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ABSTRACT 

DIANE GAIL CARNATHAN: Dendritic cell regulation of B cells 
(Under the direction of Barbara Vilen) 

 
The innate and adaptive immune responses protect from autoimmunity during infection 

through B cell tolerance mechanisms.  We previously showed that during innate immune 

responses dendritic cells (DCs) and macrophages (MΦs) repress autoantibody secretion 

in part through their secretion of soluble factors (IL-6 and CD40L).  Herein I describe 

that DCs from lupus-prone mice are deficient in repressing autoreactive B cell coincident 

with their inability to secrete IL-6.  This defect results from defective Toll-Like Receptor 

signal transduction. 

   

We further describe that DCs repress innate and adaptive immune responses independent 

of DC/MΦ-derived soluble factors.  We show that DCs display endogenous nuclear self 

antigens and affect B cells responses as evidenced by upregulation of CD69 expression, 

induction of IκB phosphorylation and destabilization of the BCR. Despite evidence of 

stimulation, DCs inhibit BCR-derived signals and LPS-induced Ig secretion in 

autoreactive and naïve B cells suggesting that DCs regulate B cell responses independent 

of self-antigen. 
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CHAPTER I.  INTRODUCTION

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Systemic Lupus Erythematosus 
 
Autoimmunity is characterized by the breakdown in tolerance mechanisms that control 

the autoreactive lymphocytes.  Systemic lupus erythematosus (SLE) is a chronic form of 

autoimmune disease that results from the production of antibodies to a wide array of 

cellular autoantigens including phospholipids and the nuclear components DNA, 

chromatin, RNA, Smith (Sm) and nuclear ribonucleoproteins (RNP) such as Ro and La 

(1, 2, 3).  The concept of epitope spread, or the ordered emergence of autoreactivity to 

multiple autoantigen epitopes, has been proposed as a mechanism for the development of 

disease.  This hypothesis was confirmed by clinical data indicating that loss of tolerance 

to phospholipids and anti-nuclear antibodies (ANA) occured first, followed by activation 

of Ro, La, DNA specific B cells and finally by anti-Sm and RNP (4).  These antibodies 

form immune complexes (IC) that deposit in various tissues, leading to inflammatory 

diseases like glomerulonephritis, vasculitis, dermatitis, arthritis, and nervous system 

disorders (5).  The cause of SLE is unknown, however, a combination of genetic and 

environmental factors are believed to play a role.  For instance, hormones are thought to 

influence the disease and its onset because SLE disproportionately affects women at a 

ratio of nine females to one male.  Many susceptibility genes have been identified 

through the study of lupus-prone animals and patients with SLE.  It is thought that around 

30 different genes contribute to the pathogenesis of this disease (6).  There are a variety 

of manifestations of this disease which complicates its diagnosis.  

 

The anti-Sm antibody titer is a key diagnostic tool for SLE (2).  Sm and RNPs are 

composed of small nuclear (sn) RNAs that are rich in uridylate and when associated with 
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proteins make up the small nuclear ribonucleoprotein particles (snRNPs) (7).  snRNPs 

form the spliceosomal complex that removes the non-coding RNA from pre-mRNA (8).  

The response to an unknown nuclear component was initially described in 1966 from the 

serum from a young SLE patient, Stephanie Smith (1).  The response to Sm is of 

particular interest because it is unique to SLE, however, not all patients diagnosed with 

the disease have this response (2, 9, 10).  Interestingly, the presence of these antibodies 

are associated with renal complications and increased disease activity and severity (2, 9, 

10).  The anti-Sm response is an essential aspect of the diagnosis and understanding of 

SLE. 

 

The pathogenesis of SLE is complex and largely unknown; however, it is hypothesized 

that apoptotic cells play an important role in the disease.  These cells display nuclear 

antigens such as dsDNA, nucleosomes, histones, and Sm on their surface and provide a 

ligand for autoreactive B cells and possibly toll-like receptors (TLRs) (11, 12, 13, 14).  In 

murine models, studies show that an acculumation of apoptotic cells leads to autoreactive 

B cells activation (13, 15).  In SLE elevated levels of apoptotic cells have been described 

in blood and bone marrow (16, 17).  Additionally, dysfunction in the uptake and 

clearance of apoptotic cells has also been implicated in the disease (18, 19).  

Interestingly, a study of non-autoimmune mice immunized with antigen from apoptotic 

cells resulted in development of SLE by the epitope spread model (20).  This increase in 

available antigen could contribute to the loss of autoreactive B cell tolerance in patients 

resulting in serum ANA titers and disease.     
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Murine models of SLE 

Murine models are utilized to study the pathogenesis of SLE.  These models can be 

divided into three categories: engineered models, congenic models, and mice that 

spontaneously develop lupus-like disease.  Genetically engineered mice eliminate genes 

that encode for components of the immune system thought to be involved in SLE. 

However, because the entire gene is eliminated, other possible phenotypes of the deletion 

must be considered.  Thus, gene knockouts may not reflect actual mutations that occur in 

SLE patients.  There is a wide variety of molecules involved in clearance of autoantigens 

that are of particular interest.   For example, mice deficient in DNase1, or the 

complement components, C1qa and C4, display SLE symptoms such as ANA and 

nephritis (21, 22, 23).   Mice that are deficient in cytokines are important to assess their 

ability to regulate the disease Lupus prone mice deficient in IFN-α and TGF−β, have 

exacerbated disease indicating that it has protective effects, however, mice lacking IFN-γ 

have a reduction in symptoms (24, 25, 26).   Mice that lack molecules, such as Src family 

kinases, FcγRIIb, and CD45, important in regulating B and T cell signaling also develop 

SLE (27, 28, 29, 30).   Congenic models provide a tool to isolate individual susceptibility 

loci and understand their contribution to the disease.  Of interest, the Sle1, Sle2, and Sle3 

susceptibility loci were discovered in an inbred model of SLE, NZM2410 (30, 31, 32, 33, 

34).  Each of these loci confer unique contributions to the onset or manifestations of 

disease and are influenced by other loci.  Sle1 on the C57BL/6 (B6) background has a 

strong anti-chromatin response to the H2A/H2B/DNA subnucleosomes, however, the 

mice do not develop disease (32).  Adoptive transfer experiments demonstrate that the 

loss of tolerance by B cells to chromatin is mediated by Sle1 expression (35).  Sle2 mice 

 4



has hyper-reactive B cells and an increase in peritoneal and splenic B1 B cells, in 

contrast, on the B6 background they do not have an ANA titer (31).  The Sle3 loci in B6 

mice, confers activated T cells with reduced apoptosis and the development of 

autoantibodies (33).  When mice are generated that express both Sle1 and either Y 

chromosome-linked autoimmune accelerator (Yaa) or the FASlpr, glomerulonephritis 

develops more rapidly (36, 37).  From the BXSB lupus-prone mouse other loci have been 

identified.  Bxs1, Bxs2/3, and Bxs1/4 are all important in the development of nephritis 

(36, 37, 38, 39).   BXSB/Yaa mice exhibit accelerated onset of SLE in males on an 

autoimmune background (40).   The Yaa gene is associated with monocytosis 

characterized by an expansion of CD11c-expressing cells (41, 42).  The increase in 

monocytes correlates with an increase in production of autoantibodies (43).  B cells in 

these mice have increased TLR7  expression due to a duplication in the gene encoding 

that receptor (44).  New Zealand Black crossed to New Zealand White (NZB x NZW) 

mice present with lupus-like symptoms, but also have other autoimmune diseases (45).  

Closely related to this background are NZM2410 mice.  In-breeding between the progeny 

of the NZB x NZW formed the New Zealand Mixed (NZM) mice (46).  These mice are 

particularly useful because they are homozygous at all loci and both males and females 

develop lupus symptoms at a young age (47).   All of these mouse models can be utilized 

to study the immune dysregulation that occurs in SLE.  

 

Another spontaneous murine model, MRL/lpr, has an autosomal recessive lpr mutation, 

which results in a loss of function defect in Fas(48).   Signaling through Fas initiates 

apoptosis, therefore, its disruption leads to an increase in survival by lymphocytes (48).  
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Defective Fas results in aberrant T cell selection in the thymus and increased lymphocyte 

survival in the periphery, which contributes to an expansion or persistence of autoreactive 

cells (49, 50).  Because of their predisposition to autoimmunity, the MRL/lpr animals 

spontaneously develop an increased ANA, glomerulonephritis, lymphosplenomegaly, and 

joint and skin disorders.  Furthermore, approximately 25% of the mice develop an anti-

Sm titer, which is similar to the response in SLE patients (3, 51, 52).   This murine model 

of lupus is particularly useful because many aspects of their disease development and 

symptoms mirror that of humans.   

 

Fc Receptors and SLE 

Fcγ receptors (FcγR) play an essential role controlling the immune response and loss 

results in autoimmune disease.  Increased autoantibody production leads to the formation 

of IC leading to inflammation.   FcγR bind to Fc domains of immunoglobulin (Ig) G 

(IgG) with varying affinities and promote the clearance of IC.  The activating receptors, 

FcγRI and FcγRIII on antigen presenting cells (APCs) bind to monomeric IgG and IC 

containing IgG and enhance the autoantibody response by influencing the epitopes that 

are presented (53).  Binding of chromatin-IC by FcγRIII on dendritic cells (DCs) induces 

secretion of B lymphocytes stimulator (BLyS), a TNF family member associated with 

lupus (54, 55).  FcγRIIa and FcγRIII are essential in the transfer of IC from erthrocytes to 

macrophages (MΦs) and for engulfment of these complexes (56).  DNA-containing IC 

activates plasmacytoid DCs (pDCs) through FcγRIIa and the toll-like receptor 9 to 

secrete the proinflammatory cytokines IFN-α and IL-8 (57).  The downregulation of 

activating FcγR results in decreased inflammatory response (58, 59).  FcγRIIb is an 
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inhibitor of B cell signaling and can also suppress autoantibody production by the B cell 

(60).  Deletion of the FcγRIIb gene in C57BL/6 mice causes an increase in IC, 

autoantibody production and lupus symptoms (27).  Restoring this receptor expression by 

retroviral transduction reverses disease (61).  Studies show that the expression of FcγRIIb 

on germinal center B cells is reduced by ten-fold in autoimmune-prone mice (NZB x 

NZW) F1and expression is decreased on memory B cells in SLE patients (62, 63).  This 

defect was directly linked to the failure to downregulate calcium signaling in B cells (62).   

In support of a role for dysregulated FcγRIIb in SLE, a polymorphism (FcγRIIbT232) was 

found to exclude the receptor from the lipid raft resulting in aberrantly activated B cells 

(64).  The expression of FcγR on DCs in SLE has not been studied, however, FcγRIIb on 

non-autoimmune DCs captures IC and recycles them as intact complexes back to the cell 

surface to activate B cells (65).  Thus, FcγRIIb can provide a source of antigen to 

autoreactive B cells.  The role of FcγRs is important in the clearance of IC and the 

inhibition of BCR signaling. 

 

Complement and SLE 

Another molecule that has been implicated in SLE is complement.  Apoptotic cells can 

activate the complement cascade leading to complement molecules then depositing in 

sites of inflammation.  C1, C4, and C3 bind to IC to maintain solubility for clearance; and 

CR4 and CR1 transfer IC from erthrocytes to macrophages for engulfment (56, 65, 66, 

67, 68).  Defective clearance of apoptotic cells or IC, results in acculumation and they 

become immunogenic.  In humans, a homozygous complement deficiency in C1q, C1r, 

C1s, C4 or C2 predisposes those affected individuals to develop SLE (69).  MΦs from 
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patients are defective in the clearance of apoptotic cells because of decreased amounts of 

C1q, C4, and C3 in their serum (18).  C3aR is essential in the development of nephritis 

and treatment with an agonist in lupus-prone mice ablates the inflammatory properties of 

this receptor (70).  Mice that lacking C1qa or C4 have increased ANA, apoptotic cells, 

IC, and develop glomerulonephiritis (22, 23).  The increase in production of antibodies to 

C1q and decrease in the levels of C1q is found in patients with the SLE and correlates 

with an acquired C1-inhibitor deficiency (71, 72).  The binding of C1q to apoptotic cells 

that are not eliminated results in the production of autoantibodies to this complement 

component (69).  Elimination of C3 in MRL/lpr causes no change in ANA but an 

increase in IC deposition in the glomeruli (73).  MRL/lpr mice deficient in C5aR have 

reduced disease, anti-DNA titers and Th-1 responses (74).  Complement is implicated in 

B cell development through the expression of CD19 and CD81.  These receptors could 

bind to apoptotic bodies facilitating the ligation of autoreactive B cell receptor (BCR) and 

resulting in deletion.  A deficiency in this mechanism would cause autoreactive B cells to 

escape tolerance (75).  Because patients who lack components of complement pathway 

develop SLE, it can be concluded that complement is essential in the maintenance of 

tolerance.   

 

Toll-like receptors and SLE 

One way the body can distinguish an invading microbe during innate immunity is the 

recognition of pathogen-associated molecular patterns.  These components are conserved 

elements of infectious agents identified by TLRs.  Eleven TLRs have been identified and 

they recognize a variety of pathogens such as viral RNA, CpG DNA, and other 
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components of bacteria, viruses, or fungi.  In particular, TLR7/8, 9 and 3 recognize 

ssRNA, unmethylated CpG DNA, and dsRNA respectively.  In response to microbial 

stimulation the TLR initiates signal transduction that activates both the innate and 

adaptive immune responses in order to quickly respond to infection.  This stimulation 

results in the production of inflammatory cytokines, chemokines, anti-microbial factors, 

proliferation and upregulation of costimulatory and adhesion molecules.  Activation of 

the innate immune system through TLRs can induce an autoimmune response (76, 77, 

78).  Lipopolysaccaride (LPS), a TLR4 ligand, augments an immune response of normal 

mice to apoptotic antigens (20).  It has also been shown that immunization of lupus-prone 

mouse models with either unmethylated CpG DNA or polyinosic polycytidylic acid RNA 

(ssRNA), cause exacerbation of the disease symptoms (79, 80, 81).  This data indicates 

that stimulation of the innate immune system through TLRs might initiate or exacerbate 

SLE. 

 

TLRs are important in both the regulation and the development of SLE.  A common stop 

codon polymorphism of TLR5, that recognizes bacterial flagellin, is associated with 

protection from lupus symptoms supporting a role for infection in the development of 

innate immunity (82).  Females with SLE produce higher amounts of IFN-α compared to 

males in response to TLR7 stimulation (83).   Genetic abnormalities in TLR7 have been 

implicated in the skewing of autoreactive B cells to respond to RNA-associated antigens 

and the aggravation disease (44, 84).  Lupus-prone mouse models that lack TLR7 do not 

display symptoms of disease, in particular, these mice failed to produce antibodies to 

RNA-containing antigens (85).  In contrast, lupus-prone mice that are deficient in TLR9 
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demonstrate exacerbated disease (85, 86).  These results indicate that TLR7 promotes 

disease and TLR9 regulates it.  However, the role of TLR9 in SLE still remains 

controversial as some studies indicate a pathogenic role.  SLE patients with active disease 

had an anti-dsDNA titer and increased proportion of plasma cells, memory B cells, and 

monocytes that expressed TLR9 (87).  Further, in lupus-prone mice TLR9 and myeloid 

differentiation factor 88 (MyD88) is required for class switching in anti-DNA B cells to 

pathogenic IgG2a and 2b autoantibodies (88).  Therefore, the role TLR regulation and 

dysfunction in SLE remains to be elucidated.   

 

The primary role for TLRs is to recognize foreign antigens, however, they interact with 

nuclear self-antigens as well.  Because of abnormalities in the clearance of apoptotic cells 

and the increase in immune complexes in SLE patients more antigen is available to the 

innate immune system.  pDCs are activated to secrete IFN-α by IC containing either 

mammalian DNA-IC through TLR9 or RNP-IC through TLR7 (89).  DCs are activated 

by the co-ligation of FcγRIII and TLR9 by chromatin-IC to produce the proinflammatory 

cytokine TNF-α (55).  pDCs can bind to DNA-IC through TLR9 and FcγRIIb (90).  The 

regulation of autoreactive B cells by stimulation of both the BCR and TLR has also been 

characterized utilizing B cells from rheumatoid factor mice (91, 92).  Studies show that 

autoreactive B cells are induced to proliferate by the dual ligation of DNA or RNA-IC to 

both the BCR and TLR9 or 7 respectively (91, 92).  It is hypothesized that the binding of 

antigen to the BCR or the FcR, leads to endocytosis of the antigen and provide a 

mechanism to present the antigen to the TLRs located in endosomal compartments.  The 

ability of TLRs to be cross-reactive with mammalian nuclear components may result in 
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functionally ignorant, autoreactive B cells secreting autoantibodies because of 

costimulation through the TLR (93).  This cooperation between the two receptors may be 

one mechanism to break tolerance to nuclear self-antigens. 

 

 

Cytokines and SLE 

The aberrant production of cytokines, important in regulating immune functions 

contributes to SLE.  Interferons (IFN) are increased in lupus patients and have been 

shown to affect the pathogenesis of SLE (94).  Lupus-prone mice that are deficient in 

IFN-α (type I) have exacerbated disease, however, mice lacking either IFN-γ (type II) or 

IL-4 do not develop disease or have a reduction of symptoms (24, 25).  Studies show that 

IL-21 promotes autoantibody production in MRL/lpr mice (95).  MΦs from lupus-prone 

animals are defective in secretion of TNF-α, resulting in reduced IL-1 and IL-6 

production(96).  MZ B cells from lupus-prone mice produced IL-10 in response to CpG-

ODN, inhibiting the production of IL-12p40 and IFN-γ in response to TLR9 stimulation 

in other splenocytes (97).  Patients with active SLE and some murine lupus models have 

increased levels of IL-6, and anti-IL-6 treatment in mice reduced the production of anti-

dsDNA antibodies (98, 99).  It is not apparent how each cytokine abnormality contributes 

to SLE, however, these molecules clearly play a role in the broader dysregulation that 

results in the disease.  

 

DC/MΦs secrete a variety of cytokines to affect the regulation of the immune system.  

Many of these molecules are typically thought of as proinflammatory, however, they also 
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have the ability to be repressive depending on the target cell.  DCs can promote B cell 

growth and differentiation by secreting IL-6 and IL-12 (100).  Further, virally-stimulated 

pDCs secrete IL-6 and IFN-αβ activating naïve B cells acutely stimulated with antigen to 

secrete virus-specific Ig (101).  Evidence indicates that polyclonal stimulation of DCs 

results in IL-6 secretion, which relieves the repressive effect of T regulatory cells to 

allow T cells to be activated in the antigen-specific adaptive immune response (102).  

Other studies show that IL-6 and CD40L repress Ig secretion by LPS-stimulated, 

chronically antigen-experienced autoreactive B cells (103, 104).  These studies indicate 

that cytokines have multiple roles in the control of the immune response.  Further, the 

regulation of cytokine production by other cytokines promotes a balance in the immune 

system, and their dysregulation results in the development of autoimmunity. 

 

 

B cells and SLE 

B cells are key participants in the humoral immune response.  When activated they 

secrete Ig, or antibodies, which are essential in neutralizing and destroying pathogens.  

These antibody secreting cells can develop into long-lived memory cells that are 

important in the response against repeat infection.  They can also process and present 

antigen to activate T cells and to receive T cell help.   The role for B cells in immunity is 

diverse, and their dysregulation is a key component in the development of SLE.   

 

Because SLE is characterized by the production of autoantibodies to nuclear components, 

it is clear that hyper-responsive, autoreactive B cells play a central role in the 
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development and pathogenesis of the disease.  Studies show the transfer of pre-B cells 

from lupus-prone (NZB x NZW) F1 mice into mice lacking B cells results in lupus 

symptoms (105).  Further, the development of disease is prevented in lupus-prone 

animals lacking B cells (106, 107).  Patients with SLE have elevated serum levels of 

BLyS which promotes B cell survival and activation (108, 109).   Thus, the abnormal 

activation and survival of B cells results in their targeting for therapy in SLE treatment 

(110).   

 

The process of B cell development and regulation is important in controlling and 

eliminating autoreactive cells.  In lupus-prone mouse models, autoreactive B cells escape 

deletion usually occurs after an encounter with high-affinity antigen (111).   Further, in 

SLE patients, it has been found that early B cell tolerance checkpoints as well as memory 

B cell development are defective (112, 113, 114).  Studies also show that in lupus-prone 

mice, anti-Sm, autoreactive B cells escape the pre-plasma cell checkpoint and become 

antibody secreting cells (ASC) (115).  In mice with Sm-specific B cells that also have 

impaired apoptotic cell clearance, there is a loss of the MZ and B-1 cell populations 

coincident with the ability to circumvent the pre-plamsa cell checkpoint (13, 116).  Mice 

expressing the Yaa mutant gene associated with lupus have a significantly reduced 

transitional 2 and marginal zone (MZ) B cell population (117).  While the authors 

conclude that this is a result of defective development of MZ B cells, it could also be due 

to premature development into plasma cells.   Studies of the NZM Tan mice, who have 

the same susceptibility loci as NZM2410, indicate that these mice do not develop disease 

symptoms, however, the MZ appears to be defective because they do not migrate to the 
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follicle when stimulated and fail to interact with T-independent antigens (118).  In the 

(NZB x NZW) F1 mice the MZ is shown to be expanded and associated with disease 

(119, 120, 121).  These defects in the development and control of autoreactive B cells are 

critical in the development of disease.   

 

Because the SLE B cells are aberrantly activated to produce autoantibodies, it is not 

surprising that B cell signal transduction is abnormal.  Upon activation these cells show 

enhanced tyrosine phosphorylation and intracellular calcium flux compared to normal B 

cells (122).  In lupus-prone animals, resting B cells are shown to be hyper-responsive, 

and express increased costimulatory molecules when stimulated with T-cell associated 

stimuli (123).  As discussed above, FcγRIIb is a negative regulator of BCR signaling.  

Some SLE patients have a defective version of this receptor, while others fail to 

upregulate its expression, contributing to an increase in calcium flux upon activation 

compared to healthy controls and correlates with increased IgG autoantibodies in (NZB x 

NZW) F1 (63, 124).  The expression of inducible costimulator ligand (ICOS-L) is 

downregulated in SLE B cells and is thought to be a result of interaction with ICOS high-

expressing T cells to induce plasma cell differentiation (125).  CD72 can both be a 

positive and negative regulator of BCR signaling.  A study of SLE patients revealed that 

expression of CD72 is reduced and over 95% of patients had mutations in mRNA.  

Roughly half of the mutations were in the tyrosine-based inhibitory motif (ITIM) 

indicating a loss in repressive ability (126).  CD19 is an enhancer of BCR signaling and 

in most SLE patients CD19 expression is lower than normal, however, a population of 

individuals that have high levels of expression on antigen-selected, activated memory B 
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cells (127).  All of these defective components of signaling act to enhance the BCR 

response to stimulation contributing to the hyper-reactivity of these cells. 

 

Mechanisms of B cell Tolerance 
 
Regulation of autoreactive B cells is essential to prevent an immune response to self-

antigens.  Developing autoreactive B cells in the bone marrow and the periphery are 

controlled by tolerance mechanisms including: deletion or receptor editing; and are 

subjected to a checkpoint at the pre-plasma cell stage and another during memory B cell 

development (113, 115).  Low-affinity antigens may not be recognized by the 

autoreactive B cell or may not transduce a strong enough signal through the BCR to 

induce a response, and thus tolerance is maintained by functional ignorance (128).  

During the adaptive immune response B cells can be regulated by the lack of T cell help 

or being positively selected into the B-1 compartment (129, 130, 131).  Exposure of the 

BCR to antigen leads to failure to renew signal transduction, which results in 

desensitization of the BCR signaling complex (132).   

 

Antigen ligation can lead to the destabilization of the BCR signaling complex, which is 

thought to be another regulatory mechanism of B cell tolerance.  The BCR complex 

consists of μ-heavy chain (μm) and Ig-α/β heterodimer.   This signaling complex 

mediates the BCR signal transduction through their immunoreceptor tyrosine-based 

activation motif (ITAM) in their cytosolic tail.  During BCR-mediated signal 

transduction, the Igα/β physically dissociates from the μm indicating a destabilized BCR 

complex.  BCR destabilization was identified as the inability to coprecipitate 
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stoichiometric amounts of Ig-α/β with μm following antigen stimulation (133).  The 

distance of this separation is approximately 200 nm, as quantitated by electron and 

confocal microscopy (134).  Upon antigen ligation to the BCR, autoreactive B cells 

become unresponsive to further stimulation (132).  Destabilization was shown to be 

coincident with receptor desensitization, indicating the destabilization plays a role in 

maintaining autoreactive B cell unresponsiveness.  Further studies showed that if signal-

competent and signal-incompetent receptors were co-aggregated, then signal transduction 

is negatively affected (135).  These studies also showed that if just 15% of the surface 

receptors were signal-incompetent, then the competent receptors were also unable to 

initiate signal transduction (135).  Taken in conjunction with the required constant 

receptor occupancy for B cell anergy (136), this data suggests that a constant receptor 

ligation by antigen would lead to destabilization, aggregation, and attenuation of signal 

transduction that would maintain autoreactive B cells unresponsiveness. 

 

The activation of the innate immune system can cause activation of autoreactive B cells, 

however, there are mechanisms to prevent breaking tolerance each time it encounters 

infection.  B cells that have constant receptor occupancy with antigen will remain angeric 

(136).  Hen egg lysozyme (HEL)-specific B cells that have chronically ligated BCR have 

constitutive ERK activation, which represses Ig secretion induced by CpG, TLR9 

stimulation.  DCs or MΦs are able to repress Sm-specific, low-affinity B cell Ig secretion 

in response to TLR4 stimulation by LPS by secreting soluble mediators, IL-6 and CD40L 

respectively that act on the B cell to attenuate the autoantibody response (103, 104). This 

mechanism of tolerance is not limited to Sm-specific B cells, because HEL-specific B 
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cells from soluble HEL expressing mice and p-azophenylarsonate-specific B cells, that 

are cross reactive with ssDNA, are also regulated by DCs and MΦs during activation of 

the innate immune response (103).  If DC/MΦs are removed from the culture then, the B 

cells are able to secrete in response to LPS indicating that this tolerance is reversible.  

These mechanisms are essential to prevent activating autoreactive cells during innate 

immune stimulation   

 

B cell Tolerance to Sm Murine Models 2-12H and 2-12H/Vκ8 

The response to Sm has been characterized in both humans and the MRL/lpr mouse 

model of SLE (3, 52).  In order to study the regulation of B cells specific for the antigen, 

transgenic mice were developed.  The transgene in these mice is a BCR heavy chain that 

was derived from a hybridoma from MRL/lpr (137).  The 2-12H mouse has a fixed 

heavy-chain that can pair with variable light chains to create a varied, autoreactive B cell 

repertoire (137).  Approximately 30% of the B cells are specific for Sm at varying 

affinity, while the remaining B cells may bind to ssDNA, dsDNA, or have an unknown 

specificity (129, 138, 139).  Despite the large number of B cells specific for nuclear self-

antigen, these mice do not develop autoimmune disease (137).  It is thought these B cells 

are regulated by a variety of tolerance mechanisms including ignorance, anergy, 

developmental arrest and the formation of early pre-plasma cells (115).  In order to 

pinpoint the role of affinity in this Sm-specific response, an Ig-transgenic mouse of 2-

12H is crossed with a mouse expressing Vk8 light chain to generate B cells with low-

affinity for Sm (140).  These mice have low levels of serum transgenic-antibodies, 

indicating that the B cells are not spontaneously activated in vivo (140).  Because these 
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mice do not develop autoimmunity it makes them ideal for studying tolerance 

mechanisms that regulate low-affinity, autoreactive B cells.    

 

Dendritic cells and Macrophages and SLE 

DCs and MΦs have similar roles in the immune response.  They are responsible for 

obtaining antigen and presenting it to activate T cells.   The immunoregulatory effects of 

DC/MΦs are important in the balance between activation of the innate immune system 

and maintaining tolerance to autoantigens.  DCs regulate self-reactive T cells in the 

periphery by inducing their proliferation and apoptosis (141).  MΦs have also been 

shown to repress T cells during infection (142).  MΦ ingestion of necrotic cells causes 

enhanced antigen-presentation (143).  Further, engulfment of necrotic cells results in DC 

maturation and will induce CD4+ and CD8+ T cell responses (144).  DCs that 

phagocytose apoptotic cells, will not be able to efficiently present antigen to T cells; 

however, if they are matured by another stimulus then they are able to cross-present to 

CD8+ T cells (144).  This inability to present stimulatory antigen can lead to induction of 

peripheral tolerance in T cells during steady state conditions (145).  Tolerogenic DCs 

appear to be mature by the expression of cell surface markers, however, they lack of 

production of IL-12 and the ability to produce IL-10 (146). These cells act to drive the 

development of T regulatory cells (147).   Therefore, DC/MΦs not only stimulate the T 

cell response but also have the ability to regulate it as well. 

 

Several studies have demonstrated dysregulation of DCs in both lupus patients and lupus-

prone murine models.  Interestingly, DCs accumulate in older, diseased lupus-prone mice 
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(148, 149).  However, it has been shown that these cells can be defective.  In NZM2410 

mice, CD40 expression on the surface of splenic DCs is increased abnormally prior to 

disease development and it is thought to be a result from stimulation in vivo because 

upregulation does not occur on bone marrow-derived DCs (149).  This may indicate that 

the DCs are being stimulated to mature and survive which could explain the 

accumulation of DCs in diseased animals (150). CD40 can rescue B cells stimulated with 

high-affinity antigen from cell death which may override the tolerance mechanism of 

inducing the death of autoreactive B cells (151).  Another study demonstrated that 

myeloid DCs from SLE patients have increased costimulatory markers, MHC class II, 

and proinflammatory cytokine IL-8; and these DCs caused proliferation and activation of 

T cells (152).  Further, mature DCs would not be able to respond to new stimulation by 

pathogens and therefore contribute to prolonged infection.  The upregulation of the 

costimulatory molecule CD80 is deficient in some patients and NZM2410 and (NZB x 

NZW) F1 (149, 153, 154).  CD80 is able to activate regulatory T cells, and if these cells 

cannot be stimulated by DCs then autoreactive B cells may become activated.  The 

dysregulation of DCs’ ability to maintain a balance between activation of the immune 

system and induce tolerance to self-antigen contributes to the development of SLE.  

   

MΦs are also a key participant in SLE.  In particular, MΦs and T cells accumulate in the 

glomeruli, contributing to glomerulonephritis (155).  Studies of MΦs in lupus-prone mice 

have shown that they have certain defects as well.  Interestingly, their morphology and 

cytoskeleton appears to be quite different from normal mice.  The amount of lupus-prone 

MΦs that adhere in vitro is greatly increased compared to non-autoimmune mice and the 
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reduced activity of the cytoskeleton regulator, Rho, results in a larger cell size (156, 157).  

Extensive studies in murine lupus models show that their MΦs are defective in their 

production of IL-1α, IL-1β, IL-12, and IL-6 in response to stimulation which is intrinsic 

to the MΦs as demonstrated by bone marrow chimeras (158).  Both the defect in IL-1 

production and the differences in morphology are coincident with the presence of lipids 

from fetal bovine serum or apoptotic cells (156, 159).  Given their role in regulation of 

the immune system, defects in MΦ regulation are important in the pathogenesis of SLE.  

 

The clearance of apoptotic cells is essential to maintain tolerance to self-antigen.  

Apoptotic cells display nuclear self-antigen on their surface (11, 13, 14).  Therefore, 

these cells can provide a source of self-antigen to autoreactive BCRs and to TLRs that 

may aberrantly activate the immune system.  Apoptotic cells form IC with soluble 

antibody, resulting in inflammation.  (NZB X NZW) F1 mice have DC/MΦs that are 

defective in their uptake of and destruction of DNA leading to an increase in the 

formation and accumulation of anti-DNA IC (160).  The increased apoptotic load in SLE 

has been shown to be a result of defective uptake by MΦs on the Faslpr background (116, 

161, 162).  DC/MΦs that engulf apoptotic cells present antigen through MHC molecules 

to T cells without upregulating costimulatory molecules to maintain tolerance (145).  

Data indicate MΦs that phagocytose apoptotic cells produce anti-inflammatory response 

upon LPS stimulation (163, 164).  In contrast, DCs stimulated with LPS after engulfing 

apoptotic cells secrete the proinflammatory cytokine TNF-α (144).  During infection in 

patients with SLE where polyclonal activation and exposure to apoptotic cells may occur 

congruently, presentation of apoptotic antigens may become immunostimulatory.  
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Understanding DC/MΦ-mediated tolerance is essential to elucidating how their 

dysregulation contributes to the development of autoimmunity.  

 

DC: B cell interaction 

DCs can display antigen on their surface by mechanisms other than MHC peptide 

presentation.  When pulsed with exogenous antigens, such as HEL or human serum 

albumin, they internalize, maintain intracellular pools of antigen, and recycle them, 

intact, back to their surface (165).  In another mechanism, FcγRIIb has been shown to 

mediate the uptake and recycling of IC with OVA to the DC surface (65).  In fact, it was 

demonstrated that this presentation of intact exogenously loaded antigen to results in DCs 

interacting with antigen-specific B cells (65, 165, 166, 167).  Both in vitro and in vivo 

experiments showed that B cells can recognize and acquire surface-antigen on DCs.   

This interaction results in T cell independent signal transduction and T cell dependent 

class switching to produce Ig (65, 165, 166, 167, 168).   Therefore, DCs display 

exogenous native antigen in a form that B cells may encounter through their BCR.  The 

contact between DCs and B cells through intact antigen interacting with the BCR is of 

interest in the study of B cell tolerance and activation mechanisms. 

 

Model for DC/MΦ-Mediated B cell Tolerance 

Our previous studies show that during polyclonal activation, antigen-experienced, 

autoreactive B cells are regulated by myeloid (my)DCs and MΦs.  LPS-stimulated 

DC/MΦs secrete soluble mediators that prevent the B cells from secreting Ig, 

specifically, IL-6 and TNF-α while MΦs produce CD40 ligand (CD40L) ((103, 104) 
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Gilbert MR and Vilen BJ manuscript in preparation).  This mechanism regulates several 

different BCR transgenic mouse models that are specific for self-antigen, including:  low-

affinity Sm (2-12H/Vκ8), p-azophenylarsonate (Ars), and HEL (103).  Only chronically 

antigen experienced mice are sensitve to the DC/MΦ-mediated regulation, therefore, we 

believe that the constitutive ligation of the BCR with antigen modulates the response to 

the soluble mediators, and this mechanism is dependent on ERK (Rutan JA manuscript in 

preparation).  Autoreactive, follicular (FO) B cells are repressed by both DCs and MΦs 

while MZ B cells are only susceptible to inhibition by MΦs (104).  The MΦ secreted 

CD40L inhibits autoreactive MZ B cell Ig by preventing their development into plasma 

cells by downregulating the transcription factors Blimp-1 and XBP-1 required for 

differentiation into antibody secreting cells  (104).  Understanding this DC/MΦ-mediated 

mechanism to regulate LPS-stimulated autoreactive cells is important in further 

elucidating how self-tolerance is maintained to prevent autoimmune disease. 
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Abstract 
 
Autoimmunity results from a breakdown in tolerance mechanisms that regulate 

autoreactive lymphocytes.  We recently showed that during innate immune responses, 

secretion of IL-6 by dendritic cells (DCs) maintained autoreactive B cells in an 

unresponsive state.  Here we describe that TLR4-activated DCs from lupus-prone mice 

are defective in repressing autoantibody secretion, coincident with diminished IL-6 

secretion.  Reduced secretion of IL-6 by MRL/lpr DCs reflected diminished synthesis 

and failure to sustain IL-6 mRNA production.  This occurred coincident with lack of NF-

κB and AP-1 DNA binding and failure to sustain IκBα phosphorylation.  Analysis of 

individual mice showed that some animals partially repressed Ig secretion despite 

reduced levels of IL-6.  This suggests that in addition to IL-6, DCs secrete other soluble 

factor(s) that regulate autoreactive B cells.  Collectively, the data show that MRL/lpr 

mice are defective in DC/IL-6-mediated tolerance, but that some individuals maintain the 

ability to repress autoantibody secretion by an alternative mechanism.  
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Introduction 

Systemic lupus erythematosus (SLE) is a multiorgan autoimmune disease characterized 

by the production of autoantibodies to nuclear components.  Alternating periods of flares 

and remissions are associated with an increased burden of apoptotic cells, the formation 

of immune complexes, and inflammation (169).  The etiology of SLE remains unknown; 

however, multiple immunoregulatory defects have been identified in lupus-prone mice 

(69, 96, 159, 170, 171, 172, 173, 174, 175, 176, 177, 178), including complement 

deficiencies, TCR signal transduction anomalies, and dysfunctional cytokine secretion by 

macrophages (MΦs).  These defects contribute to the onset and/or pathogenesis of SLE, 

while a breakdown in tolerance leads to the formation of autoantibodies and immune 

complexes that may play a role in vasculitis, glomerulonephritis, and cerebritis (179). 

 

Studies in immunoglobulin (Ig) transgenic (Tg) mouse models have defined anergy as a 

state of unresponsiveness that regulate autoreactive B cells in the periphery (128, 140, 

180, 181, 182).  Anergic B cells fail to secrete antibody in response to LPS or antigen 

immunization due to receptor unresponsiveness (140, 181, 183).  Some anergic B cells 

exhibit reduced surface IgM levels (184, 185), decreased lifespan (183, 186), and 

exclusion from the lymphoid follicle (186, 187).  In the case of B cells specific for the 

lupus-associated antigen, Smith (Sm), a partially anergic phenotype is evident.  Sm-

specific B cells from 2-12H/Vκ8 Ig Tg mice are unable to secrete Ig in response to LPS, 

yet maintain surface IgM levels, exhibit a normal lifespan, and remain competent to enter 

the B cell follicle (140).  Recently, we described that Sm-specific B cells purified from 

myeloid dendritic cells (myDCs) and MΦs regain the ability to secrete Ig in response to 
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LPS (103).  The data show that secretion of IL-6 by DC/MΦs represses LPS-induced Ig 

secretion by autoreactive B cells without repressing acutely stimulated naïve B cells.  

This mechanism of tolerance is not limited to Sm-specific B cells as chronically antigen-

experienced HEL- and Ars/A1-specific B cells are similarly affected (103).  These 

findings identify a unique mechanism of B cell tolerance wherein DCs and MΦs play a 

central role in regulating autoimmunity during innate immune responses.  

 

MyDCs and plasmacytoid DCs have been described as positive regulators of immunity 

promoting growth and differentiation of some B cells through the secretion of IL-12, IL-

6, BLyS, and APRIL (101, 188, 189).  Specifically, IL-6 was found to promote plasma 

cell survival (190, 191).  Although this seems paradoxical, the data indicate that IL-6 

differentially regulates naïve and chronically antigen-experienced B cells (103).  Studies 

identifying IL-6 as a positive regulator focused on B cells from non-Tg mice where the 

proportion of autoreactive cells is low.  In contrast, the studies showing that IL-6 

represses autoantibody production used self-reactive Ig Tg models where the B cells were 

constantly exposed to self-antigen (103).  Thus, IL-6 acts as a positive or negative 

regulator of B cells depending on the history of BCR ligation.  We propose that chronic 

BCR ligation by self-antigen reprograms IL-6R-mediated outcomes allowing naïve B 

cells to produce Ig in response to polyclonal stimulation while simultaneously repressing 

autoreactive B cells from producing autoantibody.  These findings identify a novel B cell 

tolerance mechanism, and suggest that overcoming tolerance in SLE might be associated 

with defects in the repression of autoreactive B cells by myDCs and/or MΦs.  
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In this report, we show that LPS-activated DCs from MRL/lpr mice inefficiently repress 

Sm-specific Ig secretion, coincident with diminished IL-6 secretion.  Mechanistically, 

diminished secretion of IL-6 resulted from decreased synthesis of IL-6 mRNA coincident 

with decreased IκBα phosphorylation and reduced DNA binding by NF-κB and AP-1.  

These data identify signal transduction defects in DCs that occur coincident with 

diminished IL-6 secretion and failure to repress Ig secretion by autoreactive B cells.  

Further analysis of DC-mediated tolerance mechanisms revealed that DC conditioned 

medium (CM) from some MRL/lpr mice repressed Ig secretion despite low levels of IL-

6.  This suggested that additional soluble factors are involved in repressing autoantibody 

secretion.  These findings implicate DC defects in the breakdown of tolerance in lupus-

prone mice and suggest that defects in multiple factors may be required for the complete 

breakdown of tolerance associated with autoimmunity.  
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Materials and Methods 

Mice 
 
2-12H/Vκ8/Cκ-/- immunoglobulin transgenic mice were previously described (103, 140).  

MRL/MpJ-Faslpr/J (MRL/lpr) and C57BL/6J (B6) mice were purchased from The 

Jackson Laboratory, and NZM2410 mice from Taconic.  NZBxNZWF1 mice were 

obtained from Trine Jorgensen (University of Colorado), MRL/MpJ (MRL) and B6.Faslpr 

(B6.lpr) from Stephen Clarke (University of North Carolina).  2-12H/Vκ8/Cκ-/- mice 

were used at 9-17 weeks of age.  All other mice were used at 6-10 weeks old.  All studies 

were approved by the Institutional Animal Care and Use Committee. 

 
Reagents and Antibodies 
 
7-AAD, rIL-6, and antibodies to CD11c, CD11b, B220, and IL-6 were purchased from 

BD Biosciences, GR1 and TLR4 from eBiosciences, phospho-IκBα from Cell Signaling, 

IκBα and β-tubulin from Santa Cruz, and IgG HRP from Promega.  Streptavidin-AP was 

purchased from Southern Biotech, anti-actin, TEPC 183, and Escherichia coli 055:B5 

LPS from Sigma Aldrich, 5,6-Dichlorobenzimidazole 1-β-D-ribofuranoside (DRB) from 

Calbiochem, E.  coli 0111:B4 LPS from List Biological Laboratories, mouse GM-CSF 

and IL-4 from PeproTech, poly (I:C) and R848 from InvivoGen, and CpG 

oligodeoxynucleotides (ODN) and non-CpG ODN from Coley Pharmaceutical Group.  

JA12.5, 54.1, 187.1, HB100, and CRL 1969 were purified from hybridoma culture 

supernatant. 

 

Cell Purification 
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B cells were purified from 2-12H/Vκ8/Cκ-/- spleens by negative selection (StemCell 

Technologies) (103).  Biotinylated CD3 antibody was added to the antibody cocktail to 

increase the efficiency of T cell depletion.  B cells were 86-93% pure with <3% T cells 

and <7% DCs/MΦs.  Splenic CD11c+ cells (~70% pure) were purified by positive 

selection (Miltenyi Biotec) and found to contain 20% lymphocytes and 10% MΦs.   

 

Bone marrow-derived DC (BMDC) Cultures 
 
Bone marrow-derived DCs were generated as previously described (103).  BMDCs were 

>95% CD11c+ (CRL 1969 hybridoma).  Conditioned medium (CM) was made from 

1x104 BMDCs (0.2 ml) cultured for an additional 4 days with or without Sigma LPS (30 

μg/ml).  5x105 BMDCs (0.2 ml) were cultured for an additional 4 days with or without 

poly (I:C) (50 μg/ml), R848 (10 μg/ml), CpG ODN (1 μg/ml), or non-CpG ODN (1 

μg/ml).  In experiments where RNA was isolated or nuclear extracts were prepared, 

BMDCs were stimulated with E. coli 0111:B4 LPS (List Biological Laboratories) that 

was re-purified (192) and confirmed to be unable to induce IL-6 secretion by TLR4-/- 

DCs.  

 

B cell Cultures 
 

Splenocytes containing 1x105 B cells, or the equivalent number of purified B cells, were 

cultured with Sigma LPS (30 μg/ml) for 4 days.  In the mixed B cell experiments, 

purified B6 (5x104; IgMb) and 2-12H/Vκ8 (5x104; IgMa) B cells were cocultured with 

LPS for 4 days as above.  BMDCs, CD11c+ splenocytes, or BMDC CM (25% of final 
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volume) were added to B cell cultures on day 0.  The IL-6 in DC CM was neutralized 

with either anti-IL-6 antibody or a control rat IgG1 antibody (54.1).  

 

ELISA 
 

IgMa/κ (encoded by 2-12H/Vκ8/Cκ-/-) was captured with anti-κ (187.1), detected with 

biotinylated anti-IgMa (HB100) and Streptavidin-AP as previously described (140).  

Purified mouse IgMa/κ (TEPC 183) served as the standard control.  IgMa/κ levels were 

plotted as “percent of control” defined by the level of Ig secretion in LPS-stimulated 

cultures of purified 2-12H/Vκ8/Cκ-/- B cells (100%).  IL-6 was quantitated by capturing 

with anti-IL-6 (clone MP5-20F3) and detecting with biotinylated anti-IL-6 (clone MP5-

32C11) and Streptavidin-AP.  Recombinant IL-6 served as the standard control.  

 

Real time (RT)-PCR  

RNA was prepared from BMDCs treated with re-purified LPS (15 μg/ml) by 

solubilization in Trizol (Invitrogen) and treatment with Turbo DNase (Ambion).  Reverse 

transcription with oligo(dT) primers was performed with Superscript II (Invitrogen).  The 

amount of IL-6 message was determined using the TaqMan Assay-On-Demand primer-

probe sets (Applied Biosystems) and the ABI 7000 sequence detection system.  IL-6 

mRNA transcript levels were normalized to the amount of 18S ribosomal RNA 

transcription according to the following equation: %18S = 2^ [-(IL-6 – 18S units)].  To 

measure IL-6 mRNA stability, BMDCs were stimulated with re-purified LPS (15μg/ml) 

for 6 hrs and then treated with 50 μM DRB for 15, 30, and 60 min to block transcription.  

mRNA was quantitated by RT-PCR as described above. 
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Electrophoretic Mobility Shift Assay (EMSA)  

BMDCs were stimulated with re-purified LPS (15 μg/ml) and gel shift assays were 

performed as previously described (193).  

 

Statistical Analysis 
 
Exact Wilcoxon rank sum test was used for most unpaired two-sample comparisons.  

When total sample size was small (<8), t test was used instead.  For test differences 

between paired observations, exact Wilcoxon signed rank test was used.  p values < 0.05 

were considered significant and denoted by *.  
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Results  

The frequencies of splenic myDCs and MΦs are not diminished in MRL/lpr mice. 

Maintaining B cell tolerance during activation of the innate immune system is crucial in 

preventing autoimmunity.  We have previously shown that stimulation through TLR4 

activates myDCs and MΦs to secrete soluble factors thereby repressing Ig secretion by 

chronically antigen-experienced (autoreactive) B cells (103).  To determine if the 

breakdown of tolerance in lupus-prone mice was associated with the lack of a repressive 

cell type, we compared the frequency of splenic MΦ and DC subsets in MRL/lpr and B6 

mice.  As shown in Figure 2.1 and Table I, the frequencies of myDCs 

(CD11chi/CD11bint/hi) and plasmacytoid DCs (pDCs, CD11clo/CD11b-/B220+/GR1+) were 

not significantly different.  The lymphoid DCs (lyDCs, CD11clo/CD11b-/B220-/GR1-) 

were significantly decreased in MRL/lpr, however this population is not involved in 

DC/MΦ-mediated tolerance (103).  The CD11c-/CD11bhi and CD11c-/CD11blo 

populations were increased in MRL/lpr mice, raising the possibility that these 

populations might secrete an activator that enhances Ig secretion.  However, when 

isolated by cell sorting, these populations did not augment LPS-induced Ig secretion or 

affect the ability of B6 DCs to regulate Ig secretion by Sm-specific B cells (data not 

shown), suggesting that neither population promotes the loss of B cell tolerance.  Thus, 

neither diminished frequency of myDCs and MΦs nor secretion of an activator accounts 

for the loss of tolerance in MRL/lpr mice. 

 

DCs from MRL/lpr mice fail to efficiently repress Sm-specific B cells.   
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LPS-activated DCs from B6 mice regulate chronically antigen-experienced B cells (103).  

To assess if DCs from MRL/lpr mice were capable of repressing Ig secretion, we 

cocultured Sm-specific B cells with bone marrow-derived DCs (BMDCs) from B6 or 

MRL/lpr mice (Figure 2.2A).  Compared to B6 DCs, MRL/lpr DCs were less efficient at 

repressing Sm-specific B cells when cultured at B cell: DC ratios of 10:1, 20:1, and 100:1 

(p = 0.016, 0.004, and 0.015 respectively).  These differences were not due to 

contaminating cells, because BMDCs from B6 and MRL/lpr mice contained >95% 

myDCs, and sorted B cells compared to negatively selected B cells from 2-12H/Vκ8 

mice cultured with DCs from MRL/lpr mice exhibited similar results (data not shown).  

To determine if splenic DCs were also defective in repressing autoreactive B cells, 

splenic CD11c+ cells were isolated from B6 and MRL/lpr mice, and cocultured with B 

cells from 2-12H/Vκ8 mice (B cell: DC ratio 10:1).  As shown in Figure 2.2B, ex vivo B6 

DCs repressed significantly better than DCs purified from MRL/lpr mice (p = 0.015), 

indicating that the defect was not specific to BMDCs.  Collectively, the data indicate that 

myDCs from MRL/lpr mice are present at a normal frequency, but they are defective in 

repressing Ig secretion by autoreactive B cells.   

 

DCs from MRL/lpr mice are defective in IL-6 secretion 
 
We previously showed that IL-6 secreted by DCs repressed autoreactive B cells (103).  

To determine if diminished IL-6 was associated with the inability of MRL/lpr DCs to 

repress Sm-specific Ig secretion, we measured IL-6 secretion.  LPS-activated BMDCs 

(Figure 2.3A) and splenic CD11c+ cells (Figure 2.3B) from MRL/lpr mice secreted 

significantly less IL-6 compared to B6 controls (p < 0.001 and p = 0.003 respectively).  
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To assess if this defect was unique to MRL/lpr mice, we quantitated LPS-induced IL-6 

secretion from BMDCs from several other lupus-prone models.  As shown in Figure 

2.3A, BMDCs from MRL, NZM2410, and NZBxNZWF1 were defective in secreting IL-6 

when compared to B6 (p < 0.0001, p < 0.0001, and p = 0.002 respectively).  Interestingly, 

B6.lpr mice were not defective in secreting IL-6 (p = 0.932), suggesting that the inability 

to secrete IL-6 is associated with the MRL background.  Defective IL-6 production was 

not secondary to IL-10 inhibiting TLR signaling, as MRL/lpr DCs secreted decreased 

levels of IL-10 and neutralizing IL-10 did not restore IL-6 levels (data not shown).  To 

determine whether defective IL-6 secretion was limited to stimulation through TLR4, we 

measured IL-6 secretion from MRL/lpr-derived DCs in response to other TLR ligands.  

As shown in Figures 2.3C-E, IL-6 secretion was increased when MRL/lpr BMDCs were 

stimulated through TLR3 (poly (I:C), p = 0.006); however, secretion was defective when 

stimulated through TLR7 (R848, p = 0.028) and TLR9 (CpG ODN, p = 0.016).  This 

indicates that not all TLRs are affected by this defect, and that mutation within the IL-6 

structural gene is unlikely to explain the reduced levels of IL-6.  Collectively, the data 

indicate that DCs from multiple strains of autoimmune mice exhibit defects in cytokine 

secretion induced through some TLRs. 

  

Diminished IL-6 secretion is not due to decreased TLR4 expression or survival. 

Expression of TLRs ensures that DCs are activated during innate immune responses.  It 

was possible that the decreased secretion of IL-6 from MRL/lpr DCs reflected a reduced 

expression of surface TLR4.  As shown in Figure 2.4A, the expression of TLR4 on 

myDCs from B6 (MFI 58.9 + 12.6) and MRL/lpr (MFI 68.1 + 10.9) mice was not 

 35



significantly different.  Likewise, BMDCs from B6 and MRL/lpr mice did not differ in 

TLR4 expression (data not shown), nor did they differ in viability as determined by 7-

AAD staining at day 4 (Figure 2.4B).  Thus, diminished surface expression of TLR4 or 

decreased survival do not account for the decreased IL-6 secretion by LPS-activated DCs 

from MRL/lpr mice.   

 

Defective IL-6 secretion is associated with failure to sustain IL-6 transcription. 

Transcriptional regulation of IL-6 depends on several signal transduction pathways that 

activate multiple transcriptional regulators including NF-κB and AP-1.  To determine if 

the diminished secretion of IL-6 by MRL/lpr DCs was due to defective transcriptional 

regulation, we LPS-stimulated BMDCs from B6 and MRL/lpr mice and quantitated IL-6 

mRNA levels by real time (RT)-PCR.  The basal level of IL-6 mRNA in the MRL/lpr 

mice was slightly lower than in B6 mice (Figure 2.5A).  Upon stimulation with LPS, IL-6 

mRNA levels in B6 and MRL/lpr DCs were dramatically increased; however, the 

magnitude of the response by MRL/lpr BMDCs was 7-fold lower.  Further, the sustained 

levels of IL-6 mRNA production were higher in B6 compared to MRL/lpr mice (24 hr 

and 96 hr timepoints).  To determine if decreased mRNA stability contributed to the 

decreased production of IL-6 message, BMDCs were LPS-stimulated for 6 hours 

followed by pharmacological attenuation of transcription.  The levels of IL-6 mRNA in 

BMDCs from B6 and MRL/lpr mice were quantitated by RT-PCR.  As shown in Figure 

2.5B, the rates of mRNA degradation in the MRL/lpr DCs did not change over time; 

however, the IL-6 mRNA levels in B6 DCs were reduced by 3-fold within 15 minutes of 

attenuating new transcription.  This indicates that IL-6 message is inherently unstable and 
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that sustained production of IL-6 mRNA requires continual synthesis.  Further, given that 

degradation was not observed in DCs from MRL/lpr mice, the data indicate that 

increased degradation does not contribute to the diminished IL-6 mRNA levels.  This 

suggests that MRL/lpr DCs harbor a defect at or upstream of transcriptional initiation that 

reduces the level of IL-6 mRNA and protein.   

 

To assess if decreased IL-6 mRNA levels were associated with defects in NF-κB or AP-1 

activation, we compared the DNA binding activity in nuclear extracts prepared from B6 

and MRL/lpr DCs.  The DNA binding activity of NF-κB from LPS-stimulated B6 DCs 

occurred within 10 minutes, with robust binding at 6 hours.  In contrast, the DNA binding 

activity of NF-κB from MRL/lpr DCs was diminished at these same timepoints (Figure 

2.6A).  This was not a reflection of unequal protein loading, as the levels of an unrelated 

nuclear protein (PCNA) were comparable.  The specificity of NF-κB for the DNA probe 

was confirmed by diminished complex formation in the presence of unlabelled probe 

(competitor DNA), and failure of a mutant competitor DNA (mutant DNA) to reduce 

complex formation (Figure 2.6B).  To identify the NF-κB subunits involved in DNA 

binding, we supershifted the DNA/protein complex with subunit-specific antibodies.  As 

shown in Figure 2.6C, p65 and c-Rel, but not p50, were identified as components of the 

NF-κB complex formed in B6 DCs following 6 hour LPS stimulation.  p65 and c-Rel 

anti-sera were specific for these components as pre-immune serum failed to supershift a 

protein/DNA complex (data not shown).  Similar to NF-κB, DNA binding by AP-1 was 

also markedly diminished in DCs from MRL/lpr compared to B6 mice (Figure 2.6D).  
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Thus, LPS-stimulated MRL/lpr DCs fail to activate key transcriptional regulators 

required for IL-6 gene transcription.   

 

Nuclear translocation of NF-κB is dependent on phosphorylation and degradation of IκB 

(194).  To assess if the lack of NF-κB DNA binding was associated with defects in IκB 

phosphorylation/degradation, we immunoblotted whole cell lysates from LPS-stimulated 

B6 and MRL/lpr BMDCs.  B6 DCs showed induced phosphorylation of IκBα at 5 

minutes that was sustained through 6 hours (Figure 2.7A, left panel).  In contrast, 

MRL/lpr DCs induced IκBα phosphorylation at 5 minutes with maximal phosphorylation 

at 15 minutes.  Phosphorylation was not evident at 45 minutes or 6 hours (Figure 2.7A, 

right panel).  Similarly, IκBα degradation was delayed following LPS stimulation of 

MRL/lpr DCs, indicating that defects in TLR4-induced signal transduction correlate with 

lack of IL-6 mRNA production and protein secretion.  To assess if other TLR pathways 

in MRL/lpr DCs were similarly affected, we assessed IκBα phosphorylation in response 

to TLR3 ligation.  We showed in Figure 2.3 that despite defects in TLR4-, TLR7- and 

TLR9-induced IL-6 production, TLR3-induced IL-6 production was enhanced.  This 

revealed that the defect in IL-6 production by MRL/lpr DCs did not affect all TLRs.  To 

correlate TLR-induced protein secretion with TLR-mediated signal transduction, we 

assessed IκBα phosphorylation in response to poly (I:C).  As shown in Figure 2.7B, poly 

(I:C)-induced IκBα phosphorylation was comparable between DCs derived from B6 and 

MRL/lpr mice.  Collectively, the data suggest failure to sustain IκBα phosphorylation 

reduces NF-κB activation, diminishes IL-6 transcription, and ultimately decreases IL-6 

protein synthesis by MRL/lpr DCs.  This supports the idea that continuous TLR4 signal 
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transduction is required to maintain IL-6 secretion and suggest this is defective in DCs 

from lupus-prone mice (195).  

 

Autoantibody secretion is repressed by IL-6 and other soluble factors. 
 
We have previously shown that IL-6 repressed 75% of Ig secretion by Sm-specific B 

cells.  Here, we show that DCs from lupus-prone MRL/lpr mice exhibit markedly 

decreased IL-6 levels coincident with their inability to regulate Ig secretion.  To 

determine the importance of decreased IL-6 in the breakdown of tolerance, we assessed 

the ability of conditioned medium (CM) from B6 and MRL/lpr DCs to repress Ig 

secretion.  CM allowed us to distinguish the effects of soluble mediators from the effects 

of cell contact.  As shown in Figure 2.8A, DC CM from most B6 mice repressed 70-90% 

of Ig secretion.  In contrast, the ability of DC CM from individual MRL/lpr mice to 

repress Ig secretion was extremely variable (10-90% repression, p= 0.004).  Given the 

central role for IL-6 in repressing autoantibody secretion (103), we reasoned that if IL-6 

were the sole repressive factor, there would be a direct correlation between IL-6 in DC 

CM and Ig secretion.  However, this broad range of repression only partially correlated 

with IL-6 levels (data not shown).  Despite the fact that all MRL/lpr mice exhibited low 

levels of IL-6, four individuals still repressed 80-90% of Ig secretion (Figure 2.8A).  To 

assess if the low levels of IL-6 secreted by MRL/lpr mice contributed to Ig repression, we 

neutralized any remaining IL-6 in the DC CM of mice retaining repressive function, then 

assessed the ability of the CM to regulate Ig secretion.  As shown in Figure 2.8B, 

neutralization partially restored Ig secretion (p = 0.031), confirming that that the low 

levels of IL-6 regulated Ig secretion.  Interestingly, secretion comparable to controls 

 39



(100%) was never attained, suggesting that in addition to IL-6, other DC-derived soluble 

mediators regulate Ig secretion.  It was possible that the variability in repression by 

MRL/lpr DC CM was due to the secretion of an activating factor by the MRL/lpr DCs.  

We addressed this in two ways.  First, we added recombinant IL-6 (rIL-6) to the MRL/lpr 

DC CM, and then assessed Ig secretion by Sm-specific B cells.  When added to the CM 

from three individual mice, rIL-6 repressed Ig secretion indicating that if activating 

factors were present, they did not override the repressive effect of IL-6 (data not shown).  

In a second experiment, we assessed if MRL/lpr DCs secreted an activator by 

determining if MRL/lpr DC CM activated naïve B6 B cells.  We previously showed that 

DC CM did not repress naïve B cells (103); thus, the presence of an activator may be 

more evident when Ig secretion is not simultaneously being repressed by the low levels of 

IL-6 in the MRL/lpr DC CM.  The data indicate that MRL/lpr DC CM did not increase Ig 

secretion of naïve B6 B cells, indicating that the dysregulated production of an activator 

is unlikely (data not shown).  

 

Collectively, the data indicate that during innate immune responses, IL-6 and another 

repressive factor(s) regulates B cells chronically exposed to antigen.  Further, this 

mechanism appears defective in lupus-prone mice coincident with diminished secretion 

of IL-6.  However, it remained unclear if soluble factors secreted by LPS-activated DCs 

repressed autoreactive B cells when present in mixed populations with naïve cells.  To 

assess this, we cocultured naïve (B6) and autoreactive (2-12H/Vκ8) B cells with DC CM 

prepared from B6 and MRL/lpr DCs.  As shown in Figure 2.8C, DC CM prepared from 

B6 cells, but not MRL/lpr cells, repressed Ig secretion in the mixed B cell cultures (p = 

 40



0.009) (Figure 2.8C).  The data suggest that DC-mediated repression regulates mixed 

populations of autoreactive and naïve B cells.
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Discussion 

The defects leading to the breakdown in B cell tolerance remain a central focus in 

understanding SLE.  Previous studies showed that during innate immunity Sm-specific B 

cells were regulated by myDCs and MΦs through the secretion of soluble mediators 

(103).  We propose a model where polyclonal activators stimulate myDCs and MΦs to 

secrete IL-6, which selectively represses autoreactive B cells, while naïve B cells mount a 

polyclonal antibody response to bacterial and viral antigens.  In this report, we show that 

DCs from lupus-prone mice are less efficient at repressing autoreactive B cells coincident 

with a defect in secreting IL-6.  This DC defect was not due to decreased survival or 

TLR4 expression, lack of a regulatory DC subpopulation, or the secretion of factors that 

enhance Ig secretion.  Instead, the reduced IL-6 secretion resulted from the inability of 

MRL/lpr DCs to induce or maintain IL-6 transcription in response to LPS.  Analysis of 

upstream signaling effectors showed that, although LPS induced IκBα phosphorylation, 

it was not sustained.  Further, DNA binding by NF-κB and AP-1 were markedly 

decreased.  These findings indicate that MRL/lpr DCs exhibit a TLR4 signal transduction 

defect at, or upstream of, IκB kinase (IKK)/IκB/NF-κB activation that results in 

diminished IL-6 mRNA production and protein secretion.  

 

Previous data showed that rIL-6 effectively regulated chronically antigen-experienced B 

cells (103).  At several B cell: DC ratios, MRL/lpr DCs were less efficient at repressing 

Ig secretion compared to B6 DCs.  However, despite significant defects in IL-6 secretion, 

they still repressed 53% of anti-Sm secretion at a ratio of 100:1 (Figure 2.2A).  Further, 

DC CM was less efficient at repressing Ig secretion compared to intact DCs indicating 
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that a contact-dependent mechanism might partially regulate Ig secretion.  In support of 

this, we have observed that DCs deficient in TLR4 partially repressed LPS-induced Ig 

secretion; however, repression was lost when the cells were separated in a transwell 

apparatus (Kilmon and Vilen, unpublished observations). 

 

The finding that repression of Ig secretion by DCs is multifaceted fits well with the 

heterogeneity of human disease.  We propose that defects in any regulatory component 

may predispose to autoimmunity, but complete loss of tolerance requires multiple 

defects.  Our data show that the repressive ability of LPS-activated MRL/lpr DCs was 

variable.  Some DCs efficiently repressed Ig secretion, despite diminished IL-6 

production (Figure 2.2, 2.3A/B, 2.8A), while others failed to repress secretion coincident 

with reduced IL-6 levels.  Compared to the contact-dependent mechanism described 

above, this repressive activity was apparent in the CM from some MRL/lpr mice, 

indicating that DCs secrete additional repressive factors that contribute to the regulation 

of Ig secretion.  Thus, despite markedly decreased IL-6 secretion by DCs from all mice 

analyzed, some likely harbor defects in another repressive factor(s) making them more 

susceptible to autoimmunity during innate stimulation.  Although a direct correlation 

between Ig secretion and IL-6 levels in MRL/lpr mice was not evident, we favor the 

interpretation that IL-6 and another repressive factor regulates Ig secretion because IL-6 

deficient DCs repress LPS-induced Ig secretion (unpublished observations) and 

neutralizing IL-6 only partially restored Ig secretion (Figure 2.8B).  This indicates that 

the low levels of IL-6 secreted by MRL/lpr DCs partially represses Ig secretion, but that 

IL-6 is not the sole means of regulating autoimmunity during innate immune responses. 
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The inability of LPS-stimulated MRL/lpr DCs to produce IL-6 and efficiently repress Ig 

secretion suggests that defects in innate immune responses contribute to autoimmunity.  

Our data show that DCs derived from MRL/lpr mice are unable to sustain IκB 

phosphorylation, thereby reducing NF-κB DNA binding and IL-6 mRNA synthesis.  This 

suggests an intrinsic defect where lack of sustained TLR-mediated signal transduction 

leads to decreased IL-6 protein secretion.  This could reflect a defect in the TLR signaling 

pathway or possibly the selective formation of NF-κB complexes that are less 

transcriptionally active.  Aberrant cytokine production and abnormal NF-κB activity in T 

cells and MΦs from lupus-prone mice and lupus patients have been associated with 

decreased p65, increased p50 homodimers which are more inhibitory to gene 

transcription, reduced binding of p50/c-Rel and p65 NF-κB complexes, and increased 

activity of histone deacetylases (196, 197).  Unfortunately we could not identify the NF-

κB subunits formed by MRL/lpr DCs because DNA binding was not observed at levels 

sufficient for supershifting. 

 

MyD88-dependent, TLR-induced activation of NF-κB and AP-1 is mediated through 

TRAF6 (198).  Thus, the findings that both NF-κB and AP-1 DNA binding activity are 

reduced (Figure 2.6), and that IL-6 secretion and IκBα phosphorylation are defective 

only upon stimulation through MyD88-dependent TLRs (TLR4, 7, and 9, but not TLR3), 

suggest a defect in the MyD88-dependent signaling pathway possibly at or upstream of 

TRAF6.  Alternatively, a defect at the level of the TLR4 receptor may occur.  Yang et al 

showed that persistant TLR4 signals are required for normal DC secretion of IL-6 (195).  
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In the case of dysfunctional MRL/lpr DCs, the TLR4 receptor may become desensitized 

to LPS following an initial stimulus, mimicking LPS removal and causing the decreased 

phospho-IκBα and IL-6 mRNA levels seen at later timepoints (Figures 2.5 and 2.7).   In 

addition, exposure to apoptotic cells may affect the TLR4 response.  Apoptotic cells fail 

to induce inflammatory responses, in part by repressing DC activation (199).  Thus, the 

increased burden of apoptotic cells associated with SLE may dysregulate some of the 

TLRs, rendering them incapable of secreting cytokines that are needed to repress 

autoantibody secretion.  In support of this, others have shown that apoptotic cells cause 

defective IL-6 secretion by macrophages (159), and mice functionally deficient in the 

phagocytosis of apoptotic cells get a lupus-like disease (177).  

 

Increased production of pro-inflammatory cytokines such as IL-6, contribute to the 

inflammatory response and pathogenesis of lupus nephritis (200, 201).  SLE patients (99, 

202, 203, 204) and diseased, lupus-prone mice (205, 206, 207) exhibit elevated serum IL-

6 levels (2-19 pg/ml), yet fail to repress Ig secretion.  Although elevated, this level of 

systemic IL-6 is insufficient to repress autoreactive B cells in vitro (103).  Therefore, we 

propose that colocalization of DCs and B cells is necessary to provide sufficient IL-6 to 

repress Ig secretion.  Our findings showed that DCs derived from MRL/lpr mice secrete 

reduced levels of IL-6, coincident with lack of Ig repression.  We propose that once 

tolerance is overcome, autoantibody secretion and immune complex formation induce 

systemic production of pro-inflammatory mediators, promoting inflammation and 

pathogenesis.  Consistent with this model, CpG-stimulated dendritic cells from SLE 

patients produced lower levels of IL-6 (208), while endothelial cells (209, 210, 211), 
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mesangial cells in the kidney (212, 213), and infiltrating monocytes/macrophages (214) 

secrete elevated levels of IL-6.  This suggests that IL-6 plays a beneficial role when 

released in a local microenvironment between myDCs and autoreactive B cells, yet when 

elevated systemically, it induces inflammation, tissue destruction, and spontaneous Ig 

production by activated B cells (99, 215, 216, 217).  Therapies aimed at neutralizing the 

inflammatory effects of IL-6 may have short-term benefits in treating lupus nephritis, 

however, they are likely to promote loss of tolerance in newly emerging B cells during 

innate immune activation. 

 

Immunoglobulin secretion by B cells is induced by ligation of the TLR and/or BCR.  

BCR-induced Ig secretion is regulated by lack of T cell help and sustained BCR-induced 

calcium signaling and prolonged Erk activation (133, 183, 218, 219).  In contrast, TLR-

induced Ig secretion is regulated by soluble factors secreted from DCs and MΦs (103).  

Although the mechanisms regulating the BCR and TLR are unique, signals derived from 

chronic BCR stimulation impact TLR-induced activation.  For example, the chronic Erk 

activation associated with continuous exposure to self-antigens represses TLR9-induced 

Ig secretion, whereas, acute Erk activation following BCR stimulation of naïve B cells 

promotes TLR9-induced Ig secretion (91, 220).  Similarly, chronic BCR exposure to self-

antigen reprograms IL-6R signal transduction to repress Ig secretion (103).  However, B 

cells that have been acutely stimulated and exposed to IFN-α/β induce Ig secretion in 

response to IL-6 (101).  Our data expand our understanding of IL-6 to include a role in 

repressing Ig secretion by autoreactive B cells.  During autoimmunity, the tolerance 

mechanisms that regulate autoreactive B cells become dysregulated.  For many B cells 
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with autoreactive specificities, it remains unclear if BCR and/or TLR responses facilitate 

autoantibody production.  Our studies of TLR-mediated responses in Sm-, HEL- and 

Ars/A1-specific autoreactive B cells identify DCs and MΦs as key regulatory cells during 

innate immune responses, and show that DC-mediated tolerance is defective in lupus-

prone MRL/lpr mice.  These findings implicate dysregulated innate immune responses in 

the autoantibody production associated with SLE.  
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Figure 2.1. The distribution of splenic myDCs and MΦs are comparable between B6 

and MRL/lpr mice.  DC and MΦ subsets were separated based on CD11c and CD11b 

expression. Dot plots are representative of nine mice each. 

 

 

 

 

 

 

 48



 

 

 

 

 

 

 

Table 2.1.  The frequencies of splenic myDCs and MΦs are not diminished in 

MRL/lpr mice.a
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Figure 2.2. DCs from MRL/lpr mice fail to efficiently repress Sm-specific Ig 

secretion.  LPS-stimulated (30 μg/ml) splenocytes (1x105 B cells) or purified B cells 

(1x105) were cocultured with the indicated ratios of BMDCs (A), or ex vivo splenic DCs 

(B).  Secreted IgMa/κ levels were quantitated by ELISA from the day 4 culture 

supernatant.  LPS-stimulated purified B cells (100%) secreted 1-10 μg/ml IgMa/κ. Data 

represent 14 (A) and 8 (B) MRL/lpr mice. ( Controls,  B6, MRL/lpr). 
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 Figure 2.3. DCs from MRL/lpr mice are defective in IL-6 secretion upon TLR4, 7 

and 9 stimulation, but not upon TLR3 stimulation.  1x104 BMDCs (A), or 1x105 ex 

vivo splenic DCs (B), were stimulated with LPS (30 μg/ml).  5x105 BMDCs were 

stimulated with poly (I:C) (50 μg/ml) (C), R848 (10 μg/ml) (D), and non-CpG ODN 

( / ) or CpG ODN (  / )(1μg/ml) (E).  IL-6 was quantitated by ELISA from the day 

4 culture supernatants. Data represent at least 5 mice per group.  (  B6, MRL/lpr, 

▲MRL, B6.lpr, NZM2410, NZBxNZWF1)  
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Figure 2.4. MyDCs from B6 and MRL/lpr mice have similar levels of TLR4 surface 

expression and no difference in survival.  MyDCs within the CD11c+ splenocyte 

population were gated as CD11chi/CD11bint/hi, and then analyzed for TLR4 expression 

(A).  LPS-stimulated BMDCs were stained with 7-AAD on Day 4 (B).  The thick black 

line represents B6 mice.  The thin gray line represents MRL/lpr mice. Histogram shows a 

representative plot from three experiments. 
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Figure 2.5. DCs from MRL/lpr mice show a decrease in synthesis and ability to 

sustain IL-6 mRNA levels.  Real time-PCR was performed on RNA isolated from LPS 

stimulated BMDCs (A) untreated or (B) treated with DRB at the indicated timepoints.  

The data from three individual B6 ( ) and six MRL/lpr ( ) mice are plotted as %18S. 
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Figure 2.6. DCs from MRL/lpr mice fail to activate NF-κB and AP-1.  BMDCs were 

stimulated with LPS (15 μg/ml) for the indicated times.  Nuclear extracts were prepared, 

and NF-κB/DNA binding (A) or AP-1/DNA binding (D) was assessed by EMSA. 

Nuclear extracts prepared from unstimulated B6 BMDCs (lane 1) or from DCs stimulated 

6 hours with LPS (lanes 2-4) were incubated with radiolabeled DNA probe (lanes 1-4), 

unlabeled competitive DNA (lane 3), or mutant DNA (lane 4), and NF-κB DNA binding 

was assessed by EMSA (B).  NF-κB/DNA complexes in the nuclear extracts from 

unstimulated B6 DCs (lane 1) or from DCs stimulated 6 hours with LPS (lane 2-5) were 

supershifted using p65 (lane 3), p50 (lane 4), or c-Rel antiserum (lane 5) (C). 
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Figure 2.7. TLR4-stimulated DCs from MRL/lpr mice are unable to sustain IκBα 

phosphorylation.  BMDCs (2x106) from B6 and MRL/lpr mice were stimulated with 

LPS (15 μg/ml) (A) or poly (I:C) (50 μg/ml) (B) for the indicated timepoints.  Phospho-

IκBα, IκBα, and β tubulin (A) or actin (B) expression in whole cell lysates was 

determined by immunoblotting.  Data represent 7 (A) and 3 (B) experiments. 
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Figure 2.8. In addition to IL-6, other soluble factors regulate autoantibody 

secretion. Purified B cells (1x105) from 2-12H/Vκ8 mice were stimulated with LPS (30 

μg/ml) in the absence ( ) or presence of DC CM (25% of final volume) from B6 ( ) or 

MRL/lpr ( ) mice (A). DC CM from individual MRL/lpr mice ( ) was untreated or 

neutralized with anti-IL-6 antibody (50 μg/ml) prior to coculture with B cells from 2-

12H/Vκ8 mice (B). 5x104 purified B cells from 2-12H/Vκ8 and B6 mice were stimulated 

with LPS (30 μg/ml) in the absence ( ) or presence of DC CM from B6 ( ) or MRL/lpr 

( ) mice (C). Secreted IgMa/κ levels were quantitated by ELISA from the day 4 culture 

supernatant. LPS-stimulated purified B cells (100%) secreted 1-10 μg/ml IgMa/κ. Data 

represent 15 (A), 5 (B), and 4 (C) MRL/lpr mice. 
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Abstract 

B cell tolerance during innate immune responses requires chronic exposure to self-

antigen to allow IL-6 and CD40L to repress Ig secretion.  In this report, we show that 

murine B cells (2-12H/Vκ8) specific for the nuclear self-antigen Smith (Sm) fail to 

repress LPS-induced Ig secretion when chronically exposed to soluble Sm, small nuclear 

ribonucleoprotein particles (snRNPs), or apoptotic cells.  Instead, these B cells recognize 

self-antigen displayed on the surface of dendritic cells (DCs) and macrophages (MΦs) as 

evidenced by constitutive destabilization of the BCR complex.  The display of nuclear 

self-antigen by DCs and MΦs is not limited to Sm as DNA and histones are also present.  

In assessing if these self-antigens were functional in regulating Ig secretion we 

discovered a contact-dependent mechanism of regulating Ig seretion that occurs 

independent of BCR engagement of self-antigen.  In addition, autorective and naïve 

BCR-mediated signaling is repressed by DCs.  Collectively, our data demonstrate that 

innate and adaptive immune responses of B cells are regulated by DC independent of the 

nuclear self-antigen displayed on their surface.
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Introduction 

The dysregulation of B cells specific for nuclear antigens is a hallmark of many 

autoimmune diseases.  Nuclear antigens become accessible to the immune system when 

they are displayed on the surface of apoptotic cells or released as soluble proteins upon 

cell lysis (11, 13, 14, 221).  How different forms of nuclear self-antigens induce B cell 

tolerance remains unclear; however, the strength of the BCR signal and the availability, 

and/or location of antigen directly affects the differentiation of autoreactive B cells in 

antibody secreting cells (131, 180, 222, 223).  This is exemplified in the hen egg 

lysozyme (HEL) model of B cell tolerance where, BCR interaction with soluble HEL 

produce anergic B cells while membrane bound HEL causes deletion of autoreactive B 

cells (224).   Further, in nuclear antigen-specific models, an increased burden of apoptotic 

cells is implicated in autoimmune disease, and injection or accumulation of apoptotic 

cells activates some autoreactive B cells, including Smith antigen (Sm)-specific B cells 

(13, 15, 177).  Depending on the affinity of the BCR for antigen Sm-specific B cells are 

regulated by B1 cell formation or peripheral anergy, (137, 140).  However, since B cell 

anergy requires tolerizing antigen to constantly occupy the BCR (136), it remains unclear 

how the low concentration of soluble small nuclear ribonucleoprotein particles (snRNPs) 

or the transient appearance of apoptotic cells regulate Sm-specific B cells. 

 

During innate and adaptive immune responses, autoreactive B cells are regulated by 

multiple mechanisms.  Sm-specific B cells are regulated during innate immune responses 

through IL-6 and CD40L secreted by DCs and/or MΦs (103, 104).  HEL-specific B cells 

repress TLR9-induced Ig secretion by constitutive ERK activation resulting from chronic 
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exposure to high-affinity self-Ag (220).  In another model, immune complexes induce B 

cell proliferation when the BCR and Toll Like Receptor-9 or 7 (TLR9, TLR7) are 

coligated, yet antigen alone fails to initiate a response (55, 92).  During adaptive immune 

responses, autoreactive B cells remain unresponsive to self-antigen by modulating 

surface BCR levels (180), inducing B1 cell formation (131), failing to obtain T cell help 

(130), and desensitizing the BCR to renewed signal transduction (132).  In addition, 

antigen destabilizes the BCR complex (μm/Ig-α/β), dissociating Ig-α/β from μm by 

distances of approximately 200 nm (133, 134).  The observation that BCR destabilization 

occurs following receptor ligation suggests it contributes to the unresponsive state of 

autoreactive B cells (135).  Thus, multiple mechanisms have evolved to regulate 

autoreactive B cells stimulated by self-antigen or TLR ligation.  

 

In this report we show that some soluble self-antigens effectively repressed LPS-induced 

Ig secretion, while nuclear self-antigens such as Sm, SnRNPs, and apoptotic cells failed 

to tolerize autoreactive cells.  Analysis of other possible sources of tolerizing antigen 

revealed that DCs and MΦs displayed endogenous nuclear self-antigens including Sm, 

DNA and histones.  Since soluble mediators secreted by DC/MΦs repress autoantibody 

secretion during the innate immune responses, we hypothesized that this surface-antigen 

might also be tolerogenic.  However, in the absence of soluble factors, we found that Ig 

secretion by autoreactive B cells is repressed through a contact-dependent mechanism, 

independent of BCR ligation.  Sm-specific B cells recognized the self-antigen displayed 

on DC/MΦs demonstrated by their destabilized BCR.  However, DCs were not able to 

induce BCR signaling in Sm-specfic B cells.  Indeed, these cells repressed BCR-mediated 
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signal transduction in both autoreactive and naïve B cells.  The data show that although 

Sm-specific B cells recognize self-antigen on the surface of DC/MΦs, contact mediated 

repression of the innate and adaptive immune response occur independent of BCR 

engagement of antigen. 

 62



Materials and Methods 

Mice  

2-12H/Vκ8/Cκ-/- immunoglobulin transgenic mice were previously described (225). 

sHEL (ML5) mice, HEL-Ig x sHEL (MD4 x ML5) and C57BL/6 (B6) mice were 

purchased from Jackson Laboratory.  Animals were used at 8-16 weeks of age and 

maintained in an accredited animal facility. 

 

Reagents and Abs  

Antibodies to CD3, CD19, CD69, CD11c, CD11b, and phosphorylated -tyrosine were 

obtained from BD Biosciences, canine distemper virus (CDV) from Biodesign, IgM Cy3 

and IgG Cy3 from Jackson ImmunoResearch, phosphorylated-Syk from Cell Signaling 

and Streptavidin Alexa 465 and 647 from Molecular Probes.  Sm was obtained from 

Immunovision.  2.12.3 and Vκ31T were gifts from Steve Clarke (University of North 

Carolina, Chapel Hill, NC), and PA4 and LG2-2 gifts from Marc Monestier (Temple 

University, Philadelphia, PA).  2.4G2, HO13, B7.6 (anti-μ), and anti-HEL (HyHEL10) 

were purified from hybridoma supernatant. 

 

B cell purification and culture 

Resting B cells (ρ>1.066) were isolated by percoll density centrifugation as previously 

described (133). Splenic B cells were purified by negative selection (Stem Cell 

Technologies) as previously described (225) and cultured with LPS and Sm, snRNPs or 

apoptotic cells for 4 days. 
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Preparation of DCs and MΦs 

Preparation of BMDC/MΦs was performed as previously described (225).  CD11c+ 

splenocytes were purified by positive selection (Miltenyi Biotech). 

 

Apoptotic cells 

Apoptotic cells were prepared by irradiating thymocytes with 600 rads and culturing 

overnight.  After co-culture with DCs they were removed by lympholyte-m (Cedarlane) 

density centrifugation.  

 

ELISA  

Quantitation of IgMa/κ was described previously (225).  Ig levels were plotted as "percent 

control” calculated as the percent secretion relative to LPS-stimulated B cells.  

 

Immunoprecipitation and immunoblotting   

BCR destabilization was detected as previously described (133).  B cells (3x106) were 

stimulated with anti-m or BMDC solublized in lysis buffer containing 1% NP-40 lysis 

buffer.  Proteins were resolved by SDS-PAGE.  Phosphorylated-IkBa and 

phosphorylated-Syk were immunoblotted with HRP tagged antibodies and detected by 

chemiluminescence (GE Biosciences).   Densitometry was performed utilizing Image J 

(National Institute of Health).  Briefly, we multipled the area by the density and 

subtracted the background. 
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Immunofluorescence staining 

1x106 B6 BMDC/MΦs, CD11c+ splenocytes, T cells, or B cells were stained with Vκ31T (anti-

Sm), 2.12.3 (anti-Sm), LG2-2 (anti-histone), PA4 (anti-DNA) or isotype controls (HO13 or 

CDV) followed by fluorochrome-conjugated secondary antibodies.  BMDC/MΦs were treated 

with trypsin (2.5 mg/ml) or DNase (25 μg/ml) prior to PA4 staining.  Cells were plated onto 

coverslips and images obtained using the Zeiss Axioplan 2 fluorescence microscope or the 

Olympus Fluoview 500 microscope and deconvolved using SlideBook (Intelligent Imaging 

Innovation) and/or Image J (NIH).  

 

Statistical Analysis 

Student’s t test was used.  Values of p < 0.05 were considered significant and denoted by an 

asterisk (*). 
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Results 

Soluble self-antigens and apoptotic cells do not tolerize Sm-specific B cells. 

Previous data demonstrate that autoreactive B cells must be chronically exposed to self-

antigen for tolerance mechanisms to regulate innate immune responses (103, 104).  

However, the location and form of the self-antigens that tolerize these cells remains 

unclear.  To determine if some self-antigens are sufficient to regulate B cell responses we 

LPS-stimulated HEL-specific B cells cocultured with cognate antigen (Figure 3.1A).  

Purified B cells from HEL-Ig x sHEL mice secrete Ig upon LPS stimulation because they 

were disengage self-antigen during the purification (226).  However, LPS-induced Ig 

secretion is completely repressed when HEL antigen is present (Figure 3.1B) (220, 225).  

This corroborates that self-antigen regulates TLR responses (220, 226).  To determine if 

any of the known forms of Sm regulate TLR-induced Ig secretion, we LPS-stimulated 

Sm-specific B cells (2-12H/Vκ8) in the presence of soluble Sm, snRNPs, and apoptotic 

cells, then assessed autoantibody secretion.  Figure 3.1B demonstrates LPS-induced Ig 

secretion was unaffected by the presence of soluble Sm or by the snRNP complex.  In 

contrast, Sm on the surface of apoptotic cells enhanced Ig secretion (13, 15).  These data 

indicate that some self-antigens fully regulate TLR responses, but that in the case of Sm, 

the known forms of Sm are either ignored, or induce B cell activation.   

 

Nuclear Self-Antigen is Displayed on DC/MΦs 

DC and MΦs are responsible for clearing apoptotic cells.  Since apoptotic cells display 

nuclear self-antigen on their surface, we hypothesized that DC/MΦs might acquire self-

antigens from apoptotic cells during phagocyotsis providing a source of tolerizing antigen 
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while simultaneously colocalizing DC/MΦs with autoreactive B cells to allow soluble 

mediators to repress autoantibody secretion (103).  To investigate this possibility, we 

stained BMDCs, BMMΦs, and CD11c+ splenocytes for Sm.  As demonstrated in Figure 

3.2, BMDCs, BMMΦs, and ex vivo CD11c+ cells showed the presence of surface Sm.  

Trypsin treatment removed the antigen, indicating that Sm was displayed as a surface 

protein.  To confirm the specificity of the anti-Sm antibody for Sm, we absorbed the 

antibody with recombinant Sm.  As shown in Figure 3.2, antibody absorbed with Sm 

failed to stain BMDCs while antibody absorbed with BSA stained these cells.  These data 

indicate that the anti-Sm antibody recognizes Sm on DCs and MΦs. 

 

Previously, others reported that histones and DNA were present on the surface of 

apoptotic cells (14).  If Sm displayed by DCs and MΦs originated from apoptotic cells, 

we reasoned that other nuclear antigens might also be present.  To assess this, BMDCs 

and BMMΦs were stained with antibodies to DNA and histones.  As shown in Figure 3.3, 

BMDCs and BMMΦs displayed histones and DNA on their surfaces.  Further, treatment 

of cells with DNase abrogated staining, confirming the specificity of the antibody and 

that the antigen was located on the cell surface.  The data show that several nuclear self-

antigens are displayed on the surface of DCs and MΦs.  

 

To address if apoptotic cells are a source of the nuclear self-antigen found on the surface 

of DC/MΦs, BMDCs were cultured with apoptotic cells, the dying cells were removed by 

density centrifugation, and the DCs were stained for DNA.  We observed that after 

coculture with apoptotic cells, DCs displayed a two-fold (p=0.002) increase in DNA on 
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their surface compared to untreated cells (Figure 3.4A).  This shows that apoptotic cells 

are a source of nuclear self-antigen for display on the surface of DC/MΦs.  The 

observations that nuclear self-antigens are displayed by DCs and MΦs raised the 

possibilities that other cells may display self-antigen and that all self-antigens, regardless 

of source, might be present on these cells.  To address the first possibility, splenic T and 

B cells were sorted for the expression of CD3 or B220 and then stained for surface Sm.  

As shown in Figure 3.4B, neither T nor B cells displayed surface Sm.  To assess if all 

self-antigens were displayed on DCs and MΦs, we stained the CD11c+ splenocytes from 

mice expressing a HEL transgene (ML5).  These mice constitutively secrete HEL with 

serum levels approximating 15 ng/ml, levels sufficient to induce a state of 

unresponsiveness in HEL-specific B cells.  As shown in Figure 3.4C, CD11c+ 

splenocytes failed to display the soluble antigen, HEL, on their surface.  This was not due 

to the failure of the anti-HEL antibody to recognize HEL because loading exogenous 

HEL onto a HEL-specific B cell line (K46/D1.3) resulted in HEL-specific staining.  The 

data indicate that nuclear, but not soluble, self-antigens are displayed by DCs and MΦs, 

but not by lymphocytes.  

 

B cell coculture with DCs leads to activation. 

It has been previously demonstrated that intact antigen exogenously loaded onto DCs 

causes BCR-mediated signal transduction (65, 165, 166, 167).  DC/MΦs regulate 

chronically antigen-experienced B cells during innate immune responses and display 

nuclear self-antigen on their surface, therefore, we hypothesized that this form of self-

antigen might tolerize Sm-specific B cells.  Alternatively, in the absence of functional 
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tolerance mechanisms, the antigen on the DC/MΦs might activate Sm-specific B cells 

and promote autoimmunity.  To first assess if DCs had any effect on B cell responses, we 

cocultured B cells with DCs and monitored downstream responses.  As shown in Figure 

3.5A, B6 cells cocultured with DCs increased IκBα phosphorylation after five minutes. 

Similarly, autoreactive B cells upregulated CD69 when cocultured with DCs for six hours 

(Figure 3.5B).  This effect was also apparent when B6 (non-autoreactive) B cells were 

cocultured with DCs, indicating that DCs interact with B cells inducing B cell responses 

that are independent of surface antigen binding to the BCR.  The finding that B6 B cells 

were activated by DCs suggested that activation might be induced through TLRs since 

the percent of autoreactive B cells in the polyclonal repertoire of B6 mice would be very 

small.  Thus, it was unclear if BCR and/or TLR-mediated responses activated 2-12H/Vk8 

B cells. 

 

BCR-mediated signal transduction is not induced by coculture with DCs. 

BCR or TLR ligation induces antibody secretion by B cells.  To test if DCs activate B 

cells through the BCR we monitored the ability of DCs to induce Syk phosphoryation 

since this effect is only activated upon BCR ligation (Figure 3.6 A).  Given that marginal 

zone (MZ) B cells to undergo rapid BCR-mediated responses we chose to use the 2-12H 

model because it contains this population.  Purified 2-12H B cells do not exhibit 

detectable Syk phosphorylation in the absence of stimulation.  In contrast, anti-μ induces 

robust Syk phosphorylation demonstrating that the cells are capable of responding to 

BCR ligation.  Addition of DC/MΦs failed to induce detectable Syk phosphorylation, 
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suggesting that the display of Sm on the DC/MΦs does not activate BCR-mediated signal 

transduction.  

 

To define if the absence of Syk phosphorylation was due to our inability to detect low 

level signals we examined if a downstream consequence of BCR signaling was evident. 

During adaptive immune responses, one consequence of BCR-mediated signal 

transduction is the accumulation of intracellular μ.  FO and MZ B cells from 2-12H mice 

cocultured with DCs for 12 or 24 hours failed to exhibit increased intracellular μ (Figure 

3.6B).  This corroborates the lack of Syk phosphorylation and suggests that the Sm 

antigen displayed on the DC fails to elicit BCR-mediated signal transduction.  However, 

it raised the possibility that DCs might actively inhibit BCR- and/or TLR-derived 

responses.   

 

DCs repress LPS-induced Ig secretion in a contact-dependent mechanism. 

To determine if DCs repress innate responses by mechanisms other than the secretion of 

soluble mediators, we assessed if their contact with autoreactive B cells regulated 

secretion.  TLR4-deficient DCs in contact with autoreactive B cells repressed 50% of 

LPS-induced Ig (Figure 3.7A).  However, the ability of DCs to repress Ig secretion was 

abolished when the B cells were separated from the DCs in a transwell apparatus 

indicating a contact-dependent mechanism of repression.  To evaluate if the antigen 

displayed by the DCs was essential for contact-dependent repression, we blocked the Sm 

on the surface of the TLR4-deficient DCs with an anti-Sm F(ab’)2.  Blocking surface Sm 

on TLR4-deficient DC did not change the levels of LPS-induced Ig secretion (Figure 
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3.7B).  This indicates that contact-dependent regulation of TLR-induced Ig secretion is 

independent of BCR engagement by self-antigen.  To further clarify if surface antigen on 

the DC regulates LPS-induced Ig secretion we tested if LPS-induced Ig secretion by 

HEL-specific B cells was repressed by DCs.  Because DCs do not display HEL antigen, 

we reasoned that if contact-dependent regulation of innate responses was mediated in an 

antigen-independent manner, HEL-specific B cells would be repressed by TLR4-deficient 

DCs.  As shown in Figure 3.7C, TLR4-deficient DCs repressed 50% of Ig secretion by 

LPS-stimulated HEL-Ig x sHEL B cells. Collectively, the data show that nuclear self-

antigens are displayed on the surface of DCs, however, they repress Ig secretion during 

innate immune responses in a contact-dependent manner that is independent of antigen 

binding to the BCR.    

 

DC/MΦs induce Sm-specific BCR destabilization. 

Although the data identify a novel contact-dependent mechanism of repression of Ig 

secretion, the regulation of the innate immune response was found to be independent of 

the BCR ligation of antigen.  However, it was unclear if surface-antigen on DC/MΦs 

affects B cell responses.  The unresponsive state that protects autoreactive B cells from 

dysregulated adaptive immune responses requires the BCR to be constantly occupied by 

self-antigen (136).  A consequence of constant receptor occupancy in low-affinity B cells 

is destabilization of the BCR.  We reasoned that if 2-12H/Vk8 B cells constitutively 

recognized Sm on the DC, receptor destabilization might be evident.  We assessed the 

amount of Ig-α/β associated with μm in B cells from 2-12H/Vκ8 mice compared to B 

cells from control mice (Vκ8 transgenic).  We utilized B cells copurified with DC/MΦs 
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by T-depletion and density centrifugation or highly purified B cells with less than 5% 

contaminating DC/MΦs obtained by negative selection.  Splenic B cells isolated by 

negative selection showed stoichiometric amounts of Ig-α/β coprecipitated with μm 

indicating that they display an intact BCR (Figure 3.8; left panel).  In contrast, B cells 

purified by T cell depletion and density centrifugation consistently showed a two-fold 

(p=0.01) decrease in the amount of coprecipitated Ig-α/β in μm immunoprecipitates, 

signifying destabilization of the receptor complex when DCs and MΦs are present 

(Figure 3.8; right panel).  Previous studies identified that BCR-derived signals are 

required for destabilization, indicating that Sm-specific B cells encounter self-antigen on 

the surface of DC/MΦs, thus inducing BCR destabilization (133).  Combined with the 

data in Figure 3.6, a model emerges wherein an autoreactive B cell recognizes antigen 

and destabilizes Ig-α/β from μm but do not elicit detectable positive signals via the BCR.  

This suggested the possibility that DCs may actively inhibit BCR-derived signals. 

  

DCs negatively regulate BCR-dervied signaling. 

Signal transduction through the BCR is regulated at multiple levels but coligation of 

inhibitory receptors sets the threshold of BCR signaling and protects from prolonged 

signaling.  If DCs actively inhibit BCR signal transduction anti-μ induced Syk 

phosphorylation would decrease when DCs were present in the B cell cultures. 

Preincubation of 2-12H B cells with B6 BMDCs lead to a two-fold (p=0.01) reduction in 

anti-μ-induced Syk phosphorylation, establishing that DCs inhibit BCR signaling in 

autoreactive B cells (Figure 9A).  To assess if DC-mediated repression was exclusive to 

autoreactive B cells we induced Syk phosphorylation in B6 B cells after incubation with 
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DCs.  As shown in Figure 9B, DCs also repressed BCR-mediated signaling in B6 B cells 

by a two-fold reduction (p< 0.0001).  This is the first evidence that DCs negatively 

regulate BCR signal transduction and raised the possibility that ligands for inhibitory 

receptors were selectively expressed on DC/MΦs, thereby regulating basal and antigen-

induced signaling thresholds.  Collectively, the data show that although DCs and MΦs 

provide a unique source of self-antigen to B cells as demonstrated by destabilization of 

the BCR.  We cannot define if this antigen tolerizes or activates autoreactive B cells 

because a cell contact-dependent inhibitory mechanisms precludes such analysis.   
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Discussion 

The regulation of low-affinity autoreactive B cells during innate immune responses 

requires DCs and MΦs to secrete IL-6, TNF- α, and CD40L ((103, 104) Gilbert MR and 

Vilen BJ manuscript in preparation).  These soluble mediators repress LPS-induced Ig 

secretion by B cells chronically exposed to self-antigen, but not acutely-stimulated, naïve 

B cells.  In this report, we show that DCs and MΦs display nuclear self-antigens that 

were recognized by autoreactive B cells.  DNA, histones, and Sm were found on the 

surface of CD11c+ splenocytes and BMDC/MΦs, suggesting that their display in vivo 

was constitutive.  Apoptotic cells were a source of antigen to the DCs because their 

coculture resulted in increased surface antigen.  Although several nuclear self-antigens 

were present on DCs and MΦs, a soluble antigen, HEL, was not evident. This 

demonstrates that not all self-antigens are displayed on DCs and MΦs.  BCR 

destabilization of Sm-specific B cells indicates recognition of the endogenous antigen on 

the surface of DC/MΦs; however, there is no evidence of BCR-mediated signal 

transduction.  Indeed, the DCs are repressive of BCR mediated signaling and Ig secretion 

resulting from LPS stimulation in a manner independent of BCR engagement of antigen. 

 

The data indicate that the DCs repress both the adaptive and innate immune responses.   

However, there is still much to understand about these mechanisms.  It is of interest to 

assess if the repression of BCR signaling is contact-dependent and how this affects BCR 

induced Ig secretion.  We know that contact is essential in regulating the innate immune 

response, but it is unclear if this mechanism exclusively affects chronically antigen-

experienced autoreactive B cells or if it also affects naïve B cells.  The repression of BCR 
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signaling suggests that inhibitory receptor(s) might be involved.  It is unclear if the same 

receptor(s) would regulate the TLR stimulated cells because few studies have addressed 

the role of inhibitory receptors in innate responses.  Defining the molecular mechanisms 

of the DC-mediated repression will also further our understanding of the role for surface 

self-antigen.   

 

Despite the interaction of the Sm-specific B cell and the antigen on the surface of 

DC/MΦs, there was no detectable signal transduction.  BCR destabilization has been 

shown to cause receptor desensitization in vitro, therefore, the lack of signaling could be 

from prolonged interaction with nuclear self-antigen in vivo (65, 165, 166, 167). The lack 

of BCR mediated signaling in Sm-specific B cells raised several other possibilities.  First, 

that the BCR may be of such low affinity that the antigen is recognized but it does not 

transduce a signal.  Second, the signal is below the limit of detection.  Third, the DC is 

actively repressing the B cell from signaling.  While investigating these possibilities we 

discovered that the pre-treatment of non-transgenic, B6 and Sm-specific 2-12H B cells 

with DCs resulted in decreased phosphorylation of Syk after stimulation of the BCR.   

Thus, DCs repress BCR-mediated signal transduction in both autoreactive B cells and 

naïve cells.  It is unclear what is the importance of DC-repression of non-autoreactive B 

cells is in the adaptive immune response.  In vitro can repress naїve B cell signaling.  

However, in vivo this regulation may only occur when DCs and B cells encountered each 

other for prolonged periods of time as a result of the autoreactive BCR engaging its 

cognate endogenous antigen on the surface of DC/MΦs.  Thereby, facilitating the 

inhibition conferred by the DC.  This regulation of B cell signaling is yet to be 
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understood, but could have broader implications in the maintenance of tolerance.   

Collectively these data show that DC/MΦs can regulate both the adaptive and innate 

immune responses.  

 

Nuclear self-antigens on the surface of DC/MΦs are recognized by autoreactive B cells 

and induce BCR destabilization.  Using high-affinity antigen-pulsed systems, several 

groups reported that DCs displaying cognate antigen interact with B cells and transduce 

signals that promote class switching, and antigen processing (65, 165, 166, 167) . 

However, the physiological relevance of these antigen-pulsed DCs is unclear since we 

were unable to detect endogenous HEL on the surface of ex vivo CD11c+ splenocytes 

from mice expressing a HEL transgene (Figure 3.4B).  It is possible that DCs pulsed with 

HEL exhibit a much higher concentration of self-antigen compared to antigen displayed 

in vivo or that HEL expressed on CDllc+ splenocytes may be below our limit of detection.  

Jenkins et al, demonstrated that HEL-specific B cells could obatin with HEL antigen in 

the follicle without display on the surface of DCs (227).  Therefore, antigen loaded 

exogenously onto DCs may not represent a physiologically relevant mechanism of 

display.  

 

We demonstrated that apoptotic cells provide a source of antigen to DCs.  However, other 

antigens, such as immune complexes or soluble antigen, would be present in vivo and 

may also contribute to the antigen on the surface of these cells.  The mechanisms by 

which DC/MΦs acquire nuclear self-antigens remain unclear; however, a variety of 

surface receptors are used to clear apoptotic cells.  For example, immune complexes are 
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recognized by FcγRIIb and recycled to the DC surface (65).  Similarly, nuclear self-

antigens may be displayed on DC/MΦs via complement receptors since apoptotic 

antigens are readily coated with complement components (228, 229).  However, BMDCs 

from various mouse strains lacking complement component 4, FcγRIIb, or complement 

receptors 1, 2, or 3 display surface Sm (Carnathan DG unpublished observations).  One 

or a combination of receptors may be responsible for obtaining antigen and when one is 

deficient other receptors may compensate.  Another possibility is that donor cells transfer 

antigen to DCs through membrane lipids.  Others have reported that human DCs acquire 

HLA molecules by the transfer of membrane lipid from donor cell lines and transferred 

proteins activate tumor-specific CD4+ T cells (230, 231).  Apoptotic cells express surface 

self-antigen and DC/MΦs efficiently clear apoptotic debris, providing a possible mode of 

membrane transfer.  

 

The regulation of the innate and adaptive immune responses is important in maintaining 

B cell tolerance.  DCs repress LPS-induced Ig secretion through the secretion of 

repressive factors, IL-6 andCD40L, and by a contact-dependent mechanism.  Further, 

they are able to repress the BCR-mediated signal transduction in order to maintain 

unresponsiveness.  Therefore, we propose a model wherein antigen displayed by DCs and 

MΦs is recognized by the BC R, inducing destabilization, thus, prolonging the DC/MΦ 

interaction with the B cell.  This colocalization results in repression of both BCR-derived 

signaling as well as Ig secretion resulting from TLR-stimulation.  This ensures that low-

affinity autoreactive B cells maintain quiescence to self-antigen, such as apoptotic cells, 

and repress Ig secretion during innate immune response.  Lastly, chronic exposure to self-
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antigen reprograms IL-6 receptor and CD40L responses, allowing autoreactive and 

acutely-stimulated B cells to be differentially regulated by IL-6 and CD40L.  This 

promotes immunity in the absence of autoimmunity. 
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Figure 3.1.  Soluble Sm and apoptotic cells fail to negatively regulate Sm-speficic B 

cells. (A) Splenic B cells (1x105) purified by negative selection from HEL-Ig x sHEL 

mice were LPS stimulated (30 μg/ml) in the presence or absence of soluble HEL (100 

μg/ml) (B) 2-12H/Vκ8 B cells (1x105), purified by negative selection, were LPS 

stimulated (30 μg/ml) in the presence or absence snRNPs (10 μg/ml), soluble Sm (10 

U/ml) or apoptotic cells (5x105).  Ig secretion was quantitated by ELISA at day 4. 
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Figure 3.2. BMDCs, BMMΦs, and CD11c+ splenocytes display surface Sm. B6 

BMDCs (A, B), BMMΦs (C, D), and CD11c+ splenocytes (E, F) were untreated or 

trypsin treated, then stained with anti-Sm (2.12.3).  Forty-six percent of untreated 

BMDCs, 44% of untreated BMMΦs, and 40% of untreated CD11c+ splenocytes 

displayed Sm (100 cells analyzed).  In contrast, 2% BMDC/MΦs and 4% CD11c+ cells 

showed Sm following trypsinization. BMDCs (G, H) were stained with anti-Sm absorbed 

with BSA or recombinant SmD.  All images shown at a magnification of 63x. The insert 

contains a 1.5x magnification of a Sm-expressing CD11c+ cell. 
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Figure 3.3. BMMΦs and BMDCs display surface histones and DNA. B6 ΒΜDCs (A-

D) and ΒΜΜΦs (E-H) were untreated or treated with DNase (D, H) and stained with 

isotype control (A, E), anti-histone (B, F), or anti-DNA (C, G).  Thirty-three percent of 

BMDCs and BMMΦs exhibited histone staining, 48% of BMDCs, and 44% of BMMΦs 

showed DNA (100 cells analyzed).  In contrast, 5% BMDCs and 7% BMMΦs displayed 

Sm following DNase treatment.  All images shown at a magnification of 63x. 
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Figure 3.4. Nuclear, but not soluble, self-antigens are displayed by DCs and MΦs, 

but not lymphocytes. (A) B6 BMDCs were cultured with apoptotic cells for 4 hours. 

The apoptotic cells were removed by density centrifugation and the cells were stained for 

the presence of DNA. The DCs cultured with apoptotic cells (right panel) displayed a 2-

fold (p=0.002) increase in antigen on their surface compared to DCs alone (left panel).  

(B) Sorted CD3+ splenic T cells and B220+ B cells were stained with anti-Sm.  (C) Ex 

vivo CD11c+ splenocytes (left panel) from mice expressing soluble HEL (ML5) were 

stained with anti-HEL. The HEL-specific D1.3 cell line (right panel) was loaded with 

HEL (500 ng/ml) and stained with anti-HEL.  Seventy-three percent of D1.3 cells 

displayed HEL (100 cells analyzed).  All images shown at a magnification of 63x. 
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Figure 3.5. Coculture of DCs and B cells leads to B cell activation. (A) B6 B cells 

were stimulated with anti-μ or B6 BMDCs for 5 minutes.  The amount of 

phosphorylated- IκB-α in whole cell lysate was determined by immunoblotting. (B) 2-

12H/Vk8 (left panel) and B6 (right panel) purified B cells were stimulated with anti-

μ (dashed lines) or B6 BMDCs (thin line), or left unstimulated (thick line) for 6 hours.  

Cells were then stained with CD19 and CD69 and analyzed by flow cytometry. 

Immunoblots and histograms are representative of 3 experiments. 
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Figure 3.6. DCs do not induce BCR-mediated signal transduction in Sm-specific B 

cells. (A) Purified 2-12H B cells were stimulated with anti-μ or BMDCs for 5 minutes. 

The amount of phosphorylated-Syk in whole cell lysate was determined by 

immunoblotting.  (B) Purified 2-12H B cells were co-cultured with DCs and harvested at 

time points indicated.  Cells were fixed and stained for expression of intracellular 
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μ in MZ (top panels) and FO (bottom panels) B cells.  In both populations, B cells 

cultured with or with out DCs had the same amount of intracellular μ after 12 (left 

panels) and 24 hours (right panels).  Data is representative of 3 experiments. 
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Figure 3.7.  DCs repress LPS-induced Ig secretion by autoreactive B cells by an 

antigen- independent contact dependent mechanism.  (A)  2-12H/Vk8 B cells (1x105) 

were LPS stimulated (30 μg/ml) in the presence or absence of B6 or TLR4-deficient 

BMDCs (1x104) with or without a transwell apparatus. (B)  2-12H/Vk8 B cells (1x105) 

were LPS stimulated (30 μg/ml) in the presence or absence of B6 or TLR4-deficient 

BMDCs (1x104).  B cells were treated with TLR4-deficient DCs with or without anti-Sm 

F(ab’)2 (2.12.3) or isotype control murine IgG1 F(ab’)2.  (C)  HEL-Ig x sHEL B cells 

were LPS stimulated (30 μg/ml) in the presence or absence of B6 or TLR4-deficient 

BMDCs (1x104).  Ig secretion was quantitated by ELISA at day 4. 
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Figure 3.8. Sm-specific B cells recognize self-antigen and destabilize their BCR. The 

BCR complex was immunoprecipitated from 30x106 unstimulated,  B cells were isolated 

by either negative selection or by percoll density centrifugation (ρ>1.066).  Proteins 

resolved by SDS-PAGE were immunoblotted for μ-heavy chain and Ig-α.  For each 

purification method the intensity of Ig-α in 2-12H/Vκ8 relative to Vκ8 was determined 

by densitometry (displayed below each band).  Data is representative of 5 experiments. 
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Figure 3.9.  DCs repress BCR signaling upon anti-μ stimulation.  2-12H (A) or B6 

(B) B cells were cultured with or without B6 BMDCs for 1 hour and stimulated with anti-

μ for 5 min.  The amount of phophorylated-Syk in whole cell lysate was determined by 

immunoblotting followed by densitometry.  The 2-12H and B6 B cells cultured with DCs 

have two-fold (p=0.03) less p-Syk than B cells without DCs. The intensity of pSyk in B 

cells treated with DCs and anti-μ relative to B cells treated with anti-μ alone was 

determined by densitometry (displayed below each band).  Data is representative of 3 and 

5 experiments respectively. 
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CHAPTER IV.  DISCUSSION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Regulation of both the innate and adaptive immune responses is important in maintaining 

autoreactive B cell tolerance.  Microbial stimulation of TLRs provides a rapid 

inflammatory response involving the secretion of cytokines and production of antibodies.  

Further, B cell response to foreign antigen during the adaptive immune response is also 

essential in the clearance of infection.  However, the activation of autoreactive B cells by 

either self-antigen or microorganisms causes the production of autoantibodies and 

contributes to the development of autoimmune disease.  Therefore, SLE is characterized 

by hyperactive B cell activation resulting from abnormal tolerance mechanisms.   

 

We previously demonstrated that DCs repress LPS-induced Ig secretion by autoreactive 

B cells through soluble mediators.  Now we show that they can repress these B cells in 

the absence of soluble factors in a contact-dependent mechanism.  DCs from lupus-prone 

mice are defective in responding to LPS stimulation resulting in a deficient ability to 

repress the innate B cell response.  We also showed that DCs repress BCR-mediated 

signal transduction in naïve and autoreactive cells.  The mechanism of this repression is 

unknown, but one interesting possibility is an inhibitory receptor on the surface of B 

cells.  Our data show that DC/MΦs display nuclear self-antigen on their surface.  It is 

known that self-antigen is important in regulating B cell tolerance to antigen and 

microbial stimulation.  While the role of this antigen is unclear, we hypothesize that it is 

important in modulating autoreactive B cells susceptibility to regulation by soluble 

repressors and inducing colocalization.   
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The onset and later flares of autoimmune disease are often associated with bacterial or 

viral infection (76, 77, 78).  In particular, Epstein-Barr viral infection has been implicated 

in the onset and exacerbation of SLE (78).  Lupus-prone mouse models that are 

immunized with bacterial or viral components have aggravated symptoms (79, 80, 81).  

Further, several studies focusing on TLR-deficient mice and TLR expression in patients 

have demonstrated the importance of these receptors in the initiation and progression of 

the disease (85, 86, 87, 88).  Therefore, regulation of the innate immune response in 

autoreactive cells is critical in maintaining tolerance.  Previously, we described that 

DC/MΦs secrete IL-6 and CD40L and repress chronically antigen-experienced, 

autoreactive B cells; these B cells are then unable to secrete Ig in response to polyclonal 

activation (103, 104).  The cytokines produced by these cells are sufficient to repress Ig 

secretion by autoreactive B cells because the supernatant from stimulated cells or 

individual recombinant cytokines alone are repressive (103).  We studied this repression 

of innate responses in lupus-prone MRL/lpr mice to determine if this mechanism is 

dysregulated in disease.  Compared to B6 mice, the DCs from MRL/lpr were defective in 

their IL-6 mRNA production and secretion of IL-6 (Figure 2.3 and 2.5).  While overall 

the DCs were less efficient in their repression of Sm-specific B cells, their lack of IL-6 

production did not always correlate with deficient repression of Ig secretion (Figure 2.2).  

In order to make up for the lack of IL-6, other mechanisms of tolerance may be utilized.  

For instance, TNF-α, which is also secreted by DCs, represses Ig secretion by 

autoreactive B cells and, if produced at normal levels, could compensate for the defective 

production of other soluble mediators (Gilbert MR manuscript in preparation).  We also 

have demonstrated that in the absence of the tolerizing cytokines, DCs are able to 
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partially repress LPS-stimulated, autoreactive B cell secretion in a contact-dependent 

manner (Figure 3.7).  Cell contact-mediated inhibition of autoreactive B cells during an 

innate immune response is important when the DCs fail to be activated by the same 

pathogen as the B cell or are defective in secreting soluble factors as in the MRL/lpr 

mice.  However, because the MRL/lpr DCs have an overall defect in their ability to 

repress autoreactive cells, they may also lack the component(s) essential for the contact 

mediated repression, thereby exacerbating the lack of soluble repressors. Therefore, 

investigating the ability of MRL/lpr DCs to mediate contact-dependent repression will 

help us to fully describe their contribution to dysregulation of B cells in lupus-prone 

mice.  Our data confirm that the regulation of the TLR response in autoreactive cells is 

important in preventing their aberrant activation leading to the breakdown in tolerance 

and disease. 

 

Numerous studies characterize DCs as dysfunctional or abnormal in patients and lupus-

prone murine models.  We demonstrated MRL/lpr DCs compared to B6 were defective in 

the production of IL-6 mRNA and secretion of IL-6 upon LPS stimulation.  Because 

several components of the TLR4 signaling pathway were shown to be defective, we 

concluded that the diminished IL-6 production was due to dysfunctional TLR signaling 

(Figure 2.6 and 2.7).  Further, DCs were also defective in IL-6 production upon 

stimulation of TLR7 and 9, but not TLR3, indicating that the defect is in the MyD88-

dependent pathway (Figure 2.3).  We are unsure exactly where the dysregulation of 

signaling occurs.  It may be a defective component of the signaling pathway upstream of 

IκBα, or perhaps the receptor itself is unable to sustain the signal.  Signaling components 
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that act to repress TLR signaling may contribute to defective signal transduciton.  

Suppressors of cytokine signaling (SOCS) family proteins regulate TLR signaling (232).  

We have evidence that expression of SOCS3 is increased in MRL/lpr DCs (Gilbert MR 

unpublished observations).  Therefore, the response to TLR stimulation could be 

diminished due to overexpression or activation of repressive mediators.  DCs poor 

response to polyclonal activation might be due to an increase in apoptotic cells found in 

SLE (16, 17, 116, 161, 162).  DCs are responsible for the clearance of these cells, 

however, after phagocytosis they are not stimulated by polyclonal activation (199).  The 

antigen displayed on the surface of apoptotic cells may also contribute to defective TLR 

activation.  Exposure of cross-reactive TLRs 7 and 9 to self-antigen may desensitize the 

TLR signaling pathway (55, 89).  These receptors are not on the surface of the cell, but 

could interact with the antigen if it was endocytosed through another receptor delivered 

to the TLR endosome.  This could be mediated by receptors that are involved in 

phagocytosis, such as FcRs or complement (55).  Multiple factors may contribute to the 

dysregulation of TLR signaling.  The abnormal response of DCs to polyclonal activation 

leads to reduced cytokines secretion resulting in defective repression of autoreactive B 

cell Ig secretion. 

 

We demonstrated that the interaction between normal DCs and B cells results in 

repression of BCR-derived signaling in naïve and autoreactive B cells (Figure 3.9).  This 

is the first evidence that DCs repress BCR signal transduction.  Non-autoreactive B cells 

are sensitive to this repression; therefore, BCR desensitization by exposure to antigen is 

eliminated as a possible mechanism.  However, there are several other potential 
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mechanisms by which this repression could be mediated.  One interesting possibility is 

that DCs might activate inhibitory receptors on the surface of B cells that negatively 

regulate BCR signaling.  The inhibition by these receptors is mediated through the 

activation of protein phosphatases such as SHP-1, SHP-2, and SHIP.  CD72, PIR-B, CD5 

and CD22 associate with SHP-1 to attenuate BCR-derived signals (233, 234, 235, 236).  

FcγRIIb activates SHIP and PD-1 and PIR-B recruit SHP-2 to prevent downstream 

signaling from the BCR (235, 237, 238).  Of particular interest are CD22 and FcγRIIb, 

because of their involvement with Lyn (106, 239).  Lyn has been shown to be able to 

repress both BCR- and TLR-mediated responses (240, 241).  In this scenario, DC-

mediated repression of the innate and adaptive immune responses could be mediated 

through the same receptor.   

 

In order for this regulation to occur through one of these inhibitory molecules, the DC 

must engage the receptor on the B cell.  If the antigen on the surface of DCs is in IC, then 

FcγRIIb would be a candidate for repression.  The receptors CD22, CD72, Plexin B-1, 

PIR-B, and PD-1 have known ligands on the surface of DCs (237, 242, 243, 244, 245, 

246, 247). However, not all of the ligands for these inhibitory receptors have been 

identified.  There may be an unknown receptor-ligand combination that promotes 

negative regulation of the BCR when in contact with the surface of DCs.  It is also 

thought that some receptors and ligands for negative regulation are both present on the 

surface of the B cell and can interact in cis (248, 249).  Instead of providing a ligand, the 

DC may act as a bridge to bring these two molecules together.  Because several of these 

receptors utilize the same phosphatases, multiple receptors may be involved.  
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Determining if inhibitory receptors are involved in DC-mediated repression of BCR 

signaling will further our understanding of this mechanism.  

 

Another reason that inhibitory receptors are potential candidates for this repression is that 

several of the molecules discussed above have been implicated in the development of 

autoimmune disease.  The expression of FcγRIIb, CD72, and Lyn is reduced in murine 

lupus models and in patients, which results in activated B cells (62, 63).  Mice lacking 

FcγRIIb, CD22, and Lyn develop disease (27, 240).  We would like to investigate if 

lupus-prone DCs can mediate this general repression of BCR signaling and if lupus-prone 

B cells are susceptible to it.  The ability of DCs to repress BCR signal transduction 

implies that it could be important in regulating autoreactive B cells’ response to cognate 

antigen to prevent an autoimmune response 

 

We demonstrated that naïve B cell signaling is also negatively regulated by DCs (Figure 

3.9).  Repression of both naïve and autoreactive B cells was not complete.  It was 

diminished by half compared to B cells stimulated with anti-μ alone.  It is possible that 

the DCs are only regulating a specific population of B cells.  Another potential role for 

this repression is that DCs may provide a developmental checkpoint by increasing the 

threshold of stimulation for the cognate antigen.  This mechanism could prevent B cells 

from becoming antibody secreting cells.  Therefore, it is important to examine if DCs can 

repress antigen-induced Ig secretion and proliferation in both autoreactive and naïve B 

cells.  These studies will help us to determine the role for DC-mediated repression of 

BCR-signal transduction.   
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The ability of DCs to display intact antigen resulting in prolonged interaction with B cells 

has been demonstrated in a variety of studies.  DCs exogenously loaded with HEL cause 

antigen-specific B cells to signal (165, 166, 167).  Follicular DCs hold IC on their surface 

in germinal centers to prevent apoptosis and promote proliferation of B cells (250, 251).  

Blood DCs capture and transport antigen to interact with splenic MZ B cells and help 

induce the T-independent immune response (188).  These data indicate that DCs activate 

B cells by providing a cognate antigen. However, HEL-specific B cells can bind to 

soluble antigen in the follicle without DCs (227).  Further, most of these studies 

examined exogenously-loaded, high-affinity antigens, infectious antigens, or synthesized 

immune complexes. Our confocal studies demonstrate that endogenous, nuclear self-

antigen is constitutively displayed on the surface of DC/MΦs (Figure 3.2 and 3.3).  Low-

affinity Sm-specific B cells can recognize Sm on the surface of DC/MΦs, demonstrated 

by their destabilized BCR (Figure 3.8). However, this interaction does not result in 

activation or BCR signaling as it does in the studies described above (Figure 3.6).  

Because DC/MΦs display nuclear antigens other than Sm, such as DNA and histones, it 

would be of interest to study the stability of BCRs in other autoreactive B cell models, 

specifically Ars/A1 that recognizes ssDNA and VH3H9H that have anti-ss and dsDNA B 

cells (181, 252).  This would confirm that other nuclear antigens on the surface of 

DC/MΦs can induce a similar response.  If multiple autoreactive cells recognize low 

affinity self-antigens, it would corroborate the idea that the DCs and autoreactive B cells 

maintain contact with each other.  Further, we hypothesize that the antigen is important in 

colocalizing DC/MΦs and autoreactive B cells specific for nuclear antigen in order to 
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mediate repression to both antigen and infectious stimuli and maintain anergy.  While in 

vitro DCs can repress BCR signaling in B cells of a varied repertoire, in vivo the DCs 

may only regulate B cells that can maintain a prolonged interaction through BCR 

engagement of self-antigen.  In order to study the duration and nature of the interaction 

between autoreactive B cells and DCs in vivo, we would utilize two-photon microscopy 

imaging studies as in Qi et al. (167).  The surface antigen may not be directly responsible 

for repression; however, it could be influencing what B cells are being affected by the 

regulation by promoting colocalization with autoreactive cells. 

 

Antigen plays an important role in the maintenance of B cell tolerance to both adaptive 

and innate stimulation.  Constant BCR occupancy is required to maintain anergy in 

response to further stimulation (136).  During the innate response, antigen stimulation of 

HEL-specific B cells results in unresponsiveness to TLR9 and 4 stimulation.  

Additionally, chronic antigen experience is necessary for LPS-stimulated, autoreactive B 

cells to be susceptible to repression by soluble mediators (103, 104, 220, 226).  These 

data demonstrate that engagement of the BCR modulates the B cell response to other 

stimuli in order to maintain tolerance.  Therefore, we investigated the source of tolerizing 

antigen for low-affinity Sm-specific B cells.  We demonstrated that high-affinity soluble 

antigen, HEL, was sufficient in repressing LPS-induced Ig secretion by HEL-specific B 

cells.  However, Sm-specific B cells were unaffected by treatment with their cognate 

soluble antigens (Figure 3.1).  Further, the antigen on the surface of DCs was not 

important in contact-depedent repression of LPS-induced Ig secretion (Figure 3.7).  

However, during the innate response, chronic antigen experience is necessary to be 

 97



sensitive to repression by soluble factors (103).  Therefore, we propose that surface self-

antigen provides a source of antigen that can engage the BCR without activating the cell.  

This engagement of the BCR causes reprogramming of cell signaling that confers 

susceptibility for IL-6 and CD40L-mediated tolerance, while the DC/MΦs that secrete 

these factors negatively regulate BCR-mediated signal transduction.   

 

We demonstrated that apoptotic cells, which display nuclear self-antigen on their surface, 

enhanced LPS-stimulation of Sm-specific B cells (Figure 3.1).  In lupus-prone mice, an 

accumulation of apoptotic cells leads to activation of autoreactive B cells to produce 

autoantibody (13, 15).  Further, some SLE patients have elevated levels of apoptotic cells 

(16, 17).  Previously, it was shown in the HEL system that antigen-experienced 

autoreactive B cells can be eliminated in a Fas-dependent manner when they encounter T 

cell help; however, they may be protected from apoptosis by interacting with highly 

cross-linking antigen (253, 254).  Thus, an increase in stimulatory form of self-antigen on 

apoptotic cells could contribute to a loss of tolerance.  Further, we have evidence that 

CD11c  splenocytes and BMDCs from MRL/lpr display + four-fold (p<0.0001) and nine-

fold (p=0.001) more Sm compared to B6 DCs, respectively (Carnathan DG unpublished 

observations).  This increase in surface antigen on DCs could contribute to the defect in 

the DC-mediated repression of autoreactive B cells, or it may provide more stimulatory 

antigen to lupus-prone, autoreactive B cells protecting them from Fas-dependent 

apoptosis.  Further experiments to investigate the role for increased surface-antigen in 

defective tolerance mechanisms are necessary. Our data corroborate previous studies 
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demonstrating that the form of antigen is important in the regulation of autoreactive B 

cells. 

 

Our data focus on DC repression of the innate and adaptive immune response and their 

dysregulation in lupus-prone mice.  Previously, we examined the ability of MΦs to 

repress Ig secretion by antigen-experienced autoreactive B cells in response to LPS 

sitmulation (104).  This study demonstrates that much like DCs, MΦs from lupus-prone 

mice are also defective in their secretion of soluble factors and deficient in the ability to 

repress autorective B cells. These cells are defective in their production of the soluble 

repressors IL-6 and CD40L.  Several reports have indicated that DCs and B cells are able 

to interact; however, our study introduces the concept of nuclear self-antigen on the 

surface of MΦs playing a role in regulating B cells through direct contact, demonstrated 

by BCR destabilization that was evident when Sm-specific B cells were purified with by 

DC/MΦs (Figure 3.2, 3.3, and 3.8).  It is of interest to confirm that, like DCs, MΦs are 

also capable of repressing BCR-mediated signal transduction and Ig secretion.   In our 

previous studies of DC/MΦ regulation of autoreactive B cells, it was determined that FO 

B cell LPS-induced Ig secretion can be repressed by both MΦs and DCs while MZ B 

cells are only susceptible to suppression by MΦs (104).  It would be of interest to study 

how the MΦs differentially regulate B cell subset signaling and autoantibody secretion 

compared to DCs.  Determining the role of MΦs in the repression of B cell responses will 

help us to understand how they contribute to tolerance. 
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We have demonstrated that DC/MΦs are capable of regulating both the innate and 

adaptive immune responses by B cells.  We propose a model in which the antigen 

displayed on the surface of these cells might act to colocalize the DC/MΦs with 

autoreactive B cells and induces receptor destabilization. The combination of 

destabilization and the ability of DCs to repress BCR signaling results in anergy.  In vivo, 

autoreactive cells are subject to continuous ligation of the BCR with self-antigen, which 

may cause the B cell to reprogram their response to IL-6, CD40L, and TNF-α secreted by 

DC/MΦs upon LPS stimulation resulting in their repression. These cytokines are 

sufficient to regulate Ig secretion of LPS-stimulated autoreactive B cells; however, a DC 

mediated contact-dependent mechanism is utilized if the DC is not activated or is 

defective in secretion of repressive factors.  In MRL/lpr mice, the defective DCs fail to 

secrete the soluble mediators and display abnormal amounts of surface self-antigen; their 

dysregulation results in their inability to repress autoreactive B cell Ig secretion.  Thus, 

DC/MΦ-regulation of adaptive and innate responses is essential in maintaining tolerance 

and preventing autoimmunity. 
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