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 1	

ABSTRACT 2	
 3	

Lakshmi Pradeepa Vennam: Assessment of aircraft emissions impacts on air quality at multiple 4	
model scales 5	

(Under the direction of Saravanan Arunachalam and William Vizuete) 6	
 7	

Aviation activity has grown steadily, and will likely continue to grow in the future. 8	

Aviation-related air pollutants occurring during full-flight (landing and takeoff, as well as cruise) 9	

can impact air quality, human health and climate. The overall goal of this dissertation is to study 10	

the air quality impacts of aviation at local, regional and global scales. The central hypothesis of 11	

this study is that fine scale modeling provides better characterization of aviation emissions 12	

impacts on air quality and health. To test this hypothesis, a model-based assessment of aviation 13	

emissions impacts was conducted at multiple scales ranging from local (4 × 4 km2) to 14	

hemispheric (108 × 108 km2) scales.  15	

Firstly, we focused on key risk-prioritized Hazardous Air Pollutants (HAPs) and assessed 16	

their impacts near a mid-sized U.S. airport using a chemistry-transport model at a fine scale (4 × 17	

4 km2). Overall modeled aircraft-attributable HAPs contributions are in the range of 0.5 – 28% 18	

near this airport. Second, we concentrated on the full-flight emissions impacts on air quality near 19	

surface for O3 and PM2.5 at a resolution of 108 × 108 km2, spanning the Northern hemisphere 20	

(NH). Including full-flight aviation emissions at the hemispheric scale contributed 1.3% and 21	

0.2% for O3 and PM2.5 at the surface on an annual domain-wide basis. Our comparison of these 22	

predictions with 36 × 36 km2 application over North America highlighted that the coarse scale 23	

resolution was unable to capture non-linearities in chemical processes near airport locations and 24	

other major urban areas. Lastly, we conducted a tracer study to understand the role of dynamic 25	



 

	 iv 

processes on cruise altitude aviation emissions (CAAE) impacts at the surface using a 1	

hemispheric scale application. Model predictions indicated that < 0.6% of CAAE tracer in the 2	

total atmospheric column was transported to the surface and ~40% was transported to mid- 3	

troposphere during all four seasons. This intercontinental tracer-tagging approach provided 4	

quantitative evidence that North America and Europe CAAE tracers can impact the surface (~0.5 5	

– 1% of total column burden) near high terrain regions like Tibet Plateau and relatively lower 6	

aviation emissions regions such as Middle East, North Africa and South East Asia.  7	

  8	
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CHAPTER 1: INTRODUCTION 
 

The association of air pollution to adverse human health has been well established from 

numerous studies ( Lim et al., 2012; Caiazzo et al., 2013; Holliday et al., 2014), and assessing air 

quality impacts from various sources to develop policy action is needed to protect public health. 

State-of-art atmospheric modeling evolved as one essential tool to study air quality impacts and 

undertake measures to mitigate effects from various emission sources. It is also important to 

improve the modeling applications and evaluate them to better predict emission sources impacts. 

In recent years, transportation has become one of the major emission sectors contributing to 

ambient air pollution and health impacts throughout the world.  

Aviation is the one of fastest transportation modes whose growth increased tremendously 

due to commercial travel, worldwide trade, and technology improvements in both developed and 

developing countries. Steady growth of 5% in passenger and 6% in freight transportation per 

year has been observed since 1950. It accounts for ~ 10% and 30% of passenger-km traveled and 

goods traded internationally (Schäfer and Waitz, 2014) in recent years. In future years, the 

average annual growth rate is predicted to increase around 4.6% per year from 2010 to 2030 

(Federal Aviation Administration (FAA), 2010). Till last year, it was one of the single largest 

green house gas (GHG) emitting transportation sectors that was not subjected to U.S 

Environmental Protection Agency (EPA) GHG standards. This year both EPA (U.S EPA, 2016) 

and ICAO (ICAO, 2016) announced a CO2 standard for new aircraft delivered after 2028; 

presently work is underway to develop a non-volatile particulate matter standard (Lobo et al., 
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2016) for commercial aircraft. These recent regulatory standard implementations show the 

efforts undertaken by federal agencies to reduce the aircraft emissions impacts on air quality, 

human health and climate change. Therefore the major focus in this thesis is the aviation sector 

and to improve modeling of aviation emissions to better characterize their air quality impacts.  

Wilkerson et al., (2010) indicated that in 2006, the commercial aircraft fleet flew 31.26 

million flights covering 38.68 billion kilometers by burning 188.20 million metric tons of fuel, 

which contributes to 3% of current global annual fossil fuel usage. The Organization of 

Petroleum Exporting Countries (OPEC) (Mazraati, 2010) mentioned aviation as second major 

consumer with 11.2% of total oil demand in transportation sector and projected that fuel 

consumption will increase from 188 Tg in 2002 to 327 Tg in 2025 (Eyers et al., 2004).  Efforts 

are already underway to use bio-fuels and low emission fuels for automobiles; however, 

application of these enhanced alternative fuels for aviation industry may present various 

challenges. There are several ongoing research activities both within and outside the U.S to 

address these issues. Measurement campaigns such as NASA’s Alternative Aviation Fuel 

Experiment (AAFEX) showed reduction in particulate emissions (Beyersdorf et al., 2014), black 

carbon (Speth et al., 2015) due to alternative jet fuels and other synthetic jet fuels. Health impact 

assessments (Morita et al., 2014) concluded that alternative fuels and technology improvements 

could reduce mortality rate by 72% and 59% respectively when compared with 2050 reference 

scenario. In recent times, major technological modifications have been made to increase engine 

efficiency and to reduce fuel consumption, although the projected growth and associated 

environment impacts can offset those improvements (Masiol and Harrison, 2014). Particularly 

implementation of these technologies in developing countries in near future will be a key 

challenge due to limited resources. On the other hand, studies showed consistent (8%) increase in 
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Asia flight departures (Wasiuk et al., 2016) between 2005 – 2011 and expected to see 10% 

(Brunelle-Yeung et al., 2014) increase in growth particularly in countries like China and India. 

Therefore, this growth in aviation activity can implicate aircraft emissions to cause significant air 

quality, climate and health impacts in coming years worldwide. Aviation is also one of the 

anthropogenic emissions sources that can affect environment at local scale (air quality near 

airports, noise), regional scale (air pollution) and global scale (air pollution and climate change) 

(Schäfer and Waitz, 2014) as shown in Figure 1.1. The areas highlighted in orange color 

rectangle boxes are the ones related to air quality impacts, which are some of the key interests in 

this dissertation.  

Like any other combustion source, aircraft emits various pollutants including Nitrogen 

oxides (NO + NO2 = NOx), Sulfur dioxides (SO2), Carbon Monoxide (CO), Volatile Organic 

Compounds (VOC), Carbon dioxide (CO2), Fine Particulate Matter (PM2.5) (particulate matter of 

size less than 2.5 microns) and other unburnt hydrocarbon related pollutants (Hazardous Air 

Pollutants) during various stages of flight activity. These emissions are mainly categorized into 

landing-takeoff (LTO) and cruise altitude aviation emissions (CAAE) based on the engine thrust 

and flight path. The LTO is further divided into idling, taxing, approach and climb out stages. 

Different stages of flight path emit different pollutants, for example during idling, unburnt 

hydrocarbons and CO emissions are high, and during cruising stage NOx emissions are higher. 

Dessens et al., (2014) mentioned that on a global scale, aviation NOx emissions are about 10% of 

on-road (50% of total traffic) and 20% of shipping NOx  (30% of total traffic) emissions. In the 

U.S, aviation NOx is three percent of the total transportation NOx, but near some major airports 

like Atlanta (ATL) and New York (JFK) it can contribute ~3% and ~15% to area NOx and non-

road NOx emissions respectively (Federal Aviation Administration, 2005). These emissions can 
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undergo various atmospheric transport and chemical changes by interacting with background 

emissions (from other non-aviation sources) locally near urban areas and in the upper 

troposphere. These pollutants can even perturb the greenhouse gases such as methane (CH4) and 

ozone (O3), thereby causing local-scale as well as global-scale air quality and climate impacts.  

 

Figure 1.1: Aviation emissions and their environmental impacts (Source: Masiol and Harrison, 
2014) and areas highlighted with orange boxes are some of the fields related to aviation air 
quality impacts.  
 

Early measurement studies (Clark et al., 1983) observed violations of the health-based 

standards for CO and hydrocarbons (HC), that contributed significantly to the existed 

photochemical oxidant issues near the airport terminals and runways at some of the major 

airports. Since then many LTO aviation emissions based modeling studies (Unal et al., 2005; 

Arunachalam et al., 2011; Woody et al., 2011) and observational studies (Turgut and Rosen, 
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2010; Nikoleris et al., 2011; Zhu et al., 2011) focused on key pollutants (O3, PM2.5, NOx , VOC) 

and their contribution in the vicinity of airports. These studies improved our understanding of air 

quality impacts from LTO aviation emissions and their sensitivities near urban and airport areas. 

As stated in Ratliff et al., 2009, almost ~150 airports in U.S are located near urban areas that are 

in non-attainment (i.e., areas that exceeded NAAQS (National Ambient Air Quality Standards)) 

for one or more criteria pollutants.  

Based on model predicted LTO air quality impacts, Brunelle-Yeung et al., (2014) showed 

~ 210 deaths per year in contiguous U.S with ~11 and 39 premature mortalities reductions due to 

desulfurization and NOx stringency policy scenarios. Another future year US major airports (99 

airports) risk analysis study (Levy et al., 2012) projected a factor of ~6 increase in 2025 

mortality when compared to 2005 (~180 deaths per year) due to LTO emissions. Overall these 

studies indicated consistent air quality (O3, PM2.5, NOx) and health impacts attributable to LTO 

aviation emissions for key pollutants. There is, however, no study on model assessment of 

Hazardous Air Pollutants (such as formaldehyde, acrolein and acetaldehyde) and their impacts 

near airports using a chemistry transport model. Research performed by Airport Cooperative 

Research Program (ACRP) ( Wood et al., 2008; Herndon et al., 2012) stated the research gaps 

(such as emission inventories missing low thrust HAPs emissions, emissions dependency with 

ambient conditions) and ongoing monitoring efforts to study HAPs near airports. These reports 

also stressed the need for quantifying the aircraft impacts through HAPs modeling near airports. 

One other known gap was lack of detailed HAPs emissions estimates for aircraft. Therefore, 

EPA and FAA (FAA, 2009) recently developed an aircraft-specific speciation profile, which is 

one major update to generate airport-specific HAPs emissions. 
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Similarly, there are large uncertainties associated with full-flight and CAAE emissions 

modeled air quality assessments. Globally, CAAE emissions (particularly NOx) are ~60 – 70% 

(Olsen et al., 2013) among the total full-flight emissions when compared to LTO emissions. 

These CAAE are not traditionally incorporated in regional scale modeling for studying air 

quality, but given the role of intercontinental transport, high convection and deep mixing in 

transporting pollutants from upper troposphere to surface ( Wild and Akimoto, 2001; Parrish et 

al., 2004; West et al., 2009; Parrish et al., 2010) and vice versa, it is imperative to consider even 

upper troposphere emission sources in assessing surface air quality impacts of aviation emissions 

in their entirety. Allen et al., (2012) stated that natural emissions of NOx from lightning can 

significantly increase upper tropospheric (20 ppbV) and surface (1.5 – 4.5 ppbV) ozone. 

Aviation is the only anthropogenic source that emits emissions directly into the upper 

troposphere, yet knowledge gaps still exists in assessing the magnitudes of CAAE impacts on 

surface air quality and their associated health impacts. Previous studies showed widely varying 

full-flight attributable health impacts estimates, ranging from ~ 405 (Morita et al., 2014) to ~ 

12,600 (Barrett et al., 2010) premature mortality per year due to aviation-attributable particulate 

matter. Most of these studies used coupled climate (Jacobson et al., 2011; Morita et al., 2014) 

and chemistry transport (Barrett et al., 2010)  global models with coarse resolutions (4o × 5o, 2o × 

2.5o) to arrive at their exposure estimates. This shows that high range of uncertainty is involved 

with health assessments related to CAAE, that perhaps could be improved through fine scale 

modeling for better characterization of air quality predictions as mentioned in Jacobson et al., 

(2011) and Yim et al., (2015). Despite these global models indicating higher mortality due to 

CAAE, very limited studies (Whitt et al., 2011) have focused on assessing the role of dynamic 

processes in transporting CAAE to surface and still remains as a process not well understood in 
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aviation air quality literature. Therefore in this study, for the first time, we have used fine scale 

model resolutions (108 × 108 km2, 36 × 36 km2) to quantify contributions of full-flight emissions 

on air quality at northern hemispheric and regional scales. We also studied the role of transport 

processes on CAAE at hemispheric scale.  

Overall goal of this thesis dissertation is to study the aviation-attributable perturbations that 

impact air quality at local, regional and global scales. The central hypothesis of this dissertation 

is that fine scale modeling provides better characterization (spatial heterogeneity and temporal 

variability) of aviation emissions impacts on air quality and health. To test this hypothesis, we 

conducted a model-based assessment of aviation emissions impacts using U.S EPA’s 

Community Multi-scale Air Quality (CMAQ) (Byun and Schere, 2006) modeling framework at 

multiple scales ranging from local (4 × 4 km2) to hemispheric (108 × 108 km2) scale. We used 

these enhanced modeling applications to address the uncertainties present in three main study 

areas: aviation-related HAPs, full-flight emissions impacts and transport of cruise altitude 

emissions to the surface. Investigating these areas will enhance our scientific understanding in 

modeling aircraft emissions for assessing their impacts on surface air quality, and likely provide 

an enhanced scientific basis for improved policy-making. The main objectives of the three study 

areas are:  

1. Estimate impacts of risk prioritized aviation-related HAPs near mid-sized airport due to 

LTO emissions and discuss the model’s ability to predict HAPs near an airport at 

different model resolutions (4 × 4 km2, 36 × 36 km2). Improve the model performance by 

modifying aircraft HAPs emissions during idling, and assess the aviation-attributable 

HAPs impacts (Chapter 2). 
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2. Quantify the full-flight (CAAE + LTO emissions) impacts on surface air quality and on 

overall troposphere at hemispheric scale using the CMAQ model. Compare coarse and 

fine resolution North America predictions and quantify the changes occurring in aviation-

attribution perturbations due to grid resolution (Chapter 3). 

3. Assess the transport of cruise altitude emissions to surface at hemispheric scale by using 

passive tracer based modeling. Additionally, tag the CAAE tracers in individual sub-

regions to study the intercontinental transport of aviation emissions and develop source-

receptor relationships (Chapter 4).  

Finally in Chapter 5, the final conclusions from all three studies were discussed along with 

the limitations. The future work to further improve the understanding of aviation-related air 

quality impacts was also highlighted in this chapter.  
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CHAPTER 2: EVALUATION OF MODEL-PREDICTED HAZARDOUS AIR 
POLLUTANTS NEAR A MID-SIZED U.S. AIRPORT1  

2.1 Introduction 

Aviation has experienced proliferative growth in the past few decades. Commercial 

aviation operations are rapidly increasing worldwide, with a growth rate of 61, 40, and 22 

percent in large, medium, and small hub airports (FAA, 2011). The average annual growth rate is 

predicted to increase around 4.6 percent from 2010 to 2030 (FAA, 2010). These quantitative 

projections clearly indicate substantial aviation growth in future. This growth implicates 

potential increase in aircraft emitted pollutants such as Nitrogen oxides (NOx), Sulfur oxides 

(SOx), Particulate matter (PM), and Volatile Organic Compounds (VOC) including Hazardous 

Air Pollutants (HAPs). Thus, there is a need to characterize impact of aviation emissions on local 

air quality particularly in the vicinity of an airport as a first step to assess their impacts on the 

environment and human health. Further, stringent emission standards on road transport (US 

EPA, 2014) will likely increase the relative contributions from aviation emissions that impact 

local air quality.  

Although significant research has been undertaken quantifying the impact of PM2.5, NOx 

and O3 near airports, there has been little focus on exposure assessment for HAPs. Airport-

related air-quality studies have focused mainly on NOx (Wood et al., 2008; Timko et al., 2010), 

PM2.5 (Mazaheri et al., 2009) and CO due to their relatively higher contribution to the overall 

																																																								
1 This chapter previously appeared as an article in Atmospheric Environment. The original 
citation is as follows: Vennam, L. P., Vizuete, W., & Arunachalam, S. (2015). Evaluation of 
model-predicted hazardous air pollutants (HAPs) near a mid-sized US airport. Atmospheric 
Environment, 119, 107-117. 
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airport-related emissions (Schürmann et al., 2007). These studies measured emissions during 

landing and takeoff conditions (LTO) and showed that these pollutants have significant impact 

on air quality near the airport. Air-quality modeling studies have reported maximum impacts of 

O3 and PM2.5 of 56 ppbV and 25 µg/m3 near Hartsfield-Jackson airport in Atlanta (Unal et al., 

2005). Arunachalam et al., (2011) showed that the LTO emissions could have 28-35% of impacts 

in PM2.5 occurring 300km away from the airport due to secondary formation. Woody et al., 

(2011) reported that the other background emissions (from non-aviation sources) can have an 

important role on the aviation-attributable impacts and the PM2.5 impacts in the airport grid-cell 

is approximately twice the national average. These studies show that airport emissions have a 

significant impact on air quality near airports and suggest that there could be significant 

exposures of other emitted pollutants like HAPs.     

HAPs are a listing of 187 pollutants that are known or suspected to cause serious health 

effects specifically categorized in the 1990 Clean Air Act (CAA, Section 112). Recent studies 

(Laurent and Hauschild, 2014) suggested that carcinogenic pollutants like HAPs have not been 

controlled sufficient enough to protect public health. They reported that some of the key HAPs 

such as formaldehyde and acrolein contributed only 6% and 0.2% of total NMVOCs (non-

methane volatile organic compounds), but account for 90% cancer effects and 89% non-cancer 

effects respectively. The higher health risk pertaining to HAPs and their chemically reactive 

nature in the atmosphere calls for more attention in local scale air-quality studies. Prior aviation 

studies (Herndon et al., 2012) indicated that 15 of the 187 identified HAPs are observed in 

aircraft exhaust. An aircraft-attributable health study (Levy et al., 2008) found that significant 

local health effects such as cancer and cardiopulmonary risks were caused from air toxics in spite 

of their relative low contribution (5–10%) to total aviation emissions. However, they ranked 
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HAPs as lower in priority compared to both PM2.5 and O3 due to aircraft emissions. Studies have 

found that when compared to LTO operations there were 80 – 90% higher emissions during 

idling-taxing, emitting several HAPs including: formaldehyde, acetaldehyde, benzene, ethylene, 

propene and butenes + acrolein (Anderson et al., 2006; Herndon et al., 2006). Spicer et al., 

(1996) also reported that these seven pollutants make up ~75% of the volatile organic compound 

(VOC) emissions that are being detected in aircraft exhaust. According to the Airport System 

Performance Metrics database (ASPM, FAA), the average taxi time at mid-sized to large-sized 

airports is reported in the range of 10 – 20 minutes, which is significant amount of time to emit 

HAPs.  

Though idle and taxi activities have the potential to impact air quality near airports, 

limited studies exist with detailed model-based characterization of HAP emissions. With such 

limited knowledge of aviation HAPs airport authorities are unable to provide effective guidance 

to state and local constituencies. One known gap is the lack of detailed HAPs emissions 

estimates from aircraft during LTO operations. In this study we have attempted to reduce these 

uncertainties by using new FAA-EPA generated aircraft-specific speciation profiles (FAA, 2009) 

for Total Organic Gases (TOGs) that estimate individual HAPs and differentiating emissions by 

aircraft operating modes. To evaluate this model and current HAP modeling approaches we took 

advantage of field observational data available at the T.F. Green airport (PVD) in Providence, 

Rhode Island. The detailed modeling and evaluation performed in this study provides an 

assessment of the tools that help airport regulatory authorities in making any decisions and 

regulators to evaluate air quality and potential health risk associated with the HAPs in the 

vicinity of an airport. 
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2.2 Methodology 

 We focused on eight major aviation health-risk prioritized (Levy et al., 2008) HAPs: 

formaldehyde, acetaldehyde, acrolein, 1,3-butadiene, benzene, toluene, xylene and naphthalene. 

Based on their toxicity levels, (Wood et al., 2008) also ranked these HAPs as important near-

airport exposure pollutants. 

2.2.1 Air Quality Model (CMAQ)  

We used the Community Multi-scale Air-Quality (CMAQ) (Byun and Schere, 2006) 

model to evaluate the changes in HAPs emissions, as well as their impacts on ambient air 

quality. Table 2.1 shows the model scenarios description and domain specifications considered in 

this study. Figure 2.1 shows both 36 × 36 km2 and 4 × 4 km2 horizontal resolution model 

domains whose model results for year 2005 were used for this evaluation.  

  

Figure 2.1: 36 × 36 km2 Continental US domain (left, with black square showing the 4 × 4 km2 
model domain) and 4 × 4 km2 northeast US (right) domain with location of PVD airport (black 
aircraft icon).  
 

The CMAQ 4 × 4 km2 scale resolution simulations were conducted in the Northeast U.S. 

for 2005 annual year with 100 x 100 horizontal grid cells as shown in Figure 2.1 (black square, 

left side). Emissions from all sources go up to 22 vertical layers (~ 680 hPa) and aircraft 

emissions go up to 17 layers (~ 850 hPa, Figure A1) to represent the LTO cycles within the 
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lowest ~1000 meters (3000 ft). The T.F. Green airport (PVD) in Providence, Rhode Island is 

labeled in Figure 2.1 with an aircraft icon. CMAQ v5.0.2 model with revised Carbon Bond 

(CB05) multi-pollutant mechanism (Yarwood et al., 2005; Whitten et al., 2010; CMAS, 2014) 

and explicit air toxics chemistry (CB05TUMP_AE6_AQ) was used for the model simulations. 

The meteorology input data (34 layers, ~130 hPa, Figure A1) were generated using the 

Mesoscale Meteorological (MM5 v3.7.2) model (Grell et al., 1994). We used 2005 National 

Emissions Inventory (NEI) (U.S EPA, 2007) to generate emissions for non-aviation sources, 

which were processed using Sparse Matrix Operator Kernel Emissions (SMOKE) model 

(Houyoux et al., 2000) to generate grid-based emissions that are speciated and temporally 

allocated. The initial and boundary conditions are nested from 12 × 12 km2 CMAQ simulations 

for the Eastern U.S.  

Table 2.1: Specifications and description of modeling scenarios in the study 

a) CONUS: Continental United States, b) NEI: National Emissions Inventory, c) EDMS: Emissions 
Dispersion Modeling System, d) AEDT: Aviation Environmental Design tool e) PVD: T.F.Green airport, RI 
 

In this study, the aviation emissions were based on FAA’s Aviation Environmental 

Design Tool (AEDT) (Wilkerson et al., 2010) segment data. This tool predicts emissions and 

Scenario 
name 

Period Grid Cell 
Resolution 

Domain CMAQ 
version 

Background 
emissions 

Aviation emissions 

Base_36km 01/01/05 -
12/31/05 

36 × 36 km2  CONUSa 4.6 NEIb-2005 No 

Sensairp_36k
m 

01/01/05 -
12/31/05 

36 × 36 km2  CONUS 4.6 NEI-2005 EDMSc emissions 
(99 major airports) 

Base_4km 01/01/05 -
12/31/05 

4 × 4 km2  Northeast 
US 

5.0.1 NEI-2005 No 

Sensairp_4k
m 

01/01/05 -
12/31/05 

4 × 4 km2  Northeast 
US 

5.0.1 NEI-2005 AEDTd emissions for 
PVDe airport 

Sensairp_4k
m_4perc 

07/01/05- 
08/31/05 

& 
11/01/05-
12/31/05 

4 × 4 km2  Northeast 
US 

5.0.1 NEI-2005 AEDT emissions for 
PVD airport with 

modified 4% thrust 
setting 
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aircraft fuel use for all global commercial flights. From this highly resolved emissions inventory, 

we selected flights arriving and departing from the PVD airport and processed them through 

AEDTProc (Baek et al., 2012) . AEDTProc is a processing tool that takes chorded segments of 

individual flight emissions and then creates CMAQ model-ready emissions inputs that were then 

merged with the other non-aircraft emissions inventories. Speciated HAPs emissions were 

estimated in AEDTProc using Total Organic Gases (TOG) speciation profile (FAA, 2009). This 

speciation profile (Table A1) for aircraft engines was established by FAA and U.S. EPA based 

on APEX (FAA, 2009) and EXCAVATE (Anderson et al., 2006) airport measurement 

campaigns.  

  

 
Figure 2.2: Pie chart representing the percentage contribution from HAPs to annual airport TOG 
emissions in the sensairp_4km case (left) and monthly airport emissions in the airport grid-cell 
(right). 
 

For annual 2005, a total of 6.12 short tons of key HAPs were emitted by aircraft 

representing 10% of total anthropogenic sources HAPs in the PVD grid cell. The pie chart in 

Figure 2.2 (left) illustrates the composition of those emissions. NON-HAP TOG, defined as 

VOCs other than HAPs is the largest contributor to TOG, and is further speciated into lumped 

chemical species based upon the CB05 chemical mechanism. Formaldehyde, acetaldehyde, and 
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acrolein are key contributors (14.2%, 4.4%, 2.4%) to the annual aircraft HAPs emissions. Note 

that AEDT does not include emissions from ground supporting equipment (GSE), ground 

auxiliary vehicles (GAV) and stationary sources (Supp. Material Section2, Table A5). Figure 2.2 

(right) shows the monthly total aircraft emissions of HAPs and shows the lack of any seasonal 

trend i.e., higher emissions during lower temperatures (during winter months, emission index is 

~3.5 times higher at 0° C compared to 25° C) as mentioned in observation based studies (i.e., no 

(Herndon et al., 2012) temperature dependency in the emission inventory). 

Finally we merged non-aviation emissions (background sources) with aviation emissions 

to generate emissions input for Sensairp_4km case. Two annual model simulation scenarios 

named, Base_4km and Sensairp_4km, are shown in Table 2.1. The difference in output between 

these two cases accounts for the incremental aviation emissions contribution to ambient air 

quality. 

For this study we also completed an alternate emissions scenario (Sensairp_4km_4perc in 

Table 2.1) to assess sensitivity due to increased taxi/idle condition hydrocarbon emissions based 

on the findings from previous aircraft measurement studies ( Herndon et al., 2006; Beyersdorf et 

al., 2012) . These observational studies indicated that the observed hydrocarbon emissions 

indices (g/kg) are a factor of ~1.5–2.2 times greater than the International Civil Aviation 

Organization (ICAO) specified certification benchmarks that are typically used to construct 

aircraft emissions inventories. Therefore, we considered the latest 2005 AEDT emissions, and 

modified the idle hydrocarbon emissions near PVD airport using the idling time spent by each 

flight and extrapolated 4% emission index (HC_EI_4perc) from the ICAO database for different 

engines (detailed methodology in supplementary section A1.1.2). These changes resulted in 
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doubling of aircraft LTO emissions at PVD when compared with sensairp_4km. However, 

compositional profile of emitted HAPs and the lack of seasonal pattern remained the same. 

 As shown in Table 2.1, we performed this sensitivity model simulation for 4 months 

(July–August (summer), November–December (winter)) to create the Sensairp_4km_4perc 

(background + 4% thrust airport emissions) case. Therefore, the difference between 

Sensairp_4km_4perc and Base_4km cases gives us the incremental aviation contributions with 

the improved idle emissions.  

2.2.2 Observational Data 

Availability of near-airport field-based measurements of HAPs at PVD provided us the 

opportunity for detailed model evaluations. These included measurements of HAPs completed by 

the Rhode Island Department of Environmental Management (RIDEM) in and around the PVD 

airport. In the RIDEM study campaign, sampling was conducted at five monitor sites near the 

airport for the period April 2005 to August 2006. Four of these sites (Fieldview, Firestation, 

Lydick, Smith) are located near the airport and one site (Draper) is located 2.3 miles from the 

main runway (RIDEM, 2008).  The Fieldview site is ideally located near the main runway where 

86% of airplane activity at PVD occurs (Dodson et al., 2009). All three sites Fieldview, 

Firestation and Lydick fall in the PVD airport 4 × 4 km2 grid-cell in our modeling domain. Along 

with the five RIDEM sites near the airport, we used four additional sites from EPA’s Air Quality 

System (AQS) to understand the relative difference in airport-attributable concentrations 

between urban, rural and airport sites. Figure 2.3 shows the spatial location of AQS sites (red 

symbols) and RIDEM sites (blue symbols). Table A3 gives the description of these sites.  
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 Figure 2.3: AQS monitoring sites (left, red pointers) with location of PVD airport (red aircraft 
icon) and RIDEM monitoring sites (right, blue pointers) around the airport (Courtesy: Google 
map). 
 

We also compared model predictions against observations from the National Air Toxics 

Trends Stations (NATTS, (US EPA, 2009)) (Supp. Material Section A3.2). Figure A5 shows the 

U.S. map with red aircraft symbols indicating the 99 airports and blue pointers indicating the 

collocated NATTS sites near the airports for year 2005. Table A4 shows the location of NATTS 

sites and major airports in CMAQ model grid cells.  

2.2.3 HAPs estimates from NATA 

CMAQ predicted annual average concentrations were compared with annual estimates 

from the National Air Toxics Assessment (NATA) (US EPA, 2011). NATA is a state-of-the-

science screening tool developed by U.S. EPA in collaboration with state and local agencies, to 

evaluate the health risks involved with air toxics both at regional and local level. NATA outputs 

are at census-block resolution for the entire nation. For these estimates, NATA used a 

combination of predictions from the AERMOD dispersion model for primary and CMAQ (using 

12×12 km2 resolution) for the secondary contribution of formaldehyde, acetaldehyde, and 

acrolein. The recent 2005 NATA annual modeling data were obtained from updated emissions 

inventory that considered airport emissions from 20,000 U.S. airports (US EPA, 2011).  

Pawtucket)

Providence)
E.Providence)

W.Greenwich)

!"

!"#$%&'()*+,")-%./01%23%456%7-8%!9:;"8%
/)8'*"-#%<);%=;)>"8'-?'%0";@);,

A">'%&BCD/%EFFG%5'7(+;'5'-,%(",'(%7;'%($)H-

0-%'I';?"('%)<%5)8'*J87,7%?)5@7;7,">'%7-7*9("(

!"#$ %&'&"()

%*"&+

!"$,-."$/

01-"2

3#'4$#



 

	 18 

2.3 Results 

 In this section, we organize our results into 3 major sub-sections – model evaluation 

against observations, comparison of model predictions from two different resolutions, and finally 

comparison against another published source. First we show the model evaluation for 4 × 4 km2 

applications against 4 × 4 km2 observational data and discuss the trends in aircraft contributions 

in the airport grid-cell. We then compare 4 × 4 km2 model performance with 36 × 36 km2 and 

discuss differences observed between the two resolutions. Later we present the aircraft emission 

sensitivity results and the increase in aircraft-attributable concentrations due to the modified idle 

aircraft emissions. Finally we compare our CMAQ model results with those from EPA’s NATA 

to understand the differences between these two model predictions.   

2.3.1 Model Evaluation: 4 × 4 km2 grid resolution 

The sensairp_4km simulation’s ability to predict concentrations accurately varies by 

pollutant and spatial location as shown by the overall Normalized Mean Error (NME) and 

Normalized Mean Bias (NMB) in Table 2.2. From Table 2.2 (top panel), the NME averaged for 

all sites is between 36–70% for all pollutants except for acrolein (NME: ~90%). Acrolein shows 

the largest NME of ~90% regardless of site location. This high underprediction of acrolein has 

been observed in prior studies. For example, (Luecken et al., 2006) pointed the uncertainties in 

emissions and highly challenging acrolein sampling (Seaman et al., 2009) as a source of 

observational difficulty. A recent study (Cahill, 2014) also measured acrolein background 

concentrations that were higher than the EPA’s reference concentrations (for health risk), but due 

to sparse data they were unable to come to a definite conclusion on acrolein exceedances and 

their ambient levels.  
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Table 2.2 shows that NME was higher for the AQS sites when compared to RIDEM sites; 

36% higher for xylene and 23% higher for toluene. Consistent with the NME results the model 

overpredicted (NMB: 24–41%) concentrations of xylene, toluene and benzene at all sites with 

the W. Greenwich and E. Providence AQS sites (Figure A3) showing the largest overpredictions. 

These errors for xylene and toluene are mainly driven by the W. Greenwich AQS site (Figure 

2.3) at a rural location 33 km from the airport. This AQS site had a NME of 100-200% 

consistently throughout the year for xylene and toluene.  

The RIDEM sites had a higher NME for formaldehyde (11%) and 1,3-butadiene (7%) 

when compared to the AQS sites. As shown in Table 2.2 (bottom panel) the formaldehyde NMB 

is -52% at RIDEM sites and -31% at AQS sites. The largest underprediction of formaldehyde 

was at the Fieldview RIDEM site with a NMB of -60%. Spatially (Figure A2), observations 

show ~1.5 times higher concentrations near Fieldview (3.93 µg/m3) when compared to all other 

sites. The model-predicted period average of 1.44 µg/m3 was far below the observed high 

concentrations at the Fieldview site.  

To understand the contribution that the new highly resolved aircraft emissions had on 

HAP model performance we re-ran the simulation without aircraft emissions (base_4km). The 

NME and NMB values from base_4km are shown in Table 2.2 inside parenthesis. From Table 

2.2 it is clear that aircraft emissions had an impact of less than 0.1% on model error at the AQS 

sites. The largest changes in model prediction from aircraft emissions occurred at the RIDEM 

sites where additional aircraft emissions improved the NME for formaldehyde (1%) and xylene 

(2.3%). It is clear from NMB that additional formaldehyde emissions reduced the 

underprediction by 1.1%. The increased aviation emissions had the largest impact on NMB and 

NME at the Fieldview, Lydick, and Firestation airport sites. At the RIDEM sites the additional 
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aircraft emissions did increase the NME in the case of 1,3-butadiene (4.6%), benzene (0.4%) and 

toluene (0.1%). The model was already overpredicting these species, so the addition of aircraft 

emissions caused the model to increase overprediction for these species. 

Table 2.2: Annual NME (%, top) and NMB (%, bottom) using pollutant predictions from the 
sensairp_4km averaged for all sites and differentiating RIDEM and AQS sites.  Also shown in 
parenthesis are the base_4km case (with no airport emissions) values. 
 

Pollutant All sites RIDEM AQS 
 NME  NME NME 

Acrolein 91.6 (91.6) 92.4 (92.4) 92 (92) 
Formaldehyde 49.1 (49.8) 52.4 (53.3) 41 (40.9) 
Acetaldehyde 33.6 (33.6) 33.1 (33.1) 34.8 (34.8) 
1,3-Butadiene 57.6 (57.5) 60.5 (57.9) 53.9 (53.8) 

Xylene 69.1 (70.5) 55.3 (55.3) 89.6 (89.6) 
Benzene 58  (57.5) 58.5 (58.1) 57.2 (57.1) 
Toluene 71.7 (71.6) 61.7 (61.6) 84.2 (84.2) 

 
Pollutant All sites RIDEM AQS 

 NMB  NMB NMB  
Acrolein -91.6 (-91.6) -92.4 (-92.4) -91.7 (-91.7) 

Formaldehyde -45.6 (-46.4) -51.5(-52.6) -31.0(-31.0) 
Acetaldehyde -7.1 (-7.6) 1.1 (0.3) -27.6(-27.6) 
1,3-Butadiene -2.3(-5.6) 9.0(3.1) -16.4(-16.6) 

Xylene 24.4(28.7) 17.6(17.4) 42.8(42.8) 
Benzene 30.2(29.8) 31.9(31.2) 28.1(28) 
Toluene 41.2(41.1) 28.5(28.4) 57.0(57.0) 

 

From the model performance data it is clear that aviation emissions only impacted HAP 

concentrations at monitors that were within 1–2 km from the airport. Thus, our analysis focused 

on the contributions of HAPs from the newly added emissions in just the PVD airport grid-cell 

(which contains RIDEM monitors Fieldview, Lydick and Fire Station). In supplementary 

document, in Figures A4a-c and Table A8 we showed the spatial concentrations plots and the 
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contributions of the aircraft-attributable for January and July months, which are in the range of 

0.5–28% in the airport grid-cell. Figure 2.4 shows the monthly averaged increases in 

concentrations of airport-related HAPs (sensairp_4km minus base_4km, bottom) and total 

concentrations from all sources (sensairp_4km, top) in the airport grid-cell. Though aviation 

emissions of HAPs were relatively constant throughout the year, the contributions of HAPs 

concentrations were higher during winter months than summer months due to their shorter 

lifetime in the atmosphere during summer than winter.  

 

Figure 2.4: Monthly average all source (sensairp_4km) (top) and airport-attributable 
(sensairp_4km minus base_4km) (bottom) concentrations in the PVD airport 4×4km grid-cell. 
 

Figure 2.5 shows the time series of observed and modeled (sensairp_4km) formaldehyde 

concentrations near RIDEM sites (not included Draper due to fewer hours of observation 
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available) for the RIDEM study campaign period. The model was able to capture the temporal 

variability near all sites, although it is clear that the concentrations are underpredicted. The 

underprediction is high mainly near Fieldview runway site where the highest formaldehyde 

concentrations were predicted. The model was also unable to predict the largest observed peaks 

during the summer months. 

 

Figure 2.5: Time-series of modeled and observed formaldehyde daily average concentrations at 
RIDEM sites. 
 

To understand the primary (directly emitted) and secondary (formed due to atmospheric 

chemistry) contribution to total formaldehyde in the airport grid-cell we looked at these 

concentrations separately. In this simulation of CMAQ, the formaldehyde emissions were 

reported explicitly as primary formaldehyde (FORM_PRIM) and tracked separately from total 

formaldehyde, which also includes secondarily produced formaldehyde via VOC oxidation. 
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Thus, from the total predicted formaldehyde (FORM) concentrations we subtracted primary 

(FORM_PRIM) to obtain the secondary concentration (FORM_SEC). 

 

 

Figure 2.6: Secondary and Primary Formaldehyde monthly averaged concentrations from all 
sources (left) and airport-attributable (right) in the PVD airport grid-cell from April to December 
2005. Also shown as labels on each bar plot in the left figure are monthly averaged observational 
data from three RIDEM sites (Fieldview, Lydick, Firestation) that fall in the PVD 4 × 4 km2 grid 
cell.  

In Figure 2.6, the monthly average concentrations of formaldehyde are reported at the 

PVD 4 × 4 km2 grid cell along with the primary and secondary contribution. In the PVD airport 

grid-cell, nearly 50 – 85% of the FORM in the grid cell is secondary (Figure 2.6, left side). It is 

clear that any additional primary formaldehyde would have only a minimal impact on total 

formaldehyde concentrations. All the numbers shown as a label on each bar plot on the left are 

the averaged observed values in the PVD grid cell, and these are ~1.5 – 2 times higher than the 

model predictions. Further, the additional 50% of primary formaldehyde emissions from aircraft 

source in the airport grid-cell is insufficient to match observed concentrations near the airport. 

Also shown is the airport-attributable contribution (Figure 2.6, right side) in the PVD airport 

grid-cell; here 90% is from primary formaldehyde with only 8 – 9% secondary contributions 

limited to summer months. However, we also observed that the secondary components of 
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formaldehyde, acetaldehyde and acrolein contribute 3 – 20% to total PVD-attributable 

concentrations in the surrounding grid cells (16 – 20 km). 

Formaldehyde is one of the most highly reactive HAP where 80 – 90% of the 

concentrations in the atmosphere occur due to secondary formation from VOCs such as methane, 

isoprene and other alkenes. Prior studies ( Simon et al., 2010; Luecken et al., 2012) have 

reported uncertainties in both emissions and chemistry of VOC precursors, which can introduce 

bias in formaldehyde and acetaldehyde predictions.  

2.3.2 Comparison of 4 × 4 km2 with 36 × 36 km2   

 In this section, we compared 36 × 36 km2 and 4 × 4 km2 model performance near PVD 

airport to quantify the differences between coarse and fine resolution model predictions. Table 

2.3 shows the model performance of 36 × 36 km2  (sensairp_36km) and 4 × 4 km2  

(sensairp_4km) model predictions near RIDEM and AQS sites. The overall U.S. wide HAPs 

(sensairp_36km) model evaluation with NATTS observational data (only sites collocated near an 

airport) is included in the supplementary material (Figure A5 and A6). It is also important to note 

that emission inventories were developed differently for sensairp_36km and the sensairp_4km 

simulations. Table A7 shows up to 30% differences in emissions of HAPs at the PVD grid cell 

for all pollutants except for toluene. For toluene, we observed a  ~75% difference due to not 

including auxiliary and ground equipment sources emissions in the sensairp_4km simulation. 

Thus, toluene was not included in this analysis.  

When compared with sensairp_36km, the sensairp_4km simulation shows a reduction in 

NME when averaged across all RIDEM and AQS sites: acrolein (2%), formaldehyde (6%), and 

acetaldehyde (1.5%). There was an increase in NME of 4.8% for 1,3-butadiene, 4.1% for xylene, 

and 15.8% for benzene. Due to the domain-wide change in grid resolution, the NME and NMB 
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for both RIDEM and AQS sites were impacted. For the AQS sites, the higher resolution reduced 

NME for all pollutants by up to 8% for formaldehyde and acetaldehyde. The exception was 

benzene where NME increased by 10% driven by higher overpredictions. The RIDEM sites also 

showed increases in NME for benzene, xylene, acetaldehyde, and 1,3-butadiene. For these 

pollutants the increased grid cell resolution caused increases in predictions as shown by higher 

NMB. For 1,3-butadiene, acetaldehyde, xylene this caused underpredictions to become 

overpredictions. For formaldehyde (5%) and acrolein (2%) alone, the NME was lower with a 4 × 

4 km2 resolution.  

 Table 2.3:  Annual NME (%, top panel) and NMB (%, bottom panel) from all sources at (36 × 
36 km2) and (4 × 4 km2) cases at all sites and differentiating between RIDEM and AQS sites  
 

Pollutant All sites RIDEM AQS 
 36-km  4-km 36-km 4-km 36-km 4-km 

Acrolein 93.6 91.6 94.2 92.4 92.8 92 
Formaldehyde 55.0 49.1 57.3 52.4 49.3 41.0 
1,3-Butadiene 52.8 57.6 47.5 60.5 59.5 53.9 
Acetaldehyde 34.8 33.6 31.6 33.1 42.9 34.8 

Xylene 65.0 69.1 42.4 53.0 93.3 89.6 
Benzene 42.2 58.0 38.1 58.5 47.2 57.2 

 

Pollutant All sites RIDEM AQS 
 36-km 4-km 36-km 4-km 36-km 4-km 

Acrolein -93.5 -91.6 -94.2 -92.4 -92.6 -91.7 
Formaldehyde -54.2 -45.6 -57.3 -51.5 -46.4 -31.0 
1,3-Butadiene -36.6 -2.3 -30.0 9.0 -44.8 -16.5 
Acetaldehyde -22.4 -7.1 -15.6 1.1 -39.3 -27.6 

Xylene 1.4 24.4 -13.5 12.6 20.0 39.2 
Benzene 5.2 30.2 6.8 31.9 3.3 28.1 

 

The Fieldview site is closest to the airport and serves as an assessment of near-airport 

exposures. Figure 2.7 presents the NMB from different domain resolutions at Fieldview site. In 

the case of 1,3-butadiene and xylene, 4 × 4 km2 showed slight overprediction whereas 36 × 36 
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km2 showed an underprediction. Overall the model performance improved in right direction, but 

slightly overpredicted in 4 × 4 km2. In the case of acetaldehyde and formaldehyde, corresponding 

improvements by 20% and 5% respectively were observed in the 4 × 4 km2 model predictions 

when compared with 36 × 36 km2.  

         

Figure 2.7: Comparison between sensairp_36km and sensairp_4km model scenarios normalized 
mean bias (%) at the Fieldview site. 
 

2.3.3 Sensitivity of Aircraft emissions  

The sensairp_4km simulation with aircraft emissions still underpredicts the HAPs 

concentrations near the airport. The characterization of aircraft emissions could be modified by 

considering lower thrust (4%) during idle conditions, which are usually not included in the 

emission inventory. As described in section 2.1.1 aircraft emissions were increased and model 

simulations were completed for four months (July–August and November–December) including 

summer and winter season. Model evaluation of this increased emission case 

(sensairp_4km_4perc) was compared with the standard 7% thrust emissions case 

(sensairp_4km). This change will impact formaldehyde the most since it is the dominant 

unburned hydrocarbon emitted during taxing and idling. Therefore, we showed only 

formaldehyde results here.  
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Table 2.4: Difference in NME [sensairp_4km (NME) minus sensairp_4km_4perc (NME)] at the 
RIDEM sites for four months. 
 

 July August November December 

Firestation 1.30 1.65 2.93 2.75 

Fieldview 0.91 0.85 1.91 2.84 

Lydick 1.61 1.30 3.96 4.10 

Smith 0.32 0.41 0.44 0.83 

 

 

 

 Figure 2.8: Top panel shows bar plot of formaldehyde aircraft emissions differences at the PVD 
airport grid-cell between sensairp_4km_4perc and sensairp_4km simulations with their fractional 
increase value shown as label on top of each bar. Bottom panel shows the primary (left) and 
secondary formaldehyde (right) aircraft attributable increases in the sensairp_4km_4perc 
simulation when compared with sensairp_4km. 
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In Figure 2.8 (top panel) we compared 4% (sensairp_4km_4perc) thrust emissions and 

7% (sensairp_4km) thrust idle emissions near PVD airport. The 4% emissions are double that of 

the 7%, and show an increase of 0.25–0.3 tons/month for all four months considered. This 

increase is comparable to the findings from observational studies. With these updated emissions 

we show in Table 2.4 an improvement of 0.5 – 4% in NME at the RIDEM sites in the case of 

formaldehyde. At the AQS sites however (which are located further downwind from the airport), 

there was no change in model performance with updated emissions. The largest change in NMB 

(2 – 4%) is observed at the Firestation and Lydick sites followed by the Fieldview site (NMB: 

0.8 – 1%). We also observed that the model improvement is higher (2%) during winter months 

than summer months in this sensitivity case suggesting the transport of primary formaldehyde 

(Figure 2.8, bottom) to downwind sites. 

Figure 2.8 (bottom panel) also shows the increase of formaldehyde concentrations at the 

PVD airport grid-cell as a result of the additional emissions. The primary formaldehyde (left 

plot) increase (0.06 – 0.07 µg/m3) was higher during winter months and the secondary 

formaldehyde (right plot) increase (0.0030 – 0.0035 µg/m3) was higher during summer months. 

Overall the total formaldehyde (primary + secondary) airport concentrations increased by 2 – 2.5 

times due to the increased emissions.  

Though we doubled airport emissions of formaldehyde, we did not observe a significant 

increase in model performance. Even by increasing the aircraft emissions by a factor of 10, we 

only observed a 10 – 20% reduction in NME for formaldehyde predictions. As having such high 

aircraft emissions near a mid-sized airport like PVD is unrealistic, we suspect other uncertainties 

in the modeling system such as chemistry, meteorology, and other emission sources (not aircraft-

related) require further investigation.  
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2.3.4 Comparison of 4 × 4 km2 with NATA estimates 

 Currently, if a risk assessment of airport HAPs is conducted regulators could rely on the 

NATA assessment tool for their concentration estimates. The NATA estimates are only given as 

mean annual concentrations at a census tract level. Further, NATA does not report a mean annual 

concentration for the PVD airport census tract (Fieldview site in Figure A7) and we assume it 

could be likely due to no population living in the tract (FIPS code: 4400309800). Despite these 

shortcomings this would be the tool likely used by policy-makers to assess the health impacts 

from the PVD airport.  

The observational data provided by the RIDEM and AQS sites were used to evaluate 

HAP concentrations predicted by both NATA and CMAQ (sensairp_4km) simulation. The 

CMAQ predictions and observational data were averaged over the period of April – December 

2005. Based on these values we calculated NME and NMB shown in Table 2.5. We did not 

include acrolein due to sparse observational data.  When looking at all sites, CMAQ shows an 

improvement of NME of 7.4% for 1,3-butadiene reducing bias by ~23%. The bulk of this 

improvement occurred at the RIDEM sites where NATA shows a NMB of -24.1% and CMAQ 

only a 6.7%.  NATA is showing a better performance for all other pollutants with a maximum 

improvement of NME for all sites of up to 15% for toluene. In the case of formaldehyde, NATA 

model predicted higher concentrations reducing NMB for RIDEM sites by 9%. These increased 

concentrations of formaldehyde could be also partly due to the small double counting in NATA 

for non-point sources, where the secondary formation from dispersion model (simple secondary 

formation calculated) was not removed after including secondary formation from CMAQ (EPA, 

2011). This could be compensating for part of the model underprediction. We also believe that 
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the census tract scale dispersion modeling predicted some of the primary concentrations much 

better than the 4 × 4 km2 CMAQ, and thus reduced the NME. 

Table 2.5: Comparison of CMAQ (sensairp_4km) and NATA model with NME (%, top panel) 
and NMB (%, bottom panel) values for all sites and differentiating RIDEM, AQS sites.  
 

 All sites RIDEM AQS 
 NATA CMAQ NATA CMAQ NATA CMAQ 

Acetaldehyde 12.5 15.9 6.1 10.0 25.2 27.6 
1,3- Butadiene 27.9 20.5 24.1 13.4 32.9 29.9 

Xylene 24.6 26.4 19.1 21.1 31.9 33.4 
Toluene 13.7 30.3 13.6 33.0 13.9 26.7 
Benzene 17.4 31.3 14.5 32.2 21.3 30.0 

Formaldehyde 33.8 42.7 39.4 48.5 22.6 31.0 
 

 All sites RIDEM AQS 
 NATA CMAQ NATA CMAQ NATA CMAQ 

Acetaldehyde -8.5 -10.7 -0.2 -2.3 -25.2 -27.6 
1,3- Butadiene -27.9 -4.4 -24.1 6.7 -32.9 -19.2 

Xylene -15.0 8.8 -10.9 21.1 -20.4 -7.6 
Toluene 6.6 24.7 2.6 33.0 11.9 13.7 
Benzene 12.6 25.6 9.0 32.2 17.4 16.8 

Formaldehyde -33.8 -42.7 -39.4 -48.5 -22.8 -31.0 
 

Figure 2.9 shows box and whisker plots of observational data and hourly averaged 

CMAQ predictions at Smith and Providence sites. From Figure 2.9 we see that CMAQ predicted 

mean values, 25th, 75th quartiles (box lower and upper end) and interquartile range (1.5* IQR, 

whiskers) are within the ±10 –20% range of observational data, except for formaldehyde. Also 

shown in Figure 2.9 are the NATA predicted annual concentrations (star symbol) as overlay at 

Smith, Providence census tracts. In the case of formaldehyde, CMAQ predicted minimum and 

maximum concentrations of 0.28 – 2.56 µg/m3 and 0.4 – 2.98 µg/m3 near Smith and Providence, 

whereas NATA shows a mean concentration of 1.54 µg/m3 and 1.76 µg/m3. The NATA annual 
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mean concentrations are close to both CMAQ and observed mean values, but it is clear that 

NATA is reporting aggregate time-averaged information (missing many of the peak 

concentrations at shorter time-scales that are masked by presenting annual averages).  

 

  

Figure 2.9: Box plots comparison of CMAQ data with observation data for April–December 
2005 with an overlay of NATA census tract annual value (star symbol) near one RIDEM (Smith) 
and one AQS (Providence) site.  
 

2.4 Future work and conclusions 

 In the future, additional efforts towards increased HAPs observations campaigns and 

evaluation of updated models ((CMAS, 2015), chemistry updates) are necessary. Combining 

both temporally and spatially highly resolved model predictions and available observational data 

could be a better direction to obtain HAPs concentrations near localized source for health 

assessment purposes in near future. Advanced techniques such as Bayesian Maximum Entropy 

(Nazelle et al., 2010) need to be tested for this kind of application. Prior studies (Friedfeld et al., 

2002) already integrated regression models with time series data to predict the primary and 

secondary HAPs.  Further investigation of the secondary formation chemistry for key air toxics 

in the atmosphere and its implementation in the models is crucial.  
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In this study, we completed a CMAQ model-based characterization of HAPs near a mid-

sized U.S. airport (T.F. Green airport, Providence, Rhode Island). The simulations included a 4 × 

4 km2 grid resolution with a higher fidelity aircraft emissions inventory and evaluated with 

highly spatially resolved observational data collected near the T.F. Green airport. The 4 × 4 km2 

model had a NME for acrolein of 90% and for all HAPs species within the range of 36–70%. 

The addition of aircraft emissions improved predictions mainly near the airport monitors. Our 

model results indicated airport contributions to HAPs concentrations in the airport grid-cell vary 

from 2 – 4% in the case of formaldehyde to 19 – 28% in the case of acrolein. The inclusion of 

highly resolved (both spatially and temporally) aircraft emissions only made incremental 

improvements to model performance. The use of a 4 × 4 km2 versus a 36 × 36 km2 grid cell 

resolution improved model performance by 20% stressing the importance of a finer resolution 

grid. A doubling of aircraft formaldehyde emissions (including 4% thrust) only decreased NME 

by 1 – 4% and increasing emissions 10-fold showed only 10 – 20% reduction. As increasing 

primary emissions showed only a nominal improvement in model performance and the 

underprediction still exists, we attribute this to model underpredicting secondary formaldehyde. 

Current HAPs estimates from NATA had similar poor performance near the airport. 

Comparison of CMAQ (4 × 4 km2) and NATA estimates showed that their mean concentrations 

were similar to each other. By reporting annual averages, NATA is ignoring some of the peak 

concentrations, as we observed a standard deviation in the range of 0.6 – 1.8 from the mean 

value in our CMAQ predictions.     

Overall the current modeling systems have poor model performance in regards to 

predicting HAPs at the PVD airport. The addition of a finer highly temporally resolved aircraft 

emissions estimate showed only incremental improvements in performance. The poor 
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performance suggests other uncertainties in the modeling system such as meteorology, HAP 

chemistry, or other emission sources require increased scrutiny. Better characterizations of 

aircraft emission inventory such as incorporating low thrust emissions during idle and 

temperature dependency could improve model predictions and health assessments near larger 

airports.  
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	 34 

CHAPTER 3: MODELED FULL-FLIGHT AIRCRAFT EMISSIONS IMPACTS ON AIR 
QUALITY AND THEIR SENSITIVITY TO GRID RESOLUTION 

3.1 Introduction  

In the atmospheric and air quality community, we have a better understanding of the 

chemical and physical processes occurring in the troposphere and stratosphere. Only limited 

knowledge is available, however, concerning the chemistry and transport of pollutants at the 

boundary of the upper troposphere and lower stratosphere (UTLS) (Barbara J. Finlayson-Pitts 

and James N. Pitts Jr, 2000). The physical and chemical properties of the UTLS and mid-

troposphere are different than the surface and pollutants found there have the potential for a 

global intercontinental impact on surface air quality. For example, oxides of nitrogen (NOx) have 

a lifetime of 1-2 weeks in the UTLS, compared with just a few hours when present in the 

troposphere (Jaegle, 2007). Thus, UTLS pollutants are subject to intercontinental transport (ICT) 

(Stohl, 2002) due to the strong winds and synoptic flow (Holloway et al., 2003). Recently, 

increased focus has been devoted to study intercontinental transport (Reidmiller et al., 2009; 

Leibensperger et al., 2011), its impact on human mortality (West et al., 2009; Anenberg et al., 

2009) and interaction of UTLS with the troposphere (Jaffe et al., 1999; Jacob et al., 1999; C. Lin 

et al., 2000; J. Lin et al., 2014). Yet, model predictions disagree (Henderson et al., 2011; 

Zyryanov et al., 2012) with observations in the upper troposphere region. Studies (Allen et al., 

2012) have highlighted the lack of emission sources in the UTLS region leading to uncertainties 

in model predictions. One important and less studied emissions are those generated by aviation. 

This rapidly growing transportation sector is a critical anthropogenic emission source in the 

upper troposphere. Globally 92.5% of aviation fuel is burned in the northern hemisphere and 
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74.6% of it is burned at cruise altitudes (Wilkerson et al., 2010; Olsen et al., 2013) near the 

UTLS region. These full-flight emissions are also categorized into Landing and Takeoff 

emissions (LTO, emissions occurring < 1km) and cruise altitude aviation emissions (CAAE, 

emissions occurring > 1km).  

 Though aviation contributes ~3% of total anthropogenic NOx emission sources (Wauben 

et al., 1997), majority is directly released in UTLS and their surface impacts can be higher due to 

intercontinental transport (Leibensperger et al., 2011).  Few studies have attempted to quantify 

the contribution of this pollution source on atmospheric processes in the UTLS and surface air 

quality. An earlier study (Beck et al., 1992) used a two-dimensional longitude and height model 

to assess the impact from civil aircraft emissions, and found that aircraft emissions can increase 

NOx concentrations by 40% (20 pptV) and O3 by 16% (8 – 10 ppbV) near cruise altitudes (9 – 

12 km). Later studies (Wauben et al., 1997; Kentarchos et al., 2002; Gauss et al., 2006)  saw 

slightly higher perturbations by using 3-D chemistry transport model. Gauss et al., (2006) 

predicted that near the tropopause aircraft emissions increased zonal (30–60N) mean odd 

reactive nitrogen (NOy = NOx+PAN+HNO3+other nitrogen related pollutants) by 156 – 322 

pptV and O3 mixing ratios by 3.1 – 7.7 ppbV during different seasons in the Northern 

Hemisphere. Kohler et al., (2007) investigated the sensitivity to aircraft NOx emissions as a 

function of location, altitude and emission perturbation magnitude. The authors emphasized that 

the aviation NOx emissions at altitudes 11 – 15 km plays a crucial role in changing O3 

concentrations and predicted a 6 ppbV maximum increase in zonal annual mean O3.  These early 

studies predominantly focused on ozone and NOx perturbations due to aviation emissions in the 

upper troposphere. These studies, however, relied on global models with coarser resolution (such 

as 5.6° × 5.6°) and used older emission inventories such as AERO2k and Abatement of Nuisance 
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Caused by Air Traffic/European Commission (ANCAT/EC) (Gardner et al., 1997). These 

inventories can differ in spatial and temporal resolution when compared with the most recent 

emission inventories developed by the Aviation Environmental Design Tool (AEDT) (Wilkerson 

et al., 2010). The AEDT has greater utilization of actual radar tracking and highly resolved 

emissions distribution (Olsen et al., 2013). Therefore assessing aviation perturbations with most 

recent emission inventories and updated models is important to improve scientific understanding 

of aviation environmental impacts with increasing growth in aviation sector.  

 In recent years, efforts to study the surface air quality impacts due to the full-flight 

aircraft emissions that include both CAAE and LTO aircraft emissions have increased due to 

their potential impact on human health. This major concern arose as Barrett et al., (2010) 

predicted globally ~8000 premature mortality attributable to cruise altitude emissions, which 

motivated researchers to understand the chemical and physical processes responsible for surface 

impacts associated with cruise emissions. A tracer-based study with no chemistry and only 

transport and wet deposition processes (Whitt et al., 2011) using the GATOR-GCMOM model 

(Jacobson et al., 2011) was conducted to study the transport of cruise emissions. This study 

found that the time-scale for vertical mixing is longer than the lifetime of the tracer and 

emphasized that the surface air quality is unlikely to be affected from cruise emissions solely due 

to transport.  Later, Lee et al., (2013) approached this question differently and relied on 

predictions from the full chemistry-transport CAM-Chem model (Lamarque et al., 2012) and 

found aviation-induced perturbations of O3 and NOy are less than 1 ppb. In addition, they 

mentioned that these perturbations can have negligible effect on the surface air quality when 

compared with other anthropogenic source impacts and also showed that ground-level aviation 

impacts from cruise-level emissions are higher than LTO emissions. These results are further 
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supported by Jacobson et al., (2011), where an one-way nesting chemistry-transport model was 

used with a sub-grid processes and found that aircraft emissions increased O3, PAN, and 

temperature near the surface by ~0.4%, ~0.1%, ~0.01K and in the upper troposphere by ~ 2.5%, 

~5% and ~0.03K.   

These prior studies analyzing aviation-attributable predicted concentrations utilizes 

global model operating on relatively coarse horizontal resolutions of 4° × 5° (Barrett et  al., 

2010), 4° × 5° (Jacobson et al., 2011), and 2° × 2.5° (Lee et al., 2013). Recent studies (Ma et al., 

2014; Ma et al., 2015) found that finer horizontal resolution in global models can improve 

physical and chemical interactions (such as aerosol-cloud interactions) in model predictions and 

reduced model bias by a factor of 5 in black carbon concentrations and aerosol predictions. The 

authors also stated that finer resolution model predictions agree better with observations. 

Additionally, these global models (Yan et al., 2016) can underrepresent some of the non-

linearities in O3 changes, emissions contrasts between urban and rural locations, and vertical 

transport due to coarser resolution. To address these differences in scale researchers have 

recently (Yim et al., 2015) quantified aviation impacts using a combination of global, regional, 

and dispersion models. Their results indicated that near–airport population exposure to aviation-

attributable PM2.5 is higher (factor of ~ 3.2) than global average exposure at near 23% of all 

major airports. The authors also indicated that by including different nested regional model in a 

global model, the aviation-attributable ground level O3 increased by 12% and PM2.5 decreased by 

29%. Nevertheless there are many challenges in the implementation of this complex compilation 

of different modeling systems. For example, there are differences in chemical mechanisms and 

transport schemes among the different models that would influence aviation contributions 

resulting in an inconsistency when trying to make a regional versus a global comparison.  
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  The assessment of aircraft emissions on air quality could be improved with the full-flight 

profile in emission inventories and a computationally efficient application of a finer spatial 

resolution modeling. In this study we investigate the impact of full-flight emissions on surface 

air quality at hemispheric and regional levels. Here the Community Multi-scale Air Quality 

(CMAQ) model with a domain covering the entire northern hemisphere (Mathur et al., 2012) at a 

horizontal grid cell resolution of 108 × 108 km2 is used to study the aviation impact. This 

hemispheric model is ~2 – 4 times finer than the typical horizontal resolution (4° × 5°, 2° × 2.5°) 

used in prior global model studies. Additionally, having a finer vertical resolution is particularly 

crucial while investigating the impact of emission source like aviation occurring in upper 

troposphere/tropopause region to better represent the sudden inversions and transport.  So in this 

study, we further refined the model vertical structure to have finer resolution (~ 44 layers) than 

the model vertical resolutions (~ 17 and ~ 34 layers) typically used in regional applications. We 

examine the aviation-attributable perturbations for both hemispheric scale and as well as for 

three major sub-regions (North America (NA), Europe (EU) and East Asia (EA)) that have 

relatively higher aviation emissions globally. We also studied the aviation-attributable 

perturbations using mass flux vertical profiles and cross-sectional isentropic analysis to 

understand the vertical transport of aviation emissions. In addition to hemispheric modeling, we 

also performed regional scale modeling utilizing a 36 × 36 km2 Continental U.S scale to compare 

the differences in aviation-attributable impacts for different model resolutions. Overall, this 

framework may reduce uncertainties in model predictions and provide an improved 

understanding of physical and chemical changes occurring in the upper atmosphere due to 

aviation and its impacts on surface air quality.  
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3.2 Methodology 

3.2.1 Air Quality Modeling 

We used the CMAQv5.0.2 model (Byun and Schere 2006) with updated new CB05 

condensed toluene gas phase mechanism (Whitten et al., 2010; Sarwar et al., 2011) and AERO6 

aerosol module to carry out both regional and hemispheric-scale modeling and to assess air 

quality impacts of aircraft emissions. We used Weather Research and Forecasting model 

(WRFv3.6.1) (Skamarock et al., 2008) to downscale NASA’s Modern-Era Retrospective 

Reanalysis (MERRA) (Rienecker et al., 2011) inputs to produce meteorological input data to 

CMAQ. MERRA is a global reanalysis data that assimilates observations and satellite products 

and has a horizontal grid resolution of 0.5° × 0.67° with 72 vertical levels extending to 0.01hPa.  

We initialized WRF at 0000 UTC January 1, 2004 and run continuously through 0000 UTC 

January 1, 2006 using MERRA data. The first 12 months of the simulation (January 1 through 

December 31, 2004) were used as a spin-up period for the model. The domain configurations, 

model vertical structure and physical options used in WRF are included in Supplementary 

Information (Table B1-B3). We ran WRF over two standalone domains: 1) 108 × 108 km2 (here 

after denoted as 108-km) Northern Hemispheric (HEMI) with a Polar Stereographic projection, 

and 2) 36 × 36 km2 (here after denoted as 36-km) Contiguous United States (CONUS) with a 

Lambert Conformal projection, as shown in Figure 3.1. CMAQ northern hemispheric application 

(HEMI) is a newer platform with 108-km horizontal resolution that has been used in recent 

studies (Sarwar et al., 2014; Xing et al., 2015) and this is the first study to use that application for 

studying impacts of aircraft emissions. For the CONUS domain, we used a traditional North 

American domain at 36-km horizontal resolution. We also used consistent meteorology for both 
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the hemispheric and regional scales, and drove the regional scale application using downscaled 

boundary conditions from the hemispheric model.  

              

              Figure 3.1: Modeling domains (CONUS – left) and (HEMI – right).  
 

Table 3.1: Modeling configuration and data sources for HEMI and CONUS domains.  
 
Category HEMI 108km CONUS 36km 

Model version CMAQv5.0.2 

Non-aviation emissions EDGAR*-v4.2 NEI*-2005 

Horizontal resolution 108 × 108 km2 36 × 36 km2 

Vertical resolution 44 layers (top ~ 50hPa) 

Meteorology WRFv3.6 with MERRA* reanalysis data 

Aviation emissions AEDT* (full-flight) 

Boundary conditions Clean air profile based conditions Downscaled from 

Hemispheric CMAQ 

Lightning NOx 

emissions 

Based on empirical calculation Based on NLDN* 

observations 

*NEI – National Emissions Inventory; EDGAR – Emissions Database for Global Atmospheric Research; 
MERRA - AEDT – Aviation Environmental Design Tool; NLDN – National Lightning Detection Network  
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For regional domains, incorporating dynamically and chemically downscaled boundary 

conditions from global models is important given the increased role of hemispheric transport on 

regional studies (C. Lin et al., 2000; J. Lin et al., 2014). Prior studies (Lam and Fu, 2009; 

Henderson et al., 2014) showed higher ozone mixing ratios in the upper regional model layers 

when downscaled from global models and discussed the vertical incompatibility between 

regional and global models. Here in this study we use the HEMI model with identical physical 

and chemical model processes to generate boundary conditions for the CONUS domain. By 

doing this, we are able to maintain consistency in the chemical mechanisms and dynamics for the 

boundary conditions in the regional domain.  

The CMAQ model configurations and data used for two domains are in Table 3.1. We 

used the National Emissions Inventory (NEIv4.3) for the year 2005 (US EPA, 2007) and 

SMOKE model (Houyoux et al., 2000) to generate gridded emissions for all anthropogenic 

sources except aviation for the CONUS domain (Table B6). For the HEMI domain, we used the 

Emissions Database for Global Atmospheric Research (EDGARv4.2) (European Commission, 

2016) for all emission sources except aviation and generated model-ready emissions (Table B5) 

that are gridded, speciated and temporalized  as described in Xing et al. (2015). In both domains 

we used aircraft emissions generated from the Federal Aviation Administration’s (FAA) 

Aviation Environmental Design Tool (AEDT) (Wilkerson et al., 2010). AEDT is an environment 

policy tool that predicts emissions for all global commercial flights throughout the flight time. 

These chorded emissions consisting of fuel burn and key gaseous (CO, NOX, SO2, VOC) and 

particulate (PSO4, POC, PEC) for each and every individual flight (high temporal and spatially 

resolved). Note that AEDT has three primary PM2.5 species directly emitted by aircraft, i.e., 

primary sulfate (PSO4), primary organic carbon (POC) and primary elemental carbon (PEC) 
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with emission estimates based on the First Order Approximation (FOA) Version 3 (Wayson et 

al., 2009). We gridded these emissions using the AEDTProc (Baek et al., 2012) tool that 

allocates emissions both vertically and horizontally to the model grid. Lightning NOx (LNOx) 

emissions were calculated in the CONUS modeling domain based on the recent update available 

in CMAQ (Ott et al., 2010; Allen et al., 2012), that uses National Lightning Detection Network 

(NLDN) flash counts and the number of NO moles produced per unit flash. In the HEMI domain, 

due to the lack of flash count observational data outside the U.S., we used the convective 

precipitation based empirical approach. In this empirical approach, rather than constraining with 

observational data, constant values are used for number of flashes (148) and moles of emissions 

(500 N) per flash (Pickering et al., 1993; Allen et al., 2010, 2012). Note that using some of these 

constant values throughout the northern hemisphere (NH) can introduce some uncertainties in 

lightning emissions as these values can vary regionally. 

Using these inputs, we carried out two annual simulations for both domains as shown in 

Table 3.2: a) NoAirc: scenario with all sources of emissions except aviation b) Airc: scenario 

with all sources of emissions including aircraft emissions. Therefore, the difference between Airc 

(ConcAirc) and NoAirc (ConcNoAirc) gives us the incremental concentrations that are attributable 

to the full-flight aircraft emissions denoted as aviation-attributable contributions (AAC) in this 

study.  

AAC =  Conc!"#$  −  Conc!"#$%&         (3.1) 

We also calculated the incremental contribution of aviation impacts when compared with all 

other sources impacts defined as Aviation Contribution Percentage (ACP) as following  
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ACP = !"#$!"#$!!"#$!"#$%&
!"#$!"#$

∗ 100           (3.2) 

Table 3.2: Description of modeling scenarios  
 
Model Scenario Domain Description Period 

NoAirc36 CONUS All source emissions (NEI) except 
aircraft 

2005 annual year with 
one month spinup 

Airc36 CONUS All source emissions (NEI) 
including aircraft (AEDT)  

2005 annual year with 
one month spinup 

NoAirc108 HEMI All source emissions (EDGAR) 
except aircraft 

2005 with three month 
spinup 

Airc108 HEMI All source emissions (EDGAR) 
including aircraft (AEDT) 

2005 with three month 
spinup 

NoAirc108_NE
I, Airc108_NEI  

HEMI Replaced EDGAR emissions with 
NEI for North America. 

January, July with one 
month spinup 

3.2.2 Observation data 

To evaluate our model predictions we used surface observations from Air Quality System 

network (AQS; http://www.epa.gov/aqs) for the U.S. in both the CONUS and HEMI domains. 

We also evaluated our model predictions in the upper troposphere using in-situ aircraft 

observational data from the Intercontinental Chemical Transport Model (INTEX-NA) (Singh et 

al., 2006) and Measurement of OZone and water vapor by AIrbus in-service aircraft (MOZAIC; 

http://www.iagos.fr/web/rubrique3.html; (Thouret et al., 2005)) campaigns. The INTEX-NA 

campaign observations are confined only to the U.S., but MOZAIC observational data includes 

some major airports in other regions (Europe, Asia) of the HEMI domain.  Note that Xing et al., 

(2015) evaluated the CMAQ-HEMI application in U.S., Europe and East Asia using surface 

monitoring data from those regions and found that the model was able to represent the 
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observational trends. Here we included the MOZAIC vertical evaluation in the supplementary 

material (Figure B8 and Figure B9). 

3.2.3 Mass Flux  

 Mass Flux can be defined as the rate of the mass transferred across the model domain 

gridcell per unit time per unit area. To calculate mass flux of AAC we followed the technique as 

discussed in Klich and Fuelberg, 2014. We considered vertical velocity (Vc, m/sec) from 

meteorology (WRF) data and aviation-attributable concentrations for O3 and PM2.5 from model 

output. We converted model predicted mixing ratios (MR, ppbV) to mass concentrations (Mc, 

kg/m3) and multiplied it by vertical velocity to obtain mass based flux (kg/m2.sec) across each 

model layer as shown in equation 3.3 and 3.4.  We named this metric as aviation-attributable 

mass flux (AMF). The positive vertical velocity indicates the updrafts occurring in the 

atmosphere and the negative vertical velocity indicates the downdrafts occurring in the 

atmosphere. Therefore the negative AMF indicates the downward transport of AAC mass and 

positive AMF indicates the upward transport of AAC mass. 

M! = MR ∗ 10!! ∗ !"!
!"!"#

∗  DENS      (3.3) 

Where MR = model predicted mixing ratio; MWi = molecular weight of pollutant; MWair = 

molecular weight of air; DENS = density of air 

Mass Flux = M! ∗ V!           (3.4) 

Where Vc = vertical velocity from meteorology data 

3.2.4 Isentropic Analysis 

The CMAQ model vertically resolved concentrations and meteorology data are 

considered to conduct isentropic analysis for both hemispheric and regional domains. Note that 
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we did not run the model using potential temperature θ as vertical coordinate system but post-

processed modeled aviation-attributable concentrations along the isentropic levels. We calculated 

potential temperature from meteorology data as follows for all model vertical layers.  

 

Theta T! =  T ∗ !!
!!

!.!"#
         (3.5) 

Where T = Temperature at model vertical layers 

Ps = Surface pressure 

Ph = Pressure at different model vertical layers 

We interpolated the model concentrations from vertical layers to calculated theta vertical 

levels (range 380 – 280K) to illustrate the effect of isentropes on the vertical transport of cruise 

altitude emissions to the surface and their seasonal variability. 

3.3 Results And Discussions 

3.3.1 Aviation emissions impact at hemispheric scale 

3.3.1a Surface Analysis 

The impacts of aviation emissions on surface air quality were assessed in the HEMI (108-

km) domain. The model predicted aircraft-attributable contributions (AAC) is calculated as the 

difference between the simulations ‘with aviation’ (Airc) and ‘without aviation’ (NoAirc) as 

shown in equation 3.1. In other words, AAC are the aviation-attributable perturbations of 

pollutants due to aviation emissions. Model predicted hourly outputs were used to calculate 

various temporal (annual, monthly and daily averages) and spatial (land grid cells domain 

average) metrics in this analysis. Table 3.3 shows the domain wide annual average of the MDA8 

O3 and PM2.5 AAC. As shown in Table 3.3 the model predicted AAC of 0.46 ppbV and 0.013 
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µg/m3 for O3 and PM2.5, with maximum concentrations reaching 1.92 ppbV and 0.14 µg/m3 

throughout the entire hemispheric domain. These results are consistent with the global scale 

aviation surface impacts as discussed in recent studies (Lee et al., 2013; Yim et al., 2015) where 

annual perturbations of ~ 0.5 – 0.6 ppbV for O3 and 0.006 µg/m3 for PM2.5  were reported. Also 

shown in Table 3.3 is the relative contribution of aviation when compared with impacts from all 

other sources as shown in equation 3.2. Overall CMAQ predicted values show that aviation 

impacts contribute 1.3% and 0.2% for O3 and PM2.5 at surface in hemispheric domain with 

slightly varying impacts in key sub-regions in NH. EU shows the highest impacts of 1.9% and 

0.5% for O3 (0.69 ppbV) and PM2.5 (0.031 µg/m3), which is ~ 1.4x and ~2.2x higher than the 

overall hemispheric average aviation impacts (O3: 0.46 ppbV, PM2.5: 0.013 µg/m3). NA and EA 

show similar impacts as EU in the case of O3, but the PM2.5 impacts are lower when compared 

with EU.    

Figure 3.2 shows the annual average AAC spatial plot for O3 and PM2.5 at the surface. In 

the HEMI domain, maximum annual O3 impacts occurred near Tibet plateau throughout the year 

(monthly spatial plots included in supplementary material Figure B1). This is consistent with 

other studies (Barrett et al., 2010), who reported this impact was due to the relatively higher 

convective flux in the high altitude region. Other than this hot spot, maximum annual impacts of 

~ 0.8 ppbV are seen in the mid-latitudes 30oN to 50oN band (sub-tropical zone), with modest 

impacts near other high convective and warm weather regions such as the Western U.S. and 

North Africa. In the case of PM2.5, higher annual impacts occurred near major urban corridors 

such as the Eastern U.S., Western EU, and Eastern Asia (China) where aviation emissions and 

PM2.5 precursor emissions are relatively higher (Supplementary material Figure B2).  
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Table 3.3: Domain wide annual average of predicted O3 and PM2.5 aviation-attributable 
contributions (AAC) for overall HEMI domain and the sub-regions of NA, EU and EA. The 
relative percentage of aircraft emission contribution when compared with all sources is shown in 
parenthesis. Also shown are the maximum annual AAC in the domain for both pollutants.  
 
Domain O3 (ppbV) PM2.5 (µg/m3) 

Mean  Maximum Mean  Maximum 

HEMI  0.46  (1.3%) 1.92 0.013  (0.2%) 0.14 

HEMI-NA 0.65  (1.7%) 1.03 0.021  (0.4%) 0.09 

HEMI-EU  0.69  (1.9%) 0.94 0.031 (0.5%) 0.15 

HEMI-EA  0.57  (1.5%) 1.05 0.021 (0.2%) 0.10 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Aviation-attributable contributions of annual averaged O3 (left) and PM2.5 (right) for 
the hemispheric domain (HEMI) at the surface. 
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Figure 3.3: Aviation-attributable contributions of annual averaged O3 (left) and PM2.5 (right) at 
the surface for three sub-regions NA (top), EU (middle), and EA (bottom).   
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We next focused on model predicted AAC for O3 and PM2.5 in three sub-regions with the 

highest aviation emissions. Figure 3.3 shows the spatial extent of annual average AAC of O3 and 

PM2.5 in NA, EU, and EA. The maximum AAC for O3 is comparable between the three sub-

regions (NA: 1.03 ppbV, EU: 0. 95 ppbV, EA: 1.05 ppbV) with EA showing slightly higher 

impacts. In the NA sub-region (Figure 3.3, top left), ~ 2x higher impacts of O3 occurs near 

western U.S. compared to eastern part of the country.  In the EU sub-region (Figure 3.3, middle), 

higher impacts of ~ 0.8 ppbV of O3 occur near Madrid, Munich and Frankfurt. In EA sub-region 

(Figure 3.3, bottom), higher O3 impacts are observed near the west side of EA (higher latitudes). 

Overall looking at the spatial distributions, we can notice that the circulation and synoptic flow 

drives the aviation-attributable O3 perturbations. 

The maximum PM2.5 AAC of 0.145 µg/m3 occurs in the EU sub-region, which is ~ 1.42 

and ~1.68 times higher when compared to the EA and NA regions. For PM2.5, annual average 

peaks of ~ 0.08 µg/m3 are observed near urban and major airports regions such as LAX, ATL, 

JFK airports and the Ohio valley region (Figure 3.3, top right). The increase of aviation-

attributable PM2.5 in Ohio valley is due to the presence of higher NOx emissions and free 

ammonia from non-aviation emissions in the model. This combination lead to the increase in 

aviation-attributable ammonium nitrate aerosol that increased the aviation-attributable PM2.5, 

similar results are seen in Woody et al., (2011). In EU, higher PM2.5 impacts of ~ 0.1 – 0.08 

µg/m3 are predicted near Frankfurt, Munich and London regions followed by Madrid and Rome 

regions (~ 0.06 µg/m3).  In EA region, highest impacts of  ~ 0.1 µg/m3 are observed near densely 

populated Beijing region followed by Shanghai and Seoul region. 

Figure 3.4 (left) shows the domain-wide average of daily maximum 8-hour average O3 

and daily averaged PM2.5 AAC for HEMI domain throughout the entire year. As shown in Figure 
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3.4 (left), the winter months ~ 1.5x higher O3 contributions than summer months and falls in the 

range of ~0.2 – 0.5 ppbV. In the case of daily averaged PM2.5, impacts in winter months are 

twice as seen in summer months. These seasonal PM2.5 differences are mainly influenced by 

modeled inorganic aerosols (sulfate, nitrate, and ammonium) as shown in Figure 3.4 (right). 

Figure 3.4 (right) shows the monthly average of individual speciated PM2.5 predicted by the 

CMAQ model (sum of sulfate, nitrate, ammonium, elemental carbon, primary organic aerosol, 

secondary organic aerosol and other crustal species). The speciated PM2.5 shows that sulfate 

aerosol (ASO4) has larger contributions to total PM2.5 during summer and fall months (Apr – 

Nov) than during winter months (Dec – Mar). During winter, nitrate aerosol (ANO3) is more 

prominent due to the presence of more HNO3 (lesser reduction of HNO3 through photolysis in 

winter season) to react with NH3 to form nitrate aerosol and nitrate tends to stay in particle phase 

at low temperatures. We also examined the temporal trend in the AAC for each sub-region and 

speciated aerosols (Figure B3). In all three regions, the winter season impacts are slightly higher 

than summer impacts for both pollutants similar to the trend observed in Figure 3.4.  

 
 

*Speciated aerosols: ASO4= sulfate, ANO3= nitrate, ANH4= ammonium, AEC = elemental carbon, APOA = 
primary organic, AORGA = anthropogenic, AORGB = biogenic, AOTHR = other aerosols. 
 
Figure 3.4: Aviation-attributable contributions domain wide average of 8-hour daily maximum 
O3 (red) and daily averaged PM2.5 (blue) in the HEMI domain (left). Domain wide average of 
monthly averaged speciated aerosol PM2.5 AAC in the HEMI domain at the surface (right).  
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3.1.1b Vertical Analysis    

We studied the vertical profiles of O3 and PM2.5 impacts due to full-flight aviation 

emissions at different altitudes. Throughout this vertical analysis hourly O3 and PM2.5 

concentrations at all model layers are used. The annual vertical impacts were averaged across 

three atmospheric regions: Boundary Layer (BL) of < 2 km, mid-troposphere (MT) of 2 – 8 km, 

and upper troposphere (UT) of  > 8 km. Figure 3.5 (left) shows the annual average percentage 

contribution of AAC in BL, MT, and UT for O3. In the HEMI domain, the UT and MT impacts 

are shown as ~ 2 – 2.3 %, which is double the BL impacts. The sub-regions shows ~ 1.2 – 2 

times higher impacts than the overall HEMI impacts near all three vertical bins. In the case of 

O3, EU shows higher impacts of ~4 – 4.5% in MT and UT followed by EA and NA, which 

expectedly confirm that aviation the impacts are consistently higher in the upper altitudes than in 

BL and surface across all sub-regions. Figure 3.5 (right) shows the percentage contribution of 

AAC in boundary layer (BL), mid-troposphere (MT) and upper troposphere (UT) for PM2.5.  

Overall across the HEMI domain, the UT impacts are estimated to be ~ 2.7%, which is ~ 2 times 

higher than MT impacts and 10 times higher than BL impacts. For PM2.5 there are more 

decreases in predicted impacts near the BL when compared with UT. The decreases in BL are 

larger for PM2.5 than O3.  

To better quantify the vertical transport of the higher cruise altitude emissions, we 

calculated (using equations 3.3 and 3.4) mass fluxes and performed isentropic analysis. Figure 

3.6 represents aviation-attributable mass flux (AMF) vertical profile of O3 and PM2.5 in HEMI 

domain; the general trend (during all seasons) shows negative AMF (downward flux) near the 

UT region, with change in direction towards positive AMF in the MT region and changes to 

negative AMF near surface. In the MT, the change in the direction is mainly due to the 
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downward flux occurring in the upper altitudes and upward flux occurring in lower altitudes, 

therefore the overall mass flux is influenced by both the upper altitude transport and surface 

mixing. In summer, as mixing is high near the surface the upward flux is predominant, hence 

near the surface and in lower troposphere positive mass flux is indicated in the vertical mass flux 

profiles. The shape of O3 profile looks smooth and consistent in all seasons, with higher negative 

AMF during winter (Dec – Feb) and early spring (March). Near the surface (we also closely 

looked at zoomed only lower 2000 meters AMF plots that are not presented), winter months 

show negative AMF than summer months due to lower photochemistry rates, higher downward 

transport and most common deep stratospheric intrusion events during winter and spring months. 

A recent CMAQ hemispheric study (Xing et al., 2016) saw similar higher impacts during winter 

month due to downward transport from upper altitudes. This similar trend of maximum 

stratospheric tropospheric ozone downward flux in winter and spring has been reported in other 

global model study (Yang et al., 2016). 

 
Figure 3.5: The aviation contribution percentage (ACP,%) to total annual average O3 (left) and 
PM2.5 (right) when compared with all other emission sources in the entire HEMI domain and for 
all three sub-regions of NA, EU and EA. The vertical data is stratified into near boundary layer 
(BL), mid-troposphere (MT) and upper troposphere (UT).  
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Figure 3.6: Vertical profile of O3 (left) and PM2.5 (right) aviation-attributable mass flux (AMF) in 
the entire HEMI domain. Data is averaged over each season in 2005 defined as: Winter = 
December – February, Spring = March – May, Summer = June – August, and Autumn = 
September – November. 
 

In the case of PM2.5, the vertical profiles look different between all seasons highlighting 

the influence of seasonal factors such as humidity, temperature, and deposition velocities on 

mass flux. For PM2.5, only winter and spring months predicted a negative AMF (downdraft) near 

UT region, but not during summer and autumn months. Near the surface a similar downward 

flux (negative AMF) as seen in O3 was predicted in winter months. This indicates that the 

transport of cruise altitude emissions emitted in the upper troposphere is highly influenced by the 

seasonal circulation pattern. Model predictions indicate downward transport only during winter 

months in the overall northern hemisphere when downdrafts/westerlies are high and boundary 

layer/surface mixing is less. As these transport phenomena and seasonal circulation changes with 

different region at hemispheric scales, we further analyzed mass flux profiles in individual sub-

regions. 
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Figure 3.7:  Vertical profile of O3 (left) and PM2.5 (right) aviation-attributable mass flux (AMF) 
from NA (top), EU (middle) and EA (bottom) sub-regions from HEMI domain. The data is 
seasonally averaged similar to description mentioned in Figure 3.6. 
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 Figure 3.7 shows AMF vertical profiles for both pollutants separated by regions clearly 

show regional differences among the three sub-regions. In the case of O3, near the UT region, a 

higher downward flux was predicted during the spring and autumn in NA, summer in EU and 

winter in EA. Though the profiles show different profiles in the UT and MT, the near surface 

profiles in the winter months consistently predicted a negative AMF for all three regions. A 

higher negative AMF for O3 is shown in EA during winter, indicating that the downward 

transport is higher due to a higher convection during winter monsoons in EA. The vertical 

velocity flux based concentrations discussed here is based on the kinematic transport but it did 

not clearly explain the reason behind the higher downward flux during winters. Since cruise 

altitude emissions occur mainly near tropopause, region where isentropic mixing/transport is 

important and highly influenced by potential temperature. Therefore, we also studied the 

isentropic based AAC for all seasons to understand the transport process. 

 Figures 3.8 and 3.9 show the seasonal latitude-potential temperature cross sectional plots 

to illustrate the transport of aviation-attributable concentrations of O3 and PM2.5 along isentropic 

levels. Aviation-attributable concentrations are vertically interpolated along designated 

isentropic surfaces from 280 K to 380 K, by calculating potential temperature values for all 

model layers using equation 3.5. Figure 3.8 shows that across all seasons, a higher O3 AAC 

occurs near 340 – 380 K isentropic surface (~ 9 – 16 km average altitude range). The mid-

troposphere (~320 – 300 K) isentropic surfaces get closer to the lower isentropes near higher 

latitudes (60 – 90 N) for all seasons. During winter season (left top), higher isentropes intersect 

with the lower isentropes close to surface near mid-latitudes (~ 40 – 60 N). Compared to other 

seasons, the O3 AAC are higher during winter starting from below ~320 K, which suggests that 

the meridional transport of O3 AAC occur particularly when the higher isentropes get closer to 
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the lower isentropes. Similar results are reported in a recent study (Runde et al., 2016) that 

discussed the stratosphere-troposphere transport occurrence along 280 – 350 K isentropes in 

extratropics during winter season. During summer season, the higher isentropic surfaces intersect 

with the near surface isentropes further north towards the pole. Additionally in summer, higher 

isentropic surfaces show upward trend, which suggests the transport of O3 AAC into lower 

stratosphere than towards free troposphere.  

In the case of PM2.5 AAC, as shown in Figure 3.9, the seasonal trends vary significantly 

and thus emphasizing the influence of precipitation patterns, wet deposition, chemical 

transformations and cloud properties on PM intercontinental and vertical transport (Dentener et 

al., 2010). In Figure 3.9, during the winter and spring seasons the model predicted higher 

concentrations in upper isentropic levels around 360 – 340 K near higher latitudes. Compared to 

spring season, the winter season exhibits slightly higher AAC of PM2.5 at lower isentrope levels 

between 320 – 280K and transport of PM2.5 AAC to the surface, similar to the trend observed in 

O3. The summer season shows relatively lower AAC both near the higher and lower isentropes. 

Another interesting feature of higher concentrations around 380K isentrope near mid-latitudes 

(25 – 50N) was observed in summer, which indicates the upward transport of AAC during that 

season. The autumn season shows relatively higher PM2.5 AAC in MT region (340 – 300 K) than 

other seasons due to the higher nitrate aerosol and nitric acid (HNO3) concentrations. During the 

summer there is increase in NOx concentrations in MT region that increased the HNO3 and 

nitrate aerosol concentrations during autumn seasons, which eventually increased PM2.5. The 

downward fluxes observed in vertical mass flux profiles and isentropic trends explain the 

transport of cruise altitude emissions during winter season and hence higher impacts are 

observed at the surface in winter when compared to other seasons at hemispheric scale. The main 
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objective of isentropic analysis is to study the quasi-horizontal and vertical transport of aviation-

attributable perturbations. There are several other transport processes occurring in the 

atmosphere but however, illustrating those processes based on isentropic analysis is not very 

appropriate and beyond the scope of this paper. 

 

Figure 3.8: Latitude cross-sectional plot of seasonal average O3 aviation-attributable 
concentrations interpolated along isentropic levels for all four seasons in HEMI domain.  The left 
axis represents the isentropic levels, right axis represents the average height for those isentropic 
model vertical levels and bottom axis shows the latitudes in HEMI domain. The black dashed 
overlay lines are the potential temperature (theta) in our modeling domain.    
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Figure 3.9: Latitude cross-sectional plot of seasonal average PM2.5 aviation-attributable 
concentrations interpolated along isentropic levels for all four seasons in HEMI domain.  The left 
axis represents the isentropic levels, right axis represents the average height for those isentropic 
model vertical levels and bottom axis shows the latitudes in HEMI domain. The black dashed 
overlay lines are the potential temperature (theta) values in our modeling domain.  
 

3.3.2 Grid Resolution Sensitivity  

3.3.2a Model Evaluation  

 We evaluated the regional scale 36-km (fine) CONUS and 108-km (coarse) NA model 

predictions with observations both near surface and vertically. ‘Airc36’ (all sources + aviation 

case, CONUS) and ‘Airc108’ (all sources + aviation case, HEMI-NA) scenarios hourly model 
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predictions are compared with AQS data near surface for O3 and PM2.5. Note that along with grid 

resolution, the all sources emission inventory is also different between these two scenarios, so 

any differences seen here are due to these two factors. For O3, the annual NMB and NME appear 

similar between both model scenarios, however a few localized differences occur spatially 

(Figure B4 and B5). For example, the coarser resolution (Airc108) increased NMB from  -10% 

to -25% in northeast U.S for O3 when compared with fine resolution (Airc36). These 

underpredictions in coarse resolution near northeast US are due to the inability of coarse 

resolution to represent some of the urban scale emissions and processes. Temporal model 

performance (Figure B6 for monthly performance reference) was calculated by averaging 

seasonal NMB (%) of: Winter (December, January, February), Spring (March, April, May), 

Summer (June, July, August) and Autumn (September, October, November).  

Table 3.4: Seasonal Normalized Mean Bias (%) of hourly O3 and PM2.5 concentrations predicted 
by Airc36 and Airc108 model scenarios in comparison with hourly AQS observations. All 
Airc108 predictions were limited to the NA region. Also shown are the NME (%) differences 
(Airc108 –Airc36) between scenarios.   
 
Seasons O3 (%) PM2.5 (%) 

Airc36 Airc108 Difference Airc36 Airc108 Difference 

Winter 38.3 65.0  26.6  2.3 -24.9 22.6 

Spring  8.9 17.8  8.9 0.8 -14.7 13.9 

Summer  23.5 11.0  -12.4 -29.4 -58.5 29.1 

Autumn 34.2 41.7  7.5 -12.4 -44.0 31.6 

Winter = December – February, Spring = March – May, Summer = June – August, and 
Autumn = September – November  
 

Table 3.4 shows that coarse resolution (NMB: ~18 – 65%) showed higher 

overpredictions for O3 compared to fine resolution (NMB: ~8 – 39%) during winter, spring and 
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autumn seasons. In summer, however fine resolution showed ~12% higher overprediction than 

coarse resolution for O3. In case of PM2.5, the model predicted an improvement in model 

performance for PM2.5 at the finer horizontal resolution throughout all seasons (Table 3.4). 

Overall annual average of NMB differences shows that coarse resolution showed ~ 25% higher 

underpredictions in PM2.5 and ~7% higher overpredictions in O3 compared to fine resolution.  

Model predictions from three modeling scenarios Airc108 (all sources + aviation), Airc36 

(all sources + aviation), NoAirc36 (all sources + no aviation) for North America region are 

evaluated vertically with observations from the INTEX campaign as shown in Figure 3.10. We 

also included model evaluation from MOZAIC campaign near major airports in Supplementary 

information (Figure B8 and B9). Figure 3.10 shows vertical profiles of the model predicted 

concentrations of O3 and NO2 paired with INTEX observations during the period July – August 

2005. The paired data are binned based on the altitudes and each point in the vertical profile 

represents the average of all the paired data that falls in that particular altitude bin. The number 

of pairs considered for calculating the average value in each bin differs (Figure 3.10, right). 

Previous studies (Allen et al., 2012; Fang et al., 2010) showed that including lightning NOx 

emissions reduced model error for O3 and NOx and pointed out possibility of another missing 

emission source. In our study, the addition of lightning NOx emissions and including aircraft 

full-flight emissions improved the model performance by decreasing the NME 5 – 11 % (Table 

B8) for NO2 (difference between Airc36 and NoAirc36) particularly in the upper troposphere (7 

– 10 km). Figure 3.10 clearly shows that fine resolution with aviation emissions (Airc36, red 

line) is close to the observations than compared to other model scenarios. Averaging all altitudes, 

NME values show an overall decrease of ~ 0.2%, ~ 4%, ~ 2% (Table 3.5) for O3, NO2 and NO 
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respectively in the vertical column of model predictions due to incorporating aircraft emissions 

aloft. 

Table 3.5: Normalized Mean Bias (%) metric of O3, NO2 and NO from three model scenarios 
NoAirc36, Airc36, Airc108 in comparison with INTEX-NA observations. Here we are showing 
the maximum, minimum and average values of all altitudes (0 – 12km). Also shown are the 
Normalized Mean Error (%) differences between Airc36 with NoAirc36, Airc108 model 
scenarios.  
 

Scenarios  O3 NO2 NO 

Max Min Average Max Min Average Max Min Average 

NoAirc36 

(NMB, %) 

19.8 -52.9 -8.41 46.5 -85.7 -38.1 -41.8 -84.1 -68.5 

Airc36 20.1 -52.7 -7.75 50.9 -84.7 -34.3 -40.3 -83.3 -66.6 

Airc108 -2.4 -55.1 -19.4 73.5 -96.6 -53.1 -34.5 -90.8 -76.5 

Airc36-

NoAirc36 

(NME, %) 

1.6 -1.3 -0.18 5.17 -11.7 -3.5 -0.1 -5.5 -1.9 

Airc36-

Airc108 

(NME, %) 

17.6 -21 -8.22 38.9 -56.9 -16.7 26.0 -32.6 -9.9 

 

Overall the model performance using the finer resolution (Airc36) resulted in NME 

decrease of ~8%, ~16% and ~9% for O3, NO2, and NO when compared with coarse resolution 

(Airc108) averaged over all altitudes. Model underprediction still exists in the case of NO, NO2, 

O3 in 36-km and this underprediction could be explained by the over prediction of the model for 

sink species such as PAN, HNO3 (Figure B7). One explanation for this trend was discussed in 
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prior studies (Henderson et al., 2011). There the authors mentioned that photochemical models 

age NOx too rapidly and chemical mechanisms convert it (partition ~25% total nitrogen) to 

HNO3 in the UTLS region. We again reiterate the prior study findings that updating reaction 

rates as suggested in Henderson et al., (2011) in the chemical mechanism is important 

particularly to improve model performance near UTLS.  

 

 

 
Figure 3.10: Comparison of modeled predictions of NO2 (top) and O3 (bottom) from scenarios 
NoAirc36 (green), Airc36 (red), and Airc108 (blue) paired with INTEX-NA observations (black) 
and binned vertically. Each point represents the mean concentration value in a particular altitude 
bin of paired modeled and observations. The bar plot (right) shows the number of paired values 
in each bin. 
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3.3.2b Aviation impacts comparison 

Figure 3.11 shows the spatial plot of annual average O3 and PM2.5 AAC at the surface in 

the 36-km CONUS domain. In the CONUS domain, the annual domain averages AAC are 0.03 

ppbV and 0.002 µg/m3 for O3 and PM2.5, with maximum concentrations reaching 0.23 ppbV and 

0.06 µg/m3 respectively. Spatially, aviation impacts lower O3 concentrations near major airports 

(in the grid cell containing the airport), primarily during winter months (Figure B10). Excess 

aviation NOx emissions reacted with O3, causing titration effect and a decrease in AAC for O3. 

Increases of ~0.1 – 0.2 ppb were seen mainly near areas of high convection (western U.S.) and 

downwind of major airport areas: Atlanta (ATL), Houston (HOU), Dallas (DFW) and Phoenix 

(PHX). As shown in Figure 3.11 (right), PM2.5 had higher impacts of ~ 0.04 – 0.06 µg/m3 

predicted near these major airport (Figure B11) and urban areas: J.F. Kennedy (JFK), O’Hare 

(ORD), Atlanta (ATL), Los Angeles (LAX)), Eastern US, Texas and California. 

When we compare annual AAC of 36-km NA (CONUS, Figure 3.11) with 108-km NA 

(HEMI-NA, Figure 3.3 (top)) the overall spatial trend looks similar, however HEMI-NA shows 

relatively higher O3 AAC in western U.S.  The 36-km resolution showed negative AAC near 

major airports and higher AAC downwind of these regions, differentiating the VOC and NOx 

limited regions chemistry with excess aviation NOx, whereas 108-km resolution did not capture 

this trend. Due to these resolution differences the temporal trends of aviation impacts appeared to 

be different between 36-km and 108-km NA regions. In 36-km, summer months showed higher 

impacts than winter months (Figure B10, B11 and B12) whereas in 108-km we saw higher 

impacts in winter months.  
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Figure 3.11: Annual average aviation-attributable contributions of O3 (left) and PM2.5 (right) for 
CONUS (36 km) domain. 

 

In 36-km, model predicted annual domain wide ACP as ~0.1% for both O3 and PM2.5, 

whereas in 108-km it was predicted to be 1.7% and 0.4%. The maximum annual AAC of O3 in 

108-km NA is predicted to be ~ 1 ppbV, which is ~5x higher than the 36-km maximum AAC of 

O3 (~ 0.2 ppbV). For PM2.5, the maximum annual AAC predicted in 108-km AAC is ~ 0.02 

µg/m3 higher than 36-km. Even vertically, the ACP in 36-km near boundary layer, mid-

troposphere, upper troposphere appear to be ~0.16%, 0.4%, 0.4% and ~0.1%, 0.26%, 0.48% for 

O3 and PM2.5. In HEMI-NA, these impacts are ~ 1.7%, 2.4%, 3.1% and 0.4%, 1.4%, 3% for O3 

and PM2.5, which is relatively higher when compared with 36-km domain.  
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Table 3.6: Domain-wide monthly average aviation-attributable contributions (AAC) of O3 and 
PM2.5 from model scenarios a) Airc108-NoAirc108 (HEMI-NA) b) Airc108_NEI-
NoAirc108_NEI (HEMI-NEI-NA) and c) Airc36-NoAirc36 (CONUS). Also shown are the ratio 
comparisons of these scenarios for January and July months. 
 
 Months HEMI-

NA 

HEMI-NEI-

NA 

CONUS HEMI-

NEI-

NA/HEM

I-NA 

HEMI-NEI-

NA/CONUS 

O3 Jan 0.69 

 

0.70 

 

0.01 

 

1.0 

 

63 

 

Jul 0.53 

 

0.64 

 

0.06 

 

1.2 

 

10 

 

PM2.5 Jan 0.027 

 

0.027 0.002 

 

1.0 

 

16 

 

Jul 0.008 

 

0.013 

 

0.003 

 

1.6 

 

4 

 

3.3.2c Emission Inventory Sensitivity 

In all of the annual simulations discussed above, National Emissions Inventory (NEI) 

emissions were used for the CONUS domain and EDGAR emissions for the HEMI domain (as 

shown in Table 3.1). Therefore, in our NA region coarse and fine scale resolutions comparison, 

while similar aircraft emission inventory was used, the non-aviation emission inventory is 

different. To address the inconsistencies and to make a consistent comparison, we ran two 

sensitivity simulations ‘Airc108_NEI’ and ‘NoAirc108_NEI’ by replacing the HEMI domain 

EDGAR with NEI emissions (consistent with CONUS domain) for NA region. These 

simulations were conducted for the months of January and July as sensitivity.  
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 The ‘Airc108’ and ‘Airc108_NEI’ model scenarios predictions were compared with AQS 

surface observations of O3 and PM2.5 for NA region. The 108-km with NEI emissions scenario 

(Airc108_NEI) improved model performance by reducing domain average NME by ~10% for 

both PM2.5 and O3 near urban areas. The overall NMB spatial trend in HEMI-NEI-NA looks 

similar to the CONUS domain with better model performance near urban regions due to better 

characterization of emissions with bottom-up approach. This change in model performance did 

impact the predicted AAC. Table 3.6 shows the domain wide monthly AAC of O3 and PM2.5 

from three modeling scenarios: a) HEMI-NA b) HEMI-NEI-NA c) CONUS. Table 3.6 also 

shows the fractional increase in AAC occurred due to NEI emissions and fine grid cell 

resolution. Due to NEI emissions the domain wide average AAC increased ~ 1.2 and 1.6 times 

for O3 and PM2.5 particularly during the summer month (July) in HEMI-NA region (spatial plot 

showing this trend are included in supplementary Figure B13, B14). The largest differences in 

AAC occurred due to change in grid cell resolution. As shown in Table 3.6 the HEMI-NA-NEI 

scenario predicted ~ 63 (January) and ~ 10 (July) times higher AAC for O3 and  ~ 16 (January) 

and ~ 4 (July) times higher AAC for PM2.5 when compared to CONUS domain. These 

differences occurred mainly near urban areas (Figure B15 and B16) where the fine resolution 

captured some of the decreases in concentrations due to aviation emissions where as the coarse 

resolution did not show this trend. Overall even the domain – wide daily average and maximum 

AAC were consistently higher in HEMI-NEI-NA case when compared to the CONUS case for 

both O3 and PM2.5 (Figure B17 and B18).  Note that we are seeing these higher significant 

differences only in the case of aviation-attributable perturbations, however the differences are 

not high in base scenarios (Airc108, Airc108_NEI, Airc36) as shown in Figure B19. We believe 

the higher AAC in coarser resolution could be due to the relatively higher diffusion in upper 
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model layers and high concentrations near airports with coarse horizontal grid. The coarse 

resolution can transport upper altitudes perturbations quickly (more diffusive with coarse grid) to 

lower altitudes than the fine resolution. Also in HEMI application due to the overall northern 

hemisphere extent, we saw higher concentrations of aviation-attributable ozone in ocean 

(particularly in winter) due to deposition process that contributed to the overall increase in 

domain-wide AAC. In coarse resolution, also higher concentrations are observed near major 

airports due to larger spatial extent,  ~ 9 times bigger than the fine resolution. We attribute these 

as to the cause of increased AAC in coarse resolution (HEMI, 108-km) when compared to fine 

(CONUS, 36-km). 

3.4 Conclusions 

  The key focus of this paper is to assess and quantify full-flight emissions impacts on air 

quality at hemispheric and regional modeling scales and to study the influence of horizontal grid 

resolution on aviation impacts. It was clear from our analyses that the grid resolution had the 

largest influence on model performance and AAC predictions when compared to just including 

full-flight emissions. Going from predictions relying on a coarse (108-km) resolution to those 

relying on a finer (36-km) resolution for North America region improved the domain wide 

average of NME by ~7% for O3 and ~25% for PM2.5. Vertically, the finer resolution model 

improved model performance by up to ~11% for NO2 in the UTLS region. Averaged across all 

altitudes, the finer resolution model decreased NME by ~8%, ~16% and ~9% for O3, NO2, and 

NO respectively. Our results also highlight that by incorporating full-flight aircraft emissions at a 

fine resolution, the model performance was improved by up to ~ 5–11% for NO2 in UTLS 

region. For North America region, AAC predictions using a 36-km resolution captured both 

titration effects during winters and higher photochemistry during summer months. Predictions 
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using the 108-km domain was incapable of capturing the local-scale photochemistry effects, and 

thus did not decrease O3 AAC during winter when compared with summer. On the other hand, 

hemispheric model captures the intercontinental long-range transport that can transport pollutants 

from higher altitudes to lower altitudes during periods of strong westerly winds, which increases 

the O3 AAC during winters.  

  At the hemispheric scale on an annual domain-average basis, aviation contributes only 

1.3% and 0.2% for O3 (0.69 ppbV) and PM2.5 (0.03 µg/m3) at the surface. We also examined 

three sub-regions (EU, NA and EA) that have significant aviation activity to emphasize the 

differences in impacts occurring at continental scales. This sub-regional analysis provides 

additional insights support potential emissions reductions strategies, as the impacts can vary 

significantly by region. Among these three sub-regions, EU had the highest impacts, where 

aviation contributed ~1.9% and 0.5% for O3 and PM2.5 at the surface followed by NA and EA. 

The maximum O3 impacts were predicted near mid-latitudes 30oN to 50oN band and maximum 

PM2.5 aviation impacts were predicted near large airports throughout the hemisphere. The 

aviation contribution percentages (ACP) are ~ 2 times higher in UT (2.3%) when compared with 

surface (1.3%) for O3, whereas for PM2.5 the ACP is  ~ 10 times higher in UT (2.7%) than 

surface (0.2%). Our analyses showed that the model predicted AAC downward mass flux and 

vertical transport along the isentropes occurred particularly during winter months at hemispheric 

scales, indicating the influence of seasonal circulation patterns on vertical transport of cruise 

emissions in the model. Overall, the spatial distribution shows that the O3 aviation impacts were 

driven by the atmospheric circulation and convective transport while PM2.5 aviation impacts were 

influenced by localized precursor emissions near urban regions. 
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The chemical processing and physical transport of aircraft emissions is heavily 

influenced by grid resolution. The use of a model that was 9 times more finely resolved 

horizontally made significant changes in the magnitude and location of AAC.  The fine 

resolution (36-km) application at regional-scale captured the non-linearities in chemistry that are 

not captured by the coarser resolution; however the use of a hemispheric scale (108-km) captures 

the intercontinental transport. Future studies should consider these changes in model 

implementations for studying aviation emissions. Therefore, running a nested fine scale near 

major aviation source regions (NA, EU and EA) in a global/northern hemispheric model might 

capture both the fine-scale and global scale intercontinental, transport and chemistry processes in 

a more efficient manner. One of the limitations of this study is the absence of stratospheric 

chemistry in CMAQv5.0.2, which explains the model underpredictions near the UTLS region in 

our model evaluation. The presence of stratospheric chemistry in the UTLS region can also 

affect the NOx and HOx radical budgets that in turn influence the model predictions for O3 and 

PM2.5. Eastham et al., (2014) demonstrated the importance of stratospheric chemistry in upper 

altitudes (16 – 20 km) and showed how the unified stratospheric tropospheric chemistry reduced 

the overall global ozone column discrepancy from 9.9% to 3.6%. Therefore not including 

detailed stratospheric chemistry in the model can influence the radical budget and oxidative 

capacity of troposphere, which can introduce uncertainties in the upper few model layers. Here in 

our study we do not have stratospheric chemistry for accurate representation of lower 

stratosphere, however we do have the tropospheric chemistry occurring in the model upper 

layers, so it can still account for the fundamental ozone, NOx photolysis reactions in the UTLS 

region. Future studies should consider these changes in modeling implementations to further 

improve our understanding of aviation-attributable air quality impacts.
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CHAPTER 4: TRACER STUDY TO ESTIMATE THE TRANSPORT OF CRUISE 
ALTITUDE AVIATION EMISSIONS IN NORTHERN HEMISPHERE 

4.1 Introduction  

Aviation is one of fastest growing modes of transportation with a unique 4D emissions 

profile and the only anthropogenic source that emits pollutants directly into higher altitudes. 

Aviation emissions that occur between 9 – 12km are considered as cruise altitude emissions 

(CAAE). The CAAE contributes ~ 60 – 75 % (Wilkerson et al., 2010; Olsen et al., 2013) of the 

total aviation emissions (in terms of NOx, fuel burn) and dominate by ~ 75% (Yim et al., 2015) 

of model predicted total aviation premature mortalities. These emissions are directly released 

into upper troposphere and lower stratosphere (UTLS) region where the atmospheric conditions 

differ from that of surface. Some conditions such as larger residence times, lower background 

pollutant concentrations, lower temperature and larger radiative efficiency (Schumann 1997) 

make aviation an important emission source in UTLS region. It is also crucial to attribute the role 

of UTLS physical processes in characterizing the emitted pollutants fate and transport (Toohey et 

al., 2010). Additionally, chemical budgets are also highly influenced by atmospheric transport 

processes in the UTLS region. Prior studies (Liang et al., 2009; Cooper et al., 2011; Lin et al., 

2014) highlighted that pollutant levels increase in highly convective areas and downwind sites 

due to transport mechanisms and circulation patterns. Therefore, better understanding of the 

influence of transport processes on the overall impacts of an emission source is very essential. 

Few aviation related studies (Tarrason et al., 2002; Lee et al., 2013) also predicted that the air 

quality impacts from CAAE emissions at surface are relatively higher than due to landing and 

takeoff (LTO, emissions below 3000ft) emissions. These studies raised the question about the 
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involvement and role of transport (physical) processes on the impact of CAAE emissions to near 

the surface.  

Many modeling studies ( Unal et al., 2005; Arunachalam et al., 2011; Woody et al., 2011; 

Vennam et al., 2015) investigated the aviation-attributable perturbations due to aircraft emissions 

(LTO and CAAE) at local, regional to global scales and their role in causing human health 

effects ( Stettler et al., 2011; Levy et al., 2012; Koo et al., 2013; Yim et al., 2015). The 

traditional way to assess the impacts of any individual emission source in atmosphere is to 

calculate differences between ‘with emission source (perturbed)’ and ‘without emission source 

(unperturbed)’ modeling scenarios. However, with this approach, we cannot tease out the effect 

of physical and chemical processes individually on the overall emissions source impacts in 

chemistry-transport model. To attribute the effect of transport process solely, an inert tracer 

modeling approach was implemented previously in few early chemistry-transport studies 

(Alapaty and Mathur 1998; Allen et al. 1996). In these studies, all the atmospheric processes 

except for transport processes are turned off. This approach is computationally efficient and 

gives us the opportunity to characterize the transport pathways of emitted source. Various 

lagrangian trajectory models (Schoeberl and Morris 2000; Stohl et al. 2002) as well as chemistry 

transport and circulation models (Koch et al., 1996; Li and Chang, 1996) were previously used to 

conduct these tracer-based simulations. This inert tracer modeling approach was also used in 

testing the mass conservation (Hu et al., 2006) and vertical mixing characterization (Gerbig et 

al., 2008) in atmospheric models. Some of the recent studies (Wang et al., 2014; Jiao and Flanner 

2016) implemented tracer-tagging technique in global chemistry transport model to quantify 

source-receptor relationships and transport pathways of black carbon (BC) aerosol. Hence, here 
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in this study we implemented the same approach to study the transport of CAAE and to 

understand the source-receptor relationships.  

Till date, very limited studies have looked at the transport of aviation emissions in the 

UTLS region. An earlier study (Wauben et al., 1997) pointed out that passive transport studies 

could reproduce the general pattern of aviation NOx perturbations. Van Velthoven et al., (1997) 

looked at the transport of aviation NOx passive tracer in ensemble of models ranging from two-

dimensional to three-dimensional chemistry transport and global models. This study indicated 

that horizontal transport is more efficient in winter season and vertical transport is efficient 

during summer season. They also illustrated that the vertical exchange processes show minor 

contribution to NOx concentrations at varying altitudes and all the models well captured these 

trends. Lastly, the authors clearly specified few limitations that some of the models used in this 

study lacked parameterization of convective transport, which is crucial for vertical transport and 

need to be considered in future studies. Efforts (Forster et al., 2003) have also been made to 

study the residence times of aircraft emissions by using Lagrangian dispersion model. This study 

indicated that the North Atlantic Flight Corridor (NAFC) emissions are transported in the 

northeasterly direction towards polar region with maximum occurring over Europe and North 

Africa. This study specifically studied only the NAFC stratospheric (above tropopause) aircraft 

emissions and considered Measurement of Ozone and Water Vapor by Airbus In-Service 

Aircraft (MOZAIC) campaign flight tracks which does not cover the complete aircraft inventory 

in that region. This approach worked for the question that the authors tried to address but will not 

provide generalized overall hemispheric scale CAAE transport. Moreover, even this study did 

not consider deep convection and turned it off to reduce the computational time. However, 

recently Hauglustaine et al., (2012) concluded that by using a deep convection in the model, they 
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observed ~10 - 30% change in surface ozone associated with aircraft emissions. This illustrates 

the role and importance of deep convection transport scheme in the models while studying higher 

altitude emissions. From past few years, global as well as regional models transport schemes 

were adequately tested and the uncertainty in the formulations were reduced. Therefore, it is 

beneficial to address this issue with recent modeling platforms and updated transport calculation 

schemes.  

A recent study (Whitt et al., 2011) conducted passive tracer simulations by placing 

CAAE at ~ 11km in the GATOR (Jacobson et al., 2011) global model with 4o × 5o horizontal 

resolution. Their findings concluded that the extra-tropical cruise altitude emissions do not 

directly affect surface air quality through dynamical vertical mixing processes alone. This study 

strengthened the hypothesis that the chemical and wet removal processes lifetimes are much 

shorter than the vertical mixing processes, hence CAAE do not transport to surface directly 

through dynamical processes. However, uncertainties still exists with assessing the aviation 

(CAAE + LTO) attributable perturbations and their health impacts (Morita et al., 2014:406 

deaths; Jacobson et al., 2011: 620 deaths; Yim et al., 2015: 16000 deaths) near the surface. Given 

these widely varying findings, on the first hand the transport of CAAE to the surface needs to be 

further investigated with fine model resolution (both horizontal and vertical) (Klich and Fuelberg 

2014) to improve the understanding of the air quality impacts and mortality attributed to aviation 

sector.   

In this study, we characterized the role of dynamic processes in transporting the CAAE to 

the surface and seasonal distribution associated with those processes by conducting passive 

tracer simulations. Compared to previous studies our study is a new experimental setup with 

different methodology, in terms of continuous tracer emissions, no decay rate (seasonal runs) and 
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a relatively fine model grid resolution. These conditions make this an idealized as well as worst-

case scenario tracer test to quantify the amount of CAAE transported to the surface with 

maximum emission input and zero loss. Clear evidence was already shown in prior studies (Land 

et al., 2002; Rauscher et al., 2010; Klich et al., 2014; Gan et al., 2016) regarding better 

representation of model processes at fine vertical and horizontal resolution. Therefore, studying 

the aviation CAAE tracer at fine resolution will advance our understanding of the processes 

influencing the CAAE emissions near UTLS region. Vennam et al., (2016, In preparation) also 

addressed the better prediction of aviation impacts at hemispheric resolution when compared to 

other global models and suggested the need to understand the role of transport at this resolution. 

Given the increasing aviation emissions trends in developing regions (Wasiuk et al., 

2016) at rapid rate, it is important to understand the intercontinental transport involved among 

developed and developing regions to address any potential future mitigation strategies in aviation 

sector. To quantify the intercontinental transport, we also tagged the emissions in three key high 

aviation activity regions such as North America (NA), Europe (EU) and East Asia (EA) and 

conducted tagged tracer simulations. To our knowledge, for the first time tagging tracer 

simulations for aviation emissions were conducted in this study to illustrate the intercontinental 

transport role. From these modeled tracer simulations we quantified the fraction of the source 

emissions near receptor regions.  

4.2 Methodology 

4.2.1 Tracer Model 

 The state of the art Community Multi-Scale Air Quality (CMAQv4.7.1) chemistry-

transport model (Byun and Schere 2006) was used for hemispheric (108 × 108 km2, HEMI) scale 

application, the spatial extent of the domain and typical monthly NOx emission distributions for 
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key sub regions (NA, EU, EA) are shown in Figure 4.1. We carried out tracer transport 

simulations by completely turning off chemical process in the model and focusing mainly on the 

transport processes. To do this we made a new tracer mechanism in the source code (.EXT files) 

and considered only the NOx species as the species list in all processes. For transport schemes, 

we used Yamartino (YAMO) (Byun and Schere 2006) scheme for advection process and 

Asymmetric convective mechanism (ACM2) (Pleim 2007a) scheme for diffusion process. The 

ACM2 vertical mechanism has been evaluated (Pleim 2007b; Tang et al., 2011) and used in 

various modeling applications. As mentioned in Pleim et al., (2007a), ACM2 is convective 

model combined with eddy diffusion scheme that can better represent even sub-grid scale 

components of turbulent transport.  

4.2.2 Model Inputs and Specifications 

 
We used NASA’s Modern-Era Retrospective Reanalysis (MERRA) (Rienecker et al., 

2011) meteorology downscaled data as inputs to Weather Research and Forecasting model 

(WRF) (Skamarock et al., 2008) model to generate meteorology data. We used a fine scale 

vertical resolution for our modeling and improved the vertical structure to 44 model layers 

instead of the traditional 34 (or even 17) layers CMAQ regional scale modeling. We generated 

gridded aviation emissions from FAA’s Aviation Environmental Design Tool (AEDT) (Roof et 

al., 2007; Wilkerson et al., 2010) raw data by using a processing tool that spatially and 

temporally allocates the data. In this study, as our focus is mainly on cruise altitude aviation 

emissions we zeroed out all emissions other than the aircraft emissions in model layers (ranging 

from 33 – 38) that falls in the cruise altitude range of 9 – 12 km. We considered NOx as a 

passive tracer, which is chemically inert and undergoes only transport processes in our tracer 

modeling. Instead of considering random emission mass we considered actual cruise altitude 



 

 76 

NOx emissions, to capture the spatial and temporal variation of aviation emissions. As NOx is 

one of the highly emitted pollutant at cruise altitudes from aircraft, therefore we considered NOx 

as our proxy for the cruise altitude emissions. 

 

Figure 4.1: Hemispheric modeling domain with cruise altitude emissions distributions for 
complete northern hemisphere (top, left). Also shown are the tagged cruise aviation emission 
scenarios for North America (top, right), Europe (bottom, left) and East Asia (bottom, right). 

 

Using these emissions, we ran tracer simulations continuously for three months modeling 

period by constantly adding emissions at cruise altitudes. In other words, we restarted the model 

run freshly for every three months, for example each season was categorized into consecutive 

three months (winter: DJF (December – February), spring MAM (March – May), summer: JJA 

(June – August), autumn: SON (September – November)). The reasons for considering this 

approach are: 1) to provide sufficient time period (typical time 3 months: ~ 90 days) for the 

tropospheric mixing to occur at hemispheric scale 2) to isolate the issue of accumulation in the 

model as we did not consider any decay rate in our tracer runs 3) this approach even enables us 
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to look at the tracer transport processes on seasonal basis as we are doing a fresh initialization for 

each season. The vertical transport of pollutants from PBL takes 1-2 days to reach the surface, 

from mid-troposphere it takes ~ 1 week and from tropopause it takes ~ 1 month. The horizontal 

transport in subtropics takes ~ 2 weeks and the transport from subtropics to tropics or towards 

poles takes ~ 1- 2 months (Jacobs, 2004). Stohl et al., 2002 clearly indicated that intercontinental 

transport occurs on timescales of 30 days and 90 days (Liang et al., 2009) to transport from 

lower stratosphere to lower troposphere. Liang et al., 2009 clearly demonstrated that it takes one 

month to cross the tropopause, one month to transport from upper troposphere to middle 

troposphere, and another month to get transported to lower troposphere. Therefore, taking into 

consideration these timescales from literature we considered 90 days as our simulation period for 

tracer modeling to capture intercontinental, cross tropopause, and upper troposphere to lower 

troposphere transport processes.  

 Another set of tracer simulations were carried out in hemispheric domain by tagging the 

three major aviation emissions contributors North America (NA: 20N – 60N, 130W – 60W), 

Europe (EU: 20N – 60N, 10W – 60E), East Asia (EA: 20N – 60N, 100E –150E).  We considered 

emissions that fall in the spatial bounds of these three sub-regions and in cruise altitudes and 

tagged them with the specific region name (for example: NO_NA, NO_EU, NO_EA) to perform 

our source-receptor tracer simulations. We conducted these simulations for three months 

modeling period for each season by constantly adding emissions for each three sub-regions. 

4.2.3 Analysis metrics 

 
 We carried out quantitative analysis using the metrics discussed here to study the CAAE 

tracer transport. We calculated mass fraction (MF) in each model layer (in other words different 

altitudes in the atmosphere) as shown in equation 4.1 which defines the amount of mass present 
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in each layer for each month with respect to the total mass available in the model domain 

(Column Burden). For the total mass available in the domain we calculated the total column 

burden (molecules/cm2) by integrating the concentrations (ppbV) available in all model layers. 

For individual layer mass we converted the mixing ratio into mass (molecules/cm2) by 

multiplying by the density of air and layer height differences. This metric indicates the amount of 

tracer transported from cruise altitude to different altitudes.  

  

Mass Fraction MF!"#$% =  !"##!"#$%
!"#$%& !"#$%&×100          (4.1) 

 

In order to study the source-receptor relationships we implemented one other metric as 

mentioned in Wang et al., 2014. We calculated fractional tracer contribution of the source region 

emissions at receptor region. Here we considered the tracer column burden as our property to 

analyze the source-receptor relationship. The contribution metric is calculated by taking the ratio 

of column burden of the source (i) in the receptor region (j) with respect to the total column 

burden in receptor region from different sources (N  = 3 sources (NA, EU and EA)).  

 

Contribution!,! =  !"#$%& !"#$%&!,!
!"#$%& !"#$%&!,!!

!!!
 ×100            (4.2) 

4.3 Results  

4.3.1 Tracer surface distribution   

 
 The tracer simulations are run over a three-month period corresponding to seasons with a 

fresh initialization for beginning of each season. In other words, we let the tracer model run 

continuously for 90 days. Throughout our calculations, other than where we specifically 
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mentioned each month, we considered the last month as our representative month for that season. 

Therefore throughout the results whenever we say season it means the last month in that 90 days 

run.  

In this section, to study the surface tracer distribution we calculated surface mass fraction 

percentage using Equation 4.1. When averaged across the domain, as shown in Table 4.1, the 

winter season (0.23%) is ~ 1.6x higher when compared to summer months (0.14%). The winter 

is followed by autumn (0.21%) and spring (0.18%), both showing ~1.5x and ~1.2x higher than 

summer average MF.  

Table 4.1: Domain wide averaged surface mass fraction percentage for each season 
 

Season Surface Mass Fraction % 
Winter 0.23 
Spring 0.18 
Summer 0.14 
Autumn 0.21 
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Figure 4.2: Tracer surface mass fraction percentage with respect to the total mass available in the 
each month. Each row is a single simulation where tracers were reset to zero at the first month of 
each row and represents each season. 

 

Figure 4.2 shows spatial distribution of the surface mass fraction percentage for all 

months. Throughout all the seasons (each row in Figure 4.2), the maximum tracer MF near the 

surface with respect to the total mass available in the model domain is < 0.6%. The maximum 

tracer surface MF of ~ 0.5% occurred at over the Tibetan Plateau and Middle East region in 

summer months, whereas in winter season the maximum MF is slightly lower ~0.3%. In summer 
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months, the higher tracer concentrations near Middle East and Eastern Mediterranean regions 

could be due to the tropopause folds (Akritidis et al., 2016) and tracer getting trapped in the 

subtropical high that descends near Middle East (Stohl et al., 2002) due to downwelling. This 

transport pathway is consistently seen during summer months that indicated sink process near 

this region. Though the maximum tracer surface MF is higher in summer the overall average 

tracer mass near the surface is high during winter (as shown in Table 4.1). During summer 

season the tracer transport occurred mainly at high convection regions, which produced 

maximum tracer concentrations near these regions. During winter season, as it is more 

dominated by horizontal transport due to high westerlies near higher altitudes, and globally 

relatively more tracer mass was transported to the surface.  

4.3.2 Tracer vertical distribution  

 
We calculated the mass fraction throughout the model vertical altitudes to understand the 

transport in the free and upper troposphere regions. Throughout the vertical analysis to discuss 

the results we keep referring to regions that fall in these altitude bins: 13 – 20 km (UTLS), 9 – 12 

km (cruise altitude region, CA), 3 – 8 km (mid-troposphere, MT), 0.05 – 3 km (lower 

troposphere, LT) and surface. Figure 4.3 shows the vertical profiles of three months binned by 

each season for all model altitudes. Recall the first month tracers are set to zero. During the first 

month in each season, 45 (summer) – 50 (winter)% of tracer still remains at cruise altitude region 

and after 30 days it decreased to 28 – 40%. This change in contribution shows the average 

transport time of ~1 month near tropopause and cruise altitude region, similar results are also 

shown in Liang et al., (2009). During winter and autumn seasons, after 3 months, 10 – 11% of 

the tracers transported to UTLS, 23 – 29% of tracer remained in CA, 37% transported to MT and 

18 – 23% transported to LT. During spring and summer season, after 3 months, 14 – 17% of 
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tracer transported to UTLS, 32 – 36% of tracer remained in CA, 33 – 36% appeared in MT and 

11 – 15% occur in the LT region. These seasonal differences indicate that during winter, 

transport of CAAE tracer to mid-troposphere is higher than compared to summer. In summer, the 

transport of tracer to UTLS region is slightly higher than compared to winter and other seasons 

due to more upward flux. This vertical analysis illustrates that significant portion of tracer is 

transported to MT and UTLS region with only 0.2 – 0.5% tracer mass reaching the surface even 

after 90 days of simulation.  

 

Figure 4.3: The amount of tracer (%) in each model vertical altitude (points on the line) with 
respect to the total mass available in the model domain for each month in a season.  

 

Figure 4.4 shows the zonal vertical distribution of tracer mixing ratio last month in each 

season simulation. The tracer data were binned into three latitude bands: tropics (0 – 30 N), sub-
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tropics (30 – 60 N) and artic (60 – 90 N) regions. Further the data were binned by altitudes. 

Consistently in all seasons, the sub-tropics and arctic regions have higher tracer concentrations in 

CA region and UTLS, since most of the cruise altitude emissions occur in these regions. In the 

tropics, tracer concentrations are lower in CA than compared to sub-tropics and arctic region due 

to relatively lower aviation activity. However, as we reach lower altitudes and come close to the 

surface the tracer concentrations showed an increasing trend in the tropics, indicating that some 

of the sub-tropics CAAE tracer is transported to tropics. We observed that tracers in upper 

altitudes are mainly driven by horizontal transport that is followed by vertical transport along 

isentropes near large downward flux convection regions.   

 

 

Figure 4.4: Tracer mixing ratios for the last month in each 90 day simulation. Each box plot 
represents the tracer mixing ratios for all horizontally grid cells containing latitude bins of 0 – 
30N (blue), 30 – 60N (green), and  60 – 90N(red). The tracer mixing ratios are further binned 
vertically by altitudes. 
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4.3.3 Source-receptor distributions 

 In this section we discussed the results from simulations where tracers were tagged from 

three sub-regions: North America (NA), Europe (EU), and East Asia (EA) and run for 90 days.  

               

Figure 4.5: North America tracer surface mass fraction percentage with respect to the total mass 
available in the model domain for each month. Each row is a single simulation where tracers 
were reset to zero at the first month of each row and then ran for 3 months in each season. 
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Figure 4.5 shows the spatial distribution of tracers released from NA for all 3 months in 

each season. The figure shows that the more tracer MF predominantly occurs mainly in the 

downwind continents. During winter, spring, and autumn seasons higher tracer MF percentage in 

the range of 0.4 – 0.5 % mass fraction occurred mainly near India, Indian Ocean and further 

towards tropics. During summer higher tracer MF percentage (0.4 – 0.5%) mainly occurred near 

Mexico, North Africa and Middle East. Only in summer, due to high convection NA tracer was 

transported to western and southern NA than compared to other seasons. Though most of the NA 

cruise altitude tracer emissions occurs in the 30 – 45 N, we observed that tracer was transported 

to the surface towards 0 – 20 N latitude band. 

Figure 4.6 shows the spatial distribution of tracers released from EU for all 3 months in 

each season. Similar to the NA tracers, the EU tracers shows higher MF percentage near South 

East Asia, Tibet Plateau and Middle East. The EU tracer surface maximum MF percentage 

(0.8%) is ~2x higher than the NA tracer particularly in summer near Tibet Plateau and Middle 

East. During summer and autumn seasons, a maximum of ~1.2% appeared in these regions in the 

first month itself. One interesting trend to be noticed is EU tracer (0.3 – 0.4%) was transported to 

western NA particularly in winter and autumn seasons through trans-pacific synoptic transport 

due to strong westerly transport in cruise altitude region.  

Figure 4.7 shows the spatial distribution of tracers released from EA for all 3 months in 

each season. Unlike NA and EU where the surface maximum MF is observed during summer, 

here in EA the maximum MF percentage of 0.4% occurred in the Pacific region during spring 

season. This strong westward transport in spring from EA was already observed in previous 

studies (Lin et al., 2012) and we are seeing the similar pattern with EA CAAE tracer.  
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Figure 4.6: Europe tracer surface mass fraction percentage with respect to with respect to the 
total mass available in the model domain for each month. Each row is a single simulation where 
tracers were reset to zero at the first month of each row and then ran for 3 months in each season. 
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Figure 4.7:  East Asia tracer surface mass fraction percentage with respect to the total mass 
available in the model domain for each month. Each row is a single simulation where tracers 
were reset to zero at the first month of each row and then ran for 3 months in each season. 
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Table 4.2: Tracer source-receptor contribution metric (Equation 4.2) for four seasons of North 
America (NA), Europe (EU) and East Asia (EA) sources. 
 

 NA Receptor 
Source NA EU EA 
Winter 51 28 21 
Spring 50 30 19 
Summer 69 21 11 
Autumn 46 34 19 

    
 EU Receptor 

Source NA EU EA 
Winter 45 40 15 
Spring 48 36 15 
Summer 45 46 9 
Autumn 43 41 16 

    
 EA Receptor 

Source NA EU EA 
Winter 45 31 24 
Spring 45 33 22 
Summer 29 40 31 
Autumn 40 37 23 

 

Table 4.2 shows the contribution of the three source regions near the receptor regions 

calculated using Equation 4.2. In NA receptor region, 46 – 50% of NA contribution is due to NA 

tracer emissions and the remaining 28 – 34% and 19 - 21% is due to EU and EA tracer emissions 

in all seasons except in summer. In summer, 69% is due to NA emissions with the remaining 

21% and 11% contributions incurred from EU and EA tracer emissions. This high contribution in 

summer is mainly due to the transport of NA emissions to the surface near high convection 

regions like western NA. In EU receptor region, 43 – 48 % contribution is due to NA source 

followed by 36 - 41% and 15% contributions from EU and EA sources for all seasons except 

summer. During summer, both NA and EU tracer shows equal contribution of 45% and EA 
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shows 9% in EU receptor region. This highlights that in EU, the influence from NA is prominent 

in all seasons due to strong westerly transport. In EA receptor region, 40 – 45% contribution 

occurred from NA and 33 – 37% contribution came from EU source followed by EA source with 

22 – 24% in all seasons except summer. In summer, the NA source contribution decreased to 

29% whereas EU and EA contribution increased to 40% and 31%.  

Throughout all three receptor regions, their own source contribution increased in summer 

season indicating the influence of vertical transport due to relatively high convection when 

compared to all other seasons. During winter and spring seasons, the downwind source region 

contributions are higher indicating the influence of horizontal transport. These results are 

comparable to findings mentioned in Van Velthoven et al., 1997, however here we illustrated the 

intercontinental transport in detail by calculating contribution for individual key source regions 

considered in this study.  

4.4 Conclusions 

In this study we implemented a tracer approach to understand the role of physical processes 

in transporting cruise altitude aviation emissions in the atmosphere using a high resolution 

modeling platform. Overall model predictions indicated < 0.6% of CAAE in the total column 

was transported to the surface in northern hemisphere for all seasons. This is similar to the 

results reported by Whitt et al., (2011) concerning the distribution of CAAE. Winter season 

shows higher proportion of tracer mass near the surface than summer season, summer season 

showed maximum tracer near high convection regions. These predictions showed that most of 

the tracer still exists in the mid-troposphere and upper troposphere during all seasons. CAAE 

tracers tended to concentrate in sub-tropics and arctic region at cruise altitudes. As we approach 
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the surface, however, tracer concentrations began to increase in the tropic regions. This is the 

result of the model transporting CAAE tracers from the sub-tropics towards the tropics.  

From our source/receptor analysis we found that both NA and EU are primarily impacted 

by their own emissions. Overall we see that NA source emissions can significantly affect EU and 

EA regions in all seasons, and both NA as well as EU source emissions can affect EA region. 

Our intercontinental tracer study showed evidence that NA and EU cruise emissions can show 

impacts near high terrain regions like Tibet Plateau and places with relatively lower aviation 

emissions regions such as UAE, North Africa, India and South East Asia. This partly explains 

some of the aviation-attributable high mortality estimated by Barrett et al., (2010) in Asia. Here 

we studied the role of dynamic processes, to further improve our understanding, it is also 

beneficial to study the chemical processes role in UTLS region as future work. Lastly, 

considering recent version of CMAQ model to take advantage of the recent model updates for 

any of this future work is highly suggested.  
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CHAPTER 5: CONCLUSIONS 
 

The overall objective of this dissertation is to quantify the aviation-attributable 

perturbations at multiple scales and improve the assessment of aviation air quality impacts using 

a chemistry transport model. To achieve this objective, we conducted CMAQ modeling 

simulations from fine scale (4 × 4 km2) focusing near an airport to hemispheric scale (108 × 108 

km2) focusing on the overall northern hemisphere. In this research we tested our central 

hypothesis through use of a finer spatially resolved model to characterize aviation impacts on air 

quality and quantified an improvement in model performance when compared with observations. 

Overall we showed the importance of fine scale resolutions for modeling applications at local 

(near an airport), regional (continental U.S.) and hemispheric scales. Firstly, we quantified the 

aviation-attributable hazardous air pollutants (HAPs, air toxics) near an airport and showed 

improvement in model performance with fine scale (4 × 4 km2) when compared with coarse 

resolution (36 × 36 km2), using observations from a field study at the airport. Secondly, we 

studied the full-flight aircraft emissions impacts on O3 and PM2.5 near the surface and showed the 

influence of grid resolution on aviation impacts between 36 × 36 km2 and 108 × 108 km2 scales. 

Lastly, we focused mainly on the cruise altitude aviation emissions (CAAE) and looked at the 

role of dynamic processes in transporting CAAE to the surface. We addressed these three key 

research areas related to aviation emissions that required further investigation to advance the 

scientific understanding of aviation-attributable air quality assessments. 
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In our first study, we carried out fine scale modeling and studied the spatio-temporal 

variability of aviation-attributable HAPs near a medium-sized airport (PVD: Providence T.F. 

Green, Rhode Island). We used FAA-EPA developed new aircraft specific speciation profile to 

generate HAPs emissions near the airport, which is one of the significant update we made in this 

HAPs modeling. Results demonstrated that modeled aircraft-attributable contributions near a 

medium-sized airport such as PVD are in the range of 2 – 4% and 19 – 28% for key HAPs such 

as formaldehyde and acrolein. The maximum impacts are seen only within 4 – 16km from the 

airport grid cell. Comparison of fine (4 × 4 km2) and coarse (36 × 36 km2) resolutions showed a 

5 – 20% reduction in error with fine scale when evaluated with HAPs observations from a 

measurement campaign held near PVD airport. Our comparison of fine scale CMAQ model 

predictions with data from the U.S EPA’s National Air Toxics Assessment (NATA) showed 

similar mean concentrations. This provides further evidence that the fine scale CMAQ model 

predictions in the vicinity of airport can be utilized to calculate health risk assessment from 

aviation-related HAPs. Nevertheless we showed that underprediction of HAPs exists with 

different modeling platforms and we think this is mainly due to the underprediction of secondary 

contribution in chemistry transport models such as CMAQ. 

Current estimates of HAPs are a challenge for modeling systems and refinements to 

simulate aircraft emissions have made only incremental improvements. Two key areas that need 

to be addressed in near future are improvement of HAPs secondary formation in CMAQ and 

additional monitoring campaigns near airports to measure aviation-related HAPs. Regarding the 

uncertainties in secondary contribution of HAPs (such as formaldehyde, acetaldehyde and 

acrolein), studies (Luecken et al., 2011) stressed that it is mainly due to improper representation 

of primary precursor emissions (isoprene and VOCs) and their chemistry. To perform extensive 
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model evaluation more measurements are also necessary near various busy airports to completely 

understand the model performance and the HAPs impacts in the vicinity of the airport.  

Measuring HAPs is also a key challenge at ambient conditions as they are highly reactive (Cahill 

et al., 2015), limitations still exists with reliability and consistency of these measurements. 

Lastly, in the 4 × 4 km2 scale modeling conducted for this study, most of the airport emissions 

occurred in a single grid cell. However the HAPs emissions are high during idling stage and 

decreases during takeoff stage. Therefore, it may be further beneficial to conduct modeling at an 

even finer scale (2 × 2 km2 or 1 × 1 km2) for better modeling of aircraft HAPs emissions in the 

immediate vicinity of the airport.  

In the second study, we shifted our focus to full-flight aviation emissions (landing and 

takeoff, and cruise altitude emissions) and quantified the perturbations of O3 and PM2.5 at 

hemispheric scale. Based on domain-wide averages in hemispheric domain, full-flight emissions 

contributed ~1.3% and 0.2% of O3 and PM2.5 respectively at the surface, which increased to 

~2.5% and ~3% in upper altitudes. Overall, the spatial distribution shows that O3 aviation 

impacts were driven by atmospheric circulation and convective transport while PM2.5 aviation 

impacts were influenced by localized precursor emissions and Ammonia (NH3) emissions. Our 

comparison of coarse (108 × 108 km2) and fine (36 × 36 km2) scale aviation-attributable 

perturbations in North America (NA) showed decrease in aviation impacts with fine scale at the 

surface, as fine scale captured some of the non-linearities in the chemistry such as titration of 

excess NOx near airport and urban areas. The model error reduced by ~7% for O3 and ~25% for 

PM2.5 with fine resolution when compared to coarse resolution in NA domain against surface 

observations. In UTLS, the model error decreased by ~5 – 11% for NO2 with full-flight 

emissions and fine scale resolution when compared to model predictions without full-flight 



 

 94 

emissions and coarse resolution. We computed seasonal aviation-attributable mass flux vertical 

profiles and aviation perturbations along the isentropic surfaces to quantify the transport of 

cruise altitude emissions at hemispheric scale. With this analysis we showed that the winter 

perturbations are higher due to the downward flux. Yet, as the model undergoes chemistry and 

transport simultaneously we were not able to individually attribute the role of the transport on 

CAAE. Therefore, it is important to clearly understand the role of various atmospheric processes 

to attribute the transport processes influence on CAAE, which was studied in Chapter 4.  

There are few limitations associated with second study (Chapter 3) modeling framework 

such as lack of stratospheric chemistry in CMAQv5.0.2 (latest version available at the time of 

research) that affects the ozone and hydroxyl chemistry in upper altitudes, and thus introduces 

some level of uncertainty in the UTLS model predictions. Another key limitation in hemispheric 

scale CMAQ is the use of lightning NOx empirical emission calculation update that has been 

fully tested for U.S applications, but not at hemispheric scale. These limitations can change some 

of our model predictions in the upper altitudes but will change our surface air quality predictions 

to a relatively lesser degree. As more efforts are underway to improve hemispheric CMAQ 

applications (such as potential vorticity, SMOKE emissions processing), these limitations need 

to be considered in future model development. Lastly, it is also crucial to extensively evaluate 

models at higher altitudes and very limited efforts are undertaken in this aspect mainly due to 

sparse availability of observational data. Nevertheless, the air quality community noticed the 

need for more observation data in UTLS and free troposphere region, and started various aircraft 

observation campaigns to address model uncertainties in higher altitudes.  

For the third study, we needed to understand how the CAAE is transported in a finer 

spatial resolution model and the role of intercontinental transport. The second study has also 
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suggested the importance of understanding the transport processes role to address how CAAE 

can impact surface air quality. Therefore, we conducted passive tracer (chemically inert) 

seasonal simulations to study the influence of transport processes on CAAE. The results from 

this modeling effort should be considered as the ideal case scenario and should be viewed as 

more diagnostic approach. We found that most of the tracers released at cruise altitudes remains 

in the upper altitudes and only < 0.6% with respect to the total column burden reaches the 

surface. In the upper altitudes, for the first 30 days ~ 50% of tracer remain at cruise altitudes and 

after 90 days ~ 23% stays at cruise altitudes transporting the remaining tracer to mid-

troposphere. Zonal vertical distribution clearly showed that higher tracer levels occur in sub-

tropics and arctic region at cruise altitudes, and relatively lower tracer levels occur in tropics at 

these altitudes due to lesser aviation activity in that region.  

Additionally, our tagged tracer simulations highlighted the source-receptor relationships 

between the key sub-regions (North America (NA), Europe (EU) and East Asia (EA)). It also 

provided evidence that NA as well as EU emissions can impact the relatively lower aviation 

regions such as North Africa, Middle East, India and South East Asia. This can lead to relatively 

higher mortality in densely populated tropics region as mentioned in Barrett et al., (2010) despite 

lower aviation precursor emissions. However, the significantly lower aviation-attributable 

perturbations even with fine scale modeling in the second study and lesser CAAE tracer near the 

surface in third study make mortality estimates in Barrett et al., (2010) questionable. Overall our 

results explained the intercontinental role of aircraft emissions in where they are emitted, where 

the impacts are seen and more importantly provide inputs for future policy development in 

decreasing aviation impacts on air quality and health.  
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One key limitation associated with the third study (Chapter 4) is our tracer modeling we 

used old model version (CMAQv4.7). The recent updates in new CMAQ versions (v5.0, v5.1) 

such as turbulent mixing during stable conditions, modifications in vertical advection scheme 

(ACM2) (Pleim et al., 2007) to reduce numerical diffusion in upper model layers can influence 

the tracer trends observed in our study as we used old CMAQ version (v4.7).  The stability 

functions in ACM2 for heat and momentum and Monin-Obukhov Length calculations are also 

modified in recent CMAQ version (v5.1) to make it consistent with the WRF model formulation. 

The change in stability function calculation based on heat and momentum during stable 

conditions is intended to allow more mixing during stable atmospheric conditions such as early 

evening. Overall these modifications can change vertically transported tracer concentrations and 

their contribution in the planetary boundary layer (PBL). 

The various multi-scale modeling conducted in this dissertation have shown that finer 

spatial scales will provide improved estimates for air quality impacts from aviation. Therefore, 

conducting a nested model application considering all these different scales will advance our 

knowledge further and should be considered as a valuable future work. For future global policy 

development, we suggest this kind of nested modeling application that captures both local as 

well as hemispheric level aviation impacts variability and can provide accurate air quality as well 

as health based assessments. There are some more future work ideas based on the work 

performed in this dissertation. Firstly, in the first study we conducted HAPs modeling for one 

single airport, however there is no study till date that looked at the aviation-attributable HAPs at 

regional level with fine scale modeling, therefore this should be considered as one of the 

potential future work. Secondly, the hemispheric modeling platform developed in the second 
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study is a chemistry transport model whereas few studies (Xing et al., 2015) already used this 

kind of application to conduct coupled chemistry meteorology modeling. Therefore, for future 

work conducting a coupled hemispheric modeling for 10 – 20 years period will advance our 

knowledge regarding aviation-related long-term climate and air quality impacts. Lastly, future 

studies should implement tracer approach in recent CMAQ version (v5.1 or 5.2) to take 

advantage of transport updates incorporated in the model. 
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APPENDIX A: SUPPLEMENTAL MATERIAL: EVALUATION OF MODEL 
PREDICTED HAZARDOUS AIR POLLUTANTS (HAPS) NEAR A MID-SIZED U.S. 

AIRPORT 

A.1 METHODOLOGY 

A.1.1 Air Quality Model: 

A.1.1.1 36 × 36 km2 CMAQ Model Simulations: 
 
Woody et al., 2011 carried out 36 × 36 km2  model simulations for the continental U.S. using 

CMAQv4.6 with aircraft emissions based upon the Emissions Dispersion Modeling System 

(EDMS) from 99 major US airports processed through EDMS2Inv (Baek et al., 2007) along with 

other background emissions (NEI inventory emissions, EPA, 2007b). In that study the authors 

did not discuss HAPs, as the main aim of their study was to access aviation contributions to fine 

particulate matter (PM2.5) under current and future emissions scenarios. The model however was 

indeed configured for treatment of air toxics or HAPs, and we used that data to perform a U.S. 

wide assessment of aviation-related HAPs.  

Table A1: Total Organic Gas (TOG) speciation profile of HAPs for aircraft engines developed 
by EPA/FAA (EPA, 2009) 
              

*Note: The HAP species considered in this study are a small subset of all species in the TOG.  

The remaining species are further speciated in the model based on the Carbon Bond 2005 

chemical mechanism speciation profile. 

 

 

HAP Species* Mass Fraction  

Formaldehyde 0.1231 

Acetaldehyde 0.0427 

Benzene 0.0168 

Toluene 0.0064 

Acrolein 0.0245 

1,3-Butadiene 0.0169 

Xylene 0.0045 

Naphthalene 0.0054 
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Table A2: Transport and chemical processes parameterizations used in CMAQ v5.0.2 for the 4 × 
4 km2  simulations. 

Processes Model Scheme 
Horizontal advection hyamo 

Vertical advection vyamo 
Horizontal diffusion multiscale 

Vertical diffusion acm2_mp 
Deposition m3dry_mp 
Photolysis jtable 

Chemistry solver ebi_cb05tump 
Aerosol aero6_mp 

Cloud module cloud_acm_ae6 

A.1.1.2 Aircraft emission sensitivity for PVD 4 × 4 km2  case: 

According to ICAO, the different stages in flight path based on the power settings are 

defined as idle (7%), approach (30%), climbout (85%) and takeoff (100%). From linear 

extrapolation of fuel flow corresponding to four ICAO thrust settings (100%, 85%, 30%, 7%) we 

obtained fuel flow for 4% thrust setting (FF_4perc) for each engine present in ICAO database. 

Considering fuel flow (FF) and hydrocarbon emission index (HC_EI) of four ICAO thrust 

settings for each engine, we calculated slope (SHC_EI_FF) and intercept (IHC_EI_FF) values of the 

linear logarithmic fit. The slope (SHC_EI_FF) and intercept (IHC_EI_FF) are then used to calculate the 

4% HC EI (HC_EI_4perc) of a 4% fuel flow (FF_4perc) (HC_EI_4perc = (SHC_EI_FF)*FF_4perc 

+ (IHC_EI_FF)). The chorded AEDT emission inventory consists of mode-specific emissions for 

individual flights starting from ground roll and taxing (emissions mode 0 and 10), takeoff 

(emission modes 1–3), cruising (emissions modes 4–6) to approach and landing (emission modes 

7–9). The new HC_EI_4perc was applied to both ‘0’ and ‘10’ emission mode’s fuel burn when 

the AEDT-reported segment time is higher than the respective unimpeded average taxi time 

(Unimpeded taxi out time = 9.6 min, Unimpeded taxi in time = 3.8 min) near PVD. The idling 

fuel burn is multiplied by 4% hydrocarbon index (HC_EI_4perc) to obtain 4% hydrocarbon idle 

emissions. We then used the AEDTProc tool to generate CMAQ-ready emissions of gridded and 

speciated new aircraft HAPs.  
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A.1.2 Observational Data: 

Table A3: Monitoring sites and their description near PVD airport 
 

Field 

Study 

Name 

Site Name FIPS CODE Site Description 

RIDEMa Fieldview 440030015 Runway site, close to major runway 

Firestation 440030011 0.9km from airport terminal building 

Lydick 440030012 Opposite to Fieldview (downwind) 

Smith 440030014 Site located in residential area 

Draper 440030013 Away from airport and located near 
bay area 

AQSb Providence 440070022 Urban 

Pawtucket 440070026 Residential (near interstate highway) 

East 

Providence 

440071010 Suburban 

W. Greenwich 440030002 Rural 

a) RIDEM – Rhode Island Department of Environmental Management   b) AQS – Air 

Quality System 
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Table A4: NATTS observation sites and airport grid-cells in 36 × 36 km2  domain. 
 

NATTS ID State Location Gridcell 
(col,row) 

airport Gridcell 
(col,row) 

06-085-0005 California San Jose 14,57 OAK 14,58 
11-001-0043 District Of 

Columbia 
Washington 122,58 IAD 121,58 

12-057-3002 Florida Tampa 115,23 TPA 114,23 
12-103-0026 Florida Pinellas 

county 
114,22 TPA 114,23 

13-089-0002 Georgia Atlanta 107,39 ATL 107,39 
17-031-4201 Illinois Chicago 95,64 ORD 95,64 
25-025-0042 Massachusetts Boston 133,72 BOS 133,72 
26-163-0033 Michigan Detroit 106,66 DTW 105,66 
29-510-0085 Missouri St. Louis 91,53 STL 90,53 
36-005-0083 New York Bronx 128,66 JFK 128,65 
36-005-0110 New York Bronx 128,66 JFK 128,65 
36-055-1007 New York Rochester 118,71 ROC 118,71 
44-007-0022 Rhode Island Providence 132,70 PVD 132,70 
48-201-1039 Texas Houston 80,25 HOU 79,25 
48-203-0002 Texas Karnack 82,34 HOU 82,34 
49-011-0004 Utah Bountiful 40,62 SLC 40,62 
53-033-0080 Washington Seattle 22,87 SEA 22,87 
55-027-0007 Wisconsin Mayville 93,68 MSN 92,68 
55-079-0010 Wisconsin Milwaukee 95,67 MKE 95,67 

A.2. EMISSIONS ANALYSIS 
 

In this section we included analysis of HAPs emissions from airports, and their 

percentage contribution in the airport grid-cells when compared with the total emissions (airport 

+ background) for both 36 × 36 km2 and 4 × 4 km2 domains.   

Table A5 represents the annual emission totals in tons/year. In the 36 × 36 km2 domain 

we calculated the emission totals by summing up all the HAP emissions in 99 airport grid-cells. 

Overall, formaldehyde showed higher airport emissions among all the HAPs followed by 

benzene, acetaldehyde and acrolein. If we look at the airport contribution to the total emissions 

from all 99 airport grid-cells, however, acrolein shows a higher value (22%) than formaldehyde 
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(9.2%) (Note that this contribution can vary with airport). In the 4 × 4 km2 domain, since it is a 

finer resolution (than 36 × 36 km2 ), the airport contribution to the total emissions in that PVD 

grid-cell is obviously higher and in the range of 50–70% for key pollutants (formaldehyde, 

acetaldehyde and acrolein). In Table A7 we compared just the emissions in the PVD grid-cell 

from 36 × 36 km2 and 4 × 4 km2  domains. 

 
 

Figure A1: Vertical profile of model layers height (left) and aircraft annual emissions (right) for 
all HAPs. Note that aircraft emissions during LTO are only represented within the lowest 1000 
meters. 

In 4 × 4 km2 emissions we considered only the aircraft emissions but not the emissions 

from ground supporting equipment (GSE), ground auxiliary vehicles (GAV). As mentioned in 

previous observation-based studies we should note that majority of airport emissions of HAPs 

come from aircraft (> 80–90%) during idling and taxing stage for key species (formaldehyde, 

1,3-butadiene, acrolein). This explains the reason for relatively lower emissions of remaining 

HAPs such as benzene, toluene and xylene where GSE and GAV contribute relatively high. But 

as AEDT inventory used in PVD does not include those emissions sources, we are missing 

certain proportion of emissions. 
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Table A5: HAPs airport emission totals for 99 airport grid-cells in the sensairp_36 km case and 
PVD airport grid-cell in sensairp_4km case. Contributions of these emissions to the total 
emissions (airport + background) are also shown. 
 
 

HAPS 

(tons/year) 

99 

airport 

emission

s (99 

airport 

grid-

cells) 

Sensairp_ 

36km 

(airport+ 

backgroun

d, 

99 airport 

grid-cells) 

Airpo

rt 

emissi

ons 

contri

bution 

PVD 

airport 

emissions 

(airport 

grid-cell) 

Sensairp_4

km 

(airport+ 

background

,airport 

grid-cell) 

Airport 

emissions 

contribut

ion 

Formaldehyde 2214 24021 9% 3.41 6.70 51% 

Acetaldehyde 689 9343 7% 1.06 2.11 50% 

Acrolein 339 1498 23% 0.59 0.80 74% 

Benzene 1068 46130 2% 0.40 8.54 5% 

1,3-Butadiene 253 5243 5% 0.41 1.48 27% 

Toluene 82 122118 0% 0.05 20.96 0% 

Xylene 272 80448 0% 0.11 17.16 1% 

Naphthalene 83 2479 3% 0.13 0.35 37% 
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Table A6: Breakdown of airport-level emissions at PVD airport by aircraft and other on-airport 

sources (taken from EDMS previous modeling work). 

 

HAP Aircraft APU GSE Vehicles Stationary Total 

(tons/

year) 

Contribution 

of aircraft to 

the total 

Formaldehyde 10.49 0.11 0.27 0.31 0.006 11.18 94% 

Acetaldehyde 5.28 0.01 0.08 0.17 0.004 5.55 95% 

Benzene 4.35 0.10 0.57 0.99 0.004 6.02 72% 

Toluene 1.50 0.04 0.78 N/A 0.002 2.31 65% 

Acrolein 12.72 0.01 0.01 0.02 0.000 12.76 100% 

1,3-Butadiene 2.16 N/A 0.10 0.13 0.000 2.40 90% 

Xylene 1.53 0.02 0.73 N/A 0.001 2.28 67% 

Naphthalene 0.71 0.01 N/A N/A 0.000 0.72 99% 

In Table A6 we present emissions from individual airport sources taken from a previous 

modeling study that used EDMS to estimate all emissions sources (Aircraft, APU, GSE, 

Stationary) at the PVD airport. We can clearly see that the aircraft emissions are the key 

contributor particularly for formaldehyde, acetaldehyde, acrolein, and 1,3-butadiene. 

Table A7: Comparison of 36 × 36 km2  (from EDMS) and 4 × 4 km2  (from AEDT) PVD grid 
cell airport emissions. 
 

Pollutant (tons/year) 36 × 36 km2  4 × 4 km2  

Formaldehyde 5.27 3.41 
Acetaldehyde 1.59 1.06 

Acrolein 0.82 0.59 
Benzene 0.66 0.40 

1,3-Butadiene 0.62 0.41 
Toluene 0.20 0.05 
Xylene 0.17 0.11 

Naphthalene 0.19 0.13 
 



 

 105 

We also looked at monthly totals of aviation emissions to understand the seasonal 

variation in emissions during a year. We observed a 37% increase in daily total emissions in 

summer (not presented here) when comparing the highest day of emissions in the summer vs. the 

winter season. We didn’t see significant differences between winter and summer season’s 

monthly emission totals. Observation-based studies of aircraft engine exhaust (Timko et al., 

2010) also indicated that emission rates from aircraft are temperature-dependent and relatively 

higher during low ambient temperatures. A recent study (Herndon et al., 2012) also found that 

the VOC emission indices for aircraft are twice as much during cold conditions than warm 

conditions. We did not observe any significant temperature dependency nature among emissions 

as pointed out in another study by Wood et al., 2008. This inability of not reflecting temperature 

dependency in the emission inventories can further introduce uncertainty in air quality model 

predictions. To improve the emission inventory, a comprehensive evaluation of aviation 

hydrocarbon profile at different parameters (temperature, aircraft thrust setting) and 

implementation of better hydrocarbon emission index at low thrusts in the emission inventory 

tool as observed in measurement studies is essential. 

 

A.3. RESULTS: 

A.3.1 HAPS 4 × 4 km2  MODEL PERFORMANCE 

Throughout this study we used Normalized mean bias (NMB) and Normalized mean 

error (NME) as model performance metrics. NMB calculates differences between modeled and 

observed values over the sum of observed values whereas NME calculates the absolute value of 

the NMB (Boylan et al., AE, 2006). 

NMB = (!!!)!!
(!)!!

∗ 100,!ℎ!"! ! = !"#$%&'#$ !"# ! = !"#$%&$!  

NME = |(!!!)|!!
(!)!!

∗ 100,!ℎ!"! ! = !"#$%&'#$ !"# ! = !"#$%&$' 
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Figure A2: Bar plots comparing mean modeled values (all emissions sources) with observation 
data at RIDEM (5 sites) and AQS (2 sites). 
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Figure A3: Bar plots comparing mean modeled values (all emissions sources) with observation 
data at RIDEM (5 sites) and AQS (4 sites).       
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Figure A4a: Annual all source (sensairp_4km, left) and PVD airport-attributable (sensairp_4km 
minus base_4km, right) concentrations of formaldehyde (top), acetaldehyde (middle) and 
benzene (bottom).  



 

 109 

  

  

  
Figure A4b: Annual all source (sensairp_4km, left) and airport-attributable (sensairp_4km minus 
base_4km, right) concentrations of acrolein (top), 1,3-butadiene (middle) and naphthalene 
(bottom). 
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Figure A4c: Annual all source (sensairp_4km, left) and airport-attributable (sensairp_4km minus 
base_4km, right) concentrtions of xylene (top) and toluene (bottom). 
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Table A8: Predicted airport contribution in winter (January) and summer (July) months to the 
ambient concentrations in 4 × 4 km2  PVD airport grid-cell. 
 

HAPS January (%) July (%) 

Formaldehyde 4.2 2.7 

Acetaldehyde 1.7 0.7 

Acrolein 19.8 28.7 

1,3-Butadiene 4.3 9.5 

Benzene 0.5 0.7 

Naphthalene 4.3 9.0 

Toluene 0.19 0.14 

Xylene 0.18 0.18 

                          

A.3.2 HAPS 36 × 36 km2  MODEL PERFORMANCE: 

Figure A5 shows the location of major airports and collocated NATTS observational sites 

along with bar plots showing model performance of HAPs at each site. The NATTS network is a 

monitoring network started by U.S. EPA in 2003, which consists of long-term HAPs monitoring 

data for U.S. We used annual hourly model predictions and available observational data for year 

2005 to calculate annual normalized mean bias (NMB) and normalized mean error (NME) 

metrics. Note that not all observational sites are located in the model grid cell of the airports, 

some are one or two grid cells away as shown in Table A4. Some of the largest U.S. airports 

such as ORD (O’Hare International Airport, Chicago), ATL (Hartsfield-Jackson Atlanta 

International Airport), BOS (Logan International airport, Boston), ROC (Greater Rochester 

International Airport, New York), SEA (Seattle-Tacoma International Airport, Seattle) are 

located in the same grid cells as the NATTS sites.  

Overall we observe HAPs model performance throughout the U.S. near all NATTS sites 

as shown in Figure A5. There does not seem to be a specific trend spatially (such as 

overprediction or underprediction in one region vs. the other) in the NMB, as HAPs are locally 

emitted species and some are highly reactive. All the NATTS sites present in the map are urban 

sites except the one site located in Utah. At some urban counties such as Santa Clara County 

(San Jose, California), Harris County (Houston, Texas), Milwaukee County (Milwaukee, 
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Wisconsin) there was (NMB of -20 to -75%) underprediction of all HAPs. In the case of 

formaldehyde, except for the sites in Bronx County (New York) and King County (Seattle, 

Washington) that showed overprediction (42% and 75% respectively), all other sites showed 

underprediction (2–80%). High (NMB: 50–200%) overprediction of model results in Seattle area 

is comparable to the results reported in Tacoma and Seattle area air toxics evaluation (Air Toxics 

Study Report, 2010). Benzene concentrations are also highly overpredicted (NMB: 200%) near 

this site; as mentioned in the report this could be due to regulatory air toxics control actions, 

which reduced benzene concentrations in that area, whereas not updated in NEI. NMB in the 

range of ±70–90% was observed in the case of two highly reactive species, 1,3-butadiene and 

acrolein at majority of the sites. Overall at coarser resolution we observed moderate model 

performance (NMB: ~ ±50%) of HAPs near most sites, and poor model performance at some 

sites (NMB > ±50%).
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Figure A5: CMAQ 36 × 36 km2  model performance near NATTS sites (blue dots) and 99 major airports (red aircraft), bar charts 
representing Normalized Mean Bias (NMB, %) for sensairp_36km.  
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Figure A6: CMAQ 36 × 36 km2  model performance near NATTS sites (blue dots) and 99 major airports (red aircraft), bar charts 
representing difference between sensairp_36km and base_36km normalized mean error (NME, %). 
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A.3.2.1 Comparison of base_36km and sensairp_36km model performance near airports 

Figure A6 shows bar plots with the difference of normalized mean error (NME) between 

sensairp_36km minus base_36km cases. Negative values indicate an improvement in model 

performance after including airport emissions. We observed slight improvement (0.01–0.6%) in 

formaldehyde performance after considering airport emissions. Particularly in Georgia (DeKalb 

County) near Atlanta airport, model error decreased by about 1.5%. As Atlanta is one of the 

biggest and busiest airports in the world, due to its high traffic the taxi and idling time on an 

average is relatively higher (and thus leads to high unburned hydrocarbons) than compared to 

other mid-sized and smaller airports. However near two sites where formaldehyde is 

overpredicted (Figure A6) ((Bronx County (New York), King County (Seattle)) the model error 

increased even in sensairp_36km case. 

 

A.3.3 NATA COMPARISON: 

As the main focus of this paper is to study airport-based concentrations, we envisioned 

comparing HAPs concentrations due to airport emissions in CMAQ versus those from NATA. 

However, in NATA, airport concentrations were not reported separately, and instead combined 

with other non-road sources and collectively reported as non-road concentrations. Since there is 

no straightforward way to calculate the airport concentrations from NATA, we decided to 

calculate percent contribution of airport emissions in non–road NEI emissions and apply these 

numbers to NATA non-road concentrations to obtain NATA airport concentrations at county 

level. This approach might not give accurate values but nevertheless provides us with an 

approximate estimate of airport concentrations in non-road sector as reported by NATA.  

The differences observed in total county-based concentrations are shown in Figure A7 

(top panel). Also shown in Figure A7 (bottom panel) are the aircraft contributions in the Kent 

County. As mentioned before, we obtained NATA airport concentrations by applying aircraft 

emission factor to non-road concentrations in the Kent County. CMAQ concentrations are 

obtained by aggregating the grid-based concentrations in the county. In the case of total 

concentrations CMAQ is showing higher concentrations than NATA for all aromatic species 

(Toluene, Xylene, Benzene) and NATA is showing higher concentrations in the case of carbonyl 

species (Formaldehyde, Acetaldehyde, Acrolein). These carbonyl species higher concentrations 
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in NATA could be due to the double counting of the secondary formation concentrations. In the 

case of airport concentrations CMAQ is predicting lower concentrations than NATA due to two 

reasons: Not including other stationary and GSE emissions at the airport underpredict some of 

the concentrations in CMAQ, NATA airport concentrations could also be overpredicted as we 

are calculating them from the overall non-road county-based concentrations.    

 

           

          
 

Figure A7: NATA and CMAQ total (all sources, top) and airport concentrations (bottom) in Kent 
county, Rhode Island (where PVD airport is located). 
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APPENDIX B: SUPPLEMENTAL MATERIAL: MODELED FULL-FLIGHT 
AIRCRAFT EMISSIONS IMPACTS ON AIR QUALITY AND THEIR SENSITIVITY TO 

GRID RESOLUTION 
 
 
Table B1. Domain specifications used in WRF for CONUS and HEMI domains 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

WPS option CONUS domain HEMI domain 
Horizontal Resolution 36 x 36 km 108 x 108 km 
Domain Size (Grid Cells) 165 x 129 200 x 200 
Map Projection Lambert Conformal Conic Polar Stereographic 
Reference Latitude 40°N 90°N 
Reference Longitude 97°W -98°W 
True Latitude 1 33°N 45°N 
True Latitude 2 45°N 1°N 
Standard Longitude 97°W -98°W 
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  Table B2: Vertical structure used in WRF meteorology modeling for two domains 
 

WRF Layer Sigma Pressure (mb) Height (m) 
45 0 50 19314.2 
44 0.0186 67.91 17814.9 
43 0.0386 87.17 16525.9 
42 0.0596 107.39 15400.9 
41 0.0816 128.58 14393.2 
40 0.1047 150.83 13470.8 
39 0.1289 174.13 12616.3 
38 0.1543 198.59 11813.6 
37 0.181 224.3 11052.1 
36 0.2089 251.17 10328.4 
35 0.2383 279.48 9630.8 
34 0.269 309.05 8960.7 
33 0.3013 340.15 8309.9 
32 0.3352 372.8 7676.6 
31 0.3708 407.08 7058.3 
30 0.4081 443 6454.1 
29 0.4454 478.92 5888.3 
28 0.4827 514.84 5355.9 
27 0.52 550.76 4852.8 
26 0.5573 586.68 4375.6 
25 0.5946 622.6 3921.5 
24 0.632 658.62 3487 
23 0.6693 694.54 3072.4 
22 0.7066 730.46 2674.9 
21 0.7439 766.38 2292.8 
20 0.7795 800.66 1941.5 
19 0.8104 830.42 1646.3 
18 0.8373 856.32 1396.3 
17 0.8607 878.85 1183.7 
16 0.881 898.4 1002.8 
15 0.8987 915.45 847.6 
14 0.9141 930.28 714.5 
13 0.9275 943.18 600.1 
12 0.9391 954.35 502.1 
11 0.9492 964.08 417.4 
10 0.958 972.55 344.3 
9 0.9657 979.97 280.7 
8 0.9723 986.32 226.5 
7 0.9781 991.91 179.1 
6 0.9831 996.73 138.4 
5 0.9875 1000.96 102.8 
4 0.9913 1004.62 72.1 
3 0.9946 1007.8 45.4 
2 0.9975 1010.59 22.2 
1 1 1013.25 0 
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Table B3: Physical meteorology parameterization options used in WRF modeling 
 
WRF Treatment Option  Notes 

Microphysics Thompson A scheme with ice, snow, and 
graupel processes suitable for 
high-resolution simulations. 

Longwave Radiation RRTMG Rapid Radiative Transfer 
Model (RRTM) for GCMs 
includes random cloud 
overlap and improved 
efficiency over RRTM. 

Shortwave Radiation RRTMG Same as above, but for 
shortwave radiation. 

Land Surface Model (LSM) NOAH Four-layer scheme with 
vegetation and sub-grid tiling. 

Planetary Boundary Layer 
(PBL) scheme 

YSU Yonsie University (Republic 
of Korea) Asymmetric 
Convective Model with non-
local upward mixing and local 
downward mixing. 

Cumulus parameterization Kain-Fritsch Kain-Fritsch modifications 
include representation of sub-
grid clouds and radiation 
feedbacks 

Analysis nudging Nudging applied to winds, 
temperature and moisture  

Nudging applied above PBL 
only 

Initialization Dataset MERRA reanalysis 0.5° deg. x 0.67° resolution 
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Table B4: WRF statistical evaluation using observational data (US region only) and comparison 
with other studies 

 Temperature Humidity Wind Speed Wind Direction 

 
Bias Error Bias 

 
Error Bias RMSE Bias Error 

Benchmark - 
Simple Conditions 

(Emery et al., 2001) 
≤ ±0.5 

K 
≤ 2.0 

K 
≤ ±0.5 
g/kg 

≤ 1.0 
g/kg 

≤ ±0.5 
m/s 

≤ 2.0 
m/s 

≤ ±5 
deg 

≤ 40 
deg 

Benchmark - 
Complex 
Conditions 

≤ ±1.0 
K 

≤ 3.0 
K 

≤ ±1.0 
g/kg 

≤ 2.0 
g/kg 

≤ ±1.0 
m/s 

≤ 3.0 
m/s 

≤ ±10 
deg 

≤ 80 
deg 

EPA HEMI 108k - 
NCDC 's ISD Obs 
(Xing et al., 2015) -0.4 K N/A  N/A N/A  

0.4 
m/s  N/A -3 deg N/A  

HEMI 108km - 
MADIS Obs -0.3 K 2.6 K 

-0.4 
g/kg 

1.2 
g/kg 

0.1 
m/s 

2.0 
m/s 7 deg 

37 
deg 

CONUS 36km - 
MADIS Obs -0.2 K 2.0 K 

0.3 
g/kg 

1.0 
g/kg 

0.2 
m/s 

1.8 
m/s 7 deg 

33 
deg 

 
Table B5: Annual all sources and aviation emission totals (kilo tons/year) of key pollutants for 
whole HEMI domain (108km) and three sub regions (NA, EU, EA) 
 
 Scenario 

(kilo 
tons/year) CO NO NO2 SO2 NH3 

PM 
species VOC 

All 
sources 

HEMI  779896 98993 10999 115011 46120 106201 140956 
NA  79102 18878 2098 16318 5104 4176 17767 
EU  61951 18345 2038 18945 7998 6962 21913 
EA  150039 24365 2707 41939 11410 24755 30074 

Aviation HEMI  698 2426 274 226 _ 45 117 
NA  311 705 81 72 _ 12 53 
EU  166 534 63 51 _ 8 25 

 EA 81 397 45 33 _ 6 13 
Aviation 

(%) HEMI 0.09 2.45 2.49 0.20 _ 0.04 0.08 
 NA 0.39 3.73 3.88 0.44 _ 0.29 0.30 
 EU 0.27 2.91 3.08 0.27 _ 0.11 0.1 
 EA 0.05 1.63 1.70 0.08 _ 0.02 0.04 
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Table B6: Annual all sources and aviation emission totals (kilo tons/year) of key pollutants for 
CONUS domain (36 km). 
 

Scenario (kilo 
tons/year) CO NO NO2 SO2 NH3 

PM 
species VOC 

CONUS (All 
sources) 122240 23724 2052 17836 4618 17612 47037 
CONUS 
(Flight) 311.14 703.64 81.19 72.40   20.47 52.90 

% Aviation 0.25 2.97 3.96 0.41 0.00 0.12 0.11 
 
 
Table B7: Normalized Mean Error (%) averaged over a season in 2005 of hourly O3 and PM2.5 
concentrations predicted by Airc36 (CONUS) and Airc108 (HEMI-NA) model scenarios in 
comparison with hourly AQS observations. 
 

Seasons O3 (%) PM2.5 (%) 

Airc36 Airc108 Diff 

(Airc108 

– Airc36) 

Airc36 Airc108 Diff 

(Airc108 

– Airc36) 

Winter 61 77 16 68 59.9 -8.4 
Spring  33 36 3 59 55.4 -3.3 

Summer  44 40 -5 57 66.2 9.5 
Autumn 55 59 5 56 57.0 1.1 
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Table B8: NME (%) differences between Airc36, NoAirc36 and Airc108 model scenarios in 
comparison with INTEX observations for O3, NO2 and NO. 
 

NME O3 (%) NO2 (%) NO (%) 
Altitudes Airc36-

NoAirc36 
Airc36-
Airc108 

Airc36-
NoAirc36 

Airc36-
Airc108 

Airc36-
NoAirc36 

Airc36-
Airc108 

92 0.30 -3.40 0.36 -28.50 0.00 -7.18 
430 0.31 17.68 -0.32 -24.86 -0.09 -9.75 
767 0.29 1.08 -0.46 4.44 -0.11 13.73 

1104 0.30 -5.39 -0.45 -10.79 -0.10 -8.42 
1441 0.31 -15.56 -0.58 13.24 -0.23 10.83 
1778 -0.34 4.80 0.80 -56.95 -0.20 26.02 
2116 -0.36 -18.81 -0.68 -0.35 -0.19 -3.90 
2453 -0.36 -9.89 4.44 38.92 -1.52 -11.01 
2790 -0.32 -10.42 -0.71 -16.26 -0.56 -8.79 
3127 -0.31 -6.01 -1.74 -5.33 -0.73 -7.73 
3464 -0.27 -3.55 -0.62 -5.00 -0.58 -13.95 
3801 -0.42 -6.43 -1.33 -14.95 -0.52 -3.32 
4139 -0.29 -7.95 -1.78 -15.82 -0.54 -7.20 
4476 -0.55 -4.82 -1.74 -7.37 -0.39 -3.18 
4813 -0.43 -9.78 -1.72 -26.73 -0.71 -10.59 
5150 -0.75 -13.42 -2.62 -4.28 -0.76 -0.32 
5487 -0.50 -7.75 -5.78 -46.32 -1.87 -12.39 
5825 0.69 1.07 -8.42 -16.87 -2.74 -8.37 
6162 -0.54 -8.55 5.17 -1.06 -1.32 -30.95 
6499 -0.63 -10.81 -5.57 -41.93 -2.07 -16.11 
6836 -0.80 -15.66 -3.28 -11.01 -1.20 -1.54 
7173 -0.55 -2.59 -4.00 -16.01 -1.57 -7.24 
7511 0.62 -20.41 -4.69 -23.11 -1.81 -8.20 
8522 1.26 -0.64 -5.72 -10.76 -3.15 -6.04 
8859 -0.80 -8.51 -5.65 -22.07 -3.40 -11.47 
9196 -0.70 -9.29 -11.71 -15.42 -4.79 -7.03 
9534 1.68 -1.08 -8.57 -14.32 -4.39 -13.18 
9871 -1.30 -10.47 -9.39 -20.03 -5.55 -12.92 

10208 1.49 -13.49 -6.89 -27.39 -4.74 -20.12 
10545 -1.21 -7.52 -6.67 -22.08 -3.89 -16.13 
10882 -0.38 -10.03 -4.32 -15.64 -3.88 -18.84 
11220 -0.16 -2.41 -2.78 -31.55 -2.53 -24.29 
11557 -0.72 -19.39 -1.08 -11.99 -3.14 -32.66 
11894 0.96 -21.00 -1.86 -15.82 -3.63 -28.26 

       
Max 1.68 17.68 5.17 38.92 0.00 26.02 
Min -1.30 -21.00 -11.71 -56.95 -5.55 -32.66 
Average -0.18 -8.22 -3.16 -16.78 -1.95 -9.94 
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Figure B1: Monthly average aviation-attributable surface concentrations of O3 in HEMI domain 
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Figure B2: Monthly average aviation-attributable surface concentrations of PM2.5 in HEMI 
domain 
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Figure B3: Daily domain-wide average AAC (left) of O3 (red), PM2.5 (blue) for NA (top), EU 
(middle) and EA (bottom) sub-regions from HEMI domain at the surface. 
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Figure B4: NME (%) spatial plots averaged over the year 2005 of hourly O3 (top) and PM2.5 
(bottom) predicted by Airc36 (CONUS, left panel) and Airc108 (HEMI-NA, right panel) model 
scenarios in comparison with hourly AQS observations. 
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Figure B5: NMB (%) spatial plots averaged over the year 2005 of hourly O3 (top) and PM2.5 
(bottom) predicted by Airc36 (CONUS, left panel) and Airc108 (HEMI-NA, right panel) model 
scenarios in comparison with hourly AQS observations.  
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CIRCLE=AQS_Hourly; 

units = %
coverage limit = 75%
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O3 NMB (%) for run conus_sens_44lay_2005annual for 2005010120051231

CIRCLE=AQS_Hourly; 

units = %
coverage limit = 75%
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Figure B6: Monthly soccer plots of O3 (top) and PM2.5 (bottom) for Airc36 (CONUS, left panel) 
and Airc108 (HEMI-NA, right panel) model scenarios when compared with AQS observations. 
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Figure B7: Comparison of modeled predictions of HNO3 (top) and PAN (bottom) from scenarios 
NoAirc36 (green), Airc36 (red), Airc108 (blue) paired with INTEX-NA observations (black) and 
binned vertically. Each point represents the mean concentration value in a particular altitude bin 
of paired modeled and observations. The bar plot (right) shows the number of paired values in 
each bin. 
 
 
 

10
2

10
3

0

2000

4000

6000

8000

10000

12000

Concentrations(pptv)

H
ei

gh
t(

m
et

er
s)

 

 

INTEX−obs

NoAirc36

Airc36

Airc108

0 50 100

no. of bin values

10
2

10
3

0

2000

4000

6000

8000

10000

12000

Concentrations(pptv)

H
ei

gh
t(

m
et

er
s)

 

 

INTEX−obs

NoAirc36

Airc36

Airc108

0 50 100 150

no. of bin values



 

 130 

 
 

 
 
Figure B8: NMB (%) vertical profiles of hourly O3 predicted by the Airc108 model scenarios 
when compared with MOZAIC in-situ aircraft observation data at four airports (Beijing, Munich, 
New Delhi, Shanghai). Also shown are the NME differences between NoAirc108 and Airc108 
scenarios.  
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Figure B9: NMB (%) vertical profiles of hourly O3 predicted by the Airc108 (black line) and 
Airc36 (red line) model scenarios when compared with MOZAIC in-situ aircraft observation 
data from four NA airports (Atlanta, Chicago, New York, San Francisco). 
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Figure B10: Monthly average aviation-attributable surface concentrations of O3 in CONUS 
domain 
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Figure B11: Monthly average aviation-attributable surface concentrations of PM2.5 in CONUS 
domain at the surface.  
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Figure B12: Daily domain-wide average AAC (left) of O3 (red), PM2.5 (blue) and monthly 
domain-wide average speciated PM2.5 (right) AAC for CONUS domain (36 km) at the surface. 
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Figure B13: Monthly average ACC spatial plots of a) HEMI-NA (top), b) HEMI-NEI-NA 
(middle) and difference (b-a, bottom) in January (left) and July (right) for O3. 
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Figure B14: Monthly average AAC spatial plots of a) HEMI-NA (top), b) HEMI-NEI-NA 
(middle) and difference (b-a, bottom) in January (left) and July (right) for PM2.5. 
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Figure B15: Comparison of monthly averages aviation-attributable PM2.5 concentrations from 
three cases a) HEMI-NA (108km) (left) b) HEMI-NEI-NA (middle) c) CONUS (36km) (right) 
for January (top panel) and July (bottom panel) months The color bar limits are similar between 
a) and b) cases but for c) we used a lower limit to capture the spatial variation in CONUS.  
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Figure B16: Comparison of monthly averages aviation-attributable O3 concentrations from three 
cases a) HEMI-NA (108km) (left) b) HEMI-NEI-NA (middle) c) CONUS (right) (36km) for 
January (top panel) and July (bottom panel) months. The color bar limits are similar between a) 
and b) cases but for c) we used a lower limit to capture the spatial variation in CONUS. 
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Figure B17: Mean (top) and Maximum (bottom) domain-wide daily aviation-attributable O3 
contributions for three cases (HEMI-NA, HEMI-NEI-NA, CONUS) for January and July 
months. 
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Figure B18: Mean (top) and Maximum (bottom) domain-wide daily aviation-attributable PM2.5 
contributions for three cases (HEMI-NA, HEMI-NEI-NA, CONUS) for January and July 
months. 
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Figure B19: Domain-wide monthly average O3 (top) and PM2.5 (bottom) concentrations for three 
cases (Airc108, Airc108_NEI, Airc36) in January and July months. 
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