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ABSTRACT 

 

Amy L. Pflaumer: Hydrogen peroxide in eutrophic Lake Taihu, China: Addition effects on 

phytoplankton and diel variability in natural concentrations  

(Under the direction of Hans Paerl) 

 

 

 

Hydrogen peroxide (HOOH) has demonstrated potential for algicidal use due to selective 

suppression of cyanobacteria relative to other phytoplankton. Bioassays were used to assess the 

effects of HOOH on Lake Taihu phytoplankton community and toxin concentrations. The 

relative contribution of cyanobacteria to phytoplankton biomass was reduced by >50% at 40-60 

µM HOOH. Toxin concentrations did not increase above untreated controls at doses >20 µM. 

Although algicidal use of HOOH is not feasible in large lakes (e.g. Taihu), these results provide 

further evidence for selective suppression, possibly in smaller lakes. In addition to selective 

effects, HOOH is an ideal algicide because it is produced abiotically and biotically in lakes and 

decays into water and oxygen. During a diel study in Taihu, surface HOOH concentrations 

ranged from 17 ± 6 nM to 168 ± 8 nM and demonstrated diel cycling. Concentrations may be 

relatively low due to heightened biological decay during blooms. 
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CHAPTER 1: EFFECTS OF HYDROGEN PEROXIDE ON PHYTOPLANKTON 

COMMUNITY COMPOSITION AND PRODUCTION IN EUTROPHIC LAKE TAIHU, 

CHINA 

 

1. Introduction 

1.1 Cyanobacterial harmful algal bloom formation 

Cyanobacteria form a phylum of photosynthetic bacteria widely studied due to their 

ability to rapidly accumulate into cyanobacterial harmful algal blooms, or cyanoHABs. In recent 

years, cyanoHABs have increased in intensity and frequency worldwide as a result of 

accelerating eutrophication and rising water temperatures due to global warming (Paerl and 

Huisman 2008, 2009). Ecosystems impacted by cyanoHABs exhibit loss of water clarity, 

resulting in inhibited growth of macrophytes and reduced fish and invertebrate habitats, oxygen 

(O2) depletion (hypoxia and anoxia), reduction in aesthetic/recreational value, and toxicity to 

humans and animals (Chorus and Bartram, 1999; Landsberg, 2002; Malbrouck and Kestemont, 

2006). In the aquatic ecosystem, bottom-up and top-down controls interact to regulate the rate of 

phytoplankton biomass production, or primary productivity. Net production is primarily 

controlled by light availability and nutrient supply (bottom-up) and herbivorous grazing (top-

down). Under ideal growth conditions, biomass production may surpass consumption, resulting 

in blooms (Paerl et al., 2001). 

1.1.1 Light 

Photosynthetic organisms require light in the form of photosynthetically active radiation 

(PAR) for growth. Cyanobacteria use pigments including chlorophyll and phycobiliproteins to 

harvest light. Phycobiliproteins provide a competitive advantage by harvesting light in a portion 
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of the spectrum largely unused by other major phytoplankton groups (Mur et al., 1999). 

Although cyanobacterial growth is inhibited by long periods of excessive light (Van Liere and 

Mur, 1979), surface bloom-formers produce carotenoids to tolerate and quench higher light 

intensities (Paerl et al., 1983). Cyanobacteria also thrive under low light intensities. Since they 

use minimal energy for basic cellular functions relative to other phytoplankton, more energy can 

be directed to growth (Van Liere and Mur, 1979). Light intensity is lowered during a bloom 

because of shading caused by the bloom itself (Mur et al., 1999). 

1.1.2 Macronutrients: Nitrogen and phosphorus 

Nitrogen (N) and phosphorus (P) are required for phytoplankton growth. In most aquatic 

ecosystems, phytoplankton productivity may be limited by nutrient availability, particularly of N 

and P (Redfield, 1958). However, in recent years, anthropogenic nutrient over enrichment has 

caused widespread eutrophication. P in particular has been thought to play a key role in 

cyanobacterial bloom formation, especially under conditions of long residence times, high water 

temperatures (above 20 ºC), and strong stratification (Paerl 1988, 2008). The relative importance 

of N and P loading is complicated by the fact that some cyanobacterial genera are capable of 

obtaining N through N fixation (the process by which atmospheric dinitrogen gas is converted 

into bioavailable ammonia) (Gallon, 1992). Cyanobacteria tend to dominate at low molar N:P 

ratios (below 15). At high N:P ratios (above 20), eukaryotic algae dominate (Smith, 1983). 

However, molar N:P ratios are less important in highly eutrophic systems having excessive N 

and P inputs (Paerl et al., 2001). When both N and P are not limiting, other physical-chemical-

biotic factors, such as light, flushing rates of water bodies, micronutrients, temperature, and 

zooplankton grazing, may control phytoplankton community production and composition (Paerl, 

2008).  
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1.1.3 Flushing rates of water bodies 

 Flushing rates of water bodies influence cyanoHAB dynamics by affecting water column 

stability and nutrient delivery (Paerl, 2008). Low flushing rates are associated with high water 

column stability, which favors cyanobacterial growth and allows buoyant cyanobacteria to 

accumulate in surface scums (Paerl, 1988; Köhler, 1992). In Lake Albufera, a large, shallow lake 

on the coast of Spain, a 45% increase in water residence time during dry years coincided with an 

increase in Microcystis populations by 1-2 orders of magnitude (Romo et al., 2013). Rapid 

flushing rates remove cyanobacterial biomass from a water body and limit bloom development 

(Sherman et al., 1998; Mitrovic et al., 2003; Maier et al., 2004), since cyanobacteria grow at a 

relatively slow rate compared to eukaryotic phytoplankton (Paerl et al., 2011; Paerl, 2014). 

However, enhanced freshwater discharge increases nutrient input, which promotes 

cyanobacterial growth (Paerl and Paul, 2012). 

1.1.4 Micronutrients  

In addition to macronutrients such as N and P, phytoplankton require several 

micronutrients for growth (Baptista and Vasconcelos, 2006). Iron is particularly important to 

phytoplankton growth. It is used in a variety of cellular processes including: photosynthesis, 

electron transport, N assimilation, N fixation, and energy transfer, and availability can serve as a 

limiting factor (Paerl et al., 2001; Morrissey and Bowler, 2012). However, cyanobacteria often 

dominate in areas in which phytoplankton biomass is limited by iron availability. Under low iron 

concentrations, cyanobacteria are able to produce siderophore chelators as part of a high-affinity 

iron acquisition system (Murphy et al., 1976). Other important trace metals include manganese, 

cobalt, copper, and zinc. However, these trace metals are not typically limiting in freshwater 

ecosystems (Paerl et al., 2001). 
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1.1.5 Temperature 

Cyanobacteria thrive at relatively high temperatures, with maximum growth occurring at 

above 25 ºC, higher than in other major phytoplankton groups (Robarts and Zohary, 1987; Mur 

et al., 1999). Increased temperatures resulting from global warming favor cyanobacterial bloom 

formation (Paerl and Huisman, 2009). Global warming also enhances vertical stratification, 

which promotes bloom formation. Cyanobacteria are buoyant due to intracellular gas vesicles. 

Thus, under conditions of minimal vertical mixing, they can accumulate in surface blooms (Paerl 

and Huisman, 2008). 

1.1.6 Top-down controls  

Zooplankton grazers impose top-down control of bloom formation. However, the extent 

to which zooplankton can reduce cyanobacterial biomass is limited. Attempts to reduce 

cyanobacterial biomass by artificially enhancing zooplankton biomass have met with limited 

success (Scheffer and Rinaldi, 2000; Rondel et al., 2008). Cyanobacteria are poor quality food 

for zooplankton. Toxic secondary metabolites produced by cyanobacteria can be lethal to 

zooplankton upon ingestion (Leflaive and Ten-Hage, 2007). Nevertheless, Daphnia, a large 

generalist grazer, has been shown to control cyanobacterial biomass to some extent (Elser et al., 

2000). Less studied but perhaps equally important in top-down control are cyanobacterial viruses 

(cyanophages). Up to 50% of cyanobacterial cell death may be due to cyanophages (Tucker and 

Pollard, 2005).    

1.2 Microcystis and Microcystins 

1.2.1 Microcystis 

 Microcystis is a genus of freshwater cyanobacteria, including 22 main European and 

tropical morphospecies such as Microcystis aeruginosa, flos-aquae, and wesenbergii (Komárek 
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and Komárková, 2002). Microcystis is a unicellular colony-forming genus. Because Microcystis 

cells contain gas vesicles, they are buoyant, which allows for the formation of surface scums. 

These high density surface scums are associated with a plethora of negative environmental 

consequences, including production of the hepatotoxin microcystin (Paerl et al., 2001). 

Microcystins are harmful to organisms big and small, from microalgae to mammals. 

Humans are exposed to microcystins primarily through drinking contaminated water, but may 

also be exposed through recreational contact, food, or hemodialysis. Microcystin exposure 

causes both acute (WHO, 1998) and chronic (Zhou et al, 2002) effects in humans through 

inhibition of protein phosphatases 1 and 2. For example, long-term consumption of low levels of 

microcystins has been linked to increased risk of liver cancer (Ueno et al., 1996) and colorectal 

cancer (Zhou et al., 2002).  

1.2.2 Microcystin biosynthesis 

Cyanobacteria produce a variety of bioactive secondary metabolites, including 

hepatotoxic microcystins. Microcystins are heptapeptides which are synthesized nonribosomally. 

Microcystins are the most structurally diverse group of cyanobacterial toxins, containing 

approximately 90 isomers, which differ in their level of toxicity as well as other factors including 

methylation and peptide sequence (Welker and von Döhren, 2006). The mcy gene cluster codes 

for microcystin production in Microcystis. The mcy gene cluster covers 55 kilobases and includes 

10 genes, mcyA-J. The genes are divided into 2 operons, mcyA-C and mcyD-J (Tillett et al., 

2000). The two operons are divided by a 750 base pair promoter region (Kaebernick and Neilan, 

2001). 
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1.2.3 Regulation of microcystin production 

 Microcystin production has been correlated with a multitude of environmental parameters 

(nutrients, trace metals, light, pH, temperature, etc.), indicating that a wide variety of factors may 

play a role in mcy transcriptional regulation. However, many of these correlations are believed to 

reflect the effect of environmental parameters on Microcystis cell growth, as opposed to directly 

affecting microcystin transcriptional regulation, since microcystin production is believed to be 

proportional to cell growth rate (Kaplan et al., 2012; Orr and Jones, 1998). Nevertheless, a few 

key environmental stimuli are believed to have a direct effect on mcy gene transcription, chief 

among them light and iron-limiting conditions. The effects are manifested in small changes in 

mcy transcription as opposed to on-off regulation. For example, the abundance of mcy transcripts 

has been shown to be upregulated above a critical light threshold (Kaebernick et al., 2000) and 

under iron deplete conditions (Sevilla et al., 2008). Additionally, both mcy operons exhibit 

different start sites of transcription under altered light conditions (Kaebernick et al., 2002). It’s 

also interesting to note that individual genes in the mcy cluster exhibit differing levels of 

upregulation under oxidatively stressful conditions, indicating that genes are individually 

regulated within the mcy gene cluster (Straub et al., 2011). The cause of this differential 

regulation amongst mcy genes is unknown. 

Further evidence for the role of iron as well as N in the transcriptional regulation of 

microcystin biosynthesis is found in the presence of ferric uptake regulator (Fur) and three global 

N regulator (NtcA) transcription factor binding sites in the mcy promoter region (Kaebernick et 

al., 2002). Fur is involved in iron availability and redox status (which is affected by both iron 

and light conditions). NtcA, on the other hand, is involved in N availability and redox status. 

Since predicted changes in mcy transcript abundance under differing N conditions were not seen 
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experimentally, the importance of NtcA on microcystin regulation likely lies in its connection to 

redox status, as opposed to N availability (Sevilla et al., 2010).  

1.2.4 Non-toxic Microcystis 

Some Microcystis strains do not have the ability to produce microcystin. At the 

biochemical level, non-toxic strains are unable to produce microcystin because they lack some or 

all of the microcystin synthetase mcy genes (Meißner, et al., 1996). Lack of even a single mcy 

gene results in the inability to produce microcystin (Dittmann et al., 1997). Phylogenetic 

evidence indicates that microcystin biosynthesis evolved early on in cyanobacterial evolutionary 

history. The last common ancestor of many species of cyanobacteria had the microcystin 

synthetase genes, which means that modern day non-toxic Microcystis have lost the ability over 

time. Despite their inability to synthesize microcystin, non-toxic strains do have the genes to 

produce other nonribosomal peptides, which may fulfill a similar role as the toxin (Rantala et al., 

2004). 

1.3 Oxidative stress in cyanobacteria 

1.3.1 Reactive oxygen species 

Prior to the evolution of cyanobacteria, the Earth had a reducing atmosphere (Dietrich et 

al., 2006). Around 3 billion years ago, cyanobacteria evolved and began oxygenating the 

atmosphere through photosynthesis (Brocks et al., 1999). As the first O2-producers, 

cyanobacteria were also the first organisms to encounter the damaging effects of the reactive 

oxygen species (ROS) unavoidably produced as a byproduct of aerobic metabolism. ROS 

include the superoxide anion (O2
-), the hydroxyl radical, and hydrogen peroxide (HOOH), 

among others (Latifi et al., 2009). As a stable diradical and a weak univalent electron acceptor, 

O2 does not efficiently oxidize amino acids or nucleic acids. O2
-, HOOH, and the hydroxyl 
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radical are stronger univalent oxidants and are highly reactive with most biomolecules. The 

hydroxyl radical in particular is extremely reactive, with reaction rates limited by diffusion rates 

(Imlay, 2003). 

1.3.2 Mechanisms of cellular damage 

 Oxidative stress occurs when ROS accumulate within the cell. ROS are damaging to 

lipids, proteins, and DNA (Latifi et al., 2009). For example, the hydroxyl radical can deform the 

fatty acid side chains of membrane lipids by removing a hydrogen (H) from a carbon (C) in the 

fatty acid side chain, forming water. The C is left with an unpaired electron, becoming a radical. 

This radical then reacts with O2 to form an alkyl peroxyl radical, which removes a H from a 

nearby side chain, creating another radical. In this manner, ROS result in chain reaction creation 

of additional ROS until the process is halted when two radicals encounter one another and form a 

covalent bond. Proteins are damaged through the oxidation of side chains and polypeptide 

backbones, resulting in the formation of carbonyl groups (Halliwell and Gutteridge, 2007; Latifi 

et al., 2009). ROS break DNA strands by attacking the backbone deoxyribose sugars or inflict 

damage through modifying and mutating the nucleotide bases (He and Häder, 2002). 

1.4 Hydrogen peroxide as an algicide 

1.4.1 Support for the use of hydrogen peroxide as an algicide 

Nutrient reduction is widely regarded as the best strategy to combat cyanoHABs (Conley 

et al., 2009). However, improving water quality by nutrient reduction of a hypereutrophic lake is 

often a slow, difficult process, requiring several years before cyanoHAB occurrence is reduced. 

Thus, short-term strategies for eliminating cyanoHABs have been developed, including the 

application of HOOH. HOOH application is a method of rapid bloom suppression that has 

demonstrated success in small lakes. Upon application of 60 µM HOOH to a small, shallow lake 
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in the Netherlands experiencing a Planktothrix agardhii bloom, phytoplankton photosynthetic 

vitality was reduced to 70% within three hours (Matthijs et al., 2012). Furthermore, 

cyanobacterial abundance decreased from 600 x 103 cells/mL prior to HOOH addition to 10 x 103 

cells/mL ten days post HOOH addition and remained low for seven weeks. The key to successful 

suppression of cyanoHABs by HOOH application is determining the lowest concentration of 

HOOH necessary to suppress the bloom, thereby limiting potential effects on other organisms. 

This concentration varies depending on a wide range of factors in each system and should be 

assessed through laboratory incubations prior to each HOOH application (Matthijs et al., 2012). 

HOOH application for bloom removal has also been tested in waste stabilization ponds in 

Australia. Upon addition of 3.8 µmol HOOH/µg chl a, cyanobacterial chl a decreased from 59.0 

µg/L to 22.4 µg/L after 24 hours. In a second test, 5.9 µmol HOOH/µg chl a decreased total chl a 

to 40% after one week. Cyanobacteria were selectively suppressed relative to other 

phytoplankton, including diatoms and cryptophytes, for two weeks (Barrington et al., 2013). 

Most laboratory studies indicate that cyanobacteria may be more sensitive to HOOH than other 

phytoplankton, allowing for a reduction in cyanoHAB biomass with limited damage to the 

eukaryotic component of the phytoplankton community (Stratford et al., 1984; Barroin and 

Feuillade, 1986; Schrader et al., 1998, Drábková et al., 2007a,b; Weenik et al., 2015).  

A study by Drábková and colleagues compared the HOOH-induced reduction in 

photosynthetic yield in five cyanobacterial species, three green algal species, and a diatom 

(2007b). Photosynthetic yield (Fv/FM) represents the maximal yield of photosystem II and 

indicates the general fitness level of an organism. Photosynthetic yield was inhibited by 50% in 

all five cyanobacterial species upon addition of 15 to 74 µM HOOH while two algal species and 

the diatom were unaffected. The HOOH concentration that caused a 50% inhibition of 
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photosynthetic yield (EC50) varied from 8 to 51µM in cyanobacteria as opposed to 183 to 619 

µM in green algae and 294 µM in the diatom (Drábková et al., 2007b). 

Although chemical methods of cyanoHAB suppression are not ideal, HOOH is easily 

preferable to more traditional chemical algicides such as aluminum and copper sulfate. HOOH is 

naturally produced in freshwater systems in low concentrations, by photolysis of dissolved 

organic matter (Cooper et al., 1988; Draper and Crosby, 1983; Cooper and Zika, 1983) and also 

biologically by phytoplankton (Asada, 2006). HOOH decays into O2 and water (Cooper and 

Zepp, 1990), such that it does not remain in the system for long or result in the accumulation of 

harmful by-products such as heavy metals (Matthijs et al., 2012). The half-life of HOOH in 

highly productive freshwaters is typically less than 3 h (Richard et al., 2007; Mostofa et al., 

2013). 

1.4.2 Limitations to the use of hydrogen peroxide as an algicide 

Nevertheless, HOOH application poses some difficulties. To date, whole-lake HOOH 

application has only been tested in relatively small lakes due to the expense and logistical 

difficulty of applying HOOH homogenously to high volume lakes. Special devices, such as a 

“water harrow” must be developed for successful application (Matthijs et al., 2012). 

Additionally, the massive cyanobacterial cell lysis resulting from HOOH application can cause 

the release of intracellular toxins, such as microcystin, from toxic blooms. However, because 

HOOH enhances the degradation of microcystin (Cornish et al., 2000), studies show a decrease 

in extracellular microcystin concentrations post application (Matthijs et al., 2012). In some cases, 

the decrease is not attributed to degradation by HOOH, however. Microcystin concentrations 

may increase immediately after HOOH addition and fall below detection levels after several 

days. Since HOOH decays within hours (Cooper et al., 1994), it would not remain to degrade 
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microcystins after several days. Thus, other environmental effects must be responsible for 

microcystin degradation (Barrington et al., 2013). 

Further research is required on ecosystem effects of HOOH addition. Zooplankton are 

sensitive to HOOH. One study found that upon addition of 1470 µM HOOH to a toxic 

Alexandrium bloom, zooplankton abundance drastically decreased from 40,000 organisms/L to 

15 organisms/L (Burson et al., 2014). Similarly, addition of small amounts of HOOH has been 

shown to decrease prokaryotic heterotrophic production, altering competition dynamics and C 

flow (Xenopoulos and Bird, 1997).  

1.5 Mechanisms employed by cyanobacteria to protect against oxidative stress 

1.5.1 Preventative mechanisms and nonenzymatic antioxidants 

Like all aerobic organisms, cyanobacteria have evolved mechanisms for preventing 

damage by unavoidably present ROS. The cells’ first line of defense includes preventative 

mechanisms including energy dissipation and ultraviolet (UV) sunscreens. Dissipation of excess 

energy and limitation of UV light input reduces formation of ROS. Excess energy may be 

dissipated through blue light-induced non-photochemical quenching involving carotenoids (El 

Bissati et al., 2000; Rakhimberdieva et al., 2004) and through regulation of tetrapyrrole 

biosynthesis by high light-inducible proteins (Xu et al., 2004; Havaux et al., 2003). 

Cyanobacteria also contain nonenxymatic antioxidants, primarily carotenoids such as β-carotene, 

myxoxanthophyll, zeaxanthin, and echinenone. Carotenoids dissipate energy from singlet oxygen 

or photosensitized chlorophyll. When the ability to produce zeaxanthin was removed in a mutant 

Synechocystis PCC 6803 strain, increased sensitivity to high light intensity and oxidative stress 

resulted (Schäfer et al., 2005). α-Tocopherol, more commonly known as vitamin E, is another 

important nonenzymatic antioxidant produced by some cyanobacteria. Specifically, α-
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Tocopherol protects cyanobacterial cells from lipid peroxidation. Tocopherol-deficient mutants 

were more sensitive to oxidative stress induced by high light and linoleic or linolenic acid 

addition than wild type (Maeda et al., 2005). 

1.5.2 Enzymatic antioxidants 

Antioxidant enzymes are the most widely studied mechanism for protection against 

oxidative stress, particularly superoxide dismutases (SODs). SODs are metalloenzymes, enzymes 

which contain metal cofactors (Chelikani et al., 2004). Cyanobacterial SODs contain either iron, 

copper and zinc, nickel, or manganese. SODs scavenge the primary agent of photooxidation, O2
-, 

and HOOH in a very efficient reaction. HOOH is dismutated by catalases. Peroxidases dismutate 

a variety of peroxides (Chelikani et al., 2004). Peroxiredoxins are catalysts for the reduction of 

HOOH, peroxynitrite, and alkyl hydroperoxides (Wood et al., 2003).  

1.5.3 Microcystin production 

Microcystin production has been proposed as a potential mechanism for protection 

against oxidative stress. Studies indicate HOOH-induced oxidative stress reduces chl a content 

and growth of toxic cyanobacterial cells to a greater extent than non-toxic cells (Dziallas and 

Grossart, 2011). Gene transcripts of the gene cluster coding for toxin production, mcy, are 

elevated under high light intensity (Kaebernick et al., 2000). Interestingly, under conditions of 

oxidative stress, individual genes in the mcy gene cluster are upregulated to varying degrees, 

with mcyB upregulated 20% compared to upregulation of mcyD by 370% (Straub et al., 2011). 

Transcriptomic analysis indicates that microcystin biosynthesis occurs during the light period of 

the light/dark cycle (Nishizawa et al., 1999; Straub et al., 2011). 

 Zilliges and colleagues (2011) proposed a mechanism by which microcystin protects the 

cell against oxidative stress. Under oxidatively-stressful conditions, microcystin molecules bind 
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to various proteins (including redox-sensitive cysteines) within the cell, protecting the proteins 

from damage by ROS. In a microcystin-deficient mutant, differential accumulation of redox-

sensitive proteins has been demonstrated. Furthermore, microcystin-deficient mutants are more 

sensitive to conditions of high light and oxidative stress induced by HOOH addition (Zilliges et 

al., 2011). 

 The hypothesized role of microcystin in protection against oxidative stress is reasonable 

from an evolutionary perspective as well. Today, cyanoHABs are dominated by both toxic and 

non-toxic Microcystis strains. However, phylogenetic analyses indicate that all ancestral 

cyanobacteria were capable of toxin production (Rantala et al., 2004). Microcystin genes are 

believed to have coevolved with housekeeping genes and to have been lost in modern non-toxic 

lineages. Loss of microcystin synthesis may have occurred as cyanobacteria evolved other 

mechanisms of protection against oxidative stress that were less energetically expensive to 

maintain than microcystin production. In modern day cyanobacterial lineages, toxin production 

may only be evolutionarily advantageous for some strains, such as cyanobacteria growing under 

surface bloom conditions. Surface bloom-formers experience heightened oxidative stress due to 

high light levels and O2 supersaturation (Zilliges et al., 2011). 

1.6 Study goals 

Recent whole lake and waste pond studies indicate a promising role for HOOH in 

controlling cyanoHABs in small bodies of water (Matthijs et al., 2012; Barrington et al., 2013). 

Although laboratory studies demonstrate selective suppression of cyanobacteria by HOOH 

(Stratford et al., 1984; Barroin and Feuillade, 1986; Schrader et al., 1998, Drábková et al., 

2007a,b; Weenik et al., 2015), microcosm and mesocosm level studies are relatively limited 

(Barrington and Ghadouani, 2008; Barrington et al., 2011, 2013; Matthijs et al., 2012). In this 
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study, two HOOH addition bioassays were performed to determine the effect of HOOH addition 

on phytoplankton community composition and production, as well as microcystin concentrations, 

in cyanobacteria bloom-dominated Lake Taihu, China. 

2. Materials and Methods 

2.1 Study site and bioassay design 

Lake Taihu (“great lake” in Mandarin) is the third largest freshwater lake in China, 

spanning 2338 km2, with a volume of 4.4 billion m3 (Pu and Yan, 1998; Qin et al, 2007, 2010). 

Taihu is a shallow, polymictic lake, with an average depth of 1.9 m. It is located in China’s 

coastal plain, about 150 km west of Shanghai (centered at 30º55’40”-31º32’58”N; 119º52’32”-

120º36’10”E; Figure 1.1) in the Yangtze River delta. The Lake Taihu watershed is home to 40 

million people. The Taihu Basin is a high population density and high gross domestic product 

per capita region (Xie et al., 2007). The lake has been plagued by seasonal cyanoHABs on a 

yearly basis since the mid-1980’s. The blooms occur as a result of excessive nutrient inputs from 

industrial sources, including sewage, livestock drainage, and agricultural runoff (Lai and Yu 

2006). Major nutrient sources are located northwest from the lake, resulting in most intense 

blooms being located in the highly-eutrophied northern portion of the lake, particularly Meiliang 

and Zhushan Bays. Lake Taihu’s phytoplankton community, once diatom-dominated, is now 

cyanobacteria-dominated (Chen et al., 2003a,b). In 2007, over 1 million people in the city of 

Wuxi experienced a drinking water shortage as the result of a Lake Taihu bloom (Qin et al., 

2010). In addition to drinking water shortages, blooms threaten fishing and tourism. 
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Figure 1.1 Map of Lake Taihu showing Meiliang Bay and the Taihu Laboratory for Lake 

Ecosystem Research (TLLER), Nanjing Institute of Geography and Limnology, Chinese 

Academy of Sciences (figure from Paerl et al., 2014). 

 

Water was collected from the northern part of the lake in the highly eutrophic Meiliang 

Bay on June 12th, 2014 for the concentrated Microcystis bioassay and on June 22nd, 2014 for the 

natural assemblage bioassay. In the concentrated Microcystis bioassay, water was collected in 

two 100 L buckets and allowed to settle, while covered, overnight. This allowed the buoyant 

Microcystis colonies to rise to the surface for collection. The lake water was then filtered through 

20 µm mesh followed by 5 µm mesh, and finally 47 mm GF/A glass fiber filters (1.6 µm 

nominal pore size) to remove the phytoplankton. 900 mL filtrate was combined with 100 mL 

Microcystis surface scum in 1 L semitransparent polyethylene Cubitainers. Cubitainers are 

chemically inert and allow 80% of PAR (400-700 nm). In the natural assemblage bioassay, the 

water was not pre-filtered. Instead, 3.5 L were directly added to 4 L Cubitainers. 

Bioassays were performed at the Taihu Laboratory for Lake Ecosystem Research 

(TLLER), Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, in an 

outdoor concrete enclosure adjacent to the water collection site into which lake water was 
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pumped. Sealed Cubitainers were placed in the enclosure under one layer of neutral density 

screening (30% reduction in incident irradiance) to prevent photoinhibition. The concentrated 

Microcystis bioassay was carried out for three days and the natural assemblage bioassay ran for 

four days. The difference in duration of the two bioassays was due to logistical considerations 

unrelated to bioassay design. Nutrients were added on day 0 (initiation of experiment) and day 2 

to prevent nutrient depletion: nitrate as KNO3 (21.6 µM NO3
2--N), ammonium as NH4Cl (14.4 

µM NH4
+-N), phosphate as KH2PO4 (1.6 µM PO4

3--P), and iron as C10H12FeN2O8
2- (0.2 µM 

Fe2+). Bicarbonate was added as NaHCO3 (304.7 µM HCO3
--C) to prevent inorganic C 

limitation. Four HOOH treatments were tested in each bioassay, 20 µM, 40 µM, 60 µM, and 80 

µM HOOH, as well as an untreated control. Three replicate Cubitainers were used in each 

treatment and the untreated control. Because HOOH degrades rapidly, HOOH was added daily to 

maintain conditions of oxidative stress throughout the bioassays. Prior to addition, HOOH was 

standardized spectrophotometrically (molar extinction coefficient Ɛ=38.1 M-1 cm-1). Parameters, 

including pH, dissolved oxygen (DO), oxygen saturation (O2 %), and temperature, were 

measured daily. On the initial and final days of each bioassay, subsamples were collected for 

various parameters including: nutrients, particulate organic carbon (POC) and particulate organic 

nitrogen (PON), total microcystin concentrations, phytoplankton biomass and phytoplankton 

community composition. 

2.2 Bioassay parameters 

2.2.1 pH, dissolved oxygen, oxygen saturation, and temperature 

Daily measurements of pH, DO, O2 %, and temperature were taken from replicate 

Cubitainers using a Hach HQ30d portable pH, conductivity, optical DO, ORP, and ISE multi-

parameter meter.  
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2.2.2 Nutrients 

Subsamples were collected for nutrient analysis on the initial and final days of each 

bioassay. In both bioassays, a single sample was collected per treatment by combining equal 

volumes from each replicate Cubitainer of the treatment. Phosphate (PO4
3-), ammonium (NH4

+), 

nitrate (NO3
-), and nitrite (NO2

-) were measured. Water was syringe filtered through 0.45 µM 

Millipore HA filters and frozen until analysis. Nutrients were analyzed according to the Standard 

Methods for the Examination of Water and Wastewater (Eaton et al., 1995). PO4
3- was measured 

spectrophotometrically by the molybdenum blue method. NH4
+ was determined by the 

indophenol blue method. NO2
- and NO3

- were determined by the cadmium reduction method 

using a flow injection analyzer (Skalar SAN++, Breda, Netherlands).  

2.2.3 Particulate organic carbon and nitrogen 

Subsamples were collected for POC and PON analysis on the initial and final days of 

each bioassay. In the natural assemblage bioassay, individual subsamples were collected from 

replicate Cubitainers. In the concentrated Microcystis bioassay, a single sample was collected per 

treatment by combining equal volumes from each replicate Cubitainer of the treatment. Water 

was filtered through pre-combusted (500 ºC) 25 mm GF/F glass fiber filters (nominal pore size 

0.7 µm) and filters were patted dry, folded, and frozen in foil until analysis. Analysis was 

performed on a Costech CHN analyzer (Model ECS 4010). Prior to analysis, filters were dried 

for 24 hours at 60 ºC, fumed for 8 hours with 12 M hydrochloric acid to remove inorganic C, and 

redried at 60 ºC. 

2.2.4 Total microcystin concentrations 

Individual subsamples were collected from replicate Cubitainers for total microcystins 

(intracellular + extracellular, all isoforms) on initial and final days of the bioassays. Water 
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samples were frozen in 2 mL centrifuge vials until analysis. Prior to analysis, samples underwent 

three freeze/thaw cycles to lyse cells. Analysis was performed with an Abraxis enzyme linked 

immunosorbent assay (ELISA) on a Thermo MultiSkan Spectrum plate reader. The assay is an 

indirect competitive test in which microcystins present in the sample compete with a 

microcystins-protein analogue for antibody binding sites. A label is added and the intensity of 

the color signal generated is inversely proportional to the concentration of microcystins in the 

sample. The assay’s limit of detection is 0.10 µg/L.  

2.2.5 Phytoplankton biomass 

Chlorophyll a (chl a) is representative of total phytoplankton biomass. Individual 

subsamples were collected from replicate Cubitainers and filtered by vacuum filtration onto 25 

mm GF/F filters (nominal pore size 0.7 µm), patted dry, folded, and frozen for fluorometric 

analysis. Extracted chl a was measured according to a modified version of the fluorometric 

method in EPA Method 445.0 (Arar and Collins, 1997). Briefly, filters were ground into a slurry 

in 10 mL 90% acetone, shaken, and frozen at -20 ºC overnight. Subsequently, samples were 

shaken and centrifuged for 10 minutes at 5800 rpm. The supernatant was poured into a syringe 

filter and filtered through a GF/F filter before measurement on a Turner Designs TD-700 Trilogy 

fluorometer.  

2.2.6 Phytoplankton community composition 

Pigment analysis allowed identification of major algal taxonomic groups and was 

performed by high-performance liquid chromatography (HPLC) on a Shimadzu HPLC (Model 

LC-20AB). In the natural assemblage bioassay, individual subsamples were collected from 

replicate Cubitainers. In the concentrated Microcystis bioassay, a single sample was collected per 

treatment by combining equal volumes from each replicate Cubitainer of the treatment. Water 
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was filtered through 47 mm GF/F filters (nominal pore size 0.7 µm), patted dry, folded and 

frozen until analysis. In preparation for analysis, filters were extracted in 100% acetone using a 

Sonics Vibra-Cell sonicator (Model VCX130) and frozen for 24 hours. Pigments were identified 

and quantified according to their absorption spectra compared to purified pigment standards 

(Danish Hydraulic Institute, Denmark). Contributions of the 4 dominant freshwater algal classes 

(chlorophytes, cryptophytes, cyanobacteria, and diatoms) to total chl a were determined using 

ChemTax (Mackey et al., 1996). A ChemTax pigment input matrix (Table 1.1) previously 

developed for a Lake Taihu study was used (Paerl et al., 2014). This matrix was adapted from a 

study of freshwater phytoplankton species (Schlüter et al., 2007). 

Table 1.1 ChemTax input matrix. Crypto= cryptophytes, chloro= chlorophytes, cyano= 

cyanobacteria, fuco= fucoxanthin, neo= 9’cis neoxanthin, viol= violaxanthin, diad= 

diadinoxanthin, anth= antheraxanthin, myx= myxoxanthophyll, allo= alloxanthin, lut= lutein, 

zea= zeaxanthin, chl b= chlorophyll b, β Car= β-carotene, ech= echinenone (table adapted from 

Paerl et al., 2014). 

 

 

Fuco Neo Viol Diad Anth Myx Allo Lut Zea Chl b β Car Ech 

Diatoms 0.51 0 0 0.074 0 0 0 0 0 0 0.003 0 

Crypto 0 0 0 0 0 0 0.37 0 0 0 0.004 0 

Chloro 0 0.038 0.026 0 0.016 0 0 0.15 0 0.36 0.003 0 

Cyano 0 0 0 0 0 0.14 0 0 0.28 0 0.097 0.76 

 

2.2.7 Statistical analyses 

 

One-way Analysis of Variance (ANOVA) tests were used to analyze the differences in 

growth responses between the untreated control and the various HOOH treatments. Statistically 

significant differences in mean values were analyzed by post-hoc comparison using Tukey’s 

least significant difference procedure. The level of significance used was p<0.05. Statistical 

analysis was performed using the Matlab R2013a program. 
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3. Results and Discussion 

3.1 Bioassay pH, dissolved oxygen, oxygen saturation, and temperature 

pH, DO, O2 %, and temperature were monitored daily as a broad indicator of 

phytoplankton growth in the bioassay. In the natural assemblage bioassay, pH varied from 9.26 

to 10.71 (Table 1.2). In freshwater lakes, pH typically ranges from 6 to 9 in most lakes (Wetzel, 

1983). Under conditions of high phytoplankton photosynthetic activity experienced in 

hypereutrophic lakes, pH is raised as dissolved carbon dioxide is depleted. For example, 

cyanobacteria-dominated Santa Olalla lake in Spain is a stable system with a biologically-

produced alkaline pH. Santa Olalla’s average pH is 9.52, and can reach as high as 10.5 (López-

Archilla et al., 2004). This is similar to pH ranges seen in the natural assemblage bioassay used 

here. As a result of increasing phytoplankton biomass, pH increased throughout the bioassay, 

with all treatments showing a higher pH on the final day than the initial day of the bioassay. On 

the final day, pH was significantly lower in all HOOH treatments than in the untreated control 

(Figure 1.2).  

Table 1.2 Natural assemblage bioassay daily record of pH, dissolved oxygen (DO), oxygen 

saturation (O2 %), and temperature. Day 0 represents initial conditions in Cubitainers prior to 

first HOOH addition. 
 

Day / Time HOOH Treatment (µM) Cubitainer pH DO (mg/L) O2 % Temperature 

0     13:30 0 1 9.36 15.35 190.8 26.3 

Initial 

 

2 9.39 15.01 185.2 26.4 

  

3 9.26 15.86 198.5 26.4 

1     12:45 0 1 9.67 14.72 180.0 25.2 

  

2 9.67 14.50 176.6 25.5 

  

3 9.70 15.81 195.1 25.4 

 

20 4 9.53 13.58 165.8 25.3 

  

5 9.65 15.02 185.6 25.5 

  

6 9.59 13.79 169.1 25.5 

 

40 7 9.60 14.48 179.8 25.7 

  

8 9.46 13.46 166.8 25.8 

  

9 9.63 14.64 181.1 25.8 
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60 10 9.51 13.86 170.9 25.8 

  

11 9.57 13.99 172.4 25.5 

  

12 9.57 13.51 166.5 25.6 

 

80 13 9.60 14.12 174.1 25.6 

  

14 9.61 14.01 173.4 25.7 

  

15 9.53 13.75 169.0 25.5 

2     13:15 0 1 10.39 13.23 173.4 29.0 

  

2 10.40 13.06 171.0 29.2 

  

3 10.40 14.22 187.9 29.4 

 

20 4 10.20 13.55 178.2 29.3 

  

5 10.24 13.78 182.4 29.0 

  

6 10.18 13.68 180.7 29.3 

 

40 7 10.04 13.68 179.9 29.2 

  

8 10.01 13.76 181.4 29.3 

  

9 10.10 13.48 179.0 29.0 

 

60 10 10.00 13.77 182.7 29.6 

  

11 10.04 14.21 188.4 29.5 

  

12 10.04 14.18 187.5 29.6 

 

80 13 10.02 14.31 188.6 29.3 

  

14 10.04 13.96 184.6 29.3 

  

15 10.04 14.65 192.5 29.1 

3     13:30 0 1 10.61 12.19 149.8 25.4 

  

2 10.61 11.67 143.3 25.5 

  

3 10.65 12.02 147.8 25.6 

 

20 4 10.49 12.07 148.4 25.4 

  

5 10.55 12.61 155.0 25.6 

  

6 10.46 12.18 149.5 25.5 

 

40 7 10.35 12.88 158.3 25.5 

  

8 10.36 12.30 151.2 25.5 

  

9 10.35 12.88 158.2 25.5 

 

60 10 10.39 13.70 168.2 25.4 

  

11 10.37 13.75 168.7 25.5 

  

12 10.38 13.26 162.9 25.4 

 

80 13 10.45 14.15 173.3 25.5 

  

14 10.46 13.70 168.1 25.4 

  

15 10.49 14.26 174.7 25.5 

4     14:45 0 1 10.69 8.89 105.5 23.6 

  

2 10.68 8.67 102.5 23.7 

  

3 10.71 8.76 104.1 23.7 

 

20 4 10.55 9.04 107.2 23.7 

  

5 10.62 9.21 109.8 23.8 
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6 10.47 8.77 104.4 23.8 

 

40 7 10.43 9.24 110.0 23.7 

  

8 10.45 9.51 112.9 23.7 

  

9 10.36 9.26 110.2 23.8 

 

60 10 10.43 9.05 107.8 23.7 

  

11 10.38 9.06 108.1 23.8 

  

12 10.29 8.88 105.8 23.8 

 

80 13 10.53 9.33 111.3 23.7 

  

14 10.51 9.26 110.4 23.9 

  

15 10.48 9.32 111.2 23.9 

 

               . 

 

Figure 1.2 Natural assemblage bioassay pH in HOOH treatments on initial and final days of the 

bioassay. Statistical significance by one-way ANOVA (p<0.05) and post-hoc comparison. 

Statistically different mean values represented by unique letters (a= significant difference from 0 

µM, b= significant difference from 20 µM, c= significant difference from 40 µM, d= significant 

difference from 60 µM, e= significant difference from 80 µM). Error bars represent one standard 

deviation (n=3). 

 

DO and O2 % levels were very high throughout the bioassay (8.67-15.86 mg/L, 

corresponding to 102.5-198.5 O2 %, respectively), indicating O2 supersaturation as a result of 

photosynthetic O2 production by the high levels of phytoplankton biomass in the natural 

assemblage bioassay. High O2 levels are typical of surface blooms (Ibelings and Mur, 1992) and 

may contribute to the production of free radicals and oxidative stress when O2 passively diffuses 
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into cells. In Escherichia coli, for example, O2 diffuses into the cell and is reduced to O2
- and 

HOOH (Imlay, 2003; Giorgio et al., 2007). Bioassay temperatures ranged from 23.6 ºC to 29.6 

ºC, within the range of expected temperatures during summer blooms in Meiliang Bay (Chen et 

al., 2003a,b). However, water temperature in the relatively low volume, high-surface-area-to-

volume concrete enclosure in which the bioassays were conducted likely demonstrated higher 

temperatures and greater fluctuation than temperatures in Lake Taihu during the same time 

period. High temperatures promote bloom growth. Cyanobacteria have a competitive advantage 

over other phytoplankton groups at temperatures above 25 ºC because their growth rates are 

maximized at these high temperatures (Jöhnk et al., 2008). 

 The concentrated Microcystis bioassay demonstrated a much narrower pH range than that 

seen in natural assemblage bioassay, from 8.27 to 8.90 (Table 1.3). Although the pH in all 

treatments was higher on the final day of the bioassay than the initial day, there were no 

significant differences in pH amongst treatments (Figure 1.3). The lower pH range in this 

bioassay is likely due to the limited ability of the much lower biomass in this bioassay to raise 

pH. Similarly, the lower DO and O2 % values in this bioassay (7.31-9.57 mg/L and 90.3-119.3%, 

respectively) indicate lower levels of O2 production due to much lower phytoplankton biomass in 

this bioassay compared to the natural assemblage bioassay. The temperature varied from 25.2 ºC 

to 26.6 ºC. The limited range of temperatures measured in the concentrated Microcystis bioassay 

likely reflects lesser variation in air temperature and incident solar radiation (likely due to cloud 

cover) during this bioassay than during the natural assemblage bioassay. 
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Table 1.3 Concentrated Microcystis bioassay daily record of pH, dissolved oxygen (DO), oxygen 

saturation (O2 %), and temperature. Day 0 represents initial conditions in Cubitainers prior to 

first HOOH addition. 

 

Day / Time HOOH Treatment (µM) Cubitainer pH DO (mg/L) O2 % Temperature 

0     9:00 0 1 8.50 8.42 104.7 26.6 

  

2 8.39 8.65 108.0 26.3 

  

3 8.50 8.64 107.9 26.5 

1     9:00 0 1 8.39 8.47 105.2 26.3 

  

2 8.44 8.27 102.8 26.3 

  

3 8.40 8.22 102.2 26.6 

 

20 4 8.38 8.42 104.8 26.4 

  

5 8.47 8.53 106.2 26.4 

  

6 8.51 8.54 106.3 26.5 

 

40 7 8.47 8.64 107.6 26.5 

  

8 8.50 8.62 107.5 26.5 

  

9 8.53 8.65 107.6 26.5 

 

60 10 8.51 8.45 105.3 26.4 

  

11 8.58 8.72 108.4 26.5 

  

12 8.57 8.71 108.4 26.4 

 

80 13 8.52 8.70 108.4 26.4 

  

14 8.55 8.84 110.2 26.4 

  

15 8.50 8.78 109.4 26.5 

2     9:00 0 1 8.40 8.27 101.4 25.4 

  

2 8.41 8.09 99.2 25.4 

  

3 8.27 7.97 97.4 25.3 

 

20 4 8.33 8.27 101.3 25.2 

  

5 8.42 8.30 101.4 25.3 

  

6 8.45 8.18 100.1 25.2 

 

40 7 8.45 8.48 103.7 25.3 

  

8 8.44 8.38 102.5 25.2 

  

9 8.44 8.33 101.8 25.3 

 

60 10 8.38 8.32 101.9 25.2 

  

11 8.48 8.52 104.2 25.4 

  

12 8.43 8.48 103.9 25.3 

 

80 13 8.37 8.54 104.4 25.3 

  

14 8.39 8.45 103.3 25.2 

  

15 8.42 8.62 105.4 25.2 

3     12:45 0 1 8.74 8.67 106.3 25.2 

  

2 8.63 8.30 101.6 25.3 

  

3 8.33 7.31 90.3 25.5 

 

20 4 8.66 8.78 108.0 25.6 
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5 8.86 9.41 116.7 25.7 

  

6 8.89 9.30 115.2 25.9 

 

40 7 8.90 9.57 119.3 25.9 

  

8 8.87 9.10 113.2 26.2 

  

9 8.82 9.02 112.5 26.0 

 

60 10 8.49 8.36 103.9 26.1 

  

11 8.67 8.76 109.3 26.1 

  

12 8.67 8.59 107.1 26.2 

 

80 13 8.55 8.45 105.5 26.1 

  

14 8.53 8.33 103.7 26.2 

  

15 8.67 8.70 108.8 26.3 

 

               . 

 

Figure 1.3 Concentrated Microcystis bioassay pH in HOOH treatments on initial and final days 

of the bioassay. One-way ANOVA (p<0.05) indicated no statistically significant differences 

between mean values. Error bars represent one standard deviation (n=3). 

 

3.2 Nutrients 

PO4
3--P, NH4

+-N, NO3
--N, and NO2

--N measurements were taken on the initial and final 

days of the natural assemblage bioassay (Table 1.4) and the concentrated Microcystis bioassay 

(Table 1.5). In the natural assemblage bioassay, initial PO4
3--P, NH4

+-N, NO3
--N, and NO2

--N 

concentrations (prior to first nutrient addition) were 0.06, 61.08, 32.60, and 15.01 µM, 

respectively. On the final day of the bioassay, PO4
3--P concentrations ranged from 0.09 to 0.11 
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µM, NH4
+-N from 1.07 to 2.14 µM, NO3

--N from 26.52 to 68.32 µM, and NO2
--N from 8.10 to 

14.01 µM.  

Table 1.4 Natural assemblage bioassay nutrient measurements from initial and final days of the 

bioassay. Nutrients measured include phosphate (PO4
3--P), ammonium (NH4

+-N), nitrate  

(NO3
-N), and nitrite (NO2

--N). For nutrient analysis, a single sample was collected per treatment 

by combining equal volumes from each replicate Cubitainer of the treatment. 

 

Day / Time HOOH Treatment (µM) Cubitainer 

PO4
3--P 

(µM) 

NH4
+-N 

(µM) 

NO3
--N 

(µM) 

NO2
--N  

(µM) 

0     16:30 0 1+2+3 
0.06 61.08 32.60 15.01 

4     15:50 0 1+2+3 
0.10 1.36 26.52 8.10 

 

20 4+5+6 
0.09 1.07 41.75 10.38 

 

40 7+8+9 
0.11 1.71 54.73 12.67 

 

60 10+11+12 
0.11 2.14 60.57 13.22 

 

80 13+14+15 
0.09 1.14 68.32 14.01 

 

Table 1.5 Concentrated Microcystis bioassay nutrient measurements from initial and final days 

of the bioassay. Nutrients measured include phosphate (PO4
3--P), ammonium (NH4

+-N), nitrate 

(NO3
--N), and nitrite (NO2

--N). For nutrient analysis, a single sample was collected per treatment 

by combining equal volumes from each replicate Cubitainer of the treatment.  

 

Day / Time HOOH Treatment (µM) Cubitainer 

PO4
3--P 

(µM) 

NH4
+-N  

(µM) 

NO3
--N  

(µM) 

NO2
--N  

(µM) 

0     10:30 0 1+2+3 
0.06 2.89 75.54 2.70 

3     1:00 0 1+2+3 
0.10 6.14 61.63 2.78 

 

20 4+5+6 
0.07 1.64 57.68 2.60 

 

40 7+8+9 
0.10 1.43 43.72 3.36 

 

60 10+11+12 
0.12 1.64 40.74 2.85 

 

80 13+14+15 
0.12 1.93 41.90 2.29 

 

In the concentrated Microcystis bioassay, initial PO4
3--P, NH4

+-N, NO3
--N, and NO2

--N 

concentrations (prior to first nutrient addition) were 0.06, 2.89, 75.54, and 2.70 µM, respectively. 

On the final day of the bioassay, PO4
3--P concentrations ranged from 0.07 to 0.12 µM, NH4

+-N 

from 1.43 to 6.14 µM, NO3
--N from 40.74 to 61.63 µM, and NO2

--N from 2.29 to 3.36 µM. 

Although PO4
3- was added to each bioassay (in the form of KH2PO4) to prevent nutrient 
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limitation, both bioassays were P-limited by the final day. The P concentration required for 

saturated growth yield in Microcystis aeruginosa is 7.10 µM in culture (Baldia et al., 2007). In 

Taihu, growth of Microcystis spp. is P-limited at concentrations < 6.46 µM (Xu et al., 2010). P 

concentrations on the final days of these bioassays were most similar to Lake Taihu P 

concentrations during the spring, when P-limitation may occur (Xu et al., 2010). P limitation 

provides those phytoplankton that most effectively compete for available P with a competitive 

advantage. In general, cyanobacteria, diatoms, and cryptophytes are good competitors when P is 

limiting, unlike green algae (Holm and Armstrong, 1981; Grover, 1989; Baldia et al., 2007). 

Green algae have a high demand for nutrients due to their high growth and loss rates (Reynolds, 

1988). Thus, P limitation during these bioassays may have reduced the growth of green algae 

relative to the other major phytoplankton groups in all HOOH treatments as well as the untreated 

control.  

3.3 Particulate organic carbon and nitrogen 

POC was analyzed in the natural assemblage bioassay. POC includes C from 

phytoplankton, zooplankton, bacteria, and detritus. POC increased from an initial value of 16.0 

mgC/L to final values ranging from 19.5 to 25.9 mgC/L (Figure 1.4). On the final day, there was 

a significant increase in POC concentrations at higher HOOH concentrations, indicative of the 

increasing phytoplankton biomass at high HOOH concentrations. Similar trends in POC and chl 

a data suggest that POC was primarily composed of phytoplankton C. PON values were not 

obtained for the natural assemblage bioassay due to instrument error during analysis. 
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Figure 1.4 Natural assemblage bioassay POC concentrations in HOOH treatments on initial and 

final days of the bioassay. Statistical significance by one-way ANOVA (p<0.05) and post-hoc 

comparison. Statistically different mean values represented by unique letters (a= significant 

difference from 0 µM, b= significant difference from 20 µM, c= significant difference from 40 

µM, d= significant difference from 60 µM, e= significant difference from 80 µM). Error bars 

represent one standard deviation (n=3). 

 

In the concentrated Microcystis bioassay, initial POC was 1.62 mgC/L and final POC 

values varied from 1.69 to 2.43 mgC/L, lower than those in the natural assemblage bioassay, 

again due to the much lower phytoplankton biomass (Figure 1.5). POC increased in all 

treatments throughout the bioassay, with highest values in the 20 and 40 µM HOOH treatments, 

but the data could not be tested for statistical significance, since a single sample was taken per 

treatment due to volume constraints. 
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               . 

 

Figure 1.5 Concentrated Microcystis bioassay POC concentrations in HOOH treatments on initial 

and final days of the bioassay. Data were not tested for statistical significance, since a single 

sample was collected per treatment (except at initial measurement) due to volume constraints. 

Error bars represent one standard deviation (n=3). 

 

 Unlike POC, PON concentrations decreased from initial values during the concentrated 

Microcystis bioassay (Figure 1.6). Initial PON was 0.39 mgN/L, and final values were 0.27 to 

0.38 mgN/L. Final PON was highest in the untreated control and decreased with increasing 

HOOH concentration. The data could not be tested for statistical significance, since a single 

sample was collected per treatment due to volume constraints. The resulting POC:PON molar 

ratio was 4.85 initially and varied from 6.74 to 8.96 on the final day of the bioassay (Figure 1.7). 

Initial values were below the Redfield molar POC:PON ratio of 6.7 (Redfield, 1958) while final 

values were above the Redfield ratio. This minor deviation might be caused by physical and 

chemical factors that affect the elemental composition of phytoplankton, such as light and 

temperature (Geider and La Roche, 2002). Changes in the POC:PON ratio may also result from 

changes in the relative abundance of the major phytoplankton groups present (cyanobacteria, 

diatoms, cryptophytes, chlorophytes). POC:PON ratios vary amongst phytoplankton groups 
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whose different growth strategies result in different ratios of C to N drawdown (Arrigo et al., 

1999; Klausmeier et al., 2004; Martiny et al., 2013; Singh et al., 2015).  

                . 

 

Figure 1.6 Concentrated Microcystis bioassay PON concentrations in HOOH treatments on 

initial and final days of the bioassay. Data were not tested for statistical significance, since a 

single sample was collected per treatment (except at initial measurement) due to volume 

constraints. Error bars represent one standard deviation (n=3). 

 

  .. 

  

Figure 1.7 Concentrated Microcystis bioassay POC:PON molar ratio in HOOH treatments on 

initial and final days of the bioassay. Data were not tested for statistical significance, since a 

single sample was collected per treatment (except at initial measurement) due to volume 

constraints. Error bars represent one standard deviation (n=3). 
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3.4 Total microcystin concentrations 

In the natural assemblage bioassay, the initial concentration of total microcystins 

(intracellular + extracellular) was 26.6 µg/L (Figure 1.8). This high concentration of 

microcystins is well above the WHO drinking water provisional guideline of 1 µg/L and 

recreational use guideline of 10 µg/L, but within the expected range found in Meiliang Bay. In 

the summers of 2009 and 2010, the average microcystin concentration in northwestern Lake 

Taihu was 28.7 µg/L (Otten et al., 2012). A high microcystin concentration is first and foremost 

a result of the high Microcystis biomass during a bloom. However, during a bloom, the extent of 

microcystin production is controlled by a wide variety of physical and chemical factors, 

including nutrient availability (N and P; trace metals), temperature, light, and pH (Neilan et al, 

2013). Microcystin concentration increased from 26.6 µg/L to 41.5 µg/L by the final day, 

indicating microcystin production during the bioassay.  
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               . 

 

Figure 1.8 Natural assemblage bioassay total (intracellular + extracellular) microcystins 

concentrations in HOOH treatments on initial and final days of the bioassay. Statistical 

significance by one-way ANOVA (p<0.05) and post-hoc comparison. Statistically different mean 

values represented by unique letters (a= significant difference from 0 µM, b= significant 

difference from 20 µM, c= significant difference from 40 µM, d= significant difference from 60 

µM, e= significant difference from 80 µM). Error bars represent one standard deviation (n=3). 

 

Microcystins were measured in the HOOH treatments as well. Microcystin 

concentrations were significantly lower in the 80 µM than in the untreated control. However, the 

measured microcystin concentrations are likely deceptive in terms of microcystin production. 

HOOH is a strong oxidant, which enhances photocatalytic degradation of microcystins (Cornish 

et al., 2000). Thus, the amount of microcystin produced in the HOOH treatments may be much 

higher than the quantity measured. Interestingly, the microcystin concentration was higher in the 

20 µM HOOH treatment (62.0 µg/L) than in the untreated control (41.5 µg/L), despite the 

likelihood of enhanced degradation by HOOH. Since phytoplankton community composition 

analysis showed that cyanobacterial biomass decreased in the 20 µM treatment relative to the 

untreated control, these results indicate HOOH addition may stimulate increased microcystin 

production, supporting the hypothesis that microcystin plays a role in protection against 
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oxidative stress. This effect may only be detectable under relatively low HOOH concentrations at 

which HOOH-enhanced degradation does not fully mask enhanced microcystin production. 

However, no definitive conclusion regarding the effect of HOOH on microcystin production can 

be drawn from these results. Enhanced degradation of microcystins at high HOOH 

concentrations may have been minimal, with low microcystin concentrations instead resulting 

from lower cyanobacterial biomass and reduced rates of production. 

 The initial microcystin concentration in the concentrated Microcystis bioassay (2.2 µg/L; 

Figure 1.9) was much lower than in the natural assemblage bioassay. The low initial 

concentration highlights the fact that microcystins are primarily retained within the cell until cell 

lysis. The filtration procedures used to remove phytoplankton from the bioassay water before 

addition of Microcystis surface scum did not remove extracellular microcystins from the water. 

Thus, the low initial microcystin concentrations are a result of the lower biomass in the 

concentrated Microcystis bioassay. The final microcystin concentration in the 20 µM HOOH 

treatment (6.9 µg/L) is significantly higher than the untreated control (2.0 µg/L). Concentrations 

in all other HOOH treatments were not significantly different than control values. Together, 

these two bioassays indicate that HOOH addition may result in either significantly increased or 

decreased microcystin concentrations. Relatively low levels of HOOH (20 µM) may result in 

increased microcystin concentrations while relatively high levels (80 µM) may result in 

decreased microcystin concentrations.  
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Figure 1.9 Concentrated Microcystis bioassay total (intracellular + extracellular) microcystins 

concentrations in HOOH treatments on initial and final days of the bioassay. Statistical 

significance by one-way ANOVA (p<0.05) and post-hoc comparison. Statistically different mean 

values represented by unique letters (a= significant difference from 0 µM, b= significant 

difference from 20 µM, c= significant difference from 40 µM, d= significant difference from 60 

µM, e= significant difference from 80 µM). Error bars represent one standard deviation (n=3). 

 

3.5 Phytoplankton biomass 

Chlorophyll a is representative of phytoplankton biomass. For each bioassay, chl a was 

measured fluorometrically and through HPLC. In the natural assemblage bioassay, initial 

fluorometric chl a was very high, at 274.9 µg/L (Figure 1.10). Although high, these chlorophyll 

concentrations are not unheard of in Meiliang Bay. In August of 2004, chl a concentrations 

reached well above 400 µg/L (Liu et al., 2011). Nevertheless, typical chl a concentrations are 

lower. The average whole water column, depth integrated chl a value in northwestern Lake 

Taihu during the summers of 2009 and 2010 was 192.1 ± 359.5 µg/L (Otten et al., 2012). A 

long-term study found that the average annual chl a concentrations in Lake Taihu from 1995 to 

2003 ranged from 17.4 to 54.2 µg/L (Zhang et al., 2007). Annual averages are consistently lower 

than summer chl a concentrations because blooms are seasonal, with maximal chl a 

concentrations occurring in the summer and minimal concentrations occurring in the winter.  
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Figure 1.10 Natural assemblage bioassay fluorometric chlorophyll a concentrations in HOOH 

treatments on initial and final days of the bioassay. Statistical significance by one-way ANOVA 

(p<0.05) and post-hoc comparison. Statistically different mean values represented by unique 

letters (a= significant difference from 0 µM, b= significant difference from 20 µM, c= significant 

difference from 40 µM, d= significant difference from 60 µM, e= significant difference from 80 

µM). Error bars represent one standard deviation (n=3). 

 

Chl a increased in the untreated control and all HOOH treatments during the bioassay. 

The final chl a concentration in the control was 343.7 µg/L. The final chl a concentrations in the 

HOOH treatments ranged from 331.5 to 451.0 µg/L, increasing with increasing HOOH 

concentration. Cyanobacterial chl a is expected to decrease upon HOOH addition (Samuilov et 

al., 1999; Dziallas and Grossart, 2011). However, since HOOH selectively inhibits 

cyanobacterial growth at lower concentrations than other phytoplankton groups (Stratford et al., 

1984; Barroin and Feuillade, 1986; Schrader et al., 1998; Drábková et al., 2007a,b; Weenik et 

al., 2015), the increase in chl a may occur as the inhibition of cyanobacteria reduces competition 

and allows for enhanced growth of other phytoplankton groups. The effects of HOOH on 

phytoplankton community composition are discussed in detail in the following section. 

 Initial fluorometric chl a concentration in the concentrated Microcystis bioassay was 

much lower than in the natural assemblage bioassay, at 14.6 µg/L (Figure 1.11). The chl a 
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concentration was artificially lowered through the filtering procedures used to remove all 

phytoplankton before the Microcystis surface scum was re-added. Chl a concentrations increased 

in the untreated control and in all HOOH treatments by the final day of the bioassay. The 

untreated control had a final concentration of 33.1 µg/L. The 20 µM HOOH treatment had the 

highest chl a concentration, at 43.0 µg/L. Chl a decreased with increasing HOOH concentration, 

with the lowest concentration in the 80 µM treatment: 19.8 µg/L. However, there were no 

significant differences between mean values of treatments. The effects of HOOH on 

phytoplankton biomass differed amongst bioassays, likely resulting from the altered 

phytoplankton community composition in the concentrated Microcystis bioassay. 

                . 

 

Figure 1.11 Concentrated Microcystis bioassay fluorometric chlorophyll a concentrations in 

HOOH treatments on initial and final days of the bioassay. One-way ANOVA (p<0.05) indicated 

no statistically significant differences between mean values. Error bars represent one standard 

deviation (n=3). 

 

3.6 Phytoplankton community composition 

3.6.1 Total chlorophyll a 

In addition to fluorometric measurement, chl a was measured by HPLC. In the natural 

assemblage bioassay, initial HPLC chl a was measured as 211.5 µg/L (Figure 1.12). Final chl a 
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concentrations ranged from 246.5 to 280.4 µg/L, with no significant differences among 

treatments. Chl a values measured by HPLC were consistently lower than when measured by 

fluorometry, despite inclusion of degradation pigment chlorophyllide a in total chl a 

concentrations. This occurs because fluorometry does not distinguish between different 

chlorophyll species or derivatives (Meyns et al., 1994). Upon removal of chl a (by separation of 

pigments on the HPLC column and separate collection of chl a and all remaining pigments), a 

sample will still measure significant concentrations of “chl a” by the fluorometric method. This 

occurs when other compounds with fluorescent properties similar to chl a are present (Gieskes 

and Kraay, 1983). 

               . 

 

Figure 1.12 Natural assemblage bioassay HPLC total chlorophyll a (chlorophyll a + degradation 

pigment chlorophyllide a) concentrations in HOOH treatments on initial and final days of the 

bioassay. One-way ANOVA (p<0.05) indicated no statistically significant differences between 

mean values. Error bars represent one standard deviation (n=3). 

 

 The same trend was seen in the concentrated Microcystis bioassay HPLC chl a 

measurements, with all values lower than those obtained by the fluorometric method. Initial chl a 

was 9.8 µg/L (Figure 1.13). Final chl a concentrations ranged from 13.2 to 36.6 µg/L. All HPLC 

data from the concentrated Microcystis bioassay could not be tested for statistical significance 
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because only a single sample was collected per treatment due to volume constraints. However, 

the HPLC chl a measurements indicate the same relationship between chl a and HOOH 

concentration exhibited in the fluorometric chl a results. 

               . 

 

Figure 1.13 Concentrated Microcystis bioassay HPLC total chlorophyll a (chlorophyll a + 

degradation pigment chlorophyllide a) concentrations in HOOH treatments on initial and final 

days of the bioassay. Data were not tested for statistical significance, since a single sample was 

collected per treatment (except at initial measurement) due to volume constraints. Error bars 

represent one standard deviation (n=3). 

 

3.6.2 Zeaxanthin 

Zeaxanthin is a photoprotective carotenoid found in cyanobacterial cytoplasmic 

membranes (MacIntyre et al., 2002). Zeaxanthin concentrations serve as a proxy for 

cyanobacterial biomass. In the natural assemblage bioassay, initial zeaxanthin concentration was 

2.9 µg/L (Figure 1.14). On the final day of the bioassay, zeaxanthin concentrations were highest 

in the untreated control, at 5.2 µg/L, and decreased with increasing HOOH concentration. 

Zeaxanthin concentrations in the 40, 60, and 80 µM HOOH treatments fell below the initial 

value. The lowest concentration, in the 80 µM HOOH treatment, was 2.0 µg/L. It has been 

demonstrated previously that HOOH inhibits cyanobacterial growth (Samuilov et al., 1999; 
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Dziallas and Grossart, 2011). In a Microcystis aeruginosa culture (5×105 cells/cm3), 50% 

inhibition of photosynthetic yield (FV/FM) occurs at 7.9 µM HOOH. In other cyanobacteria 

including Trichormus variabilis, Cyanobium gracile, Synechococcus nidulans, and Aphanothece 

clathrata, 50% inhibition occurs between 10.3 and 51.2 µM HOOH (Drábková et al., 2007b). 

               . 

 

Figure 1.14 Natural assemblage bioassay HPLC zeaxanthin concentrations in HOOH treatments 

on initial and final days of the bioassay. Statistical significance by one-way ANOVA (p<0.05) 

and post-hoc comparison. Statistically different mean values represented by unique letters (a= 

significant difference from 0 µM, b= significant difference from 20 µM, c= significant difference 

from 40 µM, d= significant difference from 60 µM, e= significant difference from 80 µM). Error 

bars represent one standard deviation (n=3). 

 

 In the concentrated Microcystis bioassay, the initial zeaxanthin concentration was 0.5 

µg/L, and decreased in the untreated control and all HOOH treatments by the final day of the 

bioassay (Figure 1.15). The highest concentration occurred in the 40 µM HOOH treatment, 0.3 

µg/L, and the lowest concentration occurred in the 80 µM treatment, 0.1 µg/L. Interestingly, 

zeaxanthin concentrations were higher in the 20 µM and 40 µM treatments than in the untreated 

control. The differences in response of cyanobacterial biomass to HOOH addition between the 

two bioassays illustrate the importance of determining the correct dosage for each bloom episode 

when using HOOH to suppress cyanobacterial growth. In the natural assemblage bioassay, 20 
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µM HOOH was sufficient to suppress cyanobacterial growth below control values. In the 

concentrated Microcystis bioassay, growth was not suppressed at 20 µM and 40 µM HOOH; 60 

µM HOOH was required for suppression. 

               . 

 

Figure 1.15 Concentrated Microcystis bioassay HPLC zeaxanthin concentrations in HOOH 

treatments on initial and final days of the bioassay. Data were not tested for statistical 

significance, since a single sample was collected per treatment (except at initial measurement) 

due to volume constraints. Error bars represent one standard deviation (n=3). 

 

The minimum concentration of HOOH necessary to effectively reduce cyanobacterial 

biomass varies according to multiple factors, chief among them being phytoplankton biomass 

and community composition. Previous studies show that the necessary HOOH dosage varies 

considerably amongst blooms (Matthijs et al., 2012; Barrington et al., 2013). Higher biomass 

blooms necessitate higher HOOH concentrations due to enhanced biological degradation 

(Randhawa et al., 2013). Biological degradation may be especially rapid in blooms containing 

high eukaryotic phytoplankton biomass, since eukaryotic phytoplankton degrade ROS more 

effectively than cyanobacteria (Asada 1992; Shigeoka et al., 2002; Passardi et al., 2007). 

However, eukaryotic phytoplankton also produce greater concentrations of ROS (Weenik et al., 

2015). Interestingly, despite higher total phytoplankton biomass and a higher proportion of 
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eukaryotic phytoplankton, cyanobacterial biomass was more dramatically inhibited by HOOH in 

the natural assemblage bioassay, possibly due to differences in the cyanobacterial assemblages of 

the two bioassays. Laboratory studies indicate that some cyanobacterial genera are more 

sensitive to HOOH than others. The EC50 value for HOOH for Microcystis aeruginosa is 8 µM 

whereas the EC50 value for another freshwater cyanobacterium, Aphanothece clathrata, is 51 

µM. The EC50 values of two other cyanobacterial species, Cyanobium gracile and Trichormus 

variabilis, are 34 and 10 µM, respectively (Drábková et al., 2007b). Although summer 

cyanobacterial assemblages in Lake Taihu are typically dominated by Microcystis (Chen et al., 

2003b), other cyanobacterial species are undoubtedly present in varying proportions. 

Cyanobacterial biomass may have been more dramatically inhibited by HOOH in the natural 

assemblage bioassay because the cyanobacterial community contained a higher proportion of 

highly HOOH-sensitive cyanobacteria. Additionally, sensitivity of Microcystis aeruginosa to 

HOOH differs between toxic and non-toxic strains. Culture experiments have demonstrated a 

significantly higher reduction in Microcystis biomass upon HOOH addition in non-toxic strains 

as opposed to toxic strains (Dziallas and Grossart, 2011), possibly because cyanobacterial toxins 

protect against oxidative stress (Zilliges et al., 2011). In a separate study, non-toxic Microcystis 

was affected by 50 nM HOOH while 500 nM HOOH was required to affect toxic Microcystis 

(Leunert et al., 2014).    

Other factors affecting the minimum dosage of HOOH required for cyanobacterial 

removal such as ultraviolet radiation (UVR) and PAR may have also played a role. UVR and 

PAR serve as catalysts to produce hydroxyl and hydroperoxyl radicals (HO2) from HOOH, 

increasing the rate of cyanobacterial cell death (Samuilov et al., 2004). In wastewater 

stabilization ponds (WSPs), high levels of UVR have been shown to increase the cyanobacterial 
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removal efficiency of HOOH by an order of magnitude over laboratory conditions (Barrington et 

al., 2011).   

3.6.3 Fucoxanthin 

 Fucoxanthin is a carotenoid found in approximately 100,000 fresh water and marine 

diatom species (Werner, 1977). Relative changes in diatom biomass can be estimated from 

fucoxanthin concentrations. In the natural assemblage bioassay, initial fucoxanthin concentration 

was 8.8 µg/L (Figure 1.16). Fucoxanthin increased in all HOOH treatments by the final day, 

ranging from 20.2 to 36.7 µg/L. Fucoxanthin concentrations were highest in highest HOOH 

concentration treatments. Although HOOH can inhibit diatom growth, inhibition of diatoms 

occurs at higher concentrations than inhibition of other phytoplankton groups, including 

cyanobacteria and chlorophytes (green algae). In a culture of the diatom Navicula seminulum 

(2×105 cells/cm3), 50% inhibition of photosynthetic yield occurs at 294.0 µM HOOH (Drábková 

et al., 2007b). During the bioassay, the selective suppression of other phytoplankton groups by 

HOOH allowed for enhanced diatom growth.  
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Figure 1.16 Natural assemblage bioassay HPLC fucoxanthin concentrations in HOOH treatments 

on initial and final days of the bioassay. Statistical significance by one-way ANOVA (p<0.05) 

and post-hoc comparison. Statistically different mean values represented by unique letters (a= 

significant difference from 0 µM, b= significant difference from 20 µM, c= significant difference 

from 40 µM, d= significant difference from 60 µM, e= significant difference from 80 µM). Error 

bars represent one standard deviation (n=3). 

 

 The initial fucoxanthin concentration was very low in the concentrated Microcystis 

bioassay (0.1 µg/L; Figure 1.17), indicating successful removal of diatom biomass through 

filtration. Fucoxanthin concentrations increased in the untreated control and in all treatments. On 

the final day of the bioassay, the concentration was highest in the 20 µM HOOH treatment (11.6 

µg/L) and lowest in the 60 and 80 µM treatments (1.7 and 1.9 µg/L, respectively). Unlike the 

natural assemblage bioassay, diatom growth was inhibited at high HOOH concentrations in the 

concentrated Microcystis bioassay.  
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               . 

 

Figure 1.17 Concentrated Microcystis bioassay HPLC fucoxanthin concentrations in HOOH 

treatments on initial and final days of the bioassay. Data were not tested for statistical 

significance, since a single sample was collected per treatment (except at initial measurement) 

due to volume constraints. Error bars represent one standard deviation (n=3). 

 

3.6.4 Alloxanthin 

 Alloxanthin is a carotenoid primarily found in cryptophytes. The initial alloxanthin 

concentration in the natural assemblage bioassay was 2.4 µg/L (Figure 1.18). Alloxanthin 

concentration increased in the untreated control and all treatments by the final day of the 

bioassay. The concentration was lowest in the untreated control and significantly higher in the 60 

and 80 µM HOOH treatments (3.7 and 3.6 µg/L, respectively). The sensitivity of cryptophytes to 

HOOH has not been studied as thoroughly as cyanobacteria, diatoms, and green algae. 

Eukaryotes such as cryptophytes, diatoms, and green algae are generally less sensitive than 

prokaryotes such as cyanobacteria (Drábková et al., 2007b). In a whole lake HOOH addition 

study, cryptophyte biomass was unaffected by a 60 µM HOOH addition (Matthijs et al., 2012). 
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               . 

 

Figure 1.18 Natural assemblage bioassay HPLC alloxanthin concentrations in HOOH treatments 

on initial and final days of the bioassay. Statistical significance by one-way ANOVA (p<0.05) 

and post-hoc comparison. Statistically different mean values represented by unique letters (a= 

significant difference from 0 µM, b= significant difference from 20 µM, c= significant difference 

from 40 µM, d= significant difference from 60 µM, e= significant difference from 80 µM). Error 

bars represent one standard deviation (n=3). 

 

 In the concentrated Microcystis bioassay, the initial alloxanthin concentration was 0.08 

µg/L (Figure 1.19). In the untreated control, cryptophyte biomass remained stable throughout the 

bioassay, with a final alloxanthin concentration of 0.07 µg/L. Alloxanthin concentrations 

increased in the 20 and 40 µM HOOH treatments (0.14 and 0.15 µg/L, respectively) and 

decreased in the 60 and 80 µM treatments (0.03 µg/L in both).  
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               . 

  

Figure 1.19 Concentrated Microcystis bioassay HPLC alloxanthin concentrations in HOOH 

treatments on initial and final days of the bioassay. Data were not tested for statistical 

significance, since a single sample was collected per treatment (except at initial measurement) 

due to volume constraints. Error bars represent one standard deviation (n=3). 

 

3.6.5 Chlorophyll b 

 While chl a absorbs wavelengths of violet-blue and orange-red light, chlorophyll b (chl b) 

absorbs blue light. Among freshwater phytoplankton, it is primarily found in chlorophytes. In the 

natural assemblage bioassay, the initial chl b concentration was high: 72.2 µg/L (Figure 1.20). 

By the end of the bioassay, chl b had decreased in the untreated control and in all treatments 

except the 80 µM HOOH treatment. Chl b was lowest in the untreated control (37.5 µg/L) and 

increased with increasing HOOH concentration to 75.0 µg/L in the 80 µM HOOH treatment. In 

green algae cultures (Pseudokirchneriella subcapitata, Scenedesmus quadricauda, and 

Chlamydomonas reinhardtii; cell density 2×105 cells/cm3), 50% inhibition of photosynthetic 

yield occurred at 182.9, 271.9, and 618.6 µM HOOH, respectively (Drábková et al., 2007b). 

HOOH concentrations in the bioassay were too low to significantly reduce growth of green 

algae. At high HOOH concentrations, selective suppression of other algal groups allowed for 

enhanced chlorophyte growth.  
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               . 

 

Figure 1.20 Natural assemblage bioassay HPLC chlorophyll b concentrations in HOOH 

treatments on initial and final days of the bioassay. Statistical significance by one-way ANOVA 

(p<0.05) and post-hoc comparison. Statistically different mean values represented by unique 

letters (a= significant difference from 0 µM, b= significant difference from 20 µM, c= significant 

difference from 40 µM, d= significant difference from 60 µM, e= significant difference from 80 

µM). Error bars represent one standard deviation (n=3). 

 

 Initial chl b concentration was low in the concentrated Microcystis bioassay (0.3 µg/L; 

Figure 1.21), since the majority of chlorophyte biomass was removed by filtering. Chl b 

increased in the untreated control and in all treatments during the bioassay. On the final day of 

the bioassay, the untreated control had the lowest chl b concentration (1.3 µg/L) and the 40 µM 

HOOH treatment had the highest chl b concentration (56.3 µg/L). As discussed in section 3.2, P 

limitation occurred during both bioassays. Since green algae are not as strong competitors for P 

as cyanobacteria, diatoms, and cryptophytes (Holm and Armstrong, 1981; Grover, 1989; Baldia 

et al., 2007), P limitation during these bioassays may have reduced the growth of green algae 

relative to the other major phytoplankton groups in all HOOH treatments as well as the untreated 

control. 
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               . 

 

Figure 1.21 Concentrated Microcystis bioassay HPLC chlorophyll b concentrations in HOOH 

treatments on initial and final days of the bioassay. Data were not tested for statistical 

significance, since a single sample was collected per treatment (except at initial measurement) 

due to volume constraints. Error bars represent one standard deviation (n=3). 

 

3.6.6 ChemTax 

 Analysis of HPCL results by ChemTax allows for determination of the relative 

importance of the major phytoplankton groups throughout the bioassays. Monthly monitoring 

data from 1992 through 2012 indicates that 31 genera of phytoplankton representative of six 

phyla have been identified in Lake Taihu. Four of these six phyla constitute 98% of total 

phytoplankton biovolume: Cyanobacteria, Chlorophyta, Bacillariophyta, and Cryptophyta (Deng 

et al., 2014). ChemTax was used to analyze the relative contribution of these four phyla to total 

chl a.  

The natural assemblage bioassay was initially dominated by chlorophytes (89%; Figure 

1.22). Cyanobacteria, diatoms, and cryptophytes contributed 6%, 3%, and 2% of total 

phytoplankton biomass, respectively. In Lake Taihu, phytoplankton dominance is primarily 

controlled by nutrients and water temperature (Ke et al., 2008; Deng et al., 2014). Chlorophyte 

blooms are most likely to occur in the spring, when nutrient (total N and total P) concentrations 
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are maximal (Deng et al., 2014). Unlike cyanobacteria, chlorophytes have a high demand for 

nutrients due to their high growth and loss rates (Reynolds, 1988). In the summer, warm water 

temperatures favor Microcystis blooms (Paerl and Huisman, 2008). Cyanobacterial growth rates 

increase at high temperatures, providing a competitive advantage over other phytoplankton. 

Additionally, warming of surface waters enhances vertical stratification. Under conditions of 

minimal vertical mixing, buoyant cyanobacteria rise to the surface and form dense blooms which 

limit light availability to non-buoyant phytoplankton (Jöhnk et al., 2008).  

  

 . 

 

Figure 1.22 Natural assemblage bioassay contributions of four major freshwater phytoplankton 

classes to total chlorophyll a on the initial and final days of the bioassay calculated from HPLC 

data using the ChemTax program. 

 

On the final day of the natural assemblage bioassay, the untreated control and all HOOH 

treatments remained dominated by chlorophytes. However, the relative contribution of 

3% 2%

89%

6%

Initial

Diatoms

Cryptophytes

Chlorophytes

Cyanobacteria

7%

12%

53%

28%

Day 4
0 µM

8%
11%

55%

26%

Day 4
20 µM

10%

7%

70%

13%

Day 4
40 µM

10%
6%

76%

8%

Day 4
60 µM

10%
5%

79%

6%

Day 4
80 µM



50 
 

chlorophytes increased in higher HOOH treatments, from 53% in the control to 79% in the 80 

µM treatment. Diatoms also showed a slight increase in relative abundance at higher HOOH 

concentrations, increasing from 7% in the control to 10% at 40, 60, and 80 µM HOOH. 

Cyanobacterial and cryptophyte relative contributions, on the other hand, decreased at high 

HOOH concentrations. Cyanobacteria decreased from 28% in the untreated control to 6% in the 

80 µM treatment and cryptophytes decreased from 12% to 5%. Phytoplankton community 

composition dynamics illustrate the selective suppression of cyanobacteria by HOOH. In this 

bioassay, 40 µM HOOH reduced the relative contribution of cyanobacteria by over 50% 

compared to the control. The reduction in cyanobacterial biomass allowed for enhanced growth 

of eukaryotic algae, including chlorophytes and diatoms. 

Multiple hypotheses have been proposed to explain why cyanobacteria exhibit higher 

sensitivity to HOOH than other phytoplankton (Drábková et al., 2007b). In prokaryotes such as 

cyanobacteria, the light-harvesting complexes are located outside of the thylakoid membrane in 

the cytoplasm, which makes them highly accessible to externally added chemicals. In eukaryotes 

such as algae and diatoms, the enclosed chloroplasts provide some measure of protection. 

Additionally, cyanobacteria primarily utilize catalase or catalase-peroxidase as cytoplasmic 

HOOH detoxification enzymes. Ascorbate peroxidase, which is used by eukaryotic 

phytoplankton to rapidly degrade HOOH before it reaches the photosynthetic apparatus, is not 

found in cyanobacteria (Asada 1992; Shigeoka et al., 2002; Passardi et al., 2007). Eukaryotic 

algae likely require ascorbate peroxidase for more efficient degradation of ROS because they 

generate higher concentrations of ROS. In eukaryotic algae, O2
- is formed during the Mehler 

reaction (Mehler, 1951) and converted into HOOH by SOD (Latifi et al., 2009). In 
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cyanobacteria, O2
- formation is prevented by flavoproteins (Helman et al., 2003; Allahverdiyeva 

et al., 2011, 2013), resulting in lower levels of oxidative stress (Weenik et al., 2015). 

 As intended, the concentrated Microcystis bioassay was initially dominated by 

cyanobacteria (57%; Figure 1.23). Although in this case manufactured through water filtration 

and re-addition of Microcystis surface scum, a Microcystis-dominated phytoplankton bloom is 

common during the summer in Lake Taihu. At the beginning of the bioassay, chlorophytes, 

cryptophytes, and diatoms contributed 24%, 17%, and 2% of total phytoplankton biomass, 

respectively. While the relative contribution of diatoms was similar in both bioassays (3% and 

2%), the initial contribution of cryptophytes was higher (17% versus 2%) and that of 

chlorophytes was lower (24% versus 89%) in the concentrated Microcystis bioassay. In other 

words, while the relative contribution of Microcystis was successfully increased, the relative 

contributions of the other phytoplankton groups were also altered in proportion to their initial 

contributions in the natural assemblage bioassay. This may be partially due to natural shifts in 

the Lake Taihu phytoplankton community during the time between water collections for the two 

bioassays (7 days). Additionally, the filtering and surface scum addition process used to increase 

the relative contribution of Microcystis in this bioassay likely unintentionally altered the relative 

contributions of the other major phytoplankton groups. 
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 . 

 

Figure 1.23 Concentrated Microcystis bioassay contributions of four major freshwater 

phytoplankton classes to total chlorophyll a on the initial and final days of the bioassay 

calculated from HPLC data using the ChemTax program. 

 

 The final relative contribution of cyanobacteria decreased in the untreated control and in 

all HOOH treatments. As seen in the natural assemblage bioassay, the relative contribution of 

cyanobacteria decreased with increasing HOOH concentration, from 23% in the untreated 

control to 8% in the 80 µM treatment. At 60 µM HOOH, the cyanobacterial contribution was 

reduced by over 50% from the control value. Cryptophyte growth was also suppressed by high 

doses of HOOH. Cryptophytes comprised 11% of total phytoplankton biomass in the untreated 

control and only 1% in the 80 µM HOOH treatment. These results differ from a whole lake study 

in which cryptophyte biomass was unaffected by a 60 µM HOOH addition (Matthijs et al., 

2012). Although HPLC chl b pigment analysis indicates that chlorophyte biomass was reduced in 
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the 60 and 80 µM HOOH treatments, the relative contribution of chlorophytes increased with 

increasing HOOH concentration, from 37% in the control to 81% in the 80 µM treatment. While 

diatom growth was enhanced at high HOOH concentrations in the natural assemblage bioassay, 

the opposite was seen in the concentrated Microcystis bioassay. Diatom relative contribution 

decreased from 29% in the control to 10% in the 80 µM HOOH treatment. The decrease in the 

relative contribution of diatoms most likely was not directly HOOH treatment related.   

4. Conclusions 

 In recent years, HOOH has been employed as an algicide to combat harmful 

cyanobacterial blooms. HOOH is preferable over traditional algicides such as aluminum and 

copper sulfate because it rapidly decays into O2 and water and does not result in the 

accumulation of harmful heavy metal by-products (Cooper and Zepp, 1990; Matthijs et al., 2012; 

Fan et al., 2013). The HOOH approach has met with success in Lake Koetshuis, a small lake in 

the Netherlands plagued by Planktothrix agardhii blooms (Matthijs et al., 2012) and at the Water 

Corporation’s Merredin wastewater treatment plant in Australia, in a WSP with high 

cyanobacterial biomass (Barrington et al., 2013). HOOH is effective as an algicide because 

cyanobacterial growth is inhibited at concentrations lower than those affecting most eukaryotic 

phytoplankton and zooplankton. Thus, the key to employing HOOH as an algicide is determining 

the minimum dose at which the bloom is terminated, while eukaryotic phytoplankton and 

zooplankton are minimally affected. Here, two bioassays were performed in Lake Taihu, China 

examined the effect of HOOH concentrations ranging from 20 to 80 µM on phytoplankton 

community composition.  

The natural assemblage bioassay demonstrated that HOOH effectively reduces 

cyanobacterial biomass in Lake Taihu water samples, allowing for enhanced growth of other, 
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more desirable phytoplankton groups such as diatoms and chlorophytes. In the natural 

assemblage bioassay, cyanobacterial biomass decreased by 56% and the relative contribution of 

cyanobacteria to total phytoplankton biomass was reduced by 71% following 4 daily 60 µM 

HOOH additions. In the concentrated Microcystis bioassay, although community composition 

data could not be tested for significance, the relative contribution of cyanobacteria was reduced 

by 52% following 3 daily 60 µM HOOH additions. In contrast, Matthijs and colleagues found 

that a single 60 µM HOOH addition reduced the cyanobacterial population by 90% after 3 days 

(Matthijs et al., 2012). These bioassay indicate that a HOOH addition higher than 80 µM would 

be required to reduce cyanobacterial biomass by 90% in Lake Taihu. This variability illustrates 

the importance of determining the required HOOH concentration for bloom control on a case-by-

case basis. Given the variability in bloom biomass and phytoplankton community composition 

between bloom episodes, microcosm and mesocosm bioassay studies are highly recommended 

prior to whole lake HOOH application. 

In the natural assemblage bioassay, HOOH addition did not significantly reduce total 

phytoplankton biomass. Chlorophytes, diatoms, and cryptophytes grew best at high HOOH 

conditions, where cyanobacterial biomass was lowest. Eukaryotic phytoplankton use ascorbate 

peroxidase to degrade ROS more effectively than cyanobacteria and are less sensitive to ROS 

due their internal cellular structure (Asada 1992; Shigeoka et al., 2002; Passardi et al., 2007). At 

high HOOH concentrations, eukaryotic phytoplankton likely capitalized on reduced competition 

for light and/or nutrients due to inhibited cyanobacterial growth. Although nutrients were added 

to prevent nutrient limitation, P was limiting in all treatments by the end of the bioassays and 

light limitation may have occurred in low HOOH treatments with high cyanobacterial biomass. 

Buoyant cyanobacteria form dense surface blooms which can reduce light availability to non-
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buoyant phytoplankton species through shading (Huisman et al., 2004). In the concentrated 

Microcystis bioassay, on the other hand, diatom and cryptophyte growth appears to have been 

inhibited in 60 and 80 µM HOOH treatments, although this data could not be tested for statistical 

significance. Since diatoms have demonstrated a high tolerance for HOOH (Drábková et al., 

2007b), it is unlikely that HOOH directly inhibited diatom growth. Cryptophyte sensitivity to 

HOOH has not yet been studied in detail. Nevertheless, as eukaryotic phytoplankton, 

cryptophytes likely have a higher tolerance for HOOH than prokaryotic cyanobacteria. 

In addition to the major phytoplankton groups studied here, the effects of HOOH on 

zooplankton and the bacterial community should be considered. For two zooplankton species, 

Daphnia carinata and Moina sp., the highest HOOH concentrations at which survival is not 

significantly different from the control were 88.2 and 44.1 µM, respectively (Reichwaldt et al., 

2012). However, a whole lake study demonstrated no significant effect on Daphnia and 

Diaphanosoma spp. at 60 µM HOOH (Matthijs et al., 2012). Prokaryotic heterotrophic 

production (rates of protein synthesis) in natural samples from Lac Cromwell was inhibited by 

HOOH additions as low as 3.8 nM. Upon addition of 100 nM HOOH, prokaryotic heterotrophic 

production was inhibited by 40%. Such a large reduction in bacterial production may 

significantly alter dynamics of competition, C flow and nutrient cycling (Xenopoulos and Bird, 

1997). 

When dealing with toxin-producing cyanobacterial species, controlling toxin 

concentrations is an important aspect of bloom management. Although the addition of HOOH 

causes lysing of cyanobacterial cells and the release of intracellular microcystins into the water 

column, HOOH increases microcystin degradation rates, somewhat ameliorating this effect (Ross 

et al., 2006). For example, in a whole lake treated with 60 µM HOOH, water column microcystin 
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concentrations declined sharply after a time lag of 2 days following HOOH addition (Matthijs et 

al., 2012). This study found a measurable increase in microcystin concentrations only at 20 µM 

HOOH, possibly resulting from a combination of heightened production due to HOOH-induced 

oxidative stress and minimal enhancement of degradation rates by the relatively low 

concentration of HOOH. In cases of blooms successfully managed by low doses of HOOH, 

managers should be particularly mindful of the effect on microcystin release into ambient waters. 

Long-term effects on toxin concentrations should also be considered. Microcystis toxic 

potential (the ratio of toxic to non-toxic cells) may be altered by HOOH addition. Toxic cells 

generally grow better under high HOOH concentrations than non-toxic cells, possibly due to the 

role of microcystin in protection against oxidative stress (Dziallas and Grossart, 2011). Since 

HOOH concentrations are added to whole lakes in dosages sufficient to remove most but not all 

Microcystis cells, there is a strong possibility that HOOH addition selectively removes non-toxic 

cells. Thus, subsequent blooms in a lake treated with HOOH may have a higher toxic potential. 

Future studies might determine the effect of HOOH on toxic versus non-toxic Microcystis using 

qPCR assays to quantify total Microcystis cells (c-phycocyanin gene equivalents) and toxic 

Microcystis cells (microcystin synthetase E gene equivalents). At this time, no multi-year studies 

have been performed detailing the long-term effects of HOOH as an algicide. 

These bioassays did not address the primary limitation to the use of HOOH as an 

algicide, namely how to apply HOOH homogenously to the entire water body. To date, HOOH 

addition has only been attempted in small lakes and ponds. In a WSP, HOOH pumped in from an 

upwind corner chosen to maximize wind mixing. Wind-driven mixing was effective for 

horizontal distribution but a steep thermocline prevented mixing at depth (Barrington et al., 

2013). To achieve a more homogenous distribution, Matthijs and colleagues designed a ‘water 
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harrow,’ which is used on a small boat and injects HOOH evenly at depths up to 6 m (Matthijs et 

al., 2012). No methods of HOOH application have been proposed for large lakes such as Lake 

Taihu. The necessity of frequent application may pose another logistical difficulty. Barrington 

and colleagues (2013) found that phytoplankton biomass increased to pre-HOOH addition levels 

after 3 weeks, although Matthijs and colleagues measured low biomass for 7 weeks (2012). 

Variation in duration is likely due to variability in the extent of the initial reduction of 

cyanobacterial biomass and flushing rates, particularly in the case of rapid inflow of 

cyanobacteria-dominated water to the lake or pond system.  

 Despite these remaining questions, this study supports previous findings demonstrating 

the effectiveness of HOOH as an algicide. The natural assemblage bioassay demonstrates that, at 

the appropriate dosage, HOOH addition successfully reduces cyanobacterial biomass without 

inhibiting eukaryotic phytoplankton. Furthermore, in this study, HOOH-induced cell lysing did 

not significantly increase microcystin concentrations above untreated control values at HOOH 

doses above 20 µM, and in some cases concentrations were significantly reduced (natural 

assemblage bioassay, 80 µM HOOH treatment). Although dual nutrient reduction strategies are 

the best option for long-term overall improvements to water quality, HOOH application is 

recommended as a viable short-term strategy for small, shallow lakes. For best results, the two 

strategies should be used in conjunction. Since nutrient reduction is a slow process, HOOH 

application can be used in the meantime to rapidly reduce cyanobacterial biomass with minimal 

consequences to the ecosystem. Over time, nutrient reduction can be used to control 

eutrophication so that algicides are no longer required.  
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CHAPTER 2: DIEL VARIABILITY IN SURFACE HYDROGEN PEROXIDE 

CONCENTRATIONS IN EUTROPHIC LAKE TAIHU, CHINA 

 

1. Introduction 

HOOH addition bioassays performed in Meiliang Bay, Lake Taihu (discussed in Chapter 

1) demonstrate the effects of high concentrations of HOOH on phytoplankton community 

composition. As seen in previous laboratory and field studies, HOOH selectively inhibits 

cyanobacterial growth, reducing competition and allowing other major phytoplankton groups 

such as diatoms and chlorophytes to effectively compete (Drábková et al., 2007a,b; Barrington et 

al., 2008, 2013; Matthijs et al., 2012). HOOH is naturally produced in lacustrine ecosystems, 

albeit at concentrations orders of magnitude lower than those required for effective use as an 

algicide (Zafiriou et al., 1984; Cooper et al., 1988). Nevertheless, natural concentrations likely 

affect phytoplankton community composition and toxic potential (Dziallas and Grossart, 2011; 

Paerl and Otten, 2013; Leunert et al., 2014). To date, although several studies have measured 

lacustrine HOOH concentrations (e.g. Cooper et al., 1988; Cooper and Lean, 1989; Cooper et al., 

1989; Herrmann, 1996; Wilson et al., 2000; Häkkinen et al., 2004; Richard et al., 2007; Rusak et 

al., 2010), only one study has determined background levels of HOOH during a cyanoHAB 

(Cory et al., 2016). Bloom HOOH concentrations may vary significantly from typical surface 

lacustrine HOOH concentrations due to the enhanced role of biological sources and sinks during 

a dense cyanoHAB. 
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1.1 Hydrogen peroxide sources in freshwater systems 

1.1.1 Abiotic sources 

Traditionally, photochemical production has been considered the primary source of 

HOOH in natural waters (Cooper et al., 1988; Draper and Crosby, 1983; Cooper and Zika, 

1983). Upon absorption of UVR and visible radiation, chromophoric dissolved organic matter 

(CDOM) enters an excited triplet state. Excited DOM reduces DO to O2
-, which 

disproportionates to HOOH: 

 O2 + electron donor ---hν---> O2
- + electron donor+ 

 2O2
- + 2H+ ------> HOOH + O2. 

Rates of photochemical production are dependent on solar irradiance, temperature, and 

DOM concentrations (Kieber et al., 2003). Apparent quantum yield (note: apparent quantum 

yield is measured per incident photon, whereas quantum yield is measured per absorbed photon) 

for the photochemical production of HOOH decreases exponentially with increasing wavelength. 

Thus, the majority of HOOH production occurs due to photons in the UV-B (280-320 nm) and 

UV-A (320-400 nm) ranges as opposed to the visible range (400-700 nm).  Apparent quantum 

yield decreases with decreasing temperature, thus rates of photochemical HOOH production are 

higher at higher temperatures (Miller, 2000). Finally, HOOH production increases non-linearly 

with increasing dissolved organic carbon (DOC) content (Cooper et al., 1988). This non-linearity 

occurs because the chromophoric fraction of DOC increases with increasing DOC concentrations 

in lake water (Scully and Lean, 1994).  

In the atmosphere, both gas-phase and aqueous HOOH are generated above the 

troposphere. Gas-phase HOOH is formed when HO2 formed through photochemical processes 

dismutates: 
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 2 HO2
- ------> HOOH + O2

- 

Gas-phase HOOH diffuses into the surface layer of natural waters (Vione et al., 2003). Wet 

deposition of HOOH also plays an important, and frequently episodic, role as a source of HOOH 

in freshwater systems. Rainwater HOOH concentrations are orders of magnitude higher than 

typical surface freshwater HOOH concentrations. Additional wet deposition occurs in the form 

of snow and glacial melt (Kieber et al., 2003). 

1.1.2 Biotic sources 

Although abiotic production has traditionally been considered the primary method of 

HOOH production, recent evidence indicates that biotic sources may outweigh abiotic sources in 

some cases. During a dense bloom, the fraction of UV light absorbed by CDOM is likely 

reduced, limiting photochemical production of HOOH (Dixon et al., 2013). Intracellular HOOH 

is produced as a byproduct of aerobic cellular metabolism (Imlay, 2003). Although biological 

organisms possess mechanisms to manage intracellular HOOH, when production exceeds 

removal capabilities, HOOH, which has similar membrane permeability to water, diffuses out of 

the cell. HOOH is produced intracellularly because the enzymes engaged in aerobic metabolism 

are designed to transfer single electrons to a substrate, and thus most also have the ability to 

reduce O2 if and when it is encountered. High O2 concentrations near the photosynthetic 

apparatus lead to HOOH production through the Mehler reaction, in which O2 is reduced to O2
- 

upon donation of an electron. O2
- is then converted to HOOH by SOD, and HOOH is converted 

to water by ascorbate peroxidase (Mehler, 1951; Asada, 1999). The autoxidation of respiratory 

dehydrogenases, which use flavin cofactors, provides an example. Without the interference of 

O2, flavin cofactors become reduced upon accepting a hydride anion from an organic substrate, 

and subsequently transfer the electron to a secondary redox functional group. When O2 is 
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present, however, it can accept the electron to generate O2
- and flavosemiquinone, which bond to 

form a peroxy adduct. When the bond is broken, the bonding electron pair is split unevenly 

between the products (heterolytic cleavage), releasing HOOH (Imlay, 2003).  

HOOH is also generated within cells through the photorespiration pathway, when 

Rubisco catalyzes a wasteful O2-fixation reaction instead of the intended CO2-fixation reaction. 

When the O2-fixing reaction occurs, one of the enzymes involved in processing the glycolate 

byproduct generates HOOH (Imlay, 2003). Additionally, under stressful conditions, a primary 

electron acceptor may be unavailable within a cell, which results in ROS-generated O2-reduction 

(Latifi et al., 2005).  

1.2 Hydrogen peroxide sinks in freshwater systems 

1.2.1 Abiotic sinks 

Abiotic HOOH removal occurs through photochemical degradation through the Fenton 

reaction: 

  Fe2+ + HOOH ------> Fe3+ + OH∙ + OH- 

In the Fenton reaction, HOOH is heterolytically cleaved by ferrous iron, resulting in ferric iron, 

hydroxide ions, and OH-. In natural waters, Fe(III) is photochemically reduced to Fe(II), and the 

Fenton reaction is limited by the availability of Fe(II) and thus the rate of Fe(III) reduction. 

Therefore, the Fenton reaction is particularly important in natural waters with elevated Fe(II) 

concentrations (Fenton, 1894).  

1.2.2 Biotic sinks 

 Biotic sinks are the primary removal pathway for HOOH in freshwater systems (Kieber 

et al., 2003). Bacteria disproportionate HOOH to O2 and water. Abiotically, this reaction occurs 

at a slow rate. However, membrane permeable HOOH diffuses into cells where biological 
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organisms, including algae and bacteria, employ enzymes such as catalases and peroxidases to 

speed the reaction. Peroxidases are inferior to catalases at scavenging HOOH because 

peroxidases require a reductant (substrate), and therefore can turn over only as quickly as the 

reductant can be supplied, while catalases remove HOOH at near diffusion-controlled rates 

(Kieber et al., 2003; Latifi et al., 2009). Additionally, bacteria and fungi release extracellular 

SODs and catalases, either actively or upon cell lysis (Eremin et al., 2000). Biological decay of 

HOOH is positively correlated with microbial biomass (Marsico et al., 2015).  

1.3 The role of hydrogen peroxide in freshwater systems 

1.3.1 Inhibition of phytoplankton and bacterioplankton productivity 

ROS such as HOOH cause oxidative damage to DNA, proteins, and lipids. ROS have the 

ability to fragment the DNA ribose sugar backbone and modify the nucleotide bases (He and 

Häder, 2002). In proteins, side chains and polypeptide backbones may be oxidized, forming a 

carbonyl group (Halliwell and Gutteridge, 2007). Lipids are damaged via radical propagation. In 

the example of ROS damage to the fatty acid side chains of membrane lipids (as previously 

stated in the Chapter 1 Introduction), a radical cleaves a H from a C and water is formed. The C 

is left with an unpaired electron and reacts with O2 to form a peroxyl radical, which cleaves a H 

from a nearby side chain. In this manner, free radicals convert other molecules into free radicals, 

creating a chain reaction. Eventually, two radicals meet and each contributes its unpaired 

electron to form a covalent bond, and radical formation ends (Halliwell and Gutteridge, 2007; 

Latifi et al., 2009). Thus, through intracellular damage, HOOH inhibits photosynthesis. In a 

study of heterotrophic bacteria in the subtropical Atlantic, 100 to 1000 nM HOOH was shown to 

decrease prokaryotic heterotrophic production (rates of protein synthesis) by 36 to 100% (Baltar 

et al., 2013). In a study of bacterial productivity in a Canadian lake, a 100 nM HOOH addition 
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reduced production by up to 40% (Xenopoulos and Bird, 1997). In phytoplankton, 

photosynthetic yield significantly decreases upon HOOH addition (Drábková et al., 2007). 

1.3.2 Redox chemistry in natural waters 

 HOOH plays an important role in changes in speciation of biologically important trace 

metals, including copper and iron. Iron may be limiting to phytoplankton growth, particularly in 

high nutrient low chlorophyll regions of the open ocean, and copper is toxic (Kieber et al., 2003). 

In natural waters, HOOH oxidizes Fe(II) and Cu(I) and reduces Fe(III) and Cu(II). 

Bioavailability of these trace metals is believed to be linked to their redox properties. In surface 

seawater, reaction with HOOH may be the most important oxidation pathway for Fe(II) (Moffett 

and Zika, 1987). In the photo-Fenton reaction, photochemically produced Fe(II) reacts with 

HOOH, producing the strongly oxidizing hydroxyl radical (Fenton, 1894; Zepp et al., 1992): 

  Fe3+ + H2O ---hν---> Fe2+ + HO∙ + H+ 

  Fe2+ + HOOH ------> HO∙ + Fe3+ + OH- 

The reaction of HOOH with Cu(I) is much slower, and the most important oxidation pathway for 

Cu(I) is oxidation by O2 (Moffett and Zika, 1987). 

1.4 Hydrogen peroxide concentrations and depth distributions in freshwater and marine 

systems 

 

1.4.1 Freshwater systems 

 HOOH concentrations in freshwater systems are highly variable (Häkkinen et al., 2004; 

Mostofa et al., 2013). Zafiriou and colleagues (1984) reviewed HOOH concentrations in several 

lakes and determined a range of 100 to 7000 nM, with typical concentrations falling at the lower 

end of the range. Similarly, Cooper and colleagues (1988) present a compilation of freshwater 

HOOH concentrations from three individual studies which each collected a range of HOOH 

concentrations for a given lacustrine environment, including the Volga River region in Russia, a 
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separate reservoir in Russia, and the southeastern USA. The HOOH concentrations range from 

90 to 3200 nM. Mostofa and colleagues (2013) suggest that lacustrine concentrations range from 

10 to 1300 nM in the USA and Canada (Mostofa et al., 2013). 

 Freshwater HOOH depth profiles typically exhibit a maximum near the surface and 

decrease with depth throughout the epilimnion, with a fairly uniform distribution below the 

epilimnion (Cooper et al., 1989). Although HOOH is primarily generated through light-

dependent abiotic and biotic processes, high HOOH concentrations may be found at depths of 

minimal light penetration. This HOOH likely mixed down from the surface or was biologically 

produced (Cooper et al., 1989; Vermilyea et al., 2010; Cory et al., 2016). For this reason, the 

deeper the epilimnion, the deeper high HOOH concentrations are found. Accordingly, surface 

HOOH levels are lowered through dilution in lakes with a deeper epilimnion, resulting in a more 

gradual change in HOOH concentrations with depth. However, in cases of high biological dark 

production by phytoplankton and bacteria, little variation between surface and bottom HOOH 

concentrations may be seen (Cory et al., 2016). HOOH depth profiles demonstrate significant 

diel variability in surface waters, with concentrations greatly increasing from midday through the 

afternoon, while HOOH levels exhibit much less temporal variation at depth, as might be 

expected (Häkkinen et al., 2004).  

1.4.2 Marine systems 

 HOOH concentrations in marine environments are lower than freshwater environments, 

typically around 14 to 290 nM (Zafiriou et al., 1984). In a study performed by Cooper and 

colleagues (1988), marine HOOH concentrations were determined in Texas coastal waters, the 

North Atlantic, Biscayne Bay, the Gulf of Mexico, Bahama Bank, and the Peru coast and 

offshore. HOOH concentrations ranged from 18 to 190 nM.  
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 In marine environments, HOOH depth profiles typically contain a surface maximum 

relative to deeper waters (Zika et al., 1985). In the mixed layer, HOOH levels either remain 

relatively uniform due to mixing or decrease slightly with depth. Below the pycnocline, however, 

a rapid decrease in HOOH concentrations occurs. As in freshwater environments, diel variability 

in HOOH is significant in surface waters, where HOOH reaches maximum concentrations in the 

afternoon and minimum concentrations before dawn. The photic zone reaches greater depths in 

marine environments than lake environments. Consequently, photochemical HOOH production 

occurs at greater depth (Zika et al., 1985; Cooper et al., 1989).  

1.5 Study goals 

 HOOH studies have been performed in several lakes over the past decades (e.g. Cooper et 

al., 1988; Cooper and Lean, 1989; Cooper et al., 1989; Herrmann, 1996; Wilson et al., 2000; 

Häkkinen et al., 2004; Richard et al., 2007; Rusak et al., 2010). However, studies of HOOH 

concentrations during phytoplankton blooms are very limited (Cory et al., 2016), and none have 

been performed in Lake Taihu, China. Because phytoplankton are involved in both HOOH 

production and decay, HOOH concentrations in a cyanobacteria bloom-dominated lake may 

differ significantly from concentrations in non-bloom-dominated lakes. In this study, diel 

measurements of HOOH were taken over the course of 4 days to assess diel variability and the 

range of surface HOOH concentrations in eutrophic Lake Taihu, China.  

2. Materials and Methods  

2.1 Study site and sample collection 

The study site, Lake Taihu, is described in detail in Chapter 1, Section 2.1. Samples were 

collected in duplicate from the highly eutrophic Meiliang Bay at TLLER on June 27th through 

June 30th of 2014. Surface samples were collected in a plastic bucket and were filtered through 
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0.2 µM Supor membrane filters into 4 mL amber vials. Samples were transported in the dark on 

ice for immediate analysis at TLLER. The TLLER dock was chosen as a sampling location to 

minimize the time between sample collection and HOOH analysis (transportation time: 3 

minutes). 

2.2 Amplex UltraRed fluorometric method for hydrogen peroxide determination 

HOOH concentrations were determined using a fluorometric method described by 

Shaked and colleagues (2010) based on the protocol developed by Zhou and colleagues (1997). 

In this technique, horseradish peroxidase catalyzes a reaction between HOOH and Amplex 

UltraRed to produce the fluorophore resorufin. Since HOOH and Amplex UltraRed react in 1:1 

stoichiometry, the concentration of HOOH is determined from the increase in fluorescence as 

resorufin is produced. HOOH standard additions are used to back-calculate the concentration of 

HOOH in the sample using the slope of the linear regressions (R2 > 0.99) and the x-intercept. 

Error at each timepoint was calculated as one standard deviation. 

2.2.1 Reagents 

Reagent grade chemicals were used. Nanopure ultrapure water was stored in the dark for 

at least 7 days prior to usage to allow for degradation of contaminating HOOH. All reagents 

were stored in the dark to prevent HOOH formation. Because the Amplex UltraRed (Invitrogen) 

is highly light sensitive, the procedure was carried out under dark conditions. A 1 M standard 

HOOH solution was prepared by diluting 30% (w/w) HOOH in Nanopure water. The exact 

concentration was determined spectrophotometrically using UV absorbance at 240 nm (Ɛ=38.1 

M-1 cm-1). Lower concentration standards (to 2 µM) were prepared by serial dilution of the 1 M 

standard in nanopure H2O. 
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A 80 mM sodium citrate stock solution was prepared for use as a reaction buffer by 

combining citric acid and sodium citrate with Nanopure water. 1 N sodium hydroxide (NaOH) 

was used to adjust the pH to 6.0. A horseradish peroxidase stock solution was prepared by 

adding 1 mL sodium citrate buffer to 32.47 mg horseradish peroxidase (308 units/mg). The 

working stock was stored frozen at -20 ºC. An Amplex UltraRed stock solution was prepared by 

adding 150 µL dimethyl sulfoxide (DMSO) to 1 vial of Amplex UltraRed. 150 µL horseradish 

peroxidase were combined with 150 µL Amplex UltraRed in 14.7 mL sodium citrate buffer to 

create a horseradish peroxidase/Amplex UltraRed working solution. The working solution was 

divided into 100 µL single-use aliquots and frozen at -20 ºC.  

A catalase stock solution was prepared by dissolving 8 mg (3356 units/mg) catalase in 1 

mL Nanopure water. The catalase stock solution was further diluted to a working solution by 

combining 50 µL catalase stock solution with 1 mL Nanopure water.  

2.2.2 Apparatus  

Fluorescence was measured on a Turner Designs Trilogy fluorometer. A custom filter set 

was designed for the application (excitation: 515-570 nm, emission: 590 nm). Excitation and 

emission wavelengths were chosen based upon the excitation and emission spectra of Amplex 

UltraRed. 

2.2.3 Procedure 

Samples were collected in dark glass containers and placed on ice for immediate analysis. 

A blank was prepared by combining 1 mL of sample with 20 µL catalase working solution. The 

blank was stored in the dark for 1 hour prior to analysis. Seven fluorometric glass minicells were 

required per sample: 3 to run samples in triplicate and 4 for standard additions. A volume of 200 

µL of sample was pipetted into each minicell. A HOOH standard was added in increasing 
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concentrations to 4 minicells. Nanopure water was added to the minicells to maintain equal 

volume following the standard additions. A volume of 2 µL horseradish peroxidase/Amplex 

UltraRed working solution was added to each minicell. After waiting 2 minutes to allow the 

reaction to proceed to completion, the fluorescence was measured. 

2.2.4 Calculations 

The HOOH concentration in each sample was back-calculated, given the increase in 

fluorescence due to a known quantity of HOOH in each standard addition. The fluorometric 

response (minus the blank response) was plotted versus the concentration of the standard 

addition, where the concentration of the standard addition was calculated as: 

CSA= VStd∙CStd/VMinicell 

where 

VStd= volume of the standard added 

CStd= concentration of the standard 

VMinicell= volume in the minicell 

Using the x-intercept from the plot, the concentration in the sample was calculated from the 

equation: 

CSam= -(XInt)∙VMinicell/VSam 

where 

XInt= x-intercept 

VSam= volume in the sample 
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2.3 Phytoplankton biomass 

To provide an estimate of phytoplankton biomass during the diel HOOH study, chl a was 

measured prior to the diel study, on June 22nd, 2014. Samples were analyzed following the 

protocol outlined in Chapter 1, Section 2.2.  

2.4 Photosynthetically active radiation 

PAR (400-700 nm) was measured at the water surface on an hourly basis at the TLLER 

weather station throughout the duration of the study using a spherical quantum sensor (LI-COR 

192SA). 

3. Results and Discussion 

3.1 Diel variability in hydrogen peroxide concentrations 

Diel variability in surface HOOH concentrations was studied during a summer 

phytoplankton bloom in Meiliang Bay, Lake Taihu. Weather during the study was cloudy on 

June 27th and sunny on June 28th, 29th, and 30th. Surface PAR (400-700 nm) at the TLLER 

weather station ranged from 0 to 2239.4 µmol/m2/s during June 27th through June 30th of 2014 

(Figure 2.1). The peak PAR value occurred at 13:00 on June 29th. HOOH concentrations in the 

lake surface waters exhibited a diel pattern, with higher values occurring during daylight hours 

and lower values at night (Figure 2.2). Hydrogen peroxide concentrations increased as solar 

radiation increased from early morning to midday. Following a midday peak, concentrations 

decreased to a minimum just prior to sunrise. The peak HOOH concentration, 168 ± 8 nM at 

13:05 on June 29th, corresponds to the peak PAR value. The lowest HOOH concentration, 17 ± 6 

nM, was measured just prior to sunrise (4:15) on June 28th. Similar patterns of diel cycling in 

HOOH concentrations have been demonstrated in multiple lakes (e.g. Cooper et al., 1988; 
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Cooper and Lean, 1989; Cooper et al., 1989; Herrmann, 1996; Wilson et al., 2000; Häkkinen et 

al., 2004; Richard et al., 2007; Rusak et al., 2010).  

 . 

 

Figure 2.1 Surface atmospheric photosynthetically active radiation (PAR; 400-700 nm) at the 

TLLER weather station. 0:00 indicates midnight and 12:00 indicates noon. 
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 .  

 

Figure 2.2 Mean surface HOOH concentrations in Meiliang Bay, Lake Taihu during June 27th 

through June 30th 2014. 0:00 indicates midnight and 12:00 indicates noon. The black arrow 

indicates episodic HOOH input through wet deposition (rain). Error bars represent one standard 

deviation (n=2). 

 

Diel cycling in HOOH concentrations reflects the dependence of HOOH on light 

intensity. It has been suggested that diel cycling in HOOH concentrations indicates 

photochemical production as the primary source of HOOH in freshwaters (Cooper and Lean, 

1989; Cooper and Zepp, 1990; Rusak et al., 2010). In filtered freshwater, HOOH is produced 

photochemically at rates of 0.1 to 1 µM/h (Richard et al., 2007). Rates of photochemical 

production are dependent on solar irradiance, temperature, and DOM concentrations (Kieber et 

al., 2003). The high solar irradiance, warm temperatures, and high DOM concentrations typical 

of Meiliang Bay in the summer would suggest high photochemical production, resulting in diel 

variation in HOOH concentrations (Chen et al., 2003a,b; Zhang et al., 2011). While 

photochemical production of HOOH is a well-recognized contributor to diel cycling in HOOH 

concentrations in lacustrine environments (Cooper et al., 1988; Cooper and Lean, 1989; Cooper 
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et al., 1989; Herrmann, 1996; Wilson et al., 2000; Häkkinen et al., 2004; Richard et al., 2007; 

Rusak et al., 2010), other processes may play a role in diel HOOH patterns. 

In Lake Taihu, photoautotrophic production of HOOH likely contributes to diel 

variability. Biological production of HOOH in eutrophic lakes occurs at rates up to 0.25 µM/h 

(Marsico et al., 2015). In a study of 38 cyanobacterial species, light-induced HOOH production 

occurred in 22 species and dark production occurred in 5 species (Stevens et al., 1973). Although 

biological HOOH production occurs under both light and dark conditions, light-dependent 

production contributes to diel patterns. Under high light conditions, HOOH is produced during 

photosynthesis when electron transport occurs more rapidly than electron consumption (Latifi et 

al., 2009). Light has been shown to enhance biological production of HOOH in the marine 

diatom Thalassiosira weissflogii (Milne et al., 2009). In culture studies, algae have been shown 

to produce 40 to 800 nM/h, dependent upon light intensity and algal cell abundance (Zepp et al., 

1987).  

Field studies indicate that non-photochemical HOOH production may be an equally 

important contributor to the total HOOH budget as photochemical production in some cases 

Vermilyea et al., 2010; Dixon et al., 2013). In an in-stream mesocosm study, for example, total 

HOOH production greatly exceeded abiotic photochemical production, likely due to the role of 

biological production (Dixon et al., 2013). Biological production may be especially important 

relative to photochemical production during a dense bloom. During a particle-rich bloom, the 

fraction of UV light absorbed by CDOM is likely reduced, limiting photochemical production of 

HOOH, while biological production is likely high due to high phytoplankton biomass (Zepp et 

al., 1987; Dixon et al., 2013). In Lake Erie cyanoHAB microcosm experiments, HOOH was 

biologically produced at a net rate of 30 ± 14 nM/h. In comparison, the rate of photochemical 
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production in the lake ranged from below 10 nM/h in October to approximately 150 nM/h in 

May and June (Cory et al., 2016). In Lake Erie, HOOH concentrations reached their maximum 

just prior to maximum chl a concentrations, further demonstrating the importance of biological 

production. Due to the high phytoplankton biomass in Lake Taihu at the time of this study, 

biological production of HOOH was likely an important factor in the total HOOH budget, with 

photoautotrophic production contributing to diel HOOH patterns. 

A week prior to the study, surface chl a was measured as 274.86 µg/L, indicative of the 

dense phytoplankton blooms which have occurred in Meiliang Bay every summer since the mid-

1980’s (Lai and Yu, 2006). As discussed in Chapter 1, such a high chl a concentration is not 

unheard of in hypereutrophic Meiliang Bay. In August of 2004, for instance, chl a concentrations 

reached well above 400 µg/L (Liu et al., 2011). However, this chl a value may be higher than the 

average Meiliang Bay chl a concentration at the time of sample collection due to the nearshore 

sampling location, since blooms tend to accumulate in calm nearshore waters. Regardless of 

exact chl a concentrations, a thick surface bloom was evident during the diel study, indicating 

high phytoplankton biomass (Figure 2.3). Thus, the diel patterns in HOOH peroxide 

concentrations in Lake Taihu likely occur due to a combination of photochemical production and 

photoautrophic production. 
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Figure 2.3 Surface scum in Meiliang Bay during diel HOOH study. A.) June 28th, 12:40 B.) June 

29th, 15:35. 

 

3.2 Range of hydrogen peroxide concentrations 

Despite the likelihood of high biological HOOH production during this study, surface 

HOOH concentrations in Meiliang Bay during this study ranged from 17 ± 6 to 168 ± 8 nM, at 

the low end of the typical lacustrine range. Typical lacustrine HOOH concentrations range from 

10 to 7000 nM (Zafiriou et al., 1984; Mostofa et al., 2013). Low HOOH concentrations do not 

necessarily suggest low rates of photochemical and/or biological HOOH production. Instead, the 

low values seen here are likely an effect of high degradation rates. HOOH decomposition is 

primarily biotic (Cooper et al., 1994). Under dark conditions, the half-life of HOOH in unfiltered 

freshwater is on the order of hours (Cooper and Zepp, 1990). In highly productive freshwaters, 

the half-life is typically less than 3 h (Richard et al., 2007; Mostofa et al., 2013). In a laboratory 

study of water from 10 oligotrophic lakes, the half-life of HOOH ranged from 1.4 to 58.2 h 

(Häkkinen et al., 2004). Upon removal of particles larger than 0.45 µm, little to no decay occurs 

(Cooper et al., 1989; Cooper and Lean, 1990). Decay rates are correlated with microbial biomass 

(Cooper et al., 1994; Marsico et al., 2015) and DOC concentrations (Herrmann, 1996).  

A.) B.) 
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The high phytoplankton and bacterial biomass seen in Lake Taihu during the summer 

bloom season suggest high rates of biological HOOH decay. High rates of biological decay have 

been measured in laboratory incubations of water from bloom-dominated Sloan’s Lake, 

Colorado (Marsico et al., 2015). High biological production and decay occur in Microcystis-

plagued Lake Erie, with biological HOOH production outweighing biological decay during 

daylight hours and vice versa overnight (Cory et al., 2016). Although daylight biological decay 

may not outweigh daylight biological production, peak decay rates coincide with peak HOOH 

concentrations during daylight hours (Morris et al., 2016). As discussed in Chapter 1, 

phytoplankton and bacteria remove ROS using antioxidant enzymes including SOD, peroxidase, 

and catalase (Cooper and Zepp, 1990). In oceanic samples, genes encoding bacterial and algal 

HOOH-degrading enzymes were most abundant during daylight hours (Morris et al., 2016). 

Catalase was responsible for 65 to 80% HOOH decay and peroxidase was responsible for 20 to 

35% HOOH decay in laboratory incubations of water from Vineyard Sound, Massachusetts 

(Moffett and Zafiriou, 1990).  

HOOH is also removed from the epilimnion through diffusive processes (mixing). Lake 

Taihu is polymictic, with minimal stratification due to its shallow depth and wind-driven mixing. 

In July of 2008, the change in temperature between surface and bottom layers was 0.3 ºC or less 

(Xu et al., 2010). In well-mixed lakes, HOOH produced by light-dependent processes in the 

surface layer is rapidly distributed throughout the water column (Cooper et al., 1989). 

The maximum amplitude of the diel cycle was 137.5 nM on June 28th. A greater change 

in amplitude may have occurred on June 29th, given the peak HOOH concentration on that day, 

but HOOH concentrations were not measured just prior to sunrise that morning. Pronounced 

variation on a diel timescale reiterates the rapidity of HOOH formation and decay processes. The 
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maximum rate of HOOH accumulation (net formation given simultaneous formation and decay) 

in this study was 31.6 nM/h during the morning of June 29th. Rates of production and decay were 

not determined. 

Episodic wet deposition (rain) of HOOH occurred once during the study. It rained for 

about an hour from 23:00 to 24:00 on June 29th. The quantity of rain and HOOH concentration of 

the rainwater were not measured. Without wet deposition, HOOH concentrations consistently 

decreased during the dark period (June 28th). Post rain input, however, HOOH concentrations 

increased from 40 nM at 20:05 to 64.5 nM a little over 4 hours later. Rainwater input is known to 

increase HOOH concentrations in surface ocean waters (Cooper et al., 1987; Kieber et al., 2001) 

and freshwaters (Cooper and Lean, 1989; Willey et al., 1996), since HOOH concentrations in 

rainwater are orders of magnitude higher than average surface water concentrations (Cooper et 

al., 1987). In shallowly-stratified ocean waters, rain input can increase HOOH concentrations by 

a factor greater than 10 (Cooper et al., 1987). In East Asia in particular, high levels of HOOH are 

found in rainwater, likely due to high levels of air pollution from rapid industrialization (Hua et 

al., 2008).  

The relatively low nanomolar HOOH concentrations in Meiliang Bay in June of 2014 are 

unlikely to significantly affect phytoplankton community composition. Although cyanobacteria 

are affected by HOOH at lower concentrations than eukaryotic phytoplankton, cyanobacterial 

biomass is typically reduced at HOOH concentrations well above the natural concentrations 

measured here (Stratford et al., 1984; Barroin and Feuillade, 1986; Schrader et al., 1998, 

Drábková et al., 2007a,b; Weenik et al., 2015). In the bioassays discussed in Chapter 1, a 

significant reduction in cyanobacterial biomass occurred at the lowest HOOH dose tested (20 

µM) in the natural assemblage bioassay, but 60 µM HOOH was required to reduce 
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cyanobacterial biomass in the concentrated Microcystis bioassay. However, natural 

concentrations may affect cyanobacterial toxic potential. In culture experiments, non-toxic 

Microcystis was affected by 50 nM HOOH, well within the range of concentrations measured 

here, while 500 nM HOOH was required to affect toxic Microcystis (Leunert et al., 2014). The 

heightened sensitivity of non-toxic strains to HOOH suggests that cyanobacterial toxins may 

play a role in intracellular protection against oxidative stress (Zilliges et al., 2011). Further 

studies are required to assess the extent to which natural cyanobacterial populations are affected 

by HOOH at naturally-produced concentrations. Heterotrophic bacteria are also affected by low 

levels of HOOH. In the subtropical Atlantic, 100 to 1000 nM HOOH was shown to decrease 

prokaryotic heterotrophic production by 36 to 100% (Baltar et al., 2013). Similarly, a 100 nM 

HOOH addition reduced prokaryotic heterotrophic production in a small Canadian lake by up to 

40% (Xenopoulos and Bird, 1997). 

4. Conclusions 

 HOOH concentrations in Meiliang Bay, Lake Taihu over the course of 4 days in June of 

2014 ranged from 17 ± 6 nM to 168 ± 8 nM, at the low end of typical lacustrine concentrations 

(Zafiriou et al., 1984; Mostofa et al., 2013). The low HOOH concentrations were most likely due 

to high rates of biological decay, given the high phytoplankton biomass. HOOH concentrations 

exhibited the expected diel pattern, likely explained by a combination light-dependent abiotic 

and biotic sources of HOOH production, namely, photochemical production and 

photoautotrophic production. At this stage, the relative contributions of individual production 

and decay processes have not been assessed in Lake Taihu. In a study of HOOH concentrations 

during a cyanoHAB in Lake Erie, biotic sources and sinks of HOOH outweigh abiotic sources 

and sinks (Cory et al., 2016). Cory and colleagues (2016) hypothesized that photochemical 
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production of HOOH in Lake Taihu may be similar to photochemical production of HOOH in 

Lake Erie, since CDOM levels and sources are similar. While rates of photochemical production 

may in fact be similar, it’s important to note that measured concentrations in Lake Erie are much 

higher. The maximum HOOH concentration measured here, 168 ± 8 nM, was almost an order of 

magnitude lower than the maximum HOOH concentration measured in Lake Erie from June to 

November of 2014 and 2015 (1570 ± 60 nM; Cory et al., 2016). Either overall production rates 

are lower in Lake Taihu than Lake Erie and/or decomposition rates are higher. These production 

and decay rates are affected by several interacting factors including: light intensity and 

wavelength, CDOM concentration and source, temperature, and phytoplankton and bacterial 

abundance and species composition (Zepp et al., 1987; Wetzel et al., 1992; Scully and Lean, 

1994; Miller, 1998; Kieber et al., 2003; Samuilov et al., 2004; Marsico et al., 2015). 

HOOH concentrations have been measured in natural waters since 1966 (Van Baalen and 

Marler, 1966). Nevertheless, to date, no studies have measured lacustrine concentrations over a 

long enough period to assess possible effects of ongoing climate change. The effects of global 

warming on bloom development have been given considerable attention, however. Warmer 

water temperatures and enhanced stratification favor bloom development (Paerl and Huisman, 

2008). These conditions (high temperatures, high light) also favor HOOH production (Mostofa et 

al., 2009; Paerl and Otten, 2013; Cory et al., 2016). Additionally, the increase in frequency and 

intensity of rainfall events associated with climate change, which favors bloom development 

through nutrient input (Reichwaldt and Ghadouani, 2012; Paerl and Otten, 2013) provides 

another source of HOOH. As a result, HOOH concentrations may increase in the future. Given 

the higher sensitivity of non-toxic cyanobacterial species to oxidative stress (Dziallas and 

Grossart, 2011; Leunert et al., 2014), heightened concentrations of HOOH and other ROS may 
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select for toxic cyanobacterial species (Paerl and Otten, 2013). However, given the complexity of 

lacustrine HOOH dynamics, long-term changes in lacustrine HOOH concentrations cannot be 

accurately predicted without further study.  

Although the data available on HOOH concentrations during cyanobacterial blooms is 

limited, production and decay of ROS such as HOOH is undoubtedly affected by the presence of 

a bloom. A more comprehensive study in Lake Taihu would be valuable in assessing temporal 

(seasonal, annual) and spatial variations in HOOH concentrations, in particular comparing times 

and locations at which blooms are and are not occurring. Furthermore, abiotic and biotic HOOH 

production and decay rates should be quantified to determine the relative importance of each. 

Future studies may also examine the effects of ambient HOOH concentrations on bloom toxic 

potential, possibly using qPCR to quantify toxic and non-toxic cell abundances in relation to 

HOOH concentrations. 
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