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ABSTRACT 

 

Bryan C. Quach: Computational approaches to studying gene regulation using chromatin 
accessibility and gene expression assays 
(Under the direction of Terrence Furey) 

 

The completion of the Human Genome Project marked the beginning of a new era in 

genomics characterized by significant improvements in high-throughput sequencing technology 

and the development of new sequencing-based assays to study a wide array of functional elements 

and biological properties at the genome-wide scale.  These advancements were accompanied by the 

formation of large, multi-institutional consortia that produced publicly available data sets and 

functional genomic studies that broadened our understanding of the genome. Previously 

uncharacterized genomic regions became recognized as important components of gene regulation, 

but the broader knowledgebase of regulatory elements raised new questions to elucidate the 

growing complexity of gene regulation models. Additionally, quantitative trait loci (QTL) mapping 

approaches began taking advantage of quantitative sequencing data to study the impacts of genetic 

variation on molecular phenotypes such as gene expression at the genome-wide level. The 

popularity of high-throughput methods for studying gene regulation and transcription lead to a 

data deluge that necessitated new statistical methods and bioinformatics solutions for data 

management, processing, analysis, visualization, and interpretation.  Specialized research areas 

emerged to better glean insights from sequencing data leading to new challenges and questions. In 

the following chapters, I present a novel machine learning framework for genomic footprinting, a 

concept focused on identifying transcription factor (TF) binding sites using chromatin accessibility 

sequencing data. I demonstrate that my framework outperforms existing methods for classifying TF 
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binding sites via footprinting. In addition, I investigate characteristics of TF binding sites within 

chromatin accessibility data and assess technical factors that influence footprinting to provide an 

improved understanding of the strengths and limitations of using these data for TF binding site 

prediction. Through a separate study, I investigate the impact of a genotoxic chemical 1,3-butadiene 

on chromatin accessibility and gene expression in a population of genetically diverse mice. I 

perform expression QTL (eQTL) and chromatin accessibility QTL (cQTL) mapping in these mice and 

detect eQTLs and cQTLs in each tissue. In all, the work herein demonstrates multiple computational 

approaches to studying various gene regulatory relationships and provides insight on the efficacy of 

these approaches to inform future studies.  
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CHAPTER I 

Introduction 

 

 The importance of gene regulation in cell development and biological homeostasis of living 

organisms has been well recognized [1–4]. Through the Human Genome Project [5], technological 

innovations and a broader understanding of genome organization and composition paved way for 

large-scale efforts in the genomics community to better understand functional genomic elements and 

the role of non-coding DNA in transcriptional regulation [6,7]. Although these efforts improved 

understanding of gene regulatory components such as promoters, enhancers, silencers, chromatin 

structure, and transcription factors, they also increased awareness of the complexity of regulatory 

dynamics and the interactions between the various components. Furthermore, follow-up studies to 

quantitative trait loci (QTL) mapping and genome-wide association (GWA) studies that detect trait-

associated genetic variation contributed another layer of regulatory complexity by characterizing 

relationships between genetic variation and regulatory changes as intermediate mechanistic links 

between DNA sequence and phenotype [4,8]. The increasing availability of information, resources, 

methodologies, and technologies for studying gene regulation highlighted a growing opportunity and 

significance in further identifying regulatory elements and studying their roles in condition-specific 

contexts. 

 

IDENTIFYING REGULATORY ELEMENTS GENOME-WIDE WITH HIGH-THROUGHPUT ASSAYS 

Since the advent of Sanger sequencing, DNA sequencing technology continued to improve, 

and the introduction of massively parallel “next-generation” sequencing approaches revolutionized 

biological and biomedical science research by enabling the development of higher-throughput and 
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more cost-effective alternatives to microarrays to assay biological properties such as transcription, 

nucleosome occupancy, chromatin interactions, transcription factor (TF) binding, and histone 

modifications genome-wide [9]. Although multiple different next-generation sequencing platforms 

exist, they share some commonalities in their approach. Each technology first requires the 

preparation of a sequence library through the ligation of oligonucleotide adapters to the ends of the 

DNA fragments to be sequenced. The fragments are then amplified and undergo a platform-specific 

sequencing reaction that allows the classification of each nucleotide. The ability for these reactions 

to occur simultaneously leads to the high-throughput that makes them massively parallel. The 

nucleotide readouts, referred to as reads, generate large quantities of data that then require the 

application of bioinformatics approaches for downstream processing, analysis, and interpretation. 

These next-generation sequencing platforms remain widely used, however newer sequencing 

platforms are being developed such as nanopore sequencing that rely on different sequencing 

chemistry and do not require fragment amplification [10].  

From a simplified perspective, sequencing platforms all share the goal of accurately 

classifying the nucleotide sequence of the given fragments. The major distinctions in the 

sequencing-based methods for assaying different biological properties occur in isolating the 

relevant DNA or RNA. For example, Chromatin Immunoprecipitation Sequencing (ChIP-seq) aims to 

detect genomic locations of TF occupancy or histone modifications. To do this, binding proteins and 

genomic DNA are cross-linked, then the DNA is fragmented. Immunoprecipitation with a protein-

specific antibody retrieves the protein-bound sequences that are then sequenced. Enrichment of 

reads mapping to a particular genomic location indicates TF occupancy (or histone modification) 

[11]. In DNaseI sequencing (DNase-seq), chromatin accessibility is assayed using the exonuclease 

DNaseI. Exposing genomic DNA to DNaseI results in the enzyme preferentially cutting DNA in more 

accessible, nucleosome-depleted regions. Following DNaseI digestion, size selected DNA fragments 

are sequenced and genomic regions with enrichment of mapped reads are classified as accessible 
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chromatin regions [12]. In both ChIP-seq and DNase-seq, the biomolecule initially being isolated is 

DNA. With RNA sequencing (RNA-seq), RNA transcripts are initially isolated as opposed to DNA. For 

compatibility with sequencing platforms, these transcripts are typically converted to cDNA before 

sequencing, although some direct RNA sequencing approaches exist [13]. The reads from RNA-seq 

are mapped to their originating genes and can be analyzed to deduce estimates of RNA abundance.  

With the three aforementioned methods, the diversity of biological properties related to 

gene regulation that can now be studied genome-wide created new opportunities for 

understanding their interactivity. ChIP-seq, DNase-seq, and RNA-seq among other methods were 

utilized by the Encyclopedia Of DNA Elements (ENCODE) project which sought to characterize all of 

the functional elements in the human genome [7] and in later stages also included the mouse 

genome [14]. In a 2012 report, the ENCODE project had produced 1,640 data sets in 147 different 

human cell types [15], and a 2014 mouse ENCODE publication comparing the mouse and human 

functional elements reported over 1,000 data sets in 123 mouse cell types and primary tissues [14].  

Analyses by the ENCODE consortium found that 80.4% of the human genome is covered by at least 

one functional element. Of this fraction, RNA-associated elements and histone modifications 

comprised a large majority, and 15.2% of the coverage was attributed to DNaseI hypersensitive 

sites [15]. In comparisons with mouse functional elements, chromatin state landscapes and TF 

networks were found to be relatively stable between human and mouse [14]. Additionally, gene 

expression profiles were shown to be more consistent within tissue than within species [16]. To 

build upon the work by the ENCODE project, the more recent Roadmap Epigenomics Project 

constructed a collection of epigenomic profiles for 127 human tissues and cell types from adult and 

embryonic samples [17]. Analyses of these data showed associations between proximal and distal 

regulatory regions, histone marks, DNA methylation, chromatin accessibility, spatial organization, 

and gene expression that play important roles in cell type identity, development, and disease [17].  

Taken together, the catalogue of genomic and epigenomic data and integrative analyses from these 
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large-scale projects contributed new insights into the organization and regulation of human and 

mouse genes and the genome and continues to serve as an expansive public resource for biomedical 

research. 

 

GENE EXPRESSION AND CHROMATIN ACCESSIBILITY AS QUANTITATIVE TRAITS 

 A fundamental challenge in genetics research is to understand genetic variation and its 

relationship to phenotypic variability. Efforts such as the International HapMap and 1000 Genomes 

Project extensively characterized common genetic variation across diverse human populations 

[18,19], and GWA studies have leveraged advancements in genotyping technology to link genetic 

variants to human traits and diseases. Although informative in many regards, these studies do not 

resolve the underlying biological mechanisms of discovered genotype-phenotype associations. For 

functional follow-up, data produced by the ENCODE and Roadmap Epigenomics consortia have 

served as valuable resources to refine lists of candidate GWAS variants and identify putative roles 

of non-coding variants [20], but these data still do not directly assess the impact of inter-individual 

variation on gene regulation and cellular behavior that results in the observed phenotypes. 

A related but distinct approach from GWAS is expression QTL (eQTL) mapping. In eQTL 

mapping, gene expression levels are treated as quantitative traits and tested for associations with 

genetic variants. The first reported eQTL study analyzed over 1,500 genes and 3,312 genetic 

markers between two strains of Saccharomyces cerevisiae [21]. Since then, eQTL mapping has been 

performed in various contexts using model organisms and humans [22–24]. With RNA-seq (or gene 

expression microarrays) and current genotyping approaches, these analyses can include tens of 

thousands of genes, each regarded as an independent quantitative molecular phenotype. The 

Genotype-Tissue Expression (GTEx) Project pilot analysis demonstrated the utility of eQTL 

analyses by performing eQTL mapping in 9 human tissues and identifying eQTLs shared and unique 

to each. Significant eQTLs were compared to GWAS disease-related single nucleotide 
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polymorphisms (SNPs) showing whole-blood specific eQTL enrichment for autoimmune-related 

GWAS variants [24]. This showed that by directly modeling the relationship between genetic 

variation and gene expression, eQTL mapping serves as a powerful tool to gain more insight into 

gene regulatory changes that can then be used to elucidate other genotype-phenotype links. 

As a complementary approach to eQTL mapping, the genetic underpinnings of chromatin 

variation have been studied using sequencing-based assays. Kasowski et al. observed variation 

between lymphoblastoid cell lines (LCLs) from 19 individuals for histone modifications H3K27ac, 

H3K4me1, H3K4me3, H3K36me3, and H3K27me3. Work by McVicker et al. further assessed the 

genetic relationship to histone modifications by identifying SNPs significantly associated with 

variation of histone mark signals in LCLs derived from 10 unrelated individuals [25]. Similarly, 

Degner et al., used DNase-seq to measure chromatin accessibility in 70 LCLs and detected 8,902 

chromatin regions where chromatin accessibility was significantly associated with genotype, which 

they referred to as DNaseI sensitivity QTLs (dsQTLs). The dsQTLs discovered were found to be pre-

dominantly local with enrichments for predicted TF binding sites. Sixteen percent of dsQTLs were 

also classified as eQTLs, and 55% of identified eQTLs were also dsQTLs. More recently, another 

genome-wide chromatin accessibility assay was developed called Assay for Transposase-Accessible 

Chromatin Using Sequencing (ATAC-seq) which relies on the Tn5 “tagmentation” process to 

fragment DNA at accessible chromatin regions and append adapters for sequencing [26]. Using 

ATAC-seq and genotype data from 24 European individuals, Kumasaka et al. reported 2,707 

chromatin accessibility QTLs (cQTLs) which were also enriched for eQTLs and dsQTLs [27]. These 

QTL analyses using histone marks and chromatin accessibility data as quantitative traits 

demonstrate how chromatin assays can contribute to discovering associations between genotype 

and gene regulation that can ultimately inform physiologic or disease phenotype-genotype 

associations. 
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THE COLLABORATIVE CROSS AS A RESOURCE FOR GENETICS STUDIES 

 In human genetics and genomics studies, certain constraints limit the possible experimental 

designs that can be practically realized. As a proxy, various species such as Danio rerio (zebrafish), 

Drosophila melanogaster (fruit fly), and mus musculus (mouse) have been studied as model 

organisms to infer aspects of human biology [28–30]. In a 2002 review, Threadgrill et al. outlined 

propositions made by the Complex Trait Consortium to develop a mouse genetics resource for 

effective study of complex traits using QTL approaches [31]. The design and implementation of 

creating this resource became known as the Collaborative Cross (CC) [32]. The CC involved an 

international, multi-institutional effort to create a multiparent panel of recombinant inbred mouse 

strains derived from five classical inbred strains (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, and 

NZO/HlLtJ) and three wild-derived strains (CAST/EiJ, PWK/PhJ, and WSB/EiJ) denoted as 

“founders”. Because CC strains are inbred, they provide an advantage over human studies in that 

each strain can produce genetically identical individuals. This reduces the genotyping burden and 

allows for more sophisticated experimental designs to study multiple variables within the same 

population. 

As described in [32], creating a CC strain requires a funnel breeding scheme that begins 

with the mating of the 8 founder strains in pairs. Two pairs from the resulting generation are then 

mated, and this process continues for subsequent generations until a final inbred CC strain is 

produced. By permuting the pairs in the initial generations, a large number of strains can be 

constructed. In an evaluation of the genome architecture of 350 CC strains, similar founder 

haplotype representation was observed when averaged across the CC lines, but deviations from 

expected frequencies were noted when focusing on specific genomic regions. Unlike many classical 

inbred strains, the CC population did not exhibit high levels of long-range linkage disequilibrium 

(LD). This type of LD has been reported to increase false positives in association mapping studies 
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[33]. As a proof-of-concept, Aylor et al. performed eQTL mapping using 156 incipient inbred CC 

lines (pre-CC) and detected 7,235 liver eQTLs at less than 1 megabase (Mb) resolution. A QTL study 

by Kelada et al. used 131 pre-CC lines to identify genetic associations with blood cell volume, white 

blood cell count, percentage of neutrophils, and monocyte number [34]. More recently, 45 CC 

strains were used to identify liver eQTLs and QTLs associated with treatment response to the drug 

tolvaptan. The study showed strain-specific variability in liver toxicity phenotypes and found 

several candidate susceptibility genes for tolvaptan drug-induced liver injury [35]. Each of these 

studies demonstrates the feasibility and power of the CC as a resource for QTL mapping and 

interrogating genetic factors in disease and complex traits. 

The significant advancements in systems genetics and functional genomics have made the 

intricacies of gene regulation more apparent, fostering new hypotheses for how the contributing 

components interact [3,36,37]. The development of sequencing-based assays such as those used by 

ENCODE and the Roadmap Epigenomics Project made new types of analyses possible, but in doing 

so exposed new questions and challenges to address. Among these challenges is the development of 

bioinformatics approaches and statistical methods to manage, process, analyze, and interpret the 

vast quantities of biological data being generated. For instance, the development of DNase-seq and 

ATAC-seq for detecting accessible chromatin also led to observations that these methods could 

probe TF binding locations through an approach called footprinting [26,38], but the strengths and 

weaknesses of footprinting have not been well characterized. As previously mentioned, the utility of 

the Collaborative Cross for QTL mapping has been demonstrated, but the advantages of the CC can 

be further demonstrated by experimental designs and analyses that interrogate both chromatin 

accessibility and gene expression under varying environmental conditions. 

In chapter II, I introduce a novel method for TF binding site prediction, Detecting Footprints 

Containing Motifs (DeFCoM), that integrates DNase-seq or ATAC-seq data with ChIP-seq data and 

TF sequence motifs [39]. I use ENCODE data in conjunction with TF motif predictions to compare 
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DeFCoM to existing approaches and show that it outperforms other methods. I also evaluate 

current assumptions about chromatin accessibility signal characteristics at TF binding sites and 

assess the impact of technical factors on footprinting. In chapter III, I present an unpublished 

analysis that compares lung, liver, and kidney gene expression and chromatin accessibility for a 

control group of CC mice and mice exposed to the chemical 1,3-butadiene. I also characterize eQTLs 

and cQTLs in the three tissues to provide a basis for further studies investigating genetic 

associations with gene expression and chromatin accessibility in the CC population. In chapter IV, I 

discuss how my findings in Chapter II contribute to evaluating footprinting and integrating it into 

gene regulation studies, and I conclude the chapter discussing the significance of how my findings 

in analyzing CC mice contribute to interrogating environmental exposure and gene regulation in 

future CC studies. 
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CHAPTER II 

DeFCoM: analysis and modeling of transcription factor  
binding sites using a motif-centric genomic footprinter1 

 

OVERVIEW 

Identifying the locations of transcription factor binding sites is critical for understanding 

how gene transcription is regulated across different cell types and conditions. Chromatin 

accessibility experiments such as DNaseI sequencing (DNase-seq) and Assay for Transposase 

Accessible Chromatin sequencing (ATAC-seq) produce genome-wide data that include distinct 

“footprint” patterns at binding sites. Nearly all existing computational methods to detect footprints 

from these data assume that footprint signals are highly homogeneous across footprint sites. 

Additionally, a comprehensive and systematic comparison of footprinting methods for specifically 

identifying which motif sites for a specific factor are bound has not been performed.  

Using DNase-seq data from the ENCODE project, I show that a large degree of previously 

uncharacterized site-to-site variability exists in footprint signal across motif sites for a 

transcription factor. To model this heterogeneity in the data, I introduce a novel, supervised 

learning footprinter called DeFCoM (Detecting Footprints Containing Motifs). I compare DeFCoM to 

nine existing methods using evaluation sets from four human cell-lines and eighteen transcription 

factors and show that DeFCoM outperforms current methods in determining bound and unbound 

                                                           
 

 

1 A version of this work was previously published as Quach B, Furey TS. DeFCoM: analysis and 
modeling of transcription factor binding sites using a motif-centric genomic footprinter. 
Bioinformatics. 2016;33: btw740.  
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motif sites. I also analyze the impact of several biological and technical factors on the quality of 

footprint predictions to highlight important considerations when conducting footprint analyses and 

assessing the performance of footprint prediction methods. Lastly, I show that DeFCoM can detect 

footprints using ATAC-seq data with similar accuracy as when using DNase-seq data. 

 

INTRODUCTION 

Chromatin dynamics vary based on developmental stage [40], cell type [41], and 

environmental stress [42]. Transcription factors (TFs) bind DNA in regions of accessible chromatin 

and play a central role in pre-transcriptional gene regulation. Understanding these interactions is 

critical in deciphering transcriptional regulation that defines cell identity in different contexts. 

DNase-seq [12] and ChIP-seq [43] identify regions of accessible chromatin and TF binding genome-

wide, respectively. Notably, Hesselberth et al. observed that DNase-seq produces “footprints” at 

active TF binding sites characterized by a relative depletion of DNase-seq signal at these sites [44]. 

Thus, a single DNase-seq experiment captures high-resolution TF binding information for many 

TFs. As performing ChIP-seq for multiple TFs quickly becomes cost prohibitive, DNase-seq 

footprinting offers an enticing alternative.  

Several computational footprint identification methods, which I will refer to as 

“footprinters”, have been developed [38,45–53]. These footprinters embrace one of two 

philosophies, which I denote as de novo and motif-centric footprinting (see Table 2.1 for an 

overview of methods). Models generated by de novo footprinters assume that there exist general 

data characteristics at footprint sites. These TF-agnostic models are used to predict all footprint 

sites, and then motif databases are queried to determine potential TFs bound in each individual 

footprint. In contrast, motif-centric footprinters first generate a set of candidate TF binding sites 

(TFBSs) based on a motif, and then predict at which motif sites a footprint exists, indicating active 

binding. Within each group, current methods exhibit similarities in approach. For instance, the de 
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novo footprinters DBFP, HINT, and the HMM-based method described in [38] model footprints 

using probabilistic graphical models with similar state representations. FOS, Wellington, and 

DNase2TF are de novo footprinters that search for genomic locations akin to short inverse peaks. 

The motif-centric footprinters CENTIPEDE, msCentipede, and FLR utilize two-component mixture 

models to represent bound and unbound sites. In addition to DNase-seq data, some methods allow 

for the integration of complementary information such as histone modification status or distance 

from the nearest transcription start site. All these methods implicitly or explicitly assume there 

exists two distinct signal patterns in DNase-seq data that distinguish TF-bound and unbound sites. 

Except for msCentipede, footprinters expect that DNase-seq signal is highly homogeneous in both 

the bound and unbound groups and thus can be represented by a single model. This assumes TFs 

bind DNA in the same manner genome-wide, but TF binding behavior can vary across TFBSs [54]. 

More recently, Kahara and Lahdesmaki proposed a supervised classification approach, 

BinDNase, that learns TF-specific DNaseI cleavage patterns from training data to predict footprints 

in other data [46]. They show that their supervised approach often produced superior prediction 

accuracy over two unsupervised generative models, PIQ and CENTIPEDE. In contrast, Gusmao et al. 

conducted a systematic footprinter comparison and found most generative model footprinters 

outperformed BinDNase [55]. In their analysis, footprint detection accuracy was evaluated within a 

de novo footprinting framework based on overlap with ChIP-seq peak annotations. It is not clear 

how accurately this evaluates motif-centric footprinter performance.  

Here, I conducted an in-depth, motif-centered analysis of DNaseI digestion signals and 

DNase-seq footprinters to provide a more complete understanding of strengths and weaknesses of 

current methods. I introduce a novel motif-centered method, Detecting Footprints Containing 

Motifs (DeFCoM), that approaches footprint identification using a nonlinear supervised 

classification framework. Importantly, DeFCoM is designed to capture variation in DNaseI signal 

within active footprints and unbound motif sites to enhance footprint classification accuracy, a 
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consideration unaccounted for in previous footprinters. I compared the performance of DeFCoM 

against both de novo and motif-centric footprinting approaches across eighteen TFs in four cell-

lines using data from the Encyclopedia of DNA Elements (ENCODE) Project [7] and show that 

DeFCoM outperforms existing approaches overall. In addition, I analyzed the variability in accuracy 

across multiple TFs and the effect of data quality and DNase-seq sequencing depth. Lastly, I show 

DeFCoM can detect footprints in data from Assay for Transposase-Accessible Chromatin sequencing 

(ATAC-seq) experiments with similar classification accuracy as with DNase-seq data 

 

MATERIALS AND METHODS 

Data and software 

DNase-seq and ChIP-seq data (Tables 2.2 and 2.3) were obtained from the UCSC (University 

of California at Santa Cruz) ENCODE portal (https://www.genome.ucsc.edu/ENCODE/). ATAC-seq 

data for GM12878 [26] was obtained from GEO (Gene Expression Omnibus) using identification 

code GSE47753. The DAC Blacklisted Regions and Duke Excluded Regions for hg19 were 

downloaded from the UCSC Genome Database then combined into one set. 

DeFCoM utilizes the Python packages PySam v0.9.0 and scikit-learn v0.17 [56]. The R 

package ROCR [57] was used for computing performance statistics and the ROC curves for the 

footprinters. F-Seq [58] was used to call peaks for DNaseI hypersensitive sites. 

 

Generating cell-line specific motif sites 

Sets of motifs labeled as active (TF-bound) or inactive (TF-absent) were generated as 

follows: 1) Transcription factor motif position weight matrices were downloaded from 

http://compbio.mit.edu/encode-motifs/ [59]. Motif occurrences were identified across the hg19 

genome using FIMO (MEME v4.9.0) [60] with a genomic  background nucleotide distribution pre-

computed by FIMO and the parameters “--max-strand --max-stored-scores 1000000 --no-qvalue”. 

https://www.genome.ucsc.edu/ENCODE/
http://compbio.mit.edu/encode-motifs/


13 
 

2) Predicted motif sites were removed if (i) they fell in ENCODE blacklisted regions, (ii) less than 

10% of bases within a 200 bp window centered on the motif center had DNase-seq digestion data; 

(iii) they were less than 400 bp from chromosome boundaries; or (iv) there were ambiguous 

nucleotide calls within 400 bp of the motif site center. 3) Motif sites were annotated as active if they 

overlapped ChIP-seq peaks for that TF, or else they were labeled inactive. If multiple motif sites 

overlap the same peak region, only the site closest to the annotated point-source of the peak was 

retained. To further ensure inactive sites were not bound, I calculated ChIP-seq and input control 

signal enrichments, defined as sTF - scontrol, where sTF and scontrol are sequencing-depth normalized 

read density values in 200 bp windows centered on the motif. Inactive sites where sTF - scontrol > 0 

were removed. Motif sets were created for 18 TFs (CEBPB, CHD2, CTCF, EP300, GABPA, JUN-D, 

MAFK, MAX, MYC, NRF1, RAD21, REST, RFX5, SRF, SP1, TAF1, TBP, USF2) in 4 human cell-lines 

(GM12878, H1-hESC, HepG2, and K562) except SP1 in K562 (no data). 

 

Computing aggregate DNaseI digestion profiles 

To create TF-specific summary statistics for each class of motif sites, I first generate the 

active and inactive motif site sets as detailed above. If multiple motifs exist for a TF, only one was 

chosen. For each class of motif sites, I constructed a matrix of DNaseI digestion frequencies where 

each row represents a unique motif site in the genome and each column represents a position 

within or flanking a motif site. All the rows were aligned based on the center of the motif site. 

DNaseI cut frequencies are denoted in DNase-seq data as the number of 5’ read ends aligning at a 

given genomic position. To remove motif sites with spurious spikes in DNaseI activity, any rows of 

the matrix with a value exceeding 500 were removed. From these matrices all summary statistics 

were computed per column. For the aggregate DNaseI cut profiles, I used calculated mean cut 

frequencies. Likewise, per-column mean and standard deviations were computed to obtain 

coefficients of variation values. 
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DNaseI signal profiles and correlations 

Aggregate DNaseI signal profiles were calculated for active and inactive motif sites for each 

TF in each cell type. DNaseI signal correlations for NRF1 were performed using only sites 

corresponding to the PWM (position weight matrix) “disc_1”, for CHD2 using motif “disc_1”, and for 

CEBPB using motif “known_1” (Figure 2.1) to ensure variability was not due to multiple motifs. 

Motif sites were extended 50 bp from the motif center and signal profiles were calculated. To 

remove sites with spurious spikes in DNaseI activity, motif regions with more than 500 DNase-seq 

reads were removed. Profiles were smoothed using 7 bp sliding windows to improve signal quality 

at sites with sparse signal. Aggregate mean DNaseI signal profiles for active and inactive sites were 

created using smoothed individual profiles. Pairwise Pearson correlation coefficients between 

active and inactive motif DNaseI profiles were used for complete-linkage hierarchical clustering 

followed by heatmap visualization.  

 

DeFCoM feature extraction and training 

DeFCoM (Detecting Footprints Containing Motifs) is an SVM (support vector machine)-

based [61] supervised footprinter . Given a set of motif sites labeled as active or inactive for a given 

TF in a cell type/experimental condition, the SVM classifier is trained on features that are derived 

from DNase-seq data from the same cell type for each motif site. The trained model is used to 

predict active and inactive sites in a test set based only on DNase-seq data. 

To train DeFCoM, motif site sets of size m and n, labeled as active or inactive respectively, 

were generated as described above (see Generating cell-line specific motif sites). The 5’ end of each 

DNase-seq read was considered a digestion site. Initial active and inactive motif site DNaseI 

digestion count matrices, DActivems and DInactivens,, were calculated, in which each row corresponded to 
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a scaled DNaseI digestion profile consisting of the square root of the DNaseI digestion frequency at 

each position in an s-sized region centered on a motif site. For all the training and evaluation tests, 

s=200 bp regions were used. To account for spurious spikes in the data, any row in the matrix with 

a value greater than √500 was removed. 

Intuitively, I wished to generate DNase digestion features in windows around a motif site, 

with smaller windows used near the motif site where the TF binds to allow for greater resolution, 

and progressively larger windows used at more distant regions. I also wanted to account for sparse 

or noisy DNaseI data.  Given the region size s, I first defined varying-sized, non-overlapping, 

contiguous windows symmetric about the motif site center. Let x∈{0,1,2,...,k} index each window 

starting at the motif site center with the windows progressively increasing in size from 0 to k. I 

define f(x), the size of window x, to be 

  (1) 

  (2) 

where the recursive function g(x) equals the sum total size of all windows up to and including 

window x. The total number of windows k that will span a region of size s/2 can be calculated as 

follows: 

  (3) 

In equations 1 and 3, I use s/2 because windows are symmetric about the motif center. For s=200, I 

defined 12 windows (6 on each side of the motif site center) with sizes 45, 21, 14, 9, 6, 5, 5, 6, 9, 14, 

21, and 45. For each window, I computed the mean of the scaled DNaseI digestion counts and the 

slope of these counts across the window using DActive and DInactive.  This generated a feature vector f of 

length 4k. To provide additional global features of the region s, I partitioned a 90 bp segment 

centered on the motif center into 3 windows, computed the mean and slope for these windows (6 
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features total), and calculated the mean cut frequency of a 150 bp region centered on the motif 

center (1 feature). Lastly, maximal absolute value scaling was used to scale each of the 4k + 7 

features to a [-1,1] range. This results in the final feature matrices FActive and FInactive. 

As part of the training process, DeFCoM selects between a linear and radial basis function 

(RBF) kernel SVM to use as the final classifier. To decide between the two SVM models, I 

bootstrapped 1000 samples 100 times from each of FActive and FInactive and applied 5-fold cross 

validation. I used the mean pAUCs (5% FPR) from the cross validations to select a model. 

Training a soft-margin SVM requires the selection of a hyperparameter, which I denote as c, 

that specifies a tolerance threshold for the number of samples from either class that lie on the 

wrong side of the separating hyperplane. The higher the value of c, the more heavily 

misclassification is penalized during model training. Additionally, the RBF kernel contains a 

parameter that I denote as γ, which determines the distance of influence of the chosen support 

vectors. Higher values of γ specify a smaller distance of influence. For both the cross validation and 

cross cell-line tests, DeFCoM performs a grid search to find the best c and γ. The values used in the 

grid search were c∈{0.01, 0.1, 1, 10, 100, 1000, 10000} and γ∈{0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 

10, 100}. 

For within cell-line tests, the SVM type (linear or RBF kernel) is pre-specified based on the 

analysis being performed. I applied 5-fold nested cross validation using annotated motif sites and 

DNase-seq data for the specified cell-line, and all evaluation statistics were computed for each fold 

then averaged across folds. In the cross cell-line setting, training the final SVM for DeFCoM is a two-

stage process. First, a linear or RBF kernel SVM is chosen along with c and/or γ values.  Then, a 

subset of 3000 samples from each class is chosen to train the selected SVM model. Because the 

number of total samples typically is much larger than these subsets, I select the SVM type and the c 

and γ values using a bootstrapping procedure. I take 1000 random samples from each motif site 

class 100 times, and for each bootstrap iteration, I apply 5-fold cross validation to both a linear and 
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RBF kernel SVM using the aforementioned grid of c and/or γ values. Following the bootstrapping, I 

compare the distributions of pAUCs generated by each SVM type using a two-sided Student’s t-test. 

I selected the RBF kernel when there was a statistically significant difference (α ≤ 0.01) and the 

linear SVM otherwise. Following SVM type selection, I chose final c and/or γ values based on which 

values were selected the most frequently during the bootstrap procedure for the selected SVM type. 

To improve the computational efficiency of the SVM training phase, the chosen SVM was trained 

with 3000 randomly selected samples from each of FActive and FInactive to produce the final trained 

model. 

For ATAC-seq data, the DActive and DInactive matrices were constructed using Tn5 transposase 

tagmentation events as opposed to DNaseI digestion frequencies. Tn5 tagmentation sites are 

denoted as 5’ ATAC-seq read ends offset 5 bp downstream on the positive DNA strand and 4 bp 

upstream on the negative strand. 

 

Footprinter implementations for comparative analysis 

The footprinters BinDNase, CENTIPEDE, cut density, DNase2TF, HINT, FOS, msCentipede, 

PIQ, and Wellington (Table 2.1) were used to evaluate DeFCoM. These methods were chosen based 

on availability, compatibility with my evaluation framework, and their broad range of conceptually 

diverse approaches to footprinting. I outline below how these methods were applied in a motif-

centric evaluation framework. Any footprinter not listed was applied with no modifications and 

default settings. 

BinDNase 

Similar to DeFCoM, BinDNase is a supervised footprinter. For the training phase of 

BinDNase, 3000 samples from each class of motif sites were randomly chosen. The remaining 

parameters were the same as described in [46].   
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CENTIPEDE 

In implementing CENTIPEDE I used the default parameters specified by [50] with the 

exception that the prior included only PWM scores.  

Cut Density 

Cut density serves as a straightforward “baseline” model for footprinting. It simply sums the 

number of DNase-seq 5’ read ends that map within a specified genomic region. For each motif site 

in the evaluation sets, cut density was computed for regions spanning 50 bp upstream and 

downstream of the motif site center. 

DNase2TF 

We ran DNase2TF on motif sites that were extended by 100 bp in both directions to obtain 

an initial list of footprint calls. The “FDRs” parameter was set to 1 with default values for the other 

parameters. I filtered the footprints to only those that overlapped at least 75% of a motif site. If the 

footprint region is smaller than the motif site, then it was also retained regardless of percent 

overlap. For each motif site, I assigned it the score from the overlapping footprint. If multiple 

footprints correspond to a motif site, I selected the highest score. If no footprint is associated with 

the motif site then it was given the minimum possible score. 

HINT 

We applied HINT similarly to DNase2TF. Using default settings, an initial list of footprints 

was generated by evaluating motif sites that were extended by 100 bp in both directions. These 

were filtered to footprints smaller than their corresponding motif site and footprints overlapping at 

least 75% of a motif site. Motif sites were assigned scores using the same process as for DNase2TF. 

FOS 

FOS computes a score based on a depletion of reads within a central window of length c 

base pairs compared to a left and right flanking window each of length f base pairs. With each motif 
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site, I calculated an FOS score for all combinations of c and f where c is an integer between 6 and z 

and f∈{3,4,...,11}. Let m represent the length of a motif, then z=2*(21-m) when m is less than or 

equal to 18 and 6 otherwise. I aligned c to be centered over the motif site. I retained the highest 

score from all the calculations for a motif site. Sites FOS failed to score were given the lowest 

possible score. 

Wellington 

Similar to FOS, Wellington uses a center and flanking region to compute a score and call 

footprints. Wellington searches for footprints in a region using a combination of a 35 bp flank size 

and center sizes 11, 13, 15, 17, 19, 21, 23, and 25. I allowed Wellington to score sites using input 

regions that were 49 bp flanks from the center of the motif site. The maximum of the absolute 

values of scores was used as the footprint score for the associated motif site. 

 

Effective sequencing depth 

Signal-to-noise was measured using FRiP (fraction of reads in peaks) scores [62]. Peaks 

were called using F-Seq with default parameters, then the ratio of DNase-seq reads aligning within 

the top 50,000 peaks (ranked by F-Seq score) to the total aligned reads was calculated. This ratio 

was multiplied by the total aligned reads to obtain the effective sequencing depth. 

 

Subsampled sequencing depth analysis 

To compare DeFCoM’s performance in two cell-lines with similar effective sequencing 

depths but different signal-to-noise ratios, I applied downsampling to both GM12878 and H1-hESC 

DNase-seq data. In each cell-line I used SAMTools to downsample the data to 25, 50, 75, and 100 

million mapped reads. At each sequencing depth, I converted the labeled motif sites and DNase-seq 

data into feature vectors. I then used these feature vectors for 5-fold nested cross validation of 
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DeFCoM with the RBF kernel SVM. Lastly, the mean pAUCs (5% FPR) from the folds were computed 

for 18 transcription factors.   

 

RESULTS 

Aggregate DNaseI digestion profiles do not capture motif site heterogeneity 

Aggregate mean DNaseI digestion profiles summarize positional DNaseI cleavage 

preferences at TFBSs. These profiles convey a single value at each position, thus they lack 

information regarding the variability in DNaseI activity at a given position across sites. Raj et al. 

showed that variation in DNaseI activity at TF-bound SP1 motif sites exceeded that expected under 

a multinomial model of DNaseI digestion signal [51]. To evaluate this more broadly, I determined 

positional variability in DNaseI digestion signal for multiple TFs (Figures 2.2A and 2.3). I stratified 

motif sites into active and inactive based on presence of corresponding ChIP-seq signal for the 

factor in the same cell type. I used these to evaluate two common assumptions held by several 

footprinting methods: 1) active TFBSs possess a general footprint pattern of local depletion in 

DNaseI digestion relative to flanking regions; and 2) inactive motif sites contain approximately 

uniformly distributed DNaseI digestion signal. For most factors, aggregate profiles for active sites 

clearly produced expected DNaseI digestion patterns, but with relatively large standard deviations. 

An investigation of individual binding sites clearly shows how sites deviate from the aggregate 

pattern (Figures 2.2C and 2.2D).  In some cases, the previously characterized sequence preferences 

for DNaseI digestion [63] are visually apparent. For a minority of the TFs, the aggregate profile for 

active sites portrays a visually weak footprint or none at all (i.e. SRF, Figure 2.3). Overall, TFs 

exhibit aggregate profiles with consistently high coefficients of variation (Figure 2.4).  

In spite of position-specific variability across motif sites, it is possible that DNaseI signal at 

individual sites resemble the aggregate profile in shape but not scale. To quantify the similarity of 

DNaseI digestion profiles at individual sites to the aggregate mean profiles, I calculated Pearson 



21 
 

correlation coefficients between the aggregate profiles and every individual TFBS profile for 

CEBPB, CHD2, and NRF1 (Figure 2.5). Among the 3 TFs, 30-63% of the individual profiles did not 

correlate with the same class aggregate profile (Pearson’s r < 0.1). Interestingly, I found that 17-

51% of individual profiles from the active and inactive classes exhibited stronger positive 

correlations with the aggregate profile from the opposite class. 

To further assess within and between class heterogeneity, I computed Pearson correlations 

between the top 2000 individual DNaseI digestion profiles, ranked based on the number of DNase-

seq reads in a 100 bp window centered on the motif site, in the active and inactive classes for all 

three factors. I observed small clusters of highly correlated sites, implying possible subgroupings 

for DNaseI cleavage profiles within each class. I also found 34-53% of motif sites within each class 

exhibited negative or no correlation to each other (Pearson’s r < 0) (Figures 2.2D and 2.6). Notably, 

4-6% of correlations between sites from opposite classes had Pearson’s r > 0.5. These analyses of 

variability in DNaseI digestion signal strongly indicate that aggregate mean profiles do not 

sufficiently capture the heterogeneity in DNaseI activity across motif sites. 

We hypothesized that high correlations between sites from one class to the aggregate 

profile of the opposite class may be partially attributed to similarities in binding preferences for 

multiple TFs. Therefore, a motif site deemed inactive for a specific TF based on ChIP-seq data could 

be active for another TF with a similar motif. I assessed this by determining how many inactive 

motif sites overlapped ChIP-seq peaks for at least one other TF for each of 18 TFs in the K562 cell 

line. I found that this was the case for 8.85% of all inactive sites (Figure 2.7). For most TFs, the 

number of inactive motif sites was significantly larger than the number of active sites (Table 2.4). 

Thus, while the number of inactive sites overlapping another ChIP-seq peak was relatively small, 

these represented 0.41 to 32.21 times the total number of active motif sites for a TF. Footprint 

patterns at inactive sites that resemble active sites due to the binding of another factor highlights 

an important consideration and caveat when conducting motif-centric footprinting and evaluating 
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the accuracy of footprint predictions. This also applies to de novo footprinting as it becomes an 

issue when annotating called footprints using motifs. A potential solution would be to exclude all 

motif sites overlapping ChIP-seq peaks for multiple TFs. However, this would remove 66%-100% of 

active sites for a TF. Additionally, this would require conducting a multitude of ChIP-seq 

experiments and disregards the fact that many TFs have binding partners.  

 

Modeling data heterogeneity for footprinting 

To account for the high variance in DNaseI activity at motif sites, I devised a novel 

supervised learning based footprint prediction framework called DeFCoM (Detecting Footprints 

Containing Motifs). DeFCoM trains an SVM using extracted features from DNaseI digestion profiles 

of motif sites labeled as active or inactive. In the training phase, DeFCoM applies a model selection 

procedure to choose between a linear kernel and nonlinear RBF kernel (Figure 2.8; see Materials & 

Methods). This allows DeFCoM to capture the complexity of the data when necessary with the RBF 

kernel, while avoiding over-fitting, a common problem in supervised learning, by choosing the 

linear kernel when that complexity is lacking. Once trained, the SVM uses features from DNaseI 

digestion profiles for new, unlabeled motif sites to determine which are active and inactive in 

another cell type/condition.  

To assess DeFCoM’s classification accuracy, I first performed 5-fold nested cross validation 

on 71 evaluation sets comprised of data from 18 transcription factors in the human cell-lines 

GM12878, H1-hESC, HepG2, and K562 generated by the ENCODE project. Secondly, I tested 

DeFCoM’s ability to generalize across cell types by training models using data from one cell type 

and testing on an independent cell type. I also wanted to know whether using the RBF kernel 

increased accuracy given the demonstrated heterogeneity in these data. Therefore, for both sets of 

experiments, I used a linear and an RBF SVM and compared their classification performance. I will 

refer to these models as DeFCoM-linear and DeFCoM-RBF respectively. I calculated receiver 
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operating characteristic (ROC) Area Under the Curve (AUC) values using all the data and also partial 

AUC (pAUC) values corresponding to partial ROC curves at a 5% false positive rate (FPR) cutoff.  

When applied to the 71 data sets, DeFCoM-RBF performed better than a random classifier in 

all cases (Figure 2.9A). Notably, I observed a wide distribution of pAUC scores ranging from 0.096 

to 0.981, but there was less variability in the full AUC scores (0.714-0.998). For the cross cell-line 

experiments, I expected that additional variability across the two data sets would decrease 

performance compared to the within cell-line cross validation tests. Indeed, I witnessed overall 

lower scores from the former but by a marginal amount (median pAUC decrease of 0.021) 

indicating there exist consistent footprint signals across cell types.  

To determine whether using the nonlinear RBF kernel to model heterogeneity was 

warranted, I repeated the above experiments using the linear kernel. Overall, DeFCoM-RBF 

improved classification accuracy for all cell-lines in both experimental setups except for the cross 

cell-line case where the test set was derived from data in the K562 cell line (Figure 2.9B). I saw that 

the pAUC increased as much as 0.141 when using DeFCoM-RBF. However, the pAUC was essentially 

the same in 31% of cross validation tests and 41% of cross cell-line tests. This demonstrates that 

the RBF kernel can provide large gains in accuracy, but some factors or data sets may not possess 

enough DNaseI signal heterogeneity to benefit from more complex footprint modeling. 

Interestingly, DeFCoM-linear performed substantially better on cross cell-line tests when 

training with GM12878 and evaluating with K562 data. This demonstrated the need for flexibility in 

model complexity. Therefore, I incorporated a model selection step during DeFCoM training to 

automatically determine the most appropriate kernel for a given test (see Materials & Methods). I 

found that with the exception of CTCF, my model selection procedure identified the better model in 

all cases in which there was a measurable difference between kernels (pAUC difference > 0.05; 

Figure 2.10). I also evaluated alternative methods for addressing cross cell-line applications of 
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DeFCoM and found the aforementioned approach produced the best results. Nevertheless, I 

describe the alternative procedures in the following section.  

 

Variations for DeFCoM training in cross cell-line applications  

To address the decrease in classification accuracy of DeFCoM when training in one cell-line 

and testing in another, I initially explored two methods in addition to the SVM model selection 

procedure. 

Mitigating Data set Shift 

Given the variety of factors involved in generating DNase-seq and ATAC-seq data as well as 

biological variability in the samples processed for sequencing, I considered the possibility that the 

DNase-seq and ATAC-seq data used for training DeFCoM may differ enough from the data being 

used during the classification phase of cross cell-line analyses to negatively impact classification 

performance. More formally, I hypothesized that the joint distribution between inputs into 

DeFCoM’s RBF kernel SVM and the outputs produced by this SVM differed between the training and 

testing stage. This phenomena is more generally referred to in machine learning literature as data 

set shift [64]. 

To account for the possibility of data set shift, I trained a logistic regression model with data 

from GM12878 and K562 to obtain for each sample the probability that the sample was derived 

from GM12878, P(GM12878), and the probability that it was derived from K562, P(K562). If more 

than 25,000 motif sites existed in the active and inactive motif site sets for both cell-lines, I 

randomly selected 25,000 samples from each of the active and inactive motif site sets, totaling to 

100,000 sites. These samples were converted into feature vectors, and assigned the class label 

“GM12878” or “K562”. The labeled feature vectors were then used to train an L2-regularized 

logistic regression model. The regression model was then applied to feature vector representations 

of all the samples in both cell-lines to obtain P(GM12878) and P(K562) for each sample. The 
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GM12878 motif sites were then filtered to include only those for which P(K562) ≥ 0.4. These 

filtered motif sites were then used to train an RBF kernel SVM using 5-fold cross validation. Sample 

weights were included for the SVM training such that training samples more similar to the K562 

test samples would receive a greater weight. I defined the weight to be P(K562)/P(GM12878). 

Table 2.5 provides the results of applying data set shift correction to DeFCoM for 17 transcription 

factors.  

Sequencing Depth Matching 

Another consideration related to cross cell-line analyses is the difference in sequencing 

depth between the training and testing set affecting DeFCoM performance. When the training data 

set comes from DNase-seq/ATAC-seq data with a lower sequencing depth than the test data, the 

dynamic range of DNaseI digestion frequencies at motif sites has the potential to be greater in the 

test set. Arguably, this could create another scenario where data set shift is a concern. Although I 

incorporate a square root transformation of the DNaseI digestion frequencies into the DeFCoM 

framework to mitigate dynamic range issues, I also tested if matching the sequencing depths 

between the training and testing data would improve DeFCoM’s classification accuracy. 

Using the subsampling feature in SAMTools (Li et al., 2009), I down-sampled the K562 

DNase-seq data to match the GM12878 DNase-seq data sequencing depth. I then used the GM12878 

and K562 data to generate the training and test set feature vectors respectively. With the GM12878 

feature vectors I used 5-fold cross validation to train the RBF kernel SVM of DeFCoM, and I applied 

the trained model to the feature vector representations of the down-sampled K562 samples. Table 

2.5 provides the results of this evaluation for 17 transcription factors. Compared to the model 

selection procedure, both the data set shift correction and down-sampling approaches produced 

worse classification performance.  
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Multiple variables impact motif-centric footprinting 

In addition to addressing the heterogeneity of DNaseI signal at motif sites, my analyses 

provide insights into some variables that may affect motif-centered footprinting performance, 

though this is certainly not an exhaustive list of contributing factors. My observations suggest that 

the “footprintability” i.e., the quality of footprinting, of any particular data set is a function of 

several characteristics. I noted that features of the data from a particular cell-line and the specific 

TF being considered can contribute to footprintability. For instance, the pAUC is 0.36 higher on 

average in K562 compared to HepG2 for all cross validation experiments (Figure 2.9), suggesting 

that footprint signals in K562 are better overall. Within GM12878, the cross validation pAUC scores 

across TFs range from 0.210 to 0.915, highlighting the variability in footprintability across TFs. 

Lastly, pAUCs for CHD2 are higher than CEBPB in all cell types (Figure 2.11), suggesting active 

footprints for some factors are in general easier to discriminate than for others.  

It is important to note that the four cell lines I use span a wide range of sequencing depths 

(Table 2.6). I wondered how closely footprintability was associated with total sequencing depth. 

Since the signal quality across data sets can widely vary, I also wondered whether the “effective” 

sequencing depth, based on the number of reads in DNaseI hypersensitive sites, was more 

important than simply the raw sequencing depth. I used mean pAUC values from DeFCoM’s nested 

cross validation experiments for each TF across all cell lines to compare footprintability based on 

total and effective sequencing-depth. Overall, I found that for most factors, accuracy increased 

nonlinearly with respect to total sequencing depth, but not effective sequencing depth (Figure 

2.12).   

To better understand the trade-off between sequencing depth and signal quality, I focused 

on data from GM12878 and H1-hESC since they possess very different signal-to-noise ratios (0.19 

versus 0.43 FRiP score). I performed 5-fold nested cross validation using DeFCoM and data from 

each cell line subsampled to 25, 50, 75, and 100 million aligned reads and calculated pAUCs for 
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each. The effect of raw sequencing depth versus signal quality became more apparent when I 

assessed changes in pAUC at a fixed 5% FPR under this framework (Figure 2.13). As expected, the 

changes in pAUC vary by TF, but performance in the H1-hESC cell-line was less affected by 

increased sequencing depth. This suggests that for data with better signal-to-noise, informative 

DNaseI signals are present at lower sequencing depths, resulting in smaller improvements in 

footprintability with increased sequencing depth. I see the opposite in the GM12878 cell-line where 

increased sequencing depth substantially improves accuracy. When looking across sequencing 

depths at the number of H1-hESC active motif sites that are in the evaluation sets, I notice that more 

active sites meet the coverage filtering thresholds as sequencing depth increases. This shows that 

although much of the DNaseI signals may be present at lower sequencing depths, a higher 

sequencing depth can provide gains in sensitivity. The improvements in sensitivity will vary by TF, 

as evidenced by large increases for CTCF and RAD21 but significantly smaller increases for other 

TFs (Figure 2.14). 

Interestingly, active footprints for some TFs were more accurately identified in GM12878 

than H1-hESC at equivalent sequencing depths despite the reduced signal-to-noise. This may be due 

to the FRiP score serving as a global signal quality measure rather than at the level of individual 

TFs. To investigate this further, I analyzed the ratio of active motif sites to inactive sites for several 

TFs and found that many decreased drastically in GM12878 data with increasing sequencing depth 

compared to the same ratios in H1-hESC data (Figure 2.15A). For instance, in GM12878 for SP1 this 

ratio was 16.8 at a sequencing depth of 25 million reads but decreased to 0.55 at 100 million reads. 

In H1-hESC, I observed a much smaller ratio change from 0.48 to 0.10 for the same factor (Figure 

2.15B). The large changes in active to inactive site ratios in GM12878 suggest that in data with 

lower signal-to-noise, the number of inactive sites is more affected by sequencing depth, at least 

based on my criteria. Across all 18 TFs in GM12878, I witnessed a -0.71 Pearson correlation on 

average between the active to inactive site ratios and pAUCs for a TF. In H1-hESC the mean 
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correlation was -0.89. Overall, my results suggest that increasing sequencing depth to improve 

accuracy will primarily benefit noisy data sets, and that signal quality in data will affect accuracy by 

varying the number of inactive motif sites that are considered compared to the number of active 

motif sites.  

 

DeFCoM outperforms other footprinters 

To provide a comprehensive study of footprinting from a motif-centric perspective, I 

compared DeFCoM with nine competing footprinters: BinDNase, CENTIPEDE, cut density, 

DNase2TF, HINT, FOS, msCentipede, PIQ, and Wellington (Table 2.1). All methods were assessed 

based on their ability to correctly classify the same sets of motif sites for 18 TFs as active or inactive 

in the given cell-line. Partial AUCs (5% FPR) were calculated to compare the methods. For the 

supervised learning footprinters (DeFCoM and BinDNase), training was performed using data from 

K562 for test sets in GM12878, H1-hESC, and Hepg2, and in GM12878 for test sets in K562. To 

summarize performance across all data sets, I ranked each method by pAUC for each of the 71 tests 

and calculated their mean rank across all tests (Figure 2.16). DeFCoM ranked first in 25 of the 71 

evaluation sets (34.7%) and second in an additional 29 test sets (40.3%). I see even better 

performance by DeFCoM when using pAUCs from within cell-line cross validation for the two 

supervised methods. DeFCoM ranked first 39 times (54.9%) and second 23 times (32.4%) (Figure 

2.17). DeFCoM had the best mean rank for results from both the cross cell-line and cross validation 

tests followed by BinDNase and msCentipede. Interestingly, cut density, which simply predicts 

footprints based on the number of DNase-seq reads, had the 4th best mean rank despite not using 

any information about actual footprint signals (Figures 2.16B and 2.18). Previous studies witnessed 

similarly reasonable performance for this simple method [63,65], but Gusmao et al. showed that cut 

density’s accuracy relative to other footprinters suffers at a 1% FPR [66]. In my study, cut density 
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had the 5th best mean rank using pAUCs at a 1% FPR (Figure 2.19), still outperforming 5 other 

footprinters.  

The improved classification accuracy of both DeFCoM and BinDNase over the unsupervised 

approaches highlights the utility of learning a discriminative model for motif-centric footprinting. 

Because DeFCoM defaults to a linear SVM model unless more complex modeling is required, I 

expect it to perform at least as well as BinDNase, which uses another type of linear model, logistic 

regression. Also, including the nonlinear RBF kernel enables DeFCoM to outperform BinDNase by as 

much as 0.0835 pAUC, though I note that the two footprinters have essentially the same accuracy 

for 59 of the 71 data sets (pAUC difference < 0.025). This increases to 65 of the 71 data sets using 

pAUC difference < 0.05 (Figure 2.20). BinDNase includes a computationally expensive greedy 

backward search to determine optimal features. Impressively, this shows that DeFCoM can achieve 

a similar or better accuracy than BinDNase using a set of predefined features that can be computed 

more efficiently. The greater overall performance of msCentipede relative to the other 

unsupervised footprinters indicates that modeling heterogeneity with an unsupervised method can 

produce comparable results to DeFCoM in some cases, though I note that for the factor TBP in 

HepG2, a model could not be learned in reasonable time (model training terminated after 60 days). 

For 48 of the 71 test sets, DeFCoM and msCentipede perform similarly (pAUC difference < 0.05), but 

using supervised learning affords DeFCoM better performance in 16 of the data sets (pAUC > 0.05), 

including a pAUC difference of 0.25 for the RAD21 test sets.   

 

ATAC-seq is comparable to DNase-seq for footprinting 

Like DNase-seq, ATAC-seq assays for accessible chromatin and can generate visible 

footprints in aggregate accessibility profiles for active motif sites. Its low biological sample material 

requirement relative to DNase-seq makes it an appealing alternative when this is a limiting factor. I 

evaluated DeFCoM using GM12878 ATAC-seq data to determine its utility for motif-centric 
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supervised footprinting. I applied 5-fold nested cross validation with the ATAC-seq data to train and 

test DeFCoM models for 18 TFs. The pAUC at 5% FPR and full AUC were averaged across the 5 folds 

from the cross-validation. I then repeated the nested cross validation with DNase-seq data on the 

same set of active and inactive sites (Figure 2.21). Despite the differences in sequencing depth of 

the DNase-seq (245 million reads) and ATAC-seq data (93 million reads), the pAUC and full AUC 

values are generally similar, with DeFCoM performing slightly better when using DNase-seq (mean 

pAUC difference = 0.072, mean AUC difference = 0.043). Overall this supports the feasibility of 

extending DeFCoM to experiments that use ATAC-seq. 

 

DeFCoM as an open-source software package 

Poor implementation and usability hinder the adoption of otherwise practical tools in the 

scientific community. With this in mind, I implemented DeFCoM to be an easy-to-use software 

package with a code-base that follows good software design principles. For both end-users and 

developers, I make my code freely accessible via a code repository 

(https://bitbucket.org/bryancquach/defcom) with extensive API documentation and a user guide. 

DeFCoM is the only supervised learning footprinter supported by thorough documentation to 

improve ease of use. I also include well-commented scripts to handle common data processing 

tasks for footprint analysis. DeFCoM is implemented in the Python programming language within 

an object-oriented framework that enhances modularity of the code for easy debugging, 

modification, and extension. Furthermore, because DeFCoM is a data-intensive method, I make use 

of scalable programming techniques such as batch processing and parallel computing to ensure 

feasibility for use on a modern desktop machine. As an open-source software package, I encourage 

the community to modify and adapt my code for further advancements in footprinting research  
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DISCUSSION 

Our study provides novel insights into variables that affect identification of DNaseI 

footprints, and for the assessment of footprinter performance. Aggregate DNaseI digestion profiles 

do not represent well the footprint patterns seen at individual sites, thus footprinters that use 

models based on aggregate or general footprint signal patterns may suffer. Inactive motif sites for 

one TF may be bound by a TF that creates a footprint and thus be misclassified, at least for the 

original TF. This is a general challenge in the assessment of motif-centric approaches, but this does 

not necessarily reflect a weakness in these footprinters. The motif-centric footprinter is correctly 

identifying a footprint, though it mistakenly attributes it to the wrong factor. Arguably, this is better 

than spuriously identifying a footprint at a location where no factor is bound. This serves as an 

important consideration for both interpreting footprint predictions and assessing footprinters in a 

motif-based framework. 

Heterogeneity in DNaseI digestion signals at motif sites exists, and I show that my DeFCoM 

footprinter benefits from being aware of this heterogeneity. At the same time, I also show that 

incorporating the flexibility to use more or less complicated models depending on the particular TF, 

cell line, and data set is important as well. DNase-seq and ATAC-seq footprint signals will vary 

based on biological and technical factors that influence the data. Footprinters that can model 

footprints well across this range of variability will obviously be more robust. Supporting this, 

msCentipede also models heterogeneity and was the best performing method that did not use 

supervised learning, though I found this method may be limited by unreasonable training times for 

specific data sets. 

We show that determining appropriate sequencing depth for footprinting is not easy and is 

affected by many variables. I observed sequencing depth affected footprinter accuracy less when 

the DNase-seq data had a better signal-to-noise ratio, but I also witnessed variation in TF-specific 

footprintability at equivalent sequencing depths between cell-lines. Sung et al. provided evidence 
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that DNA residence time plays a role in the clarity of a footprint signal [53]. Likewise, greater 

sequencing depth generally increased the number of sites where footprints were identified, but the 

benefit to individual factors varies. Biological variables such as these need to be further assessed on 

a per-TF basis in conjunction with technical factors to better realize which of these most strongly 

contribute to footprintability. This knowledge would help determine how to appropriately design 

footprinting experiments.  

For footprinters such as DeFCoM that use supervised learning, the concordance between 

features of the training and test sets become important. Although this introduces added complexity, 

it can be leveraged to achieve more targeted results. For instance, high-confidence footprints in 

DNaseI hypersensitive sites could be identified by tailoring the training set to include only sites in 

areas of high DNaseI activity. Doing so would make the model more representative of these 

stronger footprint signals, though at the expense of generalizability to low signal regions. Potential 

variability between training and test sets should be minimal for situations in which data is 

generated from the same cell type for both but possibly under different experimental conditions.  

A comprehensive evaluation of footprinting was reported in [66]. Though more rigorous 

than previous comparative analyses, their evaluation strategy was more informative for 

understanding footprinters in a de novo footprinting context. I provide a complementary 

footprinter evaluation from a motif-centric perspective. In my work, I focused on results at a 5% 

FPR to provide more practical insight on footprint detection accuracy at acceptable error rates. The 

ability of both DeFCoM and BinDNase to consistently outperform unsupervised footprinters, with 

the possible exception of msCentipede, further supports supervised learning-based methods. I note 

that my results contradict accuracy levels found in the previous evaluation for several footprinters. 

This demonstrates that evaluation methods can largely influence reported performance. The de 

novo footprinters DNase2TF and FOS performed poorly in my tests, because they failed to report a 
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score for many of the motif sites in the test set. My results in conjunction with previous studies 

highlight the importance of evaluating a footprinter in the context for which it was designed.  

ATAC-seq is quickly being adopted as it requires less biological starting material, and I show 

DeFCoM performs comparably with these data. As I learn more about the nuances of footprinting in 

both DNase- and ATAC-seq, I expect footprinters will adapt accordingly. In light of this, my 

implementation of DeFCoM in an open-source, modularized and object-oriented framework makes 

it conducive to modification and improvement. As such, I welcome and encourage collaborative 

efforts with others in the scientific community to address the needs of researchers as the field 

evolves. 
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Figure 2.1.   Motif logos for NRF1, CHD2, and CEBPB.  Sequence logo representations of position 

weight matrices used to evaluate DNaseI signal profile heterogeneity. 
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Figure 2.2 Within and between class variability in DNaseI digestion signal at motif sites. A) 

Per base means (µ) and standard deviations (σ) of DNaseI signal aggregated for NRF1 motif sites 

active (+) and inactive (-) in K562. B) K562 DNase-seq and ChIP-seq signal at an NRF1 motif site 

(Chr1:16,175,923-16,176,022) from the active class and C) two neighboring NRF1 inactive sites 

(Chr22:38,966,291-38,966,390). D) Pairwise Pearson correlations between the top 2000 NRF1 

motif sites from the active and inactive class ranked by DNaseI digestion signal. 
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Figure 2.3.   K562 DNaseI signal profiles. K562 aggregate mean (µ) and standard deviation (σ) 

DNaseI digestion profiles for the active (+) and inactive (-) motif site classes of 17 transcription 

factors.
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Figure 2.4.   Coefficients of variation for K562 DNaseI digestion profiles. Coefficients of 

variation derived from K562 DNaseI digestion profiles for the active (+) and inactive (-) motif site 

classes of 17 transcription factors. The dashed horizontal gray line denotes a coefficient of variation 

of 1. Values above this signify that the standard deviation exceeds the mean
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Figure 2.5.   Correlations between aggregate and individual DNaseI  digestion profiles. 

Histograms conveying the spread in Pearson correlation coefficients i) between K562 DNaseI signal 

at active motif sites and the active class aggregate mean DNaseI cut profile for A) CEBPB, B) CHD2, 

and C) NRF1. ii) between K562 DNaseI signal at active motif sites and the inactive class aggregate 

mean DNaseI cut profile for D) CEBPB, E) CHD2, and F) NRF1. iii) between K562 DNaseI signal at 

inactive motif sites and the inactive class aggregate mean DNaseI cut profile for G) CEBPB, H) CHD2, 

and I) NRF1. iv) between K562 DNaseI signal at inactive motif sites and the active class aggregate 

mean DNaseI cut profile for J) CEBPB, K) CHD2, and L) NRF1. 
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Figure 2.6.   Pairwise correlation heatmaps for individual DNaseI  digestion profiles. 

Correlations between individual DNaseI digestion profiles at A) CEBPB and B) CHD2 motif sites in 

K562. After filtering active and inactive NRF1 motif site sets for the top 2000 sites ranked by total 

DNaseI digestion events (for CHD2 the inactive set had less than 2000 sites), we applied 

hierarchical clustering to the DNaseI signal profiles based on pairwise Pearson correlations and 

visualized the correlation values as heatmaps.  
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Figure 2.7.   Motif site overlap with ChIP-seq peaks. A) The fraction of K562 active motif sites for 

a transcription factor that overlap a ChIP-seq peak for another factor (100 transcription factors 

were included). B) The same analysis as in (A) but using a 50 bp window centered on the ChIP-seq 

peak offset instead of the full peak region. C) The fraction of K562 inactive motif sites for a 

transcription factor that overlap a ChIP-seq peak for another factor. D) The same analysis as in (C) 

but using a 50 bp window centered on the ChIP-seq peak offset instead of the full peak region. 
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Figure 2.8.   Overview of the DeFCoM classification framework. In the training phase, active and 

inactive motif site sets are constructed using ChIP-seq data. Corresponding DNase-seq data is used 

to produce DNaseI digestion profiles for each motif site. These profiles are converted into feature 

vectors that go into model selection and SVM training. The trained SVM model can then be used to 

classify motif sites as active or inactive in a different experiment or condition for which DNase-seq 

data are available, without the need ChIP-seq data. 
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Figure 2.9.   Comparison of DeFCoM model variants. A) Partial (5% FPR) and full AUCs from 

evaluations of DeFCoM-RBF for 18 TFs in 4 cell-lines. Black horizontal lines signify values if 

classifications were random. B) Comparison of DeFCoM to DeFCoM-linear by differences in pAUCs 

for the same test sets as A. 
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Figure 2.10.   DeFCoM training phase model selection performance. Assessment of when the 

model selection procedure chooses the better SVM type (linear vs. RBF kernel) during the training 

phase of cross cell-line tests for 18 TFs. Optimal and suboptimal denote whether the model 

selection procedure chose the SVM type that produced the higher pAUC (FPR 5%) values. 
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Figure 2.11.   Classification performance of DeFCoM-linear vs. DeFCoM-RBF. Distribution of 

pAUC (5% FPR) scores by transcription factor from cross cell-line tests for A) DeFCoM-linear and 

B) DeFCoM-RBF. C) Comparison of DeFCoM to DeFCoM-linear by pAUC difference (5% FPR) for 18 

TFs in cross validation and cross cell-line evaluations. 
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Figure 2.12.   Comparisons of DeFCoM classification performance with effective and total 

sequencing depth. Comparison of DeFCoM classification performance at A) effective sequencing 

depths for the four cell-lines used and B) total sequencing depths for the same cell-lines. Notably, 

pAUC values vary widely across TFs and poorly correlate with sequencing depth for most 

transcription factors. 
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Figure 2.13.   DeFCoM classification performance on subsampled data. Comparison of DeFCoM 

classification performance with A) subsampled GM12878 and B) H1-hESC DNase-seq data. H1-hESC 

possesses a higher signal-to-noise ratio and is affected less by increased sequencing depth. C) The 

pAUC difference between GM12878 and H1-hESC for each TF at the four subsampled sequencing 

depths 
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Figure 2.14.   Active motif site set size at various sequencing depths. Number of motif sites that 

meet filtering criteria in the active set across sequencing depths in H1-hESC. 
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Figure 2.15.   Active to inactive motif site set size ratio at various sequencing depths. 

Comparison of the ratio of active (+) motif sites to inactive (-) motif sites across four subsampled 

sequencing depths in A) GM12878 and B) H1-hESC DNase-seq data. C) The difference in ratios 

between GM12878 and H1-hESC for each TF at the four subsampled sequencing depths. 



50 
 

 

 

Figure 2.16.   Performance ranking of footprinters. A) Frequency at which each footprinter 

obtains a particular rank (based on 5% FPR pAUC) for all 71 evaluation sets. B) Mean rank, derived 

from A, of each footprinter. 
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Figure 2.17.   Performance ranking of footprinters using cross validation results. Comparison 

of footprinters when DeFCoM and BinDNase mean pAUCs from cross-validation are used. A) 

Frequency at which each footprinter obtains a rank (based on 5% FPR pAUC) for all 71 evaluation 

sets. B) Mean rank, derived from A, of each footprinter 
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Figure 2.18.   Partial AUC comparison between DeFCoM and Cut Density. Comparison between 

DeFCoM and Cut Density pAUCs (5% FPR) for 71 test sets from 18 transcription factors and 4 cell-

lines. Gray, horizontal dashed lines are at the -0.05 and 0.05 pAUC difference. 
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Figure 2.19.   Performance ranking of footprinters at a 1% FPR cutoff for pAUCs. Comparison 

of footprinters by mean rank of 71 test sets. Mean ranks are based on pAUCs at a 1% FPR. 
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Figure 2.20.   Partial AUC comparison between DeFCoM and BinDNase. Comparison between 

DeFCoM and BinDNase pAUCs (5% FPR) for 71 test sets from 18 transcription factors and 4 cell-

lines. Gray, horizontal dashed lines are at the -0.05, -0.025, 0.025 and 0.05 pAUC differences. 
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Figure 2.21. Comparison between using DNase-seq and ATAC-seq with DeFCoM. Comparison 

between using GM12878 ATAC-seq and DNase-seq data with DeFCoM. Partial AUC (left) and full 

AUC (right) results from cross-validation tests for 18 TFs 
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Footprinter 
Name 

Author Footprinter 
Type 

Classification 
Algorithm 

Included in 
Comparison 

Boyle et al. [38] Motif-centric Probabilistic Graphical 
Model (Hidden Markov 
Model) 

No 

DBFP [45] De novo Probabilistic Graphical 
Model (Dynamic 
Bayesian Network) 

No 

DeFCoM - Motif-centric Support Vector 
Machine* 

Yes 

BinDNase [46] Motif-centric Logistic Regression* Yes 
CENTIPEDE [50] Motif-centric Bayesian hierarchical 

mixture model 
Yes 

Cut Density - Motif-centric Window-based 
summary statistic 

Yes 

DNase2TF [53] De novo Window-based 
summary statistic 

Yes 

FLR [67] Motif-centric Mixture model No 
FOS [48] De novo Window-based 

summary statistic 
Yes 

HINT [68] De novo Probabilistic Graphical 
Model (Hidden Markov 
Model) 

Yes 

Millipede [47] Motif-centric Logistic Regression No 
msCentipede [51] Motif-centric Bayesian multi-scale 

model 
Yes 

PIQ [52] Motif-centric Gaussian process and 
expectation 
propagation 

Yes 

Wellington [49] De novo Binomial test Yes 

*=Supervised learning method 

Table 2.1.   Summary of footprinters. Names of existing footprint detection methods and 

characteristics of their approach. The last column indicates if they were included in the method 

classification performance comparison. 
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Cell-line Files 

GM12878 wgEncodeOpenChromDnaseGm12878AlnRep1.bam 
wgEncodeOpenChromDnaseGm12878AlnRep2.bam 
wgEncodeOpenChromDnaseGm12878AlnRep3.bam 
wgEncodeOpenChromDnaseGm12878AlnRep4.bam 
wgEncodeOpenChromDnaseGm12878AlnRep5.bam 

H1-hESC wgEncodeOpenChromDnaseH1hescAlnRep1.bam 
wgEncodeOpenChromDnaseH1hescAlnRep2.bam 

HepG2 wgEncodeOpenChromDnaseHepg2AlnRep1.bam 
wgEncodeOpenChromDnaseHepg2AlnRep2.bam 
wgEncodeOpenChromDnaseHepg2AlnRep3.bam 

K562 wgEncodeOpenChromDnaseK562AlnRep1V2.bam 
wgEncodeOpenChromDnaseK562AlnRep2V2.bam 
wgEncodeOpenChromDnaseK562AlnRep3V2.bam 

 

Table 2.2   ENCODE DNase-seq data files. File names for DNase-seq data used. Obtained from 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeOpenChromDnase/. 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeOpenChromDnase/
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Transcription Factor Files* 

CEBPB wgEncodeAwgTfbsHaibGm12878Cebpbsc150V0422111UniPk.narrowPeak.gz 

wgEncodeAwgTfbsHaibHepg2Cebpbsc150V0416101UniPk.narrowPeak.gz 

wgEncodeAwgTfbsHaibK562Cebpbsc150V0422111UniPk.narrowPeak.gz 

wgEncodeAwgTfbsSydhH1hescCebpbIggrabUniPk.narrowPeak.gz 

wgEncodeHaibTfbsGm12878Cebpbsc150V0422111AlnRep1.bam 
wgEncodeHaibTfbsGm12878Cebpbsc150V0422111AlnRep2.bam 
wgEncodeHaibTfbsHepg2Cebpbsc150V0416101AlnRep1.bam 
wgEncodeHaibTfbsHepg2Cebpbsc150V0416101AlnRep2.bam 
wgEncodeHaibTfbsK562Cebpbsc150V0422111AlnRep1.bam 
wgEncodeHaibTfbsK562Cebpbsc150V0422111AlnRep2.bam 
wgEncodeSydhTfbsH1hescCebpbIggrabAlnRep1.bam 
wgEncodeSydhTfbsH1hescCebpbIggrabAlnRep2.bam 

CHD2 wgEncodeAwgTfbsSydhGm12878Chd2ab68301IggmusUniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhH1hescChd2IggrabUniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhHepg2Chd2ab68301IggrabUniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhK562Chd2ab68301IggrabUniPk.narrowPeak.gz 
wgEncodeSydhTfbsGm12878Chd2ab68301IggmusAlnRep1.bam 
wgEncodeSydhTfbsGm12878Chd2ab68301IggmusAlnRep2.bam 
wgEncodeSydhTfbsH1hescChd2IggrabAlnRep1.bam 
wgEncodeSydhTfbsH1hescChd2IggrabAlnRep2.bam 
wgEncodeSydhTfbsHepg2Chd2ab68301IggrabAlnRep1.bam 
wgEncodeSydhTfbsHepg2Chd2ab68301IggrabAlnRep2.bam 
wgEncodeSydhTfbsK562Chd2ab68301IggrabAlnRep1.bam 
wgEncodeSydhTfbsK562Chd2ab68301IggrabAlnRep2.bam 

CTCF wgEncodeAwgTfbsBroadGm12878CtcfUniPk.narrowPeak.gz 
wgEncodeAwgTfbsBroadH1hescCtcfUniPk.narrowPeak.gz 
wgEncodeAwgTfbsBroadHepg2CtcfUniPk.narrowPeak.gz 
wgEncodeAwgTfbsBroadK562CtcfUniPk.narrowPeak.gz 
wgEncodeHaibTfbsH1hescCtcfsc5916V0416102AlnRep1.bam 
wgEncodeHaibTfbsH1hescCtcfsc5916V0416102AlnRep2.bam 
wgEncodeHaibTfbsHepg2Ctcfsc5916V0416101AlnRep1.bam 
wgEncodeHaibTfbsHepg2Ctcfsc5916V0416101AlnRep2.bam 
wgEncodeHaibTfbsK562CtcfcPcr1xAlnRep1V2.bam 
wgEncodeHaibTfbsK562CtcfcPcr1xAlnRep2V2.bam 
wgEncodeSydhTfbsGm12878Ctcfsc15914c20StdAlnRep1.bam 
wgEncodeSydhTfbsGm12878Ctcfsc15914c20StdAlnRep2.bam 

EP300 wgEncodeAwgTfbsBroadK562P300UniPk.narrowPeak.gz 
wgEncodeAwgTfbsHaibGm12878P300Pcr1xUniPk.narrowPeak.gz 
wgEncodeAwgTfbsHaibH1hescP300V0416102UniPk.narrowPeak.gz 
wgEncodeAwgTfbsHaibHepg2P300V0416101UniPk.narrowPeak.gz 
wgEncodeHaibTfbsGm12878P300Pcr1xAlnRep1.bam 
wgEncodeHaibTfbsGm12878P300Pcr1xAlnRep2.bam 
wgEncodeHaibTfbsH1hescP300V0416102AlnRep1.bam 
wgEncodeHaibTfbsH1hescP300V0416102AlnRep2.bam 
wgEncodeHaibTfbsHepg2P300V0416101AlnRep1.bam 
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wgEncodeHaibTfbsHepg2P300V0416101AlnRep2.bam 
wgEncodeSydhTfbsK562P300IggrabAlnRep1.bam 
wgEncodeSydhTfbsK562P300IggrabAlnRep2.bam 

GABPA wgEncodeAwgTfbsHaibGm12878GabpPcr2xUniPk.narrowPeak.gz 
wgEncodeAwgTfbsHaibH1hescGabpPcr1xUniPk.narrowPeak.gz 
wgEncodeAwgTfbsHaibHepg2GabpPcr2xUniPk.narrowPeak.gz 
wgEncodeAwgTfbsHaibK562GabpV0416101UniPk.narrowPeak.gz 
wgEncodeHaibTfbsGm12878GabpPcr2xAlnRep1.bam 
wgEncodeHaibTfbsGm12878GabpPcr2xAlnRep2.bam 
wgEncodeHaibTfbsH1hescGabpPcr1xAlnRep1.bam 
wgEncodeHaibTfbsH1hescGabpPcr1xAlnRep2.bam 
wgEncodeHaibTfbsHepg2GabpPcr2xAlnRep1.bam 
wgEncodeHaibTfbsHepg2GabpPcr2xAlnRep2.bam 
wgEncodeHaibTfbsK562GabpV0416101AlnRep1.bam 
wgEncodeHaibTfbsK562GabpV0416101AlnRep2.bam 

JUN-D wgEncodeAwgTfbsHaibH1hescJundV0416102UniPk.narrowPeak.gz 
wgEncodeAwgTfbsHaibHepg2JundPcr1xUniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhGm12878JundUniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhK562JundIggrabUniPk.narrowPeak.gz 
wgEncodeHaibTfbsH1hescJundV0416102AlnRep1.bam 
wgEncodeHaibTfbsH1hescJundV0416102AlnRep2.bam 
wgEncodeHaibTfbsHepg2JundPcr1xAlnRep1.bam 
wgEncodeHaibTfbsHepg2JundPcr1xAlnRep2.bam 
wgEncodeSydhTfbsGm12878JundIggrabAlnRep1.bam 
wgEncodeSydhTfbsK562JundIggrabAlnRep2.bam 

MAFK wgEncodeAwgTfbsSydhH1hescMafkIggrabUniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhHepg2Mafkab50322IggrabUniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhK562Mafkab50322IggrabUniPk.narrowPeak.gz 
wgEncodeSydhTfbsGm12878MafkIggmusPk.narrowPeak.gz 
wgEncodeSydhTfbsGm12878MafkIggmusAlnRep1.bam 
wgEncodeSydhTfbsGm12878MafkIggmusAlnRep2.bam 
wgEncodeSydhTfbsH1hescMafkIggrabAlnRep1.bam 
wgEncodeSydhTfbsH1hescMafkIggrabAlnRep2.bam 
wgEncodeSydhTfbsHepg2Mafkab50322IggrabAlnRep1.bam 
wgEncodeSydhTfbsHepg2Mafkab50322IggrabAlnRep2.bam 
wgEncodeSydhTfbsK562Mafkab50322IggrabAlnRep1.bam 
wgEncodeSydhTfbsK562Mafkab50322IggrabAlnRep2.bam 

MAX wgEncodeAwgTfbsHaibK562MaxV0416102UniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhGm12878MaxIggmusUniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhH1hescMaxUcdUniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhHepg2MaxIggrabUniPk.narrowPeak.gz 
 
wgEncodeHaibTfbsK562MaxV0416102AlnRep1.bam 
wgEncodeHaibTfbsK562MaxV0416102AlnRep2.bam 
wgEncodeSydhTfbsGm12878MaxIggmusAlnRep1.bam 
wgEncodeSydhTfbsGm12878MaxIggmusAlnRep2.bam 
wgEncodeSydhTfbsH1hescMaxUcdAlnRep1V2.bam 
wgEncodeSydhTfbsH1hescMaxUcdAlnRep2V2.bam 
wgEncodeSydhTfbsHepg2MaxIggrabAlnRep1.bam 
wgEncodeSydhTfbsHepg2MaxIggrabAlnRep2.bam 

MYC wgEncodeAwgTfbsSydhH1hescCmycIggrabUniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhK562CmycUniPk.narrowPeak.gz 
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wgEncodeAwgTfbsUtaGm12878CmycUniPk.narrowPeak.gz 
wgEncodeAwgTfbsUtaHepg2CmycUniPk.narrowPeak.gz 
wgEncodeOpenChromChipGm12878CmycAlnRep1.bam 
wgEncodeOpenChromChipGm12878CmycAlnRep2.bam 
wgEncodeOpenChromChipHepg2CmycAlnRep1.bam 
wgEncodeOpenChromChipHepg2CmycAlnRep2.bam 
wgEncodeOpenChromChipHepg2CmycAlnRep3.bam 
wgEncodeSydhTfbsH1hescCmycIggrabAlnRep1.bam 
wgEncodeSydhTfbsH1hescCmycIggrabAlnRep2.bam 
wgEncodeSydhTfbsK562CmycIggrabAlnRep1.bam 
wgEncodeSydhTfbsK562CmycIggrabAlnRep2.bam 

NRF1 wgEncodeAwgTfbsSydhGm12878Nrf1IggmusUniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhH1hescNrf1IggrabUniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhHepg2Nrf1IggrabUniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhK562Nrf1IggrabUniPk.narrowPeak.gz 
wgEncodeSydhTfbsGm12878Nrf1IggmusAlnRep1.bam 
wgEncodeSydhTfbsGm12878Nrf1IggmusAlnRep2.bam 
wgEncodeSydhTfbsH1hescNrf1IggrabAlnRep1.bam 
wgEncodeSydhTfbsH1hescNrf1IggrabAlnRep2.bam 
wgEncodeSydhTfbsHepg2Nrf1IggrabAlnRep1.bam 
wgEncodeSydhTfbsHepg2Nrf1IggrabAlnRep2.bam 
wgEncodeSydhTfbsK562Nrf1IggrabAlnRep1.bam 
wgEncodeSydhTfbsK562Nrf1IggrabAlnRep2.bam 

RAD21 wgEncodeAwgTfbsHaibGm12878Rad21V0416101UniPk.narrowPeak.gz 
wgEncodeAwgTfbsHaibH1hescRad21V0416102UniPk.narrowPeak.gz 
wgEncodeAwgTfbsHaibHepg2Rad21V0416101UniPk.narrowPeak.gz 
wgEncodeAwgTfbsHaibK562Rad21V0416102UniPk.narrowPeak.gz 
wgEncodeHaibTfbsGm12878Rad21V0416101AlnRep1.bam 
wgEncodeHaibTfbsGm12878Rad21V0416101AlnRep2.bam 
wgEncodeHaibTfbsH1hescRad21V0416102AlnRep1.bam 
wgEncodeHaibTfbsH1hescRad21V0416102AlnRep2.bam 
wgEncodeHaibTfbsHepg2Rad21V0416101AlnRep1.bam 
wgEncodeHaibTfbsHepg2Rad21V0416101AlnRep2.bam 
wgEncodeHaibTfbsK562Rad21V0416102AlnRep1.bam 
wgEncodeHaibTfbsK562Rad21V0416102AlnRep2.bam 

REST wgEncodeAwgTfbsHaibGm12878NrsfPcr1xUniPk.narrowPeak.gz 
wgEncodeAwgTfbsHaibH1hescNrsfV0416102UniPk.narrowPeak.gz 
wgEncodeAwgTfbsHaibHepg2NrsfV0416101UniPk.narrowPeak.gz 
wgEncodeAwgTfbsHaibK562NrsfV0416102UniPk.narrowPeak.gz 
wgEncodeHaibTfbsGm12878NrsfPcr1xAlnRep1.bam 
wgEncodeHaibTfbsGm12878NrsfPcr1xAlnRep2.bam 
wgEncodeHaibTfbsH1hescNrsfV0416102AlnRep1.bam 
wgEncodeHaibTfbsH1hescNrsfV0416102AlnRep2.bam 
wgEncodeHaibTfbsHepg2NrsfV0416101AlnRep1.bam 
wgEncodeHaibTfbsHepg2NrsfV0416101AlnRep2.bam 
wgEncodeHaibTfbsK562NrsfV0416102AlnRep1.bam 
wgEncodeHaibTfbsK562NrsfV0416102AlnRep2.bam 

RFX5 wgEncodeAwgTfbsSydhGm12878Rfx5200401194IggmusUniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhH1hescRfx5200401194IggrabUniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhHepg2Rfx5200401194IggrabUniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhK562Rfx5IggrabUniPk.narrowPeak.gz 
wgEncodeSydhTfbsGm12878Rfx5200401194IggmusAlnRep1.bam 
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wgEncodeSydhTfbsGm12878Rfx5200401194IggmusAlnRep2.bam 
wgEncodeSydhTfbsH1hescRfx5200401194IggrabAlnRep1.bam 
wgEncodeSydhTfbsH1hescRfx5200401194IggrabAlnRep2.bam 
wgEncodeSydhTfbsHepg2Rfx5200401194IggrabAlnRep1.bam 
wgEncodeSydhTfbsHepg2Rfx5200401194IggrabAlnRep2.bam 
wgEncodeSydhTfbsK562Rfx5IggrabAlnRep1.bam 
wgEncodeSydhTfbsK562Rfx5IggrabAlnRep2.bam 

SRF wgEncodeAwgTfbsHaibGm12878SrfPcr2xUniPk.narrowPeak.gz 
wgEncodeAwgTfbsHaibH1hescSrfPcr1xUniPk.narrowPeak.gz 
wgEncodeAwgTfbsHaibHepg2SrfV0416101UniPk.narrowPeak.gz 
wgEncodeAwgTfbsHaibK562SrfV0416101UniPk.narrowPeak.gz 
wgEncodeHaibTfbsGm12878SrfPcr2xAlnRep1.bam 
wgEncodeHaibTfbsGm12878SrfPcr2xAlnRep2.bam 
wgEncodeHaibTfbsH1hescSrfPcr1xAlnRep1.bam 
wgEncodeHaibTfbsH1hescSrfPcr1xAlnRep2.bam 
wgEncodeHaibTfbsHepg2SrfV0416101AlnRep1.bam 
wgEncodeHaibTfbsHepg2SrfV0416101AlnRep2.bam 
wgEncodeHaibTfbsK562SrfV0416101AlnRep1.bam 
wgEncodeHaibTfbsK562SrfV0416101AlnRep2.bam 

SP1 wgEncodeAwgTfbsHaibGm12878Sp1Pcr1xUniPk.narrowPeak.gz 
wgEncodeAwgTfbsHaibH1hescSp1Pcr1xUniPk.narrowPeak.gz 
wgEncodeAwgTfbsHaibHepg2Sp1Pcr1xUniPk.narrowPeak.gz 
wgEncodeHaibTfbsGm12878Sp1Pcr1xAlnRep1.bam 
wgEncodeHaibTfbsGm12878Sp1Pcr1xAlnRep2.bam 
wgEncodeHaibTfbsH1hescSp1Pcr1xAlnRep1.bam 
wgEncodeHaibTfbsH1hescSp1Pcr1xAlnRep2.bam 
wgEncodeHaibTfbsHepg2Sp1Pcr1xAlnRep1.bam 
wgEncodeHaibTfbsHepg2Sp1Pcr1xAlnRep2.bam 

TAF1 wgEncodeAwgTfbsHaibGm12878Taf1Pcr1xUniPk.narrowPeak.gz 
wgEncodeAwgTfbsHaibH1hescTaf1V0416102UniPk.narrowPeak.gz 
wgEncodeAwgTfbsHaibHepg2Taf1Pcr2xUniPk.narrowPeak.gz 
wgEncodeAwgTfbsHaibK562Taf1V0416101UniPk.narrowPeak.gz 
wgEncodeHaibTfbsGm12878Taf1Pcr1xAlnRep1.bam 
wgEncodeHaibTfbsGm12878Taf1Pcr1xAlnRep2.bam 
wgEncodeHaibTfbsH1hescTaf1V0416102AlnRep1.bam 
wgEncodeHaibTfbsH1hescTaf1V0416102AlnRep2.bam 
wgEncodeHaibTfbsHepg2Taf1Pcr2xAlnRep1.bam 
wgEncodeHaibTfbsHepg2Taf1Pcr2xAlnRep2.bam 
wgEncodeHaibTfbsK562Taf1V0416101AlnRep1.bam 
wgEncodeHaibTfbsK562Taf1V0416101AlnRep2.bam 

TBP wgEncodeAwgTfbsSydhGm12878TbpIggmusUniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhH1hescTbpIggrabUniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhHepg2TbpIggrabUniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhK562TbpIggmusUniPk.narrowPeak.gz 
wgEncodeSydhTfbsGm12878TbpIggmusAlnRep1.bam 
wgEncodeSydhTfbsGm12878TbpIggmusAlnRep2.bam 
wgEncodeSydhTfbsH1hescTbpIggrabAlnRep1.bam 
wgEncodeSydhTfbsH1hescTbpIggrabAlnRep2.bam 
wgEncodeSydhTfbsHepg2TbpIggrabAlnRep1.bam 
wgEncodeSydhTfbsHepg2TbpIggrabAlnRep2.bam 
wgEncodeSydhTfbsK562TbpIggmusAlnRep1.bam 
wgEncodeSydhTfbsK562TbpIggmusAlnRep2.bam 
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USF2 wgEncodeAwgTfbsSydhGm12878Usf2IggmusUniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhH1hescUsf2IggrabUniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhHepg2Usf2IggrabUniPk.narrowPeak.gz 
wgEncodeAwgTfbsSydhK562Usf2IggrabUniPk.narrowPeak.gz 
wgEncodeSydhTfbsGm12878Usf2IggmusAlnRep1.bam 
wgEncodeSydhTfbsGm12878Usf2IggmusAlnRep2.bam 
wgEncodeSydhTfbsH1hescUsf2IggrabAlnRep1.bam 
wgEncodeSydhTfbsH1hescUsf2IggrabAlnRep2.bam 
wgEncodeSydhTfbsHepg2Usf2IggrabAlnRep1.bam 
wgEncodeSydhTfbsHepg2Usf2IggrabAlnRep2.bam 
wgEncodeSydhTfbsK562Usf2IggrabAlnRep1.bam 
wgEncodeSydhTfbsK562Usf2IggrabAlnRep2.bam 

*File prefixes denote the following base URLs:  
wgEncodeAwg = http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/ 
wgEncodeHaib = http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibTfbs/ 
wgEncodeSydh = http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeSydhTfbs/ 
wgEncodeUchicago = http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUchicagoTfbs/ 
wgEncodeOpenChrom = http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeOpenChromChip/ 
wgEncodeUw = http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwTfbs/ 

Table 2.3.   ENCODE ChIP-seq data files. File names for ChIP-seq data used in model training and 

comparisons of footprinters. 

 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwTfbs/
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Transcription 
Factor 

GM12878 
Active 

GM12878 
Inactive 

H1-
hESC 

Active 

H1-
hESC 

Inactive 

HepG2 
Active 

HepG2 
Inactive 

K562 
Active 

K562 
Inactive 

CEBPB 1695 96482 2732 10517 5612 4027 11438 229030 

CHD2 7096 25202 3885 15856 3335 1599 4884 44050 

CTCF 40146 661473 40910 83590 32083 113093 49546 875895 

EP300 3481 125945 5655 95419 11998 55446 1319 663038 

GABPA 5892 177426 4427 9436 8662 119616 10456 191479 

JUND 1605 68708 2327 9776 6908 2475 20622 236287 

MAFK 592 74172 2134 19569 3127 4780 11309 224351 

MAX 10282 109679 7167 167547 9621 6646 35351 272022 

MYC 3276 84147 3314 50435 3131 7310 3875 220364 

NRF1 5293 57488 4216 51703 1821 61654 3863 151948 

RAD21 32581 668688 40368 180678 32535 46745 31817 987156 

REST 5029 332257 5282 289916 9065 84687 11713 1182481 

RFX5 2583 48576 797 15346 2646 2213 1103 237826 

SP1 11923 162337 10009 102770 11448 88642 - - 

SRF 5295 197928 2139 67446 2278 33010 2983 339381 

TAF1 11143 155336 17261 57067 14577 74334 12783 417206 

TBP 7341 121048 9695 35519 6998 9172 10052 358025 

USF2 2877 7031 2293 1416 1988 544 1721 28189 

Table 2.4.   Active and inactive motif site set sizes. 
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Transcription Factor Down-sampled K562 Data  
pAUCs (5% FPR) 

Dataset Shift Correction  
pAUCs (5% FPR) 

CEBPB 0.27 0.33 

CHD2 0.56 0.84 

CTCF 0.64 0.68 

EP300 0.57 0.60 

GABPA 0.76 0.85 

JUND 0.68 0.75 

MAFK 0.62 0.55 

MAX 0.72 0.73 

MYC 0.95 0.98 

NRF1 0.47 0.77 

RAD21 0.69 0.83 

REST 0.65 0.15 

RFX5 0.63 0.64 

SRF 0.49 0.51 

TAF1 0.90 0.93 

TBP 0.66 0.89 

USF2 0.63 0.77 

 

Table 2.5.   Classification performance for DeFCoM training phase variants. Partial AUC values for 

two variants of DeFCoM assessed on 17 TFs. Models were trained on K562 data and tested on 

GM12878 data sets.  
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Cell-line FRiP Score Total Sequencing 
Depth  

(Millions of reads) 

Effective Sequencing 
Depth  

(Millions of reads) 

GM12878 0.186284 245 45 

H1-hESC 0.427376 110 47 

HepG2 0.230881 50 11 

K562 0.231837 365 84 

 

Table 2.6.   DNase-seq signal quality and sequencing depth statistics. 
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CHAPTER III 

Characterizing molecular variation in Collaborative Cross  
mice at multiple levels of 1,3-butadiene exposure 

 

OVERVIEW 

It has been well demonstrated that genetic variation plays a large role in phenotypic 

variability. Genotype can influence modifications to the gene regulatory landscape that in turn 

affect transcription, protein expression, and ultimately a phenotype. Despite this established view 

of information flow within cells, a great challenge remains in uncovering which biological processes 

and components are at work within a particular context. A major goal in toxicogenomics is to 

understand these molecular relationships in response to toxicant exposure. For this study, I 

performed a descriptive analysis of how genetic variation and toxicant exposure relate to changes 

in chromatin organization and gene expression. Using the Collaborative Cross, a genetically diverse 

panel of multi-parent recombinant inbred mouse strains, I analyzed gene expression and chromatin 

accessibility data for lung, liver, and kidney tissue from 50 Collaborative Cross strains across three 

levels of exposure to 1,3-butadiene (BD), a gas used for the production of rubber and polymers. I 

also incorporated genetic data to perform quantitative trait loci (QTL) mapping of gene expression 

(eQTL) and chromatin accessibility (cQTL). From these analyses I observed tissue-specific 

differences in variability of gene expression and accessible chromatin in response to BD with lung 

exhibiting the largest differences. Additionally, I report eQTLs and cQTLs detected for each tissue in 

each of the three BD treatment groups and find most associations to be local for both eQTLs and 

cQTLs. In lung and kidney, “hotspot” genomic regions enriched for cQTLs were found, and we 
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identified Collaborative Cross founder strain haplotypes as candidates for driving these hotspot 

associations. 

 

INTRODUCTION 

 Chemical exposure can have distinct effects within individuals across tissues and cell types 

as well as across individuals [69,70]. To understand these differences at the molecular level, 

researchers are taking advantage of high-throughput assays for measuring various aspects of gene 

regulation, metabolism, and protein expression in relation to toxicant exposure [71]. Despite the 

use of multi-omics approaches for toxicology studies, the integration of these complementary data 

types with genotype information to gain a holistic view of toxicity susceptibility remains a 

challenge. 

 Of particular interest in this study is the DNA damage-inducing chemical 1,3-butadiene 

(BD).  At room temperature, BD is an industrial gas and is mainly used in synthetic rubber and 

polymer production.  These butadiene-based polymers are integrated into many commercial 

products such as automobiles, footwear, and plastics [72].  Additionally, BD is generally found at 

low concentrations in the environment and is also a component of tobacco smoke [73,74]. When 

inhaled, lung and liver microsomes metabolize BD into epoxide intermediates that react with DNA 

to form DNA adducts [75,76]. Importantly, mice and rat chronic inhalation studies have shown that 

BD exposure causes tumor formation in several tissues as a consequence of this DNA damage 

[77,78]. 

 At the epigenetic level, changes in bulk DNA methylation and histone modification levels in 

response to BD have been observed for mouse lung and liver tissues, but significant changes were 

not observed in kidney [69,79]. In liver, these epigenetic marks were measured across a genetically 

diverse group of 7 inbred mouse strains (NOD/ShiLtJ, CAST/EiJ, A/J, WSB/EiJ, PWK/PhJ, C57BL/6J, 

and 129S1/SvImJ), and strain-specific epigenetic variation was found [79]. In this study, I further 
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investigated the relationship between genetic variation, molecular variability, and BD exposure 

using the Collaborative Cross (CC), a genetically diverse population of inbred mouse strains with 

haplotypes inherited from the 7 aforementioned mouse strains plus NZO/H1LtJ. With gene 

expression and chromatin accessibility data for mice from 50 CC strains, I assessed global trends in 

variation of these molecular readouts across and within lung, liver, and kidney tissue at three BD 

exposure levels (control and two concentrations of BD). Through this analysis, I report tissue-

specific differences in BD response. With available haplotype data, I performed gene expression 

quantitative trait loci (eQTL) and chromatin accessibility QTL (cQTL) mapping and provide an 

initial characterization of significant associations for each tissue and treatment group. 

 

MATERIALS AND METHODS 

Animals and 1,3-butadiene exposure 

Male Collaborative Cross (CC) mice, obtained from UNC-CH (Chapel Hill, NC, USA), were 

housed in sterilized cages in a temperature-controlled (24°C) room with a 12/12-hr light/dark 

cycle and access to purified water and NIH-31 pelleted diet (Purina Mills, Richmond, IN, USA). Mice 

were randomly assigned to a control group or one of two experimental groups that I denote “625 

ppm” and “1500 ppm”. At approximately 10 weeks old, following a two-week acclimation period, 

mice were placed in cylindrical metal mesh exposure chambers for 6 hours a day, Monday-Friday, 

spanning a two-week period. Exposure chambers for control group mice emitted clean air, and 625 

ppm group and 1500 ppm group exposure chambers contained an average concentration of 

624±72 ppm and 1464±196 ppm of BD gas respectively. Immediately following the final exposure, 

mice were euthanized by exsanguination following deep nembutal (100 mg/kg intraperitoneal 

injection) anesthesia, and lungs, livers, and kidneys were excised, snap-frozen in liquid nitrogen, 

and stored at –80°C for subsequent processing. The animals were treated humanely and with 

regard for alleviation of suffering, and all procedures were approved by the Institutional Animal 
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Care and Use Committee at UNC-CH. Experimental procedures and preparation of mice samples 

were performed by the Rusyn Lab at Texas A&M University (TAMU). 

 

Collaborative Cross reference genomes and transcriptomes 

Alignment and processing of sample data from RNA-seq and ATAC-seq required CC strain-

specific reference genomes and transcriptomes that I denote as “pseudo-genomes” and “pseudo-

transcriptomes” respectively. Pseudo-genomes in FASTA file format and corresponding MOD files 

were downloaded from the CC resource website 

(http://csbio.unc.edu/CCstatus/index.py?run=Pseudo) for Build 37. A Build 37 MOD file provides a 

CC strain-specific mapping between genomic positions from a CC strain’s pseudo-genome and the 

mm9 (C57BL/6J) genomic coordinate space. To construct pseudo-transcriptomes for each CC 

strain, I used the appropriate MOD file to convert mm9 RefSeq gene annotations into strain-specific 

gene annotations. These gene annotations in conjunction with the pseudo-genome FASTA files were 

passed as arguments into the RSEM (v1.2.31) [80] command rsem-prepare-reference with default 

parameter specifications.  

 

RNA-seq and data processing 

Total RNA was isolated from flash-frozen tissue samples using a Qiagen miRNeasy Kit 

(Valencia, CA) according to the manufacturer’s protocol. RNA purity and integrity were evaluated 

using a Thermo Scientific Nanodrop 2000 (Waltham, MA) and an Agilent 2100 Bioanalyzer (Santa 

Clara, CA), respectively. A minimum RNA integrity value of 7.0 was required for RNA samples to be 

used for library preparation and sequencing. Libraries for samples with a sufficient RNA integrity 

value were prepared using the Illumina TruSeq Total RNA Sample Prep Kit (Illumina, Inc., San 

Diego, USA) with ribosomal depletion. Single-end (50bp) sequencing was performed (Illumina 

HiSeq 2500). RNA sample preparations were performed by the Rusyn Lab and sequencing was 

http://csbio.unc.edu/CCstatus/index.py?run=Pseudo
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done by the sequencing facility at TAMU and the UNC-CH High-throughput Sequencing Facility 

(HTSF).  

Following sequencing, reads were filtered to retain only those with a quality score of 20 or 

greater for at least 90 percent of read positions. Additionally, reads with adapter contamination 

were removed using TagDust [81]. For each sequenced RNA sample, reads were mapped to the 

appropriate pseudo-transcriptome using the RSEM command rsem-calculate-expression with STAR 

(v2.5.3a) [82] as the specified aligner (parameter set: --star). RSEM utilizes STAR with alignment 

options that follow ENCODE3 RNA-seq read mapping guidelines 

(https://www.encodeproject.org/pipelines/ENCPL002LSE/).  

 

Gene expression quantification and gene set finalization 

 The RSEM command rsem-calculate-expression used for the RNA-seq read mapping also 

performs gene expression quantification and produces a transcripts per million (TPM) value for 

each gene specified in the pseudo-transcriptome. Samples were grouped by a combination of tissue 

type (liver, lung, and kidney) and treatment status (control, 625 ppm, and 1500 ppm) to produce a 

total of 9 sample groups. TPM values for samples within a group were median ratio normalized 

using DESeq2 [83] to make the values more comparable across samples. A requirement that the 

normalized TPM value must exceed 1 for a gene in at least 5% of the samples within a group was 

applied to exclude genes with sparse expression across samples. As a final filtering step, genes on 

chrY and chrM were excluded. 

 

ATAC-seq and data processing 

Flash frozen tissue samples were pulverized in liquid nitrogen using the BioPulverizer 

(Biospec) to break open cells and allow even exposure of intact chromatin to Tn5 transposase. 

Pulverized material was thawed in glycerol containing nuclear isolation buffer to stabilize nuclear 

https://www.encodeproject.org/pipelines/ENCPL002LSE/
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structure [84] and then filtered through Miracloth (Calbiochem) to remove large tissue debris. 

Nuclei were washed and directly used for treatment with Tn5 transposase. Tissue processing was 

performed by the Crawford Lab at Duke University. Single-end (50bp) sequencing was performed 

by UNC-CH HTSF (Illumina HiSeq 2500).  

Following sequencing, reads were filtered to retain only those with a quality score of 20 or 

greater for at least 90 percent of read positions. Additionally, reads with adapter contamination 

were removed using TagDust, and a maximum of 5 read duplicates were allowed. Prior to read 

mapping, a GSNAP database for each pseudo-genome was built using GMAP and the pseudo-

genome FASTA file (parameter set: -k 15, -q 1). For each sample, reads remaining after filtering 

were aligned to the appropriate pseudo-genome using GSNAP (parameter set: -k 15, -m 1, -i 5, --

sampling=1, --trim-mismatch-score=0, --genome-unk-mismatch=1, --query-unk-mismatch=1) [85]. 

Any reads that mapped to more than 4 genomic locations were removed. 

Satellite repetitive elements, regions with high sequence homology to mitochondrial DNA, 

rRNA, and regions on chrX with high sequence homology to chrY are prone to producing artifactual 

signals caused by experimental or technical biases. Consequently, it has been recommended that 

these regions be excluded from sequencing-based analyses [86]. The ENCODE Consortium [15] 

created “blacklists” containing the aforementioned problematic regions for the human genome, and 

blacklists were generated following a similar procedure for the mm9 mouse reference genome. In 

the same manner, pseudo-genome specific blacklists were created by combining RepeatMasker [87] 

annotations and BLAT [88] derived chrX/Y homologous segments and genomic regions in strong 

sequence homology to mitochondrial DNA. These pseudo-genome blacklists were used to remove 

problematic genomic regions from consideration in further analyses. 

Using the CC strain MOD files, mapped reads for each ATAC-seq sample were converted to 

mm9 genomic coordinates to enable direct comparison of data between samples. To account for 

any differences between the pseudo-genome blacklists and the mm9 blacklist, converted reads that 
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mapped to mm9 blacklist regions were removed. Following conversion, all reads aligning to the 

positive strand were offset +5 bp, and all reads aligning to the negative strand were offset by -5 bp. 

These read shiftings account for a previously characterized behavior in the integration of adaptors 

by Tn5 transposase upon DNA binding [89]. 

 

Chromatin accessibility quantification and windowing 

Samples were grouped by a combination of tissue type (liver, lung, and kidney) and 

treatment group (control and 625 ppm) to produce a total of 6 sample groups. For each sample, 

genomic regions representing high chromatin accessibility, i.e. peaks, were determined using the 

peak-calling software F-seq [58] with default parameters. To define an initial common set of 

chromatin regions for between group comparisons, across all sample groups the union set of the 

top 50,000 peaks (ranked by F-seq score) from each sample was derived and overlapping peaks 

were merged, resulting in 310,620 chromatin regions. These peaks were subsequently divided into 

overlapping 300 bp windows as previously described [90]. Briefly, peaks smaller than 300 bp were 

expanded to 300 bp, and for any peak larger than 300 bp, the number of 300 bp windows to 

segment the peak and not exceed its boundaries was determined using an initial overlap constraint 

of 100 bp. If the windows spanned less than 90% of bases within the peak, an additional window 

was added and the overlap was adjusted to produce uniformly spaced windows that exactly 

spanned the peak region. This windowing protocol resulted in 1.8 million windows, and per sample 

read coverage of each window was calculated using BEDTools  coverageBed [91]. 

Read count values for samples within a group were median ratio normalized using DESeq2 

to make the values more comparable across samples. To exclude windows with sparse read counts 

across samples, a filtering procedure similar to that described previously [92] was used. Windows 

were retained if at least 20% of samples within a sample group had high chromatin accessibility. 

High chromatin accessibility was defined as being in the top 20th percentile of normalized read 



73 
 

counts of all windows across all samples in a group. Further filtering was done to include only the 

top 5% of windows ranked by total normalized counts across samples in a group. Presumably, 

these windows would more likely contain active regulatory elements while also providing the 

highest power to detect associations. As a final filtering step, regions on chrY and chrM were 

excluded. 

 

Principal component analysis cluster significance testing 

In determining whether two groups of points (or vectors) in a given principal component 

analysis (PCA) transformed space form distinct clusters, I first calculate 1) the Euclidean distance 

between a given point and the centroid of the group for which the point belongs and 2) the 

Euclidean distance between a given point and the centroid of the group for which the point does not 

belong. These are referred to as within group and between group distances respectively. The 

distributions of within group and between group distances were compared using a Wilcoxon rank-

sum test with α≤0.05 to determine if there exists a statistically significant difference between the 

distances, indicating significant clustering. 

 

Differential gene expression analysis 

The number of differentially expressed genes between treatment groups was determined 

using DESeq2. The 625 ppm and 1500 ppm groups were combined to represent one BD exposure 

group. Both the control and BD exposed group were reduced to samples representing only the 

strains in common between both groups to mitigate inconsistencies in genetic background. 

Expected counts estimated by RSEM were used to generate a matrix of gene abundances. Genes 

with no expected counts across samples were removed prior to analysis by DESeq2. To mitigate the 

influence of technical variation, batch and sequencing center were included as covariates in the 

DESeq2 model.  
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Haplotype reconstruction and segmentation for eQTL and cQTL analysis 

Diplotype probabilities for each CC strain in this study were obtained from the CC resource 

database (http://csbio.unc.edu/CCstatus/index.py?run=FounderProbs) for genome version B37. 

These haplotype reconstructions were previously calculated using an HMM model for genotype 

array data [93]. The haplotype reconstructions provide probabilities of a genomic region being 

inherited from each of the 8 founder strains represented as probabilities for 36 genotype calls (8 

homozygous and 28 heterozygous founder strain calls) for each genotype array marker. These 

probabilities were converted into haplotype dosages, i.e., the expected number of haplotypes. Let G 

be a symmetric matrix of genotype call probabilities for a marker m and Gij be the genotype call 

probability for genotype ij comprised of two founder strain haplotypes i,j∈{A,B,C,D,E,F,G,H}. Note 

that in this case Gij and Gji are considered equivalent. The haplotype dosage calculation for founder 

strain haplotype k and marker m is  

 

 

To reduce the computational burden of testing for haplotype-phenotype associations at each 

genotype marker, segmentation analysis was performed [94]. Briefly, since array marker densities 

exceed the total density of recombinations in the CC population, haplotype segment boundaries 

were redefined based on transitions between highest dosage haplotype.  For each CC strain, a 

segment breakpoint was defined at a genotype marker whenever the highest dosage haplotype 

differed from the previous marker. The union set of breakpoints across all 50 CC strains in this 

study was used to construct the final segment boundaries, resulting in 4,970 segments. Segments 

on chrY and chrM were excluded. The mean and median segment sizes were 0.48 and 0.22 Mb 

http://csbio.unc.edu/CCstatus/index.py?run=FounderProbs
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respectively with the largest segment size being 11.47 Mb. For each haplotype, dosages were 

averaged for all markers within a segment. Using a consolidated set of segments for QTL analysis 

has been shown to produce essentially identical results to using a full set of genotype markers 

while simultaneously providing improvements in computational efficiency [94].  

 

eQTL and cQTL analysis workflow 

For both eQTL and cQTL analysis, the general approach for detecting haplotype-phenotype 

associations is the same, but the analyses differ in the phenotypes being assessed. For clarity and 

simplicity, the methodology here is elaborated in terms of gene expression (eQTL) for a single 

phenotype (gene) and haplotype segment but applies to chromatin windows (cQTL) as well. 

Associations are identified using a modified regression on probabilities (ROP) framework [95,96]. 

Normalized TPM values transformed using a rank-based inverse normal transform were regressed 

on averaged haplotype dosages. Sequencing center and batch were included as covariates. An F-test 

was performed to assess model fit with the null model specified to exclude haplotype dosages. This 

procedure was applied to all genes for all segments, and statistical significance of p-values was 

determined at a 5% False Discovery Rate (FDR) using the R package qvalue [97]. 

 

RESULTS 

Experimental Design 

A major goal of this study was to characterize the impact of genetic variability and BD 

exposure on gene expression and chromatin accessibility. To do so, mice representing 50 

Collaborative Cross (CC) mouse strains were assigned into three groups that we denote as 

“control”, “625 ppm”, and “1500 ppm”. Each group contained one mouse for a given strain.  The 

control group mice were placed in exposure chambers circulating clean air for 6 hours a day, five 

days per week, for two weeks. The 625 ppm and 1500 ppm groups were placed in exposure 
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chambers with approximately 625 ppm and 1500 ppm concentrations of BD respectively. RNA-seq 

was performed on lung, liver, and kidney tissue for mice in each group as well as ATAC-seq for mice 

in the control and 625 ppm groups (Figure 3.1). The experiments were designed to maximize the 

number of strains represented in each group, but due to limitations and experiment-specific factors, 

RNA-seq and ATAC-seq data were not available for all tissues across all strains and groups (Table 

3.1). After data processing, 35 strains were shared for both assays across all tissues and groups, 37 

strains across all tissues and groups for RNA-seq, 40 strains across all tissues and groups for ATAC-

seq, 43 strains across tissues in the ATAC-seq control group, 47 strains across tissues in the ATAC-

seq 625 ppm group, 49 strains across tissues in the RNA-seq control group, 43 strains across 

tissues in the RNA-seq 625 ppm group, and 44 strains across tissues in the RNA-seq 1500 ppm 

group. 

 

Tissue-type strongly contributes to gene expression variation between samples 

To identify variables that prominently contribute to overall gene expression variability, I performed 

principal components analysis (PCA) on the gene expression profiles, derived from RNA-seq, of 

each individual in our study across all treatment groups and tissues. Principal Components (PCs) 1 

and 2 contributed to 35.7% and 17.9% of the total variance respectively with the remaining 46.4% 

of total variance distributed among the remaining 406 PCs (Figure 3.2). Visualization of PCs 1-4 

individually as Gaussian kernel density estimates and pairwise as scatterplots showed a clear 

separation of samples by tissue type in PCs 1 and 2 (Figure 3.3). PCs 3 and 4 did not exhibit 

separation by tissue, but did portray partial clustering by BD exposure status (Figure 3.4).  To 

assess whether the clustering by BD exposure status was statistically significant, I applied a 

Wilcoxon rank-sum test to compare distributions consisting of the between group and within group 

distances to the group centroids using PCs 3 and 4 (see Materials & Methods). The p-value obtained 

provides support for a significant separation between clusters on PCs 3 and 4. (p < 2.2e-16). 
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Within-tissue gene expression variation reveals BD exposure associated effects 

 Because between-tissue gene expression variability showed more prominent tissue 

associated variation than BD associated effects, I performed PCA of gene expression profiles from 

all treatment groups for each tissue independently to investigate whether BD exposure contributed 

to noticeable variation within a tissue. Relative to the PCA across all three tissues, PC 1 for each 

tissue contributed less to the total variance with percent contributions being 9.7%, 8.5%, and 8.6% 

for lung, liver, and kidney respectively (Figure 3.5). Visualization of PCs for each tissue in a similar 

manner as the across-tissue PCA revealed a distinct separation of samples by BD exposure status in 

lung and liver but not in kidney on PCs 1 and 2 (Figures 3.6, 3.7, and 3.8). For samples in kidney, 

clusters associated with BD exposure became apparent on PCs 4 and 5. Statistical significance of the 

perceived groupings within each tissue were evaluated by the Wilcoxon rank-sum test as with the 

across tissue PCA analysis. For the clustering assessment of lung samples, PCs 1 and 2 showed a 

statistically significant separation between groups (p < 2.2e-16), as did PC 1 for liver samples (p < 

2.2e-16) and PCs 4 and 5 for kidney samples (p < 2.2e-16). The clustering of kidney samples by BD 

exposure status occurred at later PCs relative to the PCA of lung and liver samples, suggesting that 

gene expression changes in kidney tissue in response to BD are not as prominent as in lung and 

liver tissue. Differential expression analysis was conducted using DESeq2 to determine the number 

of differentially expressed genes in the three tissues between control and BD exposed mice. Based 

on observations from PCA, the expected outcome was that fewer genes would be differentially 

expressed in kidney tissue compared to lung and liver, and this was observed. In kidney 3,639 

genes were significantly differentially expressed between control and BD exposed samples whereas 

lung and liver had 6,936 and 6,512 differentially expressed genes respectively (FDR 0.05, Figure 

3.9). These results in conjunction with the PCA show that BD exposure associated effects on gene 

expression are more pronounced in lung and liver tissue than kidney. 
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Chromatin accessibility differences by tissue type are more pronounced than BD exposure 

associated variation. 

 From PCA of gene expression profiles, differences between tissues were noted as the 

strongest source of variation. To assess whether this applied to chromatin region accessibility as 

well, PCA was performed on chromatin accessibility profiles constructed from ATAC-seq data for 

each sample across all treatment groups and tissues. Initially, the top 5% of 300 bp chromatin 

windows ranked by accessibility (total read counts) were analyzed (see Materials & Methods). A 

substantial amount of the total variance was captured by PC 1 (52.5%) with a sharp decrease to 

6.9% explained by PC 2 (Figure 3.10). Visualization of PCs 1-5 as previously done for the gene 

expression PCA showed a less distinct separation of samples by tissue (Figure 3.11). Additionally, 

no separation of samples by treatment group was visually apparent (Figure 3.12). Because the top 

5% of chromatin windows may be capturing many sites commonly accessible across tissues, PCA 

was also applied to the top 50% most accessible chromatin windows. Using a broader set of 

chromatin windows reduced the variance contribution of PC 1 to 32%, but increased the variance 

explained by PC 2 to 15.2%. The remaining PCs each contributed less than 1% (Figure 3.10). 

Interestingly, PCs 1 and 2 produce a stark separation of samples by tissue type that was less 

pronounced using the top 5% of chromatin windows, but samples still do not cluster by treatment 

group within the top 5 PCs (Figures 3.13 and 3.14). The observations made through comparison of 

the top 5% and top 50% of chromatin windows suggest that the most accessible regions are more 

likely to be active across tissues. In both cases, BD exposure associated variation did not appear to 

produce sample clusters. 
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Within-tissue chromatin accessibility variation captures BD exposure associated effects in lung 

and liver 

 To investigate whether samples within each tissue segregate by BD exposure status, PCA of 

chromatin accessibility profiles was performed separately for each tissue. Both the top 5% and top 

50% most accessible chromatin windows were analyzed. Similar to the across tissue PCA, PC 1 for 

the top 5% of windows in each tissue comprised more variance than in the top 50% of windows 

(34.7-45.6% vs. 9.4-13.3%; Figures 3.15 and 3.16). In lung, PCs 3 and 4 for both sets of windows 

showed potential clustering by treatment group (Figures 3.17 and 3.18), but evaluation of clusters 

by a Wilcoxon rank-sum test only showed significant grouping for the top 50% (top 5% set p = 

0.054; top 50% set p = 1.83e-12). From individual and pairwise visualization of the top 5 PCs, liver 

and kidney samples did not clearly separate by treatment status for the top 5% most accessible 

chromatin windows (Figures 3.19 and 3.21), and evaluation of their sample to centroid distances as 

aforementioned confirmed a lack of statistically significant grouping (liver p = 0.41; kidney p = 

0.07). However, the top 50% set for liver samples produced a significant p-value on PCs 1-5 (p = 

1.58e-5; Figure 3.20), but the p-value for the kidney top 50% set still did not reach significance (p = 

0.1; Figure 3.22). These observations of chromatin accessibility variation reflect the general pattern 

seen with gene expression profiles where lung and liver appear to be more strongly affected by BD 

exposure than kidney tissue. 

 

Identification of local and distal gene expression QTLs in CC mice 

 The public availability of CC genotype data allowed for me to investigate how genetic 

variation influences variability in transcriptional output. Treating gene expression as a molecular 

quantitative trait and regressing on haplotype dosages of genomic segments, eQTL mapping was 

performed using RNA-seq data for each treatment group (control, 625 ppm BD exposure, 1500 ppm 

BD exposure) in lung, liver, and kidney tissue. Because the numbers of CC strains in each group 
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were not consistent, I reduced the strains in each group to the universal set of 35 strains in 

common. The total number of control group eQTLs detected in lung, liver, and kidney were 400, 

505, and 869 respectively (FDR 0.05; Table 3.2; Figures 3.24-3.26). When comparing the genomic 

locations of segments to the positions of their significantly associated genes (eGenes), in all three 

tissues most associations were local which we define as 10 Mb from the gene transcription start 

site (TSS; Figure 3.23). This observation is consistent with previous eQTL studies in both mice and 

human [94,98]. For lung, 34 of the 67 eGenes had local associations and 36 eGenes paired with a 

distal segment. Of the 168 eGenes in liver, I observed 101 local and 82 distal associations. Kidney 

possessed the highest number of eGenes identified at 213 of which 105 paired with local segments 

and 124 had distal associations. 

 In the 625 ppm group, 505 lung eQTLs were found with 97 eGenes (FDR 0.05). Of those 

eGenes 58 were from local eQTLs, and 44 were associated with distal segments. In liver 842 eQTLs 

were detected for 102 eGenes with 44 pairing with local and 65 pairing with distal segments. Lastly, 

for the 2,336 kidney eQTLs observed, 162 of the 283 eGenes had local associations and 136 were 

distal (Table 3.2; Figures 3.27-3.29). Compared to the 625ppm group, the total number of 1500 

ppm group eQTLs identified increased for all tissues to 869 (lung), 1,803 (liver), and 3,523 

(kidney).  The number of eGenes was 114 (66 local; 55 distal), 216 (128 local; 104 distal), and 417 

(255 local; 188 distal) in lung, liver, and kidney respectively (Table 3.2; Figures 3.30-3.32). Relative 

to the control group, the number of eQTLs identified increased for each tissue in both the 625ppm 

and 1500 ppm group with the exception of the liver 625 ppm group. In comparing the distances of 

associations, in all treatment groups and tissues most of the associations were within 10 Mb (Figure 

3.23). 

 Within a treatment group, the fraction of eQTLs that overlapped between tissues ranges 

from 0.04 to 0.21 when considering all eQTLs (FDR 0.05; Figure 3.33). Across treatment groups for 

the same pairwise comparisons, the pattern of overlaps remained fairly consistent with the largest 
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change being 0.07. In each treatment group, the fraction of lung and liver eQTLs overlapping kidney 

was the highest. When considering local and distal eQTL overlaps separately, local eQTL overlaps 

were more concordant than distal within a treatment group (Figure 3.34). Between treatment 

groups within a tissue, the fraction of concordant eQTLs ranged from 0.1 to 0.26 for lung, 0.13 to 

0.34 for liver, and 0.18 to 0.39 for kidney (Figure 3.33). Similar to the overlap within a treatment 

group and between tissues, a breakdown into local and distal eQTLs showed that overall, local 

eQTLs more consistently appeared across treatment groups than distal eQTLs (Figure 3.35). 

Observations that local regulation of gene expression within a tissue is the most consistent despite 

BD exposure supports the notion that tissue effects of the local regulatory landscape are more 

prominent than treatment effects. However, the consistency across treatment groups varies by 

tissue with kidney being the most consistent and lung being the least, suggesting that treatment 

effects are relatively stronger in lung. I also note that the low level of similarity between tissues 

suggests more disparate regulatory landscapes between tissues. In all cases, distal eQTLs appear 

less stable than local eQTLs, which could be related to difficulties in distal eQTL detection due to the 

small sample size and smaller effect sizes relative to local eQTLs. 

 

Identification of local and distal chromatin accessibility QTLs in CC mice 

 In addition to the eQTL mapping, cQTL mapping was performed for the control and 625 

ppm BD exposure group for lung, liver, and kidney tissues. Accessible chromatin regions often 

represent nucleosome-depleted, active gene regulatory elements [41], thus characterizing how 

genetic variation impacts chromatin accessibility provides an additional layer of information to 

complement eQTLs. Again, using the universal set of 35 CC strains, the control group cQTL mapping 

resulted in 3,328 lung, 88 liver, and 5,700 kidney cQTLs (FDR 0.05; Table 3.3, Figures 3.37-3.39). 

When assessing the distance of cQTL associations, in all three tissues the majority of cQTLs were 

local (within 10 Mb; Figure 3.36). For lung, 72 of the 325 cQTL chromatin windows had local 
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associations, and 256 chromatin windows paired with a distal segment. Of the 15 cQTL chromatin 

windows in liver, 7 had local and 11 had distal associations. In kidney, 353 cQTL chromatin 

windows were identified of which 105 paired with local segments and 257 had distal associations. 

In the 625 ppm group, 8,472 lung cQTLs were found with 594 chromatin windows (FDR 0.05). Of 

those windows 93 had local associations, and 510 were associated with distal segments. 

Surprisingly, no cQTLs were considered significant at FDR 0.05 for liver. The lack of associations 

may be due to a combination of small sample size, limited chromatin windows tested, and less 

genetic variation associated with chromatin accessibility for our mouse strains, ultimately resulting 

in limited power to discover cQTLs (see Discussion). The number of kidney cQTLs decreased to 

2,532 compared to the 5,700 detected in the control group. I observed 87 of the 238 chromatin 

windows with local associations and 164 with distal associations (Table 3.3, Figures 3.40-3.42). 

Similar to the control group results, most cQTL associations were shorter than 10 Mb, despite more 

chromatin windows having distal associations than local associations (Figure 3.36). 

 When assessing the cQTL overlap within a treatment group and between tissues, for the 

control group, 41% of lung cQTLs overlapped with kidney cQTL (FDR 0.05; Figure 3.42), but the 

percentage decreased to 12% for the 625 ppm group. Conversely, the percentage of kidney cQTLs 

that overlap lung cQTLs changes from 24% to 39% between treatment groups. This inverse 

relationship of lung and kidney between treatment groups appears related to the relationship 

between total cQTLs discovered, where detected lung cQTLs increased 2.5 fold upon BD exposure, 

and kidney cQTLs decreased 56%. This suggests that increasing the number of cQTLs detected will 

generally decrease the overlap fraction. When looking more specifically at local versus distal cQTL 

overlap, the control group showed similar local and distal cQTL overlap between lung and kidney, 

but the 625 ppm group exhibited no clear patterns. Notably, distal kidney cQTLs overlapped lung 

cQTLs by 47% (Figure 3.43). 
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 In the eQTL analysis, overlaps within a tissue and between treatment groups were more 

consistent than within a treatment group and between tissues. The relationship is less clear for the 

cQTL results, but the highest overlaps were still observed within a tissue and between treatment 

groups (Figure 3.42). Breakdown by local and distal cQTLs revealed that more lung control group 

cQTLs overlapped with the 625 ppm group than vice versa for both local and distal cQTLs. The 

opposite relationship was observed in kidney. This further supports my observation that increasing 

the number of cQTLs detected will decrease the overlap fraction and may be contributing to a less 

apparent pattern in the cQTL results compared to the eQTL results. 

 

Lung cQTL hotspots show founder strain specific phenotype clustering 

 The genome-wide plots of lung cQTL associations in both treatment groups produced 

visibly pronounced “hotspots” where a genomic locus was enriched for associations with chromatin 

windows genome-wide (Figures 3.37 and 3.40). The control group hotspot fell on chr14, and the 

625 ppm hotspot was observed on chr13. Although this has not been previously characterized for 

cQTLs in the CC population, past studies have reported the occurrence of eQTL hotspots [99,100]. 

To better understand if a particular CC founder strain is driving the associations seen within the 

lung control group hotspot, the control mice were ordered by level of lung chromatin accessibility 

for chromatin windows chr14:76244575-76244874 and chr9:24956096-24956395 and haplotype 

dosages were visualized for haplotype segment UNC24188333-UNC24192133 (chr14:69792831-

70034137, Figure 3.45). These chromatin windows produced the most significant local and distal 

associations for UNC24188333-UNC24192133. These cQTLs exhibited clustering of lower 

chromatin accessibility values for founder haplotype NOD/ShiLtJ and higher values for NZO/HiLtJ. 

The same visualization was applied for segment UNC23481318-UNC23486670 (chr13:118864010-

119236105) and 2 significantly associated chromatin windows for the 625 ppm group cQTL 

mapping (Figure 3.46). For both associations, the C57BL/6J, NOD/ShiLtJ, and NZO/HiLtJ haplotypes 
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showed distinct phenotype values that spanned the spectrum of measured chromatin accessibility. 

Although more hotspot associations need to be evaluated, these initial observations suggest that 

these haplotypes would be good candidates for further investigations into which haplotypes are 

driving the hotspot associations.  

 As noted previously, a moderate number of distal 625ppm kidney cQTLs overlapped with 

lung cQTLs. Upon assessing the locations of these overlapping cQTLs, I identified another hotspot 

location on chr8 shared between these two tissues (Figure 3.47). For two chromatin windows, 

chr8:19981785-19982084 and chr8:197000103-19700402, chromatin accessibility portrayed clear 

clustering by founder strain haplotype at segment JAX00663067 (chr8:23562597). Specifically, 

CAST/EiJ and PWK/PhJ showed the highest phenotype values, and WSB/EiJ had the lowest values. 

The contrast between the three haplotypes gives evidence for their strong effect on chromatin 

accessibility in these chromatin regions. 

 

DISCUSSION 

In this study I sought to characterize variability in gene regulation and transcription in 

three mouse tissues. In the GTEx pilot analysis, samples largely grouped by tissue based on 

hierarchical clustering of gene expression [24]. Through multi-tissue PCA, I made the same 

conclusion. Tissue type had the largest effect on both gene expression and chromatin accessibility. 

Interestingly, tissue type clustering was less apparent in the ATAC-seq samples when considering 

the top 5% of chromatin windows compared to the top 50%. This observation suggests that many 

of the more accessible chromatin regions were common across tissues, and inclusion of more 

windows incorporated more distal, tissue-specific chromatin regions. When evaluating the impact 

of BD exposure on gene expression and chromatin, I witnessed different levels of response between 

tissues. Lung presented the largest number of differentially expressed genes between control and 

BD exposed mice followed by liver. Both lung and liver exhibited greater than 1.7 times the number 



85 
 

of differentially expressed genes compared to kidney. Lung and liver also exhibited the more 

notable variation in chromatin accessibility by treatment status compared to kidney. These 

observations align with previous findings of significant epigenetic changes in lung and liver but not 

kidney [69]. Given the more dynamic response of lung and liver gene expression to BD, further 

investigation of these genes may elucidate important regulatory pathways in BD metabolism and 

BD-related carcinogenesis. 

An important advantage of the experimental design for this study was the use of CC mice. 

Being that the CC population consists of recombinant inbred mouse strains, CC mice with the same 

genetic background could be studied in three different treatment environments. Simultaneously, 

the representation of multiple CC strains within a treatment group provided genetic diversity that 

was utilized for eQTL and cQTL mapping. In the eQTL analysis, eQTLs were detected in all three 

tissues with most of the associations being local. In comparing the eQTLs identified for each tissue 

and treatment group, tissue specificity was noted by the higher overall overlap of eQTLs within a 

tissue and across treatment groups than between tissues and within a treatment group. In line with 

the aforementioned observation that lung has the most dynamic gene expression response to BD, 

eQTLs in lung were the least consistent across treatment groups relative to liver and kidney eQTLs.  

Although the reproducible genetic diversity of the CC was advantageous in characterizing 

eQTLs, the small number of samples used in the cQTL mapping decreased power to detect 

associations. The choice to use a set of 35 CC strains common across all tissue and treatment groups 

was motivated by concerns that additional genetic variation from a CC strain unique to a specific 

group would create less comparable results. Unfortunately, a consequence of this decision was the 

discovery of only a handful of liver cQTLs. To assess the impact of including the additional 13 CC 

strains, I performed cQTL mapping for the liver control group utilizing the 48 mice/strains 

available for that group. Using an FDR 0.05 significance threshold, 7,991 cQTLs were detected as 

opposed to the 88 identified with a sample size of 35. The drastic difference reflects a significant 
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loss in power to detect genotype related chromatin accessibility variation by excluding the 13 CC 

strains in cQTL mapping. Nevertheless, I still identified thousands of lung and kidney cQTLs with 

the reduced set of CC strains. As with the eQTL analysis, most associations were local, but cQTL 

hotspots were observed in lung and kidney despite the expectation that distal cQTL detection 

would be underpowered. To my knowledge, these hotspots are the first to be characterized for 

cQTLs in mice. Observations of haplotype dosages for select associations in each of the hotspots 

revealed likely founder strain haplotypes driving the chromatin accessibility differences. However, 

to better infer haplotype effects, more rigorous follow-up analyses need to be done such as the 

application of Diploffect, a Bayesian model described in [96] that estimates haplotype effects while 

accounting for uncertainty in the diplotype probability estimates. 

 In summary, these results serve as an initial characterization of tissue specific, genetic, and 

BD exposure related variability to gene expression and chromatin accessibility. I observed that all 

three factors play a role in gene regulatory differences, providing a basis for any or all factors being 

further investigated more in-depth.  Through this work, I also demonstrated the strengths and 

weaknesses of the experimental design that will be informative for future studies that take 

advantage of the Collaborative Cross. As a whole, these results contribute to the growing body of 

studies that seek to better understand the relationship between genetics, gene regulation, 

environment, and phenotype. 
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Figure 3.1.   Experimental design overview. Male mice representing 50 CC strains were assigned 

to one of three exposure groups. After a two-week treatment period, lung, liver, and kidney tissue 

were obtained from each mouse which were processed for sequencing. ATAC-seq was not 

performed on tissue from the 1500 ppm group mice. 
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Figure 3.2.   Multi-tissue gene expression PCA scree plot. Percent of variance explained by the 

top 10 PCs for PCA of gene expression profiles for all samples. 
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Figure 3.3.   Multi-tissue gene expression PCA plot colored by tissue type. PCA plot for the top 

4 PCs from PCA of gene expression profiles for all samples. Diagonal subplots are kernel density 

estimates of sample values for a given PC. Off diagonal subplots are scatterplots of all pairwise 

comparisons of PCs 1-4. 



90 
 

 

Figure 3.4.   Multi-tissue gene expression PCA plot colored by treatment status. PCA plot for 

the top 4 PCs from PCA of gene expression profiles for all samples. Diagonal subplots are kernel 

density estimates of sample values for a given PC. Off diagonal subplots are scatterplots of all 

pairwise comparisons of PCs 1-4. 
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Figure 3.5.   Per-tissue gene expression PCA scree plots. Percent of variance explained by the 

top 10 PCs for PCA of gene expression profiles for A) Lung, B) Liver, and C) Kidney samples. 

 

A 
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Figure 3.6.   Lung gene expression PCA plot. PCA plot for the top 5 PCs from PCA of gene 

expression profiles for lung samples. Diagonal subplots are kernel density estimates of sample 

values for a given PC. Off diagonal subplots are scatterplots of all pairwise comparisons of PCs 1-5. 
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Figure 3.7.   Liver gene expression PCA plot. PCA plot for the top 5 PCs from PCA of gene 

expression profiles for liver samples. Diagonal subplots are kernel density estimates of sample 

values for a given PC. Off diagonal subplots are scatterplots of all pairwise comparisons of PCs 1-5. 
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Figure 3.8.   Kidney gene expression PCA plot. PCA plot for the top 5 PCs from PCA of gene 

expression profiles for kidney samples. Diagonal subplots are kernel density estimates of sample 

values for a given PC. Off diagonal subplots are scatterplots of all pairwise comparisons of PCs 1-5. 
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Figure 3.9.   Differentially expressed genes by tissue. Number of differentially expressed genes 

between control and BD exposed treatment groups detected by DESeq2 at FDR 0.05 for lung, liver, 

and kidney tissue samples.  
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Figure 3.10.   Multi-tissue chromatin accessibility PCA scree plots. Percent of variance 

explained by the top 10 PCs for PCA of chromatin accessibility profiles for all samples using A) the 

top 50% of chromatin windows ranked by chromatin accessibility and B) the top 5% of chromatin 

windows ranked by chromatin accessibility. 

A 

B 



97 
 

 

Figure 3.11.   Multi-tissue top 5% chromatin windows PCA plot colored by tissue type. PCA 

plot for the top 5 PCs from PCA of chromatin accessibility profiles for all samples using the top 5% 

of chromatin windows ranked by accessibility. Diagonal subplots are kernel density estimates of 

sample values for a given PC. Off diagonal subplots are scatterplots of all pairwise comparisons of 

PCs 1-5. 
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Figure 3.12.   Multi-tissue top 5% chromatin windows PCA plot colored by treatment status. 

PCA plot for the top 5 PCs from PCA of chromatin accessibility profiles for all samples using the top 

5% of chromatin windows ranked by accessibility. Diagonal subplots are kernel density estimates 

of sample values for a given PC. Off diagonal subplots are scatterplots of all pairwise comparisons of 

PCs 1-5. 
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Figure 3.13.   Multi-tissue top 50% chromatin windows PCA plot colored by tissue type. PCA 

plot for the top 5 PCs from PCA of chromatin accessibility profiles for all samples using the top 50% 

of chromatin windows ranked by accessibility. Diagonal subplots are kernel density estimates of 

sample values for a given PC. Off diagonal subplots are scatterplots of all pairwise comparisons of 

PCs 1-5. 
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Figure 3.14.   Multi-tissue top 50% chromatin windows PCA plot colored by treatment status. 

PCA plot for the top 5 PCs from PCA of chromatin accessibility profiles for all samples using the top 

50% of chromatin windows ranked by accessibility. Diagonal subplots are kernel density estimates 

of sample values for a given PC. Off diagonal subplots are scatterplots of all pairwise comparisons of 

PCs 1-5. 
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Figure 3.15.   Per-tissue top 5% chromatin windows PCA scree plots. Percent of variance 

explained by the top 10 PCs for PCA of chromatin accessibility profiles for all samples using the top 

5% of chromatin windows ranked by chromatin accessibility in A) lung, B) liver, and C) kidney. 
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Figure 3.16.   Per-tissue top 50% chromatin windows PCA scree plots. Percent of variance 

explained by the top 10 PCs for PCA of chromatin accessibility profiles for all samples using the top 

50% of chromatin windows ranked by chromatin accessibility in A) lung, B) liver, and C) kidney. 
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Figure 3.17.   Lung top 5% chromatin windows PCA plot. PCA plot for the top 5 PCs from PCA of 

chromatin accessibility profiles for lung samples using the top 5% of chromatin windows ranked by 

accessibility. Diagonal subplots are kernel density estimates of sample values for a given PC. Off 

diagonal subplots are scatterplots of all pairwise comparisons of PCs 1-5. 
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Figure 3.18.   Lung top 50% chromatin windows PCA plot. PCA plot for the top 5 PCs from PCA 

of chromatin accessibility profiles for lung samples using the top 50% of chromatin windows 

ranked by accessibility. Diagonal subplots are kernel density estimates of sample values for a given 

PC. Off diagonal subplots are scatterplots of all pairwise comparisons of PCs 1-5. 
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Figure 3.19.   Liver top 5% chromatin windows PCA plot. PCA plot for the top 5 PCs from PCA of 

chromatin accessibility profiles for liver samples using the top 5% of chromatin windows ranked by 

accessibility. Diagonal subplots are kernel density estimates of sample values for a given PC. Off 

diagonal subplots are scatterplots of all pairwise comparisons of PCs 1-5. 
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Figure 3.20.   Liver top 50% chromatin windows PCA plot. PCA plot for the top 5 PCs from PCA 

of chromatin accessibility profiles for liver samples using the top 50% of chromatin windows 

ranked by accessibility. Diagonal subplots are kernel density estimates of sample values for a given 

PC. Off diagonal subplots are scatterplots of all pairwise comparisons of PCs 1-5 
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Figure 3.21.   Kidney top 5% chromatin windows PCA plot. PCA plot for the top 5 PCs from PCA 

of chromatin accessibility profiles for kidney samples using the top 5% of chromatin windows 

ranked by accessibility. Diagonal subplots are kernel density estimates of sample values for a given 

PC. Off diagonal subplots are scatterplots of all pairwise comparisons of PCs 1-5. 
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Figure 3.22.   Kidney top 50% chromatin windows PCA plot. PCA plot for the top 5 PCs from 

PCA of chromatin accessibility profiles for kidney samples using the top 50% of chromatin windows 

ranked by accessibility. Diagonal subplots are kernel density estimates of sample values for a given 

PC. Off diagonal subplots are scatterplots of all pairwise comparisons of PCs 1-5. 
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Figure 3.23.   Distance of eQTL associations. Genomic distance between a gene TSS and its 

significantly associated haplotype segment for each detected eQTL (FDR 0.05) compared to the 

eQTL p-value. Each subplot is for eQTLs identified in a specific treatment group and tissue. 
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Figure 3.24. Lung control group eQTL map. Genome-wide scatterplot comparing the location of a 

segment to the position of its significantly associated gene for identified eQTLs (FDR 0.05) 
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Figure 3.25. Liver control group eQTL map. Genome-wide scatterplot comparing the location of a 

segment to the position of its significantly associated gene for identified eQTLs (FDR 0.05) 
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Figure 3.26. Kidney control group eQTL map. Genome-wide scatterplot comparing the location 

of a segment to the position of its significantly associated gene for identified eQTLs (FDR 0.05) 
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Figure 3.27. Lung 625 ppm group eQTL map. Genome-wide scatterplot comparing the location of 

a segment to the position of its significantly associated gene for identified eQTLs (FDR 0.05) 
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Figure 3.28. Liver 625 ppm group eQTL map. Genome-wide scatterplot comparing the location 

of a segment to the position of its significantly associated gene for identified eQTLs (FDR 0.05) 
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Figure 3.29. Kidney 625 ppm group eQTL map. Genome-wide scatterplot comparing the location 

of a segment to the position of its significantly associated gene for identified eQTLs (FDR 0.05) 
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Figure 3.30. Lung 1500 ppm group eQTL map. Genome-wide scatterplot comparing the location 

of a segment to the position of its significantly associated gene for identified eQTLs (FDR 0.05) 
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Figure 3.31. Liver 1500 ppm group eQTL map. Genome-wide scatterplot comparing the location 

of a segment to the position of its significantly associated gene for identified eQTLs (FDR 0.05) 
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Figure 3.32. Kidney 1500 ppm group eQTL map. Genome-wide scatterplot comparing the 

location of a segment to the position of its significantly associated gene for identified eQTLs (FDR 

0.05) 



119 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.33.   Total fraction of overlapping eQTLs. Pairwise comparisons of the fraction of 

significant eQTLs (FDR 0.05) that overlap A-C) between tissues within a treatment group and D-F) 

between treatment groups within a tissue. The row label of each matrix signifies the group used as 

the denominator of a given fraction in a comparison. Colors denote degree of overlap. 
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Figure 3.34.   Fraction of overlapping local and distal eQTLs across tissues. Pairwise 

comparisons of the fraction of significant eQTLs (FDR 0.05) that overlap between tissues within a 

treatment group for A-C) local and D-F) distal eQTLs. Local eQTL is defined as an association less 

than 10 Mb in length. The row label of each matrix signifies the group used as the denominator of a 

given fraction in a comparison. Colors denote degree of overlap. 
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Figure 3.35.   Fraction of overlapping local and distal eQTLs across treatment groups. 

Pairwise comparisons of the fraction of significant eQTLs (FDR 0.05) that overlap between 

treatment groups within a tissue for A-C) local and D-F) distal eQTLs. Local eQTL is defined as an 

association less than 10 Mb in length. The row label of each matrix signifies the group used as the 

denominator of a given fraction in a comparison. Colors denote degree of overlap. 
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Figure 3.36.   Distance of cQTL associations. Genomic distance between a chromatin window 

start position and its significantly associated haplotype segment for each detected cQTL (FDR 0.05) 

compared to the cQTL p-value. Each subplot is for cQTLs identified in that treatment group and 

tissue. The liver 625 ppm group is not shown due to no significant cQTLs discovered. 
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Figure 3.37. Lung control group cQTL map. Genome-wide scatterplot comparing the location of a 

segment to the position of its significantly associated chromatin window for identified cQTLs (FDR 

0.05). 
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Figure 3.38.   Liver control group cQTL map. Genome-wide scatterplot comparing the location of 

a segment to the position of its significantly associated chromatin window for identified cQTLs 

(FDR 0.05). 
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Figure 3.39.   Kidney control group cQTL map. Genome-wide scatterplot comparing the location 

of a segment to the position of its significantly associated chromatin window for identified cQTLs 

(FDR 0.05). 
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Figure 3.40.   Lung 625 ppm group cQTL map. Genome-wide scatterplot comparing the location 

of a segment to the position of its significantly associated chromatin window for identified cQTLs 

(FDR 0.05). 
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Figure 3.41.   Kidney 625 ppm group cQTL map. Genome-wide scatterplot comparing the 

location of a segment to the position of its significantly associated chromatin window for identified 

cQTLs (FDR 0.05). 
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Figure 3.42.   Total fraction of overlapping cQTLs. Pairwise comparisons of the fraction of 

significant cQTLs (FDR 0.05) that overlap A,B) between tissues within a treatment group and C,D) 

between treatment groups within a tissue. The row label of each matrix signifies the group used as 

the denominator of a given fraction in a comparison. Colors denote degree of overlap. 

 

 

A B 

C D 

A B 

C D 



129 
 

 

 

Figure 3.43.   Fraction of overlapping local and distal cQTLs across tissues. Pairwise 

comparisons of the fraction of significant cQTLs (FDR 0.05) that overlap between tissues within a 

treatment group for A,B) local and C,D) distal associations. Local associations are defined as being 

less than 10 Mb in length. The row label of each matrix signifies the group used as the denominator 

of a given fraction in a comparison. Colors denote degree of overlap. 
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Figure 3.44.   Fraction of overlapping local and distal cQTLs across treatment groups. 

Pairwise comparisons of the fraction of significant cQTLs (FDR 0.05) that overlap between 

treatment groups within a tissue for A,B) local and C,D) distal associations. Local associations are 

defined as being less than 10 Mb in length. The row label of each matrix signifies the group used as 

the denominator of a given fraction in a comparison. Colors denote degree of overlap. 
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Figure 3.45.   Lung control group hotspot haplotype dosages. Haplotype dosages at segment 

UNC24188333.UNC24192133 (chr14:69792831-70034137) for each mouse arranged by 

chromatin accessibility phenotype values at chromatin windows A) chr14:76244575-76244874 

and B) chr9:24956096-24956395. Each column corresponds to the phenotype value for a mouse, 

and each row represents the founder strain dosage for a given mouse. Residual heterozygosity is 

observed in some mice for this haplotype segment. Haplotype codes correspond to A/J  (A), 

C57BL/6J  (B), 129S1/SvImJ (C), NOD/LtJ (D),  NZO/HILtJ (E), CAST/EiJ (F), PWK/PhJ (G), and 

WSB/EiJ (H). 
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Figure 3.46.   Lung 625 ppm group hotspot haplotype dosages. Haplotype dosages at segment 

UNC23481318.UNC23486670 (chr13:118864010-119236105) for each mouse arranged by 

chromatin accessibility phenotype values at chromatin windows A) chr13:100123008-100123307 

and B) chr15:72891463-72891762. Each column corresponds to the phenotype value for a mouse, 

and each row represents the founder strain dosage for a given mouse. Residual heterozygosity is 

observed in some mice for this haplotype segment. Haplotype codes correspond to A/J  (A), 

C57BL/6J  (B), 129S1/SvImJ (C), NOD/LtJ (D),  NZO/HILtJ (E), CAST/EiJ (F), PWK/PhJ (G), and 

WSB/EiJ (H).

A 

B 
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Figure 3.47.   Genome-wide 625 ppm lung and kidney cQTL frequencies. Genome-wide view of 

the number of significant cQTLs (FDR 0.05) at each haplotype segment for A) lung and B) kidney. C) 

The number of significant distal cQTLs found in both lung and kidney in the 625 ppm group (FDR 

0.05) at each haplotype segment. 
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Figure 3.48.   Lung chr8 hotspot haplotype dosages. Haplotype dosages at segment 

JAX00663067 (chr8:23562597) for each mouse arranged by lung 625 ppm chromatin accessibility 

phenotype values at chromatin windows A) chr8:19981785-19982084 and B) chr8:197000103-

19700402. Each column corresponds to the phenotype value for a mouse, and each row represents 

the founder strain dosage for a given mouse. Residual heterozygosity is observed in some mice for 

this haplotype segment. Haplotype codes correspond to A/J  (A), C57BL/6J  (B), 129S1/SvImJ (C), 

NOD/LtJ (D),  NZO/HILtJ (E), CAST/EiJ (F), PWK/PhJ (G), and WSB/EiJ (H).

A 

B 
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Figure 3.49.   Kidney chr8 hotspot haplotype dosages. Haplotype dosages at segment 

JAX00663067 (chr8:23562597) for each mouse arranged by kidney 625 ppm chromatin 

accessibility phenotype values at chromatin windows A) chr8:19981785-19982084 and B) 

chr8:197000103-19700402. Each column corresponds to the phenotype value for a mouse, and 

each row represents the founder strain dosage for a given mouse. Residual heterozygosity is 

observed in some mice for this haplotype segment. Haplotype codes correspond to A/J  (A), 

C57BL/6J  (B), 129S1/SvImJ (C), NOD/LtJ (D),  NZO/HILtJ (E), CAST/EiJ (F), PWK/PhJ (G), and 

WSB/EiJ (H). 

A 

B 
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CC Strain Treatment 
Group 

Tissue RNA-seq ATAC-seq 

CC001 0 ppm Kidney yes yes 

CC001 0 ppm Liver yes yes 

CC001 0 ppm Lung yes yes 

CC001 1500 ppm Kidney yes no 

CC001 1500 ppm Liver yes no 

CC001 1500 ppm Lung yes no 

CC001 625 ppm Kidney yes yes 

CC001 625 ppm Liver yes yes 

CC001 625 ppm Lung yes yes 

CC002 0 ppm Kidney yes yes 

CC002 0 ppm Liver yes yes 

CC002 0 ppm Lung yes yes 

CC002 1500 ppm Kidney yes no 

CC002 1500 ppm Liver yes no 

CC002 1500 ppm Lung yes no 

CC002 625 ppm Kidney yes yes 

CC002 625 ppm Liver yes yes 

CC002 625 ppm Lung yes yes 

CC003 0 ppm Kidney yes yes 

CC003 0 ppm Liver yes yes 

CC003 0 ppm Lung yes yes 

CC003 1500 ppm Kidney yes no 

CC003 1500 ppm Liver yes no 

CC003 1500 ppm Lung yes no 

CC003 625 ppm Kidney yes yes 

CC003 625 ppm Liver yes yes 

CC003 625 ppm Lung yes yes 

CC004 0 ppm Kidney yes yes 

CC004 0 ppm Liver yes yes 

CC004 0 ppm Lung yes yes 

CC004 1500 ppm Kidney yes no 

CC004 1500 ppm Liver yes no 

CC004 1500 ppm Lung yes no 

CC004 625 ppm Kidney yes yes 

CC004 625 ppm Liver yes yes 

CC004 625 ppm Lung yes yes 

CC005 0 ppm Kidney yes yes 

CC005 0 ppm Liver yes yes 

CC005 0 ppm Lung yes yes 

CC005 1500 ppm Kidney yes no 

CC005 1500 ppm Liver yes no 

CC005 1500 ppm Lung yes no 

CC006 0 ppm Kidney yes yes 

CC006 0 ppm Liver yes yes 

CC006 0 ppm Lung yes yes 

CC006 625 ppm Kidney yes yes 
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CC006 625 ppm Liver yes yes 

CC006 625 ppm Lung yes yes 

CC007 0 ppm Kidney yes yes 

CC007 0 ppm Liver yes yes 

CC007 0 ppm Lung yes yes 

CC007 1500 ppm Kidney yes no 

CC007 1500 ppm Liver yes no 

CC007 1500 ppm Lung yes no 

CC010 0 ppm Kidney yes yes 

CC010 0 ppm Liver yes yes 

CC010 0 ppm Lung yes yes 

CC010 1500 ppm Kidney yes no 

CC010 1500 ppm Liver yes no 

CC010 1500 ppm Lung yes no 

CC010 625 ppm Kidney yes yes 

CC010 625 ppm Liver yes yes 

CC010 625 ppm Lung yes yes 

CC011 0 ppm Kidney yes yes 

CC011 0 ppm Liver yes yes 

CC011 0 ppm Lung yes yes 

CC011 1500 ppm Kidney yes no 

CC011 1500 ppm Liver yes no 

CC011 1500 ppm Lung yes no 

CC012 0 ppm Kidney yes yes 

CC012 0 ppm Liver yes yes 

CC012 0 ppm Lung yes yes 

CC012 1500 ppm Kidney yes no 

CC012 1500 ppm Liver yes no 

CC012 1500 ppm Lung yes no 

CC012 625 ppm Kidney yes yes 

CC012 625 ppm Liver yes yes 

CC012 625 ppm Lung yes yes 

CC013 0 ppm Kidney yes yes 

CC013 0 ppm Liver yes yes 

CC013 0 ppm Lung yes yes 

CC013 1500 ppm Kidney yes no 

CC013 1500 ppm Liver yes no 

CC013 1500 ppm Lung yes no 

CC013 625 ppm Kidney yes yes 

CC013 625 ppm Liver yes yes 

CC013 625 ppm Lung yes yes 

CC015 0 ppm Kidney yes yes 

CC015 0 ppm Liver yes yes 

CC015 0 ppm Lung yes yes 

CC015 1500 ppm Kidney yes no 

CC015 1500 ppm Liver yes no 

CC015 1500 ppm Lung yes no 

CC015 625 ppm Kidney yes yes 

CC015 625 ppm Liver yes yes 

CC015 625 ppm Lung yes yes 
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CC016 0 ppm Kidney yes yes 

CC016 0 ppm Liver yes yes 

CC016 0 ppm Lung yes yes 

CC016 1500 ppm Kidney yes no 

CC016 1500 ppm Liver yes no 

CC016 1500 ppm Lung yes no 

CC016 625 ppm Kidney yes yes 

CC016 625 ppm Liver yes yes 

CC016 625 ppm Lung yes yes 

CC017 0 ppm Kidney yes yes 

CC017 0 ppm Liver yes yes 

CC017 0 ppm Lung yes yes 

CC017 1500 ppm Kidney yes no 

CC017 1500 ppm Liver yes no 

CC017 1500 ppm Lung yes no 

CC017 625 ppm Kidney yes yes 

CC017 625 ppm Liver yes yes 

CC017 625 ppm Lung yes yes 

CC018 0 ppm Kidney yes yes 

CC018 0 ppm Liver no no 

CC018 0 ppm Lung yes yes 

CC018 1500 ppm Kidney yes no 

CC018 1500 ppm Liver yes no 

CC018 1500 ppm Lung yes no 

CC018 625 ppm Kidney yes yes 

CC018 625 ppm Liver yes yes 

CC018 625 ppm Lung yes yes 

CC019 0 ppm Kidney yes yes 

CC019 0 ppm Liver yes yes 

CC019 0 ppm Lung yes yes 

CC019 1500 ppm Kidney yes no 

CC019 1500 ppm Liver yes no 

CC019 1500 ppm Lung yes no 

CC019 625 ppm Kidney yes yes 

CC019 625 ppm Liver yes yes 

CC019 625 ppm Lung yes yes 

CC020 0 ppm Kidney yes yes 

CC020 0 ppm Liver yes yes 

CC020 0 ppm Lung yes yes 

CC020 1500 ppm Kidney yes no 

CC020 1500 ppm Liver yes no 

CC020 1500 ppm Lung yes no 

CC020 625 ppm Kidney yes yes 

CC020 625 ppm Liver yes yes 

CC020 625 ppm Lung yes yes 

CC021 0 ppm Kidney yes yes 

CC021 0 ppm Liver yes yes 

CC021 0 ppm Lung yes yes 

CC021 625 ppm Kidney yes yes 

CC021 625 ppm Liver yes yes 
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CC021 625 ppm Lung yes yes 

CC023 0 ppm Kidney yes yes 

CC023 0 ppm Liver yes yes 

CC023 0 ppm Lung yes yes 

CC023 1500 ppm Kidney yes no 

CC023 1500 ppm Liver yes no 

CC023 1500 ppm Lung yes no 

CC023 625 ppm Kidney yes yes 

CC023 625 ppm Liver yes yes 

CC023 625 ppm Lung yes yes 

CC024 0 ppm Kidney yes yes 

CC024 0 ppm Liver yes yes 

CC024 0 ppm Lung yes yes 

CC024 1500 ppm Kidney yes no 

CC024 1500 ppm Liver yes no 

CC024 1500 ppm Lung yes no 

CC024 625 ppm Kidney yes yes 

CC024 625 ppm Liver yes yes 

CC024 625 ppm Lung yes yes 

CC025 0 ppm Kidney yes yes 

CC025 0 ppm Liver yes yes 

CC025 0 ppm Lung yes yes 

CC025 625 ppm Kidney yes yes 

CC025 625 ppm Liver yes yes 

CC025 625 ppm Lung yes yes 

CC027 0 ppm Kidney yes yes 

CC027 0 ppm Liver yes yes 

CC027 0 ppm Lung yes yes 

CC027 1500 ppm Kidney yes no 

CC027 1500 ppm Liver yes no 

CC027 1500 ppm Lung yes no 

CC027 625 ppm Kidney yes yes 

CC027 625 ppm Liver yes yes 

CC027 625 ppm Lung yes yes 

CC028 0 ppm Kidney yes yes 

CC028 0 ppm Liver yes yes 

CC028 0 ppm Lung yes yes 

CC028 1500 ppm Kidney yes no 

CC028 1500 ppm Liver yes no 

CC028 1500 ppm Lung yes no 

CC028 625 ppm Kidney yes yes 

CC028 625 ppm Liver yes yes 

CC028 625 ppm Lung yes yes 

CC029 0 ppm Kidney yes yes 

CC029 0 ppm Liver yes yes 

CC029 0 ppm Lung yes yes 

CC029 1500 ppm Kidney yes no 

CC029 1500 ppm Liver yes no 

CC029 1500 ppm Lung yes no 

CC029 625 ppm Kidney yes yes 
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CC029 625 ppm Liver yes yes 

CC029 625 ppm Lung yes yes 

CC030 0 ppm Kidney yes yes 

CC030 0 ppm Liver yes yes 

CC030 0 ppm Lung yes yes 

CC030 1500 ppm Kidney yes no 

CC030 1500 ppm Liver yes no 

CC030 1500 ppm Lung yes no 

CC030 625 ppm Kidney yes yes 

CC030 625 ppm Liver yes yes 

CC030 625 ppm Lung yes yes 

CC031 0 ppm Kidney yes yes 

CC031 0 ppm Liver yes yes 

CC031 0 ppm Lung yes yes 

CC031 1500 ppm Kidney yes no 

CC031 1500 ppm Liver yes no 

CC031 1500 ppm Lung yes no 

CC031 625 ppm Kidney yes yes 

CC031 625 ppm Liver yes yes 

CC031 625 ppm Lung yes yes 

CC032 0 ppm Kidney yes yes 

CC032 0 ppm Liver yes yes 

CC032 0 ppm Lung yes yes 

CC032 1500 ppm Kidney yes no 

CC032 1500 ppm Liver yes no 

CC032 1500 ppm Lung yes no 

CC033 0 ppm Kidney yes yes 

CC033 0 ppm Liver yes yes 

CC033 0 ppm Lung yes yes 

CC033 1500 ppm Kidney yes no 

CC033 1500 ppm Liver yes no 

CC033 1500 ppm Lung yes no 

CC033 625 ppm Kidney yes yes 

CC033 625 ppm Liver yes yes 

CC033 625 ppm Lung yes yes 

CC035 0 ppm Kidney yes yes 

CC035 0 ppm Liver yes yes 

CC035 0 ppm Lung yes yes 

CC035 1500 ppm Kidney yes no 

CC035 1500 ppm Liver yes no 

CC035 1500 ppm Lung yes no 

CC035 625 ppm Kidney yes yes 

CC035 625 ppm Liver yes yes 

CC035 625 ppm Lung yes yes 

CC036 0 ppm Kidney yes yes 

CC036 0 ppm Liver yes yes 

CC036 0 ppm Lung yes yes 

CC036 1500 ppm Kidney yes no 

CC036 1500 ppm Liver yes no 

CC036 1500 ppm Lung yes no 
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CC036 625 ppm Kidney yes yes 

CC036 625 ppm Liver yes yes 

CC036 625 ppm Lung yes yes 

CC037 0 ppm Kidney yes yes 

CC037 0 ppm Liver yes yes 

CC037 0 ppm Lung yes yes 

CC037 1500 ppm Kidney yes no 

CC037 1500 ppm Liver yes no 

CC037 1500 ppm Lung yes no 

CC037 625 ppm Kidney yes yes 

CC037 625 ppm Liver yes yes 

CC037 625 ppm Lung yes yes 

CC038 0 ppm Kidney yes yes 

CC038 0 ppm Liver yes yes 

CC038 0 ppm Lung yes yes 

CC038 1500 ppm Kidney yes no 

CC038 1500 ppm Liver yes no 

CC038 1500 ppm Lung yes no 

CC038 625 ppm Kidney yes yes 

CC038 625 ppm Liver yes yes 

CC038 625 ppm Lung yes yes 

CC039 0 ppm Kidney yes yes 

CC039 0 ppm Liver yes yes 

CC039 0 ppm Lung yes yes 

CC039 1500 ppm Kidney yes no 

CC039 1500 ppm Liver yes no 

CC039 1500 ppm Lung yes no 

CC039 625 ppm Kidney yes yes 

CC039 625 ppm Liver yes yes 

CC039 625 ppm Lung yes yes 

CC040 0 ppm Kidney yes yes 

CC040 0 ppm Liver yes yes 

CC040 0 ppm Lung yes yes 

CC040 1500 ppm Kidney yes no 

CC040 1500 ppm Liver yes no 

CC040 1500 ppm Lung yes no 

CC040 625 ppm Kidney yes yes 

CC040 625 ppm Liver yes yes 

CC040 625 ppm Lung yes yes 

CC041 0 ppm Kidney yes yes 

CC041 0 ppm Liver yes yes 

CC041 0 ppm Lung yes yes 

CC041 1500 ppm Kidney yes no 

CC041 1500 ppm Liver yes no 

CC041 1500 ppm Lung yes no 

CC042 0 ppm Kidney yes yes 

CC042 0 ppm Liver yes yes 

CC042 0 ppm Lung yes yes 

CC042 1500 ppm Kidney yes no 

CC042 1500 ppm Liver yes no 
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CC042 1500 ppm Lung yes no 

CC042 625 ppm Kidney yes yes 

CC042 625 ppm Liver yes yes 

CC042 625 ppm Lung yes yes 

CC043 0 ppm Kidney yes yes 

CC043 0 ppm Liver yes yes 

CC043 0 ppm Lung yes yes 

CC043 625 ppm Kidney yes yes 

CC043 625 ppm Liver yes yes 

CC043 625 ppm Lung yes yes 

CC044 0 ppm Kidney yes yes 

CC044 0 ppm Liver yes yes 

CC044 0 ppm Lung yes yes 

CC044 1500 ppm Kidney yes no 

CC044 1500 ppm Liver yes no 

CC044 1500 ppm Lung yes no 

CC044 625 ppm Kidney yes yes 

CC044 625 ppm Liver yes yes 

CC044 625 ppm Lung yes yes 

CC045 0 ppm Kidney yes yes 

CC045 0 ppm Liver yes yes 

CC045 0 ppm Lung yes yes 

CC045 625 ppm Kidney yes yes 

CC045 625 ppm Liver yes yes 

CC045 625 ppm Lung yes yes 

CC046 0 ppm Kidney yes yes 

CC046 0 ppm Liver yes yes 

CC046 0 ppm Lung yes yes 

CC046 1500 ppm Kidney yes no 

CC046 1500 ppm Liver yes no 

CC046 1500 ppm Lung yes no 

CC049 0 ppm Kidney yes yes 

CC049 0 ppm Liver yes yes 

CC049 0 ppm Lung yes yes 

CC049 1500 ppm Kidney yes no 

CC049 1500 ppm Liver yes no 

CC049 1500 ppm Lung yes no 

CC049 625 ppm Kidney yes yes 

CC049 625 ppm Liver yes yes 

CC049 625 ppm Lung yes yes 

CC051 0 ppm Kidney no no 

CC051 0 ppm Liver yes yes 

CC051 0 ppm Lung yes yes 

CC051 1500 ppm Kidney yes no 

CC051 1500 ppm Liver yes no 

CC051 1500 ppm Lung yes no 

CC051 625 ppm Kidney yes yes 

CC051 625 ppm Liver yes yes 

CC051 625 ppm Lung yes yes 

CC053 0 ppm Kidney yes yes 
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CC053 0 ppm Liver yes yes 

CC053 0 ppm Lung yes yes 

CC053 1500 ppm Kidney yes no 

CC053 1500 ppm Liver yes no 

CC053 1500 ppm Lung yes no 

CC053 625 ppm Kidney yes yes 

CC053 625 ppm Liver yes yes 

CC053 625 ppm Lung yes yes 

CC055 0 ppm Kidney yes yes 

CC055 0 ppm Liver yes yes 

CC055 0 ppm Lung yes yes 

CC055 1500 ppm Kidney yes no 

CC055 1500 ppm Liver yes no 

CC055 1500 ppm Lung yes no 

CC055 625 ppm Kidney yes yes 

CC055 625 ppm Liver yes yes 

CC055 625 ppm Lung yes yes 

CC057 0 ppm Kidney yes yes 

CC057 0 ppm Liver yes yes 

CC057 0 ppm Lung yes yes 

CC057 1500 ppm Kidney yes no 

CC057 1500 ppm Liver yes no 

CC057 1500 ppm Lung yes no 

CC057 625 ppm Kidney yes yes 

CC057 625 ppm Liver yes yes 

CC057 625 ppm Lung yes yes 

CC059 0 ppm Kidney yes yes 

CC059 0 ppm Liver yes yes 

CC059 0 ppm Lung yes yes 

CC060 1500 ppm Kidney yes no 

CC060 1500 ppm Liver yes no 

CC060 1500 ppm Lung yes no 

CC060 625 ppm Kidney yes yes 

CC060 625 ppm Liver yes yes 

CC060 625 ppm Lung yes yes 

CC061 0 ppm Kidney yes yes 

CC061 0 ppm Liver yes yes 

CC061 0 ppm Lung yes yes 

CC061 1500 ppm Kidney yes no 

CC061 1500 ppm Liver yes no 

CC061 1500 ppm Lung yes no 

CC061 625 ppm Kidney yes yes 

CC061 625 ppm Liver yes yes 

CC061 625 ppm Lung yes yes 

CC062 0 ppm Kidney yes yes 

CC062 0 ppm Liver yes yes 

CC062 0 ppm Lung yes yes 

CC062 1500 ppm Kidney yes no 

CC062 1500 ppm Liver yes no 

CC062 1500 ppm Lung yes no 



144 
 

CC062 625 ppm Kidney yes yes 

CC062 625 ppm Liver yes yes 

CC062 625 ppm Lung yes yes 

CC068 0 ppm Kidney yes yes 

CC068 0 ppm Liver yes yes 

CC068 0 ppm Lung yes yes 

CC068 1500 ppm Kidney yes no 

CC068 1500 ppm Liver yes no 

CC068 1500 ppm Lung yes no 

CC068 625 ppm Kidney yes yes 

CC068 625 ppm Liver yes yes 

CC068 625 ppm Lung yes yes 

 

Table 3.1.   Inventory of CC mouse samples. CC strains represented in each tissue and treatment 

group and whether RNA-seq and ATAC-seq data were processed for these strains. 
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Tissue and 
Treatment Group 

Total 
Genes 
Tested 

Total eQTLs 
(FDR 0.05) 

eGenes 
Detected 

(FDR 0.05) 

eGenes with 
Local 

Associations 
(FDR 0.05) 

eGenes with 
Distal 

Associations 
(FDR 0.05) 

Lung – Control 17,675 400 67 34 36 
Lung – 625 ppm 17,536 505 97 58 44 

Lung – 1500 ppm 17,376 869 114 66 55 
Liver – Control 13,629 1,368 168 101 82 

Liver – 625 ppm 13,355 842 102 44 65 
Liver – 1500 ppm 13,299 1,803 216 128 104 
Kidney – Control 15,894 1,718 213 105 124 

Kidney – 625 ppm 15,625 2,336 283 162 136 
Kidney – 1500 ppm 15,408 3,523 417 255 188 

 

Table 3.2.   eQTL mapping results overview. Summary of eQTL mapping results in each tissue 

and treatment group. The term “eGenes” denotes an eQTL gene with at least one significantly 

associated segment. 
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Tissue and 
Treatment Group 

Total 
Chromatin 
Windows 

Tested 

Total cQTLs 
(FDR 0.05) 

Unique 
cQTL 

Chromatin 
Windows  
(FDR 0.05) 

cQTL Chromatin 
Windows with 

Local 
Associations 
(FDR 0.05) 

cQTL Chromatin 
Windows with 

Distal 
Associations 
(FDR 0.05) 

Lung – Control 24,949 3,328 325 72 256 
Lung – 625 ppm 24,666 8,472 594 93 510 
Liver – Control 25,762 88 15 7 11 

Liver – 625 ppm 25,785 0 0 0 0 
Kidney – Control 25,081 5,700 353 105 257 

Kidney – 625 ppm 25,280 2,532 238 87 164 

 

Table 3.3.   cQTL mapping results overview. Summary of cQTL mapping results in each tissue 

and treatment group. 
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CHAPTER IV 

Discussion 

 

Current technologies allow for researchers to employ a broad array of high-throughput 

methods to produce data related to many facets of gene regulation such as chromatin organization 

and interaction, DNA methylation, histone modifications, TF occupancy, microRNA expression, and 

gene expression. Studies have integrated these data types to elucidate the details of gene regulation, 

and in doing so provided insight into the variability in how these regulatory components present 

and interact between different cell types, tissues, and conditions. Furthermore, studies assessing 

the contributions of genetic variation on these gene regulatory properties have demonstrated 

regulatory variability due to genetic differences between individuals. With such an elaborate 

picture of the factors contributing to understanding context-specific gene regulation, much still 

needs to be learned about the biology as well as how to devise analyses that best take advantage of 

the data. 

In chapter II, I provided an overview of footprinting and assessed currently held 

assumptions about TF footprints. Using ENCODE ChIP-seq and DNase-seq data in conjunction with 

TF motif site predictions, I showed that DNase-seq signals at active and inactive motif sites are 

more heterogeneous than previously assumed, violating assumptions many current footprinters 

use when identifying TFBSs. To address this heterogeneity, I introduced DeFCoM, a novel machine 

learning framework for predicting TFBSs using DNase-seq data. DeFCoM applied a supervised 

learning approach to classification in order to learn the characteristics of footprints as opposed to 

enforcing assumptions about their structure. Through a comprehensive comparison with 9 other 

footprinters using 71 test sets for 18 TFs, I showed that DeFCoM performed the best overall. 
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Furthermore, by assessing footprintability at varying sequencing depths and using data sets of 

different signal quality, I observed that footprintability varied drastically by TF. Intuitively, 

sequencing depth and data set signal quality should improve footprintability, but the degree of 

benefit for both are also TF dependent. In addition, I applied DeFCoM to ATAC-seq GM12878 data 

and noted similar but slightly decreased performance relative to using DNase-seq GM12878 data, 

though this may be attributable to differences in sequencing depth and signal-to-noise.  

As an area of research, genomic footprinting is still maturing. The first genome-wide 

footprinting paper was published in 2009, and it reported the detection of footprints in the 

Saccharomyces cerevisiae genome [44]. Despite the lack of a comprehensive understanding of 

footprint characteristics, papers have been published that include extensive analyses of TF 

dynamics and networks for numerous cell types and across species based solely on computational 

footprint predictions [101,102] using a method that performed poorly in my footprinter 

comparisons. The conclusions drawn solely from footprinting raised concerns that were voiced in 

[103]. To appropriately make use of footprinting, DNase-seq and ATAC-seq signal at TFBSs need to 

be better characterized. My work in chapter II contributes to the need for better footprint 

characterization by highlighting the degree of footprint heterogeneity and showing the impact of 

sequencing depth and signal quality on footprintability. This research further expands the field by 

demonstrating a motif-centric approach to assessing footprint predication accuracy and using a 

single, unified framework to evaluate most currently existing footprinters. 

Looking towards future research in genomic footprinting, a priority needs to be placed on 

further characterizing the biological and technical factors impacting TF footprint profiles. Currently, 

annotating TFBSs for footprinting studies relies predominately on ChIP-seq data, but the literature 

remains scarce in regards to how an imperfect concordance between ChIP-seq based annotations 

and TF footprints impacts footprint characterization and prediction. For elucidating properties of 

footprint profiles, more refined and accurate TFBS annotations would produce more robust 
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characterizations. An improved understanding of footprint signals in chromatin accessibility data 

would allow for more refined and appropriate statistical models and machine learning methods to 

be implemented for footprint classification. As footprint characterization improves and quantitative 

models become more accurate, footprinting offers promising new avenues for investigating TF 

binding. In the context of differential chromatin accessibility studies, DNase-seq and ATAC-seq 

could be utilized more effectively to identify differential TF binding through evaluating changes in 

chromatin accessibility signal at TFBSs.  Accurate identification of differential TF binding with 

chromatin accessibility assays would offer an alternative option to ChIP-seq for genome-wide 

studies. ATAC-seq and DNase-seq would capture binding events for many TFs within a single 

experiment as opposed to ChIP-seq which assays one TF per experiment. Another exciting avenue 

for genomic footprinting research lies in pairing genotype information with accurate quantification 

of footprint changes. In genomics studies where genotype and chromatin accessibility data are 

available, footprint variability could be defined as a quantitative trait and tested for associations 

with genetic variability using QTL mapping approaches. These analyses would help clarify TF 

binding and the gene regulatory mechanisms influenced by genetic variability within a given 

context. 

 In chapter III, I used liver, lung, and kidney ATAC-seq and RNA-seq data for CC mice from 

three different BD treatment groups (control, 625 ppm exposure, and 1500 ppm exposre) to assess 

the impact of BD exposure on gene expression and chromatin accessibility. From PCA of the 

samples, I observed that tissue differences accounted for more variability than BD exposure in both 

gene expression and chromatin accessibility. Further analyses revealed that in both gene 

expression and chromatin accessibility, lung and liver exhibited more pronounced changes than 

kidney. This result complements a previous study in which DNA methylation and histone 

modifications were shown to significantly change at the global level for lung and liver but not 

kidney tissue in C57BL6/J mice [69]. My analyses build upon these observations by showing a 
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similar affect for chromatin accessibility and gene expression using mice with diverse genetic 

backgrounds. Since the ATAC-seq and RNA-seq data provide genome-wide information, these data 

can be further examined to identify specific regulatory elements and genes that are driving the 

tissue-specific differences to BD exposure.  

In addition to the global variation assessments, I also provide a characterization of eQTLs 

and cQTLs in each of the tissues and treatment groups. In general, I observed eQTLs and cQTLs to 

be more consistent within a tissue and across treatment groups than within a treatment group and 

across tissues. Additionally, of the 3 tissues, I observed lung eQTLs to be the least concordant across 

treatment groups suggesting that the BD response in lung is causing unique gene expression 

changes that are also associated with genetic variation. For the cQTL analysis, I discovered 

previously uncharacterized cQTL hotspots in lung and kidney and identified potential causal 

founder haplotypes driving these hotspots. From these observations, the dynamic changes in lung 

and its significance in BD metabolism suggest that it should be prioritized in future analyses. To my 

knowledge, this cQTL characterization study is the first to be done for a mouse population, but both 

the eQTL and cQTL analyses leave many questions to be answered in regards to better 

understanding the genetic underpinnings of BD response. In [35], CC mice liver eQTLs were 

mapped using a “delta” phenotype model. Because CC strains are inbred, mice from the same strain 

can be subject to two different conditions, and the difference or ratio between measurements of 

gene expression can be used as the phenotype. With the CC population the genetic diversity 

between strains allows for this delta phenotype to be incorporated into eQTL mapping. For future 

work, this approach can be taken with the BD data to infer more direct relationships between 

genetics, chromatin accessibility, gene expression, and BD exposure. The ability to take advantage 

of such a model demonstrates the utility of the CC, in conjunction with sequencing-based assays of 

gene regulation and gene expression, in elucidating the gene regulatory architecture underlying 

toxic chemical exposure. 
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As genomic footprinting improves, TF binding dynamics can be incorporated into studies 

akin to the work described in chapter III. This experimental design would be able to integrate 

genotype, gene expression, chromatin accessibility, TF occupancy, and an environmental 

perturbation to paint a more comprehensive picture of context-specific gene regulation. 

Incorporating additional data types such as microRNA expression and 3D chromatin interactions 

among others would offer even greater explanatory power. With our current understanding of the 

complexity of gene regulation, such integrative approaches will be necessary to deduce the 

underlying mechanistic links between genetics and complex traits. 
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