolke et al. [Wol89]. Direct measurements of resonances in4Hée(o,n)*°Mg reaction have been
made by Refs.\Mol89, Har91, Dro93 JaeOlh All of these measurements were made at the same
facility, with variations of the same target and detector system. In the prasahysis, it is assumed
that with each subsequent measurement, the techniques were improvedafte work of Jaeget

al. [JaeOlbsupersedes the work of all others.

E, = 11315 keV, E2 = 830 keV

Kohler [KO2] argued that this state cannot correspond to the resonances abbgriaegeet al.
[JaeOlbat E, = 832(2) keV and Wolkeet al. [Wol89] at E!2® = 828(5) keV. He argues that the

value forI', would be far too large (assumidgreported in Jae01bpis correct). The calculation is a
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follows:
r.r, .,

DA [ P L — 7.1
wra+F7+Fn, WYan = W (7.1)

(.U"Ya’y = Fa 4 ny + Fn

wherel’,, I';,, andI', are thea-particle, neutron, and-ray partial widths, respectivelyyy,, and
wYay are the??Ne(a, n)2°Mg and??Ne(«, v)?Mg resonance strengths, respectively;anig a spin
factor calculated by:

2J+1

Y BT DA D) (7.2)

J, jo andj, are the spin of the compound state, the spin of the projectile and the targegtiesly.

The ratio of Egs. 7.1 is:

Doy _ Ly (7.3)
WYan r,
Therefore, for the state in question,
o190 osg(i0) x SO X100 spey
T T " oYem 1.18(11) x 104

The mean value df, in this energy range is reported to be 3 e{0p], 25 times smaller than that
calculated in Eq{.1). However, once the rather large uncertainties are considered, iddfdys by
1.40. Upon inspection of the PhD thesis of Jaegkrg013 it is apparent that thé?Ne(«, v)**Mg
reaction was measured simultaneously with tAse(a, n)2°Mg reaction. In that measurement, a
resonance was found &, = 833(3) keV in ?2Ne(«,v)**Mg , in very good agreement with the
resonance found &, = 832(2) keV in the??Ne(a, n)??Mg reaction. The excitation function fit to
the?2Ne(a, n)?’Mg data that produced the total width1bf= 250(170) eV shows a rather ambiguous
fit, which could easily explain the discrepancy in partial widths discussedeab

Jaegeret al. [Jae01b assign this state witt/™ = 2%, originating from the assignment made
by Giesenet al. [Gie9]. There are no states observed in other studies in this energy region that
closely match this resonance, but there are several possibilities for stath it could correspond
to: (a) The state at £= 11328.2(1) keV with J™ = 1~ andI'r = 427(86) eV, (b) The state at
E, = 11310.7(3) keV with J© = 1~ andI'r = 4.1(16) eV, (c) The state at F= 11286.4(1) keV
with J™ = 2+ andl'y = 17.1(61) eV or (d) a state that has not been observed in other works. State

(c) is the only2™ state in this energy region, but is d®utside the energy uncertainties, andol.5
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outside the width uncertainties. Similarly, state (b) is@dutside the energy uncertainties andsl.4
outside the width uncertainties. State (a) still doesn't agree in energyg beioutside the uncertainty
(corresponding to 10 keV as mentioned in R&faf0q)), but agrees well in total width (0.
Following these arguments the resonances are assumed to arise fronmtheyszted state in
the present analysis, and a weighted average between Ré9 and [JaeOlbis used for the
resonance energy. Although the DWBA fits from Giesg¢ral. [Gie93 do not rule out aJ™ = 1~
state, to avoid ambiguities in the state assignments, it will be treated as a new statesertance

energyE, = 831.9(24) keV, a total with ofl'; = 250(170) eV, andJ™ = 27 .

E, = 11440 keV, E2* = 976 keV Resonance

The E!2° = 976 keV resonance has only been observed irP#iNe(, n)2°Mg reaction Pae01h
There is one excited state in this energy region with similar energy and total teidtie observed
resonance ak'2® = 976 keV. However, the/™ assignments disagree. Jaegeal. assume @™ = 1~
whereas the assignment frondKler is J™ = 4*. The PhD thesis of JaegeldeOlpstates that
J™ = 1~ was used if no assignment could been made. Thus, in the present amalfsis= 4™
assignment is assumed for this state. The weighted average of the endrgyta width of this

resonance are,;F= 11440.8(2) keV andI'r = 1475(80) eV, respectively.

E, = 11461 keV, E, = 1000 keV Resonance

The E'2° = 1000 keV resonance has only been observed irfthée(«, n)2>Mg reaction Pae01h
There are two possible states in this energy region that could correspainelE,. = 1000 keV res-
onance (E = 11461(2) keV with I'r = 9300(2500) eV). The first is located at an excitation energy
of E, = 11457(2) keV and was observed by Re6G[a84. The state was not analysed in their exper-
iment. The other possible state was analysed by Ref2]] and is located at an excitation energy
of E, = 11465.3(2) keV with a total width ofl'z = 6553(90) eV. Once again, this state has been

assigned different quantum numbers by the two studiEs:= 5~ by Koehler and/™ = 1~ by

Jaeger. As with thés, = 976 keV resonance, the Koehler assignment was adopted in the present

study. The weighted average energy and total width of this resonaedg at 11465.2(2) keV and

I'r = 6554(90) eV, respectively.
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E, =11828 keV, E,. = 1434 keV

This state most likely corresponds to the resonances observed #¥Neéo,n)?°Mg data of
Ref. Jae01bat 1434(2) keV and in the*’Ne(a, v)?°Mg data of Wolkeet al.[Wol89]. The weighted
average resonance energy is therefbye= 1434(3) keV. Jaegeet al. [Jae01lbmeasured the total
width of this state to b& = 1100(250) eV. At these excitation energies in this mass range, R&2]
claims that the averaggeray partial width is 3 eV. The width of this state is therefore most likely due
to the neutron partial width. With an assumed valu&'of= 3 eV, thea-particle partial width can be

calculated by:

T,

WYay = W T (7.4)
Way WYary
Therefore, T, = T~ T r
o wr'y T wr'y ( n+ ’y)
2.5 % 1073
=22 1100 = 1.8(10) x 10~ teV
3 x3 ( )

7.3 The*Ne(«a,v)*Mg Reaction

Directly Observed Resonances

For resonances with laboratory energies belBi#® = 1434 keV, the parameters from Seg.2
were used. Resonances strengths and energies @f#fve= 1434 keV were adopted from Ref.
[WolIB89]. For resonances that have an upper limit total width, the calculations pegfermed as-
suming narrow resonances. The rates for resonances with a me&staledidth can be integrated
numerically to take their tails into account. Resonances with widths this high éieweutron thresh-
old will be dominated by the neutron partial width, and an averagay partial width ofl’, = 3 eV

is assumed. The-particle partial width is then calculated using Eg.4).
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Partial Widths (eV)

E. (keV) E™M (keV) Eb (keV) F wy (V) r,° I I'r Int
11319 704 831.9(25) 2t 3.6(4)x107° 7.20(44)>< 0% 3 250 (170) 250 (170) | v
11441 826 976.39(23)¢ 4+ .- 1.13(13)x10™° 3 1470 (80) 1470 (80) | v
11465 850  1005.23(25)¢ 5- .- 1.60(33)x107° 3 6550 (90) 6550 (90) | v/
11508 893 1055.9(11)¢ 1~ .- 1.17(20)x107% 3 1.27 (25x10* 1.27 (25Kx10* | v
11526 911 1077(2)¢ 1~ .- 2.77(23)x107% 3 1.8 (9103 1.8 (9x10° | v
11630 1015 1200(2)¢ 1~ .- 2.83(33)x1(r3 3 1.35(17x10* 1.35(17)x10* | v
11748 1134 1340(10)¢ 1~ ---- 2.0(3)x1072 3 6.35(85x10* 6.35(85)x10* | v
11787 1172 1385(4)4 1- .- 1. 07(23)>< 1072 3 2.45(24x10% 2.45(24)x10" | v
11828 1213 1434(3) 2t 2.5(3)x107* | 1. 84(10)>< 0t 3 1100 (250) 1100 (250 | v
11895 1280 1513(5) 179 20(2)x107% | 8.9(45)x10~! 3 < 3000
11912 1297 1533(3) 1% 34(4)x1073 | 1. 89(79)x10+O 3 5 (2)><103 5@2)x10% | v
11953 1338 1582(3) 379 3.4(4)x107% | 6.5(33)x107t 3 2 (1)x10? 2 (1)x10% | v
12051 1437 1698(3) 379 6.0(7)x107% | 8.6(58)x1071 3 4 (2)x10° 4 (2)x103 | v
12139 1525 1802(3) 1= 1.0(2)x1073 | 1. 67(40)x10+0 3 15 (3)x 103 15 (3)x10° | v/
12184 1569 1855(8) (0r) 1.1(2)x107? | 1.21(29)x 10+t 3 33 (5)x10% 33(5)x10% | v
12273 1658 1960(8) (0r)  8.9(1)x1073 | 1. ()5(35)>< 10t 3 73 (9)x 103 73 (9)x10% | v
12343 1728 2043(5) 0F  54(7)x107% | 6.3(12)x10*%? 3 35 (5)x10° 35(5)x10% | v

Table 7.1: Directly measured resonances in ti®Ne(x,v)?Mg reaction. Total partial widths are from Ref.
[WolI89] unless stated otherwise.

@ J™ from Ref. Har9]]

b From Ref. K02

¢ See text for details

41, from 22Ne(a,n)*> Mg measurements

7.3.1 Upper Limit Resonances
States With Measured Partial Widths

For resonances with one or more measured partial widths and are loeddedm. = 1005 keV,
their neutron andy-ray partial widths have been measured by R-matrix analysis of neutpinrea
data K02]. For each of these states, measured partial widths are adopted friofikR8 and upper
limits for wy,, are taken from Fig. 7 in RefWolI89]. That figure displays the reaction cross sec-
tion, assuming broad resonances (the resonance width is much largeh¢htarget width), so the

resonance strength is given by (see Set.2),
Wy =90 (7.5)

By using the resonance &t = 1434 keV as a reference, the upper limit resonance strengths can be
found from the known widths and upper limit cross sections. See Appdh@ifor more details on

the calculation of these upper limits. Theparticle partial width at these energies is several orders
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of magnitude smaller than the total width. Thus the width will either be dominated byethiteon
partial width or they-ray partial width. In the former case, numerical integration of the ratebean
performed by assuming an averageay partial width ofl’, = 3 eV (see Sec.2). In the latter case,
the resonance cannot be safely integrated, so a narrow resonasseiised. The-particle partial

width can be calculated following the same procedure as in’G2c.

States Without Measured Partial Widths

These states, mostly abo¥& = 883 keV, have been observed in thgMig(n,y)?Mg data of
Weigmannet al. [Wei76 and in 2*Na(a,py)**Mg measurements by Glagt al. [Gla8g. In both
of these cases the resonance parameters were not measured. In #tigrsiitiis not practical to
use upper limits or average values for all of the partial widths. Consélgusnch states have been
omitted in the present calculations. Fortunately, all but one of these levels at high energies,

where the directly observed resonances will dominate the total reaction rate

Partial Widths (eV)

E. (keV) E°™ (keV) E'3 (keV) F  owyLeVY)| Tauw r, r, 'y Int
11112 497 587.90(10) 2T 3.8x10708 | 7.7x107%  1.732(31) 2578(180)) 2580(24) | v
11163 548 647.93(11) 27 4.3x10707 | 8.7x1079  4.56(29)  4644(100) 4649(100) | v
11171 556 657.53(19) (27)  6.2x107°7 | 1.2x107%7 3 1.44(16) 4.4(15)
11183 568 671.70(21) (17) 1.0x107% | 2.0x107°7 3 0.540(88)  3.5(15)
11243 628 742.81(12) 202) 4.7x107%6 | 9.4x10797  7.42(60)  4511(107) 4518(110) | v/
11274 659 779.32(14) (2)F 4.9x107% | 9.9x10797  3.24(35)  540(54) 543(54) | v
11280 665 786.17(13) 45 8.2x10797 | 9.1x107%  0.59(24)  1513(34)  1514(34) | v
11286 671 792.90(15) 1= 5.0x107% | 1.6x1079  0.79(46)  1256(100) 1260(100) | v’
11286 672 793.83(14) (2%) 5.0x107% | 1.0x107% 4, 26(6 ) 12.80(60)  17.1(60) | v
11289 674 797.10(29) (27) 5.1x107% | 1.0x10796 1.54(46) 4.5(16)
11296 681 805.19(16) (37) 51x1079% | 7.3x10707 3.31(73) 8060(120)  8060(120) | v/
11311 696 822.62(41) (17) 5.2x107% | 1.7x107% 3 1.12(40) 4.1(16)
11326 711 840.81(63) (17) 5.4x107% | 1.8x107%6 3 0.60(32) 3.6(15)
11328 713 843.24(17) 17 54x107% | 1.8x107%  3.63(47)  424(86) 428(86) | v
11329 714 844.35(64) (17) 5.4x107% | 1.8x1079 3 2.8(10) 5.8(18)
11337 722 853.55(67) (17) 5.4x107% | 1.8x107% 3 1.42(56) 4.4(18)
11344 729 861.86(18) (2+) 5.5x107% | 1.1x107%  1.18(27) 153(42) 154(42) | v
11345 730 862.91(19) 4 55%107% | 6.1x10707  1.82(38)  4130(190)  4130(190) | v/
11393 778 919.34(19) 5(H) 1.6x107% | 1.5x10~07 3 290(19) 293(19) | v
11441 826 976.40(23) 4t 6.2x1079% | 2.0x107% 3 1470(80)  1473(80) | v’
11465 851  1005.30(25) 57 6.4x107% | 5.8x10707 3 6550(90)  6553(90) | v

Table 7.2: Upper limit resonances in théNe(,v)*°Mg reaction;y-ray and neutron partial widths are taken
from the R-matrix fit of Ref. K02].
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7.3.2 Transfer Measurements

Indirect a-particle transfer measurements have been performed below the neutshdiu by
Giesenet al. [Gie93 and Ugaldeat al. [Uga07. In both of these measurements®la beam was
incident on a*?>Ne target to populate states {iMg. The deuteron momentum was subsequently
measured to obtain tif€Mg excitation energy.

Between they-particle threshold at S= 10615 keV and the excitation energy of the lowest mea-
sured resonance by RefMpl89] at E, = 12346 keV, Ref. [Gie93 observed twax-particle clusters
at E; = 10694(20) keV and E = 10949(20) keV. The first state is assumed to be the same one as
that measured in RefsG]a86 Mos7q and the weighted average of these excitation energies will be
used. Ugaldet al. suggest that this state is most likelyl& state as it has been observed by Ref.
[Gla8g to decay to the&y™ state at E = 7395(1) keV.

The second state measured by R&igdJ has also been resolved into two separate states by Ref.
[Uga071 at the excitation energies of,E= 10808(20) keV and E. = 10953(25) keV. For this state,
the work of Ugaldeet al.[Uga07 is assumed to supersede that of Giestal.[Gie93. These states
most closely agree with those of Walkiewiez al. [Wal9Z at E, = 10805.9(4) keV and those seen
by Refs. [Gla86 Mos7§ at E, = 10943(2) keV and E. = 10950(3) keV respectively. The weighted
averages of these energies have been used in our analysis.

These measurements yield spectroscopic factors, which are obtaineghtD@VBA fitting of an-
gular distributions of the data. The work of Refiga07 did not deduce angular distributions. Thus
their spectroscopic factors for the observed states were estimatedrbgliging to the state observed
by Ref. [Gie93 at E, = 10949(25) keV. Their analysis consisted of taking the area of the peak ob-
served by Ref.Gie93 and splitting it into two parts corresponding to the areas of the newly obderv
peaks. The results of that analysis are shown in Téb.In the present work, the spectroscopic factors
from Ugaldeet al. will be treated as upper limits because the ambiguities associated with estimating
spectroscopic factors in this way. The larger of the three values caldufafeab.7.3 were used for

the upper limits.
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Partial widths can be calculated from the spectroscopic factors by

2
Iy = thQPCQSa (7.6)

whereP is the penetration facto€; is the isospin Clebsch-Gordan coefficieRtis the nuclear radius
calculated fromR = RO(Atl/?’ + Aé/g), whereRy = 1.25 fm and A; is the target nucleon number

(A; = 22); u is the reduced mass at is the measured spectroscopic factor.

7.3.3 Quantum Number Measurements at H{/S

Measurements of®Mg(v,7')*®Mg are discussed in Chaptér The assignments, and how they

affect the reaction rate calculations are discussed below:

E. = 10647.3(8) keV, J™ =11

This state is a well knowd™ = 17 state End9(Q. The present result reduces the uncertainties in
resonance energy considerably. However, the close proximity of theststéhea-particle threshold

means that its influence on the on ti&le+« reaction rates is low.

E. = 10805.7(7) keV, J™ = 1~

This state was seen previously #Ne(@Li,d)*Mg measurements by Ugaldg al. [Uga07 at
E. = 10808(20) keV, and in>>Mg(n;,7)**Mg measurements (thermal neutron capture) by Walkie-
wicz et al.[Wal9Z at E, = 10805.9(4) keV. The previous measurements assigiéd= (0T — 41),
while the present result shows it to ha¥® = 1. This unambiguous quantum number assignment is

expected to reduce the reaction rate uncertainties arising from this stafecaiuty.

Er = 10949.1(8) keV, J™ = 1~

This state has been observed previousB’Mg(p,p)?*Mg measurements by Moss al.[Mos7§
atE, = 10950(3) keV. It was also observed i##Ne(Li,d)?Mg transfer measurements by Ugalete
al. [Uga01 at E, = 10953(25) keV. The latter measurements could only assign the state with natural

parity, although the (p/p measurements suggest/a = 1~ state, which agrees with the present
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result. One important point to note is that Ugakteal. assumed this state is the same one as that
observed in thé3Na(a,py)**Mg measurements by Glagt al. [Gla8§ at E, = 10943(2) keV with

J™ = (4% — 7F). With no further information, it is impossible to know which state was observed
by Ugaldeet al. [Uga07q. Consequently, in the present analysis, the spectroscopic factow#sat
measured by Ugaldet al. is treated as an upper limit, and the same upper limit was used for both

states. This is shown is Tab.3.

Ex = 11153.5(10) keV, J™ = 1+

This state corresponds to the presumed astrophysically important 630dseviance Pro91,
Dro93 Jae01bGie9d. The results in chaptérshow that the state can be assigned with a definite spin-
parity of J* = 1*. This unnatural parity state cannot be formed bynaparticle anc??Ne without
breaking angular momentum conservation laws, and therefore, camminifocite to the reaction rate.

A previous assignment by Koehlé¢(2] of J™ = 1~ was motivated by erroneous results (background

from 11B) in Ref. [Har91], although it could not be assigned without ambiguity.

Partial Widths (eV)
E; (keV) Ecm (keV)  Bap (keV) JT Sa Iy F'ya I'p
10693 (2) 79 93 (2) 4+ 2.4x1072 1.5(12) x 10~%6 3 3
10805.7 (7) 191 225.9 (5) 1- 1.9x1072 1.25 x 10723 3 3
10945 (2) 331 391(2) (5~ —77) |28x107% | <370(180) x 102" 3 3
10949.1 (8) 334 395.15(18) 1~ 2.8x1073 <1.20 x 107? 3 3

Table 7.3: Resonance parameters for states observé®Ne(Li,d)2°Mg. These results include the additional
quantum number assignments from chapter
@ Assumed average-ray partial width (see Se@.2)

7.3.4 Normalisation of Hauser-Feshbach Reaction Rates atigther Temperatures

Theoretical Hauser-Feshbach reaction rates are needed at higiperé&tures because resonances
are only measured up to a finite enerdine. If the effective burning window extends above this
energy, the rate will not accurately reflect reality. Statistical techniques, rtherefore, be used to
calculate a theoretical reaction rate above this temperature. The method desdribed in detail in

Ref. [New0d. The method uses the following strategy: (i) effiective thermonuclear energy range
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is defined using the® 50", and 924 percentiles of the fractional reaction rate contributions at each
temperature (i.e., the reaction rate arising from a single reonance at temrpefadivided by the
total reaction rate &f); (ii) the temperature] EIER at which Hauser-Feshbach reaction rates will be

adopted is calculated by

E(Trrach) + AE (Tnach) = B (7.7

where AE(TEIER) is the width of the ETER calculated from th& &nd 929 rate percentiles. At
this point, Hauser-Feshbach reaction rates are normalised to the expatlynéatermined rates, and
extrapolated to higher temperatures. The matching temperature féfNega, v)2Mg reaction is

calculated to bd" = 1.33 GK.

7.3.5 Results

The input file used to calculate ti¥éNe(«,v)?**Mg reaction rate with theRat esMC code is
shown in Fig.7.1L The reaction rates parameters discussed in 3@c3 are tabulated in Tal¥.4
at a range of temperatures frdf = 0.01 to 10 GK. The low and high rates should be interpreted
as the 0.16 and 0.84 quantiles of the reaction rate distributions. Also tabulatedealognormal
parameters needed to describe the reaction rate probability density fyvetiere,, ando represent
the lognormal parameters of the distribution. A quantitative measure for tleemgnt between the
theoretical lognormal shape and the actual reaction rate distribution isrpeekin the final column,
A-D. Avalue of A — D > 30 means that the lognormal approximation is considered to deviate visibly
from the actual distribution. The reaction rate distributions for six sample teathypes are shown in
Fig. 7.2 Note that the reaction rate is dominated by upper limits in resonances Bekovd.1 GK,
giving rise to reaction rate distributions that resemble chi-squared distniizugippendix A).

The uncertainty bands in Tab.4are shown in the upper panel of Fig3as solid lines. The dash-
ed lines represent the uncertainty bands of the previous reaction rafglaton (NACRE Ang99).
The lower panel plots the ratio of the present results to the NACRE ratesprBisent results deviate
significantly from the literature reaction rates. This deviation is mostly becatifige treatment
of upper limits by using a Porter-Thomas probability distribution in the presenk.wr he literature

followed the procedure discussed in S22 Another explanation for the large discrepancy in reaction
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22Ne(a,qg)26Mg

ok ok ok ko o o ok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok o o

2 ! Zproj
10 ! Ztarget
0 ! Zexitparticle (=0 when only 2 channels open)
4.003 ! Aproj
21.991 ! Atarget
1.009 ! Aexitparticle (=0 when only 2 channels open)
0.0 ! Jproj
0.0 ! Jtarget
0.5 ! Jexitparticle (=0 when only 2 channels open)
10614.79 ! projectile separation energy (keV)
11093.08 ! exit particle separation energy (=0 when only 2 channels open)
1.25 ! Radius parameter RO (fm)
! Gamma-ray channel number (=2 if ejectile is a g-ray; =3 otherwise)
Sk ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ook ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
1.0 ! Minimum energy for numerical integration (keV)
5000 ! Number of random samples (>5000 for better statistics)
0 ! =0 for rate output at all temperatures; =NT for rate output at selected temperatures

R R R R R R S et e R e R e e N L 2 e d R R R AR
Nonresonant Contribution

S(keVb) S’ (b) S'’ (b/keV) fracErr Cutoff Energy (keV)

0.0 0.0 0.0 0.0 .0

0.0 0.0 0.0 0.0 0.0

Sk 3k 3k ok kKK K o ok ok ok ok K K o ok ok ok ok o o ok ok ok ok ok ok ok ok ok o ok ok ok ok ok o o ok ok ok ok ko S ok ok ok ok o o ok o ok ok ok ok ok ok o ok ok ok ok ok o ok ok Sk ok ok kK K K K K K K

Resonant Contribution

Note: Gl = entrance channel, G2 = exit channel, G3 = spectator channel !! Ecm, Exf in (keV); wg, Gx in (ev) !!
Note: if Er<0, theta”2=C2S*theta_sp”2 must be entered instead of entrance channel partial width
Ecm DEcm wg Dwg J Gl DG1 Ll G2 DG2 L2 G3 DG3 L3 Exf Int
78.37 1.7 0 0 4 1.5e-46 1.2e-46 4 3.0 1.5 1 0 0 0 0.0 0
703.78 2.11 0 0 2 7.2e-6 4.4e-7 2 .0 1.5 1 2.5e2 1.7e2 1 0.0 1
826.04 0.19 0 0 4 3.78e-6 4.44e-7 4 3.0 1.5 1 1.47e3 8.0el 2 0.0 1
850.44 0.21 0 0 5 4.36e-6 9.09e-7 5 3.0 1.5 1 6.55e3 9.0el 3 0.0 1
893.31 0.90 0 0 1 1.17e-4 2.0e-5 1 3.0 1.5 1 1.27e4 2.5e3 1 0.0 1
911.16 1.69 0 0 1 2.77e-4 2.33e-5 1 3.0 1.5 1 1.80e3 9.0e2 1 0.0 1
1015.22 1.69 0 0 1 2.83e-3 3.33e-4 1 3.0 1.5 1 1.35e4 1.7e3 1 0.0 1
1133.66 8.46 0 0 1 2.0e-2 3.0e-3 1 3.0 1.5 1 6.35e4 8.5e3 1 0.0 1
1171.74 3.38 0 0 1 1.67e-2 2.33e-3 1 3.0 1.5 1 2.45e4 2.4e3 1 0.0 1
1213.0 2.0 0 0 2 1.84e-1 1.03e-1 2 3.0 1.5 1 1.10e3 2.5e2 0 0.0 1
1280.0 4.0 2.0e-3 2.0e-4 1 0 0 0 0 0 0 0 0 1 0.0 0
1297.0 3.0 0 0 1 1.89 7.88e-1 1 3.0 1.5 1 5.0e3 2.0e3 1 0.0 1
1338.0 3.0 0 0 3 6.48e-1 3.33e-1 3 3.0 1.5 1 4.0e3 2.0e3 0 0.0 1
1437.0 3.0 0 0 3 8.58e-1 5.8le-1 3 3.0 1.5 1 3.0e3 2.0e3 0 0.0 1
1525.0 3.0 0 0 1 1.67 4.0le-1 1 3.0 1.5 1 1.5e4 2.0e3 1 0.0 1
1569.0 7.0 0 0 0 1.21el 2.86 0 3.0 1.5 1 3.3e4 5.0e3 2 0.0 1
1658.0 7.0 0 0 0 1.63e2 3.49el 0 3.0 1.5 1 5.5e4 1.0e4 2 0.0 1
1728.0 0 0 0 6.30e2 1.22e2 0 3.0 1.5 1 3.5e4 5.0e3 2 0.0 1
Sk ko ko ko ok kK koK K ok ok K oK ok ko koK ok koK ok ok K ok ok ok ok ok o ok ok ok ok ok K ok ok ok ok koK o o ko ko kK Kk Xk kK kK KKk K kKKK KRRk A

Upper Limits of Resonances
Note: enter partial width upper limit by chosing non-zero value for PT, where PT=<theta”2> for particles and...

Note: ...PT=<B> for g-rays [enter: "upper_limit 0.0"]; for each resonance: # upper limits < # open channels!
Ecm DEcm Jr G DGl L1 PT G2 DG2 L2 PT G3 DG3 L3 PT Exf Int
191.08 0.15 1 1.25e-23 0 1 0.01 3.0 1.5 1 0 0 0 0 0 0.0 0
334.31 0.1 1 1.20e-9 0 1 0.01 3.0 1.5 1 0 0 0 0 0 0.0 0
328.21 2.0 7 3.70e-23 O 7 0.01 3.0 1.5 1 0 0 0 0 0 0.0 0
497.38 0.08 2 9.28e-12 O 2 0.01 1.73 3.1le-2 1 0 2.58e3 2.40el O 0 0.0 1
548.16 0.10 2 8.74e-8 0 2 0.01 4.56 2.9e-1 1 0 4.64e3 1.00e2 1 0 0.0 1
556.28 0.16 2 1.25e-7 0 2 0.01 3.0 1.5 1 0 1.44 1.6e-1 2 0 0.0 0
568.27 0.19 1 2.08e-7 0 1 0.01 3.0 1.5 1 0 5.4e-1 8.8e-2 1 0 0.0 0
628.43 0.10 2 9.46e-7 0 2 0.01 7.42 6.0e-1 1 0 4.51e3 1.07e2 1 0 0.0 1
659.32 0.12 2 9.97e-7 0 2 0.01 3.24 3.5e-1 1 0 5.4e2 5.4el 0 0 0.0 1
665.11 0.11 4 9.16e-8 0 4 0.01 5.9e-1 2.4e-1 1 0 1.51e3 3.4el 1 0 0.0 1
670.81 0.13 1 1.69e-6 0 1 0.01 7.9e-1 4.6e-1 1 0 1.26e3 1.0e2 1 0 0.0 1
671.59 0.12 2 1.02e-6 0 2 0.01 4.26 6.0e-1 1 0 1.28el 6.0 2 0 0.0 1
674.36 0.25 2 1.02e-6 0 2 0.01 3.0 1.5 1 0 1.54 4.6e-1 1 0 0.0 0
681.21 0.13 3 7.37e-7 0 3 0.01 3.31 7.3e-1 1 0 8.06e3 1.2e2 1 0 0.0 1
695.95 0.35 1 1.76e-6 0 1 0.01 3.0 1.5 1 0 1.12 4.0e-1 1 0 0.0 0
711.34 0.54 1 1.80e-6 0 1 0.01 3.0 1.5 1 0 6.0e-1 3.2e-1 1 0 0.0 0
713.40 0.14 1 1.81le-6 0 1 0.01 3.63 4.7e-1 1 0 4.2e2 8.6el 1 0 0.0 1
714.34 0.55 1 1.81le-6 0 1 0.01 3.0 1.5 1 0 2.8 1.0 1 0 0.0 0
722.12 0.56 1 1.83e-6 0 1 0.01 3.0 1.5 1 0 1.42 5.6e-1 1 0 0.0 0
729.15 0.15 2 1.11le-6 0 2 0.01 1.18 2.7e-1 1 0 1.53e2 4.2el 1 0 0.0 1
730.03 0.16 4 6.16e-7 0 4 0.01 1.82 3.8e-1 1 0 4.13e3 1.9e2 3 0 0.0 1
777.78 0.16 5 1.51e-7 5 0.01 3.0 1.5 0 9e2 1.9%el 2 0 0.0 1
Sk ok ko Kk ok ok kK ok ok K ok ok Kk ok ok ok ok koK ok kK ok ok ok ok Kk ok ok ok ok koK ok ok ok ok ok ok ok ok ok ok ok koK o ok ok o ok ok ok ok K ok ok ok ok koK Sk kK ko K kK K Kk K K Xk

Interference between Resonances [numerical integration only]

Note: + for positive, - for negative interference; +- if interference sign is unknown

Ecm DEcm Jr Gl DG1 L1 PT G2 DG2 L2 PT G3 DG3 L3 PT Exf Int
4

0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0 0 0.0 0.0 0 0 0.0 0
0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0 0 0.0 0.0 0 0 0.0

Sk ok ok ko ok ko o ok K ok ok ok ok K ok ok ok ok ok ok o ok ok ok ook ok K ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok o ok ok ok ok ook ok ok ok ok ok ko ok ok ko ok Rk ARk
Reaction Rate and PDF at NT selected temperatures only

Note: default values are used for reaction rate range if Min=Max=0.0

T9 Min Max

0.01 0.0 0.0

0.1 0.0 0.0

Sk ok ok ko Kk ok ok kK ko K ok ok Kk ok ok ok ok koK ok kK ok ok ok ok ok ok ok ok ok koK ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ko ko ok ok K Sk ok ok ok kK ko K kR Kk K K Xk Kk
Comments :

Reaction Rates using recent FEL results

The doublet state at ~330 keV has been included twice as upper limits for the spectroscopic factor

The 703 keV resonance is treated as the same as seen in 22Ne(a,n)

Figure 7.1: RatesMC input file foP2Ne(x,v)?Mg reaction rates.
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T (GK) Low rate Median rate High rate lognormalg. lognormalo A-D
0.010 326107 7.98x10°7®  1.93x10°77 | -1.775<10"92  8.89x10° 91 4.15x10 !
0.011 1241077  2.74x10°™  6.02x10°7* | -1.694x10t02  7.94x10°%'  3.55x10°0!
0.012 1.1K10°7 2341071 4.93x10°7! | -1.626x10102  7.38x10°%'  2.91x10 0!
0.013 3.4%10°%9  7.08x10°%0  1.45x10°%% | -1.569x10M92 = 7.12x10°9' 3.16x10°Y!
0.014 46610767 9.43x10°%7  1.91x10°% | -1.520x10t92 = 7.06x10°9' 2.93x10° 9!
0.015 3.1&10°%  6.48<10°%  1.32¢10°% | -1.478<10702  7.14x10°%' 3.59x10
0.016 1.2%10°%  2.61x10°%  539<10°63 | -1.441x10t02  7.31x10°9"  3.43x10°0!
0.018 55410761  1.21x10°%0  2.64x10°%0 | -1.380x10702 = 7.77x10°°'  2.38x10°"!
0.020 7.04107%%  1.63x10°% 37210798 | -1.331x10702  8.27x10°  2.56x10° %
0.025 6.1k1075  1.28<10°°%  2.93x10°%* | -1.241x10702  7.94x10°°'  1.83x10"%
0.030 2.16¢10°°9  2.17x10°%  7.94x10°% | -1.125¢10702  1.79x107%0  1.22x10%02
0.040 14104 1.49<10°%  546x10°4 | -9.454<10t01  2.04x10t%  1.60x10102
0.050 6.5&10738  6.98<10°37  256x10°36 | -8.379x10T0!  2.05x10"%°  1.61x10702
0.060 8.2&1073°  8.62x1073*  3.16x1073% | -7.662¢<10"91 = 1.91x10t%0  1.39x10102
0.070 2.6410732  1.49x10°3!  5.05x10°3' | -7.125¢<10T01  1.49x10t%0  7.29x10%0!
0.080 4561030  1.63x10%  3.76x10% | -6.652x10"91  1.20x10"%°  8.01x10"9!
0.090 25410728  1.16x10°27  4.41x10°27 | -6.214<10t"  1.46x10T0  2.11x10t%
0.100 7.3%10°27  6.43x10°26  2.71x10°%5 | -5.830x<10T01  1.75x10T%0  4.59x1070!
0.110 1.7&10°2°  1.84x10°2*  7.94x10°2* | -5.503x10t01  1.93x10t00  7.43x10t0!
0.120 2.8x10°2¢  3.05x10°23  1.32x10°22 | -5226x10T01  1.99x10M%°  8.68x1070!
0.130 3.0610°23  3.26x107%22  1.41x10°2' | -4.986<10M°1  1.93x10t%0  7.67x10t0!
0.140 2.66¢10722  250x10°21  1.06x10°20 | -4.774<10T01  1.77x10M%0  5.20x1070!
0.150 2.3%10°21 15210729  6.15x10°20 | -4.583<10T01  1.56x10M%0  2.69x1070!
0.160 1.8%10°20  8.09x10°20  2.89x10'? | -4.406x10t01  1.34x10t%0  1.23x10t0!
0.180 7210719 2.08<10°'8  5.14x10°'8 | -4.081x10T01  9.99x10°°'  1.81x100!
0.200 15610717  3.98<10°17  8.78<10°17 | -3.782¢<10t01  8.62¢x10°%"  9.51x10t%0
0.250 9.7&10° 15 1.94x10° 4 4.22¢10°'4 | -3.154<10T0'  7.15x10°°'  3.69x10"%
0.300 1141072 1.96x10°'2  3.44x10°'2 | -2.695¢10t0'  554x10°%" 5.65x10°0!
0.350 3.6%10° 11 592¢<10°11  9.26x10°!' | -2.357 10T 4.74x10°°!  5.04x 1000
0.400 48%10°10  7.88x10°10  1.18x10°% | -2.100x10"9!  4.45<10°9' 1.38x10'0!
0.450 3.7%107%  595x10°%°  8.73x10°% | -1.898<10M9!  4.36x10°9!  1.92x10t0!
0.500 1.8%10°9  3.00x10°9  4.38<10°98 | -1.737x10t01  4.34x10°0'  2.15x10t0!
0.600 2.2Kk10°07  3.46x10°97  4.98<10°97 | -1.492<10T%1  4.17x10°°'  2.06x10"%!
0.700 1.4%10°9 2211079  3.04x10°% | -1.306x1070' = 3.63x10°%'  1.58x10t"!
0.800 7.7%10°%  1.07x10°%  1.43x10°% | -1.146<1070'  3.06x10°°'  6.45x10T%
0.900 3.3410°%  4.41x10°%  584x10°% | -1.002<10T0'  2.92x10°'  2.01x10"%
1.000 1.1%10°%  1.56x10°%  2.14x10°% | -8.742¢<10t%0  3.04x10°%'  9.64x10t%0
1.250 1.4%1079%  1.92x10°9%  2.73x10°% | -6.229¢<10t00  3.23x10°%'  1.33x10t0!
1.500  (9.6%10°%%) (1.34x10792) (1.85x1079%) | (-4.314x10"%0) (3.22x107%1)

1.750  (5.05%10°92) (6.96x10°92) (9.61x10°92) | (-2.664x101%0) (3.22x10° 1)

2.000 (2.0k10°9Y) (2.77x10°91) (3.83x10° %) | (-1.283x107%) (3.22x10°°1)

2500  (1.7k10t%9) (2.36x101%0) (3.25x10"%0) | (8.570x10791) (3.22x10°°1)

3.000  (8.3107%9) (1.15x10t01) (1.58x10M01) | (2.439¢10190) (3.22x10701)

3500 (2.8%10%01) (3.87x10191) (5.34x10M01) | (3.655¢<10190) (3.22x10°01)

4.000 (7.3%10M01) (1.02<10%0%) (1.41x1019%) | (4.623<10t%0) (3.22x10°%)

5.000 (3.1%10702) (4.35x10192) (6.01x10"92) | (6.076x10190) (3.22x10°0%)

6.000  (8.9k10102) (1.23x1019%) (1.70x10%93) | (7.115¢10190) (3.22x10°°1)

7.000  (1.95%10t%%) (2.69x1019%) (3.71x10"%3) | (7.896x10190) (3.22x10°°1)

8.000  (3.5%107%%) (4.95x10t93) (6.83x107%%) | (8.508x107%0) (3.22x1071)

9.000  (5.8%101%3) (8.03x101%%) (1.11x10M%%) | (8.991x10190) (3.22x10701)

10.000 (8.6%1019%) (1.20x10%%%) (1.65x107%%) | (9.391x107%0) (3.22x10° %)

Table 7.4: Monte Carlo reaction rates for tHéNe(x,v)?°Mg reaction. Numbers in parentheses indicate rates
that have been normalised to Hauser-Feshbach rates froniRRef0].
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Figure 7.2: Reaction rate probability densities for th&Ne(x,v)2Mg reaction. Shown are histograms of the
reaction rates and the associated lognormal function wsagproximate the rates.
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rates between the present results and the NACRE rates could be their treafmesonance widths.

In the NACRE rate calculation, the cross sections were integrated assuidi@gasonances by using
upper limit total widths [ = 4 — 10 keV) that are considerably larger than the widths used in the
present analysis.

Several studies of the compound nuclétig have been performed since the NACRE rates were
published. Directly measuredNe(«, n)2>Mg measurementslae01lband an R-matrix analysis of
2Mg(n,y)25Mg [K02] have provided improved estimates for the parameters of excited states. A
comparison of the reaction rates before and after the measuremeribddsnrCh.5 is shown in Fig.

7.4

The upper panel in FigZ.4 shows clearly that the reaction rate uncertainties have been reduced
significantly betweerf” = 0.03 and0.1 GK. This is because of the unique quantum number assign-
ment for the excited state &, = 10805 keV (Sec.5.4.3. The lower panel shows a sharp peak in
the reaction rate ratio, corresponding to a rate approximately 1000 times &ffe= 0.1 GK. This
spike results from the spin-parity assignment/éf = 1~ to the excited state &, = 10949 keV.

This state was previously believed to have a spivof 4 — 7. In the present analysis, this state
was split into a doublet, and each was assigned an upper limit spectrofipicthat was measured
by Ref. Uga07. The lack of resonance information in this energy region means that er limit

partial width will have a significant effect on the reaction rates.

7.3.6 Influence of 832 keV Resonance Assignments

The resonance d'?® = 832 keV was assumed to correspond to the same state as the resonance
measured if*Ne(a,n)*>Mg [Wol89, Dro93 Jae01h This state has been assumed to hEa= 2+
state. The other possibility is that these two states are, indeed, distinctggstajby Ref.K02).

Figure 7.5 shows the effect of separating this resonance into two levels off Me(a,v)?°Mg
reaction rate. In separating this state, the only known level that is closesigyeis located at E=
11310.50(49) keV (compared with E = 11315(5) measured by Wolke). This state h&% = 1~
(a spin assignment couldn’t be made by Wolkeal. [Wol89]), which results in a higher reaction
rate for the separate state assumption. See@2&r more discussion on the procedure used in the

present study. The difference between the rather arbitrary choiessinments clearly shows that
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22Ne(a, v)%Mg
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Figure 7.3: The uncertainty bands for théNe(x,v)?*Mg reaction. The largest uncertainties are caused by
upper limit resonances, and uncertainties in the strerafttie lower measured resonances. The lower panel is
a comparison to the NACRE rates. In the upper figure, the §inkgd represent the present high and low reaction

rates normalised to the recommended rate. The dashed &pessent the literature upper and lower reaction

rates normalised to the literature recommended rate. Ihothier panel, the present results are normalised to
the literature rates (the thick line represents the reconted rate and the thinner lines show the high and low
rates). Points below unity show that the present rates arerlthan the literature rates.
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Figure 7.4: Comparison of the present results to the reaction ratesiledda prior to the measurements in Ch.
5. See Fig7.3for a description of the plot.
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the parameters of these resonances must be measured carefully fendttke(a, v)?°Mg and the

22Ne(ar, n)**Mg reactions to resolve this issue.

7.4 The*Ne(a,n)**Mg Reaction

The 22Ne(a, n)2Mg reaction is the s-process neutron source thought to be active in AGB sta
and during the helium burning stage of massive stars. It has been smmdiedextensively than
the competingd?Ne(a,7)?Mg reaction. The lowest measured resonance is locatél at 832 keV
[JaeO1h at the upper edge of the Gamow peak (for= 0.3 GK, the Gamow peak is located 8 =
600 keV with AE = 290 keV). A resonance was thought to have been observéd). at 633 keV,
but was later found to be caused by background ft8B1[Dro93, and gave rise to some controversy
[Jae01bGie93 Uga0j. Significant rate uncertainties still exist in this reaction as outlined in the

following analysis.

7.4.1 Directly Measured Resonances

Resonance parameters bel&il?® = 1434 keV were adopted according to the discussion in Sec.
7.2 Above the highest energy measured resonance of RedOfLbat F,. = 1434(2) keV, the work of
Drotleff et al.[Dro93 is used for resonances in th&Ne(«, n)?°Mg reaction fromE, = 1475(3) keV
to £, = 2289(15) keV. No normalisation in the studies is performed in the present analysisdeca
the few resonances that coincide between the studies did not haveisteoinsiagnitude shift and

any normalisation would therefore be arbitrary.

E, > 1000 keV Resonances

Excited states above,E= 11465 keV have not been analysed by any other experiments. For
these resonances, the energy and total width of Ra&Q1bhave been used. In order to numerically
integrate the cross sections of these resonances;-faticle,y-ray and neutron partial widths must
be known. For they-ray partial width, an average a@f, = 3 eV is used. Note that iby is small

compared to the width of the resonance, at these energies the neutiehvpidih will dominate the
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Figure 7.5: The effect on the reaction rate of separating the 832 keVhaasce into two states as discussed in
the text. The top panel shows that the uncertainty bandsinesp@roximately constant between the two calcu-
lations (solid lines correspond to the single state assiomptThe lower panel shows the ratio of recommended
reaction rates for the single state assumption and thateofitlublet. A ratio larger than unity means that the
single state assumption produces a larger rate. The lowel gaows a significantly lower reaction rate for the

single state assumption betweégn= 0.2 and1.0 GK.
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total width of the resonance. Thus, theparticle partial width is calculated as follows.

| P
WYy =We————— 7.8
I,
R
wy ~wl (7.9)

As the resonance strength becomes comparable to the total width of thameepthis approximation

is not valid becausg,, ~ I',,, and the resonance cross section cannot be integrated numerically.

Partial Widths (eV)

E; (keV)  Ecm(keV) Bab (keV)* J wy (eV)* r,’ r,° T, Ty Int
11319 704 831.9(24) 2+ 1.18(11)x10™* | 2.36(22)x10™°> 3 250 (170) 250 (170) v
11441 826 976.39(23) 4+ 3.4(4)x107° 1.13(13)x10~° 3 1.475 (80x10°  1.475(80x10° | v
11465 850 1005.23(25) 5” 4.8(10)x107° | 1.60(33)x10=> 3 6.554 (90x10°  6.554 (90x10% | v/
11506 891 1053(2) 1~ 3.5(6)x10™* 1.17(20)x107* 3 1.27 (25x10*  1.27 (25Kx10* | v
11526 911 1077(2) 1= 8.3(7)x10™* | 2.77(23)x107* 3 1.8 (9)<10% 1.8 (9x10° | v
11630 1015 1200(2) 1- 8.5(10)x107% | 2.83(33)x10~% 3 1.35(17x10*  1.35(17)x10* | v
11748 1134 1340(10) 1- 6.0(9)x1072 | 2.00(30)x107% 3 6.35(85x10?  6.35(85)x10" | v
11787 1172 1385(4) 1- 5.0(7)x1072 1.67(23)x1072 3 2.45 (34)x10*  2.45(34)10* | v
11828 1213 1434(3) 2+ 1.067(42)x10%9 | 2.134(84)x1071 3 1.10 (25x10°  1.10 (25)10° | v
11863 1248 1475(3) 1- 4.5(30)x 10+ 4.5(30)x 10+ 3 1.4 (5)x10* 1.4 (5)x10* | v
11880 1265 1495(3) 1~ 3.88(57)x 102 .- 3 - -

11891 1276 1508(3) 1- 5.60(60)x 102 .- 3
11910 1295 1531(3) 17,214 1.445(160) x 1073 - 3
11951 1337 1580(3) 2+, 37,4+ 2.90(30)x 103 .- 3
12052 1437 1699(3) 2+, 374 6.035(770)x10*3 .- 3
12115 1500 1773(5) 1- 1.00(24)x10*3 .- 3
12141 1526 1804(5) 1- 3.010(335)x10*3 .- 3
12184 1569 1855(8) (0+y? 8.95(210) x 1072 .- 3
12265 1650 1950(10) (0+y? 3.10(85)x 1074 .- 3
12346 1731 2046(8) 0t 1.97(33)x10%° .- 3
12435 1821 2152(10) 1- 2.76(70)x 10+ .- 3
12551 1937 2289(15) 1- 1.21(45)x10%° .- 3

Table 7.5: Directly measured resonances in #éle(a,n)** Mg reaction.
“See text for details.

bCalculated using Eq7(9).

¢Assumingl'r is dominated by",,.

4From Ref. \Wol89].

€See text for details.

7.4.2 Upper Limit Resonances

The resonance strength upper limits of resonances i#*tie(x,n)*>Mg reaction have been cal-

culated in a similar way to those in tféNe(x,v)?°Mg case (Sectio7.3.]). In this case, Fig. 1 of
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Ref. [Jae0lbwas used to extract the upper limits from the measured yield.
In addition to this method, the PhD thesis of JaedaePlhcontains calculated upper limits. This

method is preferable to the methods above as they do not rely on readingalieés off a graph.

Partial Widths (eV)

E; (keV) Ecm(keV)  Ecm(keV)" J wyL(eV)| Tau Iy r, I Int
11112 497  587.90(10) 2+ 5.8x1078 | 7.7x107Y 2578(180)) 1.732(31) 2580(24) | v/
11163 548  647.93(11) 2t 1.9x1077 | 3.8x107%  4644(100)  4.56(29) 4649(100) | v’
11171 556  657.53(19) (2F) 7.5x107% | 1.5x107%  1.44(16) 3 4.4(15)
11183 568  671.70(21) (17) 7.7x107° | 2.1x10~7  0.540(88) 3 3.5(15)
11243 628  742.81(12) 200) 1.2x1077 | 2.4x107%  4511(107)  7.42(60)  4518(110) | v
11274 659  779.32(14) (2)T 1.1x1077 | 2.2x107%  540(54)  3.24(35)  543(54) | v
11280 665  786.17(13) 450 1.3x1077 | 1.4x107%  1513(34)  0.59(24)  1514(34) | v
11286 671 792.90(15) 1= 7.7x107% | 2.6x107%  1256(100)  0.79(46)  1260(100) | v/
11286 672  793.83(14) (2%) 7.7x107% | 1.5x107%  12.80(60)  4.26(60)  17.1(60) | v
11289 674  797.10(29) (27) 7.7x107% | 1.5x107%  1.54(46) 3 4.5(16)
11296 681  805.19(16) (37) 1.0x1077 | 1.4x107% 8060(120)  3.31(73) 8060(120) v
11311 696  822.62(41) (17) 1.6x107% | 5.3x107?  1.12(40) 3 4.1(16)
11326 711 840.81(63) (17) 1.2x1077 | 41x1078%  0.60(32) 3 3.6(15)
11328 713 843.24(17) 1= 5.0x1077 | 1.7x1077  424(86) 3.63(47) 428(86) v
11329 714 844.35(64) (17) 1.2x1077 | 4.1x107%  2.8(10) 3 5.8(18)
11337 722 853.55(67) (17) 1.3x1077 | 4.2x107%  1.42(56) 3 4.4(18)
11344 729  861.86(18) (2F) 2.0x1077 | 4.0x1078  153(42)  1.18(27) 154( 2) | v
11345 730  862.91(19) 45) 4.2x107% | 47x107°  4130(190)  1.82(38) 4130(190) | v/
11393 778  919.34(19) 5(+) 371078 | 3.3x107%  290(19) 3 203(19) | v

Table 7.6: Upper limit resonances in th@Ne(o,n)?>>Mg reaction;y-ray and neutron partial widths are taken
from the R-matrix fit of Ref. K02]. )
@ Weighted averages from Ref84ps76 Wei76, Gla86 Wol89, K02].

7.4.3 Normalisation of Hauser-Feshbach Reaction Rates atitther Temperatures.

The method used for matching Hauser-Feshbach reaction rates to exptafinages is the same
as that outlined in section.3.4 In the process of matching tdéNe(a,n)**Mg reaction rates, it was
found that at low temperatures, the only strongly contributing resonaaséhve lowest measured one
at '3 = 843 keV. A single contributing resonance does not agree with the statisticahasions of
Ref. [New0§ and consequently, the reaction rates were matched at an erroneowsdatmg. Visual
inspection of the resonance contributions in FHig shows that the true matching temperature should
be at approximately 1.0 GK, where theg = 823 keV resonance has a negligible contribution to the

total reaction rate. For this reason, it is safe to remove that resonanttmaich the Hauser-Feshbach
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rates with a truncated set of resonances. This truncated set yields angaerhperature of' = 1.37

GK.

7.4.4 Results

The input file used to calculate the rate of thsle(, n)2°Mg reaction with theRat es MC Monte
Carlo code is shown in Figl.7. The resulting reaction rates are tabulated in TaB. Note that for
this reaction, the Anderson-Darling statistic begins at higher temperatuskswagreement between
the lognormal approximation to the rate distribution and the actual distributias.afineement is for
two reasons: (i) experiments have focused on measuring this reactiatlydiresulting in a more
complete data set for resonance parameters; and (ii) Lower lying stat&¥gnno longer contribute
to the rate because they are below the neutron threshold. This effeeiszabe seen in Figl.8,
where the reaction rate distributions better resemble lognormal shapesthdatéfect of an upper
limit cutoff on the reaction rate distributions &t= 0.06 GK.

The uncertainty bands in TaB.7 are shown in Fig7.9 as solid lines. The upper panel shows
the current uncertainty bands in comparison to those from NAC&Rig99. The first thing to note
is the dramatic reduction in uncertainties in the present rates. This reduesahis partially from
improved measurements of resonance parameters by BaéIbK02]. The lower panel in Fig7.9
shows that the present reaction rates are up to a factor of 10 smaller tsnpgtesented in NACRE
[Ang99. Once again, this is mostly a result of the treatment of upper limits in the pregaht The
determination of unnatural parity for the previously assumed natural payity 11154 keV excited
state in*’Mg (E'2® ~ 630 keV) also serves to lower the reaction rate. Additionally, the NACRE
reaction rate analysis assumed wide resonances, with resonance vivdthsygthe measured upper
limits, which are a factor of 100 larger than those used in the present &alys

A comparison with the most recent reaction rate calculations by Baé(lbis shown in Fig.
7.10 The top panel shows a significant reduction in uncertainties in the gnegercalculations from
a factor of ten to a factor of two betwed&n = 0.1 and0.2 GK. This reduction in uncertainties is
partially based on the present result for the = 11154 keV state, and also partially arises from
the improved resonance parameter measurements from ieg].[ The lower panel shows that the

current recommended reaction rates agree well with the previous restitedn’ = 0.1 and1.0

139



Q.
©
2 3 o 18 § 8 |3
S 2 2 E S g
o <
o — — [5}
e - = - gL L
E =
o 4 © o
L © . © | ©
< < <
— — — -
o o o
L © L. © | ©
o o o
B — - ] —
o o 1 ©
= O = O - O
5] [ee] [ee)
T T T T T T T T T T T T
0¢0 O0T0 000 7’0 c0 00 70 c0 00
k5
CD. | 8 n — 8 = — - 8
o <5} <5} Y= @0
1l - B 1 3
o 2 — 5 —
[ = - Q -
2 .
4] © ]| © o
] L © L ©
< < <
| — B — —
o o o
—t O . © — O
o o o
- - -
1 o o o
L & - S -
o © ¢
T T T T T T T T T T T T T T T
0€0 ST°0 000 7’0 c'0 00 0c'0 0oT'0 000
> - F o
Ire} Te)
Q@ 8 8 18 S5 8
-~ O o — © " [es]
S - - 20 — -
S > " S e .
[} - (24 - o
zF F s 2 i
N -
N o o (D o
L © . © | ©
< < <
— — —
o o o
—| O L. © — O
o o o
] — — —
o o o
= O = O - O
5] [ee] [ee)
T T T T T T T T T T T T T
90 ¥0 <20 00 0c'0 0T'0 000 0€'0 020 O0TO0 000

Figure 7.6: Resonance contributions to tR&Ne(a,n)*’Mg reaction rate. The strong resonance af, E=

843 keV dominates the rate at low temperatures, giving rise toaraeasonable Hauser-Feshbach matching
temperature. The figure clearly shows that the true matctengperature should be at T~ 1. A similar
method of using the Gamow peak defined in S&&.to normalise Hauser-Feshbach rates is also shown (see
Ref. [New039).
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22Ne(a,n) 25Mg
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a,n measurements including results from recent FEL run

The 703 keV resonance is treated as the same as seen in 22Ne(a,qg)

Figure 7.7: RatesMC input file fof2Ne(a,n)*®Mg reaction rates.

141



Table 7.7: Monte Carlo reaction rates for thiéNe(a,n)*°Mg reaction. See Tal¥.4 for a description of the

table.

T (GK) Low rate Median rate High rate | lognormalu lognormalo A-D
0.010 21610250  1.25¢10°2% 3.39x10 2% | -5.734x10"%2  1.32x10t0  1.08x10102
0.011  2.0x10°22 1.14x10°227 3.09x10°227 | -5.229¢10"92  1.31x10t%0  1.07x10t02
0.012  4.0%10°210 229¢10°2%9 6.20x10°2%9 | -4.807x10"92  1.31x10t%0  1.06x10t02
0.013 1.26¢107 194 7.06x10719%  1.91x10°193 | -4.450<10792  1.30x10t%0  1.05x10792
0.014  2.4K10°'81  1.34x10°180 3.62¢10°180 | -4.145¢10"92  1.30x10t%0  1.05x10t02
0.015  7.8%10°'70 4.34x10°169 1.17x10°168 | -3.880x10M92  1.29x10t%0  1.04x10t02
0.016  9.44107'60 517x10°'%9  1.39x10° 158 | -3.648<10M92  1.29x10t%0  1.04x10t02
0.018  6.0x10° 43 3.28<10°'%2 8.80x10 42 | -3.261x10M92  1.28x10t%0  1.03x10t02
0.020  1.7%107'2 9.40x107'2 252¢10°!28 | -2.951x10"92  1.28<10t%0  1.03x10t02
0.025  3.3x10°'9  1.85¢10°19%  4.97x10° 104 | -2.392<10"92  1.30x10t%0  1.05x10t02
0.030 59%107°%  351x10°%  9.60x107%% | -2.017x 1092  1.34x10M%0  1.10x10"02
0.040 1.5&10°%  1.01x10°7  2.80x10°67 | -1.546x10702  1.41x10t%0  1.19x10+02
0.050 3.2Kk10°56  2.07x10°%5  575<10°95 | -1.263x10"92  1.41x10t%0  1.20x10t02
0.060 5910°%  3.43x107%7  9.30x10°%7 | -1.073x10%92  1.34x10"%°  1.10x10+02
0.070 5.75%10°%2  2.69x10~*"  6.83x10°*' | -9.368<10M!  1.20x10t%0  9.41x10t0!
0.080 2.1%10°37  7.85<10°37  1.77x10°36 | -8.335¢10"9!  1.04x10t%0  8.28x10t0!
0.090 8.3%103%  256x1033  513x10°33 | -7.523x10"9"  9.20x10°%  7.02x10t"!
0.100 6.6%1031  1.74x10730  3.28<10739 | -6.866x10M1  8.52x10°%'  4.90x10t0!
0.110 1.6k10°28  3.84x10°28  7.31x10°28 | -6.323x10"!  8.25x10°01  2.82x10t0!
0.120 1.5%10°26  3.49<10°26  7.13x10°26 | -5.867x10"%!  8.17x10°%'  1.40x10t0!
0.130 7.7%10°25  1.67x10°2* 35710724 | -5477x1091  8.08x10°%'  5.16x10t%
0.140 2.3x10°2%  4.84x10°2%  1.05x10°22 | -5.138<10"%!  7.79x10°%'  8.79x10 0!
0.150 47%10°22 956x10°22  2.01x10°2' | -4.838<10t01  7.22x10°'  2.28x10"%0
0.160 75%10°21  1.39x10°20 2771020 | -4.568<10"9!  6.37x10°%'  1.09x10t0!
0.180 1.0610° '8  1.52<10°'8  2.49<10°'8 | -4.096x<10M°1  4.36x10°0'  4.34x10t0!
0.200 6.8%10°17  8.39x10°'7  1.13x10°16 | -3.697x10"9!  2.73x10°%  6.07x10t0!
0.250 1461013  1.63x10°13  1.82x10°13 | -2.944<10T0'  1.15x10°°'  3.85x10"00
0.300 24810711 2.73x10°'" 2.99x10°'! | -2.433<10M9!  9.40x10°92  1.97x10°0!
0.350 9.6%10°10  1.06x10°%  1.16x10°% | -2.067x10"%!  9.01x10°°2 1.81x10 0
0.400 15K10°9%  1.65x10°9  1.79x10°%8 | -1.792<10"%!  8.70x10°92  2.54x10 0!
0.450 1.3%10°97  1.43<10°97 1551007 | -1.576x<10"%!  8.15x10°92 2.77x10°0!
0.500 8.0%10°97  8.66x10°%7  9.30x10°07 | -1.396x<10M! = 7.15x10°92  3.78x10° 0!
0.600 1.8%10°%  1.92x10°%  2.01x10°% | -1.086x1070'  4.23x10°92  1.10x10"%0
0.700 2.8%10°%  291x10°%  3.00x10°% | -8.141x10%°  2.99x10°92 4.32x10°*
0.800 2.76¢10°0%  2.84x10°%%  2.93x10°03 | -5.862x10"°  3.08x10°92  4.14x10° !
0.900 1.7%10°92  1.85¢10°92  1.91x10°%2 | -3.992<10"%°  3.35x10°02 3.75x10 0!
1.000 8.3%10°92  8.68<10°92  9.02x10°02 | -2.443<10"%°  3.76x10°°2  4.61x10° 0!
1.250 1.5K10M9° 1591090  1.68<101%0 | 4.676x10°°!  5.32<10°92 1.57x10+00
1.500  (1.3%10701) (1.41x10%01) (1.50x10701) | (2.649<107%) (5.99x10792)

1.750  (8.1&10191) (8.68x10M01) (9.22x1070) | (4.464<101%0) (5.99x10 92)

2.000 (3.5610102) (3.78x101%2) (4.01x10"%2) | (5.935<107%) (5.99x10 %)

2500  (3.3%107%%) (3.54x10t%%) (3.76x10"%3) | (8.171x107%) (5.99x10°%)

3.000 (1.7k107%%) (1.82¢10t%%) (1.93x10M94) | (9.808x107%) (5.99x10702)

3.500  (6.04107%%) (6.42¢10t%%) (6.81x10M%%) | (1.107x10%1) (5.99x10702)

4.000 (1.65%107%) (1.75x10t%%) (1.86x10"%%) | (1.207x10™01) (5.99x10702)

5.000 (7.4%107%%) (7.88x10t%%) (8.37x10M9%) | (1.358x107%1) (5.99x1002)

6.000  (2.2x107%6) (2.33x1010%%) (2.48x10M9) | (1.466x10T%1) (5.99x10702)

7.000 (4.95%101%) (5.26x10t%) (5.58x10"%%) | (1.548<10701) (5.99x100%)

8.000  (9.3&107%) (9.96x101%) (1.06x10707) | (1.611x10M01) (5.99x10792)

9.000  (1.56101797) (1.66x10107) (1.76x10M97) | (1.662x10T%1) (5.99x10702)

10.000 (2.3%10197) (2.54x10%97) (2.70x10707) | (1.705<101°1) (5.99x10 92)
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Figure 7.8: Reaction rate probability densities for th&Ne(a,n)**Mg reaction. Shown are histograms of the
Monte Carlo reaction rates, as well as the lognormal appratibn calculated from Eq2(28.
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Figure 7.9: The uncertainty bands for tiéNe(a,n)**Mg reaction in comparison to those presented by the
NACRE compilation Ang99. See Fig.7.3for a description of the plotted lines.
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GK, with a slight dip afl” ~ 0.15 GK arising from the preserfi, = 11154 keV result.

A further comparison can be made between the Monte Carlo reaction raiesopand following
the experiment discussed in SBcThis comparison is made in Fig.11 The upper panel of the figure
shows approximately equal uncertainties. This is expected because enlgibr limit resonance at
E'3 ~ 630 keV is removed in the present result. The new statistical method of calculatimey u
limits reduces their impact on reaction rates, resulting in only a small reductianciertainty shown
atT =~ 0.15 GK when the resonance is removed. The lower panel in Fiyl shows a slight dip
in reaction rate afl’ ~ 0.15 GK that was observed in Fig..1Q arising from the removal of the

E'3 ~ 630 keV resonance upper limit.

7.4.5 Influence of 832 keV Resonance Assignments

The resonance &, = 832 keV was assumed to be the same state as that seen in the measurements
of 22Ne(a,7)?°Mg. This state has been assumed to bé& a= 2 state, with a width of that measured
by Jaegeet al.[Jae01lh The other possibility is that these two resonance are, indeed, conéisyy
to separate states as Koehler suggdé€2]. See Sec7.4.1for more discussion. Figuré.12shows
the effect of assuming two distinct resonances orfthe(,7)?°Mg reaction rate. In separating these
resonances, the only excited state that is corresponds 8/the- 832 keV resonance in energy is at
E, = 11326.13(54) keV (compared with E = 11319(2) measured by Jaeget al) [Jae01lh This
state has a measured total widtHof= 428(86) compared to the width df = 250(170) measured by
Jaegeet al.[Jae01h The weighted average of these widths was used in the present caloulEtiis
state also hag™ = 1—, where Ref. Jae01lbassume a spin-parity @ft from the Giesert al.[Gie93
assignment of ™ = (17)27. In the present calculatiod™ = 1~ has been assigned to this resonance.
The transfer measurement of Giesatral. [Gie93 could have observed a doublet corresponding to
the22Ne(a, v)?Mg and??Ne(a, n)2°Mg resonances.

The results of assuming two distinct resonanceg!# = 830 keV is shown in Fig7.12 The
top panel shows that the rate uncertainties obtained when assuming a sglésslid lines) are
comparable to those resulting from separating the states into a doubleeddast). The smaller
uncertainties for two resonances at low temperatures arise from takingghted average of the

resonance width. A weighted average will reduce uncertainties in the wielliting in smaller
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Figure 7.10: Reaction rate comparison with the rates presented by Jetger[Jaec0lh See Fig.7.3for a
description of the plotted lines.
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Figure 7.11: Comparison with rates obtained prior to the rec&mMg(~,v)2°Mg measurement. See Fig.3
for a description of the plotted lines.
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uncertainties in the wide resonance reaction rate from that state. Thepawelshows that a single
resonance ab'? = 830 keV produces a slightly higher strengthBt= 0.2 GK. This is because
the partial widths calculated in this case are slightly larger than if the resenarassumed to be
a doublet. To remove ambiguities in the parameters of this resonance, dirastir@ments of both

the 22Ne(a, n)?*Mg and the?’Ne(a, v)?°Mg reactions with precise energy calibrations should be

performed.
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Figure 7.12: The effect of separating the 832 keV resonance into two @smes on the reaction rate. The
solid lines represent the present reaction rate, whereglesstate is assumed to be responsible for the two
resonances. Dashed lines represent the case assumingstimetdiesonances. In the lower panel, the ratio
of present rates to the doublet rates are displayed. A ratweunity means that the single state assumption
produced higher rates than that of a doublet. See®8&for a description of the plotted lines.
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8 Conclusions

FOR over half a century, the s-process has been associated with the fodaicnany elements
heavier than iron. The s-process consists of the slow capture of nedtthowed bys-decay
on seed nuclei to produce nuclei up to the most massive stable nuéfis Models of the s-process
show [Kae9(Q that there must be two contributions to the s-process: the main componeuntriog
over relatively long time periods for a limited proportion of seed nuclei, andrtbak component,
involving a more efficient neutron exposure operating for a short gexfdime. The main s-process
component produces nuclei up to a cut-off masd ef 209, while the weak component is responsible
for the enhancement of nuclear abundances at 90. The stellar environments responsible for the
main and weak s-process components are AGB stars and massiveespestively.

The #2Ne(a, n)2°Mg neutron producing reaction is important both in AGB stars and in massive
stars. In massive stars, it is the main source of s-process neutrang the core helium burning
stage, with the possibility of producing an extra flux of neutrons during éinean burning stage. In
AGB stars, the3C(a,n)!®N reaction is the main s-process neutron source, witi#thie(a, n)2°Mg
reaction mainly affecting branchings in the s-process path leading to ereithin some elements
[Gar0g. It has also been postulated that tHée(a, n)2’Mg reaction could be the main neutron
source in metal poor AGB stars with masses larger thae= 51, [Lug0§.

In order to address some of the astrophysical questions regardingptioeess in these environ-
ments, the’?Ne(a, n)?°Mg reaction and its competingNe(a, v)2Mg reaction have been studied
in the present work. In CI2, a new Monte Carlo method of propagating reaction rate uncertainties
was developed. The new method provides, for the first time, statistically ngfahieaction rates
(in which the coverage probability can be quantified). Treatment of ulppés in resonance pa-

rameters was improved to provide a statistically meaningful calculation of reaeties arising from



unobserved resonances.

In Ch. 5, an experiment to measure the spin-parities of several excited states%tgecom-
pound nucleus for th&Ne(a, n)?*Mg and?2Ne(a, v)? Mg reactions was described. The measure-
ment consisted of exciting the ground staté®flg with an intense photon beam through the reaction
26Mg(v,~)*Mg . The measurement improved our knowledge of the resonance pararsigpeifi-
cantly. Perhaps the most important result of #ig(, v)?Mg experiment was the unnatural spin-
parity determination for the state associated with the previously suggB$tee 633 keV resonance.
This resonance had been the subject of numerous experimentalessaant has finally been shown
here not to contribute to the rates of tHéle+« reactions.

Calculations of the reaction rates fétNe(a, n)?>Mg and ?2Ne(a, v)?Mg in Ch. 7 show a
significant reduction in reaction rate uncertainties. However, it was shbat the reactions are
still uncertain in important aspects. TH&® = 830 keV resonance quantum numbers and energy
must be resolved in both reactions to determine if a doublet exists at thisyerfarghermore, the
22Ne(a, v)?5Mg reaction, which is lacking in direct experimental data, should be exgplatrenergies
betweenE, = 800 and2000 keV. Resonances below these energies should be measured indirectly
througha-particle transfer measurements. Ambiguities in current experimental deia @hergies
must be resolved.

One of the main sources of uncertainty in measuring reactions directly is thet &ioichiome-
try. In Ch. 6, a novel method was developed to determine the stoichiometry of targetscprbty
implanting??Ne into an aluminium substrate, which was used to calculaté’iie(p;y)?*Na reso-
nance strength ak'?® = 479 keV with significant improvements in uncertainty. This low energy
resonance is now available for determining the stoichiometry of implanted taoybes used in di-
rect22Ne(a, n)2>Mg and??’Ne(a, v)?°Mg resonance strength measurements, reducing uncertainties
in these measurements considerably.

Given the results presented in this work, the next step will be to performehuadculations of
AGB stars and massive stars to determine the influence of the new readgsrorathe s-process.
The present results are expected to reduce uncertainties in s-nudeicgion yields and will, there-
fore, improve stellar models. As the uncertainty in nuclear input to stellar maahgioves, our

understanding of the way stars burn will, one day, be understood.
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A Statistical Distributions

A brief review of statistical distributions relevant to the present work isvigled. These dis-
tributions were found in Se@.2to best describe the probability density functions of nuclear input
guantities for reaction rate calculations.

The expectation value and variance of a parametare given by

Elz] = /00 zf(z)dz, Viz] = /OO (x — Elx])*f(x)dx (A.1)

where f(x) is the (normalised) probability density function. The cumulative distributionckvis
useful for finding the quantiles (or percentiles) of a distribution and &cuwating the Anderson-

Darling statistic in Sec2.2.3 is defined by

F(z) = /z f(z")dx' (A.2)

If f(x) is correctly normalised, the median of for example, corresponds the point at which the

cumulative distribution reaches 0.5.

A.1 Gaussian Distribution

The Gaussian distributions the most commonly used statistical distribution because of its sim-
plicity and ease of calculation. The probability density function of a normalpu&Sian) distributed
variablex is given by

f@) = - 127Te—<x—u>2/<2o2> (A.3)

where the parametefsando refer to the mean and standard deviation, respectively. For a Gaussian

distribution, the expectation value and variance are

Elz] = u, Viz] = o? (A.4)
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Figure A.1: Comparison of lognormal (dashed line) and Gaussian (swl@) distributions for two specific

cases. In case (a), the uncertainty is fairly large in comsparto the mean valugi(z] = 50 andV [z] = 202),
and there is little agreement between the distributionse(atso that the Gaussian extends visibly to negative

values). Case (b), faE[z] = 50 andV[z] = 102, the distributions are very similar.

A.2 Lognormal Distribution

If the natural logarithm of a variable is normally distributed, then the varialilefallow a log-

normal distribution
1 -(no-p?/(20)? (A.5)

(@) = oxry 2T

The parameters of the lognormal distributipnando, are not the same quantities as for the Gaussian

distribution. They do not represent the mean and standard deviation vatiable,z, but of In z.

The expectation value and variance are given by

Elz] = e(2uta?)/2. Viz] = e(2uto?)/2 {602} (A.6)

It is worth noting that the lognormal distribution will approach a Gaussianepdhametes becomes
small in comparison tg.. An example of this is shown in FigA.1. This feature of the lognormal

distribution is useful for describing reaction rate probability distributionsigih temperatures, which

tend towards a Gaussian shape. See &2c3for more details.
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A.3 Chi-squared Distribution

The standard normal distribution is defined as a normal distribution wita 0 ando = 1.
The sum of the squares é&fstandard normal distributions is distributed according tthasquared
distributionwith k degrees of freedom.

The case in which the degrees of freedom is unity is defined as,

f(z) = ENE (A7)

2rx

Note that there are no defining parameters to the distribution. Howeveratiabdlez can be defined
as the ratio of a quantity to its mean value, ie= y/(y). The expectation value and variance are
given by

Elz] =k =1, Viz] =2k =2 (A.8)
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B Reaction Rate Calculations

B.1 Excitation Energies

The excitation energies for all observed excited states are taken asitfitetdeaverage of energies
observed in RefsWei76, K02, Jae01bUga07 Wol89, Gla86 Dro93 Mos7§, as well as from the
present results from thiéMg(, v)2°Mg experiment in chaptes. The states are matched as closely as
possible between experiments by looking at resonance parameterssuattia widths and quantum

numbers as discussed in the main text. TaBl&sandB.1 list the energies obtained.

(cvp) (p.p) (n) (CRINCHD) (c.n) (c.n) (ry)  |Weighted Average
[Gla8§ [Mos7q (K02 [Wol89] [Jae01b [Dro93

11114(3) 11112.192(84) 11112.164(77)

11156(3) 11153.387(86) 11153.84 (29) 11153.392(76)

11162.937(92) 11162.949(91)

11171(3)  11169.31(17) 11169.34(13)

11171.06(16) 11171.07(15)

11183.06(18) 11183.06(18)

11189.21(10) 11189.21(10)

11191(2) 11191(2)

11194.5(2)

11243.19(11) 11243.22(10)

11274.11(11) 11274.11(11)

11280.04(12) 11279.90(10)

11285.60(12) 11285.60(12)

11286.34(12) 11286.38(11)

11289.03(43) 11289.15(25)

11296.09(13) 11295.99(13)

11310.50(49) 11310.50(49)

11315(5)  11319(2) 11318.1(21)

11326.13(54) 11326.13(54)

11329(2) 11328.17(14) 11328.19(14)

11329.12(54) 11329.12(54)

11336.91(56) 11336.91(56)

11343.96(16) 11343.93(15)

11344.82(16) 11344.82(16)

11362.0(6)
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continued from previous page

(c.p) (p.p) (ny) (CRINCHD) (c.n) (c.n) (vv)  |Weighted Average
[Gla88 [Mos7q (K02 [Wol89] [Jae01b [Dro93
11364.9(6)
11372.5(6)
11392.55(17) 11392.56(16)
11425.40(70)
11440.92(20) 11441(2) 11440.83(19)
11457(2) 11457(2)
11465.40(22) 11461(2) 11465.23(21)
11499.4(8)
11506(2) 11508.1(9)
11526(2) 11526(2)
11540.8(9)
11570(2) 11570(2)
11586(1)
11626(10)  11630(2) 11630(2)
11655(10) 11655(10)
11748(8) 11748(8)
11795(10)  11787(3) 11787(3)
11801(6) 11801(6)
11828(3)  11828(2) 11828(2)
11863(3) 11863(3)
11880(5) 11880(3) 11880(3)
11895(5) 11891(3) 11891(3)
11912(3) 11910(3) 11910(3)
11953(3) 11951(3) 11951(3)
12051(3) 12052(3) 12052(3)
12116(8) 12115(4) 12115(4)
12139(3) 12141(3) 12141(3)
12184(8) 12184(7) 12184(7)
12273(8) 12265(8) 12265(8)
12343(5) 12346(7) 12346(7)
12435(8) 12435(8)
12551(13) 12551(13)

Table B.1: Table of excitation energies above the neutron threshold
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Energy (keV)  @,py) (ny)  (OLi,d)  (y).(@n) (an) (y,y) Assignment

[Gla8q [KOZ [Gie93 [Wols9 [JaeOlb

11112.164(77) 2+ 2+
11153.392(76) 1~ 1t 1t
11162.949(91) 2+ 2+
11169.34(13) 3+ 3+
11171.07(15) 2+) 2h)
11183.06(18) @) (1)
11189.21(10) 3+ 3+
11191(2) |(3=-61) (3=-61)
11194.5(2) 2+ 2+
11243.22(10) 2(=) 2(2)
11274.11(11) )+ @
11279.90(10) 4- 4-
11285.60(12) 1~ 1-
11286.38(11) 2+) 2h)
11289.15(25) @) (27)
11295.99(13) 3) (37)
11310.50(49) @) 1)
11318.1(21) @)zt 2+ 2+
11326.13(54) @) 1)
11328.19(14) |(3+-7+) 1- (1-.2%)
11329.12(54) @) (1)
11336.91(56) @) (1)
11343.93(15) @) (47)
11344.82(16) 2+) 2%
11362.0(6)
11364.9(6)
11372.5(6)
11392.56(16) 5(+) 5(+)
11425.40(70)
11440.83(19) 4+ 1- 4+
11457(2) (1-,2+)3- (17,23
11465.23(21) 5~ 1~ 5
11499.4(8)
11508.1(9) 1~ 1
11526(2) 1- 1
11540.8(9)
11570(2) |(@+-7+) (4+-7t)
11586(1) 1-2+3  2F 2+
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continued from previous page

Energy (keV)  @,py) (ny)  (OLid)  (a9).(n) (a,n) (y,y) Assignment
[Glag8g [K0Z [Gie93 [WolI89] [JaeOlb

11863(3)
11880(3)
11891(3) 1-,2+,3- 1-,2+,3-
11910(3) 1-,2% 1-2t
11951(3) 2+,37 4t 2+,37 4t
12052(3) 2+,3- 2+,3-
12115(4) (0+) (o+)
12141(3)
12184(7) (ot) (0t)
12265(8) (01) (0t)
12346(7) ot ot
12435(8)

12551(13)

Table B.2: Spin-parity assignments for states’fiMg. Italic numbers are taken from Ref\Vgi76

B.2 Calculating Upper Limits

Upper limits for resonances in tHéNe(x,v)?°Mg reaction were calculated from Fig. 7a in Ref.
[WolI89]. That figure plots the cross section of the reaction versusitparticle energy. The cross

section was calculated using a wide resonance approximation:

IW(Eeff)

T () — la@20R ()] by (b = 0)o (Een) (B.1)

wherel, is the intensity ofy-rays measured in the detectdy; is the number of elastically scattered
a-particles;l, andl,, are the effective target lengths for theparticle andy-ray, respectively;i2 is
the solid angle of the-ray detectory r is the elastic scattering cross sectienjs thev-ray detection
efficiency andr (Eqg) is the cross section for the reaction. We will assume that the detector efficien
is approximately constant in this region, and will assume constant

All of the states in this region are much narrower than the 50 keV thick tasgat by Wolkeet

al., as shown in Tabz.1 Therefore, this cross section curve can be treated as a thick tartgetryie
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() (a,py) (p.P) (ney) (°Li,d) (°Lid) () Resulting Assignment
[Ber69d [Gla8d [Mos7q [Wal92 [Gie93 [Uga07

10647 (2) 10644(3) 10647.36(18) 10647.35(18)
10650(2) 10650(3)
10678(3) 10678(3)
10681.9(3) 10681.9(3)
10695(2)  10689(3) 10694(20) 10693.2(16)
10709(2)  10702(3) 10707(3)
10715(3)  10718.75(90) 10718.75(9)
10726(3) 10726(3)
10744(3)  10745.98(12) 10745.98(12)
10766(2)  10769(3) 10767(3)
10805.9(4) 10808(20)  10805.86(16) 10805.87(15)
10824(3) 10824(3)
10881(3) 10881(3)
10893(3) 10893(3)
10915(3) 10915(3)
10927(3) 10927(3)
10943(2) 10943(2)
10950(3) 10953(25)  10949.09(15) 10949.09(15)
10978(3) 10978(3)
10998(3) 10998(3)
11010(2) 11017(3) 11012(3)
11048(3) 11048(3)
11084(3) 11084(3)

Table B.3: Table of excitation energies below the neutron threshold

the low energy region. In the thick target approximation, the yield of a i@sioreaction is given by:

2
Yiax = &g (BZ)
2 &,

where )\, is the deBroglie wavelength at the resonance endigy.w~ is the resonance strength and
e, is the effective stopping power. In order to calculate the upper limits” zodder polynomial
stopping power correction for energies away from our normalisationt poi®32 keV was calculated
with SRI M[Zie04)], so the upper limit resonance strength could be obtained using:

wYUL = N)\2C’ Y (B.3)

where N is a normalisation factor found from the 832 keV resonance@ni the stopping power
correction. Once an upper limit for the resonance strength was foumdpiber limit for then-particle

partial width was obtained from EqR (16). The total widths and quantum numbers of the resonances
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Excitation Energy (keV) 4,y) (a.py) ()  (°Li,d) (v,7) | Resulting Assignment
[Ber69g [Gla8q [Wal92 [Uga07
1r 1t 1*

(4-7) (47

10646(2
10650(3
10678
10681.9
10693.2
10707
10718.75
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10805.9(4

(
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E
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(
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(
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(

(

(

(

3
3
1
3 (2+-61) (2+-61)
9

3
12)

3 (1t-4%) (1t-41)

(0™-47) Natural 1~ 1-

10881
10893
10915
10927
10943
10949.09
10978
10998
11012
11048
11084

4-7) (4+-7%)
) Natural I~ 1-

(27-67) (27-6")

)
)
)
)
6
)
)
)
2
)
)
)
)
)
)
)
)
5
)
)
)
)
)

3
3
3
3
3
2
1
3
3
3
3
3

Table B.4: Spin-parity assignments below the neutron threshold

are taken from Ref{02]. The reference resonance used was that,atE828 keV. Dat aThi ef ©
[Tum] was used to extract the cross sections of the resonances and uppeplmst The upper limit
points in Ref. ]Wol89] were at an approximately constant level, so a single upper limit cross sectio
of o = 2.5 x 10~* ;b was adopted. Upper limit resonance strengths were obtained, and.Eg). (
could be used to find the upper limit foy,.

Another method of calculating upper limit partial widths is to consider the spmmipic factors
of the states in question. The partial width of a state was defined i2Ekf).(A conservative upper
limit can be calculated by assuming a spectroscopic factor and single-pegticieed width of unity,
giving us an upper limit defined as:

2

h
Ty = zﬁp (B.4)
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The penetration factor was calculated numerically from coulomb wavetitursc

The upper limits in this work were taken as the smaller of the values from the twadseth

Eip (keV) J7 (o,y) Upper LimitT,, (eV) (a,n) Upper LimitT,, (eV)
From Wolke Assuming’?S# =1 Adopted | From Jaeger Assuming”S6 =1 Adopted

587.90 2| 7.22E-07 7.73E-09 7.73E-09 6.57E-09 7.73E-09 6.57E-09
647.93 2| 8.11E-07 8.74E-08 8.74E-08 7.38E-09 8.74E-08 7.38E-09
657.53 2| 8.25E-07 1.25E-07 1.25E-07 7.50E-09 1.25E-07 7.50E-09
671.70 2| 8.45E-07 2.08E-07 2.08E-07 7.69E-09 2.08E-07 7.69E-09
742.81 2| 9.46E-07 2.16E-06 9.46E-07 8.61E-09 2.16E-06 8.61E-09
779.32 2| 9.97E-07 6.32E-06 9.97E-07 9.07E-09 6.32E-06 9.07E-09
786.17 4| 5.59E-07 9.16E-08 9.16E-08 5.09E-09 9.16E-08 5.09E-09
792.90 1| 1.69E-06 3.54E-05 1.69E-06 1.54E-08 3.54E-05 1.54E-08
793.83 2| 1.02E-06 9.49E-06 1.02E-06 9.25E-09 9.49E-06 9.25E-09
797.10 2| 1.02E-06 1.04E-05 1.02E-06 9.29E-09 1.04E-05 9.29E-09
805.19 3| 7.37E-07 1.86E-06 7.37E-07 6.71E-09 1.86E-06 6.71E-09
822.64 1| 1.81E-06 1.32E-04 1.81E-06 1.60E-08 7.83E-05 1.60E-08
840.81 1| 1.80E-06 1.24E-04 1.80E-06 1.23E-07 1.24E-04 1.23E-07
843.24 1| 1.81E-06 1.32E-04 1.81E-06 1.24E-07 1.32E-04 1.24E-07
844.35 1| 1.81E-06 1.36E-04 1.81E-06 1.24E-07 1.36E-04 1.24E-07
853.55 1| 1.83E-06 1.71E-04 1.83E-06 1.25E-07 1.71E-04 1.25E-07
861.86 2| 1.11E-06 5.52E-05 1.11E-06 7.58E-08 5.52E-05 7.58E-08
862.91 4| 6.16E-07 7.10E-07 6.16E-07 4.22E-08 7.10E-07 4.22E-08
919.34 5| 5.37E-07 1.51E-07 1.51E-07 3.68E-08 1.51E-07 3.68E-08

Table B.5: Upper limit calculations fof?Ne +a. Resonance energies are in the laboratory frame.

The estimation of upper limits in tféNe(a, n)?*Mg reaction utilised Fig. 1 in RefJae01h and

followed the same technique as outlined above.
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C 2’Ne Targets

Targets were produced for measuring the(a, v)2Mg and??Ne(a, n)?*Mg reactions directly.
The targets were produced using the implantation procedure described.th&ora AE = 30 keV
targets fora-particles atF, ~ 600 keV. For a target stoichiometry of Ne:¥#al : 2, the implantation

parameters were calculated to be:

Parameter Value
Required Dose 0.25C
65 keV for Ta
Implantation Energy 50 keV for Cu
40 keV for Ni

Table C.1: Implantation parameters used to proddéle targets. The target thickness desired s = 30
keV for £, ~ 600 keV a-paricles.

A total of six targets were produced in this manner: three with tantalum bagkiwg with nickel
backings, and a single copper backing target. Detector efficiencies wagrwell determined for a
number of the targets, leading to ambiguities in the target stoichiometries. Thegststshould be
reanalysed before use if&Ne(a, n)??Mg or 22Ne(«, )2 Mg measurement.

Using the determined strength ofy = 0.524(51) for the 2’Ne(p;y)?*Na resonance ab'2® =
479 keV (Sec.6), each target was analysed by measuring the resonance yield cureeoblained

stoichiometries are shown in Tab.2

Target StoichiometryNy. /N,
Tantalum 1 0.107 (13)
Nickel 2 0.111 (13)
Tantalum 3 0.374 (43)
Tantalum 4 0.398 (93)

Table C.2: Stoichiometries obtained for the implant&Ne targets described in TaB.1
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