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ABSTRACT 

 

Patrick Snow Powell: Cognitive Aging in Autism Spectrum Disorders 

(Under the direction of Mark R. Klinger) 

 

 

Little is known about the effects of age on cognitive functioning in adults with autism 

spectrum disorder (ASD). However, previous aging studies in individuals with Down syndrome, 

Fragile X, and William’s syndrome suggest accelerated cognitive decline with age. The current 

study used a cross-sectional design to examine age-related cognitive changes in adults with ASD 

(ages 30 to 67) compared to adults with typical development (ages 30-65). To examine whether 

ASD is associated with atypical aging, performance assessed through measures of effortful 

cognitive processing (known to decline with age) and measures of automatic processing (thought 

to be relatively age-invariant) were examined. Results indicated that diagnosis was related to 

poorer cognitive performance. However, aging in ASD was associated with three different 

patterns of cognitive decline compared to adults with typical development. 

Adults with ASD exhibited greater age-related decline across three measures designed to 

assess mild cognitive impairment (e.g., the MoCA), cognitive flexibility [e.g., Trail Making Test 

(TMT) number-letter switching], and associative learning (e.g., classical conditioning).  There 

was also evidence of similar age-related decline, as compared to controls, on measures of explicit 

free recall (e.g., RAVLT), visual search (e.g., TMT visual scanning), and processing speed (e.g., 

TMT number/letter sequencing subtests). Finally, no age-related decline was observed on 

measures of recognition memory (e.g. RAVLT recognition test), explicit category learning 
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(Woodcock-Johnson Concept Formation), and implicit category learning (e.g., prototype 

formation).   

Given different patterns of age-related change observed in adults with ASD, a final 

multivariate analysis examined overall cognitive performance, including measures of processing 

speed, cognitive flexibility, executive functioning, explicit category learning, and free recall.  

Results indicated that when the overall pattern of age-relate cognitive change was considered, 

age had a disproportionately negative impact on cognitive performance in adults with ASD 

compared to adults with typical development. 

These findings suggest aging in ASD may be characterized by greater age-related 

declines in cognitive functioning, including a particular disruption of executive functions.  

Theoretical insights are provided by the Processing Resources and Processing Speed theories of 

cognitive aging, and clinical implications regarding a higher risk for mild cognitive impairment 

and disruption of pre-frontal cortex are discussed. 
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INTRODUCTION: COGNITIVE AGING IN AUTISM SPECTRUM DISORDER 

 Autism spectrum disorder (ASD) is a developmental disorder with core symptoms 

consisting of impairments in social communication and the presence of restrictive interests and 

repetitive behaviors (American Psychiatric Association, 2013). Often considered a disorder of 

childhood, researchers are now developing theoretical frameworks to understand the 

developmental trajectory of individuals with ASD across the lifespan. Unfortunately, little is 

known about this developmental trajectory as individuals leave young adulthood. With recent 

prevalence rates of 1 in 68 (Christensen et al., 2016), there will be a significant increase in the 

population of older individuals with ASD in the near future. Thus, the study of how aging 

impacts individuals with ASD is in dire need of investigation. 

Although it is well known that cognitive changes occur with normal aging, very few studies 

have investigated how aging influences individuals with ASD. Individuals with ASD 

demonstrate a variety of cognitive impairments in childhood and young adulthood ranging from 

communication and social impairments to more fundamental cognitive impairments in executive 

functioning, working memory, and implicit and explicit forms of memory and learning 

(Brunsdon et al., 2015; Brunsdon & Happé, 2014). Yet little is known about how these 

impairments change with age. To date, only two studies have examined the cognitive profile of 

older adults with ASD compared to adults with typical development (Geurts & Visser, 2012; 

Lever & Geurts, 2015). The first study by Geurts and Visser (2012) found overall poorer 

performance in older adults with ASD in sustained attention, working memory, and verbal 
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fluency, while showing equivalent cognitive ability in processing speed, cognitive flexibility, and 

visual and verbal memory compared to older adults with typical development. Unfortunately, 

this study did not include samples of younger adults with ASD and typical development making 

it impossible to tell whether these differences in cognitive performance reflect global diagnostic 

differences or the interaction of aging and diagnosis (e.g., whether aging differentially impacts 

adults with ASD). Therefore, a subsequent study by Lever and Geurts (2015) examined 

performance on various cognitive tasks in a larger cross-sectional sample of younger and older 

adults with ASD (n=118) and typical development (n=118; ages 20 – 79). This study found no 

evidence of greater or accelerated cognitive decline in older adults with ASD. Instead, age-

related changes in ASD were either reduced or similar to those observed for individuals with 

typical development. Overall, Geurts’ research suggests that individuals with ASD may age 

similarly to those with typical development or may be partially protected against age-related 

declines in cognitive functioning. Although these findings are certainly strengthened by the large 

sample of adults with ASD included in this study, additional research is needed to confirm these 

results and to examine the impact of other moderating variables on these findings (e.g., 

diagnostic severity, intelligence). In Lever & Geurts (2015) study, the majority of participants in 

this study were diagnosed in adulthood and represented relatively mild cases of ASD (e.g., 

Asperger’s syndrome or Pervasive Developmental Disorder – Not Otherwise Specified, PDD-

NOS), which Lever and Geurts have suggested may be more common in adults with average to 

above average intelligence whose cognitive abilities can be used to compensate for ASD-related 

difficulties. Indeed, studies of normal aging have also indicated that age-related effects may be 

masked in individuals with higher verbal intelligence or high educational levels (Bolla, Lindgren, 

Bonaccorsy, & Bleecker, 1990; Tombaugh et al., 1999). Hence, it is possible that Lever and 
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Geurts’ results may have been impacted by intellectual functioning of the participants which may 

have limited the ability to detect diagnostic and age-related changes in adults with ASD. In light 

of this possibility, the purpose of the present study was to explore age-related changes in 

cognitive ability across younger, middle-aged, and older adults with ASD compared to younger, 

middle-aged, and older adults with typical development while controlling for differences in 

intellectual functioning. 

To begin this investigation of age-related cognitive changes in ASD, I will review what is 

known about changes in cognition in normal aging and discuss what is known about cognitive 

changes in older adults with other developmental disorders (DDs). This review should provide a 

theoretical framework to understand age-related cognitive changes in ASD and to develop 

predictions about these changes.  

Normal Aging 

A central focus of cognitive aging research is to examine both the trajectory of age-

related changes in cognition as well as the specific cognitive functions negatively impacted by 

aging. Numerous cross-sectional and longitudinal studies of normal aging have indicated that age 

is associated with a pattern of linear decline in cognitive functioning such that by the time adults 

reach their eighties, the average level of cognitive performance is a full standard deviation below 

that of young adults (Salthouse, 2009; Schroeder & Salthouse, 2004). Salthouse and colleagues 

have argued that this difference between younger and older adults is due to declines in cognitive 

function that begin in mid-adulthood and continue into older adulthood. Due to this linear pattern 

of cognitive decline, researchers have investigated whether age has a global or more specific 

impact on cognitive processes. To investigate specific patterns of cognitive decline, studies of 

normal aging often differentiate between measures of effortful processes (i.e., processes that 
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require substantial awareness and cognitive effort) and measures of automatic processes (i.e., 

processes that are relatively unintentional, involuntary, effortless, or occur outside awareness; 

Reber, 1989). Therefore, the following sections briefly review studies of effortful and automatic 

processing in normal aging. 

Effortful processing in normal aging. Measures of effortful processing typically 

include measures of working memory, executive functioning, explicit memory, processing speed, 

concept formation, and controlled aspects of attention. These measures consistently show poorer 

performance in older adults than younger adults (Buckner, 2004; Craik & Byrd, 1982; Craik, 

1986; Craik & McDowd, 1987; Hess & Blanchard-Fields, 1996; Kramer & Madden, 2008; 

Salthouse, 1991, 1996; Salthouse, Atkinson, & Berish, 2003; Stoltzfus, Hasher, & Zacks, 1996). 

By far the most thoroughly researched area in cognitive aging is explicit memory, specifically 

episodic memory (Craik, 2002; Craik & Byrd, 1982; Craik & McDowd, 1987; Light, Prull, La 

Voie, & Healy 2000; Salthouse, 2004; 2009). Several meta-analyses have assimilated these 

findings to show that age-related differences between young adults and older adults are mediated 

by the way that episodic memory is assessed (Spencer & Raz, 1995; Verhaeghen & Salthouse, 

1997). That is, compared to younger adults, older adults typically show more impairment on tests 

of free recall and cued recall, and less impairment on tests of recognition. For instance, Spencer 

and Raz (1995) found that the average effect size associated with age was greater when memory 

was tested by free or cued recall (d = 1.01) compared to recognition (d = .57). One explanation 

of these findings is that, tests of free recall provide participants with little information that could 

aid in retrieval (i.e., little environmental support) aside from the participant’s own memory of the 

studied material. Thus, greater cognitive effort and strategic control is required during retrieval. 

In contrast, tests of recognition present the previously studied material to the participant which in 
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turn facilitates retrieval. Other studies have suggested that impaired free recall may be due to 

both a difficulty in retrieval as well as use of less effective encoding strategies. For instance, 

when free recall involves retrieval of semantically-related items, young adults often recall words 

from the same category, indicating that they used the categories to organize the information. 

However, older adults are less likely to spontaneously engage in this type of organizational 

strategy and instead tend to engage in more item-specific processing (i.e., remembering 

individual words) unless provided with an explicit strategy designed to highlight the semantic 

relationship between items. For instance, Woo and Schmitter-Edgecombe (2009) provided older 

adults (age range: 60-88 years) with semantic cues or no semantic cue (i.e., control group) 

followed by a free recall test. Results indicated that older adults provided with semantic cues at 

encoding demonstrated greater semantic clustering compared to participants who did not receive 

the semantic encoding cue. Therefore, when provided with an organizational strategy, older 

adults are more likely to engage greater relational processing (i.e., generating similarities among 

items). These findings, coupled with a general reduction in effortful processing resources, 

suggest that tasks requiring substantial cognitive effort (e.g., free recall) are often impaired in 

older adults  

Automatic Processing in Normal Aging. In contrast, studies examining more automatic 

processes in normal aging such as implicit memory (Gopie, Craik, & Hasher, 2011; Light & 

Singh, 1987; Light, Singh, & Capps, 1986), implicit learning (Fera et al., 2005; Glass et al., 

2012; Hess, 1986; Labar, Cook, Torpey, & Welsh-Bohmer, 2004), and automatic aspects of 

attention shifting (Colcombe et al., 2003; Kramer, Hahn, Irwin, & Theeuwes, 1999; Zanto & 

Gazzaley, 2014) typically show relatively preserved processing in older adults. Previous studies 

have demonstrated that these processes are largely independent of age (Huang-Pollock, Maddox, 
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& Karaluns, 2011; Weinert, 2009) and intelligence (Atwell, Conners, & Merrill, 2003). 

Presumably the relative preservation of automatic processing in normal aging occurs because 

these processes require less cognitive effort, and, therefore, rely less on older adults’ limited, 

declining pool of effortful cognitive resources. Experience is another way in which automatic 

processes may be maintained in older adults. For example, Salthouse (1984) compared typing 

speed between younger adults and older adults. Older adults with more years of experience 

demonstrated faster typing speed compared to less experienced older adults and comparable 

speed to younger adults. Similarly, Parbery-Clark, Strait, Anderson, Hittner, and Kraus (2011) 

found that older adults with extensive musical training maintained similar auditory perception as 

compared to younger adults. Interestingly, years of musical training also helped maintain 

effortful processes such as auditory working memory, suggesting that experience not only 

maintains automatic processes, but may also mitigate declines in some effortful processes.  

However, not all automatic processes are preserved in normal aging. For example, in 

some studies classical conditioning is seen to decline with age, such that older adults show 

weaker conditioned responses compared to younger adults (Bellebaum & Daum, 2004; Cheng, 

Faulkner, Disterhoft, & Desmond, 2010; Woodruff-Pak & Jaeger, 1998). This pattern of 

impairment has been attributed to the significant age-related functional and structural changes in 

the hippocampus and cerebellum which play roles in classical conditioning. Expectedly, when 

these structures are further compromised by neuro-degenerative disease, such as in patients with 

Alzheimer’s disease, even poorer conditioning is found relative to healthy older adults. Given the 

role of the hippocampus and evidence of poorer conditioning in Alzheimer’s disease, these 

results suggest that classical conditioning paradigms may involve both automatic and effortful 

processing. Further support for this notion comes from a study by Labar, Cook, Torpey, and 
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Welsh-Bohmer (2004) which found that increased age was associated with poorer conditioning 

and poorer explicit awareness of the learning contingencies (i.e., the CS-UCS relationship). 

However, when awareness was taken into consideration, there were no effects of age on 

conditioning. That is, older adults demonstrated comparable conditioning to younger adults when 

aware of the relationship between the CS and the UCR, but when older adults were unaware of 

this relationship, conditioning was impaired. Though classical conditioning is traditionally 

considered a non-declarative or automatic form of learning, these findings suggest that older 

adults may be capable of compensating for impairments in the automatic aspects of conditioned 

learning by using more effortful or explicit processes.  

Theoretical Models of Cognitive Aging 

Although several theoretical models have been proposed to account for patterns of age-

related changes in cognition, the primary focus of the current study is to examine patterns of 

performance on effortful and automatic processing tasks in older adults with ASD. Therefore, the 

following section will discuss theories of effortful and automatic processing in older adults 

including Craik and colleagues’ extension of the Dual-process theory (Craik & Byrd, 1982; 

Craik, 1983; 1986; Craik & Rose, 2012; Light et al., 2000), and Salthouse and colleagues’ 

Processing Speed theory (Salthouse, 1996). 

Processing resources. The Dual-process theory is a well-known theory in cognitive 

psychology that suggests cognitive processes largely fall into two independent, distinct systems. 

One system consists of a limited pool of effortful or explicit processes that operate under 

conscious control, whereas the other system involves automatic or implicit processes that operate 

relatively outside of conscious awareness. As previously mentioned, studies of normal aging 

have shown that automatic and effortful processes are differentially affected by age (Light et al., 
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2000). That is, studies of automatic processing, such as implicit memory and learning, reveal 

minimal age effects, whereas studies of effortful processing, such as working memory or 

episodic memory, show substantial declines in older adults (Craik & Rose, 2012; Light et al., 

2000). However, tests designed to assess effortful processes such as explicit memory are not 

“process pure” and, in fact, require varying amounts of effortful and automatic processes. For 

example, tests of free recall assess a participant’s ability to explicitly retrieve previously studied 

information. As a consequence, free recall heavily depends on self-initiated, controlled 

processes. In contrast, recognition memory involves retrieval of specific details associated with 

previously studied information (i.e., recollection), as well as a subjective experience of having 

previously studied the information, but may often have an inability to recall specific details (i.e., 

familiarity). Thus, recognition can involve both effortful recollective processes, as well as the 

automatic processes associated with familiarity (Yonelinas, 2002). This idea led Craik and 

colleagues to propose the Processing Resources account of cognitive aging.  

The Processing Resource account suggests that cognitive functioning in older adults is 

characterized by declines in effortful processing resources. Tasks with a greater degree of 

effortful processing requirements are hypothesized to show greater age-related declines. As 

previously mentioned, studies of explicit memory in normal aging indicate a disproportionately 

large age effect on free recall compared to recognition. According to the Processing Resource 

account, free recall is more dependent on effortful processes, therefore age-related declines in 

effortful processing resources ought to more adversely affect this type of test. In contrast, 

performance on tests of recognition is less impaired because automatic processes are used to 

compensate for declining effortful processing resources. The Processing Resource account has 

also tested the prediction that if aging is associated with a reduction in effortful processing 
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resources, then the pattern of memory performance in older adults may be mimicked in young 

adults whose available resources have been reduced by providing a secondary task to perform 

simultaneously with the primary memory task (Anderson, Craik, & Naveh-Benjamin, 1998; 

Craik & Rose, 2012). Anderson et al., (1998) provided support for this notion, showing that 

young adults whose attention was divided demonstrated behavioral results that replicated the 

pattern seen in older adults when performing a memory task with full attention. Finally, this 

account can explain the pattern of age-related changes in studies of classical conditioning. As 

previously mentioned, Labar et al. (2004) demonstrated a relationship between explicit 

awareness and classical conditioning in older adults. This result is consistent with the claim that 

classical conditioning is not a pure measure of automatic processing, but, in fact, draws upon 

both automatic and effortful processes. If classical conditioning is only associated with automatic 

processes, then it should be relatively unaffected by neuro-degenerative diseases (e.g., 

Alzheimer’s) or medial temporal amnesia that specifically disrupt effortful processes such as 

explicit learning. However, studies of classical conditioning have indicated greater explicit 

learning is sometimes associated with stronger classical conditioning. Additionally, poorer 

performance in patients with Alzheimer’s Disease (Hoefer et al., 2008; Woodruff-Pak, 

Finkbiner, & Sasse, 1990) and amnesia (Fortier et al., 2003; Meyers et al., 2001) compared to 

healthy older adults suggests that greater impairment in effortful processing is related to 

impairment in conditioning.  

Processing speed. Another theory explaining age-related cognitive declines stems from 

the work of Salthouse and colleagues. These authors have proposed the Processing Speed theory 

of aging that argues that cognitive declines  in older adults is specifically related to age-related 

declines in the speed of information processing (Salthouse, 1991; 1996; 2004; 2009; Verhaeghen 
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& Salthouse, 1997). This theory has received support from several meta-analyses indicating a 

substantial portion of age-related cognitive decline is accounted for by processing speed 

(Salthouse, 1996; Verhaeghen & Salthouse, 1997). For instance, through a meta-analysis of 

cross-sectional studies, Verhaeghen and Salthouse (1997) found that processing speed accounts 

for more than 70% of the age-related decline on tests of explicit memory. In contrast to the 

Processing Resource account, the Processing Speed theory suggests that declines in processing 

speed may represent a more fundamental cognitive change, and the impairment of effortful 

processes is simply a consequence of this change. To illustrate, processing speed corresponds to 

the speed of initial information processing such as early visual or auditory perception. Thus, 

declines in processing speed reflect slower initial processing. Information from these initial 

processes is simultaneously coordinated by more complex and effortful secondary processes 

such as working memory. Therefore, significant disruption occurs when secondary processes 

begin before slower initial processes are completed. In contrast, automatic tasks may require less 

information, and, therefore, less coordination among processes. This may explain why automatic 

processes are less disrupted by slower processing speed.  

Age-related Changes in Cognition in Developmental Disabilities 

Although these theoretical frameworks serve as guides for predictions of age-related 

cognitive changes in the current study, it is important to further support these predictions by 

incorporating what is known about age-related changes in cognitive functioning in individuals 

with other DDs. The following sections will discuss studies of effortful and automatic processing 

in older adults with several other DDs, specifically Down syndrome, William’s syndrome, and 

Fragile X, and will end with a discussion of the current findings from studies of young adults 

with ASD.  
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Several studies of aging in developmental disorders such as Down syndrome (DS), 

Williams syndrome, and Fragile X have indicated that cognitive declines emerge much earlier in 

these DDs than in the general population (Devenny, Krinsky-McHale, Sersen, & Silverman, 

2000; Krinsky-McHale, Kittler, Brown, Jenkins, & Devenny, 2005; Oliver, Crayton, Holland, 

Hall, & Bradbury, 1998; Woodruff-Pak, Papka, & Simon, 1994). For example, Oliver et al. 

(1998) conducted a prospective longitudinal study of adults with DS across four years. Their 

findings indicated that a pattern of decline in explicit memory and learning in young adulthood 

(20 to 39 year olds) preceded dementia-related symptoms of aphasia, agnosia, and apraxia. These 

authors argued that early declines in memory and learning may be related to the higher 

prevalence of neuro-degenerative disease (e.g., Alzheimer’s disease) in adults with DS compared 

to the general population (Holland, Hon, Huppert, & Stevens, 2000; Lai & Williams, 1989; 

Wisniewski, Wisniewski, & Wen, 1985).  

However, there are two important considerations that should be stated before interpreting 

this pattern of decline in DS. The first consideration is how the conventional concept of general 

intelligence can be broken down into two components referred to as crystalized (gC) and fluid 

intelligence (gF). Crystalized intelligence refers to knowledge acquired through education and 

experience and is relatively stable across age, with the exception of decline due to neuro-

degenerative disease. Fluid intelligence refers to more abstract reasoning and problem-solving 

abilities allowing individuals to adapt to a changing and complex environment (Cattell, 1963). 

These skills typically begin to decline in the early 20’s (Salthouse, 2009). Due to this pattern of 

decline, most of the age-related variance in cognitive decline in normal aging is accounted for by 

changes in gF, which is not surprising given that gF relates to more effortful processes, whereas 

gC may be related more to automatic processes. In light of this consideration it should be noted 
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that the pattern of age-related cognitive decline in adults with DS found by Oliver et al. (1998) 

was largely attributed to declines in gF, whereas declines in gC were present in only the most 

cognitively impaired individuals who were likely exhibiting advanced signs of dementia.  

The second important consideration is that not all individuals with DS develop neuro-

degenerative disease (Devenny et al., 2000). Thus, it is unclear whether early cognitive decline is 

only demonstrated by those individuals who go on to develop a neuro-degenerative disease or 

whether it is a specific characteristic of the aging process in DS. To better understand which 

factors contribute to this pattern of decline, Crayton et al. (1998) examined data from Oliver et 

al. (1998) but excluded individuals with advanced dementia. Using these exclusion criteria, 

Crayton and colleagues examined performance on measures of gF including pattern recognition, 

spatial recognition, and matching-to-sample in older adults with DS (50 to 58 years old), middle-

aged adults with DS (40 to 49 years old), and younger adults with DS (20 to 40 years old). 

Findings showed significantly worse performance in older adults with DS compared to younger 

adults with DS. In contrast, performance on measures of gC (e.g., picture vocabulary tests) did 

not differ between age groups, suggesting that early cognitive decline in DS was specific to 

declines in gF. Given the exclusion criteria, it is unlikely that performance in older adults with 

DS was due to the presence of dementia. Nevertheless, greater declines were seen in non-

demented adults with DS in their 50’s suggesting that early cognitive decline may be an 

important characteristic of the aging process in DS. 

Other studies have indicated a similar pattern of decline in William’s syndrome. For 

instance, Krinsky-McHale and colleagues (Krinsky-McHale et al., 2005) examined performance 

on tests of explicit (free recall) and implicit memory (repetition priming) for adults with WS (age 

range: 32 to 77 years old) compared to age and IQ-matched adults with DS and unspecified 
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intellectual disability (ID). Their findings showed that both adults with WS and adults with DS 

demonstrated a similar rate of age-related decline in free recall (e.g., a measure of explicit 

memory). However, this pattern was not observed in the sample of individuals with ID. The 

pattern of performance on repetition priming (e.g., a measure of implicit memory) revealed no 

diagnostic differences and no significant interaction between age and diagnostic group, 

suggesting that this form of implicit memory may be unaffected by age in DS, WS, and ID.  

In contrast to these findings, studies investigating other forms of implicit or automatic 

learning, such as classical conditioning, have demonstrated poorer performance in older adults 

with DS compared to age and IQ-matched individuals with non-specific intellectual disability 

(ID). Classical conditioning paradigms are well suited for populations that have co-morbid 

intellectual disability because a little comprehension is required to perform the task. Woodruff-

Pak, Papka, and Simon (1994) examined classical conditioning in samples of younger (less than 

35 years old) and older adults (greater than 35 years old) with DS, Fragile X (FX), and age-

matched controls with typical development. Participants were presented with a simple eye-blink 

classical conditioning paradigm (EBCC) wherein a tone (CS) was followed by an air puff (UCS). 

Results from this study revealed that regardless of age, individuals with DS and individuals with 

Fragile X showed significantly worse EBCC compared to individuals with typical development. 

Additionally, this study found a significant effect of age, such that older adults with DS and 

typical development performed significantly worse than younger adults. A subsequent analysis 

compared conditioning across younger and older adults with DS to both age-matched adults with 

typical development and older adults with probable Alzheimer’s Disease. Young adults with DS 

demonstrated significantly worse conditioning compared to young adults with typical 

development but did not significantly differ from older adults with typical development. 
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However, the worst conditioning was found in older adults with DS whose performance was not 

only significantly impaired, but was not significantly different from the comparison sample of 20 

patients with probable Alzheimer’s Disease. The authors of this study interpreted these findings 

as a pattern of accelerated decline in individuals with DS. However, an alternative interpretation 

may be that individuals with DS may show an overall decrement in conditioning, but decline at a 

similar rate as typical adults. If there is poorer conditioning in 20 year-olds with DS, then typical 

age-related declines will likely result in significantly impaired conditioning by the time they 

reach mid-adulthood. This could also explain why the significant impairment in conditioning in 

40 year-old adults with DS (mean age = 48 years) resembled that of patients with Alzheimer’s 

Disease. 

Another study of EBCC in individuals with Fragile X (ages 17 to 77) examined the 

retention and reacquisition of a conditioned response across two 12-month follow-up sessions 

(Tobia & Woodruff-Pak, 2009). Similar to Woodruff-Pak et al. (1994), these studies found 

significantly worse conditioning in the Fragile X group compared to age-matched individuals 

with typical development, and no effect of age. However, when participants were brought back 

for a 12-month follow-up session to re-assess EBCC, significant impairments were seen in older 

adults with FX (> 45 years old) compared to the younger adults with Fragile X (< 45 years old). 

Unfortunately, this study did not collect follow-up conditioning data for younger and older adults 

with typical development; therefore, it is unclear whether the effect of age on EBCC was specific 

to individuals with FX or was a function of normal aging. However, there is some previous 

evidence that supports that this age-related effect may be specific to older adults with FX. 

Numerous studies have identified the critical role of the cerebellum in EBCC (for review see 

Timmann et al., 2010). Post-mortem studies of individuals with FX have revealed significantly 
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greater volumetric reductions in the cerebellum with age in adults with FX compared to adults 

with typical development (Greco et al., 2011; Sabaratnam, 2000). Additionally, studies of 

individuals that carry the pre-mutation of FX, but are unaffected by FX, have identified a 

subgroup of older adults in this population that develop a neurological syndrome (onset between 

50 and 70 years) known as fragile X – associated tremor/ataxia syndrome. Fragile X – associated 

tremor/ataxia is associated with progressive increases in tremor and ataxia, including greater 

disturbances in postural instability (i.e., balance) and gait control (e.g., tandem walking). These 

disturbances have been linked to greater cell loss in the cerebellum (Jacquemont et al., 2004). 

Therefore, the age-related changes in EBCC in FX may be associated with the cerebellar 

impairments (e.g., volumetric reductions) that are associated with this disorder.  

These results suggest that there may be a pattern of accelerated decline in these DDs, 

though more research is needed to confirm these findings. The presence of cognitive impairment 

in young adults with DS, WS, and FX suggests that the level of impairment in effortful and some 

automatic processes (e.g., classical conditioning) associated with normal aging may appear 20 to 

30 years before individuals with typical development reach this level of impairment. 

Additionally, it has been suggested that this pattern of early cognitive decline may signal an early 

behavioral marker for subsequent neuro-degenerative disease. These findings do not appear to be 

indicative of all types of DDs; for example, those with DS appear to be most negatively affected 

by early cognitive declines associated with increased risk for neuro-degenerative disease. Little 

research has examined whether a similar pattern is true for adults with ASD; thus it is important 

investigate the pattern of age-related cognitive change in ASD in order to understand whether 

this population may be at similar risk.  
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Cognitive Functioning in ASD 

Cognitive performance on tests of effortful processing in ASD. There are few studies 

that have examined effortful processing in older adults with ASD. However, studies of effortful 

processes in younger adults with ASD, such as working memory, executive function, and explicit 

memory, reveal an inconsistent pattern of both impaired and intact performance. One of the more 

consistent findings in young adults with ASD is a pattern of impairment in free recall when lists 

of semantically-related items are used. Bowler and colleagues have argued this impairment is 

present because young adults with ASD are more likely to engage in item-specific processing, 

rather than relational processing or semantic organizational strategies (i.e., grouping words 

together into similar semantic categories; Gaigg, Gardiner, & Bowler, 2008; Minshew & 

Goldstein, 2001). It is interesting how similar this pattern of poorer relational processing in 

young adults with ASD is to the pattern found in older adults with typical development (Craik & 

Rose, 2012; Hogan, Kelly, & Craik, 2006). For instance, both young adults with ASD and older 

adults with typical development tend to show poorer relational processing when tested by free 

recall but better performance when assessed by recognition. The similar pattern of performance 

between young adults with ASD and older adults with typical development highlights the 

importance of investigating how explicit memory performance changes as individuals with ASD 

age. For instance, if declines in explicit memory processes in ASD follow a similar trajectory 

seen in normal aging, explicit memory performance in adults with ASD in middle-adulthood 

may mimic the performance of older adults with typical aging processes.  

Cognitive performance on tests of automatic processing in ASD. In addition to 

investigating differences in effortful processes, it is equally important to examine differences in 

automatic processing in ASD. Studies of automatic or implicit processing in children, 
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adolescents, and young adults with ASD have shown inconsistent patterns of both impaired and 

intact performance (for review see Eigsti & Mayo, 2011).  

Studies of classical conditioning in ASD. Studies of classical fear conditioning in ASD 

have indicated patterns of both impaired learning (Gaigg & Bowler, 2007; South, Newton, & 

Chamberlain, 2012), intact learning (Bernier, Dawson, Panagiotides, & Webb, 2005; South, 

Larson, White, Dana, & Crowley, 2011), and, in one instance, more rapid learning compared to 

age and IQ-matched individuals with typical development (see Sears, Finn, & Steinmetz, 1994). 

However, several methodological differences seem to underlie the conflicting patterns of results. 

Studies finding intact or more rapid conditioning in ASD have measured eye-blink response to a 

single CS (Bernier et al., 2005; Sears et al., 1994), and is known to rely upon cerebellar and 

limbic system pathways (Steinmetz, Tracy, & Green, 2001); suggesting these pathways may be 

intact in ASD. Whereas studies of differential classical fear conditioning have measured 

associative learning by comparing changes in the skin conductance response (SCR) to a CS 

relative to one or more neutral stimuli. This type of conditioning has been linked to amygdala, 

hippocampal, and prefrontal brain regions (Jarrell et al., 1987; LaBar, LeDoux, Spencer, & 

Phelps, 1995; Morris, Friston, & Dolan, 1997).  

Given that differential fear conditioning paradigms require greater communication 

between cortical and subcortical brain regions (Jarrell et al., 1987; Morris, Friston, & Dolan, 

1997), prior evidence of poor connectivity between these brain regions in individuals with ASD 

(Belmonte et al. 2004; Just et al., 2004, Kana et al., 2006; Minshew & Williams, 2007) may be 

one explanation why differential conditioning paradigms have resulted in poorer learning in 

ASD. Furthermore, the medial temporal lobes (MTL), commonly associated with more explicit 

learning and memory processes, may also account for previously observed relationship between 
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explicit awareness and conditioning in samples of younger adults with ASD (Powell et al., 

2016), as well as older adults (Labar et al., 2004). In light of these findings, differential fear 

condition paradigms provide an opportunity to explore the relationship between age, explicit 

awareness, and conditioning in adults with ASD.   

Studies of implicit category learning in ASD. Similar to studies of classical conditioning, 

studies of implicit category learning in ASD have indicated both impaired (Church et al., 2010; 

Gastgeb et al., 2009; 2011; 2012; Klinger and Dawson, 2001; Klinger, Klinger, & Pohlig, 2007; 

Schipul & Just, 2016; Valdusich, Olu-Lafe, Kim, Tager-Flusberg, & Grossberg, 2010) and intact 

(Molesworth, Bowler, & Hampton, 2005; 2008) learning in ASD. In contrast, studies of implicit 

category learning in older adults with typical development have largely indicated comparable 

performance between younger and older adults (Glass, Choibut, Pacheco, Schnyer, & Maddox, 

2012; Hess & Slaughter, 1986a; 1986b). The prototype tasks used in these studies require 

participants to learn a category that has no explicit rules of membership. In this task, a typical 

example or prototype is thought to be created by averaging previously seen exemplars to form a 

“best” representation. Participants categorize new examples as a member of the category based 

on how closely the example matches the prototype. Studies of individuals with typical 

development suggest that formation of the prototype is considered a relatively automatic process; 

wherein a person is able to form a prototype with minimal explicit instruction, awareness, or 

effortful processing. In contrast, several studies of prototype learning in individuals with ASD 

have demonstrated a relationship between implicit category learning and effortful processing. 

That is, greater implicit category learning was associated with greater effortful processing 

(Gastgeb et al., 2012; Klinger et al., 2007; Vladusich et al., 2010). These findings indicate that, 

unlike individuals with typical development who demonstrate explicit and implicit learning 
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independent of one another, individuals with ASD who engage in more explicit processing 

demonstrate better implicit task performance.  

Theoretical Frameworks for Cognitive Aging in ASD 

The Processing Resource theory is one model that accounts for the differential pattern of 

age-related declines in effortful processing, yet relatively preserved automatic processing in 

normal aging. In contrast, studies of older adults with developmental disabilities (e.g., DS, FX) 

show age-related declines in both effortful and automatic processing which appear to emerge in 

mid-adulthood (i.e., 30-40) and continue to worsen with advancing age (Krinskey-McHale et al., 

2005; Tobias & Woodruff-Pak, 2009; Woodruff et al., 1994). Similarly, studies of young adults 

with ASD have shown when automatic processing is impaired, individuals with ASD may 

compensate by using more effortful processing (Klinger et al., 2007; Gastgeb et al., 2012). 

Collectively, these findings can provide a framework for making predictions about patterns of 

age-related decline in ASD. For instance, if automatic processes are more dependent on effortful 

processing in ASD than in typical development, then as effortful processes declines with age, 

automatic processes might also decline. As a result, cognitive functioning may be more 

adversely affected as individuals with ASD enter late-adulthood because both controlled and 

automatic processes will be impacted by aging. 

The processing speed account provides slightly different theoretical predictions for age-

related declines in older adults with ASD. To date, only a few studies have examined processing 

speed in individuals with high-functioning ASD. These studies generally find slower processing 

speed compared to age and IQ matched individuals with typical development (Calhoun & 

Mayes, 2005; Mayes & Calhoun, 2003; 2007; Oliveras-Renta, Kenworthy, Roberson, Martin, & 

Wallace, 2012). More recently, Travers et al. (2013) conducted a longitudinal study (age range 6 
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to 42 years) finding pronounced processing speed impairments in adults with ASD, although the 

rate of age-related decline in processing speed was similar across groups (i.e., ASD vs. typical 

development). Given that slower processing speed is present in middle-aged adults with ASD, it 

is possible that any task dependent upon efficient information processing will likely be 

significantly disrupted. For example, classical condition paradigms designed to assess automatic 

aspects of learning involve forming an association between two pieces of sensory information. 

However, because declines in processing cause initial sensory processes to operate more slowly, 

the ability to quickly associate these two pieces of sensory information may be significantly 

impaired (e.g., learning the association between a visual CS with an auditory UCS). Likewise, 

effortful processes such as explicit memory, which requires efficient encoding and retrieval of 

information, may be disrupted because slower processing speed also slows initial encoding. 

Thus, declines in processing speed may mediate performance on both effortful and automatic 

tasks. Finally, it is important to consider whether the presence of slower processing speed in 

mid-adulthood signals an earlier onset of cognitive decline in ASD. With respect to this finding 

and previous evidence indicating that accelerated cognitive decline is associated with severe 

cognitive impairments in older adults with DD, it is possible that significant cognitive 

impairment is present by the time individuals with ASD reach late-adulthood.  

Current Study Predictions 

Based upon the empirical literature from studies of cognitive processing in ASD, normal 

aging, and older adults with DS, FX and WS, the current study has two specific aims. The first 

aim is to examine task performance on measures of effortful processing across age in a sample of 

adults with ASD and compare this performance to age and IQ-matched individuals with typical 

development. The second aim is to examine task performance on measures of automatic 
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processing across age in a sample of adults with ASD compared to age and IQ-matched adults 

with typical development.  

Aim 1 – Effortful Processing in Adults with ASD 

1. Previous evidence shows that by mid-adulthood individuals with DS and WS already 

demonstrate a pattern of decline in effortful processing tasks including tests of processing 

speed, block design, matrix reasoning, and concept formation. Research in younger adults 

with ASD suggests overall impairments in effortful processing tasks, particularly those 

that require coordination between several different cognitive processes.  Thus, in the 

present study, is predicted that adults with ASD (ages 30 to 65) will demonstrate worse 

performance on measures of effortful processing compared to age and IQ-matched adults 

with typical development.  

2. Based upon evidence of earlier decline in effortful processing in older adults with other 

DDs, it is predicted that adults with ASD will demonstrate a steeper age-related decline 

in effortful processing compared to age and IQ-matched adults with typical development 

(i.e., an age by diagnosis interaction is predicted), particularly when accounting for 

mediating variables such as IQ. 

Aim 2 – Automatic Processing in Adults with ASD 

1. Based upon previous evidence of impaired automatic processing in younger adults with 

ASD, it is predicted that adults with ASD will demonstrate poorer automatic processing 

compared to age and IQ-matched individuals with typical development. 

2. Based upon the presence of decline in automatic processing by mid-adulthood in other 

DDs, it is predicted that adults with ASD will demonstrate a steeper age-related decline 



   
 

22 
 

in automatic processing compared to age and IQ-matched adults with typical 

development (i.e., an age by diagnosis interaction is predicted). 

Method 

Participants  

Twenty-nine adults with ASD between 30 and 67 years old were recruited through the 

Autism & Neurodevelopmental Disorders Registry which is a recruitment tool available to UNC 

researchers through the NICHD-funded Intellectual and Developmental Disabilities Research 

Center at the Carolina Institute for Developmental Disabilities (CIDD) and through University of 

North Carolina TEACCH Autism Program. Individuals seen in UNC TEACCH clinics across the 

state are asked if they would be interested in participating in research on ASD. A diagnosis of 

ASD was confirmed by clinical interview using the Autism Diagnostic Observation Schedule– 2 

(ADOS-2). The following exclusion criteria were applied: (a) evidence of pre-existing 

developmental disability etiologically-similar to autism (e.g., Fragile X, Down syndrome); (b) 

history of traumatic brain injury (TBI); (c) did not meet the ADOS-2 score below diagnostic cut-

off (i.e., 6)
1
 and Social Responsiveness Scale – 2 (SRS-2) diagnostic cut-off (i.e., 60)

2
;  (d) 

intellectual functioning less than 85 (assessed by the Wechsler Abbreviated Scale of 

Intelligence).  

Thirty adults with typical development were recruited through three sources: (1) UNC 

faculty and staff listserv which contains contact information of all UNC faculty and staff 

interested in research (4,000 plus contacts), (2) community fliers and newsletters, and (3) 

                                                 
1
One participant with ASD did not meet ADOS-2 cut-off criteria (Total Score = 5), but did meet SRS-2 cut-off 

(Total Score = 68). Eliminating this participant from the analyses did not alter the pattern of findings, therefore, this 

participant was included in the final sample. 

  
2
Five adults with ASD did not meet SRS-2 cut-off criteria, however they did meet ADOS-2 cut-off criteria and were 

included in the final sample. 
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through the Cognitive Neuroscience of Memory Laboratory at the University of North Carolina 

at Chapel Hill database. This database included 212 healthy older adults (ages 60-80) with no 

history of neuro-degenerative disease and indicated interest in participating in cognitive 

psychology and neuroimaging research. The following exclusion criteria were applied: (a) a prior 

clinical diagnosis of ASD or Attention Deficit Hyperactivity disorder (ADHD); (b) prior clinical 

diagnosis of ASD in a close family member (e.g., parents, children, siblings) (c) history of 

neurological disorders, traumatic brain injury (TBI), or schizophrenia; (d) a Social 

Responsiveness Scale – 2 (SRS-2) total score of greater than 65
3
; (e) intellectual functioning less 

than 85. 

Finally, both samples of adults with ASD and adults with typical development were 

stratified across age groups (i.e., ages 30-39, 40-49, 50-65), with an approximately even 

distribution of participants across age groups. Participants were group matched on age, gender, 

and IQ (Table 1). All participants, reported normal or corrected to normal hearing and vision 

(e.g., contact lenses or eye glasses). Fifteen adults reported antidepressant/anti-anxiety 

medication use (1 typical; 14 ASD)
4
. Although there were some differences in educational level, 

including 3 adults with ASD who only received a high school diploma, the large majority of 

participants received some type of post-secondary degree (e.g., associate’s degree, bachelors, 

masters, or Ph.D.). 

                                                 
3
The cut-off criterion was set at 65 for adults with typical development because this would have indicated moderate 

and clinically significant ASD symptomatology.  All adults with typical development scored below 65.  

 
4
Preliminary analyses of cognitive performance on those with and without antidepressant/anti-anxiety medication 

revealed no significant differences (all p’s > .22). Therefore, findings regarding the effects of medication use were 

not reported in the following Results section.  
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Measures 

Demographic form. A demographic form gathered general information about 

participants. This form included information about the participant’s age, gender, race, medication 

history, education level, employment history, and any current diagnoses (i.e., ASD, ADHD, 

learning disability, etc.).  

Autism Diagnostic Observation Schedule – 2 (ADOS-2, Module 4; Lord et al., 2012). 

The ADOS-2, Module 4, (35-40 minutes) is a semi-structured assessment of social interaction, 

communication administered to adolescents and adults. The ADOS-2 was administered to 

individuals with ASD to both confirm a previous diagnosis of ASD and measure current 

symptomatology (i.e., social skills, and communication). The ADOS-2, Module 4 has good 

reliability ratings with mean weighted kappa (Mkw = .66; see Lord et al., 2011). The ADOS has 

good sensitivity (.71) and specificity (.82) in adults with ASD (ages: 18 – 66), providing support 

for its use in adults with ASD. 

The Social Responsiveness Scale- 2 (SRS-2; Constantino, 2012). The adult form of 

SRS-2 is a 65-item self-report measure of ASD symptoms. This test has been validated for 

clinical populations aged 2 to 89 years. The present study used the adult form self-report version 

(normed for ages 18 -89). The adult form SRS-2 has very good test-retest reliability after four 

months (r = .88). The SRS-2 was administered to both individuals with ASD and individuals 

with typical development. This measure served as an additional measure of ASD symptom 

severity in individuals with ASD and as a screening tool for autism characteristics in individuals 

with typical development. No individuals with typical development scored higher than 65; a 

score that would have indicated the presence of moderately severe ASD symptomatology.  
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Montreal Cognitive Assessment (MoCA; Nasreddine, Phillips, Bédirian, 2005). The 

MoCA is a 10-minute, 30-point cognitive screening test designed to assess and screen for mild 

cognitive impairment (MCI). The MoCA assesses short-term recall, delayed recall, visuospatial 

abilities, working memory, and language, but has more emphasis on tasks of frontal functioning 

and attention than other brief screeners for MCI or dementia such as the Mini Mental State 

Examination (Folstein, Folestein, & McHugh, 1975). The MoCA has good specificity (90%) and 

sensitivity (85%). The suggested cut-off point for MCI on the MoCA is 26, with scores below 

indicating the presences of MCI. However, it is possible that some individuals with ASD may 

demonstrate a level of impairment that is similar to MCI as a function of ASD rather than age, 

thus a more liberal cut-off point of 21 was used to indicate the presence of substantial cognitive 

impairment similar to that found in patients with dementia. No participant scored below 21, and 

therefore, no additional participants were excluded from analyses.  

Wechsler Abbreviated Scale of Intelligence 2-subtests (WASI; Wechsler, 1999). The 

WASI is an abbreviated IQ measure appropriate for persons six to 89 years of age. This study 

administered the Vocabulary and Matrix Reasoning subtests to estimate IQ (FSIQ-2). The FSIQ-

2 version takes approximately 20 minutes to administer. The FSIQ-2 has good validity compared 

to full-scale IQ and test-retest reliability (reliability coefficients for adults range from .93 to .98).  

 Matrix reasoning (Wechsler, 1999). This subtest of the WASI was used as a measure of 

fluid intelligence including visuospatial organization and abstract reasoning. Thirty-five 

incomplete geometric patterns are presented in a matrix or series to participants. Participants are 

asked to select the response option that completes the matrix or series. Matrix reasoning has 

good construct validity r = .84 (Canivez et al., 2009), and reliability, α =.94 (Abu-Hilal et al., 

2011). 



   
 

26 
 

Woodcock-Johnson Concept Formation Test (WJ-III; Woodcock, Mather, & 

McGrew, 2001). The WJ-III Concept Formation (WJ-CF) test served as a measure of effortful 

category learning. This test is normed for individuals between 2 and 90 years of age. Participants 

were asked to look at colored shapes that vary on four dimensions (color, shape, size, and 

number) and derive the rule why as to why some are shapes are placed in a category (i.e., inside 

a box). For instance, participants viewed a set of shapes on the left and a box on the right that 

contains different shapes. Participants then stated the rule that defined how the shapes in the box 

were similar to one another and different from those on the left. The Concept Formation subtest 

of the WJ-III has a strong test-retest reliability coefficient of .94. 

Trail Making Test (TMT) Parts A & B (Delis et al., 2001). The version of the TMT 

used in the present study was taken directly from the Delis-Kaplan Executive Function System 

(D-KEFS). This version of the TMT includes five subtests presented to participants in the 

following order: visual scanning, number sequencing, letter sequencing, number-letter switching, 

and motor speed. The visual scan sub-test presents participants with an array of numbered 

circles. Participants are asked to locate all the circles with the number ‘3’ and make a small slash 

through only this number. The number sequencing sub-test presents participants with an array of 

numbered circles (1-16) among distractor letters. Participants are asked to draw a line to connect 

the numbers in ascending order (i.e., 1, 2, 3….). This same procedure is used for the letter 

sequencing sub-test wherein participants are asked to connect the letters in ascending 

alphabetical order (i.e., A, B, C…); distractor numbers appear on the same page. In the number-

letter sequencing subtest, the circles include both numbers (1-16) and letters (A -P). Participants 

are asked to draw a line connecting the circles in an ascending pattern, while alternating between 

numbers and letters (i.e., 1-A-2-B, etc.). Unlike the previous three sub-tests, the number-letter 
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switching subtest measures both processing speed and executive functioning (i.e., switching from 

numbers to letters). Finally, the motor speed sub-test was designed to assess participant’s 

baseline motor drawing speed. In this sub-test participants are simply asked to trace over a dotted 

line that passes through 32 blank circles. The path outlined for participants is the exact same path 

participants follow to complete the number-letter sequencing subtest. Participants are timed 

during each sub-test. During the first four sub-tests participants are told to work as quickly and 

accurately as possible. In the motor speed sub-test participants are told to work as quickly as 

possible, and it was emphasized that neatness (i.e., perfectly tracing over the dotted line) was not 

important. Total time to complete all five sub-tests is approximately three to five minutes. The 

internal consistency of the TMT ranges from .60 to .81 (Stephens, 2014). 

Rey Auditory Verbal Learning Test (RAVLT; Rey, 1964; see Lezak, 1983 for 

English version). This brief memory test assessed episodic and recognition memory. During this 

task, participants listened to a 15-item list of semantically unrelated words. The list was pre-

recorded and presented via computer speakers (1 word per second). Immediately following this, 

participants recalled as many of the words as they could remember; order did not matter. This 

procedure was repeated three times and included the same list of words for each trial. The 

percentage of freely recalled words on each trial was calculated by taking the average number of 

words freely recalled and dividing by 15. Similarly, total percent recalled was calculated by 

taking the average number of words recalled across all three trials and dividing by the total 

number of words that were possible (i.e., 45 total items). Following participants’ third attempt to 

freely recall the list of words, they were given a recognition test. The recognition test consisted 

of 50 words: 15 previously heard (target words), 10 semantically-related lures, 7 phonetically-

similar lures, and 18 unrelated words (i.e., neither semantically or phonetically similar to target 
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words). This task took approximately 5 minutes to complete. Recognition accuracy (%) was 

calculated by summing the number of hits (H) and correct rejections (CR) multiplied by 100, and 

divided by the total number of words.  

Apparatus for conditioning task. Skin conductance response (SCR) was used as the 

dependent measure for the conditioning task and was monitored by a MP35 four channel data 

acquisition unit (BIOPAC Systems, Goleta, CA). SCRs from the participant’s dominant hand 

using silver-silver chloride electrodes (Ag-AgCl) were attached to the top phalanges of the first 

and third digits by velcro straps. A saline-based gel (Signa Gel; BIOPAC Systems) was used as a 

conductive electrolyte and placed between the Ag-AgCl electrode and the participant’s skin. 

Consistent with previous literature, skin conductance was monitored using a constant voltage of 

0.5 V at a sampling rate of 200 Hz (Labar, Cook, Torpey, & Welsh-Bohmer, 2004; Lykken & 

Venables, 1971). 

Stimuli for prototype task. The prototype formation task consisted of black-and-white 

drawings of imaginary cartoon animals each belonging to a different category (i.e., different 

animal family). The animal stimuli created for this task followed the methodology described by 

Younger (1985; 1990) and adapted by Klinger and Dawson (2001). Each category consisted of 

individual members. These individual members resembled one another but varied on specific 

features along five quantitative dimensions. For instance, one feature (e.g., wings) varied on 

length with a size of 1 designated the shortest and a size of 5 designated the longest (see Figure 

1). Only four features were selected to vary (e.g., legs, nose, arms, wings) per category. There 

were a total of six different categories and each category was given a novel one-syllable name to 

denote category membership (e.g., MIP category, DAK category). All categories had a similar 
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number of overall features (i.e., a head, arms, legs, wings, nose, etc.), in order to equate visual 

complexity across categories. 

Procedure 

Participants with typical development were scheduled for a two-hour session. Participants 

with ASD were scheduled for a three-hour session due to the additional diagnostic evaluation. 

During this session, consent forms were signed, and participants were given an overview of the 

experiment (10 minutes). After the consent process, participants with ASD were administered the 

ADOS-2 followed by the automatic processing tasks. Because the ADOS-2 was not administered 

to participants with typical development, the two automatic processing tasks (i.e., classical 

conditioning and prototype formation) immediately followed the consent process. Competition 

time for across both of these two tasks was approximately 20-22 minutes. The order of 

presentation for the classical conditioning task and the prototype formation task was 

counterbalanced across participants in order to eliminate potential order effects. After completing 

both automatic processing tasks, participants were given a short break. Following the break, the 

participants were given the MoCA (10 minutes), the IQ assessment (WASI; approximately 20 

minutes), and the WJ-III Concept Formation task (5-10 minutes). Following these tests 

participants were again offered a short break before completing the TMT and RAVLT to 

conclude the testing session. Each participant received $30 as compensation for their 

participation in this study. 

Classical conditioning task. Prior to the classical conditioning task, electrodes were 

attached to the index and ring finger of the dominant hand. The experimenter then recorded the 

participant’s baseline SCL (approximately 3-4 minutes) followed by presentations of the UCS to 

the participant at 95 dB through headphones. To ensure the volume level of the UCS so that it 
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was in no way painful to the participant, the experimenter adjusted the volume for each 

participant to loudest tolerable level while at the same time ensuring that the UCS continued to 

elicit a startle response (e.g., an increase in SCR). Following this, the experimenter allowed the 

participant’s SCR to reach a stable baseline activity level before commencing with the 

conditioning task. 

For the conditioning task, participants were told that they were about to participate in an 

experiment where they would view a series of colored squares presented on the computer screen, 

and they were warned that they would occasionally hear the loud noise (UCS). Participants were 

asked to remain as motionless as possible to reduce the possibility of excessive movement 

confounding the SCR recording. Following this instruction, participants were told to play close 

attention because a brief memory test would follow the experiment. The experimenter was 

present during the conditioning task to monitor SCRs and excessive anxiety in response to the 

loud noise and to ensure that participants were focused on the task. The experimenter was 

positioned adjacent to the participant. Only a computer screen and the electrodes attached to the 

fingers were in the line of sight of the participant. 

The classical fear conditioning paradigm used to assess associative learning consisted of 

three phases: habituation, acquisition, and extinction. The presentation of the habituation and 

acquisition phases was continuous so participants were not aware of the transition from one 

phase to the next. Two colored squares (e.g., red and blue) were used as the stimuli. During the 

habituation phase participants were randomly presented with these two colored squares, with 

each colored square presented four times (8 trials total). During the acquisition phase one colored 

square was randomly paired with a co-terminating loud noise UCS and designated as the 

conditioned stimulus (CS). The other colored square was never paired by the UCS and 
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designated as the neutral stimulus (NS). Each colored square (CS and NS) was presented for five 

seconds. The UCS lasted for two seconds immediately following the presentation of the CS only 

(i.e., the CS-UCS trials lasted 7 seconds). The inter-stimulus interval between trials was set at 15 

seconds and SCR was monitored to ensure that participant’s SCR had returned to baseline. This 

phase consisted of eight presentations of CS reinforced by the UCS and eight presentations of the 

NS (16 trials total).  

Following the acquisition phase participants received an explicit awareness questionnaire 

to assess declarative knowledge of the CS-UCS contingencies. Based on previous work (Bechara 

et al., 1995; Gaigg & Bowler, 2007; LaBar et al., 2004), participants were asked to recall the 

number and type of colors previously seen, how many colors preceded the presentation of the 

loud noise, and finally what specific color(s) preceded the loud noise. Participants were only 

classified as aware if they were able to accurately report that the CS and only the CS predicted 

the presentation of the UCS. Following the explicit awareness questionnaire, participants 

received the extinction phase. The extinction phase consisted of four presentations of the CS 

without the UCS (non-reinforced) and four presentations of the NS to ensure full extinction had 

taken place (8 trials total).  

Prototype formation task. The prototype task consisted of five blocks (i.e., five animal 

categories) that each included a familiarization and a test phase. Each of the five blocks 

(including both a familiarization and test phase) included animals representing distinct animal 

categories. The order of each animal category (i.e., each block) was randomized for every 

participant. The familiarization phase consisted of individual animals created by combining 

feature values 1, 2, 4, and 5. Each individual animal was randomly presented once during 

familiarization with 8 different animals presented. Each presentation lasted for eight seconds 
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before continuing on to the next animal presentation. For the first three blocks a recognition test 

followed the familiarization phase and included three stimulus types: (1) animals previously 

viewed in the familiarization phase (old), (2) animals not presented in the familiarization phase 

(novel), and (3) the novel prototype. There were a total of nine test trials including three old 

animals, three novel animals, and three prototypical animals. During the test phase, participants 

were presented with these three stimulus types (old, new, prototype) one at a time and asked to 

say “yes” if they previously saw the animal or “no” if they did not see the animal. The last two 

blocks included an additional confidence rating for each recognition response. After each 

recognition judgment, participants were asked, “How confident are you that you did/did not see 

this animal?”  The confidence rating included a scale of 0 (not confident at all) to 100 (entirely 

confident). Evidence of prototype learning was demonstrated when participants falsely 

recognized having seen the prototype more often than they falsely recognized novel animals.  

Results 

Statistical analyses. Data analyses were completed using SPSS IBM 23 statistical 

software. Means and standard deviations for each test of cognitive functioning are reported in 

Table 2. In order to compare diagnostic and age effects, separate regression analyses were 

conducted using MoCA, WJ-CF, RAVLT and TMT as the dependent variables. The predictor 

variables in these analyses included FSIQ-2, age, diagnosis, and the age by diagnosis interaction 

term. FSIQ-2 and age were used as continuous predictors and diagnosis was used as a categorical 

predictor. In order to prevent multi-collinearity between the predictor variables, age was mean-

centered prior to analyses.  

FSIQ-2 was treated as a covariate in these analyses for two reasons: (1) previous 

evidence has suggested individual differences in intellectual functioning account for substantial 
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variance in many measures of cognitive functioning, thus potentially masking age effects (Bolla, 

Lindgren, Bonaccorsy, & Bleecker, 1990; Schaie, 1983); (2) initial inspection of the current data 

revealed a significant correlation between age and FSIQ-2, r(58) = .35, p < .01. Therefore, 

including FSIQ-2 in the model provided an examination of the effect of age and diagnosis on 

measures of effortful processing above and beyond participants’ level of intellectual functioning.  

Using stepwise regression, FSIQ-2 was entered first. This was followed by age, 

diagnosis, and the age by diagnosis interaction term each being entered sequentially to determine 

whether age affected each cognitive measure and whether ASD was associated with a different 

rate of age-related decline than seen in typical development. Curvilinear relations were also 

examined in these analyses. However, no significant curvilinear effects were observed, thus only 

linear relationships were included in the final regression models reported here. Finally, when a 

significant interaction was observed, separate regression analyses were conducted on each 

diagnostic group to further probe the nature of the interaction. Standardized beta coefficients 

with p-values are reported for each dependent variable in Table 3. 

Analysis of Effortful Processing Tasks 

MoCA. Table 2 shows that performance on the MoCA was significantly lower in adults 

with ASD (M = 25.9; SD = 2.4) compared to adults with typical development (M = 27.1; SD = 

2.1), t(57) = 2.05, p = .05. The regression analysis excluded the score from the delayed recall 

item from the MoCA. This item was excluded because it was determined that time between 

immediate recall and delayed recall depended upon the speed with which a participant completes 

the intervening items (i.e., items 5 – 10). Thus, the time between immediate recall and delayed 

recall was not consistent across participants.  
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As can be seen in Table 3, this analysis found FSIQ-2 to be positively related to MoCA 

performance, although this was not significant, explaining approximately 4% of the variance 

(FSIQ: R
2

change = 0.04, F(1,57) = 2.51, p = .12). In contrast, both age and diagnosis were 

negatively related to performance and accounted for 13% and 15% explained variance, 

respectively (Age: R
2

change = 0.13, F(1,56) = 9.05, p = .004; Diagnosis: R
2

change = 0.15, F(1,55) = 

11.85, p = .001).  Of particular interest, was the significant increase in variance explained by the 

interaction term (R
2

change = 0.05, F(1,54) = 4.64, p = .04), suggesting that both age and diagnosis 

had a negatively combined impact on MoCA performance. To further examine this interaction, 

separate regressions were conducted for each diagnostic group. Only age was included as a 

predictor in this analysis given that FSIQ-2 was not a significant predictor in the overall analysis. 

Examination of MoCA performance in adults with typical development revealed that age 

explained <1% of the variance in MoCA (R
2

change < 0.01, F(1,28) = 0.01, p = .91), whereas in 

adults with ASD, age explained 34% of the variance (R
2

change = 0.34, F(1,27) = 13.67, p = .001). 

These results suggest that age had a substantial and negative impact on MoCA performance in 

individuals with ASD but very little impact on performance in individuals with typical 

development. However, the smaller impact of age on adults with typical development was 

somewhat expected considering that the MoCA was originally designed to detect early signs of 

mild cognitive impairment (MCI), and, therefore, may be less sensitive to normal age-related 

declines (Julayanont, Phillips, Chertkow, & Nasreddine, 2013).  

WJ-III concept formation. Using the same stepwise regression procedure, performance 

on the WJ-CF was examined
5
. Table 2 shows that adults with ASD scored lower on this measure 

(M = 29.1) compared to adults with typical development (M = 33.2). Regression analysis of these 

                                                 
5
It should be noted that one individual with ASD did not complete this measure due to a time constraint 
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scores demonstrated FSIQ-2, age, and diagnosis were significant predictors of performance (see 

Table 3). FSIQ-2 explained 19% of the variance, (R
2

change = 0.19, F(1,56) = 13.37, p = .001, 

whereas age and diagnosis uniquely contributed an additional 10% and 9% of the variance, 

respectively (Age: R
2

change = 0.10, F(1,55) = 7.68, p = .008; Diagnosis: R
2

change = 0.09, F(1,54) = 

7.43, p = .009). These findings indicated that FSIQ-2 was positively related to WJ-CF 

performance, with those with higher IQ performing better on the task. However, age and 

diagnosis were negatively related to performance, with both those with ASD and those who were 

older performing worse on the task. The interaction between age and diagnosis was also 

significant, explaining 5% of the variance, R
2

change = 0.05, F(1,53) = 4.95, p = .03 (see Table 3 

for standardized regression coefficients). 

To further examine this interaction separate regression analyses, using only FSIQ-2 and 

age as predictors, were conducted for each diagnostic group.  Analyses of adults with typical 

development revealed FSIQ-2 was not a significant predictor of WJ-CF, explaining 

approximately 4% of the variance (R
2

change = 0.04, F(1,28) = 1.03, p = .32), whereas age resulted 

in a 29% increase in explained variance (R
2

change = 0.28, F(1,27) = 11.54, p = .002), suggesting 

that performance declined with age in this group. This same analysis performed on individuals 

with ASD revealed FSIQ-2 accounted for 48% of explained variance (R
2

change = 0.48, F(1,26) = 

24.10, p <.01). However, age was not a significant predictor, accounting for only a 1% increase 

(R
2

change = 0.01, F(1,25) = 0.62, p = .44). Therefore, the lack of an age effect in individuals with 

ASD was largely related to intellectual functioning, such that higher IQ resulted in better WJ-CF 

performance.  

Free recall and recognition memory. In order to examine the relation between age and 

performance on the RAVLT, separate analyses were conducted on free recall and recognition 
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memory. For the analysis of free recall, the total number of items recalled across all three trials 

was used as the dependent variable. As can be seen in Table 2, adults with ASD recalled fewer 

words (M = 49.1%) compared to adults with typical development (M = 57.6%). This was also 

reflected in the regression analysis, which found diagnosis to be negatively related to 

performance, even after accounting for the positive relationship between FSIQ-2 and 

performance. Both were significant predictors of performance [FSIQ-2: R
2
change = 0.10, F(1,57) = 

6.57, p = .01; Diagnosis: R
2

change = 0.10, F(1,55) = 7.30, p < .01]. Age was also negatively 

related to performance, yet age was only a marginally significant predictor in the model [Age: 

R
2

change = 0.05, F(1,56) = 3.08, p = .08]. There was no significant age by diagnosis interaction, 

R
2

change < 0.01, F(1,54) = 0.20, p = .65.  

Considering that age was found to be a marginally significant predictor of immediate free 

recall, a multivariate regression analysis was conducted using all three immediate free recall tests 

as dependent variables and regressed on the same predictors described above (i.e., FSIQ-2, age, 

diagnosis, & age by diagnosis interaction term). Results from the multivariate tests showed 

FSIQ-2 and diagnosis were significant predictors of immediate free recall performance, Wilks’ 

Lambda = .850, F(3, 52) = 3.06, p = .04, ηp
2
 = .15; Wilks’ Lambda = .787, F(3, 52) = 4.69, p < 

.01, ηp
2
 = .21, respectively. As above, neither age nor the interaction between age and diagnosis 

were significant, Wilks’ Lambda = .897, F(3, 52) = 1.98, p = .13, ηp
2
 = .10; Wilks’ Lambda = 

.945, F(3, 52) = 1.01, p = .40, ηp
2
 = .06. However, further inspection of the univariate tests 

revealed that age was a significant predictor of performance on trial 1, F(1,54) = 5.93, p = .02, 

ηp
2
 = .10, but not on trials 2 and 3, F(1,54) = 2.14, p = .15, ηp

2
 = .04; F(1,54) = 1.69, p = .20, ηp

2
 

= .03 respectively. Together, these findings suggest that repeated tests of immediate free recall 

improved performance in older adults regardless of diagnosis. 
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Recognition memory. A similar regression analysis performed on recognition accuracy 

revealed that diagnosis was a significant predictor. Indicating that ASD was associated with 

relatively lower recognition accuracy (M = 92%) compared adults with typical development (M 

= 95%), R
2

change = 0.07, F(1,55) = 4.36, p = .04. According to Table 2, it is likely that the 

relatively lower recognition accuracy in adults with ASD was due to the higher false recognition 

of semantically-related lures (M = 1.7) compared to adults with typical development (M = 0.9). 

There were no significant effects for FSIQ-2 (R
2

change = 0.04, F(1,57) = 2.05, p = .06), age 

(R
2

change < .01, F(1,56) = 0.18, p = .67), or age by diagnosis (R
2

change = 0.01, F(1,54) = 0.45, p = 

.51) 

TMT. Regression analyses were performed on raw scores (i.e., seconds) from the visual, 

number, letter, and number-letter switching subtests of the TMT. Table 2 shows that 

performance on these subtests (including motor) was significantly slower in adults with ASD 

compared to adults with typical development (all p’s < .004). Due to the significantly slower 

baseline motor speed in adults with ASD, raw scores from this subtest were included in the 

model to control for baseline differences in motor ability. Similar to the above analyses motor 

speed and FSIQ-2 were entered in the first step followed by age, diagnosis, and the age by 

diagnosis interaction term. Results for these analyses can be found in Table 4.  Across all four 

subtests, age was a significant predictor of performance such that increased age was associated 

with increasingly slower performance (i.e., time to complete). In contrast, diagnosis was 

negatively related to performance on the visual scanning and number-letter switching subtests (β 

= .34, p < .01; β = .29, p = .01, respectively), but not the number and letter sequencing subtests 

(β = .22, p = .07; β = .15, p = .15). This suggests that performance on the number and letter 

sequencing subtests was similar between diagnostic groups after accounting for FSIQ-2, motor 
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speed, and age. There were no significant interactions between age and diagnosis on any of these 

subtests (see Table 4, all p’s > .08).  

Cognitive flexibility. Given that the number-letter switching subtest assesses both 

sequencing (i.e., connecting numbers and letters in ascending order) and cognitive flexibility 

(i.e., switching between numbers and letters), a follow-up regression analysis was conducted to 

examine the impact of age and diagnosis on cognitive flexibility apart from the underlying 

component of sequencing. In order to do so, the average completion time across both the number 

and letter sequencing subtests was used as a covariate in this analysis. Thus, the following 

predictors were entered sequentially into the model: FSIQ-2, sequencing, age, diagnosis, and the 

age by diagnosis interaction term.  FSIQ-2, sequencing, and age were significant predictors of 

performance. FSIQ-2 explained 12% of the variance, (R
2

change = 0.12, F(1,56) = 7.74, p = .007, 

whereas sequencing and age uniquely contributed an additional 38% and 9% of the variance, 

respectively (Speed: R
2

change = 0.38, F(1,55) = 41.61, p < .001; Age: R
2

change = 0.09, F(1,54) = 

11.40, p = .001), suggesting that slower sequencing speed and increased age were related to 

poorer cognitive flexibility. Diagnosis was not a significant predictor explaining roughly 2% of 

the variance, R
2

change = 0.02, F(1,53) = 2.73, p = .10. However, the interaction between age by 

diagnosis was significant, explaining 3% of the variance, R
2

change = 0.03, F(1,52) = 4.59, p = .03. 

To further examine this interaction, separate regression analyses were conducted for each 

diagnostic group using FSIQ-2, sequencing, and age as predictors. 

Analyses of adults with typical development revealed FSIQ-2 and age were not 

significant predictors of cognitive flexibility, explaining approximately 8% and 4% of the 

variance (FSIQ-2: R
2

change = 0.08, F(1,27) = 2.49, p = .13; Age: R
2

change = 0.04, F(1,25) = 1.58, p 

= .22). In contrast, sequencing accounted for a substantial amount of variance, (R
2

change = 0.25, 
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F(1,26) = 9.80, p < .01). This same analysis performed on adults with ASD revealed FSIQ-2, 

sequencing, and age were all significant predictors of cognitive flexibility. FSIQ-2 accounted for 

23% of explained variance (R
2

change = 0.23, F(1,27) = 8.07, p <.01), sequencing accounted for 

25% of explained variance (R
2

change = 0.25, F(1,26) = 12.62, p <.01), and age accounted for 19% 

of explained variance (R
2

change = 0.19, F(1,26) = 14.68, p <.01). Despite the substantial amount 

of variance explained by sequencing, age remained a significant predictor of performance in 

adults with ASD, suggesting that aging in ASD may be characterized by greater declines in 

cognitive flexibility.   

Analysis of Automatic Learning Tasks
6
 

Prototype learning. For the prototype task, prototype learning was assessed by 

comparing the percentage of “yes” responses to the prototype versus the percentage of “yes” 

responses to the new stimulus. As can be seen in Table 5, on average, adults with ASD were 

30% more likely to say “yes” to the prototype compared to the new stimuli, t(28) = 6.41,  p < 

.01. Similarly, adults with typical development were 40% more likely to say “yes” to the 

prototype compared to the new stimuli, t(29) = 9.77,  p < .01. Confidence ratings were also 

examined and revealed that both adults with ASD and adults with typical development were 

more confident that they had previously seen the prototype, M = 75%, compared to the new 

stimuli, M = 67% (Table 5). Because confidence ratings did not differ across diagnostic groups 

or age (p’s > .25), they are not discussed further in the following section.  

Prior to the regression analysis d-prime (d’) was calculated by subtracting the standard 

scores (Z-score) from recognition of the prototype by recognition of the new stimuli (i.e., 

Zprototype – Znew). This index of prototype learning was then used as the dependent variable in 

                                                 
6
Preliminary analyses indicated that FSIQ-2 was not related to conditioning or prototype learning (p’s > .41), 

therefore it was excluded from this analysis. 
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a hierarchical linear regression using a stepwise method. For this regression model, age was 

entered as the first predictor, followed by diagnosis, and the age by diagnosis interaction term. 

Results from this analysis revealed that age and diagnosis accounted for small, non-significant 

variance (Age: R
2

change = .01, p =.56; Diagnosis: R
2

change = .02, p =.27). Additionally, the age by 

diagnosis interaction term accounted for 4% of the variance, but it was also non-significant 

(R
2

change = .04, p = .14). These findings suggest that prototype learning was similar between 

adults with and without ASD, and unaffected by age.  

Classical conditioning. To ensure that adults with ASD and adults with typical 

development had equivalent baseline skin conductance levels (SCL) prior to the acquisition 

phase (sampled at 200Hz), SCL values were examined during the habituation phase. This 

analysis demonstrated statistically equivalent baseline SCL values between adults with ASD (M 

= 6.81µS, SD = 3.84) and adults with typical development (M = 6.50µS, SD = 2.90), t(29) = 

0.35, p = .72. However, two participants with ASD and two participants with typical 

development were excluded from analyses due to extremely low baseline SCL that prevented 

reliable recording of electrodermal activity (ASD n = 27; Typical n =28).  

Data processing. Following confirmation of equivalent baseline SCL values between 

diagnostic groups, a range-correction procedure was performed on the SCL values taken from 

the acquisition phase in order to correct for inter-individual variance (i.e., some participants 

showed large variability in SCL, while others showed small variability). This range correction 

was done by selecting each SCL value, subtracting this value from their minimum SCL, and then 

dividing by the maximum SCL minus the minimum SCL values for each participant. Following 

this correction SCR scores were calculated using a peak and valley method. Due to the slow 

potentiation of the SCRs, usually occurring 1000ms after stimulus onset, the peak skin 
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conductance (SC) value for each trial was taken within a 6 –second window prior to the UCR 

onset (typically occurring 7000ms after trial onset). This peak response was then subtracted by 

the SC value (valley) selected at trial onset (Pineles, Orr, & Orr, 2009; South et al., 2011). 

Inspection of the SCR data revealed substantial positive skew. Thus, SCRs were square-

root transformed to normalize distribution of the data (Gaigg & Bowler, 2007). Kolmogorov-

Smirnov tests on the square-root transformed SCR scores indicated a normal distribution for both 

CS trials, D = .09, p = .20, and NS trials, D = .11, p = .10.  

SCR amplitude to the UCS. Because participants were allowed to adjusted the volume of 

the UCS to be as loud as tolerable with a maximum allowed of 95 dB, we compared the adjusted 

decibel levels of the two diagnostic groups. The ASD group adjusted the intensity (dB level) of 

the UCS slightly, but significantly lower (M = 83.25dB, SD = 3.38) than individuals with typical 

development (M = 85.25dB, SD = 2.10), t(56) = 2.33, p = .02. Due to this difference we 

compared the unconditioned response (UCR) elicited by the aversive sound across the diagnostic 

groups. This comparison was necessary to ensure that any group differences in conditioning were 

not affected by these differences in volume of the stimuli and differences in sensitivity to those 

volumes. Both diagnostic groups exhibited a strong UCR (Typical: M = 0.52√µS; SD = 0.26; 

ASD: M = 0.52√μS; SD = .21), and did not significantly differ between diagnostic groups, t(56) 

= 0.05, p =.96.  

Regression analysis. Table 5 shows the mean difference in SCR to the CS compared to 

NS stimuli across trials and diagnostic group (excluding the first CS trial). On average, there was 

a .13√µS increase to the CS across trials compared to a .11√µS increase to NS trials. This was a 

significant difference, t(54) = 2.41, p = .02, Cohen’s d = .35. To examine age-related changes in 

conditioning as well as possible interactions between age and diagnosis, the difference score, 
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calculated by subtracting the average response to the NS from the average response to the CS, 

was used as the dependent variable in the regression analysis. Thus, positive values indicated 

relatively higher responses to the CS compared to the NS, and negative values indicated higher 

response to the NS compared to the CS.  

A hierarchical linear regression using a stepwise method was then conducted using this 

difference score as a dependent variable. Due to the difference in adjusted volume level of the 

UCS between adults with ASD and adults with typical development, decibel level (dB level) was 

entered in the first step as a covariate followed by age, diagnosis, and the age by diagnosis 

interaction term. 

This analysis found that dB level did not account for significant variance, explaining 

approximately 1% (dB level: R
2

change = 0.01, F(1,53) = 0.30, p = .58). Age was also a non-

significant predictor accounting for less than 1% of explained variance (R
2

change = 0.01, F(1,52) = 

0.28, p = .60, whereas diagnosis was a marginally significant predictor accounting 7% of 

explained variance, R
2

change = 0.07, F(1,51) = 3.75, p = .06, suggesting poorer conditioning in 

adults with ASD compared to adults with typical development (Table 5). However, this was 

qualified by a significant age by diagnosis interaction which explained 8% of the variance 

(R
2

change = 0.08, F(1,50) = 5.04, p = .03, see Figure 3). To further examine this interaction, 

separate regressions including the dB level and age as predictors were conducted for each 

diagnostic group. For adults with typical development neither the dB level nor age were 

significant predictors of learning. Decibel level explained less than 1% and age explained 4% 

[dB level: R
2

change < 0.01, F(1,26) = 0.20, p = .89; Age: R
2

change = 0.04, F(1,25) = 0.95, p = .34]. 

The same analysis performed on adults with ASD showed that dB level accounted for 

approximately 7% of the variance in learning [R
2

change = 0.07, F(1,25) = 1.98, p = .17] and age 
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contributed an additional 18% of explained variance, R
2

change = 0.18, F(1,24) = 5.63, p = .03]. As 

can be seen in Figure 3, the poorer conditioning observed in adults with ASD appears to be 

largely driven by older adults with ASD, suggesting age may adversely impact conditioning in 

adults with ASD compared to adults with typical development.  

Multivariate Analysis of Effortful Processing Tasks 

 The pattern of performance across seven measures of effortful processing demonstrated 

relatively consistent effects of age (Tables 3 & 4) and diagnosis (Tables 2-4), yet evidence was 

mixed regarding the interaction between age and diagnosis. Therefore, a final multivariate 

analysis was conducted to examine the overall pattern of performance on measures of effortful 

process. To perform this analysis, scores were taken from the WJ-CF, RAVLT, MoCA, and the 

visual scanning, number sequencing, letter sequencing, and number-letter switching subtests of 

the TMT
7
 and were converted into standard scores (Z-scores). Standard scores from these 

variables were then entered as dependent variables (7 total). Following this, FSIQ-2, age, 

diagnosis, and the age by diagnosis interaction term were entered into the model. Results from 

the multivariate analysis revealed FSIQ-2 to be a significant predictor of overall performance, 

Wilks’ Lambda = .482, F(7, 46) = 7.08, p < .01, ηp
2
 = .52. Age and diagnosis were also 

significant predictors of overall performance, Wilks’ Lambda = .567, F(7, 46) = 5.02, p < .01, 

ηp
2
 = .43; Wilks’ Lambda = .532, F(7, 46) = 5.78, p = .01, ηp

2
 = .47, respectively. The main 

effects of age and diagnosis were qualified by a significant age by diagnosis interaction, Wilks’ 

Lambda = .710, F(7, 46) = 2.70, p = .02, ηp
2
 = .29. As can be seen in Figure 4, age was 

associated with relatively poorer performance in both adults with and without ASD, except for 

                                                 
7
Prior to converting to standard scores, unstandardized residuals were calculated by regressing each subtest on motor 

speed. Following this, the inverse of the unstandardized residuals was taken such that better performance was now 

associated with higher scores.    
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performance on the WJ-CF which showed poorer performance in adults with ASD regardless of 

age. Nevertheless, in six out of the seven measures of effortful processing (e.g., TMT, Free 

Recall, & MoCA), age appeared to have a disproportionately larger impact on performance in 

adults with ASD compared to adults with typical development, suggesting that aging in ASD 

may be associated with greater declines in cognitive functioning.  

Processing Speed versus Processing Resources Account 

 In order to examine whether the pattern of age-related declines observed in the present 

study can be accounted for age-related declines in processing speed or age-related declines in 

processing resources, mediational analyses were performed on composite scores of processing 

speed (PS) and processing resources (PR). The composite measure of PS was calculated by first 

parceling out the effect of motor speed on the visual scanning, number sequencing, and letter 

sequencing sub-tests of the TMT and then converting them into standard scores (zScores). 

Following this, the overall average across the three subtests was computed. Importantly, the 

number-letter switching subtest was excluded from this composite score due to the additional 

cognitive resources (i.e., cognitive flexibility) associated with performance on this subtest, and 

instead included as part of the composite score for processing resources (PR). PR was calculated 

by averaging the standard scores (zScores) from the RAVLT, WJ-CF, Matrix Reasoning subtest 

(WASI), and Number-Letter Switching subtest. These variables were chosen because they were 

thought to represent measures which require a substantial amount of cognitive effort.   

 Following calculation of these composite scores, two mediation models were tested. 

Figure 5 shows the standardized regression coefficients from these models. As can be seen in 

Figure 5a, the relationship between age and PR, as mediated by PS, was examined first. In Step 1 

of this mediation model, the regression of PR on age, ignoring the mediator of PS, was 
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significant, b = -.018, t(57) = 2.16, p =.04, suggesting age-related declines in processing 

resources. Step 2 tested the effect of potential mediator (PS) on PR.  This was also significant, b 

= -.023, t(57) = 5.53, p <.001, indicating faster processing speed was associated with greater 

processing resources. Step 3 of the mediation analysis revealed that, controlling for the mediator 

(PS), age was no longer a significant predictor of PR, b = -0.01, t(57) = 0.59, p =.56. A Sobel test 

was conducted, indicating that PS fully mediated the relationship between age and PR (z = 2.67, 

p = .01). 

 A similar mediational analysis was performed using PR as the mediator in the model 

(Figure 5b). In Step 1 of this model, we regressed PS on age, ignoring the mediator of PR, and 

found this to be significant, b = .667, t(57) = 3.16, p =.003, suggesting a strong negative 

relationship between age and PS. Step 2 tested the effect of the mediator PR on PS. This was also 

significant, b = -15.15, t(57) = 5.53, p <.001. Step 3 of the mediation analysis revealed that, 

controlling for the mediator (PR), age was still a significant predictor of PS, b = .406, t(57) = 

2.18, p =.03. A Sobel’s test was conducted and confirmed partial mediation (z = 2.04, p = .04).  

Results from these analyses showed that controlling for PS eliminated all relationship 

between age and PR. In contrast, controlling for PR decreased but did not eliminate the 

relationship between age and PS, which remained significant. Taken together, these findings 

suggest that age-related declines in processing speed may represent the fundamental change in 

cognitive processing that influences performance on other measures of cognitive functioning in 

this study.  

Discussion 

 This study examined age-related cognitive changes in adults with ASD and typical 

development using ten measures of cognitive processing. Adults with ASD demonstrated 
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relatively poorer performance in all of the measures designed to assess more effortful cognitive 

processing (e.g., MoCA, WJ-CF, RAVLT, & TMT), but relatively similar performance across 

two measures designed to assess more automatic processing (e.g., classical conditioning & 

prototype formation) compared to adults with typical development. However, analyses that 

sought to determine if age had a differential impact on cognitive performance in adults with ASD 

relative to adults with typical development revealed a mixed pattern of results. For instance, in 

three of these measures, adults with ASD showed greater age-related declines in ASD compared 

to age and IQ-matched adults with typical development. These included the MoCA, number-

letter switching (e.g., TMT), and classical conditioning. Four measures showed a pattern of 

similar age-related decline in adults with ASD and typical development, free recall (RAVLT) 

and three of the TMT subtests (e.g., visual scanning, number sequencing, & letter sequencing). 

Finally, three measures showed no age-related decline in ASD: recognition memory (RAVLT), 

concept formation (WJ-CF), and the prototype learning. In order to further clarify the nature of 

age-related decline in ASD, the following sections will specifically address the pattern of 

performance for each task. 

Evidence of atypical aging in ASD 

Montreal cognitive assessment (MoCA). Performance on the MoCA revealed that age 

had a significant impact on performance in individuals with ASD, but performance did not 

change with age for individuals with typical development. Given that the MoCA was originally 

designed to detect early signs of mild cognitive impairment (MCI), the strong relationship 

between age and MoCA performance in adults with ASD suggests that aging in ASD may be 

associated with an increased risk for MCI. Although this interpretation may be tempered by the 

fact that the diagnostic validity of the MoCA has yet to be established in adults with ASD, 
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MoCA performance did not differ between adults with ASD and adults with typical development 

who were younger than 45 years old, suggesting that adults with ASD greater than 50 years-old 

may be experiencing significant cognitive difficulties associated with MCI.  

 Number-letter switching subtest. Further evidence that aging in ASD may be 

characterized by atypical declines in cognitive functioning was provided by analysis of the 

number-letter switching subtest of the TMT after controlling for sequencing speed. As 

previously mentioned, sequencing speed was included as a covariate in order to separate out the 

switching component or cognitive flexibility specifically associated with this subtest.  Results 

from this analysis showed an overall effect of age on cognitive flexibility such that increased age 

was associated with poorer cognitive flexibility. Importantly, the effect of age was even more 

pronounced in adults with ASD, suggesting that age disproportionately impacted the cognitive 

flexibility needed to switch back and forth between numbers and letters. Because cognitive 

flexibility is often considered to be a component of executive functioning ability (Arbuthnott & 

Frank, 2000), it is possible that the greater impact of age on performance in adults with ASD 

suggests greater age-related declines in executive functioning. This is consistent with studies of 

executive dysfunction in individuals with ASD between 16 and 66 years old (Ambery et al., 

2006; Bramham et al., 2009; Goldstein et al., 2001; Hill & Bird, 2006; Lopez et al., 2005; 

Minshew et al., 2002; Shafritz et al., 2008), although the effect of age was not examined in these 

studies. In fact, the only study to examine age-related changes in executive functioning using the 

TMT found no difference between older adults with ASD (> 50 years old) and older adults with 

typical development (Geurts & Vissers, 2012). They also did not find an effect of age on this 

task. However, unlike this study, the current study included both younger and older adults and 
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number and letter sequencing speed as a covariate which may have increased the likelihood of 

detecting age-related changes in cognitive flexibility.  

The decision to include sequencing speed as a covariate highlights another important 

issue related to the study of cognitive aging and autism. That is, measures designed to assess 

specific cognitive abilities are rarely able to isolate a single cognitive process. This is particularly 

evident for measures of executive function wherein performance depends upon coordination of 

several cognitive processes including motor and perceptual speed, working memory, attention, 

cognitive flexibility, and inhibitory control (Diamond, 2013). As was the case the in the current 

study, the number-letter switching subtest involves two different cognitive components (i.e., 

sequencing and switching). Thus, properly controlling for sequencing speed permitted a specific 

examination of cognitive flexibility which aided in a more specific understanding of the pattern 

of cognitive decline in adults with ASD.  

Classical conditioning. Initial examination of performance on the differential classical 

fear conditioning task showed similar conditioning between adults with ASD and adults with 

typical development. However, regression analyses revealed a significant age by diagnosis 

interaction, wherein age negatively impacted conditioning in adults with ASD, but did not 

impact conditioning in adults with typical development. Importantly, the slightly lower volume 

level preferred by adults with ASD compared to adults with typical development did not affect 

responses to the unconditioned stimuli (UCS), thus eliminating the possibility that decreased 

conditioning in older adults with ASD was the result of diminished physiological reactivity to the 

aversive sound. Rather, the significantly poorer conditioning observed in older adults with ASD 

appeared to be caused by similar conditioned responses to both the conditioned and neutral 

stimuli, as reflected by difference scores that were either at zero or negative. This pattern 
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suggests that older adults with ASD may have experienced greater difficulty in discriminating 

between potentially threatening stimuli (i.e., the CS that was always paired with the UCS) versus 

safe stimuli (i.e., the NS which was never paired with the UCS).  

 Age-related changes in adults with developmental disabilities. These findings are 

somewhat consistent with previous studies that have observed greater age-related changes in 

conditioning in adults with DS and FX compared to control groups. However, unlike these 

studies, which have documented age-related declines that begin in middle adulthood, the current 

study primarily observed poorer conditioning in adults with ASD in their early to mid-sixties. 

Furthermore, most of these studies have used eye-blink conditioning tasks which are known to 

rely upon cerebellar and limbic system pathways (Steinmetz, Tracy, & Green, 2001), compared 

to differential fear conditioning tasks (similar to the one used in the present study) which have 

been linked to amygdala, hippocampal, and prefrontal brain regions (Jarrell et al., 1987; LaBar, 

LeDoux, Spencer, & Phelps, 1995; Morris, Friston, & Dolan, 1997). Thus, the poorer 

performance observed in older adults with ASD may indicated dysfunctional communication 

within or between the medial temporal lobes and prefrontal cortex.  

Evidence of Similar Age-related Decline in ASD  

Free recall. Immediate free recall from the RAVLT revealed a significant effect of 

diagnosis and marginally significant effect of age, but no significant age by diagnosis interaction. 

That is, on tests of free recall older adults recalled fewer items compared to younger adults, and 

adults with ASD recalled fewer items compared to adults with typical development. In contrast, 

examination of recognition memory show relatively poorer recognition accuracy in adults with 

ASD compared to adults with typical development, whereas age had little impact on performance 

regardless of diagnosis. Evidence of age-related decline in immediate free recall but not 
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recognition is consistent with previous studies in healthy older adults (Spencer & Raz, 1995), as 

well as a more recent study examining age-related changes in explicit memory in both adults 

with ASD and adults with typical development between 20 and 79 years (see Lever & Geurts, 

2015).  In contrast, the overall poorer performance observed for adults with ASD in the present 

study diverges from previous work which has typically shown unimpaired free recall in ASD for 

lists of unrelated words (Bowler et al., 2008; 2009; Lever & Geurts, 2015; Minshew & 

Goldstein, 2001). These results may be better understood by consideration of task manipulations. 

In two separate studies Bowler et al., (2009) and Lever and Geurts (2015) assessed immediate 

free recall using the same RAVLT paradigm across five consecutive trials and found no 

differences in performance between individuals with ASD compared to age and IQ-matched 

individuals with typical development. It is possible that the current study’s assessment of free 

recall across only three trials may have underestimated performance in adults with ASD. This 

seems to be a reasonable interpretation given that by Trial 3 in the current study, the two 

diagnostic groups’ performance was more similar than on Trials 1 and 2. Thus, adding two 

additional, likely equivalent, trials in a five trial sequence may have caused the two diagnostic 

groups to look more similar in the studies using five trials. This interpretation may also explain 

the combined effects of age and diagnosis wherein older adults with ASD recalled fewer words 

compared to younger adults with ASD as well as older adults with typical development, and 

suggests combined effects of age and diagnosis. While it is important to emphasize that the non-

significant interaction between age and diagnosis suggests similar age-related declines in both 

diagnostic groups, it does not preclude the possibility that if free recall performance is impaired 

in ASD it may in turn be further compromised by the aging process. Yet, it is also important to 

point out that age-related declines in free recall may be somewhat mitigated by repeated trials. 
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As was the case in present study, repeated trials boosted performance in both older adults with 

ASD and typical development.    

Visual scanning and sequencing. Visual scanning, number sequencing, and letter 

sequencing are commonly used as measures of processing speed (Salthouse, 2011). In the current 

study, both age and diagnosis were related to poorer performance on these subtests. However, 

there was no significant age by diagnosis interaction, suggesting a similar pattern of age-related 

decline in both adults with ASD and adults with typical development. These findings are 

consistent with previous evidence of processing speed declines in normal aging (Salthouse, 

1991; 1996; 2004; 2009; Verhaeghen & Salthouse, 1997) as well as evidence of processing 

speed deficits in individuals with ASD (Goldstein et al., 2001; Travers et al., 2016)    

Interestingly, both Goldstein et al. (2001) and Travers et al. (2014) demonstrated that deficits in 

processing speed in children with ASD were more pronounced in young adults with ASD 

compared to age and IQ-matched peers. Based on these findings and findings from the current 

study, it is argued that processing speed deficits are not only sustained in ASD across adulthood, 

but are also subject to a similar rate of decline as seen in normal aging. 

Age-invariant Performance in ASD 

Recognition memory. Consistent with previous studies of normal aging (Spencer & Raz, 

1995; Verhaeghen & Salthouse, 1997), recognition memory performance was not significantly 

related to age. However, there was a significant effect of diagnosis, such that adults with ASD 

exhibited poorer recognition accuracy compared to adults with typical development. Studies of 

recognition memory in ASD have typically shown similar performance between individuals with 

ASD and individuals with typical development (Boucher, Mayes, & Bigham, 2012; Bowler et 

al., 2000; Lever & Geurts, 2015). For instance, in a study of recognition memory in older adults 
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with ASD, Lever and Geurts (2015) presented participants with 15 target words (i.e., previously 

heard) and 15 new words (i.e., distractors). In contrast, the current study presented participants 

with 15 target words intermixed with 35 distractors that included both semantically and 

phonetically-related lures. Therefore, it is possible that the greater number of distractors may 

have impacted recognition accuracy in adults with ASD. Support for this was also evident by the 

higher false recognition of semantically-related lures in adults with ASD compared to adults with 

typical development.  Therefore, it is possible that recognition tests which include a higher 

proportion of semantically-related distractors may increase the rate of false recognition in adults 

with ASD. Nevertheless, it is important emphasize that in spite of higher false recognition of 

related items, recognition of previously studied items much higher compared to free recall in 

both adults with ASD (92% vs 49%) and adults with typical development (95% vs. 58%).  Better 

memory performance on tests of recognition versus free recall is consistent with previous studies 

of explicit memory in ASD (Bowler et al., 1997; Gaigg et al., 2008), as well as studies of normal 

aging (Craik, 2002; Craik & McDowd, 1987). A pattern of performance that has led to the ‘Task 

Support Hypothesis’ wherein the memory difficulties experienced by younger individuals with 

ASD and older adults with typical development are attenuated when cues are provided to 

facilitate retrieval (Bowler et al., 1997; Gaigg et al., 2008). In light of the present evidence that 

free recall was impaired in ASD and disrupted by age, it is possible that the memory difficulties 

experienced by older adults with ASD will be more prominent in the absence of any 

environmental cues to facilitate retrieval of the previously studied material. Thus, future work 

should examine age-related changes in explicit memory using both supported (recognition, cued-

recall) and un-supported memory tests (free recall) to better understand the nature of age-related 

changes in explicit memory in adults with ASD. 
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Concept formation. The Woodcock-Johnson concept formation test (WJ-CF) was 

designed to assess more explicit or effortful rule-based category learning. The pattern of 

performance on the WJ-CF showed significant effects of age and diagnosis, such that older 

adults demonstrated lower performance than younger adults, and adults with ASD demonstrated 

lower performance compared to adults with typical development. However, there was also a 

significant age by diagnosis interaction. Follow-up within-group analyses determined that the 

significant effect of age was primarily driven by adults with typical development. Adults with 

typical development showed greater age-related declines in performance relative to adults with 

ASD. In contrast, the non-significant effect of age in adults with ASD was due to significantly 

lower performance in adults with ASD irrespective or age. This finding is consistent with 

previous evidence of impaired category learning in children and adolescents with ASD (Klinger 

et al., 2007; Minshew, Meyer, & Goldstein, 2002), and further suggests that category learning 

may be a particular type of learning that is disrupted in ASD across the lifespan.  

 Prototype formation. In contrast to the WJ-CF, the prototype formation task was 

designed to assess more implicit or automatic category learning. As previously mentioned, this 

particular form of category learning has been shown to be relatively preserved in studies of 

normal aging (Glass et al., 2012; Hess & Slaughter, 1986a; 1986b), whereas studies of implicit 

category learning in ASD have been mixed (Gastgeb et al., 2012: Klinger & Dawson, 2001; 

Klinger et al., 2007; Molesworth et al., 2005; 2008). Nevertheless, results from the present study 

revealed no age effect and similar performance between adults with ASD and adults with typical 

development, suggesting that implicit category learning was preserved in both older adults with 

typical development and older adults with ASD.  
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 Finally, when comparing performance across both measures of category learning, adults 

with typical development exhibited a pattern of performance consistent with the notion that age 

has a greater impact on more effortful rule-based learning tasks (e.g., WJ-CF) and a smaller 

impact on tasks involving more implicit or automatic learning (e.g., prototype formation). Yet in 

adults with ASD, age did not impact performance on either task. Failure to observed the 

expected age-related changes on the WJ-CF in adults with ASD was primarily due to poorer 

overall performance, and highlights the importance of choosing measures that are sensitive age-

related changes in both adults with ASD and adults with typical development. That is, if the 

measures chosen to study age-related decline happen to be ones proven to be consistently 

disrupted in ASD, then the ability to detect age-related changes may be reduced. Thus, future 

studies of aging in ASD should carefully consider whether the cognitive measures chosen to 

assess age-related declines in ASD are suitable for this population.  

Effortful versus Automatic Processing  

In order to test the prediction that aging in ASD may impact both effortful and automatic 

processing, the current study included cognitive measures that are sensitive to age-related decline 

(i.e., explicit memory, processing speed, etc.) as well as measures that are relatively age-

invariant or less impacted by age (i.e., conditioning and prototype learning). In line with previous 

studies of normal aging, the current study found age-related declines on several measures of 

effortful processing in adults with typical development and adults with ASD. However, these 

age-related declines were found to be greater in adults with ASD across two of the measures of 

effortful processing and one measure of automatic processing (i.e., classical conditioning). Taken 

together, these findings suggest that ASD may be characterized by greater age-related declines in 

some cognitive processes relative to the cognitive declines experienced by adults with typical 
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development. This conclusion is further supported by the neuro-cognitive scaffolding theory of 

cognitive aging. This theory suggests that when faced with age-related degeneration, the aging 

brain will adapt by recruiting a greater number of brain regions in order to achieve particular 

cognitive goals (Cabeza, 2002; Goh & Park, 2009; Park & Reuter-Lorenz, 2009). However, 

various neuroimaging studies have found that when engaging in complex cognitive tasks, this 

type of neural compensation strategy may already be in use and possibly disrupted in individuals 

with ASD (Just et al., 2007; Kana et al., 2007; Schipul & Just, 2016). Assuming adults with ASD 

undergo similar age-related neuro-degeneration, these findings suggest that adults with ASD may 

have difficulty undergoing the same neural reorganization needed to respond to the aging brain. 

In other words, if young adults with ASD already recruit a greater number of brain regions to 

complete a complex cognitive task, then less neural compensation may be achievable as they 

face greater volumetric and functional declines with age. This possibility would then explain 

why the current study observed the greatest age-related declines on measures that require 

coordination among several different brain regions. For instance, both the MoCA and TMT are 

frequently used as measures of executive function (Arbuthnott & Frank, 2000; Lam et al., 2013; 

Vogel et al., 2015). An umbrella term used to describe a set of cognitive processes such as 

controlled attention, working memory, cognitive flexibility, problem solving and reasoning 

(Diamond, 2013; Hill & Bird, 2006). Consequently, performance on these measures also requires 

coordination among different brain regions including the medial temporal lobes (MTL) and 

prefrontal cortex (PFC; Li et al., 2014; Paul et al., 2011). Likewise, several studies have 

identified these regions as important for the acquisition of conditioned responses. For instance, in 

studies of classical fear conditioning, efficient communication between the MTL and PFC brain 

regions seems to play an integral in distinguishing between safe (i.e., neutral stimuli) and 
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threatening stimuli (i.e., conditioned stimuli; for review see Rozeske, Valerio, Chaudun, & 

Herry, 2014). Therefore, it is possible that within ASD, age-related declines in performance 

across these three measures may be associated with greater age-related disruption in the PFC. 

Furthermore, because PFC dysfunction has been associated with an increased risk for MCI 

(Julayanont, Philips, Chertkow, & Nasreddine, 2013), it is possible that the greater age-related 

declines in ASD signals an increased risk for MCI in this population. Increased risk for MCI has 

also been documented in patients with Parkinson’s disease (PD), who often suffer from subtle 

cognitive deficits in executive function, memory, and visual-spatial abilities prior to the 

manifestation of motor symptoms (Boyle et al., 2005; Costa et al., 2015; Hoops, 2009; 

Svenningsson, Westman, Ballard, & Aarsland, 2012). Recent evidence has also documented a 

higher risk for PD in older adults with ASD (Starkstein et al., 2015). Given this evidence, it is 

reasonable to assume that the Parkinsonian symptoms exhibited by these older adults with ASD 

were also accompanied by similar deficits in cognitive functioning. Thus, future studies that 

include more comprehensive assessment of cognitive, motoric, and neuro-anatomical changes 

associated with aging in ASD will be important for understanding the relationship between 

cognitive functioning in older adults with ASD and the associated risk for certain neuro-

degenerative diseases such as PD.  

Processing Resources versus Processing Speed 

Another goal of the present study was to test the theoretical predictions derived from the 

Processing Resources and Processing Speed accounts of cognitive aging. According to the 

Processing Resources account, age is associated with a reduction in cognitive resources or 

‘mental energy’ (Craik & Rose, 2012). As a result, performance on effortful processing tasks, 

which require greater cognitive effort, tends to be more disrupted with age compared to tasks 



   
 

57 
 

which require fewer resources (i.e., automatic processing tasks). In contrast, the Processing 

Speed theory suggests that declines in information processing speed may represent a more 

fundamental cognitive change, wherein age-related slowing of information processing leads to 

subsequent impairments in other cognitive domains.  

In order to determine whether the pattern of cognitive performance can be better 

accounted for by the Processing Resources or the Processing Speed theory mediational analyses 

were conducted. The first analysis examined the relationship between age and processing 

resources after controlling for processing speed. Consistent with previous literature (Salthouse, 

1996; Verhaeghen & Salthouse, 1997), processing speed significantly mediated the relationship 

between age and processing resources, such that controlling for processing speed virtually 

eliminated the relationship between age and processing resources. In contrast, processing 

resources did not appear to fully mediate the relationship between age and processing speed. A 

relationship that remained significant. Overall, these findings suggest that aging may be 

characterized by general slowing of information processing which in turn disrupts performance 

on other measures of cognitive functioning. This finding is particularly important considering 

that processing speed deficits are a common feature of ASD. A deficit that, according the present 

study, increases with age. As a result, it is possible that more complex tasks that require 

simultaneous coordination of several different cognitive processes may become even more 

disrupted as individuals with ASD age. 

Limitations 

As with any study, there are some limitations that complicate the conclusions drawn from 

the present findings. First, the present study used a cross-section design. This choice of research 

design was necessary in order to conduct the study in a timely fashion. Historically, cross 
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sectional designs have consistently revealed that increased age is associated with lower levels of 

cognitive performance (Salthouse, 2009). Nevertheless, there are limitations of cross-sectional 

designs including individual differences in demographic variables (e.g., educational level, 

income, etc.) and cohort effects that prevent any strong conclusions regarding the changes in 

cognition over time for adults with ASD. Therefore, the current findings should be interpreted 

with caution until future longitudinal studies are able to replicate these findings.  

Second, virtually all of the adults with ASD were high functioning (IQ > 80), thus it is 

difficult to generalize the present findings to more impaired individuals with ASD who may have 

co-morbid intellectual ability. Still, it is important to highlight that despite similar levels of 

intellectual functioning between adults with ASD and adults with typical development, adults 

with ASD exhibited a pattern of performance that was not only effect by their diagnosis but also 

appeared to be further compromised by age. For that reason, it is possible that individuals with 

ASD, regardless of intellectual functioning, may experience significant difficulties in cognitive 

functioning as they age. 

Second, even though the current study verified ASD diagnoses with a standard diagnostic 

interview, several adults with ASD disclosed that they had received their initial diagnosis in 

adulthood which was somewhat expected considering that mild forms of ASD were rarely 

diagnosed when these adults were children. Nevertheless, the current findings may not be 

representative of the whole autism population, particularly those with more severe ASD 

symptomatology who are typically diagnosed much earlier in life. However, it should be noted 

that approximately 30% of adults diagnosed with ASD later in life received some type of 

diagnosis in childhood (e.g., ADHD, bi-polar, schizophrenia). Again, this highlights the 
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limitations of the diagnostic instruments available at the time rather than attributing adulthood 

diagnoses only to those with milder ASD symptomatology.  

Finally, a number of adults with ASD reported co-morbid diagnoses ranging from 

ADHD, depression, and anxiety. To date, it is still unknown whether having a co-morbid 

diagnosis has a differential impact on older adults with ASD, leading to greater age-related 

decline. Additionally, it is well known that anti-depressant medication can impact some forms of 

cognitive functioning. However, preliminary analyses revealed no differences in cognitive 

performance between those who use and do not use anti-depressant medication. Thus, it seems 

unlikely that co-morbid diagnoses affected the results seen. Nevertheless, it is possible that co-

morbid diagnosis affects age-related cognitive decline in ASD and future studies should continue 

to investigate this link.    

Conclusion 

The current study represents one of only three systematic investigations comparing age-

related decline in adults with ASD to age and IQ-matched to adults with typical development. 

While previous studies in normal aging have documented fairly consistent patterns of age-related 

cognitive decline, studies involving older adults with other DDs (e.g., Down syndrome, Fragile 

X, and William’s syndrome) provide evidence that cognitive functioning may be 

disproportionately impacted by age such that age resulted in earlier declines in both effortful and 

some automatic processing tasks. Given the current findings and the similar etiology of ASD to 

those other DDs, it is possible that adults with ASD face a similar risk for atypical age-related 

decline.   

However, as a final observation regarding the pattern of performance in adults with ASD, 

not every older adult with ASD in this study exhibited dramatic declines in cognitive 
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functioning. For example, performance on the number-letter switching subtest appeared to show 

that some older adults with ASD demonstrated performance that was comparable to older adults 

with typical development. Therefore, it is possible that the current findings signal different 

trajectories of age-related decline in adults with ASD, with some showing normal patterns of 

age-related decline while others showed more dramatic declines in cognitive functioning. 

Although the current study did not have a large enough sample to explore age-related changes 

within different sub-groups of adults with ASD, future work examining aging in ASD should 

consider the possibility that there may be different trajectories of age-related decline in ASD. For 

instance, one possible variable that may contribute to different patterns of age-related decline in 

ASD is employment and community involvement. It is well known that having a job and 

remaining activity involved in the community can buffer older adults with typical development 

against age-related declines in cognitive functioning (Rowe & Kahn, 1997). Unfortunately, the 

employment and community involvement in adults with ASD is incredibility low, with some 

studies estimating as little as 66% of young adults with ASD who have never been gainfully 

employed (Roux et al., 2013). Thus, it is possible that adults with ASD who are able to find and 

maintain employment may demonstrate less age-related decline in cognitive functioning 

compared to adults with ASD who have trouble finding or maintaining employment. Arguably, 

adults with ASD who struggle with employment may do so because of greater impairment in 

cognitive functioning, however this possibility is unlikely given that the current sample of high-

functioning adults with ASD were more likely to be unemployed due the social and 

communication impairments associated with ASD rather than global deficits in cognitive 

functioning.  
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Alternatively, it has been suggested that maintaining community involvement, which is 

often considered to be an important component for ‘successful aging’ in adults with typical 

development (Rowe & Kahn, 1997), may be less important for adults with ASD. This is related 

to the idea that the feelings of social isolation and loneliness accompanied by reductions in 

community involvement may be less common in adults with ASD who prefer solitary hobbies 

and interests (Happe & Charlton, 2012). Unfortunately, the extent to which employment and 

community involvement impact age-related declines in adults with ASD remains unclear, thus 

future studies of environmental factors will be important for understanding whether factors such 

as community involvement and active lifestyles that contribute to the maintenance of cognitive 

functioning the aging in typical adults are also important for aging in adults with ASD. In order 

to do so, the first goal of this relatively new investigation of aging in ASD will be to increase our 

understanding age-related changes in ASD. Only then will clinicians and researchers be prepared 

to address ways in which to improve the lives and encourage more successful aging in 

individuals living with this lifelong disorder. 
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Table 1. Demographics      

 
ASD 

(n = 29) 

 Typical 

(n = 30) 

 
p 

 Mean (SD) Range Mean (SD) Range  

Chronological Age (years) 49.0 (11.7) 30-67 48.7 (12.1) 30-65 .94 

Gender* Male = 24 

Female = 5 

 Male = 23 

Female = 7 

 .42 

WASI      

Vocabulary (t-score) 58.1 (7.8) 37-73 56.1 (7.1) 35-67 .57 

Matrix Reasoning (t-score) 57.1 (7.0) 39-65 58.9 (5.9) 47-72 .29 

2-subscale FSIQ 113.2 (9.5) 92-128 113.1 (10.2) 93-130 .95 

SRS-2 67.2 (8.9) 52-92 48.1 (6.7) 39-65 <.001 

ADOS-2 Module 4      

Communication 3.1 (0.9) 2 – 6 -- --  

Reciprocal Social Interaction 6.3 (1.9) 3 – 12 -- --  

Combined Total 9.9 (2.7) 5 – 18 -- --  

* X
2
 = .34, p = .56      
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Table 2. Measures of Effortful Processing 

Measure Domain Dependent Variable ASD Typical p-value Cohen’s d 

MoCA MCI Total Score 25.9 (2.4) 27.1 (2.1) 0.05 0.53 

Concept 

Formation 

Category Learning  29.1 (7.6) 33.2 (5.2) 0.02 0.63 

RAVLT Free Recall (%) Trial 1 36.8 (9.5) 42.7 (11.2) 0.04 0.57 

  Trial 2  48.5 (13.8) 60.9 (14.7) 0.002 0.87 

  Trial 3  62.1 (19.2) 69.3 (17.6) 0.14 0.39 

  Total  49.1 (13.0) 57.6 (13.1) 0.04 0.65 

 Recognition Memory Accuracy (%) 91.9 (7.0) 95.1 (4.4) 0.04 0.55 

  Semantic Foils  1.6 (1.5) 0.9 (0.9) 0.02 0.57 

  Phonetic Foils  0.3 (0.6) 0.1 (0.4) 0.26 0.39 

TMT Processing Speed (secs.) Visual Scan 24.1 (6.1) 18.1 (4.1) <0.001 1.15 

  Number Seq. 39.4 (12.4) 28.1 (8.6) <0.001 1.06 

  Letter Seq. 35.9 (13.4) 25.6 (8.3) 0.001 0.92 

  Number-Letter Seq. 102.1 (54.4) 69.3 (25.9) 0.004 0.77 

  Motor Speed 38.5 (22.6) 16.9 (9.5) <0.001 1.25 
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Table 3. Standardized Beta Coefficients and p-values from Regression 

Models with FSIQ-2, Age, Diagnosis, and Age x Diagnosis as Predictors 

 MoCA RAVLT WJ-CF 

 Β p β p β p 

FSIQ 0.21 0.12 0.32 <0.01 0.44 <0.01 

Age -0.38 <0.01 -0.23 0.08 -0.33 <0.01 

Diagnosis -0.38 <0.01 -0.32 <0.01 -0.29 <0.01 

Age x Diagnosis -1.03 0.04 -0.25 0.65 1.02 0.03 
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Table 4. Standardized Beta Coefficients and p-values from TMT subtests with FSIQ-2, Motor 

Speed, Age, Diagnosis, and Age x Diagnosis as Predictors 

 
Visual Scanning Number Seq. Letter Seq. 

Number-Letter 

Switching 

 β P β p β p β p 

FSIQ -.15 0.27 -.09 0.49 -.27 0.05 -.35 <0.01 

Motor Speed .49 <0.01 .60 <0.01 0.60 <0.01 .32 <0.01 

Age .32 <0.01 .34 <0.01 0.30 <0.01 .50 <0.01 

Diagnosis .34 <0.01 .22 0.07 0.15 0.18 .29 0.02 

Age x Diagnosis .43 0.37 .03 0.94 -0.11 0.80 .76 0.08 
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Table 5. Measures of Automatic Processing 

Measure Domain Dependent Variable ASD Typical p-value Cohen’s d 

Classical 

Conditioning 

Associative 

Learning 

SCR Difference Score  
(CS-NS) 

.01 (.07) .04 (.08) 0.10 0.47 

Prototype Task Category 

Learning 

Prototype Effect 
(Prototype – New)  

30% (26%) 40% (22%) 0.10 0.41 

 Confidence 

Rating 

Recognition of 

Prototype 

74% (18%) 76% (14%) 0.68 0.11 

  Recognition of New 

Stimuli 

71% (25%) 63% (22%) 0.25 0.30 
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Figures 

 

Figure 1. Sample stimuli for the prototype task: eight familiarization stimuli and the prototype 

for the “MIP” animal family. 
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Figure 2. Age-Related Differences in Cognitive Flexibility 
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Figure 3. Age-related comparisons of differential conditioning  
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Figure 4. Age-related Comparisons of Effortful Processing 
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Figure 5. Age as mediated by processing speed versus processing resources 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 


