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ABSTRACT 

 

QI ZHANG: Land Cover and Land Use Changes under Forest Protection and Restoration in 

Tiantangzhai Township, Anhui, China (Under the direction of Conghe Song) 

 

Deforestation and forest regeneration are two key changes in the forest ecosystem that have 

profound impacts of the goods and services in terrestrial ecosystem. In late 1990s, China 

implemented Sloping Land Conversion Program (SLCP) and Natural Forest Protection 

Program (NFPP) aimed at forest protection and restoration. Using archived historical images, 

this study compared the land-cover/land-use (LCLU) changes before and after the programs 

and developed remote sensing indices to characterize the growth trajectory of “Grain-For-

Green” (GFG) and natural forests. The results indicate substantial increase of natural forest 

cover during 2002-2013, compared with that during 1992-2002. The proposed indices 

revealed aggradation for both NFPP and GFG forests since the implementation of these 

policies. Further analysis found spatial variation of forest development depends on the 

topographic factors. This study reveals that SLCP and NFPP have been improving forest 

growth and development in the study area since the implementation of these policies. 
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1. INTRODUCTION 

 

 

 

Land cover and land use (LCLU) change is the main driver of the habitat 

fragmentation that resulted changes in essential goods and services provided by the terrestrial 

ecosystem (Butchart et al., 2010; Millennium Ecosystem Assessment, 2005; Fischer et al., 

2012; Sieber et al., 2013). LCLU change is sensitive not only to the changes in 

environmental conditions but also to human activities. The spatiotemporal dynamics can 

significantly modifies the energy exchanges between the Earth’s surface and atmosphere and 

therefore the feedback to the society supporting human beings (Otterman 1974; Charney and 

Stone 1975; Sagan et al. 1979). It is reported that land cover at global scale has been 

transformed under the human use of land resources including agricultural cultivation, pasture 

exploitation, forest harvesting, build-up constructions, and the like (Meyer, 1995; Dale et al., 

2000). As the global population rapidly grows, land use activities also alter the landscape 

structures by introducing new land cover types which has substantial impacts on the natural 

habitats for existing endemic species (Turner et al., 2001). One of the major changes caused 

by human activities involving forest cover includes two fundamental types: deforestation and 

regeneration (Song et al., 2002; Song et al., 2007).  Over decades, forests has been suffering 

critical loss particularly in developing countries for agricultural expansions, which posed 

high threats to the environment and caused ecosystem degradation (Dobson et al., 1997; 

Salim and Ullsten, 1999). Forests are also believed to play crucial role in global carbon 

sequestration (Dixon et al., 1994; Pan et al., 2011) and recent studies suggested the trend of 
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forest regrowth may be the major reason for the “missing sink” of carbon budgets (Caspersen 

et al., 2000; Myneni et al., 2001; Lelieveld, 2010).  

The over-exploitation of forest resources in China caused various problems to the 

natural environment in terms of the sustainable development at national scale. After a half-

century forest logging policy, China experienced disastrous droughts in 1997 and floods in 

1998, following which the central government implemented a new protection program called 

Natural Forest Protection Project (NFPP) in 1998. This new policy was regarded as the 

largest logging-ban program in the world, aimed at forest conservation and protection from 

forest degradation, biodiversity loss and soil erosion (Zhang et al., 2000; Mullan et al., 2010; 

Zheng et al., 2011). Depending on priority levels, the households living in policy-

implemented regions receive different levels of financial support by central government for 

managing natural forests without timber harvesting. To expand the existing conservation of 

forest ecosystems, China in 2001 has also adopted forest restoration program which 

encouraged households to convert their cropland to the forests. These participating lands are 

located mainly on steep slopes with low productivity or even abandoned by the farmers. 

Therefore, the restoration program is called Sloping Land Conversion Program (SLCP), also 

known as “Grain-for-green” program. This program involves a scheme of payment for 

ecosystem service (PES) which provides financial support for the participated household 

based on the area of converted land to compensate the loss of income from the croplands. A 

secondary goal is to alleviate poverty of local farmers (China State Council, 2000; Chen et 

al., 2012; Vina et al., 2013; Song et al., 2013).  As a result of the forest conservation and 

restoration, the major source of income for local residents has gradually changed from 
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harvesting wood and farming work to non-farming labor work except for the compensation 

by government support.  

The forest programs were evaluated in several provinces of China by researchers and 

were believed to be effective for the conversion of marginal cropland to forests as well as 

providing financial support to households in poor areas (Wang et al., 2007; Gauvin et al., 

2010; Chen et al., 2010). However, some researchers have reported that China’s preliminary 

work on logging bans and forest restoration programs have mixed success with various 

limitations which may not be adequate tools for forest management (Durst et al., 2001; 

CIFOR REHAB, 2003; WRI, 2003). Many studies also indicated that the performance of the 

programs varies strongly depending on different local context (Persha et al., 2011; Song et 

al., 2013) and there is limited research particularly on tracking growth trend of the 

regenerated forests. There is also concern that the re-conversion from forest or grassland to 

cropland and wood harvest of natural forest would be possible if government subsidies were 

stopped (Hu et al., 2006; Shen et al., 2006).   

Due to the complexity of synergistic effects on the local environment, more extensive 

and sophisticated experiments of the forest conservation and rehabilitation programs at local 

scale are required for better understanding their influence as well as feedbacks from 

ecosystems before scaling up for nationwide policy implementations (Weyerhaeuser et al., 

2005). Advanced tools such as satellite images offer the opportunity to comprehensively 

monitor the growth trend of the natural forest and converted forests and thus to offer timely 

feedback for the improvement of large programs (Liu et al., 2008).  Remote sensing allows 

useful approaches in mapping land cover at large scales both spatially and temporally. For 

example, Landsat images with multiple dates can be used to detect the temporal change given 
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one large area while high spatial resolution remotely sensed data such as WorldView-2 

images can be used to evaluate the effectiveness of forest cover observation with detail 

information. In addition, the combination of remote sensing and GIS serves as a powerful 

tool in analyzing the landscape pattern of the earth surface (Serra et al., 2008; Geri et al., 

2010). Landscape ecological concepts and metrics offers fundamental theories for better 

understanding of sustainability of land use planning by the applications of landscape 

transformation (Leritão and Ahern, 2002; Ribeiro and Lovett, 2009).  

In contrast to the conversion of forest to cultivated land, forest regeneration due to 

policy implementation pertains much to the study of forest at their early stages with remotely 

sensed data (Song and Woodcock, 2002). The land cover changes regarding forest 

successional stages can be of significance to the global carbon cycling and conservation of 

water resources (Woo et al., 1997; Chen et al., 2002; Preditzer and Euskirchen, 2004). It is 

also believed that mapping regenerated forest is much more challenging than mere 

deforestation due to the difficulty of monitoring the gradual changes of forest succession 

particularly after canopy closure (Pax-Lenney et al., 2001; Song et al., 2007). Several 

researchers have devoted efforts to characterize the spectral response of the forests at 

different successional stages with remotely sensed imageries. The Tasseled-Cap 

Transformation (Kauth and Thomas, 1976), which linearly converts spectral signals of 

Landsat Satellite data into meaningful measures of brightness, greenness and wetness, has 

proven to be informative in separating young, mature and old-growth forests (Cohen et al., 

1995; Fiorella and Ripple, 1993a). Fiorella and Ripple (1993b) also found a high correlation 

between the “structural index” (TM 4/5 ratio) and the age of Douglas-fir stands which can be 

used to distinguish poorly regenerated forests from those that regenerated well.  
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However, the applications of empirical relationships with single date image by 

previous studies are limited due to the high dependence of extraneous factors in terms of 

local environmental context (Gemmell, 1999; Gemmell and Varjo, 1999). It is suggested in 

several papers that multiple images at various dates should be incorporated to identify the 

distribution of forest at different successional stages (Helmer et al., 2000; Lucas et al., 2002). 

Song et al (2002) characterized the spectral temporal trajectories for early successional 

forests and found several sources of noise such as topography and initial background 

conditions could potentially prevent accurate estimate of forest successional stages. The 

uncertainties caused by topography, atmospheric condition, phenology and sun/view angles 

were further evaluated (Song and Woodcock, 2003; Millan et al., 2013) and the results 

indicated that Tasseled Cap indices as well as normalized difference vegetation index 

(NDVI) of forests at different stage can be affected by these factors. Song et al. (2007) 

simulated the spectral reflectance of forest successions and used regression analysis to fit the 

successional trajectories for spectral predictors of Tasseled Cap transformation. The results 

showed that the brightness and greenness performed much better than wetness index for 

successional forests and also emphasized the monitoring effectiveness of using multitemporal 

Landsat imagery based on regression analysis. Overall, more efficient approaches are 

required to capture the signatures of subtle changes for successional forest cover while 

minimize the noisy effects that contaminate the multitemporal images.  

Therefore, two research questions are asked, 1) How does LCLU change before and 

after the implementation of SLCP and NFPP around 2000? 2) What is the growth trend of 

GFG and natural forests since the implementation of the new policies? The hypotheses 

includes that the forest cover increases with less fragmentation and irregularity and both of 
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natural and GFG forest have positive growth trend of aggradation under the implementation 

of forest protection and restoration programs. To investigate these research questions, 

Tiantangzhai Township with natural reserve was selected as study area in southeastern Dabie 

Mountain of China. The overall objective is to track land cover and land use change before 

and after implementation of forest policies as well as to characterize the growth trend of both 

natural forest and GFG forest stands since 2002. More specifically, the research was 

conducted to: 1) map forest class within Tiantangzhai Township in 1992, 2002, and 2013 and 

analyze the forest landscape with/without GFG forest stands; 2) quantify the forest 

successional information by utilizing the Tasseled-Cap indices including brightness and 

greenness and track the temporal/spectral trajectories of all forest at whole region scale; 3) 

provide reference of GFG forest growing trend after SLCP implementation to policy makers 

for sustainable development of forest programs. 
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2. DATA AND METHODS 
 

 

 

2.1 Study area 

The Tiantangzhai Township, in Jinzhai County of Anhui province in China, is located 

in the eastern part of Dabieshan Mountain (Fig. 1). The township covers an area of 28,914 

hectares (ha) with abundant forest biomass. The elevation of the area varies from 300 to 1700 

m above sea level. The mild weather and sufficient rainfall, make it an optimal area for 

vegetation growth.  Due to its remoteness, the region is characterized by low population and 

density. The transportation system is poorly-developed and thus brings inconvenience for the 

connections to big cities. Though the natural ecosystem is well preserved due to less 

intervention of human activities, the normal behavior such as animal hunting, forest 

harvesting by local residents still caused problems in environmental protection for decades 

before 21st century. On one hand, this region was established as the national reserve for forest 

conservation as one part of the entire NFPP in 1998. In response to the program, the 

environment was supposed to be protected from human interference, including forest harvest, 

wild life hunting. Almost every household owns land covered by natural forest and receives 

8.75 RMB/mu each year (1 mu = 1/15 ha) from the central government. The government 

implemented SLCP in 2002 in Jinzhai County. Farmers receive an initial compensation of 

230 yuan/mu/year for 8 years, and the renewed compensation of 125 yuan/mu/year for 

another 8 years. The total area of land planted with Grain-For-Green trees accounts for a 
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small proportion of the entire study area since only one sixth of all the households 

participated the forest restoration program.  

2.2 Data acquisition and preprocessing  

Three Landsat images were acquired in 1992, 2002 and 2013 from “USGS Global 

Visualization Viewer” (http://glovis.usgs.gov/). The availability of the imagery was mainly 

limited by the cloud coverage. One scene of WorldView-2 image with high spatial resolution 

was also requested. Detailed information of the satellite images were shown in Table 1. 

Though many algorithms have been proposed for the data without in situ atmospheric 

information, Song et al in 2001 suggested that there were limited improvements with more 

sophisticated approaches but a simple modified dark object method can have at least equally 

good performance for removing atmospheric effects. In order to characterize the spectral 

information with vegetation indices such as NDVI, all the Landsat images in this study were 

atmospherically corrected using simple dark object subtraction (DOS3) approach and the DN 

value was converted to the surface reflectance. The DOS method assumes 1% surface 

reflectance caused by the atmospheric conditions and the minimum DN value over one TM 

scene can be found at the value with at least 1000 pixels from the peak of the histogram for 

each band (Moran et al., 1992; Chavez, 1996). Digital Elevation Model (DEM) with 30 meter 

resolution was also obtained and projection including resampling was re-defined in order to 

match the Landsat images in terms of the spatial resolution as well as array alignment.  

2.3 Classification and change detection 

2.3.1 Random forest (RF) classifier 

In recent years, many papers argued to use multiple classifiers to generate an 

ensemble classifier, which is believed to have higher accuracy for classifying remotely 

http://glovis.usgs.gov/
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sensed images than any with single classifier (Briem et al., 2002; Dietterich, 2002). A new 

and powerful statistical classifier proposed by Breiman in 1999 is called Random Forest 

(RF), which randomly chooses a set of features among all the included variables (e.g. 

spectral bands, topographic indices) to split each node within a single tree (classifier), and 

also generates a large number of such trees. The unknown pixel are assigned by voting it to 

most popular class from all the tree predictors. Breiman also stated that the generalization 

errors for forests always converge to a limit as the number of trees is very large. An 

increasing number of researchers employed this classifier in various fields because it 

generates high classification accuracy and has the capability of evaluating variable 

importance and of modeling complex interactions (Cutler and Stevens, 2006; Archer and 

Kimes, 2008).  Pal (2005) compare two machine learning classifiers with Landsat Enhanced 

Thematic Mapper Plus (ETM+) data and he argued that the random forest classifier has equal 

performance in classification accuracy and training time but requires fewer user-defined 

parameters. Prasad et al (2006) also tested four statistical algorithms of vegetation mapping 

and found the Random Forest was superior in predicting current distribution of tree species. 

In this study, random forest classifier was used through all the processes of classification.  

2.3.2 Automatic Adaptive Signature Generalization (AASG) 

To keep the consistency of classifications for remotely sensed images with time 

series, Automatic Adaptive Signature Generalization (AASG) proposed by Gray and Song 

(2013) was employed to adapt spectral signatures of each of the individual Landsat imagery. 

This method identifies training data from features that are stable throughout time. It requires 

the high accuracy of the most recent image classification to be as the reference image for 

which the reliability of training data can be examined. The assumption made for this 
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approach is that the majority of the pixels did not change if the image is for a sufficiently 

large area. By subtracting image bands of two different time period, the stable sites within 

reliable range can be located around the mode of the histogram of the difference image. 

These stable pixels are further filtered and selected as training data to classify their 

corresponding image (Fig. 2). Previous study indicated that the AASG is flexible with 

respect to any supervised classification algorithm and showed a better performance for 

irregular time series comparing with traditional signature extension.  

2.3.3 Classification of Landsat images 

In this research, random forest (RF) was selected as the classifier for both the 

reference map and the AASG approach. Considering the prevalence of vegetation over the 

mountainous area of this study site, spectral and topographic derivatives were generated from 

remote sensing images as well as ancillary data in order to increase the separability of the 

classes. A set of vegetation indices were calculated from the atmospherically corrected 

images including simple ratio (Jordan, 1969), normalized difference vegetation index (Rouse 

et al., 1973), structural index (Fiorella and Ripple, 1993a), modified normalized difference 

water index (McFeeters, 1996; Xu, 2006), enhanced vegetation index (Huete et al., 1997). 

Several topographic indices were also derived from digital elevation model (DEM) dataset 

including: elevation, slope, aspect, topographic wetness index (Beven and Kirkby, 1979).  

To create the reference map of 2013/5/21 Landsat image, the RF classifier was 

trained with user defined pixels by referring to the high spatial resolution image WorldView-

2 (2013/7/13). The training sites for the WV2 image were collected in the field with the 

assistance of GPS during summer 2013. Twenty percentage of the pixel values as training 

points were randomly picked and reserved for the accuracy assessment of the classification 
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for the reference map. Based on the experience and local knowledge of the land use within 

study sites, nine land cover types were defined: build-ups, deciduous forest, coniferous forest 

mixed forest, water, cropland, rock outcrop, and barren area, and shrub/grass.  

In generating the classified maps for target images (Landsat image of 1992/10/18 and 

2002/10/6), the AASG method was modified and improved based on Gray and Song (2013). 

Firstly, the NDVI band calculated from red band and near infrared band was chosen for 

image differencing instead of merely using red band or near infrared band. Because the study 

area was dominated by vegetation, including both the near infrared band and the red band 

therefore contains more information associated with the stable sites. Second, multiple c 

parameter for each class was defined instead of using global c parameter which defines the 

thresholds of selecting stable sites. In Gray and Song (2013), the global c parameter of 1, 0.5 

and 0.25 were selected to test the threshold sensitivity which may cause the overabundance 

problem of stable sites for a particular class such as vegetation. So the c parameter was set by 

restricting the number of stable pixels to 1000 with each class in this study. If the total 

number of stable pixels is less than 1000, then the interval would be limited to match the 

number all pixels for such stable sites of the class (Fig. 3). Third, since AASG is flexible for 

any classifier, the random forest was again used in this approach and also was trained by the 

extraction of the spectral information, vegetation indices and topographic properties of those 

pixels selected as training sites.  

2.3.4 Classifying WorldView-2 image and “Grain-for-Green” forest stands delineation 

Due to the high spatial resolution of the WorldView-2 image, the classified map as 

foreseen can be filled with “speckle” noise particularly for those with high spectral variations 

and those at the boundary of different classes. So more specific categories were defined for 
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some classes such as build-up areas, agricultural land. The specific categories within one 

general group were then combined as one class. The general classes were: build-up area 

(open, pitch, residents), water (river, pond), forest (deciduous, coniferous, mixed), farmland 

(cropland, dry land), barren land (rock, open). The clouds associated with their shadows were 

removed from the entire scene. A 5 by 5moving window majority filtering was carried out to 

reduce the speckles.  

It is challenging to identify the “Grain-for-Green” (GFG) forests merely based on the 

satellite image itself because of the confusion with natural forests in terms of the spectral 

information. Additional data were acquired including topographic map depicting each GFG 

forest stands associated with the ID, location and area, and the data that monitored the 

progress of GFG forest by households in 2009. The technician in the local township forest 

station also provided personal experience on locate each GFG patch on the WorldView-2 

image. 226 GFG forest stands were depicted in ArcGIS and exported as a vector layer of 

GFG forest class. Fortunately, all the forest stands are free of the cloud cover. The vector 

layer were then stacked to the Landsat images for further analysis of forest growth trend.   

2.4 Landscape Pattern Metrics  

During the past decades, numerous landscape pattern metrics have been proposed for 

analyzing the composition and configuration of landscape structure and spatial patterns as 

well as their application in relationship with the sustainability for land planning (Turner and 

Gardner, 1991; Ribeiro and Lovett, 2009; Su et al., 2011). The changes in landscape structure 

triggered by the land use/cover change has strong influences on the changes of ecosystem 

functions and vice versa (Leitão and Ahern, 2002). The landscape process measurements of 

the extent to which the patches are fragmented or aggregated can be of importance to monitor 
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the change of biodiversity. In this study, a set of class-level metrics based on the research 

questions were selected including total area (TA), patch density (PD), edge density (ED), 

mean patch area (MPA), mean perimeter area ration (MPAR). The calculated metrics were 

then used to compare the landscape patterns between natural forest without GFG forest 

stands and all the forest including GFG forests. It was also applied to the each forest class 

including deciduous, coniferous and mixed forest.  

2.5 Growth trend of successional forest covers 

The growth trend of the GFG forests stands pertains to the monitoring of forest 

successional change which has implications for land use management as a fundamental 

ecological process (Song et al., 2002). In this research, the temporal trajectories of the GFG 

forests were examined in the brightness and green space (B-G space). The pixels of forests 

were generally spread along a line in the B-G space, which is regarded as canopy closure line 

(CCL) in this study. Once the canopy were closed, the forests at early stages located at the 

higher end of CCL with both high brightness and greenness values. As forest succession 

continues, increased mutual shadowing in the canopy leads to the decrease of both brightness 

and greenness. As a result, forests move towards the lower end of CCL as they mature. In 

order for the multitemporal image data to be comparable, both brightness and greenness were 

normalized to Z-score values separately. 

The CCL was defined as a parallel segment of the linear regression line of points at 

left side of the tasseled cap. Given small ranges of greenness, the points with the lowest 

brightness within each range were filtered as candidate points on the canopy closure line. A 

trend line is then fitted to these candidate points to identify the CCL. The upper bound and 
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lower bound of the segment are limited by the maximum and minimum vertical points of the 

pixels respectively (Fig. 4).  

The successional information of forests was considered as a combination of two 

indices: closure index (CI) and maturity index (MI). The closure index is related to the 

perpendicular distance of a given point to the canopy closure line and is estimated as:  

𝐶𝐼 =
(𝑑𝑚𝑎𝑥 − 𝑑𝑖)

𝑑𝑚𝑎𝑥
  (1) 

Where dmax is the distance of the pixel which has the largest distance to the CCL, di is 

the distance of the ith pixel to the CCL. The larger the value is, the more the pixel is likely to 

be forest with closed canopy. The other index represent which group of successional stage 

the forest belong to and is estimated as:  

𝑀𝐼 =
𝐿𝑖,𝑢𝑝𝑝𝑒𝑟

𝐿
  (2) 

Where Li,upper is the length of segment at CCL between vertical point of a given pixel 

and the upper bound along CCL, and L is the length of CCL between upper bound and lower 

bound. The CI and MI each have limitation to represent the successional information, so a 

synergistic successional index called SynI was developed as the product of these two indices:  

𝑆𝑦𝑛𝐼 =
(𝑑𝑚𝑎𝑥 − 𝑑𝑖)

𝑑𝑚𝑎𝑥
 ×  

𝐿𝑖,𝑢𝑝𝑝𝑒𝑟

𝐿
 (3) 

The index values of CI, MI, and SynI all ranges from 0 to 1. The SynI represents a 

combined information of both canopy closure and successions. The larger value denotes that 

the forest pixel is closer to old-growth forests and lower to the young forests. 

Regressions with vegetation indices proposed by previous studies was conducted for 

each year to evaluate the actual meanings of these indices generated. Then the GFG forest 

stands were partitioned into 3 levels by the difference of SynI between 2002 and 2013 in 
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order to monitor the growing trend of these planted trees. The topographic and vegetation 

indices for each level were extracted to validate the effects of the difference at levels.  
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3. RESULTS 
 

 

 

3.1 Land cover and land use change detection 

The classified maps of the three Landsat images are shown in Fig. 5. The 2013 

classification as reference image has overall 92% accuracy with Kappa coefficient over 0.9. 

The classifications in Year 1992 and 2002 were generated using AASG methods. The change 

detection statistics for forest, cropland and shrub/grass land were summarized in Table 2. 

From 1992 to 2002, the overall forest area does not change much while there is 13.96% 

increase from 2002 to 2013. Before the implementation of forest conservation and restoration 

programs, the areas of deciduous and coniferous forests declined while that of mixed forests 

increased. However, during the decade after the program, deciduous and mixed forests both 

have substantial increases in study area. The tree species provided by the government for the 

program were mainly deciduous forests which have relatively higher survival rates.  

The cropland had limited increase before the SLCP implementation and declined by 

11.12% partially because of the conversion from participated farmland to the GFG forests. It 

is also notable that there is great amount of decrease for shrub/grass land (-61.29%). The 

shrub and grass land have the largest confusions over all the classification particularly at the 

boundary between forest cover and non-forest vegetation land cover. The major 

transformation has occurred from the shrub/grass land to the deciduous and mixed forests. 

The natural forests and the young trees planted by local residents have gradually become the 

dominant land cover over the other vegetation types and thus led to the substantial change.  
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3.2 Synoptic forest landscape pattern change 

The class-level analysis of landscape metrics offers a general landscape pattern of 

forest including GFG stands and excluding GFG stands (Fig. 6). The interpretations for each 

metric were summarized in Table 3. Since the total area of GFG forest stands is relatively 

small compared with the natural forests within the township, the landscape characteristics 

generally have little changes for the forest covers with and without GFG forests. Though the 

decrease of total area for forest without GFG forest is negligible, such slight changes can be 

observed via other metrics that all the forest cover with GFG forests were less fragmented at 

class level with 2.6% higher of patch density and 1.1% higher of edge density if the GFG 

forest were clipped out. The lower, not substantial though, mean patch area (MPA) and mean 

ratio of perimeter to area (MPAR) of forests indicated the irregularity and complexity of the 

forest patches without GFG forests.  

3.3 Spectral/temporal trajectories of all forests 

3.3.1 Spatial and temporal pattern of all classes 

The scatter plot of transformed “tasseled cap” of Landsat 8 OLI image of 2013 is 

shown in Fig. 7. It should be noted that the data points are so dense that the majority of them 

were overlapped, particularly for deciduous, coniferous and mixed forests. So the mean 

values of normalized brightness and greenness of each class are also plotted to clearly display 

the spectral distribution in brightness-greenness (B-G) space of Tasseled Cap transformation. 

The classes of barren land and open rock, accounting for a tiny portion of the entire study 

area, were excluded in the figures. The relative patterns of each class indicates that forests 

are compactly spread along a line on the upper left side of the “tasseled cap” with higher 

greenness than the other classes in general. For the closed canopy forest classes, the 
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measured surface reflectance is mainly from the vegetation with limited contribution from 

the background. Along this canopy closure line, it is believed that both greenness and 

brightness decrease as the forest grows because of mutual shading as the trees getting bigger. 

The deciduous forest, colored in light green in Fig. 7 has higher values of both brightness and 

greenness due to higher reflectance from broad leaf species. The coniferous forest, colored in 

dark green in Fig. 7, appears to have lower values in both brightness and greenness due to its 

relatively lower reflectance compared with the broad leaf species. Mixed forest accounting 

for the majority of forest pixels is located between deciduous and coniferous forest with 

wider spread due to its higher variety in terms of spectral signature. The shrub/grass land also 

have relative higher brightness and greenness but below the forest at canopy closure line. 

This is reasonable due to the sunlit background in addition to their high reflectance at green 

wavelength. The cropland, however, is located below the forest and shrub/grass cover with 

points widely spread due to the properties of various crops planted. There is variety of crops 

during the time of image acquisition, ranging from the higher brightness for open land after 

the crop harvest, and other crops at varying stage of development. The water class has the 

lowest surface reflectance, and thus is neither bright nor green. The complexity of the build-

up class make it possible that the points widely spread in the B-G space but generally have 

high brightness and low greenness due to the  spectral properties associated with concrete, 

pitch, cement in the residential areas. Similar spectral patterns of Tasseled Cap 

transformation were also observed for Landsat 5 TM image in 1992 and Landsat 7 ETM+ 

image in 2002. 

The stable pixels of forest, cropland and shrub/grass class in all three years were 

filtered for examining the temporal trajectories in B-G space (Fig. 8). The mixed forest, as 
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the dominating class in the study area, is the most stable class of spectral signature through 

the two decades. The temporal trajectories of mixed/deciduous forests are different from that 

of coniferous forest. During the two decades, mixed and deciduous forests are basically 

stable with little changes for both brightness and greenness. While coniferous forest keeps 

moving to the old-growth during the two decades. This can be attributed to the occupation of 

young pioneer trees at early stage on the shrub/grass land triggered by the implementation of 

forest conservation and restoration programs. The amount of the conversion from shrub/grass 

to deciduous forest is relatively large and it thus leads to the movement of such forest 

spectral signals towards early successional stages with increase of both brightness and 

greenness. The large change of the cropland between 1992 and 2013 may due to multiple 

reasons such as the activities of cultivation by local farmers as well as phenological 

responses of crops to the seasonal weather changes. Despite the temporal change of stable 

classes, the general spatial pattern maintains that there are no overlap among temporal 

trajectories of any two classes in terms of the mean values.  

3.3.2 Spectral/temporal trajectories with successional indices 

Fig. 9 provides an illustration of depicting canopy closure line (CCL) in B-G space of 

2013 Landsat 8 OLI image. Assuming a reasonable accuracy of classification, the pixels of 

forest are located closer to CCL than those of other classes. So only points classified as 

forests were plotted to define the canopy closure line, which is assumed to be above all the 

points of the study area. In the case of 2013 image, the greenness value of the pixel with 

minimum brightness is 2.6215 and the maximum greenness value is 2.9024. Small steps of 

0.01 for greenness from 2.63 to 2.91 was set to identify all the points required on defining 

CCL within the range. The point with the lowest brightness in each step was selected. After 
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the points from all steps were identified, we can fit a regression line as the CCL. Keeping the 

slope (0.7518) fixed, the trend line was shifted until all the points were at or below it, which 

leads to an intercept of 0.9010 for the 2013 Landsat 8 OLI image. The line was then 

segmented with regard to upper and lower bound based on the pixels. The parameters for 

defining successional indices for all the three years were listed in Table 4. The upper bound 

of brightness and greenness and length of the CCL were used for calculating maturity index.  

The temporal changes of mean distance to CCL and the Li,upper of CCL for all forests 

and each forest category were examined in Fig. 10. It is not surprising that there is 

consistency between these two quantitative measures and the visual observation in temporal 

trajectory of each class. From 1992 to 2002, the mean value of distance to CCL for all 

categories has modest increase and a significant decline during the next decade, indicating 

increase of canopy closure since 2002. As for the Li,upper of CCL for a given pixel in the B-G 

space, the mean values for all categories except coniferous forest have increased during the 

first decade and moderately declined during the following decade. For similar reasons, this 

may also be attributed to the conversion from non-forest vegetation to the young forests, 

most of which belong to the deciduous forest or contribute to the mixed forest.  

Different from the distance to the CCL and the Li,upper of CCL, the SynI index was 

developed as a relative measure over all the forest pixels given one point within the study 

area. Therefore the temporal change of the di and Li,upper can be different from this index that 

the latter more accurate in measuring the successional stage of a pixel relative over the entire 

forested pixels (Fig. 11). It can be observed that the closure index has decreased from 1992 to 

2002 and increased rapidly since the forest programs, which indicates the changes in terms of 

forest canopy structure as trees established for the recent decade. The values and change 
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patterns of mean closure index are similar for all the four categories. For maturity index, 

however, the temporal trends are different, particularly for coniferous forest. Though the 

overall values decreased from 2002 to 2013, the relatively higher magnitude of CCL length 

increase over that of distance to CCL upper bound leads to slight decline of maturity index. 

Vertically, coniferous forest has highest value and deciduous has the lowest, which agrees 

with the results that deciduous forests are at early successional stage while coniferous forest 

is mainly at old-growth stage. The product of these two indices (SynI) were calculated to the 

track the temporal change of the forest at different successional stages. Seen from Fig. 11, the 

SynI values follow the patterns of maturity index across forest classes because of the higher 

magnitude of maturity index. However, the temporal changes are slightly different from CI 

and MI. In general, the deciduous forest at bottom did not change significantly during the 

two decades while the index values for coniferous and mixed forests have increased after the 

implementation of programs. The aggradation of coniferous and mixed forests may result 

from the conservation of the natural forests that trees in remote area were protected from 

logging by local residents. The stable change of deciduous forest may due to both the 

restoration of GFG forest stands and conversions from other land covers. The plant of trees 

contributed to the increase of closure index while the transformation of land covers caused 

the decline of maturity index.  

The scatter plot shows the successional synergistic index of all the forest pixels in 

1992, 2002 and 2013 (Fig. 12). The overall distributions of index levels are similar that 

higher values of SynI are located at the lower left corner in the brightness and greenness 

space. As the brightness and greenness increase, the SynI value decreases to 0 closer to the 

upper end of CCL where a recently closed canopy stand locates. The pixels in 1992 and 2002 
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are spread more widely than those in 2013 when the pixels are packed more closely towrds 

the CCL. This is because there are more pixels having lower SynI values resulting from the 

lower values of MI for the first two years. The changes of observed spectral trajectories in 

1992 and 2002 in terms of the spread of high SynI values. In 2013, the highest value 

representing the old-growth forest is close to 1 with the indication of late succssions of these 

forest pixels which were actully classified as coniferous forest. This distinct phenomenon in 

2013 is probably a result from the forest protection and restoration programs. The majority of 

the pixels in forest area with initial low SynI tend to move faster to the CCL in response to 

the natural growth in mountainous environment. Actually, there are larger amount of pixels 

with higher CI values (not shown in the figure) in 2013 indicating the increase of number of 

stand with closed canopy, thought the MI values don not change much. Besides, the 

proportion of very low CI values for all forest in 2013 is smaller than those in 2002 also 

confirms forest aggradation in the recent decade.  

The scatter plots of SynI for deciduous, coniferous and mixed forests in 2013 were 

displayed in Fig. 12. It is observable that the deciduous forest dominate those at early 

successional stage with very low SynI values while coniferous forest has more pixels with 

high values than the other two categories except for a small group of pixels. This is probably 

because of the misclassification in land cover mapping due to topographic shadow effects. 

Within the mountainous region, the deciduous forest at the shading aspect have much lower 

reflectance of solar radiation and may appear dark green resembling that of coniferous forest. 

After Tasseled Cap transformation and normalization of brightness/greenness, this group of 

pixel considering as coniferous forest may actully be deciduous or mixed forest in reality.  
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3.4 Growth trend of GFG forest stands based on successional index 

3.4.1 Temporal trajectories of GFG forest stands 

Based on the topographic map with GFG forest locations marked as a polygon, GFG 

stands were manually delineated on the WorldView-2 image. There are a total of 226 GFG 

stands in total for the Tiantangzhai Township. The polygons was then overlaid on Landsat 

images to extract the brightness and greenness values for these polygons. All the stands 

approved by local forest station are included regardless of the actual ground conditions. 

Therefore,  a group of pixels labeling as GFG forest stands may be classified as non-forest in 

the Landsat classification and thus may not be properly measured by the forest successional 

indices developed earlier in this study. The temporal trajectory of the average GFG forest in 

normalized B-G space was shown in Fig. 13. From 1992 to 2002, the overall brightness of 

land to be GFG forest is stable with little change while the increase of greenness is observed. 

This if primarily caused by the conversion of planted crops to grass cover. Before 2002, these 

GFG forest stands should be recognized as croplands. The participated patches of lands were 

considered by local farmers as to be poorly productive. The trajectory, after 2002, has 

changed its direction towards less bright and green as GFG forest established. This can be 

explained as the result of successional forest creating shadows within the forest stands.   

The termporal changes of distance to CCL and Li,upper as well as the forest 

development indices were plotted in Fig. 14. The SynI values for GFG forest stands are less 

than 0.2 in 1992 and 2002 but increase to 0.24 in 2013. Meanwhile, the extent to which the 

CI increase (greater  than 0.5) also has taken place in the recent 10 years. During the first 

decade, there was not much change because these indices were meaningful for pixels defined 

as forests. However, it is possible to track the growth trend by comparing the change during 
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decade before and after the implementation of forest programs. As stands were established in 

2002, the conversion from croplands to froests have stronger influence to CI derived from the 

distance to CCL. Such critical change is reasonable because of the replacement of tree 

canopy over the backgound. The MI does not change during the two decades though there is 

slight increase of Li,upper from 2002 to 2013. This follows that the planted trees caused the 

movement of pixels to lower brightness and greenness along CCL, but contibuted to more 

young forest relative to the natural forests around. The incease of the SynI after forest 

restoration program demonstrates the overall aggradation of the GFG stands which is mainly 

from the large magnitude of increase in CI.  

Fig. 15 shows the scatter plots for each group of pixels labeled as GFG forest stands 

through the two decades. The pixels with negative mean values were filtered out, meaning 

the distance on average to the CCL was even larger than the maximum for natural forests. 

These forest stands were regarded as trees that have not met the criteria of well growth until 

2013. In this part, 15, 20 and 3 GFG forest stands were excluded from the scatter plot of 

1992, 2002 and 2013 respectivly. On one hand, the points for 1992 and 2002 spread wider in 

the normalized B-G space and the majority of them have low values (less than 0.5) in terms 

of the succession SynI; on the other hand, those GFG forest stands in 2013 are more compact 

and the highest SynI value is over 0.54 colored in light green at lower left of the B-G space. 

It can be found that the distribution as well as the SynI value are able to characterize the 

change for the GFG stands since the implementation of forest plocies, particularly the 

restoration program. The overall tendancy of the pixels within GFG forest stand is closer 

towards the CCL in 2013. Furthermore, the highest SynI values with both low brightness and 

greenness are probably due to the agradative development after establishment.  
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3.4.2 Correlations between CI, MI, SynI and vegetation index 

To examine the implications of the developed forest indices, regression analysis was 

employed to find the correlations between these indices for GFG forest stands and vegetation 

indices in previous studies. The illustration of the regression results of forest successional 

indices and strucutral index (SI, badn ratio of TM 4/5) in 2013 were shown in Fig. 16 (other 

correlations not shown).Among all the possible vegetation indices, the structural index (TM 

4/5 ratio) proposed by Fiorella and Ripple (1993) were found to be positively correlated to CI 

and SynI for all the three years (R2>0.7), but the relationship is weak for maturity 

index(R2=0.16). Such high correlation is believed to result from the strong relationship 

between forest canopy and structural characteristics. As stand age class falling into 0-10, the 

growing leaves can be determining factors that influence the characteristics of canopy 

structure which at the same time promote the canopy closure. Previous studies (Running et 

al., 1989) also mentioned that the structural index can not distinguished old-growth forest 

with young forest before the canopy closure which explains the poor connection of MI and SI 

values. For 2013, interestingly, saturation problem of structural index occurs as the SynI 

increases in the regression with relatively low R2 (0.31) comparing with that for CI. This 

numerically is because of inverse change ,limited though, of SI with change of MI. Also 

notice that the variation SI is getting larger as MI increase. This provides the evidence of 

insensitivity of structural index to the extent of forest maturity with age regarding the 

successional stages. After the saturated point in SynI-SI regression of 2013, the SynI has 

better capapbility of tacking the successional information on both maturity and canopy 

closure that SI yet reaches the highest values and keeps unchangeable. In fact, MI values are 

highly correlated with enhanced vegetaion index (EVI) for all the three years (R2>0.6). The 
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EVI was developed by adding spectral information from blue band to red and near infrared 

bands of Landsat image in order to minimize the effects of background and atmophere (Jiang 

et al., 2008). This vegetation index is senitive in monitoring tree growth particularly with 

abundant biomass and hence less prone to be saturated which also is applied to the MI 

proposed in this study. As for the normalized difference vegetation index (NDVI), the 

correlations with CI or MI are roughly around 0.5 but much weaker for SynI with strong 

saturation problem of NDVI values.  

3.4.3 Growth trend of GFG forest stands 

Regarding the potential of forest indices for measuring forest successional 

information, the difference of SynI between 2002 and 2013 was taken as an indicator for 

estimating the growth trend of GFG forest stands. Among all the forest stands, 3 levels of the 

extent to which the trees have been growing were developed: poor-developed, moderately 

developed and well-developed. Considering the mountainous area of this natural reserve, the 

topographic effects should be taken into consideration for examination. The topographic 

information and vegetation indices were then extracted for each level to evaluate the effects 

on the growing trees at early stages. Fig. 17 a), b) and c) show the distributions of elevation, 

slope and aspect of GFG forest stands with different levels. The well-developed GFG forests 

are mainly located in area with lower elevation and flatter slopes, with which the natural 

environment may be suitable for the natural growth of trees planted. Furthermore, it is more 

likely that such topographic conditions allow easier access for household to manage the 

forests particularly during the first few years. For the well-developed forest stands, the 

largest proportion lies around aspect facing southwest while that for poor-developed were 

facing east. The moderately-developed forest stands has pretty even distribution across all the 
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direction. The temperature over the whole study area has little fluctuation through decades 

plus sufficient precipitation, the sunlight therefore can be the primary limitation for GFG 

forest growth. The southwestern solar radiation received by trees provides with abundant 

energy for photosynthesis meanwhile minimized the shadow fraction caused by canopy of 

surrounding forests. Moreover, the fraction of shadowed canopy by GFG forest themselves 

can also lead to the change of brightness/greenness and thus the forest indices developed.  

Fig. 18 shows the vegetation index changes of the 3 development levels of GFG 

forest based on the SynI difference. The plots consolidates the growth trend of aggradation 

for the trees planted since 2002. All the vegetation index values are positive with indication 

of the general aggradation of GFG forests. Larger differences of the calculated vegetation 

indices are observed for well-developed forest stands comparing with moderately-/poor-

developed stands. As a result, the growth trend of the 3 levels can be well-detected using the 

measurement of successional forest index in terms of the evaluation by the vegetation 

indices.  
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4. DISCUSSION 
 
 
 

4.1 Classifications and landscape analysis 

This study tracked the land use land cover changes in Tiantangzhai Township under 

the implementation of forest policies at the beginning of 21st century. The classification for 

change detection and landscape pattern characterization emphasized the natural forest and 

GFG forest stands in response to natural forest protection and Grain-for-green forest 

restoration respectively. In this case, the machine learning method called random forest (RF) 

as the classifier was employed and modified automatic adaptive signature generalization 

(AASG) as the approach extracting image-based training sites was used for all the process 

with remotely sensed data. As pointed out by Gray and Song in 2013, the error sources of 

AASG were mainly from the misclassification of reference image and the filtering of stable 

pixels with multitemporal imageries. The high quality of classifying the reference map (2013 

Landsat OLI image) was satisfied by referring to the fine spatial resolution image from WV-

2 satellite as well as the GPS points collected in field work during summer 2013. The overall 

accuracy over 90% of the initial reference map ensured the minimization of the accumulated 

errors for further classifications. The modifications of AASG approach include adding bands 

of vegetation indices and Tasseled Cap indices, which make it necessary for absolute 

atmospheric correction in converting DN values to reflectance scaled from 0 to 1. Because 

Landsat OLI product was released in 16-bit radiometric resolution, ridge method was also 

applied as relative atmospheric correction to match TM and ETM+ image reflectance to that 
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of the most recent one in response to the sensor difference. This also leads to the process of 

normalizing brightness and greenness indices separately after Tasseled Cap transformation.  

Although the 2013 reference map was generated with high accuracy especially for the 

natural forest, there may still exist substantial amount of misclassified pixels for each specific 

forest category when applying automatic stable sites due to multiple factors. The change 

detection statistics revealed a large difference of conversion among deciduous, coniferous 

and mixed forest, on which the phenological change may have strong effects. The dates 

acquiring 2013 OLI remotely sensed data is May 21 in early summer but the previous images 

(1992 and 2002) were captured by satellites during October. The seasonal change of 

vegetation, though not as critical as cropland, accounts for a certain amount of the land cover 

change areas over natural forests and shrub/grass land classified. The sun angels across the 

seasons should also be taken into consideration. The sun light with higher elevation angle in 

during May could have more penetration to the forest canopy which further causes less 

reflected signals received by the sensor. Besides, the topographic effects is another error 

sources influencing the brightness reflected by trees at sloping facing different directions. 

One of the limitations of AASG approach lies in the selection of stable pixels based on band 

subtraction that contains nothing but reflectance information. Future improvements may 

consider the inclusion of topographic effects for training samples filtering in addition to the 

classifier.  

The landscape pattern change with conversions of pieces of land to GFG forest is not 

significant mainly because of three reasons. Firstly, almost every household own the natural 

forest protected from logging but only about a sixth of them participated in Grain-For-Green 

programs. The relatively small proportion of the GFG forest stands in terms of total area has 
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much less contribution to substantial change of class-level metrics at the entire landscape of 

study region. Though the general pattern indicate less fragmentation of forest as GFG forest 

established, the metric analysis at patch-level may be more sensitive to young growing trees 

over the large scale. Second, the GFG forest identification was referenced on the data from 

topographic map decade ago. The accuracy of location and area for each GFG forest stand 

basically depends on the personal experiences by local farmer and staff from forest stations. 

Since the establishment of trees, it is further hard to monitor the growing trend of each forest 

stand particularly for those at remote region with limited access. Thirdly, the forest at early 

successional stage can leads to confusions with natural forest and other class such as 

abundant shrub/grass due to their weak contribution in terms of reflectance observed from 

satellite images. As a result, it is inevitable that some stands labeled as GFG forest have 

actually been poorly-developed and thus classified as non-forest cover. These factors overall 

undermined the positive impacts of the planted young trees to the natural forest as a whole.  

4.2 Temporal trajectories of natural forest 

Considering the limitations of classification in forests at different successional stages, 

this study proposed the development of forest indices extracting mature and canopy closure 

information from the brightness/greenness space after Tasseled Cap transformation. It is 

required to generate high quality classification maps because the distribution of the each 

class is crucial for calculating the forest indices. This was examined by the spatial/temporal 

characterizations of pixels with each class in the normalized brightness/greenness space. The 

assumption lies in the relative positions of each category particularly forests when defining 

the upper/lower bounds along the canopy closure line as well as the maximum distance to the 

line. Noting the variety of shape of tasseled cap transformed from images of each year, the 
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absolute value of the length of CCL and distance to CCL are in fact incomparable among 

multitemporal data. Multiple factors can result in this discrepancy in forming Tasseled Cap. 

One of the reasons includes the environmental stress on the forests over the entire 

Tiantangzhai Township. According to the sensitivity of vegetation area to the precipitation, 

for example, the overall greenness may shifted down in response to drier conditions. Besides, 

sensor difference also occur even the coded DN value was converted back to the surface 

reflectance and such transforming process of reflecting signals would inevitably cause 

information loss and thus influence the distributions of pixels in B-G space.  

Therefore the relative location of given pixel over all the points spreading in B-G 

space was considered within tasseled cap which also normalizes the value to the range of 0-1. 

In this research, CI and MI are relevant to the maximum distance to CCL and length of CCL 

respectively with restriction to the pixels classified as forest cover. It is possible to generalize 

the restriction to the points within the whole study area. For example, noticing the 

distribution of build-up with much higher brightness and lower greenness than other class, its 

mean value of B-G coordinates can be a candidate for determining the maximum distance to 

CCL. As for the MI based on CCL length, forest pixels seems to be adequate in defining the 

upper and lower bound.  

Due to the fact that the forest indices are derived from the tasseled cap indices of 

forest cover, the actual meaning is confined to the quatification of forest successional 

information. Though band math is plausible for creating the index bands, the pixels over the 

defined “maximum” distance to CCL would have negative values meaning nothing further 

from unlikely forest. This also happened when the pixel lies outside the CCL bounds. Seen 

from the scatter plot of each class in B-G space, it is undoubted that the majority of pixels 
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classified as build-ups, cropland and water would have negative index values. At this point, 

the sensitivity of the defining maximum distance and bounds along CCL was suggested for 

further analysis. The selection of study area should also be taken into account with certain 

size dominated by forest.  

4.3 Growth trend of GFG forest stands 

A certain amount of pixels labeled within GFG forest stands have negative value of SynI for 

all the three years. It is reasonable for the images in 1992 and 2002 since those patches 

depicted were actually cropland or abandoned land belonging to non-forest cover. However, 

negative values also exist for the image in 2013. Except for the errors from 

misinterpretations, it is likely that the ground truth of these pixels within GFG forest stands 

are non-forest due to the growing failure of trees since established in 2002. These pixel with 

negative value, as a result, are regarded as the non-forest and removed from the scatter plot 

with z-valued ranged 0-1. However, all the pixels were included for calculating the mean 

indices to measure the extent of stand aggradation or degradation. The purpose is to track the 

growth trend of each forest stand during the decade of forest policy implementation which 

manifests the advantages of remotely sensed data in monitoring forest at early successional 

stage over the in situ management. Fig. 19 provides the illustrations of forest stands at 

different levels on WorldView-2 image in 2013. It can be observed that the well-developed 

forest (a) stand has more homogeneous canopy cover while the area of grass/shrub 

background is outstanding within the poorly-developed stand (c). It is more likely to cause 

negative SynI value when there is large open area of background with higher brightness. For 

the moderately-developed stand (b), the canopy closure status undermine the CI value despite 

the higher MI for the trees in dark green. 
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5. CONCLUSIONS 

 

 

 

Since 2002, substantial land cover changes have taken place following the 

implementations of forest conservation and restoration programs in Tiantangzhai Township 

until 2013 compared with the changes during the decade from 1992 to 2002. Overall natural 

forests prevail the study area with an increase of 14 percent. Large amount of shrub/grass 

lands have been converted to other land covers. The decline of cropland was also observed 

after the Grain-For-Green program. Though subtle, landscape metric analysis revealed that 

the forest landscape became the less fragmented and isolated for all the forest as well as each 

forest category (deciduous, coniferous and mixed) when the GFG forest stands were 

included. Such subtle changes require accurate spectral signals to characterize change 

associated with forest succession.  

The development of forest succession were examined in the brightness/greenness 

space of the Tasseled Cap transformation. The distribution of pixels classified as forest in the 

brightness/greenness (B-G) space makes it possible to characterize the forest at different 

successional stages. In this study, 3 indices for forest development were developed in the 

brightness/greenness space. The closure index (CI) is relevant to the distance of given pixel 

to the canopy closure line which is defined as the regression line along the left edge of the 

tasseled cap. This index can be used as an indicator of the canopy structure as it has strong 

correlation with structural index (SI). The maturity index (MI) pertains to the stage to which 
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the stand is growing. Along the CCL, the pixels of young forest mainly lie at the top of 

tasseled cap with higher brightness and greenness. As the forest develops, the brightness and 

greenness value decrease. The synergistic successional index (SynI) was calculated as the 

product of CI and MI in order to combine the information from both. Regressions of the 

forest indices with vegetation indices indicates that SynI is highly correlated with SI, but 

more sensitive to young forests that has not reached canopy closure. In 2013, the pixels of all 

forests are packed more closely to the CCL in normalized B-G space indicating forests are 

generally in aggradation which can also be characterized by the increase of SynI values.  

The temporal trajectory of GFG forest stands showed the spectral signals of changing 

brightness and greenness through 20 years. From 1992 to 2002, there is substantial increase 

of greenness with stable brightness which is due to the establishment of tress on pieces of 

land. During the following decade, both brightness and greenness declined as the young 

forests grew. The planted young trees impacted the change of CI, leading to the increase of 

SynI. The overall aggradation for GFG forest stands was also observed. Based on the extent 

to which SynI increase, the GFG forest stands were divided in to 3 levels poorly-developed, 

moderately-developed and well-developed. The topographic effects were observed within 

different levels that the stands with positive growing trend are more likely to appear at lower 

elevation and gentler slopes facing southeast with sufficient solar radiation. The growth trend 

with different level was also examined by the measures of vegetation indices. For validation 

of these indices proposed, in situ data were required measuring the actual reflectance of each 

forest category and testing the sensitivity of the defining the distance to CCL as well as 

length of CCL should be emphasized.  
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TABLES 

 

Table 1. Landsat imagery acquired for the year of 1992, 2002 and 2013 (Path/Row: 122/38) 

Year Date Satellite Sensor Multispectral 

resolution 

Panchromatic 

resolution 

1992 October 18 Landsat 5 TM 30 m 15 m 

2002 October 6 Landsat 7 ETM+ 30 m 15 m 

2013 May 21 Landsat 8 OLI 30 m 15 m 

2013 July 13 WorldView-2 - 2 m 0.5 m 

 

 

 

Table 2. Statistics of change detection for forest, shrub/grass land and cropland 

Class 1992-2002 (%) 2002-2013 (%) 

Overall forest -2.83 13.96 

Deciduous forest -8.07 18.80 

Coniferous forest  -32.35 -73.40 

Mixed forest 18.42 43.29 

Cropland 3.06 -11.12 

Shrub/Grass 12.17 -61.29 

 

 

 

Table 3. Interpretation of landscape metrics selected. 

Metrics  Interpretation 

Total area (TA) the sum of the areas (m2) of all patches of the 

corresponding patch type 

Patch density (PD) the numbers of patches of the corresponding patch type 

divided by total landscape area (m2) 

Edge density (ED) edge length on a per unit area basis that facilitates 

comparison among landscapes of varying size 

Mean patch area (MPA) average area of patches 

Mean perimeter area ration (MPAR) the mean of the ratio patch perimeter. The perimeter-

area ratio is equal to the ratio of the patch perimeter (m) 

to area (m2) 

 

 

 



36 
 

Table 4. Parameters for calculating forest successional indices.  

Parameter 1992 2002 2013 

k 1.0868 1.1511 0.7518 

m  2.1428 2.3241 0.9010 

dmax 3.3216 2.8962 1.9512 

L 7.0614 8.9111 9.7444 

Bupper 1.3175 1.8755 3.1682 

Gupper 3.5746 4.4830 3.2828 

In the table, k and m denote the slope and interception of CCL. dmax is the maximum distance 

of the all forest pixels to CCL. L is the length of CCL. Bupper and Gupper are the coordinate of 

upper bound of CCL. 
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FIGURES 

 

 

 

 

Fig. 1. Study area: Tiantangzhai Township at Jinzhai County Anhui, China 
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Fig. 2. Fundamentals of the workflows for the AASG method developed by Gray and Song, 

(2013). The reference image (I1) was classified by using training data with high quality to 

produce the classification map (C1). The training sites for the target image (I2) was 

automatically derived from the stable pixels identified by image differencing and then used 

to generate the classified map (C2). The stable pixels were spatially filtered to eliminate 

boundaries at both classes and stable patches with higher confusions. 
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Fig. 3. Selection of c parameter for given class. The frequency of the values after subtracting 

bands for the tow images appears like bell-curve distribution as the image is large enough 

and the assumption of unchanged of majority pixels holds. The symbols of µc, σc denotes the 

mean value and standard deviation of the differencing values. The interval µc ± c · σc was 

chosen in terms of the shaded area which contains 1000 pixels of stable sites. If the total 

number of stable pixels are less than 1000, the interval would be narrowed down to match 

that including all those pixels.  
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Fig. 4. The B-G space of Tasseled Cap transformation. Point a is the pixel with the largest 

perpendicular distance to the CCL and dmax = |aa’|. Point e (e’) is the pixel locates on the 

CCL (i.e. has the lowest perpendicular distance zero to CCL) and it defines the intercept of 

CCL. Point c and b defines the upper and lower bound within the length of CCL. L = |c’b’|. 

For the ith pixel x, di = |xx’|, Li,upper = |x’b’|. It should be noted that dmax was lengthened with 

10% assuming at least 10% canopy cover given one pixel of forest because the canopy 

cannot be 0 which means no tree.  
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Fig. 5. Land use and land cover in Tiantangzhai Township in 1992, 2002 and 2013 
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Fig. 6. Changes of landscape metrics for all forests with and without GFG forest stands at the 

whole region scale. The metrics are normalized to the same scale (0-1) for histogram 

plotting. Scale, TA: 109, PD: 10-4, ED: 10-1, MPA: 105, MPAR: 101. 
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Fig. 7. Scatter plot (above) and spatial distribution of mean values (below) for build-ups, 

forests (deciduous, coniferous and mixed forest), water, cropland and shrub/grass of Landsat 

8 OLI image (2013) in normalized B-G space. 
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Fig. 8. Temporal trajectories of stable classes in normalized B-G space 

 

 

Fig. 9. Scatter plot of forest classes with corresponding canopy closure line (CCL) in 2013 
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Fig. 10. Temporal change of mean distances to the CCL and Li,upper (distance of vertical point 

of pixel i to the upper bound of CCL)of forest classes (deciduous, coniferous and mixed) and 

all forests.  
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Fig. 11. Temporal change of closure index (CI), maturity index (MI), and synergistic 

successional index (SynI) of forest classes (deciduous, coniferous and mixed) and all forests 
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Fig. 12. Scatter plot for SynI. The plots on left display the temporal change (1992, 2002 and 

2013) for all the forests. The plots right are illustration of coniferous, deciduous and mixed 

forest in 2013.  
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Fig. 13. Temporal trajectory of all GFG forest stands on average in normalized B-G space 
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Fig. 14. Temporal change of di, Li,upper and CI, MI, SynI on average for GFG forest stands. 
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Fig. 15. Scatter plot for SynI of all the GFG forest stands in 1992, 2002, and 2013 
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Fig. 16. Correlations of CI, MI, SynI with structural index (SI) of GFG forest stands in 2013 
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Fig. 17a. Proportional distribution of mean elevation of GFG forest stands for different levels 

of growing trend based on the change of SynI between 2002 and 2013. 
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Fig. 17b. Proportional distribution of mean slope of GFG forest stands for different levels of 

growing trend based on the change of SynI between 2002 and 2013. 
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Fig. 17c. Proportional distribution of mean slope of GFG forest stands for different levels of 

growing trend based on the change of SynI between 2002 and 2013. 
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Fig. 18. Vegetation index (NDVI, NDWI2, EVI, and SI) difference for the three levels of 

GFG forest based on the change of SynI between Year 2002 and 2013. 
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Fig. 19. Illustrations of GFG forest stands at levels of a) well-, b) moderately- and c) poor 

development for growth trend based on the change of SynI between 2002 and 2013. The 

green polygons represent the boundary of the forest stands over the fine spatial resolution 

image of WorldView-2 satellite.  
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