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Abstract

REBECCA GLOVER: Generalized Twistor Spaces for Hyperkähler and Quaternionic
Kähler Manifolds

(Under the direction of Justin Sawon)

Generalized complex geometry is a newly emerging field that unites two areas of

geometry, symplectic and complex, revealing surprising new aspects in both. Largely

motivated by physics, it provides a mathematical context for studying certain string

theoretic topics. Since it is a relatively new field, mathematicians are still learning how

known geometric objects fit into the realm of generalized complex geometry. One such

object is Penrose’s twistor space. In this dissertation, we study the generalization of

twistor theory for K3 surfaces, hyperkähler, and quaternionic Kähler manifolds.

We use generalized complex geometry to construct a manifold fibered over CP 1×CP 1

that arises from a family of complex and symplectic structures on a K3 surface. We call

this manifold a generalized twistor space. After proving that it has an integrable gen-

eralized complex structure, we describe properties on this space analogous to those in

classical twistor theory. We then extend this construction to all hyperkähler manifolds

of higher dimension. Finally, we consider the quaternionic Kähler analogue of this gener-

alized twistor space. We produce a candidate for a generalized almost complex structure

on the space and conjecture that the structure is integrable.
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Introduction

This dissertation details the generalization of twistor theory for various quaternionic

manifolds in the context of generalized geometry. Generalized complex geometry was

first introduced by Hitchin [28] and further studied by Gualtieri [23, 25] and Cavalcanti

[13] as a geometric structure that would encompass several types of geometry in one. In

particular, it simultaneously generalizes complex and symplectic geometry, two branches

of mathematics that had very little interplay for over a century. It is the study of a

structure defined on the direct sum of the tangent bundle and the cotangent bundle of

a manifold. As Gualtieri explains in his thesis, generalized complex geometry provides a

geometric interpretation of several older concepts studied by physicists such as branes,

B-fields, and bi-Hermitian data coming from supersymmetry. Since it is a relatively

new field of mathematics, many objects already explored for various known geometric

structures have not yet been examined in the language of generalized complex geometry.

One such area of particular interest is the twistor construction.

Classical twistor theory

Twistor theory was developed about forty years ago by physicist Roger Penrose [35] as

a map from objects in Minkowski space-time to a 3-dimensional complex projective space

called the twistor space. The twistor space construction was successful in transforming

differential equations that defined non-linear gravitons to more easily solvable linear

differential equations in complex space. Since then, mathematicians have expanded on

this construction, developing the theory for all Riemannian 4-manifolds and later in

higher dimensions [1, 41]. The twistor space construction does not extend ‘nicely’ to

all Riemannian manifolds of dimension n > 4. However, for quaternionic manifolds, in



particular hyperkähler and quaternionic Kähler manifolds, the twistor theory is quite

interesting.

Let M be a hyperkähler manifold. The twistor construction as described in [27]

begins with a CP 1-family of complex structures on M . The bundle of these structures

results in a complex manifold Z called the twistor space, where Z ∼= M ×CP 1 as smooth

manifolds. The fibration Z → CP 1 is holomorphic. As we will describe in Section 2.1,

certain holomorphic data on Z can be constructed from the underlying structure on M .

Further, given a manifold Z that fibers holomorphically over CP 1 with these properties,

we can reconstruct a hyperkähler manifold M such that Z is the twistor space of M .

The twistor space becomes even more interesting when we examine how vector bundles

on M relate to vector bundles on Z. Consider the manifold M as a compact Riemannian

manifold with metric g and let V be a vector bundle on M equipped with a connection

∇. Then ∇ is said to be a Yang-Mills connection if it is an absolute minimum of the

Yang-Mills functional

1

8π2

∫
X

|R|2ω

where R is the curvature of the connection and ω is the volume form on M [1]. On a hy-

perkähler manifold, every self-dual connection (a connection such that the curvature R is

SU(2)-invariant) on a complex bundle satisfies this condition and is therefore Yang-Mills

[32]. These self-dual bundles with connection (V,∇) on M , under some stability condi-

tions, can be pulled back to holomorphic vector bundles with connection on Z. Further,

holomorphic vector bundles on Z that are trivial in the fiber (CP 1) direction can be real-

ized as the pullback of self-dual bundles on M . This bijection between bundles is called

the twistor correspondence. Since holomorphic vector bundles on a complex manifold are

well-understood, this provided a tool for understanding the solutions to the Yang-Mills

equations in this setting. In the case where dimRM = 4, the twistor correspondence

was particularly enlightening, as self-dual bundles correspond to instantons, which have

physical applications.
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When M is quaternionic Kähler, similar results hold. In particular, the twistor space

Z is a complex manifold, even though in general M does not have a global complex

structure. Additionally, the twistor space is Kähler for many examples of quaternionic

Kähler manifolds, such as HP n [7]. The twistor correspondence described above holds

for these manifolds as well [11]. As twistor spaces in these geometric settings have proven

to be so interesting in the past, it is a natural next step to see how they fit into more

modern geometries, such as generalized complex geometry.

Generalized complex geometry

Let M be a 2n-dimensional manifold. The bundle TM ⊕ T ∗M has a natural non-

degenerate inner product on it, as well as a bracket called the Courant bracket. A

generalized complex structure is defined as an endomorphism

J : TM ⊕ T ∗M → TM ⊕ T ∗M

such that J 2 = −1 and J is orthogonal with respect to the inner product with some

integrability conditions; J is integrable when the +i-eigenbundle L is involutive with

respect to the Courant bracket. Generalized complex structures can arise from complex

or symplectic structures, which we will describe in more detail in Chapter 1.

This relatively new field has shed light on several topics in both physics and geome-

try. It has provided a mathematical framework for studying string theoretic topics such

as supersymmetric sigma models and branes [31, 33]. Since mirror symmetry, a rich

mathematical subject with physical applications, provides a link between complex and

symplectic geometry, it is natural to ask how generalized complex geometry fits into this

duality between manifolds. In fact, mathematicians and physicists have been studying

mirror symmetry in this context with some enlightening results [4, 16]. Further, gen-

eralized complex geometry has revealed some interesting new aspects of other areas of

geometry such as Poisson varieties and SKT structures. See, for example [12, 24, 29, 36].
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Main results: the generalized twistor space

In this dissertation, we examine the role that generalized complex geometry plays

in twistor theory. Since hyperkähler and quaternionic Kähler manifolds have such rich

symplectic and complex data, we focus on their twistor spaces within this generalized

geometry setting. Our main results are restricted to the twistor theory for K3 surfaces

and their higher-dimensional analogues, hyperkähler manifolds, although we conjecture

that a similar result holds for quaternionic Kähler manifolds.

Let M be hyperkähler and let Z be its twistor space. Consider the fiber product

X = Z ×M Z.

We call this manifold the generalized twistor space of M . It is a CP 1×CP 1-bundle over M

such that every point p ∈ X defines a generalized complex structure on M . In Chapter 3,

we prove the following theorem, first for K3 surfaces in four dimensions (Theorem 3.2.1)

and then for all hyperkähler manifolds of dimension 4n (Theorem 3.5.2).

Theorem 0.0.1. Let M be a hyperkähler manifold. Then the generalized twistor space

has an integrable generalized complex structure.

We then prove that this generalized twistor space has certain properties analogous to

those of the twistor space in the classical setting (Theorem 3.5.3).

Theorem 0.0.2. Let X be the generalized twistor space of a hyperkähler manifold M .

Then:

(1) X is a smooth fiber bundle

π : X → CP 1 × CP 1

and a reduction of generalized complex manifolds.
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(2) The bundle admits a family of sections that are generalized complex factor sub-

manifolds, each with generalized normal bundle isomorphic to

C2n ⊗ (O(1, 0)⊕O(0, 1)).

(3) There is a pure spinor representing the generalized complex structure on X given

by

Ψ = (−i(α− β))n exp
(
i
2

(
i(α+β)
α−β ωI + i

α−βσ −
iαβ
α−β σ̄

))
∧ (dα ∧ dβ),

where σ = ωJ + iωK that defines a structure of complex type along the diagonal,

and of type 2 everywhere else.

(4) X has a real structure τ compatible with the above and inducing an antipodal

map on CP 1 × CP 1.

The resulting generalized complex manifold X is an interesting example of a general-

ized complex structure in the sense that it does not come from a symplectic or a complex

structure. Further, this example does not seem to arise from previously known construc-

tions of generalized complex manifolds such as Poisson deformations [25] or blow-ups

[15]. Examples such as these are essential to the development of this new field. The

generalized twistor space also provides a first step towards developing a generalization of

twistor theory, with the potential to help us understand more about the bundles on this

space through a type of ‘generalized twistor correspondence’.

At the end of this dissertation, we provide the initial construction for a generalized

twistor space of a quaternionic Kähler manifold. For a manifold M that is quaternionic

Kähler, we define the space and give a candidate for a generalized almost complex struc-

ture on it. We then conjecture that this defines an integrable structure. The construction

of this candidate depends on a new proof of the integrability of the complex structure on

the classical twistor space.
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Overview

The first chapter of the thesis explains the main objects needed for generalized com-

plex geometry, following [25]. We introduce the natural inner product on the space

T ⊕ T ∗. We then develop the bracket on this space and describe a natural structure

called a Courant algebroid that arises from this bracket. Section 1.2 builds on the previ-

ous section as we introduce a generalized almost complex structure on T ⊕ T ∗, and give

conditions for it to be integrable. We discuss the various ways a generalized complex

structure can be defined and describe an integer-valued function over the manifold called

type. Finally, we give examples and state the main theorems from generalized complex

geometry needed for this dissertation.

In Chapter 2, we define and explain the properties of of hyperkähler manifolds and K3

surfaces. We then detail their twistor theory. In Section 2.2, we provide the background

to study generalized complex geometry on K3 surfaces and hyperkähler manifolds. We

present another way to define a generalized complex structure, by an element of the

spin representation on the Clifford algebra CL(Tp ⊕ T ∗p ). We describe the almost com-

plex structure on the twistor space using this notion of spinors and give a proof that

this structure is integrable. In the last two sections, we define generalized Kähler and

generalized K3 structures on a manifold.

In Chapter 3, we present our main results. We build the generalized twistor space

of a K3 surface M by constructing a family of generalized complex structures on M in

three ways, and prove that these constructions are equivalent. We then prove that the

generalized twistor space for a K3 surface is an integrable generalized complex manifold of

dimension 8 using the pure spinor defining it. In Sections 3.3 and 3.4, we prove that there

are analogous properties on the generalized twistor space to the classical case. Finally,

we extend our results to all hyperkähler manifolds of dimension 4n.

In Chapter 4, we define quaternionic Kähler manifolds and explain their twistor the-

ory. We describe the contact geometry of the twistor space. We then present a new proof

of the integrability of the complex structure on the twistor space for a 4-dimensional

6



quaternionic Kähler manifold by using the contact form and generalized complex ge-

ometry. At the end of the chapter, we extend these results to all quaternionic Kähler

manifolds of dimension 4n.

In the final chapter of this dissertation, we define the generalized twistor space for

a quaternionic Kähler manifold. We provide a generalized almost complex structure on

this space, and conjecture that it is integrable. Lastly, we present a candidate for the

pure spinor representing this generalized almost complex structure for a four-dimensional

quaternionic Kähler manifold, in the hopes that it will aid us in eventually proving

integrability of this structure.
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CHAPTER 1

Generalized complex geometry

Generalized complex geometry is a generalization of complex and symplectic geome-

try. In this chapter, we give an overview of generalized complex geometry as described

by Gualtieri [25]. We detail the basic definitions and theorems, providing a context for

studying generalized twistor theory.

1.1. Preliminaries

Let M be a real n dimensional manifold. There is a natural inner product on T ⊕ T ∗

(which we denote by T), the direct sum of the tangent bundle and its dual, which is

symmetric and non-degenerate, given by

〈X + ξ, Y + η〉 =
1

2
(ξ(Y ) + η(X))

for X, Y ∈ C∞(T ), ξ, η ∈ C∞(T ∗). This inner product has signature (n, n) and T

has structure group O(n, n), a non-compact orthogonal group. Further, at each point

p ∈ M , TpM has a canonical orientation, coming from the orientation on R as we can

show that ∧2n(TpM) ∼= R. Thus, the structure group preserving the inner product and

this orientation at a given point p ∈ M is SO(n, n). We can explain the symmetries of

this space by looking at the Lie algebra:

so(TpM) = {R | 〈Rx, y〉+ 〈x,Ry〉 = 0 ∀ x, y ∈ TpM}.

We decompose this R as

R =

 A β

B −A∗

 ,



where A ∈ End(TpM), B : TpM → T ∗pM , and β : T ∗pM → TpM , B∗ = −B and β∗ = −β.

Thus we can think of B ∈ C∞(∧2T ∗) as a 2-form and β ∈ C∞(∧2T ) as a bivector, and

so(TpM) = End(TpM)⊕ ∧2T ∗pM ⊕ ∧2TpM.

The symmetries that we will focus on in this thesis are the 2-forms B and the bivectors

β, which give rise to what are called the B-field transform and the β-transform. The

B-field transform acts by exp(B) on C∞(T) by X + ξ 7→ X + ξ + iXB, thus acting as a

shear transformation, fixing projections onto T and shearing in the T ∗ direction. On the

other hand, the β-transform acts by exp(β) on C∞(T) by X + ξ 7→ X + ξ + iξβ, fixing

projections onto T ∗ and shearing in the T direction.

1.1.1. The Courant bracket. Using this inner product, we can develop a bracket on

this space, which is essentially the extension of the Lie bracket to T. This gives T the

structure of a Courant algebroid, which we define below.

Definition 1.1.1. A Courant algebroid E is a real vector bundle over M equipped

with a bracket [·, ·] defined on C∞(E), a nondegenerate inner product 〈·, ·〉 and a bundle

map π : E → T such that the following conditions are satisfied for e1, e2 ∈ C∞(E):

(1) [e1, [e2, e3]] = [[e1, e2], e3] + [e2, [e1, e3]].

(2) π([e1, e2]) = [π(e1), π(e2)].

(3) [e1, fe2] = f [e1, e2] + (π(e1)f)e2, f ∈ C∞(M).

(4) π(e1)〈e2, e3〉 = 〈[e1, e2], e3〉+ 〈e2, [e1, e3]〉.

(5) [e1, e1] = 1
2
π∗d〈e1, e1〉.

A Courant algebroid is called exact if E ∼= T. In this case, the Courant bracket is

defined for [e1, e2] ∈ C∞(E) as

[e1, e2] · φ = [[d, e1·], e2·]φ ∀φ ∈ Ω•(M).
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Note that for e1 = X + ξ, e2 = Y + η ∈ C∞(T ⊕ T ∗), this yields the expression

[X + ξ, Y + η] = [X, Y ] + LXη − iY dξ.

Here, the action on φ ∈ Ω•(X) is given by

(X + ξ) · φ = iXφ+ ξ ∧ φ.

Technically, this is called the Dorfman bracket on T. The skew-symmetrized version of

this bracket is called the Courant bracket. However, we claim that this distinction will

not matter in defining a generalized complex structure. In fact, in Section 1.2 we will

consider a subbundle of E such that the Dorfman bracket is skew-symmetric on this

subbundle.

For the remainder of this paper, we will consider E to be exact. Therefore, we use

the terms E and T interchangeably.

1.1.2. Symmetries of the Courant bracket. Recall that the Lie bracket on sections

of the tangent bundle has symmetry group defined by the diffeomorphisms of the manifold

M . When we consider the Courant bracket on sections of T, we actually get a larger

symmetry group.

Proposition 1.1.1. (Gualtieri, [25]) Let F be an orthogonal automorphism of T,

covering the diffeomorphism φ : M → M , and preserving the Courant bracket. Then

F = φ∗e
B for a unique d-closed 2-form B ∈ Ω2(M).

By this proposition, symmetries of the Courant bracket are given by both diffeomor-

phisms and B-field transforms.

1.2. Generalized complex structures

We now define an endomorphism on this space called a generalized complex structure

using this natural inner product and bracket on T.

10



1.2.1. Definition.

Definition 1.2.1. A generalized almost complex structure on M is an endomorphism

J : E → E

of an exact Courant algebroid E ∼= T which is orthogonal with respect to the natural

inner product and such that J 2 = −1.

A generalized almost complex structure becomes a generalized complex structure (is

integrable) when its +i-eigenbundle L ⊂ E ⊗ C is involutive, i.e. closed under the

Courant bracket. This +i-eigenbundle has a special structure due to the nature of the

inner product and the Courant bracket on it called a Dirac structure.

Definition 1.2.2. A complex Dirac structure L ⊂ E ⊗ C of an exact Courant al-

gebroid is a maximal isotropic subbundle that is closed under the Courant bracket, or

integrable. This Dirac structure arises as the +i-eigenbundle of a generalized complex

structure J .

In fact, under certain conditions, a Dirac structure (a closed maximal isotropic sub-

bundle of TC) can determine a generalized complex structure on a manifold.

Proposition 1.2.1. A generalized complex structure is equivalent to a complex Dirac

structure L ⊂ E ⊗ C such that L ∩ L̄ = {0}.

The above proposition gives us two ways to define a generalized complex structure;

by the endomorphism J and by the Dirac structure L. A third alternative to defining it

comes from the notion of spinors, which we discuss in Chapter 2.

Remark. One of the known obstructions to having a generalized complex structure

on a manifold is that the manifold must be even dimensional. To see this, take a point

p ∈ M and consider x ∈ E through p such that 〈x, x〉 = 0. Then 〈J x,J x〉 = 0, so the

pair {x,J x} span an isotropic subspace S of Ep. If we continue to take x′ ∈ S⊥ and

11



add the pairs {x′,J x′} to the set S until S = S⊥, we end up with a maximal isotropic

subspace S of even dimension. So the dimension of M is even.

1.2.2. Type. There is an integer-valued function on the manifold M that can be used

to distinguish various maximal isotropic subbundles L ⊂ E ⊗ C. When L is a Dirac

structure for a generalized complex structure, this function can be defined in the following

two ways.

Definition 1.2.3.

(1) The type of a maximal isotropic Lp is the codimension of its projection onto

TpM . There are two connected components in the space of maximal isotropics

of TM , determined by whether the type is even or odd.

(2) The type of a generalized complex structure J is the function

type(J ) : M → Z

given by

type(J )(p) =
1

2
dimRT

∗
pM ∩ J (T ∗pM).

Possible values of this function could be anything ranging from 0 to n, where n

is half of the real dimension of M .

Note that these two definitions of type align. Further, although type must be of fixed

parity throughout the manifold, it can jump by an even number from point to point.

Remark. The B-field transform discussed earlier introduces an interesting fact re-

lated to this function: a maximal isotropic that is transformed by a B-field to another

does not change type. The B-field acts on a generalized complex structure as

exp(B) · J =

 1 0

B 1

J
 1 0

−B 1

 .

Since we know by Section 1.1.2 that B-fields leave the Courant bracket invariant, this

useful fact helps determine integrability of a generalized complex structure.

12



1.2.3. Examples. The following are the two most basic examples of generalized com-

plex structures. As we shall see later, these examples are useful in constructing more

complicated structures.

Example 1.2.4. (Complex type) Suppose J is an almost complex structure on M .

Consider the endomorphism of T

JJ =

 −J 0

0 J∗

 .

Note that J 2
J = −1 and the +i-eigenbundle is the subset

LJ = T 0,1 ⊕ T 1,0∗ .

This subbundle is involutive if J is integrable. Further, the type of JJ (called complex

type) is constant throughout the manifold,

type(JJ) ≡ n =
1

2
dimR(M).

In fact, any generalized complex structure of type n is the B-field transform of a complex

type structure. We distinguish these two by calling JJ a generalized complex structure

of complex type and the B-field transform of it type n.

Example 1.2.5. (Symplectic type) Suppose ω is an almost symplectic structure on

M and consider the endomorphism of T

Jω =

 0 −ω−1

ω 0

 .

Notice again that J 2
ω = −1 and we can calculate the +i-eigenbundle as

Lω = {X − iω(X) | X ∈ T ⊗ C},
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which is integrable if and only if dω = 0, i.e. ω is symplectic. The type of Jω (called

symplectic type) is again constant,

type(Jω) ≡ 0.

As before, any generalized complex structure of type 0 is the B-field transform of a

structure of symplectic type.

In each of these examples, notice that we use that the original structure is complex

(respectively symplectic), in order to prove that the generalized complex structure is

integrable.

We conclude this section with a theorem by Gualtieri in his thesis that describes the

composition of a generalized complex structure J . As we will see in Proposition 2.2.1,

at any given point, a generalized complex structure of type k is equivalent to the direct

sum of a complex structure of complex dimension k and a symplectic structure of real

dimension 2n − 2k. Gualtieri’s Generalized Darboux Theorem proves a stronger result.

A regular point is defined as a point p ∈ M where the type of the generalized complex

structure is constant in a neighborhood of p.

Theorem 1.2.6. (Generalized Darboux Theorem, Gualtieri [25]) Any regular point

of type k in a generalized complex manifold has a neighborhood which is equivalent to

the product of an open set in Ck with an open set in the standard symplectic space

(R2n−2k, ω0).

In other words, a generalized complex manifold in neighborhood of a regular point

can be seen as a holomorphic foliation with symplectic leaves. In [2], Bailey proves even

more about the local structure of a generalized complex manifold. We note first that as

explained by Gualtieri, deformations of generalized complex structures of complex type

are determined by complex deformations, B-field and β-transforms. These β-transforms

are called Poisson deformations.
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Theorem 1.2.7. (Bailey, [2]) Suppose M is a generalized complex manifold that

is of complex type along some locus P ⊂ M . Then for any point p ∈ P , there exists a

neighborhood of p such that the generalized complex structure J is equivalent to a Poisson

deformation of a complex structure.

Note that the Poisson tensor β that defines the deformation in the theorem above

vanishes along the complex locus.

1.2.4. Interpolating between Symplectic and Complex Types. Let M be a mani-

fold of real dimension 4n with complex structure I and holomorphic symplectic structure

σ = ωJ + iωK , such that σ is a nondegenerate closed (2, 0)-form (e.g. a hyperkähler

manifold or K3 surface, see Chapter 2). Recall that we can build generalized complex

structures JI , a complex type 2n structure, or JωJ , a symplectic type 0 structure. This

example will illustrate a family of generalized complex structures that interpolate between

this complex type and symplectic type.

Note that ωJI = I∗ωJ , which means

JωJJI = −JIJωJ .

Then the generalized complex structures of complex type and symplectic type anticom-

mute, and we can form the one-parameter family of generalized almost complex structures

Jt = (cos t)JI + (sin t)JωJ , t ∈
[
0, π

2

]
.

This is a generalized almost complex structure that is integrable for every t ∈ [0, π
2
]. We

can show this by computing that for t ∈ (0, π
2
], Jt is a B-field transform of the symplectic

structure determined by ω = (csc t)ωJ , where B = −(cot t)ωK . Note that Jπ
2

= JωJ and

J0 = JI . Hence, this is a family interpolating between a complex structure and a

symplectic structure.
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Note. For k = 1, as in the case of K3 surfaces, the structures here jump between

complex type (type 2) and symplectic type (type 0). A K3 surface may have a generalized

complex structure of type 1, but it cannot be written in this form.

This example will be important in Chapter 3 to help us determine an S2× S2-family

of generalized complex structures on a K3 surface M . However, first we need to explain

the geometry of K3 surfaces and hyperkähler manifolds.
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CHAPTER 2

Hyperkähler geometry and K3 surfaces

A Kähler manifold is a complex Riemannian manifold with symplectic data; namely,

a non-degenerate d-closed 2-form compatible with the complex structure. Hyperkähler

manifolds are a quaternionic extension of this in the sense that they contain a triple

of complex structures satisfying certain quaternionic relations and corresponding Kähler

forms. Some of the first examples were found by physicists studying supersymmetric

sigma models, and later described geometrically using Penrose’s twistor space for hy-

perkähler manifolds in four dimensions, such as K3 surfaces. In [27], Hitchin, Karlhede,

Lindström, and Roček (HKLR) give a general account of the twistor space construction

for hyperkähler manifolds in higher dimensions, and describe how some of these examples

can be realized in this setting.

In this chapter, we define hyperkähler manifolds and describe their twistor theory as in

[27], and introduce the setting for extending this to generalized complex geometry. In the

first section, we provide basic definitions and develop the twistor space on a hyperkähler

manifold. The second section details the theory needed for defining generalized complex

structures on a K3 surface. We describe a third way to describe a generalized complex

structure, through the notion of a pure spinor, a mixed form whose annihilator is the

Dirac structure L. We then develop the theory of generalized Kähler geometry, and from

this, define generalized K3 structures, thus laying the groundwork for generalized twistor

theory in Chapter 3.



2.1. Twistor theory for K3 surfaces and hyperkähler manifolds

This section details the fundamentals of classical twistor theory for K3 surfaces, and

more generally, hyperkähler manifolds. We begin with some basic definitions and exam-

ples of each of these geometric objects.

2.1.1. Definitions.

Definition 2.1.1. A Kähler manifold is a complex manifold with complex structure

I and compatible Riemannian metric g such that

ω(X, Y ) := g(IX, Y )

is d-closed, i.e. dω = 0.

There are many known examples of Kähler manifolds, in particular Cn with the

standard Euclidean metric, CP n with the Fubini-study metric, and complex tori T n with

the induced metric from Cn.

Definition 2.1.2. A K3 surface M is a compact connected complex surface with

H1(M,OM) = 0

and trivial canonical bundle, i.e.

Ω2
M = KM = OM .

Well-known examples of K3 surfaces include the double cover of CP 2 branched along

a sextic curve and Kummer surfaces [3].

Definition 2.1.3. A hyperkähler manifold (M, g) is a Riemannian manifold of (real)

dimension 4n with three complex structures I, J,K and quaternionic relations

I2 = J2 = K2 = −Id and IJ = −JI = K.
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Further, these complex structures are Kähler with respect to the metric g, so that there

exist closed 2-forms ωI , ωJ , and ωK that are Kähler for I, J , and K, respectively.

Note. The definition above implies that a hyperkähler manifold is a complex mani-

fold with a holomorphic symplectic form. In the notation given above, if we choose I as

the complex structure for M , this holomorphic symplectic form is given by

σ = ωJ + iωK .

It is not easy to find examples of hyperkähler manifolds. Some of the most common

examples arise as moduli spaces of vector bundles on K3 and abelian surfaces (e.g. the

Hilbert scheme of n-points on a K3 surface). Further, due to the Calabi Yau Theorem

[45] and a result of Bochner [8], K3 surfaces have a hyperkähler structure. In fact, K3

surfaces are the only non-flat compact examples of hyperkähler manifolds in dimension 4.

They are some of the most interesting examples, and for this reason, we will prove much

of the theory of generalized twistor spaces for K3 surfaces before extending it to higher

dimensions. However, first we must develop classical twistor theory for hyperkähler

manifolds.

2.1.2. Twistor theory. In this section, we follow [27] to define the twistor space of a

hyperkähler manifold. Let M be a hyperkähler manifold of real dimension 4n and metric

g. Then, as outlined above, M has complex structures I, J , and K and corresponding

Kähler structures ωI , ωJ , and ωK . For any (a, b, c) ∈ S2, λ = aI + bJ + cK is a complex

structure on M , as

(aI + bJ + cK)2 = −1.

Further, for each complex structure λ defined by a point (a, b, c) ∈ S2, there exists a

corresponding holomorphic symplectic form ωλ. This gives a family of complex structures

on M , parametrized by S2. We consider this S2 as CP 1 by patching together two copies

of the complex plane and call them U, Ũ . Let ζ, ζ̃ be coordinates for U, Ũ , respectively
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related by ζ̃ = ζ−1 on U ∩ Ũ ∼= C \ {0}. Then the coordinate ζ is defined by the map

(a, b, c) =

(
1− ζζ̄
1 + ζζ̄

,
ζ + ζ̄

1 + ζζ̄
,
−i(ζ − ζ̄)

1 + ζζ̄

)
and similarly for ζ̃.

Definition 2.1.4. The twistor space Z of M is the smooth product M × CP 1 with

almost complex structure defined on the tangent space TpZ = TmM ⊕ TζCP 1 for p =

(m, ζ) ∈ Z as

I =

(
1− ζζ̄
1 + ζζ̄

I +
ζ + ζ̄

1 + ζζ̄
J − i(ζ − ζ̄)

1 + ζζ̄
K, Iζ

)
,

where Iζ is the standard complex structure on CP 1.

In [27], HKLR show that this structure I is an integrable complex structure on Z.

The map π : Z → CP 1 gives a holomorphic fiber bundle with holomorphic sections such

that the normal bundle is isomorphic to C2n⊗O(1). These sections {m}×CP 1 are called

twistor lines. Further, on each fiber π−1(ζ), there exists a holomorphic symplectic form

ωζ given by

(2.1) ωζ = (ωJ + iωK) + 2ζωI − ζ2(ωJ − iωK).

Note that this form is holomorphic and quadratic in ζ. Hence, it is a holomorphic section

of the vector bundle ∧2T ∗F (2), where TF (2) is the tangent bundle along the fibers, twisted

by O(2). Let τ : Z → Z be the real structure on Z induced by the antipodal map on the

unit sphere, a map that sends Iζ to −Iζ . All of the holomorphic data defined above are

compatible with τ . The following theorem shows that given a complex manifold X with

the same holomorphic information, we can reconstruct a hyperkähler manifold M such

that X is the twistor space for M .

Theorem 2.1.5. (HKLR, [27]) Let X be a complex manifold of dimension 2n + 1

such that:

(1) X is a holomorphic fiber bundle π : X → CP 1 over the projective line.
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(2) the bundle admits a family of holomorphic sections each with normal bundle

isomorphic to C2n ⊗O(1).

(3) there exists a holomorphic section ω of ∧2T ∗F (2) defining a symplectic form on

each fiber.

(4) X has a real structure τ compatible with the above three conditions and inducing

the antipodal map on CP 1.

Then the parameter space of real sections is a real 4n-dimensional manifold with a natural

hyperkähler metric for which X is the twistor space.

We refer the reader to [27] for the proof of this theorem.

2.2. Generalized complex geometry on K3 surfaces

Since K3 surfaces have such rich complex and symplectic data, it is a natural next

step to examine the generalized geometry of these objects. In order to do this, however,

we must present an alternate way of defining generalized complex structures, by pure

spinors. A spinor is a mixed form such that the space T acts on it in a natural way. In

fact, we will see that a correct choice of spinor can determine a Dirac structure. In this

section, we cite results from Chevalley [18] and follow Gualtieri’s discussion [25] on how

they relate to generalized complex geometry.

2.2.1. Spinors of generalized complex structures. The inner product on T gives

rise to a bundle of Clifford algebras CL(T) defined on the smooth sections of T by

(X + ξ)2 = 〈X + ξ,X + ξ〉 for X + ξ ∈ C∞(T).

Each smooth section of this bundle, C, has a natural spin representation on C∞(∧•T ∗CM)

such that

(X + ξ) · φ = iXφ+ ξ ∧ φ.

The elements φ for this spin representation C∞(∧•T ∗CM) are called spinors.
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Definition 2.2.1. At each point φ ∈ C∞(∧•T ∗CM), a nonzero spinor, its nullspace at

a point p ∈M is defined by

Lφp = {v ∈ TpM ⊗ C | v · φp = 0}.

A spinor φp is called pure when Lφp is maximally isotropic in TpM ⊗ C.

By results outlined by Chevalley [18], given a vector space V every maximal isotropic

subspace L ⊂ (V ⊕V ∗)⊗C can be represented by a unique line KL ⊂ ∧•V ∗C of pure spinors

such that L annihilates KL. A generator for such a spinor line KL, is a pure spinor, φ.

Thus, given a Dirac structure Lp at any given point p ∈M , we can pick a representative

pure spinor φp that defines it. In fact, we can define any generalized complex structure

on a manifold by a pure spinor φ. This mixed form may change throughout the manifold

as the generalized complex structure changes type. However, based on Theorem 1.2.6,

we note that in a neighborhood of constant type, we can write a pure spinor for a

generalized complex structure as the product of a spinor for a complex type structure

(along the holomorphic leaf space) and a spinor for a symplectic-type structure (on the

leaves of the foliation). The following two propositions help to determine integrability of

a generalized almost complex structure defined by a pure spinor.

Proposition 2.2.1. (Gualtieri, [25]) At a given point p ∈ M , with Dirac structure

L ⊂ E ⊗ C for a generalized complex structure, the pure spinor line through p, Kp, can

be expressed by a single generator, defined by

φp = exp(B + iω)θ1 ∧ θ2 ∧ . . . ∧ θk

where B and ω are the real and imaginary components of a complex 2-form in ∧2T ∗⊗C

and (θ1, . . . , θk) form a basis for L ∩ (T ∗ ⊗ C).

In fact, in a neighborhood of p ∈M , where M is a generalized complex manifold, there

always exists a spinor that we can write as above. However, the rank of L∩ (T ∗⊗C) may
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increase or decrease throughout the neighborhood, as the generalized complex structure

changes type.

Proposition 2.2.2. (Gualtieri, [25]) Locally, a generalized almost complex structure

given by a pure spinor φ is integrable if and only if there exists a local section

X + ξ ∈ C∞(TC) such that

dφ = (X + ξ) · φ.

Example 2.2.3. The generalized complex structure coming from a symplectic struc-

ture ω as in Example 1.2.5 has spinor φ = eiω. On the other hand, for a generalized

complex structure induced by complex structure J as in Example 1.2.4, φ = Ω, where

Ω is a holomorphic n-form. In the example given in Section 1.2.4, the spinor for the

generalized complex structure Jt for θ 6= 0 is

φ = exp(−(cot t)ωK + i(csc t)ωJ)

where as for J0, it is φ = ωJ + iωK , the holomorphic symplectic form for to the complex

structure I.

For each of these spinors, dφ = 0, however this is not always the case, as we will see

in Chapter 4. A d-closed global spinor φ for a generalized complex structure is defined

as a generalized Calabi-Yau structure [28].

Note that the value of the type function at a point p of a generalized complex struc-

ture can be found in the spinor representing the structure, as the number k in Proposition

2.2.1. In the example above, a symplectic-type generalized complex structure has type 0

everywhere, as there is no holomorphic component. Conversely, a complex-type general-

ized complex structure has no symplectic component, and k = n, as noted earlier.

2.2.2. The Twistor Space as a generalized complex manifold. In this section,

we describe the twistor space Z for a hyperkähler M as a generalized complex manifold.

We will use the notion of spinors defined in the previous section.
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As in Section 2.1.2, let Z be the smooth product M × CP 1 with almost complex

structure defined on the tangent space TpZ = TmM ⊕ TζCP 1 for p = (m, ζ) ∈ Z as

I =

(
1− ζζ̄
1 + ζζ̄

I +
ζ + ζ̄

1 + ζζ̄
J +

i(ζ − ζ̄)

1 + ζζ̄
K, Iζ

)
,

where Iζ is the standard complex structure on CP 1. From [27], we know that for every

ζ ∈ CP 1, there exists a holomorphic symplectic form

ωζ = (ωJ + iωK) + 2ζωI − ζ2(ωJ − iωK)

on M compatible with the above complex structure on TmM .

Now consider the twistor space Z with generalized almost complex structure JI. In

the following proposition, we define a spinor for this generalized almost complex structure

and prove that the structure is integrable. We use the holomorphic symplectic form to

define this spinor.

Proposition 2.2.4. Let M be a hyperkähler manifold of dimension 4n with twistor

space Z. Then a spinor for the generalized almost complex structure JI is

φ = ((1− ζ2)ωJ + 2ζωI + i(1 + ζ2)ωK)n ∧ dζ

and further, this structure is integrable.

Proof. It is easy to see that φ is a spinor for the generalized almost complex structure

JI, since a spinor for a generalized complex structure of complex type is simply the

holomorphic (2n + 1, 0) form for the underlying complex structure. In order to prove

integrability, we use Proposition 2.2.2. Note that

dφ = nωn−1
ζ ∧ dζ ∧ (−2ζωJ + 2ωI + 2iζωK) ∧ dζ = 0,

since dωI = dωJ = dωK = 0. Hence, the spinor φ defines an integrable generalized

complex structure. 2
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This construction will be useful in generalizing the twistor space in Chapter 3. First

we must explain a little more background material.

2.2.3. Generalized Kähler structures. As Gualtieri explains in [23], we can gener-

alize Kähler manifolds within the context of generalized complex geometry.

Definition 2.2.5. A generalized almost Kähler structure on M2n is a pair of com-

muting generalized almost complex structures J1,J2 such that

G = −J1J2

defines a positive definite metric on TM . The pair J1,J2 determines an (integrable)

generalized Kähler structure if J1 and J2 are integrable as generalized complex structures.

Example 2.2.6. Given a usual Kähler structure (I, ω), the pair of generalized com-

plex structures JI ,Jω determine a generalized Kähler structure on M such that the

metric is defined by

G = −JIJω =

 0 g−1

g 0

 ,

where g is the compatible Riemannian metric on M .

Recall that the bundle TM has structure group O(2n, 2n). Further, we can reduce

to its maximal compact subgroup O(2n)×O(2n), which is equivalent to choosing a 2n-

dimensional subbundle C+ that is positive definite with respect to the inner product. Let

C− be the negative definite orthogonal complement to C+. Note that TM ∼= C+ ⊕ C−,

and this defines a positive definite metric

G = 〈, 〉|C+ − 〈, 〉|C−

on TM . If this metric commutes with a generalized complex structure, GJ = JG, then

(J ,GJ ) is a generalized Kähler structure on M .

This determines what is called a bi-Hermitian structure on M . Suppose (J1,J2,G)

is a generalized Kähler structure on M . Then C+, C− are stable under J1,J2. Further,
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considering the map π : TM → TM , there exist isomorphisms

π : C±
∼−→ TM.

Using these isomorphisms, we can project J1 from C± to TM to induce two almost

complex structures J+, J− on TM . Further, we get a Riemannian metric g and a two

form b on M such that C± is the graph of the map

b± g : TM → T ∗M.

Definition 2.2.7. An almost bi-Hermitian structure on a manifold M is a pair of

almost complex structures J± with a compatible Riemannian metric g and a 2-form b.

An almost bi-Hermitian structure becomes a bi-Hermitian structure if J± are integrable.

Thus, any generalized almost Kähler structure automatically determines an almost

bi-Hermitian structure on M . These bi-Hermitian structures were originally studied in

[21] because they describe certain supersymmetries in physics. On the other hand, given

an almost bi-Hermitian structure (J±, g, b), as in [23], we can reconstruct the generalized

almost Kähler structure J1,J2. Let ω± = gJ±. Then we have

(2.2) J1 =
1

2

 1 0

b 1

 −(J+ + J−) −(ω−1
+ − ω−1

− )

ω+ − ω− J∗+ + J∗−

 1 0

−b 1



(2.3) J2 =
1

2

 1 0

b 1

 −(J+ − J−) −(ω−1
+ + ω−1

− )

ω+ + ω− J∗+ − J∗−

 1 0

−b 1


and the metric G is given by

G =

 1 0

b 1

 0 g−1

g 0

 1 0

−b 1

 .
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In order to discuss conditions for integrability of a generalized almost Kähler structure

using the bi-Hermitian structure, note first that J1 and J2 decompose (TM) ⊗ C into

their ±i-eigenbundles

(TM)⊗ C = L1 ⊕ L1 = L2 ⊕ L2.

Further, since J1 and J2 commute, we can decompose L1 into the ±i-eigenbundles of J2,

so that L1 = L+
1 ⊕ L−1 . Then we get the decomposition

(TM)⊗ C = L+
1 ⊕ L−1 ⊕ L+

1 ⊕ L−1 .

Since π : C±
∼−→ TM , L+

1 is the +i-eigenbundle for J+ and L−1 is the +i-eigenbundle

for J−. Then integrability of the generalized Kähler structure seems to be linked to

integrability of the complex structures J±. In fact, given an almost bi-Hermitian structure

(J±, g, b) on a manifold M2n, we can construct a generalized almost Kähler structure that

is integrable if certain conditions hold.

Proposition 2.2.2. (Gualtieri, [23]) Let (J±, g, b) be an almost bi-Hermitian struc-

ture on a 2n-dimensional manifold M . Let J1,J2 be a generalized almost Kähler struc-

ture defined on M as in (2.2) and (2.3). Then J1,J2 are integrable if and only if J± are

integrable complex structures and

db(X, Y, Z) = dω+(J+X, J+Y, J+Z) = −dω−(J−X, J−Y, J−Z).

Sometimes a generalized almost Kähler structure J1,J2 defined by (J±, g, b) is not

integrable under these conditions, but one of the generalized almost complex structures

is. The following theorem describes conditions on the almost bi-Hermitian structure so

that J1 is integrable.

Proposition 2.2.3. (Chen and Nie, [17]) Given the generalized almost complex

structure J1 defined by an almost bi-Hermitian structure (J+, J−, g, b) as above, J1 is

integrable if and only if the following hold:
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−idb(X+ +X−, Y+ + Y−, Z+) = dω+(X+ +X−, Y+ + Y−, Z+)

−(ω+ + ω−)(X−, [Y+ + Y−, Z+])

+(ω+ + ω−)(Y−, [X+ +X−, Z+])− Z+ω+(X−, Y−)

−idb(X+ +X−, Y+ + Y−, Z−) = dω−(X+ +X−, Y+ + Y−, Z−)

−(ω− + ω+)(X+, [Y+ + Y−, Z−])

+(ω− + ω+)(Y+, [X+ +X−, Z−])− Z−ω−(X+, Y+)

where X±, Y±, Z± ∈ L±1 .

2.2.4. Generalized K3 Structures. In what follows, we discuss the generalized com-

plex geometry of K3 surfaces. This will allow us to define the generalized twistor space

for a K3 surface in Chapter 3. This topic was introduced in [31], as a specialization of

Hitchin’s discussion on generalized Calabi Yau geometry [28].

On a K3 surface M , consider only closed even pure spinors, i.e. even forms

φ ∈ C∞(∧•T ∗C) consisting of a zero-form φ0, a 2-form φ2, and a 4-form φ4. Let φ, ψ

be two such spinors. As Hitchin remarks in [28], we can pair φ, ψ using the Mukai (or

Chevalley) pairing of forms, which we simplify for even spinors as

〈〈φ, ψ〉〉 := −φ0 ∧ ψ4 + φ2 ∧ ψ2 − φ4 ∧ ψ0.

Let φ be an even closed form such that

〈〈φ, φ〉〉 = 0, 〈〈φ, φ〉〉.

Note that this is precisely the condition for φ to define a generalized Calabi-Yau structure

on M (see [28]). We denote by Pφ ⊂ C∞(∧•T ∗M) the real two-dimensional vector space

spanned by the real and imaginary components of φ. This plane, along with a natural

pointwise orientation, uniquely determines the spinor line Kp for φ at each point p ∈M .
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Definition 2.2.8. A generalized K3 structure is a pair of pure spinors φ, ψ such that

(2.4) 〈〈φ, φ〉〉 = 〈〈ψ, ψ〉〉 = 0,

(2.5) 〈〈φ, φ〉〉 = 〈〈ψ, ψ〉〉 > 0,

and such that Pφ and Pφ′ are pointwise orthogonal.

Note that this last condition implies that

〈〈φ, ψ〉〉 = 0.

Further, these spinors determine a pair of generalized complex structures J ,J ′ that are

generalized Kähler on M .

Example 2.2.9. When M is a K3 surface, we can use the hyperkähler structure to

write out explicit spinors for a generalized K3 structure on M . Let σ = ωJ + iωK be a

holomorphic symplectic 2-form on M and let φ = σ. Then by a few simple calculations,

we find that ψ = eiωI . Note that φ is a form of complex type, while ψ is a form of

symplectic type. In general, we can find pairs of spinors on generalized K3 surfaces

that are both symplectic type, or one is complex and the other is symplectic. In the

following chapter, we will expand this example to a family of generalized K3 structures

over S2 × S2.
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CHAPTER 3

Generalized twistor theory for K3 surfaces

In the original twistor theory for K3 surfaces and more generally hyperkähler man-

ifolds, holomorphic data encoded in the twistor space revealed information about the

geometric structure of the underlying manifold. In the following chapter, we develop this

twistor theory in the context of generalized complex structures in the hope that this will

reveal more about this new subject. We construct a generalized twistor space of a K3

surface M by looking at a CP 1 × CP 1-family of generalized complex structures on M

coming from the original structure on the K3, and further generalize it to all hyperkähler

manifolds of dimension 4n. In [31], Huybrechts introduces the idea of a family of K3

surfaces parametrized by CP 1 × CP 1, but he does not construct the generalized twistor

space. The subject was also discussed for hyperkähler manifolds in [9], however here

we provide a more thorough explanation of the construction. We note that the spinor

derived in [9] is different from ours; we claim that ours is the correct spinor for the gen-

eralized complex structure given. In particular, Bredthauer’s spinor is not correct since

it does not agree with the spinor for the classical twistor space described in Chapter 2.

The first section of this chapter presents the initial construction. We illustrate three

different ways of defining a family of generalized complex structures on a K3 surface M ,

and then prove that the families are equivalent. In the next section, we use this infor-

mation to build the generalized twistor space, which we prove is a generalized complex

manifold. The generalized twistor space has analogous properties to that of the classical

twistor space as given in Theorem 2.1.5, however we must first define the appropriate

generalizations to describe these properties. We provide these in Section 3.3. Finally, in

Section 3.4, we prove our second main theorem about the generalized twistor space of



a K3 surface and its properties. The last section of the chapter extends this construc-

tion to all hyperkähler manifolds of dimension 4n. This is a natural extension to higher

dimensions, since our construction depends only on the hyperkähler structure of a K3

surface.

3.1. Preliminaries

In order to construct the generalized twistor space, we first build a family of general-

ized complex structures on M . We present this construction in three ways. The first is by

looking at a family of generalized K3 structures as a quadric in CP 3, which determines

the parameter space of this family. The second is by examining a bi-Hermitian structure

on M determined by I, J,K and the metric g. This will help us to define our generalized

complex structure on the generalized twistor space. The third will be a spinor derivation

starting with the 1-parameter family (cos θ)JI + (sin θ)JωJ and transforming it first by

ωJ 7→ cosφωJ + sinφωK and then by the usual twistor family I 7→ aI + bJ + cK. We

will use the first approach to obtain the other two, and conclude the section by proving

that the latter two constructions are equivalent.

3.1.1. The parameter space of a family of generalized K3 Surfaces. Let (φ, φ′)

define a generalized K3 structure on M . Recall that Pφ denotes the real vector space

spanned by the real and imaginary parts of φ, and that φ generates a line Kφ of spinors

defining the underlying generalized complex structure associated to it. Take the pointwise

oriented positive four-space Π(φ,φ′) ⊂ C∞(∧ev(T ∗M)) spanned by Pφ and Pφ′ .

Definition 3.1.1. We call the set of all generalized K3 structures (φ, φ′) with fixed

Π,

TΠ = T(φ,φ′)

the twistor quadric.
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Remarks.

(1) Note that Pφ determines a line of spinors spanned by φ. Therefore, we can think

of ΠC as a vector space V ⊗ C such that the elements of V ⊗ C are pure spinor

lines [φ] = K.

(2) The equations defining a generalized K3 structure (2.4), (2.5) show that TΠ is a

quadric in CP 3 = P3(ΠC):

TΠ = QΠ = {[v] ∈ Π | 〈〈[v], [v]〉〉 = 0, 〈〈[v], [v]〉〉 > 0}.

Further, for any vector space V , there is a natural isomorphism between the

Grassmanian of oriented planes Gro2(V ) ∼= SO(n)/SO(2) × SO(n − 2) and the

quadric QV ⊂ P(V ⊗ C) defined by

QV = {v | v · v = 0, v · v̄ > 0}.

Therefore, TΠ is naturally isomorphic to Gro2(Π) ∼= S2 × S2 ∼= CP 1 × CP 1.

Suppose we consider the generalized K3 structure on M defined by

(φ, φ′) = (σ, exp(iωI)) as in Example 2.2.9, where σ = ωJ + iωK . Then, as explained in

[31], the twistor quadric is determined by

Π = 〈ω = ωI , ωJ , ωK , 1−
ω2

2
〉.

Further, as we will see more explicitly in the next section, the classical twistor family

{aI + bJ + cK | (a, b, c, ) ∈ S2} ∼= CP 1 sits inside TΠ as a hyperplane section, and is

not one of the components of the product CP 1 × CP 1.

Although we have determined the parameter space of the twistor family of generalized

K3 structures on M , we have not explicitly defined the structures themselves. The

following two sections will attempt to demonstrate this.

3.1.2. Bi-Hermitian structure of M . As a K3 surface, M has a bi-Hermitian struc-

ture, i.e. a metric g and two Hermitian complex structures I±. As described in Section
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2.2.3, a generalized almost Kähler structure can be reconstructed from bi-Hermitian data.

We use these facts to define two generalized almost complex structures J ,J ′ which, up

to scaling by a complex factor, will determine a generalized K3 structure.

Let (a1, a2, a3), (b1, b2, b3) ∈ S2 and let (I+, I−, b = 0, g) define a bi-Hermitian struc-

ture on M , with

(3.1) I+ = a1I + a2J + a3K, I− = b1I + b2J + b3K.

Then as in Section 2.2.3, equations (2.2) and (2.3), we can define

(3.2) ω+ := gI+ = a1ωI + a2ωJ + a3ωK , ω− := gI− = b1ωI + b2ωJ + b3ωK

and write

J =
1

2

 −(I+ + I−) −(ω−1
+ − ω−1

− )

ω+ − ω− I∗+ + I∗−



J ′ = 1

2

 −(I+ − I−) −(ω−1
+ + ω−1

− )

ω+ + ω− I∗+ − I∗−

 ,

an S2×S2-family of generalized almost Kähler structures on M . Using similar techniques

as in Section 2.1.2, we consider S2 × S2 ∼= CP 1 × CP 1 by stereographic projection and

rewrite J ,J ′ in terms of (α, β) ∈ CP 1 × CP 1 with

(a1, a2, a3) =

(
1− αᾱ
1 + αᾱ

,
α + ᾱ

1 + αᾱ
,−i α− ᾱ

1 + αᾱ

)
,

(b1, b2, b3) =

(
1− ββ̄
1 + ββ̄

,
β + β̄

1 + ββ̄
,−i β − β̄

1 + ββ̄

)
.

Proposition 3.1.1. The pair of generalized almost complex structures on M given

by J ,J ′ are integrable for any point (α, β) ∈ CP 1 × CP 1. Further, up to multiplication

by a complex factor, J ,J ′ define a generalized K3 structure on M for every point

(α, β) ∈ CP 1 × CP 1.
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Remark. When α = β along the diagonal ∆ = S2 ∼= CP 1 ⊂ CP 1 × CP 1,

type(J )(p) = 2, type(J ′)(p) = 0 ∀ p ∈M.

Then J defines a generalized complex structure of complex type throughout M while J ′

defines one of symplectic type. The complex structure underlying J for every α = β gives

rise to the usual family of complex structures on M over the diagonal ∆ = CP 1 sitting as

the hyperplane section inside CP 1 × CP 1. Conversely, along the ‘superdiagonal’, where

α = −β̄−1, J is of symplectic type and J ′ is of complex type. Outside of these two

diagonals, we will see that J and J ′ are B-field transforms of structures of symplectic

type, both of type 0.

Before proving Proposition 3.1.1, we must first define the pure spinors for these gen-

eralized almost complex structures. This leads us into our third construction of the

generalized twistor family.

3.1.3. Construction by Pure Spinors. In order to derive the family of generalized

K3 structures using spinors, we recall the generalized complex family from the interpo-

lation example in Section 1.2.4. For θ ∈ [0, π
2
], let Jθ denote the 1-parameter family of

generalized complex structures

Jθ = cos θJI + sin θJωJ .

Introducing another parameter, ϕ ∈ [0, 2π] and extending θ to [0, π], there exists a family

of generalized almost complex structures written in spherical coordinates over S2:

Jθ,ϕ = cos θJI + sin θ cosϕJωJ + sin θ sinϕJωK .

Lemma 3.1.2. For θ 6= 0, Jθ,ϕ is a B-field transform of a generalized complex struc-

ture of symplectic type determined by ω = csc θ(cos(ϕ)ωJ + sin(ϕ)ωK), where B =
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− cot θ(cos(ϕ)ωK−sin(ϕ)ωJ). Thus, Jθ,ϕ is integrable and corresponds to the pure spinor

Φθ,ϕ =


eB+iω θ 6= 0

ωJ + iωK θ = 0.

Proof. It follows from a basic calculation that for θ 6= 0,

eBJθ,ϕe−B =

 0 −(csc θ(cos(ϕ)ωJ + sin(ϕ)ωK))−1

csc θ(cos(ϕ)ωJ + sin(ϕ)ωK) 0

 .
Then since the pure spinor for Jω is exp (i csc θ(cos(ϕ)ωJ + sin(ϕ)ωK)), we get the

spinor Φθ,ϕ by B-field transform. Further, Jθ,ϕ is integrable since dB = 0 = dω.

For θ = 0, we have

J0,ϕ = JI

so the spinor Φ is the holomorphic symplectic 2-form ωJ + iωK . 2

To change from (θ, ϕ) ∈ S2 to ξ ∈ CP 1 we use stereographic projection:

(cos θ, sin θ cosϕ, sin θ sinϕ) =

(
1− |ξ|2

1 + |ξ|2
,
ξ + ξ̄

1 + |ξ|2
,−i ξ − ξ̄

1 + |ξ|2

)
.

Then cos θ = 1−|ξ|2
1+|ξ|2 and sin θ = 2|ξ|

1+|ξ|2 , which means the generalized complex structure is

given by

(3.3) Jξ =
1− |ξ|2

1 + |ξ|2
JI − i

ξ − ξ̄
1 + |ξ|2

JωJ +
ξ + ξ̄

1 + |ξ|2
JωK ,

and the pure spinor is

Φξ = exp
(

1−|ξ|2
2|ξ|2 (−Re(ξ)ωK + Im(ξ)ωJ) + i(1+|ξ|2)

2|ξ|2 (Re(ξ)ωJ + Im(ξ)ωK)
)

= exp
(

1
2|ξ|2 (−Re(ξ) + iIm(ξ))(ωK − iωJ) + 1

2
(Re(ξ) + iIm(ξ))(ωK + iωJ)

)
= exp

(
1

2|ξ|2 (−ξ̄)(−iσ) + 1
2
ξiσ̄
)

= exp
(
i

2ξ
σ + i

2
ξσ̄
)

= 1 +
(
i

2ξ
σ + i

2
ξσ̄
)
− 1

4
σσ̄,
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where σ = ωJ + iωK . Multiplying through by −2iξ, we get

Φξ = −2iξ + σ + ξ2σ̄ + iξω2
I .

Note that when ξ = 0, Φξ = σ corresponds to the generalized complex structure JI ,

and when ξ = ∞, Φξ = σ̄ corresponds to generalized complex structure J−I . Further,

when ξ = exp(iφ), i.e. when θ = π
2
, we have spinor Φξ = exp (i(cosϕωJ + sinϕωK)) and

generalized complex structure of symplectic type JcosϕωJ+sinϕωK .

Thus, given I = I0 and a choice of holomorphic 2-form σ, we get a generalized complex

structure defined by equation (3.3) depending on ξ with spinor

Φξ = (−2iξ) exp

(
i

2

(
σ

ξ
+ ξσ̄

))
.

Note that the parameter ξ gives a direction pointing away from the diagonal in

CP 1 × CP 1. Let η be a second parameter denoting the direction along the diagonal, as

shown in the diagram below. Then Φξ defines a generalized complex structure along the

locus η = 0.

α

β

�
�
�
�
�
�
�
�
�
�
�

@
@
@I

@
@
@

�
���

@
@
@

@
@
@I

ηξ

I
-

6

?

�

−I

CP 1 × CP 1

Moving away from this locus, let

Iη =
1− ηη
1 + ηη

I +
2Re(η)

1 + ηη
J +

2Im(η)

1 + ηη̄
K,
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η ∈ CP 1. We know from [27] that there exists a holomorphic symplectic form ση corre-

sponding to Iη given by:

(3.4) ση =
σ + 2ηωI − η2σ̄

1 + |η|2

Then a pure spinor for the generalized complex structure is

Φη,ξ = −2iξ exp

(
i

2

(
ση
ξ

+ ξσ̄η

))
.

In order to rewrite this in coordinates (α, β) ∈ CP 1×CP 1, we find a linear fractional

transformation such that

0 7→ η, ∞ 7→ −η̄−1.

Since the isometries of CP 1 ∼= S2 are given by SU(2)/± I2×2
∼= SO(3), we want

X =

 a b

c d

 ∈ PGL(2,C) = SU(2,C)/± I2×2

such that  a b

c d

 0

1

 =

 b

d

 ∼
 η

1


 a b

c d

 1

0

 =

 a

c

 ∼
 1

−η̄


This will determine a map that sends

ξ 7→ α, −ξ 7→ β,

up to rotation by eiϑ for some angle ϑ. In order to ensure that ϑ = 0, i.e. that this

transformation does not rotate the coordinates, we check that it gives the correct trans-

formation at the level of complex structures. In other words, we check that the matrix

Y ∈ SO(3) such that Y is the image of X under the map SU(2)/± I2×2 → SO(3) sends

I = I0 → Iη and σ → ση.
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Recall that the map SU(2)
∼−→ SO(3) can be given by, for U ∈ SU(2)

U(x, y) =

 x y

−ȳ x̄

 7→


Re(x2 − y2) Im(x2 + y2) −2Re(xȳ)

−Im(x2 − y2) Re(x2 + y2) 2Im(xȳ)

2Re(xȳ) 2Im(xȳ) |x|2 − |y|2

 .

Let x = 1√
1+|η|2

and y = η√
1+η2

. Then after shifting rows and columns, we have the

following image Y ∈ SO(3):

Y =
1

1 + |η|2


1− |η|2 2Re(η) −2Im(η)

−2Re(η) Re(1− η2) Im(1 + η2)

2Im(η) −Im(1− η2) Re(1 + η2)

 .

We consider this transformation on vectors associated to complex structures, i.e.

aI + bJ + cK ;


a

b

c

 .
Note that this transformation takes

I =


1

0

0

 7−→ Iη =


1−ηη
1+ηη

2Re(η)
1+ηη

2Im(η)
1+ηη̄


and further, on the level of 2-forms, we have

ωI

ωJ

ωK

 =


ωI

Re(σ)

Im(σ)

 7−→


ωη

Re(ση)

Im(ση)

 ,
where ση is given by equation (3.4), and ωη is the Kähler form associated to Iη. Thus,

we have the correct map.
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Therefore, the matrix transformation is given by

X =
1√

1 + |η|2

 1 η

−η̄ 1

 .

Considering the images of

 ξ

1

 and

 −ξ
1

, we have

X

 ξ

1

 =
1√

1 + |η|2

 ξ + η

1− ξη̄

 ∼
 ξ + η

1− ξη̄



X

 −ξ
1

 =
1√

1 + |η|2

 −ξ + η

1 + ξη̄

 ∼
 −ξ + η

1 + ξη̄


as elements of CP 1. Hence,

α =
ξ + η

1− ξη̄

β =
−ξ + η

1 + ξη̄
.

Writing Φ in terms of our new coordinates α and β gives us, up to multiplication by

a complex constant,

Φ = Φα,β = σ + (α− β)(−i+
i

2
ω2
I ) + (α + β)ωI − αβσ̄.

There is another spinor Φ′, defined in the proposition below, such that the pair

Φ,Φ′ are pure spinors for the generalized complex structures J ,J ′ determined by the

bi-Hermitian structure as in Section 3.1.2.

Lemma 3.1.3. The two families of generalized almost complex structures given by

J ,J ′ and Φ,Φ′ are equivalent. In other words, there are pure spinors for J ,J ′ that are,

respectively,

(3.5) Φ = σ + (α− β)

(
−i+ i

ω

2

2
)

+ (α + β)ωI − αβσ̄
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(3.6) Φ′ = β̄

(
σ + (α + β̄−1)

(
−i+ i

ω

2

2
)

+ (α− β̄−1)ωI + αβ̄−1σ̄

)
,

where σ = ωJ + iωK and (α, β) ∈ CP 1 × CP 1.

Proof. We first note that for α 6= β, we can write Φ as Φ = CeB+iω, where C is a

complex scalar and

ω =
|α|2 − |β|2

|α|2 + |β|2 − 2Re(αβ̄)
ωI +

Re(α)(1 + |β|2)− Re(β)(1 + |α|2)

|α|2 + |β|2 − 2Re(αβ̄)
ωJ(3.7)

+
Im(α)(|β|2 + 1)− Im(β)(|α|2 + 1)

|α|2 + |β|2 − 2Re(αβ̄)
ωK(3.8)

B =
2Im(αβ̄)

|α|2 + |β|2 − 2Re(αβ̄)
ωI +

Im(α)(1− |β|2)− Im(β)(1− |α|2)

|α|2 + |β|2 − 2Re(αβ̄)
ωJ

+
Re(α)(|β|2 − 1)− Re(β)(|α|2 − 1)

|α|2 + |β|2 − 2Re(αβ̄)
ωK

The rest of the proof is purely computational; we refer the reader to Appendix A for

the details. There, we prove that for α 6= β, the generalized complex structure for J is

the B-field transform of a generalized complex structure of symplectic type Jω, where B

and ω are as above.

If α = β, as noted earlier, J is of complex type coming from the almost complex

structure

λ =
1− αᾱ
1 + αᾱ

I +
α + ᾱ

1 + αᾱ
J +
−i(α− ᾱ)

1 + αᾱ
K.

The spinor can be given by the holomorphic symplectic form associated to λ

ωλ = σ + 2αωI − α2σ̄,

which is equal to Φ|α=β. Hence Φ is a pure spinor defining J .

In order to see that Φ′ is a pure spinor for J ′, we use the bi-Hermitian structure. Note

that in order to get from J to J ′, we simply map the second almost complex structure

to its complex conjugate: I− 7→ −I−. This induces the antipodal map on the second

coordinate of (α, β) ∈ CP 1 × CP 1, thereby mapping Φ 7→ Φ′. The multiplication by β̄
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simply ensures that we have a generalized K3 structure according to the Mukai pairing

as we will see in the next proof.

2

Using these spinors, we now prove Proposition 3.1.1.

Proof. (Proposition 3.1.1) From Lemma 3.1.3, since dω = dB = 0, J is a B-field

transform of an integrable generalized complex structure. Therefore, outside of the locus

where α = β, J is integrable. If α = β, as noted before, J = Jλ, which is integrable

since λ is. A similar argument shows that J ′ is integrable, however in this case J ′ is of

complex type along the superdiagonal α = −β̄−1.

As defined, Φ and Φ′ are pure even closed spinors defining J ,J ′ respectively, and we

can check that

〈〈Φ,Φ〉〉 = 〈〈Φ′,Φ′〉〉 = 〈〈Φ,Φ′〉〉 = 0,

〈〈Φ,Φ〉〉 = 〈〈Φ′,Φ′〉〉 > 0.

Hence, J ,J ′ define a generalized K3 structure on M .

2

Remark. There is a second proof for the integrability of J ,J ′ using the bi-Hermitian

structure. Note that J ,J ′ is a generalized almost Kähler structure satisfying the con-

ditions in Proposition 2.2.2, since dω+ = dω− = 0. Hence, J and J ′ determine an

integrable generalized Kähler structure on M .

3.2. The generalized twistor space of a K3 surface

Having defined a family of generalized complex structures on a K3 surface M , we can

now form the generalized twistor space of M . The construction of this space mirrors that

of the classical case for hyperkähler manifolds in Section 2.1.2.

Let X be the smooth product manifold M × CP 1 × CP 1 with generalized almost

complex structure defined at each p = (m,α, β) ∈ X by

K = (J ,JIα ,JIβ) : Tp(M × CP 1 × CP 1)→ Tp(M × CP 1 × CP 1),
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where JIα and JIβ are the generalized complex structures arising from the natural com-

plex structures Iα and Iβ on CP 1. Here, α and β simply indicate the distinction between

each CP 1. We will show that this structure is integrable, and call the resulting generalized

complex manifold X the generalized twistor space of M .

Remark. We can recover the usual twistor space Z sitting as a submanifold inside

X defined by the locus where K is purely of complex type. As explained in Section 3.1.2,

this corresponds to the points where α = β.

Theorem 3.2.1. X is a generalized complex manifold; in other words, the generalized

almost complex structure on T(X ) defined by

K = (J ,JIα ,JIβ)

is integrable.

We can write the spinor for this generalized complex structure on X as follows. Let

ρ = dα ∧ dβ be the spinor for (JIα ,JIβ) on T(CP 1 × CP 1). Let Ψ = Φ ∧ ρ. It is clear

that this spinor corresponds to the generalized complex structure K above.

Proof. Recall that a generalized almost complex structure defined by a pure spinor

φ is integrable if and only if dφ = (X + ξ) · φ for X + ξ ∈ C∞(T). In fact, we have that

dΨ = 0. Note that dρ = d(dα ∧ dβ) = 0. Further, we have:

dΨ = dΦ ∧ ρ+ (−1)|Φ|Φ ∧ dρ

= (d(σ) + d(α− β)(i+ i
ω2

2
)− (α− β)

i

2
d(ω2)

+d(α + β)ωI − (α + β)dωI − d(αβ)σ̄ − αβdσ̄) ∧ ρ

But dωI = dωJ = dωK = 0, so we have

dΨ = (d(α− β)(i+ i
ω2

2
) + d(α + β)ωI − d(αβ)σ̄) ∧ dα ∧ dβ = 0
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Hence, K is integrable.

2

Remarks.

(1) Note that X is not generalized Kähler. Suppose we let K′ = (J ′,JIα ,−JIβ).

Then the product G = −KK′ is not positive definite on TX , so K and K′ do not

define a generalized Kähler structure on X . Additionally, there does not seem

to be a more suitable generalized complex structure on CP 1×CP 1 that induces

a generalized Kähler structure on X .

(2) There is a second proof that K is integrable using results from [17]. In fact,

using Proposition 2.2.3, we can show that K is an integrable generalized complex

structure induced by the bi-Hermitian structure

((I±, Iα, Iβ), (ω±, ωα, ωβ), g, b = 0),

where (I±, ω±) is the bi-Hermitian structure on M defined in Section 3.1.2 and

Iα, ωα, Iβ, ωβ come from the natural Kähler structure on CP 1 × CP 1.

3.3. Generalized complex reduction and submanifolds

In order to more thoroughly describe the properties of the generalized twistor space,

we digress into a discussion on reduction and submanifolds of generalized complex objects.

Throughout this section, M will denote an even-dimensional manifold.

3.3.1. Reduction of generalized complex structures. The reduction of geometric

structures has been studied extensively for many areas of geometry, including symplectic,

Kähler, and hyperkähler geometry. In each of these settings, the reduction procedure

provides a way to produce new geometric structures from others. Consider, for example,

a symplectic manifold (M,ω). Let G be a Lie group acting on M and preserving the

non-degenerate 2-form ω. The Lie algebra g then acts on sections of TM and there exists

an equivariant moment map µ : M → g∗ determined by this action that provides the
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medium for reduction. The reduced manifold µ−1(0)/G, called the Marsden-Weinstein-

Meyer quotient, is in fact a symplectic manifold ([34]).

We might ask if we can use this reduction technique on generalized complex manifolds

of symplectic type, or more generally, of any type. Extending this algorithm to general-

ized complex geometry, however, requires some additional set-up. In order to reduce a

generalized complex structure, we must first discuss how to extend the Lie group action

to sections of the Courant algebroid E ∼= TM .

The theory of reduction of generalized complex structures was developed indepen-

dently by Gualtieri, Cavalcanti, and Bursztyn [10] and Stiénon and Xu [43]. In this

dissertation, we follow the procedure from [10].

Definition 3.3.1. Let G be a Lie group acting on a manifold with Lie algebra g.

A Courant algebra over g is a vector space a with a bilinear bracket [·, ·] : a × a → a

and a bracket-preserving homomorphism π : a → g satisfying the Leibniz condition. A

Courant algebra is exact if π is surjective and h = ker(π) is abelian.

Note that for g = C∞(TM), the Courant algebroid C∞(TM) is an example of a

Courant algebra.

Definition 3.3.2. Let G be a connected Lie group acting on a manifold M with

action ψ : g → C∞(TM). An extended action on E ∼= TM is an exact Courant algebra

a over g with a Courant algebra morphism ρ : a→ C∞(TM) such that:

(1) h acts trivially on C∞(TM), which means it acts by closed 1-forms.

(2) The induced action of g = a/h on C∞(TM) integrates to a G-action on TM .

Gualtieri, Cavalcanti, and Bursztyn (BCG) also give conditions for when g integrates

to a G-action on the Courant algebroid; for details, we refer the reader to [10].

Remark. In this dissertation, we will primarily use trivially extended G-actions, i.e.

extensions such that a = g and π = id. In this case we have the commutative diagram

given below.
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g g

C∞(E) C∞(TM)

.......................................................................................................................................... ............
id

.....................................................................................................................................
.....
.......
.....

ρ

.....................................................................................................................................
.....
.......
.....

γ

.................................................................... ............

An extended action of a connected Lie group G on E ∼= TM gives E the structure

of an equivariant G-bundle such that the bracket is preserved by the action. Further, it

determines two G-invariant distributions in E: K = ρ(a) and its orthogonal, K⊥. From

these distributions, we define the large distribution ∆b := π(K + K⊥) ⊂ TM and the

small distribution ∆s := π(K⊥) = Ann(ρ(h)) ⊂ TM . The following theorem describes

conditions on E to reduce down to an exact Courant algebroid Ered.

Theorem 3.3.3. (BCG, [10]) Let E ∼= TM be an exact Courant algebroid over M

and ρ : a→ C∞(E) be an extended G-action. Let P ∈M be a leaf of ∆b on which G acts

freely and properly, and over which ρ(h) has constant rank. Then the Courant bracket on

E descends to

Ered =
K⊥

K ∩K⊥|P

/
G

and makes it into a Courant algebroid over Mred = P/G with surjective anchor. Further,

Ered is exact if and only if π(K) ∩ π(K⊥) = π(K ∩K⊥) along P .

Example 3.3.4. ([10]) Let G act freely and properly on M with infinitesimal action

γ : g → C∞(TM) and consider the trivially extended action such that a = g. Then

K = γ(g), K⊥ = TM ⊕ Ann(K) and

∆s = ∆b = TM.

So the reduced Courant algebroid is

Ered = TM/K ⊕ Ann(K) = T(M/G).
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Proposition 3.3.1. (BCG, [10]) Let ι : S ↪→ M be a submanifold of a manifold

equipped with an exact Courant algebroid E. Then the vector bundle

ES :=
Ann(TS)⊥

Ann(TS)
=

π−1(TS)

Ann(TS)

inherits the structure of an exact Courant algebroid over S.

Consider a generalized complex structure J on a manifold M . In order to see how

this reduction of Courant algebroids extends to generalized complex structures, we first

see how the Dirac structure L for J reduces. Suppose we are in the context of Theorem

3.3.3 such that Ered is exact and suppose further that the action ρ preserves the structure

J on E. Let K̃ := K ∩ (K⊥ + T ∗M), which is isotropic along P . Then we can reduce

the Dirac structure

Lred =
(L ∩ K̃C + K̃C)|P

K̃C|P

/
G.

Proposition 3.3.2. (BCG, [10]) Lred determines a generalized complex structure

Jred on Ered if and only if

Lred ∩ Lred = {0}

which happens if and only if

J K̃ ∩ K̃⊥ ⊂ K̃

over a leaf P ↪→M of the distribution ∆b.

If (M,ω) is a symplectic manifold such that Jω is a generalized complex structure of

symplectic type on M and the extended action comes from a symplectic G-action, this

procedure is equivalent to that of symplectic reduction. On the other hand, if (M, I) is a

complex manifold and G is a complex Lie group acting holomorphically on M , generalized

reduction of JI is simply a holomorphic quotient. However, as we will see in Theorem

3.4.1, the reduced generalized complex structure Jred will not necessarily have the same

type as J . For example, a generalized complex structure of complex type may reduce

down to a generalized complex structure of symplectic type.

46



3.3.2. Generalized complex submanifolds. As we have already seen in Proposition

3.3.1, there is some interplay between generalized reduction and submanifolds. However,

until now we have not formulated a definition for generalized complex submanifolds.

In this section, we will attempt to do this. Since generalized complex structures are

objects that arise from both symplectic and complex structures, there are many different

notions of what a generalized complex submanifold should be (see, for example, [5], [14],

[25]). We only discuss a few of these here - those that materialize from properties of the

generalized twistor space.

Definition 3.3.5. Let S be a submanifold of a generalized complex manifold (M,J ).

Let N∗S = Ann(TS) ⊂ T ∗M be the conormal bundle of S, where the annihilator is

determined by the natural inner product on TM ⊕ T ∗M . Then S is called a generalized

complex submanifold if

J (N∗S) ⊂ N∗S.

Remarks.

(1) Indeed, using reduction arguments from Section 3.3.1, we can see that S has

a generalized complex structure induced by the generalized complex structure

on M . Specifically, if E is the Courant algebroid for M , N∗S is a subbundle

of E|S. Then Ered := (N∗S)⊥/N∗S defines a Courant algebroid on S, and

therefore inherits a generalized complex structure, Jred. In the case where M is

a complex manifold, S is a complex submanifold, and when M is symplectic, S

is a symplectic submanifold.

(2) This is a different definition than Gualtieri gives in [25]. We call that subman-

ifold a generalized Lagrangian submanifold, as it corresponds to a Lagrangian

submanifold when J is of symplectic type.

Note that the twistor space Z sitting inside the generalized twistor space X is a

generalized complex submanifold, since

J (N∗Z) ⊂ N∗Z.
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Definition 3.3.6. Suppose X = M1 ×M2 is the smooth product of manifolds with

a generalized complex structure J that pointwise decomposes into a block matrix

J = JM1 ⊕JM2 . Then J (TMi) ⊂ TMi and for mj ∈Mj, j 6= i, the subspace {mj}×Mi

inherits a generalized complex structure. We call the submanifold Mi ↪→ X a generalized

complex factor submanifold.

Below, we define a generalized tangent and normal bundles for a generalized factor

submanifold. Notice that this is a different definition than in [23].

Definition 3.3.7. Let S ↪→ M be a generalized complex factor submanifold of a

generalized complex manifold (M,J ). The generalized tangent bundle TS is defined as

the bundle

TS := TS ⊕ T ∗S

and the generalized normal bundle NS is defined as

NS := NS ⊕N∗S

3.4. Properties of the generalized twistor space

After having laid the groundwork for various objects in generalized complex geometry,

we can now prove our main theorem on generalized twistor theory for K3 surfaces.

Theorem 3.4.1. Let X be the generalized twistor space of a K3 surface M . Then:

(1) X is a smooth fiber bundle

π : X → CP 1 × CP 1

and a reduction of generalized complex manifolds.

(2) The bundle admits a family of sections that are generalized complex factor sub-

manifolds, each with generalized normal bundle isomorphic to

C2 ⊗ (O(1, 0)⊕O(0, 1)).
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(3) There is a pure spinor representing the generalized complex structure on X given

by

Ψ =

(
σ + (α− β)

(
−i+

i

2
ω2

)
+ (α + β)ωI − αβσ̄

)
∧ dα ∧ dβ

that defines a structure of complex type along the diagonal, and of type 2 every-

where else, where σ = ωJ + iωK.

(4) X has a real structure τ compatible with the above and inducing an antipodal

map on CP 1 × CP 1.

Proof. (1) For every point (α, β) ∈ CP 1×CP 1, the fiber {(α, β)}×M sits inside X

as a generalized complex submanifold. This fiber varies holomorphically in α and β, which

we can see easily in the pure spinor determining the generalized complex structure. To

see that this is a reduction of generalized complex structures, we use a trivially extended

G-action with g = C∞(TM).

Then we have the commutative diagram:

C∞(TM) C∞(TM)

C∞(TX ) C∞(TX )

..................................................... ............
id

.............................................................................................................................
.....
.......
.....

........
................

ρ

.............................................................................................................................
.....
.......
.....

........
................

γ

............................................................ ............

where TX ∼= TM ⊕ T(CP 1 × CP 1). Hence K = γ(g) = TM and

K⊥ = TM ⊕ T (CP 1 × CP 1)⊕ Ann(TM) = TM ⊕ T (CP 1 × CP 1)⊕ T ∗(CP 1 × CP 1).

The G-invariant distributions are then given by

∆s = ∆b = π(K⊥) = π(K ⊕K⊥) = TM ⊕ T (CP 1 × CP 1).

For a leaf P ⊂M of the distribution, we have the reduced Courant algebroid
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Ered =
K⊥|P

K ∩K⊥|P

/
G

=
TM + T (CP 1 × CP 1) + T ∗(CP 1 × CP 1)

TM

/
G

= T (CP 1 × CP 1) + Ann(TM)

= T(CP 1 × CP 1).

Then the Courant algebroid E ∼= TX reduces to the Courant algebroid on CP 1 × CP 1.

Further, the Dirac structure L associated to K on X reduces to

Lred =
(L ∩ (TCM + TC(CP 1 × CP 1) + T ∗C(CP 1 × CP 1)) + TCM)|P

TCM |P

/
G

= T 0,1(CP 1 × CP 1)⊕ T 1,0∗(CP 1 × CP 1),

which is the Dirac structure associated to the generalized complex structure

Jred = (JIα ,JIβ) on CP 1 ×CP 1. Clearly, Lred ∩ Lred = {0}. Hence we get a generalized

complex reduction

X → CP 1 × CP 1.

(2) The sections of the fiber bundle X → CP 1×CP 1 are given by {m}×CP 1×CP 1. As

before, we call these sections generalized twistor quadrics. Since the generalized complex

structure K on X decomposes as a block diagonal matrix acting separately on M and

CP 1 × CP 1, we get by definition that the sections of the fiber bundle are generalized

complex factor submanifolds of X .

To determine the normal bundle of these sections, note that on a smooth level, the

manifold is M × S2 × S2, so the generalized normal bundle of these sections is smoothly

isomorphic to C2 × S2 × S2. However, because the generalized complex structure J is

dependent on a point (α, β) ∈ CP 1 × CP 1, the bundle is twisted over the generalized

complex manifold X . We follow [27] by looking at the +i-eigenbundle of the generalized

complex structure on M .
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Recall from Section 2.2.3 that given a generalized almost Kähler pair J , J ′ as in

(2.2) and (2.3), we can decompose

(TM)⊗ C = L+
1 ⊕ L−1 ⊕ L+

1 ⊕ L−1

where L+
1 is the +i-eigenbundle of J+ and L−1 is the +i-eigenbundle for J−. Then by

using the generalized complex structure J for M in Section 3.1 we get

J+ = a1I + a2J + a3K, J− = b1I + b2J + b3K

which means that L+
1 = T 0,1

+ M , L−1 = T 0,1
− M .

Consider X as the fiber product Z ×M Z, where Z is the classical twistor space for

M . We claim that this is the same space as defined in Section 3.2. Then J induces an

almost complex structure I+ on one copy of Z and another almost complex structure I−

on the other copy of Z coming from the underlying bi-Hermitian structure on M . Let

p1 : X = Z ×M Z → Z1, p2 : X = Z ×M Z → Z2

be projections down to the first and second copies of Z, respectively.

Z ×M Z

Z1 Z2

CP 1 CP 1

M

.............................................................................................................................
....
............

p1

................................................................................................................................. ........
....

p2

...................................................................................
.....
.......
.....

π2

...................................................................................
.....
.......
.....

π1

..................................................................................................... ........
....

.................................................................................................
....
............

From [27], we know that the normal bundle of each section of Z1
π1−→ CP 1 is C2 ⊗O(1),

and similarly for Z2
π2−→ CP 1. Pulling back these bundles up to X , we get that the

generalized normal bundle of a twistor quadric is isomorphic to

C2 ⊗ (O(1, 0)⊕O(0, 1)),

which we write as [O(1, 0)⊕O(0, 1)]2.
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Note that along the diagonal α = β, we get that the generalized normal bundle is

[O(1 + 0)⊕O(0 + 1)]2 = [O(1)⊕O(1)]2,

which agrees with the classical twistor theory setting, as the generalized normal bundle

is the direct sum of the normal bundle and its dual.

(3 ) Proved above.

(4) Consider the antipodal map on S2 × S2:

τ : M × S2 × S2 →M × S2 × S2

τ(m,α, β) = (m,− 1

ᾱ
,− 1

β̄
)

This map defines a real structure on X , as we can easily see that τ maps the generalized

complex structure to its conjugate since

K 7−→ −K

and up to scalar multiplication,

Φ 7−→ ᾱβ̄σ + (ᾱ− β̄)(−i+
iω2

2
)− (β̄ + ᾱ)ωI − σ̄ = −Φ̄.

Clearly, all of the generalized holomorphic data defined above is compatible with this

real stucture.

2

Along with the properties detailed in the previous theorem, X is an interesting exam-

ple of a generalized complex manifold because it is not purely of complex or symplectic

type. Further, it is an example of a generalized complex structure that does not seem to

be obtained by previously used techniques, including blow-ups [15] or Poisson deforma-

tions [25]. Recall from Theorem 1.2.7 that in a small enough neighborhood of a complex

locus, a generalized complex structure is the Poisson deformation of a complex structure.

Hence, locally around the complex locus π−1(∆) ⊂ X , there is some complex structure
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I that can be deformed by a Poisson bivector β to K (where β vanishes along π−1(∆)).

This does not seem to be the case globally.

3.5. Extension to higher dimensions

In this section, we extend our results on K3 surfaces to hyperkähler manifolds. This

is a natural next step, considering we used the underlying hyperkähler structure on a

K3 surface to determine the family of generalized complex structures. Note that in this

section, we do not refer to the generalized hyperkähler structure that M admits. This is

simply because a generalized hyperkähler structure is unnecessarily complicated for our

situation; by definition, a generalized hyperkähler structure is six generalized complex

structures Ji, i = 1 . . . 6 and a generalized metric G with certain bi-quaternionic relations.

3.5.1. Construction and Properties. Given a 4n-dimensional hyperkähler manifold

M , define a family of generalized almost complex structures over S2 × S2 ∼= CP 1 ×CP 1

J =
1

2

 −(I+ + I−) −(ω−1
+ − ω−1

− )

ω+ − ω− I∗+ + I∗−


J ′ =

1

2

 −(I+ − I−) −(ω−1
+ + ω−1

− )

ω+ + ω− I∗+ − I∗−

 ,

where I±, ω± are defined by (3.1), (3.2) for (a1, a2, a3), (b1, b2, b3) ∈ S2. However, we are

now in dimension 4n, so the spinor (3.5) must be modified slightly to fit this situation.

Similar to Section 3.1.3, we derive the spinor for J in terms of coordinates ξ, η as

Φη,ξ = (−2iξ)n exp

(
i

2

(
ση
ξ

+ ξσ̄η

))
.

Further, the coordinate transformation from η, ξ to α, β will be the same. Then, up to

multiplication by complex constant, we define the spinors as below.
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Proposition 3.5.1. Let M4n be a hyperkähler manifold with generalized almost

Kähler structures J , J ′. Then the pure spinors for J and J ′, respectively, are

(3.9) Φ = (−i(α− β))n exp

(
i

2

(
i(α + β)

α− β
ωI +

i

α− β
σ − iαβ

α− β
σ̄

))
and

(3.10) Φ′ = (−iβ(α + β̄−1))n exp

(
i

2

(
i(α− β̄−1)

α + β̄−1
ωI +

i

α + β̄−1
σ +

iαβ̄−1

α + β̄−1
σ̄

))
,

where σ = ωJ + iωK. Further, J , J ′ define an integrable generalized Kähler structure on

M .

It is not immediately clear that Φ extends to the locus where α = β (or Φ′ for

α = −β̄−1). If we write Φ = Φα,β after expanding the exponential

Φα,β =
2n∑
j=0

1

j!
in−j(α− β)n−j(σ + (α + β)ωI − αβσ̄)j,

it seems that the terms for j > n contain poles along the diagonal α = β. However, this

is not the case, and before proving Proposition 3.5.1, we will prove the following lemma.

Lemma 3.5.1. Φ is smoothly defined for all α, β. In particular, if j 6= n then the jth

term in Φ = Φα,β is divisible by (α− β). Therefore, when α = β we have

Φα,α =
1

n!
(σ + 2αωI − α2σ̄)n.

Proof. The statement is trivial for j < n, so assume j > n and write j = n+k with

0 < k ≤ n. Denote σ + (α + β)ωI − αβσ̄ by σα,β and σ + 2αωI − α2σ̄ by σα. Then

σα,β = σα + (α− β)τα,

where

τα = −ωI + ασ̄ = −1

2

(
∂

∂α
(σα)

)
.
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Now σα is a holomorphic two-form with respect to some complex structure, and therefore

σn+1
α = 0 by degree reasons. Differentiation with respect to α yields σnατα = 0. Therefore,

up to a constant, the (n+ k)th term of Φα,β is

(α− β)−kσn+k
α,β = (α− β)−k(σα + (α− β)τα)n+k

= (α− β)−k
n+k∑
l=k+1

(
n+ k

l

)
σn+k−l
α (α− β)lτ lα

=
n+k∑
l=k+1

(
n+ k

l

)
σn+k−l
α (α− β)l−kτ lα,

which is clearly divisible by (α− β). 2

Similarly, Φ′ extends along the locus α = −β̄−1.

Proof. (Proposition 3.5.1) The proof that Φ,Φ′ are the spinors for J ,J ′, respec-

tively, is essentially the same as the proof of Proposition 3.1.1. In particular, for α 6= β,

J can be written as a B-field transform of a generalized complex structure of symplectic

type Jω, where

ω =
|α|2 − |β|2

|α|2 + |β|2 − 2Re(αβ̄)
ωI +

Re(α)(1 + |β|2)− Re(β)(1 + |α|2)

|α|2 + |β|2 − 2Re(αβ̄)
ωJ

+
Im(α)(|β|2 + 1)− Im(β)(|α|2 + 1)

|α|2 + |β|2 − 2Re(αβ̄)
ωK

B =
2Im(αβ̄)

|α|2 + |β|2 − 2Re(αβ̄)
ωI +

Im(α)(1− |β|2)− Im(β)(1− |α|2)

|α|2 + |β|2 − 2Re(αβ̄)
ωJ

+
Re(α)(|β|2 − 1)− Re(β)(|α|2 − 1)

|α|2 + |β|2 − 2Re(αβ̄)
ωK .

The spinor for this generalized complex structure can be expressed by (3.9). If α = β, the

generalized complex structure J is of complex type with underlying complex structure

Jα =
1− αᾱ
1 + αᾱ

I +
α + ᾱ

1 + αᾱ
J − i(α− ᾱ)

1 + αᾱ
K.
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On the other hand, by the lemma above for α = β,

Φ = Φα,α =
1

n!
(σ + 2αωI − α2σ̄)n

is a holomorphic (2n, 0)-form for the complex structure Jα. Thus, Φα,α is a pure spinor

for the generalized complex structure JJα .

In order to show integrability, we note that for α 6= β, J is clearly integrable as a B-

field transform of a symplectic structure (similarly for J ′ if α 6= −β̄−1). Along the locus

α = β, J is of complex type as in the K3 case, which is integrable since the underlying

complex structure is.

All of the above results follow similarly for J ′ and Φ′.

2

The generalized twistor space X of M is the smooth product M × CP 1 × CP 1 with

generalized almost complex structure defined on TpX = TmM ⊕ T(α,β)(CP 1 × CP 1) as

K = (J ,JIα ,JIβ),

where Iα, Iβ denote the natural complex structures on each copy of CP 1.

Theorem 3.5.2. The generalized twistor space for a 4n-dimensional hyperkähler man-

ifold is a generalized complex manifold; in other words, K is integrable.

Proof. As in the K3 case, let Ψ = Φ ∧ dα ∧ dβ ∈ ∧•T ∗X be a pure spinor defining

K. Then

dΨ = dΦ ∧ dα ∧ dβ

=

(
2n∑
j=0

1

j!
in−j(dα− dβ)n−j(σ + (α + β)ωI − αβσ̄)j

)
∧ dα ∧ dβ

−

(
2n∑
j=0

1

j!
in−j(α− β)n−jd(σ + (α + β)ωI − αβσ̄)j

)
∧ dα ∧ dβ
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Then using the fact that dωI = dωJ = dωK = 0, we have

dΨ = 0.

Hence Ψ defines an integrable generalized complex structure by Proposition 2.2.2. 2

Note that again, X is not generalized Kähler for the same reasons as in the K3 case.

The next theorem states properties of the generalized twistor space of a hyperkähler

manifold. We skip this proof, as the proof in dimension 4 extends easily to dimension

4n.

Theorem 3.5.3. Let X be the generalized twistor space of a hyperkähler manifold M .

Then:

(1) X is a smooth fiber bundle

π : X → CP 1 × CP 1

and a reduction of generalized complex manifolds.

(2) The bundle admits a family of sections that are generalized complex factor sub-

manifolds, each with generalized normal bundle isomorphic to

C2n ⊗ (O(1, 0)⊕O(0, 1)).

(3) There is a pure spinor representing the generalized complex structure on X given

by

Ψ = (−i(α− β))n exp

(
i

2

(
i(α + β)

α− β
ωI +

i

α− β
σ − iαβ

α− β
σ̄

))
∧ (dα ∧ dβ),

where σ is the holomorphic symplectic 2-form on M , and Ψ defines a structure

of complex type along the diagonal, and of type 2 everywhere else.

(4) X has a real structure τ compatible with the above and inducing an antipodal

map on CP 1 × CP 1.
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CHAPTER 4

Quaternionic Kähler geometry

Quaternionic Kähler, or QK, manifolds are 4n-dimensional manifolds with holonomy

contained in Sp(n) · Sp(1). They have a natural quaternionic structure, as hyperkähler

manifolds do, but in general are not complex manifolds. In fact, QK manifolds are

generically not Kähler manifolds at all, despite their name. The twistor space of a QK

manifold, however, is a complex manifold. In this chapter, we discuss the basics of

quaternionic Kähler geometry. We describe the construction of the twistor space as well

as its natural contact geometry. The last section will serve as a transition for examining

the generalized twistor space of a QK manifold. We define the generalized complex

structure on the twistor space of a QK manifold arising from the natural almost complex

structure, and give a new proof of integrability of the almost complex structure using a

pure spinor argument.

4.1. Definitions

This section will serve to define QK manifolds and their properties. We will follow

[7] and [40] and refer the reader to these for a more thorough treatment of this subject.

Define a group of transformations on R4n ∼= Hn as

Sp(n) · Sp(1) = {v 7−→ Avq∗, A ∈ Sp(n), q ∈ Sp(1)}.

This is a subgroup of SO(4n) such that

Sp(n) · Sp(1) ∼= Sp(n)× Sp(1)/{±I}.



Definition 4.1.1. A quaternionic Kähler manifold (QK manifold) M is an ori-

ented 4n-dimensional Riemannian manifold such that the holonomy group is contained

in Sp(n) · Sp(1).

Remarks.

(1) Definition 4.1.1 only holds for manifolds such that n ≥ 2. In the case where

n = 1, this would merely imply that M is an oriented Riemannian manifold, as

Sp(1) · Sp(1) = SO(4). Thus, in dimension 4, we add the additional restriction

that M must be self-dual and Einstein.

(2) Note that a hyperkähler manifold has holonomy Sp(n). Thus, hyperkähler man-

ifolds are a specific type of QK manifolds; they are those which have zero scalar

curvature. Because we have already described twistor theory for hyperkähler

manifolds, for the rest of this chapter we will assume that the scalar curvature

is nonzero.

Consider a covering of M by open sets Ui. Then for each p ∈ Ui, we have three almost

complex structures I, J,K on TpM with quaternionic relations

I2 = J2 = K2 = −1, IJ = −JI = K, etc.

and corresponding almost Kähler forms

(4.1) ωI = g(I·, ·), ωJ = g(J ·, ·), ωK = g(K·, ·),

where g is the metric on M . However, unlike on a hyperkähler manifold, I, J, and K

are not necessarily globally defined. Further, they are not integrable and dωi 6= 0 for

i = 1, 2, 3. Instead, we can relate them by using a connection on M .

Let ∇ be a torsion-free (e.g. Levi-Civita) connection on a QK manifold M4n. Then

for local almost complex structures I, J , and K,
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∇I = −θ3J +θ2K

∇J = θ3I −θ1K

∇K = −θ2I +θ1J

where θ1, θ2, θ3 are called the connection 1-forms on M . Using this formula, we can

develop similar relations between dωi, ωi, and θi. Further, there is a 4-form on M given

by

Ω = ωI ∧ ωI + ωJ ∧ ωJ + ωK ∧ ωK .

Note that although ωI , ωJ , ωK are not d-closed, dΩ = 0. In fact, Ω is globally defined

and Ωn is a non-vanishing volume form.

Example 4.1.2. Consider the manifold

HP n ∼= (Hn+1 − {0})/H∗,

where H∗ acts on Hn+1 on the right. This is a quaternionic Kähler manifold (for expla-

nation, see [7]). Note that HP 1 ∼= S4 admits no global almost complex structure and in

fact, this is true for all n. Thus, although locally we have almost complex structures I, J,

and K, these do not extend to all of HP n.

In fact, no QK manifold with positive scalar curvature admits a global compatible

almost complex structure [40]. Symmetric QK manifolds with positive scalar curvature

were classified by J.A. Wolf as the so-called Wolf spaces [44].

The following proposition is an important fact to note about QK manifolds. Recall

that we have already defined a 4-dimensional QK manifold to be Einstein.

Proposition 4.1.3. ([6], [40]) A quaternionic Kähler manifold (M4n, g) is Einstein

for n ≥ 2.
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4.2. The twistor space of a QK manifold

Let M be a quaternionic Kähler manifold. To construct the twistor space, we follow

[7].

4.2.1. Construction. Let E be the 3-dimensional vector subbundle of End(TM) gen-

erated by I, J,K on each local chart Ui. Take the S2-subbundle of E given by

Z = {aI + bJ + cK | a2 + b2 + c2 = 1}.

Z is called the twistor space of M . Let π denote projection down onto M

π : Z →M

such that a point z ∈ Z determines an almost complex structure Iz = aI + bJ + cK on

Tπ(z)M .

The following theorem was proven using representation theory by Salamon in [40],

however we will follow Bérard-Bergery’s proof in [7].

Theorem 4.2.1. ([7], [40]) The twistor space Z is a complex manifold of real dimen-

sion 4n+ 2.

We define the complex structure on Z as follows. Choose a torsion-free Sp(n) ·

Sp(1)-connection ∇ on M (e.g. the Levi-Civita connection). This connection determines

a splitting of the tangent bundle TZ = H ⊕ V such that V = ker(π) is the vertical

distribution, tangent to the fibers of Z for each m ∈ M , and H is the supplementary

horizontal distribution. For z ∈ Z, the canonical complex structure on S2 induces a

complex structure J̄ : Vz → Vz. Further, for each z ∈ Z, we have an isomorphism

defined by the tangent map

π∗ : Hz → Tπ(z)M.

We can lift the almost complex structure Iz : Tπ(z)M → Tπ(z)M to an endomorphism

Ĵ : Hz → Hz.
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Then we define the complex structure J on Z by the block diagonal matrix

(4.2) J =

 Ĵ

J̄

 : TZ = H⊕ V → TZ.

The integrability of this almost complex structure depends on the vanishing of the Ni-

jenhuis tensor which is given by

NJ(X, Y ) = [J(X), J(Y )]− J[X, J(Y )]− J[J(X), Y ]− [X, Y ].

For the proof that NJ(X, Y ) = 0, we refer the reader to [7]. In Section 4.3, we will

present an alternate proof of Theorem 4.2.1 using generalized complex geometry.

4.2.1.1. Example: Quaternionic Projective Space. The twistor space of HP n is

Z = CP 2n+1 and the S2-fibration

π : CP 2n+1 → HP n

is the quaternionic Hopf fibration. Notice this means that the twistor space is not only

a complex manifold, it is Kähler as well. In [26], Hitchin proved that CP 3 was one of

only two examples of Kählerian twistor spaces over a 4-dimensional manifold.

4.2.2. Contact geometry of the twistor space. The twistor space Z admits an

additional structure; it is a complex contact manifold. We first recall some basic facts

from contact geometry, directing the reader to [37] for a more thorough treatment of this

subject.

Definition 4.2.2. A complex contact manifold is a complex manifold X of odd com-

plex dimension 2n+ 1 together with an open covering {Ui} by coordinate neighborhoods

such that the following are true:

(1) On each Ui there is a 1-form θi with

θi ∧ (dθi)
n 6= 0.
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(2) For every i, j, on Ui ∩ Uj, there is a non-vanishing transition function fij :

Ui ∩ UJ → S1 such that

θj = fijθi.

We note that technically, this is the definition for a normalized contact structure on

X, however we claim in our situation that this will not make a difference. The horizontal

subbundle of a complex contact manifold is a holomorphic subbundle

H = {X ∈ TpUi : θi(X) = 0}

of complex rank 2n. Further, given the complex contact structure, there exists a unique

rank 2 subbundle V of TX, invariant under the complex structure, such that

TX ∼= H⊕ V .

This subbundle is called the vertical subbundle of TX and there exists a projection map

π : TX → H

such that ker(π) = V . Thus, on each Ui, the contact structure θi is a V-valued 1-form

vanishing along H. This will be important in determining the contact structure of the

twistor space.

Note. At every point p ∈ X, the horizontal subspace Hp is a vector space of complex

dimension 2n such that dθi|H 6= 0. In fact, the form dθi|H defines an almost symplectic

form on H. Further, there exists an almost complex structure J : H → H compatible

with this form. This fact will be illuminated in our discussion of the contact geometry

of the twistor space in the next section.

The following proposition illustrates the relationship between QK manifolds and com-

plex contact geometry. The proof can be found in [40].
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Proposition 4.2.3. ([40]) Let M be a quaternionic Kähler manifold with non-zero

scalar curvature. The twistor space Z is a complex contact manifold.

We will present a construction of the complex contact structure on Z in the next

section. An alternate construction may be found in [37]. Note that the vertical and

horizontal sections defined in Section 4.2.1, V and H, respectively correspond to the

vertical and horizontal sections defined above. Thus, the contact structure will be a local

V-valued 1-form vanishing on H, where V = ker(π) for π : Z →M and TZ = V ⊕H.

4.3. Generalized complex geometry of the twistor space

In this section, we illustrate integrability of the almost complex structure J on the

twistor space of a quaternionic Kähler manifold using generalized complex geometry.

This will serve as a first step towards constructing the generalized twistor space. In the

first section, we consider the twistor space Z of a 4-dimensional manifold M . We use the

complex contact geometry of Z in order to construct a spinor for the generalized complex

structure of complex type. This contact geometry was defined in [37, 40]. However, since

we are in 4-dimensions, we will use Salamon’s results on twistor spaces of 4-manifolds

from [42] in order to describe the contact structure in more detail. In the second section

we extend our results to higher dimensions.

4.3.1. The twistor space as a generalized complex manifold. Let M be a 4-

dimensional QK manifold with positive scalar curvature. In this section, we present the

twistor space in a slightly different way, although we claim that it defines the same space

as in Section 4.2.1. Let the twistor space Z be the bundle of forms

Z = {xωI + yωJ + zωK | (x, y, z) ∈ S2}
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where ωI , ωJ , ωK are local 2-forms on M as given in equation (4.1). Recall that these

forms satisfy the following relations:

(4.3)

dωI = −θ3ωJ +θ2ωK

dωJ = θ3ωI −θ1ωK

dωK = −θ2ωI +θ1ωJ

where θi are connection 1-forms on M . Let bi, i = 1 . . . 3 be 1-forms on Z defined by

b1 = dx+ yπ∗θ3 − zπ∗θ2

b2 = dy − xπ∗θ3 + zπ∗θ1

b3 = dz + xπ∗θ2 − yπ∗θ1.

We claim that these forms annihilate the horizontal space H ⊂ TZ as defined above.

Further, define the curvature 2-forms by

Ψ1 = dθ1 + θ3 ∧ θ2(4.4)

Ψ2 = dθ2 + θ1 ∧ θ3

Ψ3 = dθ3 + θ2 ∧ θ1.

These curvature 2-forms are related to ωi in the following way. Let c denote the scalar

curvature of M . Then

(4.5) Ψ1 =
c

2
ωI , Ψ2 =

c

2
ωJ , Ψ3 =

c

2
ωK .

We define a generalized almost complex structure of complex type on Z by a rep-

resentative pure spinor. Recall that since dimR(Z) = 6, this is equivalent to defining a

non-vanishing (3, 0)-form , which we obtain from the contact structure on Z. Let

(4.6) θ =
−iy

(1 + x)(y + iz)
b3 +

iz

(1 + x)(y + iz)
b2 − 1

(1 + x)(y + iz)
b1.
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We claim that this is a (local) contact 1-form on Z. To see this, consider the vertical

space Vp at a point p ∈ Z. Note that there is an isomorphism Vp
∼−→ S2. Consider

S2 ∼= CP 1 as a complex manifold by stereographic projection

(x, y, z) 7→
(

1− ζζ̄
1 + ζζ̄

,
2Re(ζ)

1 + ζζ̄
,
−2Im(ζ)

1 + ζζ̄

)
.

We can write ζ as

ζ =
y − iz
1 + x

.

Then the space of holomorphic 1-forms on S2 is spanned by dζ, which we write in

coordinates as

dζ =
−iydz + izdy − dx

(1 + x)(y + iz)
.

Here, we use that

x2 + y2 + z2 = 1 and xdx+ ydy + zdz = 0.

Pulling this back to V , the forms dx, dy, dz are twisted by the curvature 1-forms, so we

get (4.6), a V-valued 1-form vanishing on H. We can simplify (4.6), so that

(4.7) θ = dζ + iζθ1 − 1

2
i(1− ζ2)θ2 − 1

2
(1 + ζ2)θ3,

since

−i(y2 + z2)

(1 + x)(y + iz)
=
−i(y + iz)(y − iz)

(1 + x)(y + iz)
= −iζ

ixy − z
(1 + x)(y + iz)

=
ixy2 + iz2 − yz + xyz

(1 + x)(y + iz)(y − iz)

=
−yz(1− x) + i((1− x)(1 + x)− y2(1− x))

(1 + x)2(1− x)

=
−yz + i+ ix− iy2

(1 + x)2
=

1

2
i(1− ζ2)

66



ixz + y

(1 + x)(y + iz)
=
−i(−xyz + yz + iy2 + ixz2)

(1 + x)(y + iz)(y − iz)

=
−i(yz(1− x) + i((1− x)(1 + x)− z2(1− x)))

(1 + x)2(1− x)

=
−i(yz + i((1 + x)− z2))

(1 + x)2
=

1

2
(1 + ζ2).

Consider now dθ:

dθ = dζ ∧ (iθ1 + iζθ2 − ζθ3) + iζdθ1 − 1

2
i(1− ζ2)dθ2 − 1

2
(1 + ζ2)dθ3.

Using (4.4) and (4.5), this reduces to

dθ = θ∧(iθ1+iζθ2−ζθ3)+ 1
2
ic(2ζω1+(ζ2−1)ω2+i(ζ2+1)ω3) = θ∧(iθ1+iζθ2−ζθ3)+dθ|H,

where H is the horizontal subbundle such that b1 = b2 = b3 = 0. Note the resemblance

between dθ|H and its hyperkähler analogue in (2.1). In fact, they should be identical

up to multiplication by a complex scalar. Recall that on the horizontal subbundle of

a complex contact manifold, there exists an almost holomorphic symplectic structure

defined by dθ|H compatible with an almost complex structure J . This almost complex

structure on the horizontal subspace at a point p ∈ Z can be given by

Ĵp = xI + yJ + zK, (x, y, z) ∈ S2.

Further, dθ|H = 1
2
ic(2ζω1 + (ζ2 − 1)ω2 + i(ζ2 + 1)ω3) is the almost symplectic form

compatible with Ĵp. When M is hyperkähler, this is the holomorphic symplectic form

on M associated to the complex structure Ĵp. However, since a QK manifold is not a

complex manifold, in this case it simply defines a non-vanishing local 2-form compatible

with the almost complex structure.

Hence we have that (4.7) is a (local) contact 1-form, such that

θ ∧ dθ = θ ∧ dθ|H 6= 0
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is a nonvanishing 3-form. Define a generalized complex structure by the following pure

spinor

(4.8) φ = θ∧dθ|H = (dζ+ iζθ1− 1
2
i(1− ζ2)θ2− 1

2
(1 + ζ2)θ3)∧

(
−1

2
ic(ζ2σ + 2ζωI − σ̄)

)
,

where σ = ω2 + iω3. We claim that φ is a 3-form compatible with the almost complex

structure J given by (4.2), so this defines the generalized almost complex structure of

complex type

J =

 −J 0

0 J∗

 .
Proposition 4.3.1. The generalized almost complex structure on Z given by the

above spinor φ is integrable.

Remark. Although the contact form defined above is only local, we note that the

integrability condition given in Proposition 2.2.2 (which we will use to prove the proposi-

tion) is also local. Further, since we know that the contact 1-forms patch together nicely

with non-vanishing S1-valued functions, i.e.

θi = fijθj, fij : Ui ∩ Uj → S1,

it will be enough to prove that the generalized almost complex structure is locally inte-

grable in order to prove that it is integrable on all of Z.

Proof. Recall from Proposition 2.2.2 that a generalized complex structure given by

a spinor φ is integrable if there exists some X + ξ ∈ T ⊕ T ∗ such that

dφ = (X + ξ) · φ = iXφ+ ξ ∧ φ.

Since φ ∈ Ω3(Z), dφ ∈ Ω4(Z), so we want to find some ξ ∈ T ∗Z such that

dφ = ξ ∧ φ.
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Consider

(4.9) dφ = d(θ ∧ dθ|H) = dθ ∧ dθ|H − θ ∧ d(dθ|H).

We have dθ|H ∧ dθ|H = 0, so

dθ ∧ dθ|H = θ ∧ (iθ1 + iζθ2 − ζθ3) ∧ dθ|H + dθ|H ∧ dθ|H = θ ∧ (iθ1 + iζθ2 − ζθ3) ∧ dθ|H.

Now consider the second half of equation (4.9)

d(dθ|H) =
1

2
ic((dζ)(2ω1 + 2ζω2 + 2iζω3) + 2ζdω1 + (ζ2 − 1)dω2 + i(ζ2 + 1)dω3)

=
1

2
ic(dζ(2ω1 + 2ζω2 + 2iζω3) + (−i(1 + ζ2)θ2 + (ζ2 − 1)θ3)ω1

+(i(1 + ζ2)θ1 − 2ζθ3)ω2 + (−(ζ2 − 1)θ1 + 2ζθ2)ω3),

where we use equation (4.3) to obtain the second line. Thus,

θ ∧ d(dθ|H) = dζ ∧ (1
2
ic)((−i(1 + ζ2)θ2 + (ζ2 − 1)θ3)ω1 + (i(1 + ζ2)θ1 − 2ζθ3)ω2

+(−(ζ2 − 1)θ1 + 2ζθ2)ω3)

+(iζθ1 − 1
2
i(1− ζ2)θ2 − 1

2
(1 + ζ2)θ3) ∧ (1

2
ic)(dζ) ∧ (2ω1

+2ζω2 + 2iζω3)

+(iζθ1 − 1
2
i(1− ζ2)θ2 − 1

2
(1 + ζ2)θ3) ∧ ((−i(1 + ζ2)θ2(ζ2 − 1)θ3)ω1

+(i(1 + ζ2)θ1 − 2ζθ3)ω2 + (−(ζ2 − 1)θ1 + 2ζθ2)ω3)

= 1
2
ic(dζ ∧ ((−2iζθ1 − 2iζ2θ2 + 2ζ2θ3)ω1

+(i(1− ζ2)θ1 + iζ(1− ζ2)θ2 − ζ(1− ζ2)θ3)ω2

+((ζ2 + 1)θ1 + ζ(1 + ζ2)θ2 + iζ(1 + ζ2)θ3)ω3)

+(iζθ1 − 1
2
i(1− ζ2)θ2 − 1

2
(1 + ζ2)θ3) ∧ (−iθ1 − iζθ2 + ζθ3)) ∧ dθ|H.
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Simplifying this expression, we get

θ ∧ d(dθ|H) = θ ∧ (−iθ1 − iζθ2 + ζθ3) ∧ dθ|H.

Then equation (4.9) is equal to

dφ = (−iθ1 − iζθ2 + ζθ3) ∧ θ ∧ dθ|H − θ ∧ (−iθ1 − iζθ2 + ζθ3) ∧ dθ|H

= 2(−iθ1 − iζθ2 + ζθ3) ∧ θ ∧ dθ|H

= ξ ∧ φ.

Hence, φ determines an integrable generalized complex structure on Z. 2

4.3.2. Extension to higher dimensions. Although our construction depended on the

results on twistor spaces for 4-dimensional manifolds, this proof can be extended to all

quaternionic Kähler manifolds of dimension 4n. We simply need the contact structure

of the twistor space, which exists for all QK manifolds. We illustrate the generalization

here.

Let M be a QK manifold of real dimension 4n with twistor space of dimension 4n+ 2

Z = {xωI + yωJ + zωK | (x, y, z) ∈ S2}.

Then the local contact structure on Z can be given as in the previous section by

θ = dζ + iζθ1 − 1

2
i(1− ζ2)θ2 − 1

2
(1 + ζ2)θ3,

where θ1, θ2, θ3 are the connection 1-forms on Z, and ζ gives a complex parameter on

Vp ∼= CP 1, p ∈ Z. Then

dθ = θ∧(iθ1+iζθ2−ζθ3)+ 1
2
ic(2ζω1+(ζ2−1)ω2+i(ζ2+1)ω3) = θ∧(iθ1+iζθ2−ζθ3)+dθ|H,

where again H is the horizontal subbundle such that b1 = b2 = b3 = 0.
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Consider Z with a generalized almost complex structure JJ of complex type deter-

mined by J, (4.2). Then we claim that the spinor for JJ is

φ = θ ∧ (dθ)n = θ ∧ (dθ|H)n.

We can compute that this defines an integrable generalized complex structure, since

dφ = dθ ∧ (dθ|H)n − θ ∧ d(dθ|H)n

= θ ∧ (−iθ1 − iζθ2 + ζθ3) ∧ (dθ|H)n − θ ∧ n(dθ|H)n−1 ∧ d(dθ|H)

= θ ∧ (−iθ1 − iζθ2 + ζθ3) ∧ (dθ|H)n − n(dθ|H)n−1 ∧ θ ∧ (−iθ1 − iζθ2 + ζθ3) ∧ dθ|H

= (−iθ1 − iζθ2 + ζθ3) ∧ φ− n(iθ1 + iζθ2 − ζθ3) ∧ φ

= (n+ 1)(−iθ1 − iζθ2 + ζθ3) ∧ φ.

This proves that the complex structure J on the twistor space Z is integrable for all QK

manifolds M of dimension 4n.
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CHAPTER 5

Generalized twistor space for quaternionic Kähler manifolds

In this chapter, we introduce generalized twistor theory for QK manifolds. Although

this is a natural extension, QK manifolds lack the global complex and symplectic struc-

tures that hyperkähler manifolds have, so the theory is much more intricate. Instead, we

use the complex contact geometry of the classical twistor space.

In the first section, we construct a family of local generalized almost complex struc-

tures on a QK manifold of dimension 4n using bi-Hermitian data, as in the hyperkähler

setting. We then in Section 2 use that family and the classical twistor space Z to de-

scribe the generalized twistor space, a bundle of generalized almost complex structures

over the QK manifold. We conjecture that the generalized twistor space is a generalized

complex manifold, and describe its structure. In the final section of this chapter, we give

a candidate for the spinor of the generalized twistor space, using the contact geometry

of the classical twistor space.

5.1. The generalized twistor family

Consider a quaternionic Kähler manifold M4n with Riemannian metric g. As before,

let Ui be a covering of M and let I,J , and K be local almost complex structures for each

Ui, such that g is Hermitian for I, J , and K and IJ = −JI = K. Further, let ωI = gI,

ωJ = gJ , and ωK = gK be local 2-forms corresponding to the almost complex structures.

Then we can construct a local almost bi-Hermitian structure on M given by

(g, b = 0, J+ = x1I + y1J + z1K, J− = x2I + y2J + z2K)

with (x1, y1, z1), (x2, y2, z2) ∈ S2. As in Section 3.1.2, there are two (local) generalized

almost complex structures J ,J ′ on TM that can be reconstructed from the almost



bi-Hermitian data (g, b, J+, J−) such that

(5.1) J =
1

2

 −(J+ + J−) −(ω−1
+ − ω−1

− )

ω+ − ω− J∗+ + J∗−



(5.2) J ′ = 1

2

 −(J+ − J−) −(ω−1
+ + ω−1

− )

ω+ + ω− J∗+ − J∗−


where ω± = gJ±. Then J ,J ′ is a local generalized almost Kähler structure on Ui ⊂ M

for every pair of points (x1, y1, z1), (x2, y2, z2) ∈ S2. Thus this defines an S2 × S2-family

of local generalized almost Kähler structures over Ui for every i. The bundle of these

families will determine our generalized twistor space.

5.2. The generalized twistor space of a QK manifold

In this section, we use the classical QK case to construct the generalized twistor space.

Let X be the space defined by the fiber product

X := Z ×M Z,

where Z is the classical twistor space of M . Note that X sits as an S2 × S2-bundle over

M

π : X →M

such that each point z ∈ X defines a pair of local almost complex structures J+ and J−

on Tπ(z)M as described in the previous section. These, combined with the Riemannian

metric g on M , determine an almost bi-Hermitian structure (g, b = 0, J±) on M for every

point z ∈ X . Hence, X is an S2 × S2-bundle of local almost bi-Hermitian structures on

M . Equivalently, we can view X as a bundle of local generalized almost Kähler structures

J ,J ′ on M defined as in equations (5.1), (5.2).

Alternatively, we can view this space as a subbundle of the endomorphisms of TM .

Let E be the 6-dimensional vector subbundle of End(TM) generated by JI ,JJ ,JK and
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Jω1 ,Jω2 ,Jω3 on each local chart Ui. Then we claim that X is the S2 × S2-subbundle of

E defined by

X = {1
2
((x1 + x2)JI + (y1 + y2)JJ + (z1 + z2)JK

+(x1 − x2)JωI + (y1 − y2)JωJ + (z1 − z2)JωK ) | (xj, yj, zj) ∈ S2}.

Definition 5.2.1. The S2 × S2-subbundle X is called the generalized twistor space

of a quaternionic Kähler manifold M .

We define a generalized almost complex structure on TX as follows. Choose a torsion-

free Sp(n) ·Sp(1)-connection ∇ on M . The connection induces a splitting of the tangent

bundle TX = V ⊕H so that

TX ⊕ T ∗X = V ⊕ V∗ ⊕H⊕H∗,

where V is the vertical distribution (tangent to the fibers of π : X → M) and H is the

supplementary horizontal distribution. We define their duals V∗ and H∗ as the forms

vanishing on these spaces.

We claim that horizontal transport associated to H ⊕ H∗ preserves the canonical

metric of the fibers S2×S2 as well as their orientation, and thus preserves the canonical

complex structure on S2 × S2. This complex structure induces a generalized complex

structure J on Vz ⊕ V∗z for each z ∈ X .

Note that for every z ∈ X we have an isomorphism defined by the tangent map

π∗ : Hz → Tπ(z)M.

Further, each z ∈ X defines a local generalized almost complex structure on the space

Tπ(z)M given by equation (5.1). We can lift this generalized structure up to an endomor-

phism Ĵ on Hz ⊕H∗z by π∗ ⊕ (π−1
∗ )∗.

Define a natural generalized almost complex structure J on X by the block diagonal

matrix:
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(5.3) J =

 Ĵ
J

 : TX = H⊕H∗ ⊕ V ⊕ V∗ → TX

Conjecture 5.2.1. Let M be a quaternionic Kähler manifold of dimension 4n. Then

its generalized twistor space X is a generalized complex manifold with generalized complex

structure J as defined above.

We would like to prove this conjecture by defining a spinor for the generalized complex

structure J . In the next section, we derive a candidate for this spinor if dim(M) = 4,

and provide some justification on why it is appropriate.

5.3. Candidate for a spinor

Recall in Section 4.3 that we used the contact geometry of the twistor space Z to

determine a spinor for the generalized almost complex structure on Z. In this section,

we expand on that spinor, using our results from the generalized twistor space of a

hyperkähler manifold.

Let M be a QK manifold of dimension 4 (e.g. HP 1). Define holomorphic coordinates

α and β on S2 × S2 ∼= CP 1 × CP 1, such that for (x1, y1, z1), (x2, y2, z2) ∈ S2,

α =
y1 − iz1

1 + x1

, β =
y2 − iz2

1 + x2

.

Then

dα =
−iy1dz1 + iz1dy1 − dx1

(1 + x1)(y1 + iz1)
, dβ =

−iy2dz2 + iz2dy2 − dx2

(1 + x2)(y2 + iz2)

define the space of holomorphic 1-forms on each copy of S2 ∼= CP 1. Pulling these back

to V , we get a twisting by the curvature 1-forms θi, as in Section 4.3, such that

p∗1(dα) = dα + iαθ1 − 1

2
i(1− α2)θ2 − 1

2
(1 + α2)θ3(5.4)

p∗2(dβ) = dβ + iβθ1 − 1

2
i(1− β2)θ2 − 1

2
(1 + β2)θ3,
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where p1 : V → CP 1 and p2 : V → CP 1 are the projection maps down to each copy of

CP 1. Let ψ1 and ψ2 denote p∗1(dα), p∗2(dβ), respectively. Then

ψ1 ∧ ψ2 = dα ∧ dβ + dα ∧ (iβθ1 − 1

2
i(1− β2)θ2 − 1

2
(1 + β2)θ3)

−dβ ∧ (iαθ1 − 1

2
i(1− α2)θ2 − 1

2
(1 + α2)θ3)

+(iαθ1 − 1

2
i(1− α2)θ2 − 1

2
(1 + α2)θ3) ∧ (iβθ1

−1

2
i(1− β2)θ2 − 1

2
(1 + β2)θ3)

= dα ∧ dβ + dα ∧ (iβθ1 − 1

2
i(1− β2)θ2 − 1

2
(1 + β2)θ3)

−dβ ∧ (iαθ1 − 1

2
i(1− α2)θ2 − 1

2
(1 + α2)θ3)

+
1

2
(α− β)((1 + αβ)θ1θ2 − i(1− αβ)θ1θ3 − i(α + β)θ2θ3)

defines a V-valued 2-form vanishing on H. Note that ψ1 ∧ ψ2 provides a sort of general-

ization of the contact 1-form θ in Section 4.3. However, we cannot just simply take the

derivative of this form in order to determine the part of the spinor defined along H. Our

generalized almost complex structure defined in equation (5.3) is not of constant type; it

changes throughout the manifold. Therefore, the spinor should be a mixed form as in the

K3 case. In fact, we can use the derivation of the spinor (3.5) to find that an appropriate

candidate is

Φ = (αβ − 1)ω2 + i(αβ + 1)ω3 + (α− β)(−i+ i
2
ω2) + (α + β)ω1(5.5)

= −i(α− β) + (α + β)ω1 + (αβ − 1)ω2 + i(αβ + 1)ω3 + i
2
(α− β)ω2.

Proposition 5.3.1. There is a pure spinor for the generalized almost complex struc-

ture J defined by

Ψ = ψ1 ∧ ψ2 ∧ Φ,

where ψ1, ψ2, Φ are as in equations (5.4) and (5.5).
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Proof. Along the subbundle such that α = β, note that J |α=β is simply the gener-

alized almost complex structure arising from the usual complex structure on the twistor

space, and Ψ is just the spinor defined by

Ψ = Ψα=β = ψ1 ∧ ψ2 ∧
(

1

2
ic(2ζω1 + (ζ2 − 1)ω2 + i(ζ2 + 1)ω3)

)
.

On the other hand, if α 6= β, we can show as in Appendix A that the generalized almost

complex structure J |H⊕H∗ = Ĵ is a B-field transform of a generalized almost complex

structure determined by a 2-form ω, where

ω =
|α|2 − |β|2

|α|2 + |β|2 − 2Re(αβ̄)
ωI +

Re(α)(1 + |β|2)− Re(β)(1 + |α|2)

|α|2 + |β|2 − 2Re(αβ̄)
ωJ

+
Im(α)(|β|2 + 1)− Im(β)(|α|2 + 1)

|α|2 + |β|2 − 2Re(αβ̄)
ωK

B =
2Im(αβ̄)

|α|2 + |β|2 − 2Re(αβ̄)
ωI +

Im(α)(1− |β|2)− Im(β)(1− |α|2)

|α|2 + |β|2 − 2Re(αβ̄)
ωJ

+
Re(α)(|β|2 − 1)− Re(β)(|α|2 − 1)

|α|2 + |β|2 − 2Re(αβ̄)
ωK .

However, B and ω are not closed 2-forms, so this fact does not help prove integrability.

Nevertheless, the H-valued spinor Φ should then be the same as in the hyperkähler case,

up to multiplication by a complex scalar, which is clearly true. Along the vertical com-

ponent, ψ1 and ψ2 give holomorphic 1-forms defining the generalized complex structure

of complex type J |V⊕V∗ = J . Hence Ψ is a pure spinor defining the generalized almost

complex structure J on X . 2

In order to prove Conjecture 5.2.1, we would like to show that locally, there exists

some element X + ξ ∈ TX such that dΨ = (X + ξ) ·Ψ. In order to to this, it is possible

that we may have to consider the twisted Courant bracket (see [23]) on X , or simply

define the generalized almost complex structure differently.

If this conjecture is true, it would open up possibilities to extend the generalized

twistor space construction to other manifolds. In particular, we could easily extend this
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to all self-dual 4-manifolds, as we used Salamon’s results on the classical twistor space

for self-dual 4-manifolds [42] to describe the spinor. The next natural question would be

to ask whether this construction could extend to higher dimensions. For a quaternionic

Kähler manifold, this seems to be true (similar to the hyperkähler case), however, beyond

that it is unclear. In the classical setting, the twistor space exists for all quaternionic

and hypercomplex manifolds. Essentially, these are quaternionic Kähler and hyperkähler

manifolds, respectively, without an underlying Riemannian metric. It is possible that

there exists a generalized twistor space for these types of manifolds, however our methods

will not work without a metric (since we would not have the generalized almost Kähler

structures (5.1), (5.2)). Thus, we would have to use an alternate way of defining a family

of generalized almost complex structures on the manifold in this setting.
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APPENDIX A

Computation of Proposition 3.1.3

In this appendix, we will provide the missing details of the proof of Lemma 3.1.3.

This is equivalent to proving the following proposition.

Proposition A.0.1. For α 6= β, the generalized complex structure J is a B-field

transform of the generalized complex structure of symplectic type Jω, where

ω =
|α|2 − |β|2

|α|2 + |β|2 − (αβ̄ + ᾱβ)
ωI +

Re(α)(1 + |β|2)− Re(β)(1 + |α|2)

|α|2 + |β|2 − (αβ̄ + ᾱβ)
ωJ

+
Im(α)(|β|2 + 1)− Im(β)(|α|2 + 1)

|α|2 + |β|2 − (αβ̄ + ᾱβ)
ωK

B =
−i(αβ̄ − ᾱβ)

|α|2 + |β|2 − (αβ̄ + ᾱβ)
ωI +

Im(α)(1− |β|2)− Im(β)(1− |α|2)

|α|2 + |β|2 − (αβ̄ + ᾱβ)
ωJ

+
Re(α)(|β|2 − 1)− Re(β)(|α|2 − 1)

|α|2 + |β|2 − (αβ̄ + ᾱβ)
ωK .

The first step in this process is the following lemma.

Lemma A.0.2. For ω as given in equation (3.7),

ω−1 =
|α|2 − |β|2

(1 + |α|2)(1 + |β|2)
ω−1
I +

Re(α)(1 + |β|2)− Re(β)(1 + |α|2)

(1 + |α|2)(1 + |β|2)
ω−1
J

+
Im(α)(1 + |β|2)− Im(β)(1 + |α|2)

(1 + |α|2)(1 + |β|2)
ω−1
K .

Proof. Write

ω = xωI + yωJ + zωK , ω−1 = ω′ = dω−1
I + eω−1

J + fω−1
K .

Then we want

ωω′ = (xd+ ye+ zf)id∗ + xeK∗ − xfJ∗ − ydK∗ + yfI∗ + zdJ∗ − zeI∗ = id∗,
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where id∗ : T ∗M → T ∗M is the identity map. Here, we use quaternionic relations, e.g.

ωJω
−1
K = −ωKω−1

J = I∗. This equation holds if and only if

(A.1) xd+ ye+ zf = 1

and

(A.2) xe− yd = 0, zd− xf = 0 yf − ze = 0.

For equation (A.1), we have

xd+ ye+ zf = |α|4+|β|4+2|αβ|2+|α|2+|β|2|αβ|2+|β|2+|α|2|αβ|2−(1+|α|2+|β|2+|αβ|2)(2Re(αβ̄))

(1+|α|2+|β|2+|αβ|2)(|α|2+|β|2−2Re(αβ̄))

= (1+|α|2+|β|2+|αβ|2)|α|2+(1+|α|2+|β|2+|αβ|2)|β|2−(1+|α|2+|β|2+|αβ|2)(2Re(αβ̄))

(1+|α|2+|β|2+|αβ|2)(|α|2+|β|2−2Re(αβ̄))

= 1

and equations (A.2) yield

xe− yd =
(

|α|2−|β|2
|α|2+|β|2−(αβ̄−ᾱβ)

)(
Re(α)(1+|β|2)−Re(β)(1+|α|2)

(1+|α|2)(1+|β|2)

)
−
(

Re(α)(1+|β|2)−Re(β)(1+|α|2)

|α|2+|β|2−(αβ̄−ᾱβ)

)(
|α|2−|β|2

(1+|α|2)(1+|β|2)

)
= 0

zd− xf =
(

Im(α)(|β|2+1)−Im(β)(|α|2+1)

|α|2+|β|2−(αβ̄−ᾱβ)

)(
|α|2−|β|2

(1+|α|2)(1+|β|2)

)
−
(

|α|2−|β|2
|α|2+|β|2−(αβ̄−ᾱβ)

)(
Im(α)(1+|β|2)−Im(β)(1+|α|2)

(1+|α|2)(1+|β|2)

)
= 0

yf − ze =
(

Re(α)(1+|β|2)−Re(β)(1+|α|2)

|α|2+|β|2−(αβ̄−ᾱβ)

)(
Im(α)(1+|β|2)−Im(β)(1+|α|2)

(1+|α|2)(1+|β|2)

)
−
(

Im(α)(|β|2+1)−Im(β)(|α|2+1)

|α|2+|β|2−(αβ̄−ᾱβ)

)(
Re(α)(1+|β|2)−Re(β)(1+|α|2)

(1+|α|2)(1+|β|2)

)
= 0.

Then ωω′ = 1. Similarly, using hyperkähler relations, ω′ω = 1. 2

Using this lemma, we now prove Proposition A.0.1 by proving that J = eBJωe−B for

α 6= β.
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Proof. (Proposition A.0.1) Using stereographic projection, we first write J in terms

of α, β:

J = |αβ|2−1
(1+|α|2)(1+|β|2)

JI + Re(α)(1+|β|2)+Re(β)(1+|α|2)
(1+|α|2)(1+|β|2)

JJ + Im(α)(1+|β|2)+Im(β)(1+|α|2)
(1+|α|2)(1+|β|2)

JK

+ |α|2−|β|2
(1+|α|2)(1+|β|2)

JωI + Re(α)(1+|β|2)−Re(β)(1+|α|2)
(1+|α|2)(1+|β|2)

JωJ + Im(α)(1+|β|2)−Im(β)(1+|α|2)
(1+|α|2)(1+|β|2)

JωK .

Note that if Φ is a spinor for J , then J = e−BJωeB, where

Jω =

 0 −ω−1

ω 0

 ,

i.e.

J =

 −ω−1B −ω−1

Bω−1B + ω Bω−1

 .

We have by the lemma above that −ω−1 = −1
2
(ω−1

+ − ω−1
− ). Then we just need to prove

(A.3) ω−1B =
1

2
(I+ + I−) ,

(A.4) Bω−1B + ω =
1

2
(ω+ − ω−) ,

and the fact that

Bω−1 =
1

2

(
I∗+ + I∗−

)
follows easily from (A.3). Write as above

ω = xωI + yωJ + zωK , ω−1 = dω−1
I + eω−1

J + fω−1
K ,

B = aωI + bωJ + cωK .

Then

ω−1B = (da+ eb+ fc)id + (fb− ec)I + (dc− fa)J + (ea− db)K
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so equation (A.3) is equivalent to

(A.5) ad+ eb+ fc = 0

fb− ec = |αβ|2−1
(1+|α|2)(1+|β|2)

(A.6)

dc− fa = Re(α)(1+|β|2)+Re(β)(1+|α|2)
(1+|α|2)(1+|β|2)

(A.7)

ea− db = Im(α)(1+|β|2)+Im(β)(1+|α|2)
(1+|α|2)(1+|β|2)

.(A.8)

For equation (A.5), we have:

ad+ be+ fc = (|α|2−|β|2)(2Im(αβ̄))+(Re(α)(1+|β|2)−Re(β)(1+|α|2))(Im(α)(1−|β|2)−Im(β)(1−|α|2))
(1+|α|2)(1+|β|2)

+ (Im(α)(1+|β|2)−Im(β)(1+|α|2))(Re(α)(|β|2−1)−Re(β)(|α|2−1))
(1+|α|2)(1+|β|2)

= 2(|α|2−|β|2)Im(αβ̄)−2Im(αβ̄)(|α|2−|β|2)
(1+|α|2)(1+|β|2)

= 0.

Considering the coefficients of I, J , and K, we have the following computations. Equation

(A.6) yields:

fb− ec =
(

Im(α)(1+|β|2)−Im(β)(1+|α|2)
(1+|α|2)(1+|β|2)

)(
Im(α)(1−|β|2)−Im(β)(1−|α|2)

|α|2+|β|2−(αβ̄+ᾱβ)

)
−
(

Re(α)(1+|β|2)−Re(β)(1+|α|2)
(1+|α|2)(1+|β|2)

)(
Re(α)(|β|2−1)+Re(β)(1−|α|2)

|α|2+|β|2−(αβ̄+ᾱβ)

)
= |α|2(1−|β|4)+|β|2(1−|α|4)+Re(α)Re(β)(2|αβ|2−2)−Im(α)Im(β)(2−2|αβ|2)

(1+|α|2)(1+|β|2)(|α|2+|β|2−(αβ̄+ᾱβ))

= |αβ|2−1
(1+|α|2)(1+|β|2)

.

Similarly, for equation (A.7), we have:

dc− fa =
(

|α|2−|β|2
(1+|α|2)(1+|β|2)

)(
Re(α)(|β|2−1)+Re(β)(1−|α|2)

|α|2+|β|2−(αβ̄−ᾱβ)

)
−
(

Im(α)(1+|β|2)−Im(β)(1+|α|2)
(1+|α|2)(1+|β|2)

)(
Im(αβ̄)

|α|2+|β|2−(αβ̄+ᾱβ)

)
= 1

2
|α|4(β+β̄)+|β|4(α+ᾱ)+|α|2(α+ᾱ−ᾱβ2−αβ̄2)+|β|2(β+β̄−α2β̄−ᾱ2β)−(α2β̄+βᾱ2+ᾱβ2+αβ̄2)

(1+|α|2)(1+|β|2)(|α|2+|β|2−(αβ̄+ᾱβ))

= Re(α)(1+|β|2)+Re(β)(1+|α|2)
(1+|α|2)(1+|β|2)

.
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And equation (A.8) yields:

ea− db =
(

Re(α)(1+|β|2)−Re(β)(1+|α|2)
(1+|α|2)(1+|β|2)

)(
−i(αβ̄−ᾱβ)

|α|2+|β|2−(αβ̄+ᾱβ)

)
−
(

|α|2−|β|2
(1+|α|2)(1+|β|2)

)(
Im(α)(1−|β|2)−Im(β)(1−|α|2)

|α|2+|β|2−(αβ̄+ᾱβ)

)
= − i

2

(
(α−ᾱ)(1+|β|2)(|α|2+|β|2−(αβ̄+ᾱβ))+(β−β̄)(1+|α|2)(|α|2+|β|2−(αβ̄+ᾱβ))

(|α|2+|β|2−(αβ̄+ᾱβ))(1+|α|2)(1+|β|2)

)
= Im(α)(1+|β|2)+Im(β)(1+|α|2)

(1+|α|2)(1+|β|2)
.

Thus the first condition (A.3) is satisfied.

To prove that Bω−1B + ω = 1
2
(ω+ − ω−), we use the fact that

ω−1Bω−1B =

(
1

2
(I+ + I−)

)2

.

Hence this is equivalent to proving

(A.9)

(
1

2
(I+ + I−)

)2

= ω−1

(
1

2
(ω+ − ω−)

)
− 1.

For the right-hand side of equation (A.9), note that

(
1
2
(I+ + I−)

)2
= −

(
(|αβ|2−1)2+(Re(α)(1+|β|2)+Re(β)(1+|α|2))2+(Im(α)(1+|β|2)+Im(β)(1+|α|2))2

(1+|α|2)2(1+|β|2)2

)
.

This reduces to

(
1
2
(I+ + I−)

)2
= −

(
(1+|α|2+|β|2+|αβ|2)+|αβ|2(1+|α|2+|β|2+|αβ|2)+(αβ̄+ᾱβ)(1+|α|2)(1+|β|2)

(1+|α|2)2(1+|β|2)2

)
= −

(
1+|αβ|2+αβ̄+ᾱβ
(1+|α|2)(1+|β|2)

)
.

On the left-hand side of equation (A.9), we have

(
1
2
(ω+ − ω−)

)
ω−1 − 1 = |α|2+|β|2−2Re(αβ̄)

(|α|2+1)(|β|2+1)
− 1

= −(|αβ|2+αβ̄+ᾱβ+1)
(1+|α|2)(1+|β|2)

=
(

1
2
(I+ + I−)

)2
.

This last computation proves the proposition.

2
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