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ABSTRACT 
 

ALEEZA J ROTH: Characterization of antigenic determinants and their correlation  

with disease activity in ANCA glomerulonephritis 
 (Under the direction of Dr. Ronald J. Falk, M.D.) 

 

This dissertation focuses on the interaction of antineutrophil cytoplasmic autoantibodies 

(ANCA) and two of their target autoantigens, myeloperoxidase and lysosomal membrane protein 2.  

The results of these interactions reveal novel epitopes associated with disease activity in 

granulomatosis with polyangiitis (GPA). 

The relationship between lysosomal membrane protein 2 (LAMP-2), a putative 3
rd

 

autoantigen, and ANCA disease is described in Chapter 1.  In 2008, LAMP-2 was purposed to be a 

novel autoantigen which predicted relapse in ANCA disease.  Exhaustive efforts uncovered that 

antibodies directed to LAMP-2 were not specific to ANCA disease nor were they relevant to disease 

activity in our US patient cohort.   

Chapter 2 investigates the binding sites of myeloperoxidase (MPO) specific autoantibodies in 

sera samples from patients with ANCA glomerulonephritis and healthy controls.  We prove that anti-

MPO autoantibodies are restricted to a limited number of epitopes on MPO and circulating 

autoantibodies target the same epitopes during relapse and remission.  In addition, to identify MPO 

epitopes of interest, a conformation dependent proteomics assay was used in conjunction with 

traditional immunologic methods.  An ANCA disease associated epitope was uncovered (Chapter 3) 

with an association with disease activity.  The discovery of this epitope has lead to the development 

of a pre-clinical test for ANCA disease.  As a whole, this is a comprehensive body of work which 

determines the complete profile of MPO specific epitopes found in a patient cohort in the 

southeastern US. 
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PROLOGUE: ANTIBODY MEDIATED AUTOIMMUNE DISEASE 

 

The existence of autoantibodies in autoimmune disease has been known for decades whereas 

the pathogenesis of autoantibodies in many autoimmune diseases has been debated.  There is 

evidence of pathogenecity both in vitro and in vivo
1-5

 in autoimmune diseases including: anti-GBM, 

systemic lupus erythematosus (SLE), type 1diabetes and antineutrophil cytoplasmic autoantibodies 

(ANCA) but the controversy of their role in pathogenicity persists.   One disease where the 

pathogenic role of autoantibodies has been largely accepted is anti-GBM disease (Goodpasture’s 

syndrome) where autoantibodies to the glomerular basement membrane were found in 1967 by 

Lerner et. al.  At that time, purified autoantibodies were transferred from a patient with anti-GBM 

disease to recipient monkeys and induced glomerulonephritis
1
.   Over the next 44 years, more and 

more evidence has supported this initial result and the pathogenesis of these autoantibodies has 

become central to the diagnosis and treatment of anti-GBM disease.   

In contrast, the discovery of anti-neutrophil cytoplasmic autoantibodies (ANCA) which are 

found in the circulation of patients with pauci-immune necrotizing and crescentic glomerulonephritis, 

less progress has been made. The most striking experiments have shown that ANCA are pathogenic 

in an MPO mouse model
5
.  A mouse model was developed by Xiao and colleagues using murine 

myeloperoxidase transferred into a myeloperoxidase knockout mouse and subsequent ANCA IgG 

derived from the knockout mouse are then transferred to an immune competent mouse.  After six days 

of the initial intravenous injection, all mice develop necrotizing glomerulonephritis which is 

strikingly similar to human disease
5
.  This MPO-ANCA mouse model strongly suggests the 
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pathogenic role of ANCA in mice.  Substantial evidence supports that MPO-ANCA and PR3-

ANCA cause granulomatosis with polyangiitis, however specific epitopes are unknown and it is only 

somewhat accepted that a restricted number of ANCA epitopes have pathogenic potential
4-6

.  Little is 

known about the specificity of disease-causing ANCA and moreover, whether the specificity of 

ANCA changes over the course of disease. This question has not been answered in GPA, or in many 

other antibody-induced autoimmune diseases.   

Autoantigens in ANCA disease 

There are two well characterized autoantigens ANCA target, myeloperoxidase (MPO) and 

proteinase 3(PR3).  In 2008, another autoantigen, lysosomal membrane protein 2 (LAMP-2), was 

implicated in GPA
7
.  All three proteins reside in human neutrophils and monocytes. 

In 1988, Carrlsson et. al. isolated and characterized h-LAMP-1 and h-LAMP-2 from chronic 

myelogenous leukemia cells.  LAMP-2 is a sialoglycoprotein and polylactosaminoglycan carrier 

protein which makes up 0.1-0.2% of total cell proteins
8
.  Polylactosaminoglycan are high molecular 

weight saccharides that are known to chaperone potentially antigenic molecules including, blood 

group antigens and tumor-associated antigens.  The sialoglycoprotein carriers of these saccharides are 

important to characterize because of their unique function.  LAMP-2 is a heavily glycosylated protein 

with both N and O-linked polysaccharides which in an aberrant form is thought to contribute to 

possible antigenicity in GPA
9
.  Interestingly, a nine amino acid sequence in the extracellular domain 

of the LAMP-2 protein (HGTVTYNGS) has complete homology to a gram-negative bacterial 

adhesion protein FimH.  FimH is a protein found in fimbriated bacteria such as E. coli and P. 

aeruginosa. 

Myeloperoxidase was first isolated and characterized as veroperoxidase in 1941 by Agner et. 

al.
10

  MPO is a 140kD heme containing enzyme found in myeloid cells and stored in the azurophilic 

granules of neutrophils and monocytes
11

.   It consists of a light chain and heavy chain comprising an 

asymmetrical dimer in vivo that’s main function is catalyzing reactions between hydrogen peroxide 
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and halides to perform its microbicidal role in the immune system
11, 12

.  MPO has one known 

inhibitor, ceruloplasmin (CP), which is a 150kD plasma protein and functions as an iron and copper 

transporter and also as an acute phase reactant.   MPO was first discovered to be the target of ANCA 

in 1988 by Falk et. al. in patients with systemic vasculitis and necrotizing and crescentic 

glomerulonephritis
13

.  Since that time autoantibodies targeting MPO have been utilized to diagnose 

and follow disease activity in patients with GPA. 

Lastly, proteinase 3 which is a 29kD serine protease, also found in the granules of neutrophils 

and monocytes, functions as an enzyme that is responsible for the cleavage of a variety of substrates.  

PR3 was identified as a target of ANCA in 1990 by Ludemann et. al. by immunoprecipitation with 

antibodies purified from patient’s sera
14, 15

.  PR3-ANCA is more prevalent in the Southwestern U.S. 

than MPO-ANCA and this serotype is associated with a higher frequency of relapse which correlates 

with anti-PR3 autoantibody titers
16

.  Williams et. al. characterized the presumed pathogenic epitopes 

of PR3 using linear peptide epitope mapping
17

. 

Autoantibody (ANCA) and autoantigen interaction 

Mapping the autoantigenic determinants of MPO and PR3 have been a much sought after 

area of research since the discovery of ANCA in an effort to glean information about the 

pathogenicity of autoantibodies.  Epitope specific ANCA have the potential to be precise tools to 

measure disease activity and pinpoint pathogenic mechanisms
18

.  Many groups studying ANCA 

disease have reported epitope targets of both MPO- and PR3-ANCA that are immunodominant in 

patients during active disease.  Initial efforts of epitope mapping PR3-ANCA were successful using 

overlapping peptides
17

, in stark contrast, epitopes on MPO were determined to be conformational
19

 

and remained an enigma.  Studies using overlapping MPO peptides that span the whole molecule 

have been either inconclusive or present conflicting results
20-24

.  To rectify a conformational 

conundrum, human/mouse chimeric molecules were used to preserve structure with broad 

unconvincing results
22

.  The most recent report on ANCA epitope specificity came from Bruner et. al. 
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who present seven immunodominant epitopes for consideration and suggest their probable influence 

on disease expression
20

.  The goal of epitope mapping MPO-ANCA is clear and the clinical and 

scientific benefits are far-reaching because of their potential role in pathogenesis. 

Presence of ANCA before clinical manifestation of autoimmune disease 

Understanding epitope specificity of natural autoantibodies in healthy subjects is equally 

important as disease specific epitopes. Olson et. al. present an intriguing article which describes the 

presence of asymptomatic autoantibodies (anti-GBM, PR3 and MPO) in healthy individuals years 

before onset of anti-GBM disease
25

.  Interestingly, the existence of autoantibodies found in healthy 

individuals is not a unique event.   This phenomenon has been well documented in several 

autoimmune diseases including SLE, ANCA glomerulonephritis, anti-GBM and type 1 diabetes
26-29

.  

As early as 1990, studies demonstrated the presence of  islet cell autoantibodies in healthy first-

degree relatives of  type I diabetes patients
30

.   Autoantibodies associated with type I diabetes are 

highly sensitive markers providing the ability to predict disease onset
27

.   More recently, in the case of 

SLE, an extensive article by Arbuckle et. al. described that 88 percent of patients studied who 

developed SLE had autoantibodies to at least one autoantigen while still clinically asymptomatic
26

.  

Further, the autoantibodies were measurable in multiple samples,  a mean of 3.3 years before 

diagnosis; with a significant accumulation of diverse autoantibodies leading up to clinical 

presentation of SLE
26

.  While asymptomatic autoantibodies are reported to be present and detectable 

in ANCA disease in patients before diagnosis; the final trigger for clinical manifestation of disease is 

unclear
28

. 

The most intriguing question in light of the presence of asymptomatic autoantibodies is: how 

does clinical manifestation of disease occur?  The nature of the glomerular basement membrane as an 

autoantigen gives clues to possible mechanisms.  Pedchenko et. al. characterized the delicacies of 

autoantibodies and the nature of the autoantigen recognized during active anti-GBM disease
31

.  There 

is an abundance of data demonstrating that anti-GBM disease autoantibodies are pathogenic and 
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specific to the autoantigenic region, but the autoantigen itself does not readily present the epitope.  A 

conformation-dependant epitope is known to be the primary pathogenic epitope which is exposed by 

disassociation of the endogenous hexamer structure
31

.  Understanding the development of how 

autoantibodies may develop in anti-GBM disease may provide clues for ANCA disease.  Since 

patients with GPA carry asymptomatic autoantibodies which are not pathogenic, their specificity for 

the autoantigen maybe the key to understanding the development of ANCA disease. 

Epitope mapping ANCA 

In a 2009 review on ANCA epitope specificity, the author relents that there is little known 

about MPO-ANCA and what is known about PR3-ANCA is limited 
32

.  What we do know is that 

MPO-ANCA are most likely directed towards conformational epitopes, favoring a cryptic epitope 

theory 
33

.  This is one of a number of theories of autoimmunity to explain the origins of GPA and 

possibly the reason for the ongoing cycle of relapse and remission characteristic of GPA.  Previous 

efforts to study ANCA and establish immunodominant MPO-ANCA epitopes provided minimal 

useful information, even when using chimeric molecules to preserve native structure 
22

.  It may be 

that natural or asymptomatic autoantibodies, present in the general population, play an active role in 

the development of pathogenic autoantibodies by disrupting autoantigen conformation.  Moreover, no 

epitope mapping study in ANCA disease has followed patients over time through remission and flares 

and neither MPO-ANCA titers or isotype class have proven to be good markers of relapse or 

remission 
34-37

.  This body of work addresses the issues present in the field today including: 

conformationally sensitive epitopes, natural and asymptomatic epitopes, patient epitope profiles over 

disease course, and clinical relevance.   It is essential to determine which ANCA have pathogenic 

potential and if an epitope specific autoantibody is required for disease onset.   

Central Hypothesis 

To summarize, ANCA interactions with myeloperoxidase, proteinase 3 and LAMP-2 are 

important in understanding GPA not just for pathogenesis but for diagnosis and treatment.  The 
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central hypothesis of this body of work is ANCA bind many sites on target autoantigens  and that 

these target epitopes are the same at disease onset and relapse while absent during remission.  In 

addition to the central hypothesis it encompasses several sub-hypotheses including 1) LAMP-2 is an 

autoantigen involved in GPA 2) Disease associated ANCA have pathogenic potential in vivo and in 

vitro 3) ANCA negative patients have autoantibodies to neutrophil proteins. 

In the following three chapters, this central hypothesis and subsequent sub-hypotheses will be 

addressed.  Chapter 1 describes our efforts to test the putative autoantigen LAMP-2, as a contributing 

factor in GPA.  A recombinant LAMP-2 protein and a synthetic LAMP-2 peptide were produced and 

used as substrates to determine if anti-LAMP-2 autoantibodies are prevalent in a Southeastern USA 

cohort of patients with PR3- and MPO-ANCA.  Detailed in Chapter 2, is the in depth method of 

epitope excision using mass spectrometry to test whether anti-MPO autoantibodies are restricted to a 

limited number of epitopes on MPO and whether circulating autoantibodies target the same epitopes 

during relapse.  Finally, in Chapter 3, we examine the question of ANCA negative glomerulonephritis 

and what autoantigen(s) and subsequent epitope is targeted in that population of patients.

 



_____________________________ 

1
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Chung, Donna O Bunch, PhD, JulieAnne G McGregor, MD, Susan L Hogan, PhD, Yichun Hu, Jia Jin Yang, 

MD, Elisabeth A Berg, John Niles, MD, J. Charles Jennette, MD, Gloria A Preston, PhD
 
and Ronald J Falk, 
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Chapter 1 

ANTI-LAMP-2 ANTIBODIES ARE NOT PREVALENT IN PATIENTS 

WITH ANTINEUTROPHIL CYTOPLASMIC AUTOANTIBODY 

GLOMERULONEPHRITIS 
 

 

 

This chapter consists of material from a manuscript reprinted with permission from J Am Soc 

Neph 2011
1
. 

 

In 2008, Kain et.al. reported a novel autoantigen found in ANCA disease.  This autoantigen was 

lysosomal membrane protein 2 or LAMP-2 and was putatively found in 93% of sera from patients 

with pauci-immune focal necrotizing glomerulonephritis in Vienna, Austria.  This chapter focuses on 

the investigation of anti-LAMP-2 autoantibodies in sera from the Glomerular Disease Collaborative 

Network at UNC Chapel Hill. 
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Lysosomal membrane protein 2 (LAMP-2) is a target of antineutrophil cytoplasmic 

autoantibodies (ANCA) in addition to the more commonly known targets proteinase 3 and 

myeloperoxidase.  The prevalence of anti-LAMP-2 antibodies and their relationship to disease in 

ANCA glomerulonephritis are not well described.  We measured anti-LAMP-2 reactivity in 278 sera 

samples from patients with ANCA glomerulonephritis (n=103); those with fimbriated, gram–negative 

Escherichia coli urinary tract infection (n=104); disease controls (n=19); and healthy volunteers 

(n=52).  With levels in healthy controls used to define a reference range, anti-LAMP-2 reactivity was 

present in 21% of ANCA sera; reactivity was also present in 16% of the control group with urinary 

tract infection.  Western blotting and immunofluorescence microscopy did not verify positivity.  

There was no correlation between anti-LAMP-2 antibodies and disease activity.  Furthermore, Wistar 

Kyoto rats injected with anti-LAMP-2 antibodies did not develop glomerulonephritis.  In conclusion, 

antibodies that react with LAMP-2 may exist at very low titers in a minority of patients with ANCA 

disease.  These data do not support a mechanistic relationship between anti-LAMP-2 antibodies and 

ANCA glomerulonephritis. 

Introduction 

In 1995, Kain and coworkers reported that lysosomal membrane protein 2 (LAMP-2) is a 

target of anti-neutrophil cytoplasmic autoantibodies (ANCA) in addition to proteinase 3 (PR3) and 

myeloperoxidase (MPO).
7
  Recently, Kain and coauthors further characterized LAMP-2 

autoantibodies and concluded that more than 90% of patients with active pauci-immune 

glomerulonephritis had circulating anti-LAMP-2 autoantibodies.
9
  The majority of these patients also 

had MPO-ANCA and PR3-ANCA.
15, 38-42

 These findings have had a significant impact on both the 

clinical and research communities.
43-45

  Intriguingly, anti-LAMP-2 antibody epitope analysis 

indicated the antibodies recognized a nine-amino acid peptide in a bacterial adhesion protein (FimH) 

carried by fimbriated, gram-negative bacteria, including Escherichia coli.
9
  An immunological 
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response triggered by bacterial infection led to production of autoantibodies to the human LAMP-2 

protein.
9
  The resulting anti-LAMP-2 autoantibodies were proposed to be pathogenic and able to 

cause glomerulonephritis in rats.  Rats immunized with FimH peptide developed pauci-immune 

glomerulonephritis and antibodies to human LAMP-2.
9
  If fimbriated bacteria, with the relevant 

amino acid sequence of FimH, are proven to trigger ANCA disease in susceptible individuals the 

therapeutic implications could be far-reaching.   

The purported high prevalence of anti-LAMP-2 autoantibodies stimulated discussions on 

whether a routine screen for anti-LAMP-2 autoantibodies should be initiated for all ANCA-disease 

patients.  Before such steps are taken, their prevalence and their relationship with disease activity 

should be established in independent cohorts. To establish the diagnostic value of anti-LAMP-2 

antibodies, the specificity and sensitivity of the antibody must be verified in multiple patient cohorts 

evaluated in multiple laboratories. We present data generated at the UNC-Kidney Center, NC, USA.  

LAMP-2 antibodies are not prevalent in patients with MPO-ANCA, PR3-ANCA and ANCA negative 

glomerulonephritis. 

Materials and Methods 

To test for the presence of LAMP-2 autoantibodies in patients with pauci-immune 

glomerulonephritis we chose a cohort of 103 patients with biopsy-proven disease comprised of 53 

females and 50 males; 48 MPO, 53 PR3, 2 both MPO and PR3 patients with a median age of 53 ± 

18.6 years.  Birmingham Vasculitis Activity Score or BVAS, which is the measurement of disease 

activity in vasculitis patients, was used upon chart review to cumulatively define disease status of the 

patient cohort.  As determined by BVAS, 45 of these patients had active disease (BVAS ˃0) while 57 

were in remission (BVAS =0).  For healthy control populations we tested 52 healthy individuals as 

well as 104 patients with urinary tract infections.   

Protein, Peptides, and Antibodies 

For the recombinant protein, the extracellular domain of LAMP-2 was amplified by PCR 

corresponding to AA (1-359) and cloned into a pcDNA2.1 His-Tag plasmid construct (Invitrogen, 
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Carlsbad, CA) modified with a BM40 secretion signal. Protein was produced using the HEK-293F 

expression system (Invitrogen). Protein from HEK-293F cell supernatant was purified using a His-

Trap Column (GE Healthcare, Piscataway, NJ) by FPLC. The LAMP-2 epitope (41-49) peptide and 

the FimH peptide were synthesized (331-341). A rabbit was immunized with the LAMP-2 peptide to 

produce high titer anti-LAMP-2 total IgG for rat studies. For assay positive controls we used a 

commercial polyclonal antibody raised against native full length LAMP-2 (Abnova, Taipei City, 

Taiwan).   

ELISAs and Westerns 

For the recombinant protein ELISA LAMP-2 was coated on a Costar 96-well high binding 

EIA/RIA plate (Corning, Lowell, MA) at 4°C overnight (10µg/mL), blocked for 2 hours in 3% BSA  

(ThermoFisher Scientific, Waltham, MA), and probed with patient serum at 1:20 in 1% BSA. 

Reactive IgG was detected by alkaline-phosphatase conjugated goat anti-human IgG antibody 

(Jackson ImmunoResearch Labs, West Grove, PA). Optical density at 405 nm was measured using a 

VERSAmax tunable microplate reader (Molecular Devices, Sunnyvale, CA). For the LAMP-2 and 

FimH peptide ELISAs, the peptides were first crosslinked on themselves to enhance plate binding 

using 10% paraformaldehyde (Sigma-Aldrich, St. Louis, MO) in PBS (Invitrogen) at a concentration 

of 5mg/mL for two days at room temperature. Nunc Polysorp plates (ThermoFisher Scientific) were 

then irradiated for 20 minutes in a UV Stratalinker (Stratagene, La Jolla, CA) and coated with 

crosslinked peptide overnight at 4°C (50µg/mL). The proceeding steps of the protocol were carried 

out the same as in the rLAMP-2 ELISA above. Westerns were used to confirm positives on the 

recombinant ELISA by probing with serum in 1% blotto at 1:100 overnight (4°C) on 10µg of 

rLAMP-2 antigen and MPO (Elastin Products Company, Owensville, MO) or recombinant PR3, 

depending on the patient's diagnosis.  

Immunofluorescence Microscopy Assays 

A cytospin was used to mount HEK-293F cells (Invitrogen) transfected with LAMP-2 onto 

microscope slides (ThermoFisher Scientific). Cells were fixed using acetone (ThermoFisher 
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Scientific) and were probed with patient serum at 1:100 for 1 hour. Bound IgG was detected by 

immunofluorescence microscopy using FITC conjugated goat anti-human IgG (Jackson 

ImmunoResearch). LAMP-2 transfected O-linked glycosylation deficient CHO-LDL-D cells were 

also used as a substrate. CHO LDL-D cells (ATCC, Manassas, VA) were obtained with the 

permission of Dr. Monty Krieger. Cells were grown in varying conditions to alter the glycosylation 

pattern of the recombinant LAMP-2. To knock out O-linked glycosylation, cells were grown in Ham's 

F12 medium (Invitrogen) supplemented with 5% FBS (Invitrogen) and 1% Penicillin-Streptomycin 

(Invitrogen). For fully glycosylated LAMP-2, 20µM galactose and 200µM N-acetylgalactosamine 

(Sigma-Aldrich) was added to the O-linked knock out medium. To knock out both forms of 

glycosylation, cells were grown in 50% OPTI-MEM, 47% alpha-MEM, and 3% dialyzed FBS 

(invitrogen)(personal communication). CHO cells were grown on 8-well CC-2 treated microscope 

slides (ThermoFisher Scientific) to 70% confluence and were fixed with 4% paraformaldehyde, 

permeabilized with pure methanol at -20°C (ThermoFisher Scientific) for 10 minutes, and blocked 

with 5% goat serum in 0.05% triton X-100 (ThermoFisher Scientific).  Patient Serum was diluted at 

1:100 and FITC conjugated goat anti-human was used to detect bound IgG. The INOVA diagnostics 

ANCA immunofluorescence kit was used to stain human neutrophils with a polyclonal rabbit anti-

human LAMP-2 antibody (Abnova) at 1:100. The primary antibody was the only reagent not found in 

the kit, the method from the kit was used exactly.  Dr. J. Charles Jennette reviewed all 

immunofluorescence slides using an Olympus BX41 fluorescence microscope.  

In-vivo Testing of LAMP-2 Antibody Pathogenicity   

Total IgG was purified from rabbit serum using a Hi-Trap Protein G column (GE Healthcare) 

using a FPLC. WKY rats were obtained from Harlan Sprague Dawley age and weight matched at 

about 80g.  10mg anti-LAMP-2 high titer total IgG or normal rabbit IgG was transferred by tail vein 

injection into rats (5 rats per group). Rats were sacrificed after five days and kidneys were harvested 

for histological analysis, fixed in formalin, embedded in paraffin, sectioned and stained with H&E 

and PAS stains. To ensure successful transfer of rabbit IgG, serum was obtained 24 hours after 
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transfer and coated on a Costar 96 well high-binding EIA/RIA plate overnight at 4°C and blocked 

with 3% BSA for 1 hour. Bound IgG was detected using alkaline-phosphatase conjugated goat anti-

rabbit IgG (Jackson ImmunoResearch).  Urines were collected on days 0,1,3 and 5 and urinalysis 

performed with chemstrip 10 MD urinetest strips (Roche).  Antibodies to LAMP-2 were produced in 

a New Zealand White rabbit (Robinson services) by immunizing with LAMP-2 peptide 

(HGTVTYNGS) in Freund’s complete adjuvant; subsequent boosts were in incomplete Freund’s 

adjuvant.  A Rat-ANCA test was performed on a rat total leukocyte preparation from healthy rats.  

Total leukocytes were put onto slides using a cytospin and stained with a positive control LAMP-2 

antibody produced in a rabbit (Sigma) at a concentration of 1:100.  Rabbit total IgG, pre-immune and 

post immunization with LAMP-2 peptide (HGTVTYNGS) was purified from sera with sepharose 

protein A/G beads (Santa Cruz Biotechnologies) and used at 3mg/mL followed by a goat anti-rabbit 

FITC conjugated secondary (Jackson Immunology) at 1:200.  All slides were reviewed by J. Charles 

Jennette. 

Results 

Comparison of LAMP-2 protein substrates used for antibody detection  

LAMP-2 (lysosomal-associated membrane protein 2) is normally produced in all cell types. It 

contains oligosaccharide chains, some of which are polylactosaminoglycans, which are species 

specific, complex.  These are dispersed on two domains of the protein separated by a hinge-like 

structure containing O-linked oligosaccharides (Fig.1.1A).
46

   

A recombinant LAMP-2 protein consisting of the entire extracellular domain
( aa 1-350) 

was 

utilized as substrate for studies at the UNC-Kidney Center. The cDNA of human LAMP-2a was 

subcloned into a mammalian expression vector omitting the N-terminal signal sequence, the 

membrane spanning domain, and the cytoplasmic tail (Fig.1.1B). Recombinant protein was expressed 

in Human Embryonic Kidney Cells (HEK) to make possible human-specific protein glycosylation.  

Affinity purified protein was of high quality as determined by SDS-PAGE (Fig. 1.1C) and was 

recognized by a commercial, polyclonal anti-LAMP-2 antibody by western analysis (Fig. 1.1D).  In 
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addition a synthetic peptide was synthesized locally which contained the amino acids identified as the 

FimH-like epitope (Fig. 1.1E). Purity of FPLC-eluted peptide was indicated by a single peak (Fig. 

1.1F) and peptide composition confirmed by mass spectrometry (Fig. 1.1G). 
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Figure 1.1 Substrates used to detect anti-LAMP-2 antibodies in human sera 

 

 
Figure 1.1  LAMP-2  protein and peptide substrates used to screen for LAMP-2 reactivity in sera.  (A) 

Schematic of full length human LAMP-2a protein denoting O-linked hinge region and N-glycosylation sites 

(adapted from Fukuda et al, 1988). (B) Sites of putative pathogenic epitopes are designated in yellow boxes 

(HGTVTYNGS) (QGKYSTAQDC). For studies at UNC-Kidney Center, LAMP-2a cDNA was subcloned 

omitting the C-terminal transmembrane domain (T-M) and cytoplasmic tail. (C) Analysis of recombinant 

protein produced in HEK cells indicated high purity as assessed by SDS-PAGE .  (D) Recombinant protein was 

recognized by purchased hLAMP polyclonal antibody, assessed by western blot . (E) Peptide utilized in studies 

at UNC-Kidney Center. (F) Purity of FPLC-eluted HGTVTYNGS peptide was indicated by a single peak. (G) 

Confirmation of peptide composition by mass spectrometry indicated correct mass of 934.943. (H) Schematic of 

LAMP-2 protein utilized in Mass. General studies produced in wheat germ extract system.  
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Table 1.1 Description of sera samples 

 

 

Source Number Samples Analyzed Description of Sample 

Local North Carolina 

Community 
52 Healthy controls  

UNC Kidney Center 103 *ANCA 

Pauci-immune focal necrotizing 

glomerulonephritis from GDCN 

consortium 

  MPO-ANCA   (n=48) 

  PR3-ANCA   (n=53) 

  MPO and PR3 positive  (n=2) 

  † Active   (n=45) (BVAS > 0) 

  Remission   (n=57) (BVAS =0) 

  New Onset  (n=15) 
Samples collected at disease onset 

prior to medication 

  Never frozen (n=10) 

Serum obtained and immediately 

assayed, untreated and treated active 

disease patients. 

  
   

  
   

UNC Hospitals 

Mclendon Clinical 

Laboratories 

104 Urinary Tract Infection Otherwise healthy individuals 

clinically diagnosed with a FimH 

positive bacterial infection 
   

UNC Kidney Center 10 SLE disease control from GDCN consortium 

Medical University of 

Vienna 
9 FNGN 

Pauci-immune focal necrotizing 

glomerulophritis provided by  

Kain et al. 

 

  Positive per Kain et al. (n=4) 

  Negative per Kain et al. (n=5) 

*ANCA samples are divided into MPO, PR3 or dual positive; active or remission.  New 

Onset and Never frozen samples are included into the total number of samples. 
† One patient from the test cohort had insufficient data to determine disease activity. 
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A recombinant LAMP-2 protein commercially-produced in a Wheat Germ Cell free system 

was utilized as substrate in studies conducted at Massachusetts General Hospital.  Protein that 

translated this system is non-glycosylated and thus the LAMP-2 substrate can be likened to the one 

“bacterially” produced and utilized by Kain et al.
9
  The amino acid sequence is only a portion of the 

extracellular domain
(aa 30 -127)

, but does contain the FimH-like epitope (Fig. 1.1H).  An all-inclusive 

listing of sera samples analyzed in these studies is provided in Table 1.1.  A total of 680 samples were 

screened for reactivity against LAMP-2.   

Sera from patients with PR3-ANCA or MPO-ANCA have little to no reactivity to rLAMP-2 

protein produced in HEK cells 

Kain and coworkers from the Medical University of Vienna graciously provided the UNC-

Kidney Center with sera samples (n=9) consisting of four known positives for LAMP-2 antibodies in 

their assay system and five known negatives.  In our assay system, four were positive and five 

negative against HEK-expressed rLAMP-2 (Fig. 1.2A), providing confidence that the systems were 

comparable.  We found that, of the UNC-ANCA disease patient group (n=103), 21.1% were deemed 

positive for reactivity against rLAMP-2 in this assay (>mean plus 2SD of healthy controls) (p=0.004) 

by (Fig. 1.2A). Sera from otherwise healthy individuals with active urinary tract infections (UTI) 

(n=104), and producing antibodies against the gram-negative bacteria, contained antibodies reactive 

against rLAMP-2 at a frequency similar to that found in the ANCA disease group (p=0.097). Samples 

from patients considered to have “new-onset” disease were obtained either prior to therapy (n=7) or 

immediately after the first dose of glucocorticoids (n=9).  Open boxes in the ANCA disease cohort 

signify patients during active disease with a BVAS>0 (Fig. 1.2A).   Sera from SLE patients were 

negative for rLAMP-2 reactivity (Fig. 1.2A).  rLAMP-2 reactivity was not significantly associated 

with disease onset nor with fresh sera (tested the same day is was drawn - never frozen).   

As with most clinical testing, a second assay was employed to validate ELISA results. All 

samples reactive with rLAMP-2 (n=26) were tested by western blot analysis.  MPO-ANCA positive 

sera that were also positive for rLAMP-2 by ELISA were negative for LAMP-2 by western blot (lane 
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1- Fig. 1.2B), meanwhile they were reactive with native MPO (lane 2).  Blot 1 was re-probed with a 

commercially available anti-LAMP-2 antibody to verify that rLAMP-2 was present in lanes loaded 

with the protein preparation. PR3-ANCA sera and sera samples provided by Kain et al were also 

negative for rLAMP-2 reactivity by western analysis (data not shown).   
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Figure 1.2 Sera reactivity against recombinant LAMP-2 protein by ELISA and Western blot 

 
Figure 1.2 Seroreactivity against recombinant LAMP-2 protein produced in HEK293 cells. (A) ELISA results 

indicate a subgroup of ANCA patients’ sera samples were reactive against rLAMP-2 protein, compared to 

healthy controls, UTI, SLE, ANCA sera from Kain et. al. new onset and never frozen sera (solid bar indicate 2 

SD above the mean of healthy controls).  In the ANCA disease group open squares indicated “Active” disease 

and ‘filled diamonds’ are patients in remission; in the new-onset group ‘asterisks’ indicate samples collected 

prior to steroid treatment (B) Evaluation of  serum reactivity by western blot analysis (M –size marker; Lane1 –

1ug purified rLAMP-2; 1ug native MPO).  MPO-ANCA –positive samples that were also reactive with rLAMP-

2 by ELISA did not react with rLAMP-2  (Lane1) but did react with  MPO protein (Lane 2).  Blot 1 was re-

probed with a commercial polyclonal anti-LAMP-2 antibody to verify rLAMP-2 protein loading on the gel.  
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Reactivity against rLAMP-2 by indirect immunofluorescence microscopy 

A third assay was employed (IFA) in effort to validate positive rLAMP-2 reactivity. rLAMP-

2 protein, over-expressed in HEK cells, stains with a polyclonal anti-LAMP-2 antibody to produce a 

cytoplasmic staining pattern consistent with preferential staining of lysosomes (Fig. 1.3A right panel).  

Low levels of endogenous LAMP-2 protein were detected in non-transfected cells (Fig. 1.3A left 

panel).  None of the healthy controls (n=52) or ANCA disease sera (n=103) produced a staining 

pattern similar to the positive control staining, although some samples had low intensity staining with 

other patterns.  SLE samples (n=10) often stained cells in a variable, sometimes nuclear, pattern.  

Representative samples are shown in Figure 1.3B of two healthy controls (one with non-specific 

staining), two disease controls showing nonspecific reactivity (SLE) and four high-titer ANCA 

disease sera. One MPO-ANCA shows an irregular punctuate staining similar to control samples and 

differing from the polyclonal anti-LAMP-2 control. Many SLE samples had varying patterns of 

nuclear staining apparently caused by anti-nuclear antibodies, but none had staining resembling the 

anti-LAMP-2 positive control. 

It was reported that heavy glycosylation of rLAMP-2 produced in HEK cells could alter 

antigenicity.
9
  To address this issue, we acquired the same cell line utilized in studies by Kain et al, 

which is O-linked glycosylation deficient (CHO-LDL-D cells) and performed IFA on rLAMP-2 

overexpressing CHO-LDL-D cells.  We could not detect reactivity to this substrate (Fig. 1.3C).  

Further, cells were grown in varying conditions to alter the glycosylation pattern of the over-

expressed rLAMP-2 protein. O-linked glycosylation deficient cells were grown in regular culture 

medium (alpha-MEM) without additives to produce protein without hinge region O-linked 

glycosylation.  Manipulation of rLAMP-2 produce in CHO-LDL-D did not produce seropositivity 

(data not shown). Three sera reacted to the non-transfected CHO-LDL-D cells (Fig. 1.3D). 
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Figure 1.3 Sera reactivity against recombinant LAMP-2 protein by indirect immunofluorescence (IF) 

 

Figure 1.3 Immunofluorescence assays (IFA) using cell lines transfected with rLAMP-2. (A) Polyclonal anti-

LAMP-2 antibody (but not negative control antibody) produced low level staining in nontransfected human 

embryonic kidney cells (HEK) consistent with staining of low level endogenous LAMP-2 protein (left panel) 

whereas HEK cells transfected with LAMP-2 produced intense cytoplasmic staining (right panel).  (B) None of 

the healthy controls (n=52) or ANCA disease sera (n=103) produced a staining pattern similar to the positive 

control staining, although some samples had low intensity staining with other patterns.  SLE samples (n=10) 

often stained cells in a variable pattern, including nuclear staining consistent with anti-nuclear antibodies, but 

none stained with a pattern similar to the positive control. Representative staining patterns, including low 

intensity staining that did not correspond to the positive control pattern are shown for two healthy controls 

(Normal), two SLE controls (SLE) and four high-titer ANCA disease sera. Note that one MPO-ANCA shows an 

irregular punctuate staining similar to control samples, but no samples resembled the positive control. (C)  IFA 

using rLAMP-2 overexpressing O-linked glycosylation deficient cells (CHO-LDL-D cells) generously provided 

by Kain et al. Positive control anti-LAMP-2 antibodies produced intense cytoplasmic staining (left two panels) 

but ANCA-positive patient sera produced no staining (right panel). (D) IFA was performed on CHO-LDL-D 

cells grown in varying conditions to alter the glycosylation pattern of over-expressed rLAMP-2 protein. Of the 

103 samples, 3 reacted to the transfected and non-transfected CHO-LDL-D cells, and the pattern did not 

resemble the positive control. 
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Reactivity against LAMP-2 synthetic peptide 

We produced a synthetic peptide of the pathogenic epitope (HGTVTYNGS) identified by 

Kain et al. (Fig. 1.4). Sera were tested for reactivity by peptide-ELISAs.  Sera from regional healthy 

controls were highly reactive raising the threshold for positivity to an OD value of 1.03 (mean plus 

2SD of healthy control). Only 4% of ANCA disease samples had results >1.03, which was not 

statistically significant (Fig. 1.4).  UTI, SLE and nine samples from Kain et al were not significantly 

different from healthy controls.  Positivity was defined as two standard deviations above the mean of 

the healthy controls (1.04). The four positive samples in the total ANCA disease group were all new 

onset. 

Injection of high titer rabbit anti-hLAMP-2 antibodies did not cause glomerulonephritis in 

WKY rats 

To support the hypothesis that LAMP-2 autoantibodies are causal in human disease, Kain et 

al. demonstrated that injection of antibodies raised against the LAMP-2 peptide in a rabbit caused 

crescentic glomerulonephritis in WKY rats.
9
  We attempted to reproduce these results.  Total IgG 

from a LAMP-2-peptide (HGTVTYNGS) immunized rabbit was highly reactive with rLAMP-2 

protein, LAMP-2 peptide and cross-reactive with FimH peptide (Fig. 1.5A).  IgG from the immunized 

rabbit was reactive with rat leukocytes by immunoflourescence but the preimmune serum from this 

rabbit was not (data not shown).  Animals were injected with normal rabbit-IgG (n=5) or with rabbit 

IgG reactive against human LAMP-2 peptide (n=5).  Post-injection (24hrs) circulating rabbit-specific 

IgG was detected in the five rats immunized with anti-LAMP-2 IgG (Fig. 1.5B).  Urines were 

examined days one, three and five (Fig. 1.5C) and none of the rats developed hematuria, proteinuria 

or leukocyturia. Histological examination of tissues (by JCJ) revealed no histologic abnormalities, 

including no glomerulonephritis.   
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Figure 1.4 Sera reactivity against LAMP-2 synthetic peptide 

 
Figure 1.4  Sera reactivity against LAMP-2 peptide (HGTVTYNGS) by ELISA.  Positivity was defined as two 

standard deviations above the mean of the healthy controls (1.04). The four positive samples in the total ANCA 

disease group were all new onset. 
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Figure 1.5 Transfer of anti-LAMP-2 peptide antibodies to WKY rats 

 
Figure 1.5 Transfer of anti-LAMP-2-peptide antibodies into rats did not cause glomerulonephritis. (A)  

Characterization of anti-LAMP-2 antibodies generated in a rabbit for transfer into WKY rats. Antibody strongly 

reacts with LAMP-2 peptide with some cross-reactivity to FimH peptide. (B) Circulating rabbit IgG detected in 

rats one day post-injection. (C) Five days post-injection there was no detectible hematuria or proteinuria.  
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Figure 1.6 Staining patterns of anti-LAMP-2 antibodies on human neutrophils 

 

 
Figure 1.6  LAMP-2 stain human neutrophils with a cytoplasmic pattern (A) Normal Human Neutrophils 

stained with PR3-ANCA patient’s serum (B) Normal Human Neutrophils stained with monoclonal anti-LAMP-

2 antibody. 
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Comparison LAMP-2 titers with PR3-ANCA and MPO-ANCA titers in dual positive sera 

staining pattern of anit-LAMP-2 antibodies on human neutrophils 

If anti-LAMP-2 antibodies coexist in patients’ sera with PR3- and MPO-ANCA as reported,
9
 

how would they affect the results of a routine clinical Immunofluorescence assay?   anti-LAMP-2 

monoclonal antibody stained human neutrophils with a cytoplasmic pattern (Fig. 1.6A) while normal 

human neutrophils stained with PR3-ANCA patient’s serum (Fig. 1.6B) showed a similar cytoplasmic 

staining pattern.  

Discussion 

To examine the frequency of anti-LAMP-2 antibodies associated with ANCA 

glomerulonephritis in a USA cohort, sera was obtained from patients at the UNC-Kidney Center, 

North Carolina. 

Approximately 22.8% of PR3-or MPO-ANCA positive sera were also reactive with LAMP-2 

by ELISA. However, by western blotting and immunofluorescence staining of HEK cells, LAMP-2 

positivity could not be validated.  Our cohort consisted of about half with active disease and half in 

remission and there was no significant difference in the incident of LAMP-2 seroreactivity between 

the groups.  

It was reported that antibodies against bacterial protein FimH were cross-reactive with human 

LAMP-2 protein and that, through molecular mimicry, bacterial infections could contribute to the 

development of ANCA disease. We tested sera from individuals with gram-negative bacteria urinary 

tract infections, who were otherwise healthy and negative for PR3- or MPO-ANCA, and found that 

approximately 16% were reactive with LAMP-2 protein.  Dr. Kain and colleagues reported that 9/13 

patients with pauci-immune glomerulonephritis had a diagnosis of infection with FimH-expressing 

bacteria prior to presentation, and that these patients had antibodies that bound the region of LAMP-2 

that contained amino acid sequence homologous to FimH.  We synthesized a peptide containing the 



26 

 

FimH-like sequence of LAMP-2 and screened sera for reactivity.  Results indicated that both healthy 

controls and patients had similar reactivity.   

Recombinant LAMP-2 proteins were utilized as substrates for analyses presented here: one 

produced in a human embryonic kidney cell line, which post-translationally adds glycosylation 

moieties to the protein.  To address the possibility that the LAMP-2 recombinant proteins utilized in 

our experiments were not optimal in detecting LAMP-2 reactivity, we obtained the glycosylation-

deficient Chinese hamster cell line, utilized in studies by Dr. Kain and colleagues, and screened for 

sera reactivity to overexpressed human LAMP-2 protein. By manipulating the culturing conditions, 

we could assess various glycosylation states and their effect on sera reactivity to LAMP-2 by 

immunofluorescence staining.  All samples were negative under all conditions when compared to the 

staining pattern of a commercially available LAMP-2 antibody.   

To explore the pathogenic potential of anti-LAMP-2 antibodies, WKY rats were injected with 

anti-LAMP-2 antibodies produced by immunizing a rabbit with the pathogenic peptide.  Histologic 

evaluation indicated no evidence of renal disease in injected animals, in contrast to what was 

previously reported.  We acknowledge that factors such as the supplier of the particular strain of 

WKY rats, housing and food in the UNC animal facility may have influenced the susceptibility.   
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Table 1.2 Characteristics of patient cohort with LAMP-2 reactivity 

  

 
Categories compared 

Reactivity against 

recombinant LAMP-2  

 Reactivity against LAMP-2  

peptide (P41-49) 

 

Percent 

Positive (%) 
P value*  

Percent 

Positive 

(%) 

 

P value* 

BVAS vs LAMP-2 reactive  0.1465   1.0000 

 Active 28.9   4.7  

 Remission 15.8   3.5  

ANCA Titer vs LAMP-2 reactive‡      

 PR3 ANCA 22.0 0.2323    

 MPO ANCA 24.4 0.4129    

ANCA phenotype† vs LAMP-2 

reactive 
 1.0000   1.0000 

 c- ANCA seropositive 23.1   3.8  

 p- ANCA seropositive 21.7   2.3  

Disease type vs LAMP-2 reactive  0.4680   0.13 

 Renal Limited 13.3   0.0  

 Microscopic polyangiitis 22.7   7.5  

 Granulomatosis 20.0   2.6  

 Others§ 50.0   0.0  

Disease Status vs LAMP-2 reactive  0.0842   0.0003 

 New Onset 40.0   36.0  

 Ongoing Disease 18.2   0.0  

Male  vs. Female for number of 

positives 
     

 Positive ANCA patients 10.2 vs 31.5 0.0148  6.0 vs 2.1 0.6193 

 Positive UTI patients 15.0 vs 11.8 0.7097  0.0 vs 21.0 0.0008 

% Positive = percent of individuals with OD values 2SD above the mean of healthy controls 

 *P values were calculated by Fisher’s Exact Test 

‡ P value was calculated using Wilcoxon two sample test 
† Three patients from the test cohort were excluded for this analysis due to insufficient serotype data. 

§ Four patients were placed in this category due to insufficient clinical data. 



28 

 

Similar to Dr. Kain and colleagues,
9
 we found that individuals with a fimbriated bacterial 

infection may produce antibodies reactive with LAMP-2.   However, we did not find the frequency of 

anti-LAMP-2 positive sera in the ANCA glomerulonephritis group that was described previously.  

There are a number of reasons to explain the differences. The most obvious disparity is geographical 

differences in the patient cohorts.  A second explanation is that our reagents and methodologies are 

not the same as those of Kain et al even though every effort possible was made to duplicate their 

results, including using sera they provided as controls.  Moreover, we exchanged unidentified sera 

samples to test the concordance between our assay and the one used in Dr. Kain’s group and the 

overall results were similar.  There was some discordance on sample to sample comparisons, but this 

did not exceed what would be expected when comparing assays that are not optimized.  

In conclusion, the mechanistic association between fimbriated, bacterial infections and 

ANCA disease has exciting appeal but we have not been able to confirm the evidence for this.  We 

find very low titers of anti-LAMP-2 antibodies in human sera, although there was no difference 

comparing healthy individuals with gram-negative bacterial infections, ANCA negative GN sera and 

MPO-ANCA, or PR3-ANCA positive sera. There was no correlation with disease activity or across 

demographics (Table 1.2).  We conclude that anti-LAMP-2 antibodies are identifiable, low titer, 

natural or induced antibodies occasionally found in the population.

 

 

 

 



 

 

Chapter 2 

AUTOANTIGENIC DETERMINANT PROFILING IN 

MYELOPEROXIDASE-ANCA DISEASE 
 

Granulomatosis with polyangiitis (GPA) is the most common form of aggressive glomerular 

disease and is associated in most cases with a systemic necrotizing vasculitis. ANCA have been found 

to be markers of disease since 1985 and more recently have been found to be pathogenic in vivo
5
. 

Patients with ANCA disease have a polyclonal response to ANCA autoantigens myeloperoxidase 

(MPO) and proteinase 3 (PR3). ANCA titers correlate with disease activity in some patients 

(primarily in PR3-ANCA), while the majority of MPO positive ANCA patients exhibit a poor 

correlation of ANCA titer with disease activity. In this study we analyze MPO-ANCA samples from 

66 unique patients to determine the diverse epitope landscape of ANCA disease.   We utilized matrix 

assisted laser desorption/ionization time of flight mass spectrometry (MADLI-TOF/TOF MS) to 

identify a region of where antibodies bind to antigens which is inherently the antigenic epitope.  

Further, enzyme-linked immunosorbent assays were used to verify seroreactivity to identify linear 

epitopes.   Healthy subjects and ANCA disease patients share a handful of anti-MPO specific 

autoantibodies; these autoantibodies do not have pathogenic potential. In patients with MPO-ANCA 

disease, two disease associated epitopes were found to be linear and correlate to disease activity. 

Since MPO-ANCA manifests in such a diverse clinical course; genetics, environment but also 

specificity of autoantibodies likely contribute to the pathogenicity of disease.  

Introduction 

Protein-protein interactions have primarily been studied in depth using mass spectrometry 

and x-ray crystallography, more recently these techniques have been applied to human pathology and 

immunology.  Several proteomics approaches have been developed in search of disease biomarkers 

and therapeutic targets with varying success
47

.  Interactions between autoantibodies and autoantigens 
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are in essence protein-protein interactions, which are highly sensitive to the microenvironment of the 

human body particularly in autoimmune disease.  Methods utilizing proteomics strategies take into 

consideration: 3-dimensional conformation, microenvironment, kinetics and fluidity
48

.  In many 

autoimmune clinical assays, sheer quantity of autoantibodies may not be specific enough to determine 

disease activity.  In MPO-ANCA disease a focus on individual autoantibody epitope specificity could 

be a more accurate measure of disease activity.   

Patients diagnosed with MPO-ANCA are known to have a polyclonocal response to MPO 

and their titers are currently followed throughout their disease course to glean information about 

disease activity
49, 50

.  Total MPO-ANCA titer does not correlate to disease.  A subset of MPO-ANCA 

patients have consistently high titers through active disease and remission, while other’s total 

autoantibody titers give no indication of a future relapse.  These inconsistencies underline the need to 

determine the epitope profile of individuals diagnosed with MPO-ANCA disease.  Efforts have been 

made to narrow MPO epitopes using over lapping peptides
20, 21

 and deletion mutants
24

 which are 

extremely limiting because of the assumption that anti-MPO autoantibodies will recognize linear 

epitopes.  In order to rectify the issues of conformation, human/mouse chimeric MPO molecules were 

produced; the limitations of these studies were based on the assumption that human anti-MPO would 

not cross react with mouse
22

.  In addition, chimeric molecules only presume to keep conformation 

static and do not enable fine epitope mapping because of the large segments of the protein assayed.  

In an attempt to remedy the limitations presented when using peptides and chimeras for epitope 

mapping, we utilized a proteomics technique which allows the use of uncompromised native human 

MPO purified from human leukocytes.  In the following investigation of anti-MPO ANCA epitopes a 

proteomics based approach referred to as epitope excision was adapted from Parker et. al.
51

   Our 

hypothesis is that epitope specific anti-MPO autoantibodies will correlate to disease activity more 

accurately than total anti-MPO titer.   
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Materials and Methods 

Patient Population and Diversity of MPO-ANCA disease 

In this study, 88 sera samples from 66 anti-MPO-positive patients with biopsy proven ANCA 

were collected for analysis.  The majority of the cohort were Caucasian (80.3%) and 54.5% were 

women.  The cohort consisted of 32/66 (48.5%) diagnosed with Microscopic polyangiitis (MPA), 

24.2% with renal limited disease, 21.2% with granulomatosis with polyangiitis (GPA), 4.5% 

eosinophilic granulomatosis with polyangiitis (E-GPA) and 1.5% with autoimmune disease overlap of 

SLE and MPO-ANCA vasculitis.  Also included were sera from 10 healthy volunteers for analysis by 

mass spectrometry with a mean age of 31.5 years (60% female, 70% Caucasian).  Healthy volunteers 

were screened for autoimmune diseases, hypertension and inflammatory diseases. Informed consent 

was obtained prior to all blood collections in accordance to UNC’s Institutional Review Board. 

Epitope Excision 

Total IgG was purified from sera using protein A/G PLUS-Agarose Reagent according to 

commercial protocol (Santa Cruz Biotechnology, Santa Cruz, CA).  Total IgG was bound to 0.2g 

CNBr-activated (1mM HCl) Sepharose 4B (GE Healthcare, Sweden) in compact reaction columns 

(CRC, USB Corporation, Cleveland, OH) for 2 hours at room temperature on an orbital rotator.  

Excess binding sites were blocked with Tris-HCl 0.1M pH 8.0 for 1 hour on an orbital rotator.  CRCs 

are then washed with alternating wash buffer (0.1M NaAcetate; 0.5M NaCl pH 4.0) and Tris-HCl 

0.1M pH 8.0 at least 10 times.  Columns are then equilibrated 5 times with PBS. Protein of interest, 

reconstituted in PBS, is bound to sepharose-IgG complexes (MPO, Elastin Products Co, Inc, 

Owensville, Missouri) for 3 hours on an orbital rotator.  Excess protein is removed by washing with 

PBS and the column is equilibrated with 50mM Nh4HCO3 pH 7.8 at least 10 times. At this time 

sepharose-IgG-MPO complex is then incubated with sequencing grade TPCK treated trypsin 

(Worthington, Lakewood, NJ) at 37°C on a shaker at 105rpm for 2 hours.  Excess protein digested by 

trypsin and no longer bound to antibody complex is removed by washing 10 times with PBS.  To 

elute remaining peptides bound by IgG, incubate with 0.1% trifluoroacetic acid (TFA) for 20 minutes 
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on an orbital rotator at RT.  Peptides are eluted twice in 150uL of o.1% TFA.  The sample is then 

desalted, concentrated and buffer exchanged into 50% ACN; 0.1% TFA using ZipTipc18 Pipette Tips 

(Millipore Corp., Billerica, MA).   

Determination of linear epitopes 

The same epitope excision method was used as stated above with the exception of protein 

binding.  Myeloperoxidase (80ug per sample) was predigested with 4:1 immobilized trypsin 

(Promega) overnight at 37°C.  Protein sample was centrifuged in a desktop centrifuge for 30 seconds 

and the supernatant containing the digested protein was used for protein binding. 

Heavy Oxygen labeling for low titer antibodies 

Heavy oxygen labeling was done on all remission samples (n=36) and healthy controls 

(n=10).  The above epitope excision protocol was followed until the trypsin digestion step.  The 

sample columns were washed with trypsin buffer made with H2
18

O (Cambridge Isotope Laboratories, 

Andover, Massachusetts) before digestion.  Trypsin was also reconstituted in H2
18

O and samples were 

digested for 2 hours at 37°C with agitation.  Proteins are labeled on the carboxy terminal with H2
18

O 

in a spontaneous reaction during the trypsin digestion of the protein.  After digestion, sample columns 

were washed 7 times with H2
18

O trypsin buffer.  Once H2
18

O isotope is introduced all buffers 

(including ziptip and elution) must be used with this isotope to prevent reversion to H2
16

O. 

Determination of DR2 Tg mice MPO epitope profile 

Total Ig was purified from sera from DR2 Tg mice immunized with either a control albumin 

peptide or a putative CD4+ T cell MPO epitope aa409-428 (PRWNGEKLYQEARKIVGAMV). The 

above epitope excision protocol in combination with MALDITOF TOF MS/M was utilized to 

discover antibody specificity.  The protocol was followed as outlined above with the exception of the 

protein of interest, recombinant mouse MPO protein was used as substrate (R&D systems). 

MALDI-TOF-TOF MS  

Samples were analyzed on a 4800Plus Matrix-Assisted Laser Desorption Ionization Time of 

Flight Mass Spectrometry (MADLI TOF/TOF MS/MS) in conjunction with ProteinPilot software 

(AB SCIEX, Foster City, CA).  The samples were spotted on a stainless-steel target with α-cyano-4-
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hydroxycinnamic acid matrix (Sigma).  The instrument has a YAG laser with λ=355nm and the 

potential difference between the source acceleration voltage and the collision cell was set at 2kV.  

Calibration was done internally with self digested TPCK treated trypsin.  Peak absorbances in MS 

spectra are not indicative of the abundance of peptide species because of the differences in individual 

peptides ability to ionize. 

All analysis was done with Protein Pilot using an NCBI Mascot search.  All MPO peptide 

samples were analyzed using the same search method: one missed cleavage, Homo sapiens origin, 

trypsin enzyme cut, 200ppm, 0.5 tolerance, +1 peptide charge, and variable modification of oxidation 

(M).  MPO epitope modeling was done using PyMOL Molecular Graphics System and MPO crystal 

structure PDB 3F9P. 

Enzyme-linked immunosorbent assay (ELISA) 

All peptides, peptide/beads and peptide columns were made at the UNC-Chapel Hill peptide 

synthesis center by Dr. David Klapper.  Costar ELISA plates (Corning, Inc., Corning, NY) were 

coated with approximately 1-2ug of peptide diluted in 100uL of bicarbonate binding buffer (pH 8.3) 

per well for 2h at RT.  Excess binding sites were blocked using SuperBlock PBS (Thermo Scientific, 

Rockford, IL).  Total IgG purified from sera using protein A/G PLUS-Agarose Reagent diluted 1:500 

were incubated overnight at 4°C.  Plates were washed 5x with PBST and incubated with goat anti-

human alkaline phosphate-conjugated secondary antibody (Millipore, Temecula, CA) for 1h on 

rocker. The plate was then washed 10x and 1-Step PNPP substrate (Thermo Scientific Rockford, IL) 

was applied for detected of antibody reactivity and read on a microplate reader after 30min at 

λ=405nm. 

Indirect immunofluorescence assay 

Indirect immunofluorescence (IFA) was assayed using INOVA Diagnostics, Inc. (San Diego, 

CA, 708290) with provided protocol.  One drop of positive and negative controls were incubated 

alongside 15ug patient IgG diluted 1:100 in PBS per slide in a moist dark chamber for 25-35 minutes. 

The wells were washed with 1x PBS in such a manner so as to eliminate cross contamination 5x.   
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Samples were then incubated with fluorescent conjugate for 25-35 minutes in a dark moist chamber. 

Repeat wash with 1x PBS, slides were mounted with a coverslip before being observed on an 

Olympus BX61 microscope (40x oil lens) using a Hamamatsu C10600 (ORCA-R2) Digital Camera.  

All indirect immunofluorescence slides were analyzed by J.C. Jennette. 

Neutrophil activation 

Human neutrophils from healthy donors were purified using 1 part HetaCep (Sigma-Aldrich) 

to 5 parts whole blood.  Samples were centrifuged for 6min at 100 x g at RT with break off.  Cell 

separation occurs after 15min at RT and plasma and lymphocyte layers are removed.  Cells were 

layered over 9mL of Histopaque (Sigma-Aldrich) and spun at 1200rpm for 15min and then 1100rpm 

for 15min at 4°C.  The pellet was resuspended in 10mL sterile 0.5x PBS (Cellgro) for 20sec, then 

immediately 3.3ml of 0.5x PBS was added and mixed well.  Cell were spun at 1100rpm for 9min and 

the subsequent pellet was resuspended in HBSS+/+ at a cell concentration of 1x10
7
.  For neutrophil 

activation, 1ul/mL of cytochalasin B was added to the isolated neutrophils and placed on ice for 

15min.  75uL of treated cells were used per well of a 96 well plate and incubated with: 20uL +/-SOD 

10uL ferricytochrome C, 10uL PMA, 10uL of affinity purified IgG and HBSS +/+.  Duplicate wells 

were used without SOD as controls.  Plate was kept at 37°C and read in a microplate reader at 37°C 

550nm every 10min for 60min. 

Statistical analysis  

P values were calculated by Wilcoxon two sample tests for two samples comparisons, 

Kruskal-Wallis Test for three groups comparisons and Signed Rank Test for paired groups 

comparisons. The Bonferroni correction, α=0.05/3 =0.167 should be used for multiple comparisons. 
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Results 

Identification of Natural Myeloperoxidase Specific Epitopes in Healthy Controls 

To test our hypothesis that epitope specificity of anti-MPO autoantibodies are linked with a 

pathogenic event, we first established a profile of antigenic determinants, or epitopes, of naturally 

occurring anti-MPO in healthy individuals using the epitope excision method illustrated in Figure 2.1.   

Figure 2.1 Epitope Excision with MS 

 
Figure 2.1 Epitope excision method for conformational epitope mapping of MPO. Immobilized antibodies 

purified from patient sera are bound to native MPO and the epitope is excised by digestion with trypsin (with or 

without the addition of 
18

OH2) to determine the specificity of autoantibodies to MPO while retaining 

conformation.   
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Because these ‘natural’ autoantibodies exist at very low titers, heavy oxygen (
18

OH2) labeling 

was incorporated into the protocol in order to increase sensitivity and specificity.  Heavy oxygen 

(
18

OH2) labeling is a technique used in proteomics, in place of radioactive isotope labeling, in order to 

have physical confirmation of amino acid presence identified by a known shift in mass number
52

.  

Natural autoantibodies found in healthy controls are at such a low titer that heavy oxygen labeling 

was essential.  To the best of our knowledge, this work represents the first report of application of the 

16
O-to-

18
O exchange technique to epitope mapping.  The details of the labeling reaction are shown in 

Figure 2.2. 

Figure 2.2 Labeling with heavy oxygen (
18

OH2) 

 

Figure 2.2 An approach with greater sensitivity was required for epitope excision for epitope mapping 

antibodies from healthy individuals. Using trypsin digestion as the catalyst to the reaction in the exclusive 

presence of 
18

OH2 isotope, the carboxy end of the cleaved protein adds 18O- and raises the mass unit of the 

cleaved peptide 4 mass units.  The shift in mass is used to identify the physical presence of the MPO peptide. 
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A total of seven epitopes were identified from control sera and were considered to be the 

targets of naturally occurring autoantibodies.   Epitopes were divided into two categories, 

conformational epitopes and linear epitopes, based on their structure and interaction with the 

autoantibody’s variable region.  A conformational epitope is composed of discontinuous sections of 

the antigen’s amino acid sequence or is dependent on tertiary structure or a particular 

microenvironment for antibody binding.  An epitope was determined to be linear if autoantibody 

binding was not disrupted by incubation with pre-digested protein. Seven epitopes were found in 

healthy subjects.   Most epitopes were determined to be conformational; four of seven epitopes 

identified were determined to be conformational and three of the seven were linear.   

Epitope profiling of anti-MPO antibodies from patients with MPO-ANCA glomerulonephritis 

After uncovering the epitopes targeted by naturally occurring autoantibodies we wanted to 

examine the epitope repertoire of patients with MPO-ANCA glomerulonephritis and if the same 

naturally occurring autoantibodies could be observed.  To determine the epitope profiles of patients 

diagnosed with MPO positive glomerulonephritis the same epitope excision with MS analysis (Fig. 

2.1) was used.  These methods were performed on 88 sera samples from 66 unique individuals.  Of 

the aforementioned sera samples 52 samples were from patients during active disease and 36 samples 

from patients in clinical remission.  The distribution and frequency of the total data collected is shown 

in Table 2.1.  Of the clinical remission sera samples, 26/36 were negative for MPO specific epitopes 

when using MS with heavy oxygen labeling.  Of the remaining 10 samples in which MPO-ANCA 

epitopes were detectable, the epitope specificity aligned with naturally occurring autoantibodies 

(Table 2.1).  The lack of MPO epitopes found in samples during disease remission is possibly a 

consequence of immunosuppressive therapies. 
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Table 2.1 MPO-ANCA epitope profiles 
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A summary of mass spectrometry epitope excision data is depicted graphically in Figure 2.3.  The 

epitope profiles from all 88 samples divided into two distinct categories: autoantibodies associated 

with disease or not associated with disease.  Disease associated autoantibodies and their 

corresponding epitopes were defined by appearance in samples taken during active disease only, per 

physician’s review of patient medical records.  Common epitopes (n=7) existed in both disease and 

controls groups and these were determined to be non-pathogenic. Naturally occurring autoantibodies 

were present in MPO-ANCA positive sera, in conjunction with an additional 18 unique disease-

restricted epitopes.  One hundred percent (52/52) of MPO-ANCA patients with active disease had at 

least one disease restricted epitope, i.e. not present in healthy individuals.   

Figure 2.3 MPO-ANCA epitope summary 

 
Figure 2.3 MPO epitopes found in patients and controls are distributed into categories of disease association.   

All 52 patients analyzed during active disease had autoantibodies specific to epitopes associated with active 

disease only and remission/ healthy subjects.   anti-MPO specific autoantibodies were found in healthy subjects 

and samples taken from ANCA patients during clinical remission in extremely low levels .  A more sensitive 

method was used by the addition of 
18

OH2 labeling to detect these epitopes.  This method was not needed to 

detect these same epitopes in MPO-ANCA patient samples during active disease.  
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Characterization of conformational and linear epitopes 

An epitope was confirmed as conformationally dependent if binding was disrupted by 

incubation with pre-digested protein and this characterization was confirmed by peptide ELISA.  

Peptides of three predicted conformational epitopes (aa490-499, aa461-473 and aa593-603) were 

confirmed to be structurally dependant when assayed against MPO-ANCA patient sera samples 

(n=40) (Fig. 2.4).   All sera samples did not react to the conformational epitopes tested. 

Figure 2.4 Conformation dependent epitopes do not react by peptide ELISA 

 

Figure 2.4 Three epitopes which were determined to be conformational were confirmed by peptide ELISA.  

MPO-ANCA active patient sera (n=40) were all unreactive to epitopes aa490-499, aa461-473 and aa593-603 by 

peptide ELISA which was predicted using epitope excision with pre-digested MPO. 
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Linear epitopes not associated with disease (n=3) were also verified for reactivity by peptide 

ELISA (Fig. 2.5).  Autoantibodies specific to linear epitopes (3/7) were indentified in sera from 10 

healthy subjects and two more linear epitopes were identified in MPO-ANCA patient samples.  

Reactivity was present in sera of healthy subjects, patients with active ANCA disease and disease 

remission when assayed against linear epitopes aa579-590, aa237-248, aa530-536; suggesting that 

these autoantibodies are not disease related.  These naturally occurring autoantibodies trend towards 

exhibiting higher reactivity in MPO-ANCA patient samples.   
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Figure 2.5 Linear MPO epitopes not associated with disease are reactive by peptide ELISA 

 
Figure 2.5 Sera from healthy controls (HC) and MPO-ANCA patients during active disease and clinical 

remission were assayed by ELISA to verify reactivity to linear epitopes not associated with disease.  Panel A-C 

epitopes: aa579-590, aa237-248, aa530-536 respectively which were found in healthy subjects using heavy 

oxygen labeling and confirmed by peptide ELISA.   
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Strictly disease associated MPO epitopes included two linear sequences aa516-524 

(YQPMEPNER) and aa448-459 (RKIVGAMVQIITY).  These were also confirmed for reactivity by 

peptide ELISA.   Approximately, 50% of MPO-ANCA patient samples tested were positive for an 

autoantibody specific for aa516-524 by both epitope excision and ELISA.  At first evaluation (Fig. 

2.6A ) the level of reactivity was similar in sera during active disease and remission.  However, 

analysis of paired samples from the same patients over the course of disease indicated this 

autoantibody was more prevalent during active disease (Fig. 2.6C).   

The second disease-associated linear epitope aa448-459 (RKIVGAMVQIITY), when tested 

by ELISA, gave conflicting results: reactive by MS and unreactive by ELISA.  A major difference 

between the two analyses was that whole sera was used for ELISAs but purified immunoglobulin (Ig) 

in MS.  When the ELISA was repeated substituting Ig for sera, the expected reactivity was observed 

(Fig2.6B).   Reactivity to MPO epitope aa448-459 was not observed in any disease remission samples 

tested by either assay.  Further, when reactivity is assayed in paired samples from the same 

individual, first at active disease and second during clinical remission, a more dramatic picture of 

disease association is identified (Fig. 2.6D).  This specific autoantibody targeting MPO epitope 

aa448-459 has potential to correlate with disease activity.  The discrepancy of the use of sera or Ig for 

reactivity to MPO epitope aa448-459 will be discussed in depth in Chapter 3.
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Figure 2.6 Disease associated linear epitopes are reactive by peptide ELISA 

 

Figure 2.6 Verification of seroreactivity to predicted linear disease associated MPO epitopes found by epitope 

excision.   Disease associated epitope aa516-524 (Panel A) shows specificity to ANCA disease but is also 

present during disease remission (Panel B).  A second linear disease associated epitope aa448-459 was found to 

be unreactive by ELISA using sera.  Total IgG was then used in place of serum to study reactivity to epitope 

aa448-459 by peptide ELISA which in Panel C and D shows a correlation to disease activity. 
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Anti-MPO aa448-459 autoantibody titers correlate with disease activity 

A subset of patients with MPO-ANCA have consistently positive (above 20) autoantibody 

titers by antigen specific ELISAs even during long term remission.  The following compilation of 

data shows that autoantibodies in the makeup of clinical titer include autoantibodies not associated 

with disease or natural autoantibodies.  Figure 2.7 shows that disease associated MPO epitope aa448-

459 has a more accurate link to disease activity than overall ANCA titer.  In this particular case study 

anti- aa448-459 autoantibody titer (shown in dotted line) rises immediately preceding a relapse and is 

more consistently negative during periods of remission (shaded areas)  compared to whole anti-MPO 

titer (solid line).   

 

Figure 2.7 Case study of MPO-ANCA patient with consistently high titer anti-MPO 

 

Figure 2.7 A case study of an individual with MPO-ANCA shows a consistently positive anti-MPO titer (above 

20) from February 2005 to May of 2011.  Relapses are marked by arrows contrasting shades of gray which 

represent possible times of disease remission.  The dotted line shows the titer of disease associated autoantibody 

anti-aa448-459 which more closely follows disease activity in this particular patient over the course of disease.  
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To further study this population, seven patients whose autoantibody titers are consistently 

between 40-100 (regardless of disease activity) were assayed for reactivity to MPO epitope aa448-

459.  The results shown in Figure 2.8 reveal an association with disease activity much more readily 

than whole anti-MPO titer.  Importantly, during disease remission the whole ANCA titer, which is 

high in this cohort of patients, is made up of epitopes not associated with disease.   It is important to 

note that there may be disease associated conformational epitopes that also correlate with disease 

activity that cannot be studied by ELISA.   

 

Figure 2.8 Anti-aa448-459 titer correlates with disease activity 

 

Figure 2.8 Disease associated autoantibody anti-aa448-459 consistently correlates with disease activity.  Seven 

MPO-ANCA patients whose total anti-MPO titer does not decrease to normal levels during remission were 

assayed for the specific anti-aa448-459 antibody.  Anti-448-459 antibody levels (solid line) decrease during 

remission in every case. 



47 

 

Epitope profiles are consistent within individuals upon relapse of disease 

MPO-positive GPA patients relapse infrequently but when a relapse occurs it is important to 

examine if the same B cell clones are returning to produce similar autoantibodies or does a new set of 

clones emerge which  target different MPO epitopes.  Within our cohort of MPO-positive patients, 

there were five patients who had multiple active samples taken over the course of their disease; 

consisting of either onset of disease/relapse or relapse/remission/relapse. Epitope profiles were 

analyzed to determine changes in B cell clonal restriction (Table 2.2).  The data indicate that the 

antibody specificity of a patient remains constant throughout the course of their disease.    

 

Table 2.2 The same B cell clones return during disease relapse 

Patient Number 

Number of Epitopes 

at Disease 

Onset/Relapse 

Number of Epitopes 

at Relapse 

Proportion of 

homologous epitopes 

that return 

1 3 15 3/3 

2 13 5 5/5 

3 13 15 10/13 

4 15 13 13/15 

5 14 8 8/8 
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Disease associated MPO specific epitopes have pathogenic potential. 

It is well known that ANCA target MPO on the surface of neutrophils in vivo and cause them 

to degranulate and damage endothelium resulting in small vessel vasculitis.  We can replicate this 

phenomenon in an in vitro assay using cytoclasin B primed neutrophils from healthy donors.  Affinity 

purified autoantibodies were tested for their ability to activate neutrophils using an established 

neutrophil activation assay
4
.  Autoantibodies that targeted linear epitopes were affinity purified and 

specificity was confirmed by ELISA (Fig. 2.9).  First, specificity was determined by assaying a 

specific autoantibody against varying epitopes and second, reactivity and purity were assayed against 

each MPO peptide using all affinity purified autoantibodies. Characterization of eluted antibodies 

verified that the aa448-459 affinity purified autoantibodies reacted specifically aa448-459 peptide by 

ELISA and was negative for five non-specific peptides (Fig. 2.9A and C).  Specificity was further 

validated when other anti-MPO antibodies purified by chromatography did not react with peptide 

aa448-459 (Fig. 2.9B and D).   Once specificity and purity were examined by ELISA affinity purified 

autoantibodies were utilized for indirect immunofluorescence on fixed neutrophils and assayed for 

their ability to activate neutrophils from healthy donors.   
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Figure 2.9 Reactivity and specificity of affinity purified anti-MPO by ELISA 

 

Figure 2.9 Peptide ELISAs utilizing affinity purified epitope specific autoantibodies from patient sample were 

assayed for reactivity and specificity to their corresponding peptides.   Reactivity and purity was assayed 

against peptide aa530-536 (Panel B) and aa448-459 (Panel D) coated plates and reactivity of their 

corresponding antibodies in addition to other affinity purified autoantibodies.   Specificity was determined by 

the reactivity of the affinity purified antibodies to a variety of MPO peptide substrates including native MPO as 

a positive control (Panel A and C).  



50 

 

 Figure 2.10 shows the result of neutrophil activation by release of oxygen radicals utilizing 

neutrophils from four healthy donors.  Total anti-MPO, anti-aa448-459, anti-aa516-524 and 

autoantibodies specific for conformational epitopes all activated healthy neutrophils (Fig. 2.10A).  

Autoantibodies found in healthy controls and during remission (not associated with disease) did not 

cause neutrophil degranulation (Fig. 2.10B).  These results correlate to the individual autoantibody’s 

prediction of disease association from the MS epitope excision. 

Figure 2.10 in vitro pathogenic potential of affinity purified anti-MPO 

 
Figure 2.10 Comparison of MPO specific autoantibodies with and without association with disease by 

pathogenic potential.  Neutrophil activation assays were done on neutrophils from 4 healthy individuals.  Panel 

A displays the ability of disease associated autoantibodies to activate primed healthy neutrophils.  In contrast, 

Panel B shows the result of neutrophil activation assays using autoantibodies from healthy individuals and 

patients which are not associated with disease.    
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Affinity purified antibodies were assayed for staining patterns on fixed human neutrophils by 

indirect immunofluorescence using the INOVA-ANCA IFA used by UNC hospitals for clinical 

diagnostic testing.  Figure 2.10 shows the resulting staining patterns A) anti-MPO from a healthy 

individual B) total anti-MPO from an MPO positive patient C) affinity purified anti-aa530-536 D) 

anti-aa579-590 E) anti-aa516-524 F) anti-conformational epitope antibody pool.  MPO positive stain 

exhibits a peri-nuclear pattern which can be seen on Fig 2.11B, E and F; while A, C and D are 

negative.   Negative stains resulted from anti-MPO autoantibodies purified from healthy subjects (A) 

and autoantibodies purified from patients that target epitopes not associated with disease (C and D).  

Disease associated epitope aa448-459 does not stain healthy neutrophils and will be discussed further 

in Chapter 3. 
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Figure 2.11 Indirect immunofluorescence assay of affinity purified anti-MPO on human neutrophils 

 

 

Figure 2.11 Reactivity of affinity purified autoantibodies to fixed human neutrophils using the INOVA-IFA 

clinical assay.  Panel A shows affinity purified anti-MPO from a healthy individual in contrast to anti-MPO 

from a patient sera sample (Panel B).  Panel C and D show a negative stain from autoantibodies not associated 

with disease anti-aa530-536 and anti-aa579-590 respectively.  A perinuclear pattern is shown in Panel E by 

reactivity with linear disease associated epitope anti-aa516-524.  An even more intense staining pattern is seen 

in Panel F by staining with a pool of autoantibodies to all conformational MPO specific epitopes. 
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Verification of reactivity to linear MPO epitopes in an independent patient cohort 

The independent cohort from Groningen, The Netherlands consisted of 26 active samples 

with 26 longitudinal remission samples from 26 patients with MPO-ANCA, nine healthy controls and 

five Ig samples from patients with PR3-ANCA.  Epitope profiles were determined from 20 active Ig 

patient samples included in the previously described cohort (Table 2.3). 

Table 2.3 The Netherlands patient cohort; MPO epitope profiles 

 

 

The most prevalent disease associated epitope aa537-548 in our US cohort was also the most 

prevalent in the NL cohort but the distribution was not similar.  The epitopes displayed in Table 2.3 

are ordered by prevalence in the US cohort and do not correlate with the prevalence in the NL cohort 

indicated by the totals at the bottom of the table.  There are also six epitopes that are not represented 

in the NL patient cohort.  In addition to epitope profiling, disease associated anti-MPO
448-459 

and anti-

MPO
516-524 

autoantibodies were assayed for reactivity and specificity by ELISA.  The results, which 

are consistent with the MS data, are shown in Figure 2.12. 
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Figure 2.12 Reactivity to critical epitopes in an NL cohort by ELISA 

 

Figure 2.12  Purified Ig was assayed against two disease associated epitopes aa448-459 and aa516-524. Panel 

A shows the overall reactivity to MPO epitope aa4484-459 and Panel B shows the 12 samples positive for 

epitope aa448-459 by MS assayed by ELISA with longitudinal samples from the same individual.  Panels C and 

D show the reactivity of Ig against MPO epitope aa516-524 using the NL cohort and longitudinal samples from 

the same individual positive for the epitope by MS respectively.
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In vivo immunization of a CD4+ T cell epitope induces glomerulonephritis in DR2 Tg mice 

ANCA are implicated in the pathogenesis of vasculitis and FNGN 
5, 13, 53

, but although there 

is a rationale for autoreactive CD4
+
 cells, there is less evidence of a role for cell-mediated effectors.   

We hypothesize that MPO-specific effector CD4
+
 cells are important in disease by localizing to 

glomeruli and inducing a DTH-like lesion. The existence of autoantigen specific T cells, together 

with the presence of effector CD4
+
 cells, macrophages and fibrin in patients’ glomeruli provide the 

foundation for our hypothesis. MPO within the glomerulus exists both within neutrophils and 

extracellularly 
54

.  In a murine model of anti-MPO FNGN, where autoimmunity to MPO is induced 

and glomerulonephritis is triggered by injection of sheep anti-mouse glomerular basement membrane 

(GBM) antibody, CD4
+
 T cell depletion during the effector phase attenuated disease 

55
. 

To study the potential immunopathogenecity of MPO epitope aa448-459 in vivo, our 

colleagues at the Monash Medical Center in Victoria Australia were able to immunize mice (human 

DR2) with an overlapping T cell epitope.  We were provided sera from their MPO mouse model. 

They have used this epitope to test the hypothesis that antigen specific CD4
+
 T cells recognize this 

epitope and MPO itself, in glomeruli and induce FNGN.  In addition to CD4
+
 T cells recognition of 

the MPO epitope, we tested if the sera to determine the MPO epitope profile produced when mice 

were immunized with just one epitope. The immunodominant CD4+ T cell epitope was identified in 

mice immunized with 20 amino acid overlapping peptides spanning the murine MPO molecule.   

Immunization with MPO aa409-428 (PRWNGEKLYQEARKIVGAMV) in combination with 

Fruend’s complete adjuvant was confirmed to induce glomerulonephritis by injection at the base of 

the tail of DR2 Tg mice. This T cell epitope overlaps with our disease associated B ell epitope aa448-

459 (RKIVGAMVQIITY).   DR2 Tg mice have a human DR2 and immunization caused nephritic 

autoimmunity and an autoantibody B cell response.  Mass spectrometry analysis using the previously 

described method was performed on the immunoglobulin fraction from sera of four MPO aa409-428 

immunized DR2 Tg mice against murine MPO.  The epitope profile of the humanized mice is 
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compared with human epitopes found using the same method in Table 2.3.  The majority of the 

antibodies target MPO epitopes in regions of homology between murine and human MPO.  As seen 

in Table 2.3, the epitope profiles from the DR2 Tg mice not only developed antibodies targeting the 

initial peptide immunogen but also initiated a polyclonocal response to the entire MPO molecule 

which targeted similar epitopes as an MPO-ANCA patient profile.  

When this in vivo data is considered in addition with published data on the pathological role 

of ANCA in disease, our studies demonstrate that tissue injury in microscopic polyangiitis is 

mediated by a series of events. These events include distinct roles for both MPO-ANCA activated 

neutrophils, autoreactive effector CD4
+
 T cells that provide further evidence to support the 

immunopathogenecity of not only ANCA but a specific anti-aa448-459 autoantibody. 

 

 

 

Table 2.4 Comparison of human and murine MPO epitope profiles 
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Discussion 

In this chapter, anti-MPO epitope specificity was identified using an epitope excision 

proteomics approach with patient and healthy donor sera samples.  A total of 25 MPO epitopes were 

found including: 12 associated with active ANCA disease, six associated with ANCA disease 

(including remission), and seven not associated with disease.  By pre-digestion of MPO, 5/25 

epitopes were determined to be linear, with the remaining 20 epitopes which were conformationally 

dependant.  This finding is consistent with two initial reports identifying that MPO-ANCA recognize 

mostly conformational epitopes
19

 and patients have a polyclonocal response
56

.   

Immunodominant MPO epitopes have been identified in patient cohorts around the world 

with little to no consensus.  The initial report of anti-MPO specific epitopes by Pedrollo et. al. 

incriminate the denatured light chain of a bacterially expressed recombinant MPO protein.  All 

patients tested (n=20) were reactive to whole native protein, 11 were reactive to the urea denatured 

light chain and zero were reactive to the denatured heavy chain.  They concluded that most epitopes 

were conformationally dependent while the light chain held linear epitopes that were readily 

recognized by MPO-ANCA sera samples
57

.  We have been able to confirm these initial results 

showing that there is a linear epitope found in the light chain (aa237-248) along with 3 other 

conformational epitopes.   

In 1995, Chang et. al. studied the reactivity of five MPO-ANCA patients sera samples against 

overlapping peptides spanning the entire MPO molecule.  They found four epitopes that were 

significantly reactive to patient Ig but Ig from healthy controls were reactive to the same four 

epitopes
21

.  The epitopes that were reported in this study have overlap with our identified epitopes 

associated with disease only.  These epitopes are not linear and would not be accessible using 

overlapping peptides.  Chang and colleagues concluded that the reactivity seen in their assays was 

nonspecific. 
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A group in Japan published a series of manuscripts studying immunodominant MPO epitopes 

using recombinant MPO fragments
24, 58, 59

.  There has been no characterization of the structure of the 

recombinant fragments or whether they are similar to native MPO.  The initial report in 1998 presents 

a single region where reactivity was seen in all five patients tested.  This large region of the heavy 

chain, which includes 141 amino acids, overlaps with three disease associated conformational 

epitopes we have found by epitope excision.  In 2000, the same recombinant fragments were used to 

assay 20 MPO-ANCA patient sera samples.  Using a larger cohort produced two narrower regions of 

reactivity (aa279-341 and 341-410) which were within the range of the initial finding and one 

additional region of 148 amino acids at aa598-745.  It should be noted that the narrowing of the initial 

range did not exclude any epitopes we have found in that same region.  The additional range overlaps 

with two epitopes not associated with disease and three disease associated epitopes which were all 

found to be conformationally dependent for antibody interaction.  Their most recent paper published 

in 2007, again used their recombinant MPO fragments on an even larger population of MPO-ANCA 

patients (n=74) in order to study the link with disease severity.  They were able to further narrow their 

epitope ranges to two sequences (aa279-341 and aa474-512) which in our studies overlaps to three 

disease associated epitopes which are conformationally dependent. 

In an effort to rectify the gathering evidence of conformational dependent MPO epitopes and 

to preserve molecular architecture, Erdbrugger et. al. constructed human/mouse chimeras
22

.  Their 

advantage was the close homology (90%) between murine and human MPO which in theory would 

equate to a similar structure to native MPO.  The MPO molecule was divided into five segments:  

light chain, and 4 segments of the heavy chain (A-D).  They found the most reactivity (n=14 patients 

with n=43 samples) in segments C (aa517-667) and D (aa668-745) which in combination is a total of 

249 amino acids.  The results presented in this chapter confirm that 12 epitopes fall within these two 

segments.  Erdbrugger et. al. also found that 6/14 patients in at least one sample reacted with their 

segment B (aa387-516) which overlaps with an additional seven epitopes found by epitope excision.  
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While using chimeras yielded many more results than overlapping peptides, the regions of reactivity 

were too large to predict any specific immunodominant epitopes. 

The most recent report is from Bruner et. al. in 2011, where they implicate seven 

immunodominant epitopes by utilizing an overlapping peptide ELISA
20

.  We were able to confirm 

one of their immunodominant epitopes aa511-522 (RLDNRYQPMEPN) which overlapped with our 

linear disease associated epitope aa516-524 (YQPMEPNPR).  Five other epitopes which we 

identified by MS epitope excision also overlapped with their linear epitopes but we determined that 

they were conformational.  In this recent study, their cohort was limited to 14 individuals with MPO-

ANCA which could have lead to the discrepancy in results. 

Reviewing the literature describing potential MPO epitopes there is little evidence that points 

to a consistent ideally sized (3-5 amino acids) immunodominant epitope.  While there is consensus a 

that the anti-MPO autoantibody response is polyclonal, the heavy chain holds the majority of disease 

associated epitopes and the majority of epitopes recognized by human anti-MPO autoantibodies are 

conformational.  The idea of an immunodominant MPO epitope may only be relevant on an 

individual patient basis.  Table 2.4 summarizes these findings and illustrates the overlap with the 25 

epitopes presented determined by MS.   
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Table 2.5 Comparison of reported MPO epitopes 

Manuscript 

(Author, year) 
Protein substrate 

Patient 

cohort 
Epitope

#
 Overlap 

My pathogenic 

prediction* 

Pedrollo E., 1993 

Bacterially 

expressed 

recombinant 

n=20 

Denatured Light 

chain 

aa166-278 

aa184-193 DA 

aa198-219 DA 

aa220-228 DA 

aa237-248 NDA 

Chang L., 1995 
Overlapping 

peptides 
n=5 

aa119-130 

aa179-180 

aa439-450 

aa649-670 

aa442-447 DA 

aa437-441 DA 

aa657-664 DA 

Tomizawa K., 1998 
Recombinant 

protein fragments 
n=4 aa269-409 

aa328-351 DA 

aa369-405 DA 

aa396-405 DA 

Fujii A., 2000 
Recombinant 

protein fragments 
n=20 

aa279-341 

aa341-410 

aa598-745 

aa328-351 DA 

aa369-374 DA 

aa396-405 DA 

aa593-603 NDA 

aa605-622 DA 

aa678-691 NDA 

aa692-701 DA 

aa715-725 DA 

Erdbrugger U., 2005 

Human/mouse 

chimeric 

recombinant 

n=14 
aa517-667 

aa668-745 

aa516-524 DA 

aa530-536 NDA 

aa537-548 DA 

aa560-571 DA 

aa572-578 NDA 

aa579-590 NDA 

aa593-603 NDA 
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aa605-622 DA 

aa657-664 DA 

aa678-691 NDA 

aa692-701 DA 

aa715-725 DA 

Suzuki K., 2007 
Recombinant 

protein fragments 
n=74 

aa279-341 

aa474-512 

aa328-351 DA 

aa474-480 DA 

aa490-499 DA 

Bruner B.F., 2011 
Overlapping 

peptides 
N=12 

aa91-100 

aa213-222 

aa393-402 

aa437-446 

aa479-488 

aa511-522 

aa717-726 

Aa220-228 DA 

Aa396-405 DA 

Aa442-447 DA 

Aa474-480 DA 

Aa516-524 DA 

Aa715-725 DA 

# amino acid sequence based off of MPO sequence gi 34719 

*DA = disease associated epitope 

NDA = not disease associated 
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The search for an immunodominant epitope has obvious implications for the pathogenesis of 

disease but the development of these autoantibodies is another area of interest.  Natural 

autoantibodies (NAA) which are defined as antigen (MPO and PR3) specific autoantibodies found in 

circulation in blood samples from healthy donors were first identified and isolated in an effort to 

understand the mechanism of ANCA production
28

.  Purification of natural autoantibodies was done in 

2010 by Cui et. al. from IgG fractions from healthy donors (n=20)
28

.  Autoantigen specificity was 

proven by an indirect immunofluorescence assay (IFA) where both anti-PR3 and anti-MPO NAA 

showed a cytoplasmic pattern consistent with a positive PR3-ANCA IFA.  This is not consistent with 

our results where autoantibodies not associated with disease do not stain human neutrophils by IFA.  

This discrepancy could be due to the fact that we were only able to test the 3 NAA that were specific 

to linear epitopes.  Interestingly, Cui et. al. could not be detect NAA in serum or IgG fractions which 

is indicative of low titer antibodies, this finding correlates with our observations.   

In 2011 Xu et. al. compared the characteristics of NAA found in healthy individuals to 

patients with ANCA disease.  Plasma samples from five healthy blood donors and 10 patients with 

MPA were used to purify autoantibodies to MPO.  Autoantibodies were assayed for reactivity by 

ELISA, western blot, for titer, avidity, IgG subclass, neutrophil activation and MPO/CP binding.  

They found that anti-MPO NAA were lower titer, lower avidity, had a lower inhibitory effect on 

MPO/CP binding, a lower ability to activate primed neutrophils and were comprised of different IgG 

subclasses than MPO-ANCA from patients.  This report gives a full picture of the characteristics of 

the NAA which is in agreement with our results using epitope excision.  In order to further the 

knowledge of NAA in ANCA disease, we have identified the sequence of 7 epitopes on MPO that are 

the targets of NAA; 3 of which are linear.  Both reports admit that the role of NAA are still unclear 

but suggest that their role could be either protective or potentially pathogenic. 

We hypothesize that the presence of  NAA, autoantigens and autoantibody specificity are just 

some factors in a cascade of pathogenesis (likely variable between individuals) which results in 
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autoimmune disease
60

. Once we had determined epitope profiles from patient and healthy donor 

samples, the crystal structure of human MPO (pdb 3F9) was used to determine relationships between 

disease associated epitopes and non-disease associated epitopes. Disease associated epitopes shown in 

blue (Fig. 2.13) are in many cases found in conjunction with epitopes found in healthy individuals 

(green). Fine epitope mapping (shown in red) incriminates specific amino acids which are important 

for autoantibody binding in these pairs. We propose that individuals who express non-pathogenic 

MPO autoantibodies
28

 are likely to not develop disease; however, these same potentially non-

pathogenic autoantibodies in an individual with dysfunctional T cells
61-63

 could aberrantly display 

sequential variations of the epitope. These autoreactive T cells are able to stimulate B cells to produce 

autoantibodies that are now potentially pathogenic and create active disease associated autoantibodies 

targeted at previously unrecognized neighboring MPO sequences.  
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Figure 2.13 Hypothesis: Origins of disease associated epitopes 

 
Figure 2.13  Development of active disease associated anti-MPO autoantibodies through aberrant T cell antigen 

presentation.   In healthy individuals T cells present peptides to B cells that produce antibodies (left side) to 

MPO specific epitopes unrelated to autoimmune disease.   Disease associated and non disease associated 

epitopes were found in pairs and upon fine epitope mapping, critical amino acids (highlighted in red) that 

correlate with disease activity.   
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We postulate that epitope specificity of anti-MPO-ANCA may also depend greatly on the 

genetic background of the individual. MHC classes and HLA subclasses direct the immune response 

and illicit a wide variety of a clonal B cell response. There is a range of autoantibody production in 

individuals’ which may be dependent on their HLA subclass. The 52 active MPO-ANCA serum 

samples studied showed a wide range of B cell clonality. When patients were in an active disease 

state the range of unique autoantibodies found in their sera corresponding to 3-20 epitopes.  Also, 

within the same individual upon a disease relapse, the same profile of anti-MPO autoantibodies 

reemerge and tended to target the same MPO epitopes as previous active disease states. 

The amalgamation of the patient and animal data indicate that a MPO epitope aa448-459 

restricted response is sufficient to cause pauci-immune vasculitis, underscored by the restricted 

response found in ANCA-negative glomerulonephritis patients.  The murine MPO409-428 CD4+ T cell 

epitope can also induce MPO-ANCA in DR2 Tg mice.  While it is not necessary for autoreactive T 

and B cell epitopes to be from similar parts of the autoantigen, the identification of overlapping T and 

B cell epitopes in a similar region of the heavy chain of MPO with substantial cross reactivity 

strengthens the case for the relevance of this region of the MPO molecule in MPO-ANCA associated 

vasculitis. Targeted antigen-specific therapy is a long term aim in treating autoimmune disease. The 

identification of an important epitope within MPO provides a platform for further work aimed at 

developing antigen specific therapies, given the apparently relatively restricted range of autoantigens 

in microscopic polyangiitis with MPO-ANCA. 

When considered with the published data on the pathological role of ANCA in disease, our 

studies demonstrate that tissue injury in microscopic polyangiitis is mediated by a series of events. 

These events include distinct roles for both MPO-ANCA activated neutrophils, as well as 

autoreactive effector CD4
+
 T cells that recognize MPO planted in glomeruli by ANCA-activated 

neutrophils. 
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MPO-ANCA titers have not proven to be good markers of disease activity and their targets 

have been elusive until now
35, 64

.   Our data shows that the majority (18/20) of disease associated anti-

MPO-autoantibodies depend on a conformational structure for successful binding. Our current 

methods of testing autoantibody titers as a predictor of disease activity may be insufficient. The 

technique used in this study is drastically more sensitive than current clinical testing and has 

uncovered extremely low titer anti-MPO NAA found in healthy subjects as well as specific 

autoantibodies that correlate with disease activity. 

 



 

 

Chapter 3 

MYELOPEROXIDASE SPECIFIC AUTOANTIBODY IN ANCA-

NEGATIVE GLOMERULONEPHRITIS 
 

ANCA negative glomerulonephritis 

ANCA glomerulonephritis is the most common form of aggressive glomerular disease and is 

associated with a systemic necrotizing vasculitis including microscopic polyangiitis (MPA) and 

granulomatosis with polyangiitis (GPA).
14

  In general, patients with systemic necrotizing vasculitis 

have autoantibodies reactive with myeloperoxidase (MPO-ANCA), or proteinase 3 (PR3-ANCA).  

However, in some cases, patients with systemic necrotizing vasculitis have an ANCA negative 

serology.   In 2009, Chen et. al. retrospectively reviewed clinical data collected from patient charts of 

ANCA glomerulonephritis cases in China and the UK and determined that 10-30% of studied cases 

were ANCA-negative
62

.  The percentage of ANCA negative glomerulonephritis case varies widely 

and diagnosis is problematic with conflicting and inconsistent results from clinical testing.  For 

example, antigen specific ELISAs are negative while indirect immunofluorescence assays against 

human neutrophils show a positive staining pattern, or when a patient presents as ANCA negative but 

as their disease progresses clinical tests indicate a positive ANCA serology.  The observance of these 

clinical discrepancies, when taken as a whole, lead to the following possible hypothesis: 1) ANCA-

negative glomerulonephritis is a distinct syndrome; 2) autoantibodies are targeting an autoantigen not 

included in the clinical test; 3) existing clinical tests lack sensitivity and/or specificity. 

One of the MPO epitopes we have found to be exclusively prevalent in patients with active 

disease appears to be a critical immunodominant epitope found not only in ANCA positive patients, 



65 

 

but also is the sole reactive epitope in some patients with ANCA negative disease.  The reason for the 

inability to detect this anti-MPO antibody in conventional clinical tests is a consequence of its 

blockade by a fragment of the natural inhibitor of MPO, which is ceruloplasmin.  It is the discovery 

of an immunodominant epitope and corresponding anti-MPO autoantibody in ANCA negative 

patients hidden from conventional clinical assays that raises the possibility of similar phenomenon in 

other “seronegative” autoimmune diseases thereby opening a window into the possible 

experimental approach to exploring other autoimmune disease.  

In this chapter, we present experiments that revealed the existence of MPO-ANCA in sera of 

patients previously diagnosed as “ANCA negative systemic necrotizing vasculitis.”  We were able to 

discern a pathogenic epitope on MPO (aa448-459), which was previously identified as a linear 

epitope associated with disease (Chapter 2).  Autoantibodies to MPO epitope aa4484-59 were 

previously undetected in clinical assays due to a ‘blocking’ factor resident in serum.  Indications are 

that monitoring for this specific ANCA-epitope is a better indicator of not only MPO-ANCA disease 

activity but also it is important in the diagnosis of ANCA disease.   

Autoantigen epitope profiling in ANCA negative glomerulonephritis 

Eight patients diagnosed with ANCA negative glomerulonephritis were selected based upon 

clinical presentation with small vessel vasculitis with a negative result by indirect 

immunofluorescence microscopy or antigen-specific enzyme-linked immunosorbent assays (ELISA). 

Participants were included if they were persistently ANCA negative but had histological confirmation 

of the disease by a biopsy of the kidney, lung or upper respiratory tract consistent with pauci-immune 

small vessel vasculitis or glomerulonephritis, with or without granulomatous inflammation. Three 

patients with persistently negative ELISAs but positive p-ANCA by immunofluorescence were also 

included. The above patient population was 87.5% female and 62.5% Caucasian with a mean age of 

35.6 years.   
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Sera samples from patients diagnosed with ANCA negative glomerulonephritis (n=8) were 

assayed for autoantibodies by mass spectrometry using the MS epitope excision protocol (Chapter 2) 

with the exception that the total leukocyte cell lysate from a healthy donor was used as a non-biased 

substrate to search for unknown antigens.  All patients with ANCA-negative glomerulonephritis 

displayed a restricted autoantibody response to myeloperoxidase, specifically, to epitope aa448-459 

(RKIVGAMVQIITY).  Mass Spectrometry spectral analysis identifies the peptide bound to patient Ig 

is from myeloperoxidase.  In Figure 3.1 an MS spectrum from one ANCA-negative 

glomerulonephritis patient shows the peptide at a mass of 1491.841.   
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Figure 3.1 Autoantibody specificity in ANCA-negative glomerulonephritis by MS 

 

Figure 3.1 Immunoglobulin fractions were purified from patient sera and subjected to epitope excision and MS 

analysis (Panel A).  Patients were found to have a restricted autoantibody response to MPO.  MS analysis 

revealed autoantibody binding to an MPO fragment mass of 1492.14, identifying the epitope as aa448-

459(Panel B).
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Upon further analysis MPO epitope profiles were determined for all twelve patient samples.  

Table 3.1 shows the epitope profiles of the 8 patients studied in this cohort (four of which had 

samples also during disease remission), all active samples identified only one disease associated 

epitope, MPO epitope aa448-459. 

 

 

 

Reactivity was confirmed by ELISA using the native MPO and MPO peptide aa448-459 as 

substrate (Fig. 3.2).  The results of the ELISA show that in comparison to healthy subjects, the Ig 

fraction is reactive against native MPO (Fig. 3.2A) and epitope aa448-459(Fig. 3.2B).   Paired 

samples from four of the eight patients were also assayed for reactivity by both substrates by ELISA 

(Figure 3.2C and D).  Samples were collected during active disease exhibited reactivity to native 

MPO, while samples collected during disease remission had significantly decreased reactivity.  The 

data correlate with the initial observation of anti-aa448-459 autoantibodies in active MPO-ANCA 

disease.   

Table 3.1 MPO epitope profiles from patients diagnosed with ANCA-negative glomerulonephritis 
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Figure 3.2 Reactivity of anti-aa448-459 in ANCA-negative glomerulonephritis 

 

Figure 3.2 Reactivity to MPO epitope aa448-459 and native MPO were assayed by ELISA with samples from 

ANCA-negative glomerulonephritis patients (n=8) and healthy individuals (n=15, n=20).  Panels A and B show 

the seroreactivity of Ig from ANCA-negative sera against native MPO and the synthetic peptide aa448-459, as 

compared to healthy controls.  Panels C and D display the correlation of anti-MPO reactivity with disease 

activity using paired samples from the same individual during active disease and clinical remission. 
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It is important to note that all assays were carried out using the Ig fraction purified from 

patient sera whereas both ELISA and IF clinical assays used whole sera.  We hypothesized that the 

failure of detecting anti-aa448-459 autoantibodies in the clinical assay was due to masking by a serum 

component.  To test this hypothesis, ELISAs were used to test the reactivity against native MPO and 

MPO peptide aa448-459 using both sera and Ig fraction from the same sample.  Figure 3.3 shows that 

a positive autoantibody reactivity against native MPO or MPO peptide aa448-459 by ELISA was 

highly dependent on using purified Ig, while results were negative using the same patient’s whole 

serum (Fig. 3.3A and B).  These results are consistent with the prediction of a serum ‘epitope-

blocking’ factor observed in Chapter 2.  Further, this observation was confirmed by an inhibition 

experiment in which increasing amounts of serum were added to reactive Ig fractions and all 

reactivity was blocked (Fig 3.3C).  The addition of sera from a healthy individual or a MPO-ANCA 

patient yielded a steep reduction of reactivity at a concentration of 1:1000 (Ig : sera).   It was 

determined that the serum component is abundant in sera and is not disease specific. 
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Figure 3.3 Seroreactivty to MPO using sera and Ig 

 

Figure 3.3 Sera from eight ANCA-negative glomerulonephritis patients were assayed against native 

MPO(Panel A) and a synthetic peptide of epitope aa448-459 (Panel B).  All sera were non-reactive in contrast 

to total Ig.  Titration of serum, from both a healthy subject (dashed line) and a patient serum (solid line), into 

total Ig preparations blocked reactivity to MPO peptide aa448-459 (Panel C). 
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Ceruloplasmin blocks anti-448-459 autoantibody interactions on native MPO 

To identify the ‘blocking-factor’ present in sera, MPO peptide aa448-459 (irreversibly bound 

to polystyrene beads) was used to discover potential binding partners.  Peptide beads were incubated 

with sera from patients and healthy individuals.  The stained gel of eluted proteins showed a band on 

all five healthy control and five active MPO-ANCA patients at ~151kD (Fig. 3.4A).  There was also a 

protein band of approximately 50kD in size.   Both bands were excised for sequencing by MALDI-

MS/MS and were identified as ceruloplasmin (CP).  MALDI-MS/MS data was confirmed by western 

blot using a ceruloplasmin specific polyclonal antibody (Fig. 3.4B).   A western blot probed with a 

polyclonocal anti-CP antibody recognized both sizes of protein one at 151kD (full length CP) and 

about 50kD (CP fragment).  From this data we were able to determine that full length CP and a 

smaller CP fragment are both able to bind specifically to MPO epitope aa448-459.  There are no 

obvious differences in amount of CP that bound to MPO peptide aa448-459 between healthy subjects 

and active MPO-ANCA patients by western blot. 
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Figure 3.4 Identification of serum component bound to aa448-459 

 

Fig 3.4  Sera ‘epitope-blocking’ factor was purified using the target MPO epitope aa448-459 and analyzed by 

gel electrophoresis.  Distinct bands at ~150kD can be detected in all 10 samples irrelevant of disease (A).  The 

gel was transferred to nitrocellulose and probed with an anti-ceruloplasmin polyclonal antibody which 

confirmed that bands at ~150kD and ~50kD were full length ceruloplasmin and a protein fragment, respectively 

(B). 
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To study the inhibition of ANCA binding to the MPO epitope aa448-459 in vitro, full length 

CP and also the smaller CP fragment were required.  In order to replicate the CP fragment at ~50kD, 

full length CP was digested by a variety of serum proteases shown in Figure 3.5.  Serine proteases 

chymotrypsin, plasmin, thrombin and urokinase were determined to digest CP into appropriate sized 

fragments whereas lysozyme digestion did not. Plasmin, thrombin and urokinase were chosen as 

candidates to cleave ceruloplasmin into a fragment that could potentially bind MPO epitope aa448-

459.    

Figure 3.5 Full length ceruloplasmin digested by various serine proteases 

 

Figure 3.5  Serine protease digestion of full length ceruloplasmin.  Ceruloplasmin was digested by plasmin, 

thrombin, chymotrypsin, urokinase and lysozyme to identify a fragment at ~50kD.  Full length ceruloplasmin 

can be observed in lane 6 at ~150kD.  Proteases: plasmin, thrombin and urokinase were chosen for further 

analysis. 
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 Figure 3.6 shows the specificity of the enzymatic cleavage product of CP to block 

autoantibody binding. Ig samples from a vasculitis patient diagnosed with ANCA-negative 

glomerulonephritis (who were identified as reactive for MPO epitope aa448-459) and an MPO-

ANCA positive patient sample were assayed to observe the effect of the CP fragment on autoantibody 

reactivity.   Neither full length ceruloplasmin nor ceruloplasmin cleaved by thrombin successfully 

inhibited the autoantibody to bind MPO epitope aa448-459(Fig. 3.6A and B).   In contrast, both 

fragments of ceruloplasmin cleaved by either urokinase or plasmin preferentially bound epitope 

aa448-459 and inhibited autoantibody binding (Fig. 3.6C and D).  These results indicate the dominate 

species of ceruloplasmin bound to peptide aa448-459 was a cleavage product of full length 

ceruloplasmin.   

Figure 3.6 Specific ceruloplasmin fragment blocks autoantibody binding on native MPO 

 

Figure 3.6   Inhibition of autoantibody binding to MPO epitope aa448-459 by addition of Ceruloplasmin.  Full 

length CP (A), CP cleaved by thrombin (B) did not inhibit binding whereas the addition of CP cleaved by 

plasmin (C) and CP cleaved by urokinase (D) significantly inhibited binding.
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We hypothesize that some patients with ANCA-negative glomerulonephritis are unreactive to 

both clinical tests for ANCA disease (ELISA and IFA) because of a specific proteolytic fragment of 

ceruloplasmin normally present in sera which is blocking reactivity. These patients have a markedly 

restricted polyclonal response to MPO.  The antigen-specific ELISA used for clinical diagnosis is 

simulated in Figure 3.7A where the addition of the plasmin cleaved CP fragment blocks reactivity of 

seven sera samples from patients with ANCA-negative glomerulonephritis against native MPO.  The 

ELISA shows that with the addition of the specific epitope ‘blocker’ reactivity is inhibited which 

results in a false negative.  This phenomenon is not observed when using Ig from MPO-ANCA 

patients (n=4), as they have a polyclonal autoantibody response against native MPO.  The clinical 

diagnostic test utilizing indirect immunofluorescence may also provide a negative finding or an 

irregular staining pattern for patients deemed as ANCA-negative.  Could this be due to the presence 

of ceruloplasmin on the fixed neutrophils?   Using a polyclonal anti-ceruloplasmin antibody, an 

abundance of ceruloplasmin was detected which could be already bound to MPO at aa448-459 and 

therefore obscuring the autoantibody binding site (Fig. 3.7B).   
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Figure 3.7 Detection of anti-aa448-459 autoantibodies is obscured in clinical assays by a cleavage product 

of a common serum protein 

 

 

Figure 3.7   Panel A shows by ELISA that detection of anti-MPO 448-459 autoantibodies in total IgG from 

ANCA-negative patients (n=7) is muted by addition of cleaved ceruloplasmin (squares).   Due to the polyclonal 

nature of MPO-ANCA positive patients, the total Ig (n=4) (circles) reactivity appears unaffected by addition of 

ceruloplasmin.   Indirect Immunofluorescence staining (Panel B) shows that fixed neutrophils, when probed 

with anti-ceruloplasmin antibody, are positive for ceruloplasmin, explaining the negative IFA test of sera from 

ANCA-negative glomerulonephritis patients. 

 

The results presented in this chapter confirm that these eight patients diagnosed with ANCA-

negative glomerulonephritis are unreactive to one or both clinical tests for ANCA disease (ELISA 

and IFA) because of a proteolytic serum fragment indentified as ceruloplasmin which is able to 

specifically bind to native MPO at aa448-459 thereby masking the autoantibody binding site.    
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Clinical implications and biological significance 

The clinical implications of this discovery are far reaching.  Current treatment protocols rely 

on ANCA-positive tests, and therefore a false negative diagnostic test would have a detrimental 

impact on treatment decisions.  Understanding the intricate biology of autoimmune disease may help 

to further improve clinical testing, diagnosis and treatment.  Biologically, a serum component acting 

as a ‘blocking-factor’ binding to a known autoantigen raises the question of whether the body is 

actively making efforts to protect against autoimmunity, once tolerance is broken.  In the case of 

ANCA disease, the biological role of myeloperoxidase and its inhibitor ceruloplasmin (CP) and how 

they interact may give us clues to how aspects of autoimmunity can be regulated by the human body.  

Therefore, based on these results we hypothesize that MPO epitope aa448-459 is a pathogenic site on 

MPO and a specific ceruloplasmin fragment binds this site to protect from autoantibody binding. 

The interaction between CP and MPO has been studied in MPO-ANCA glomerulonephritis in 

relation to disease activity.  The initial theory was that patients who were diagnosed with ANCA 

disease were deficient in ceruloplasmin.  A ceruloplasmin deficiency or aceruloplasminemia, is 

marked by diabetes mellitus and retinal and neurodegeneration caused by a disruption of iron 

homeostasis
65

.  This hypothesis predicted that low levels of ceruloplasmin would be insufficient for 

the inhibition of MPO to produce hypocholorus acid which in excess would cause severe endothelial 

damage when neutrophils released copious amounts of MPO after activation by ANCA.  

First characterized by Segelmark et. al., CP and MPO were reported to have a physical 

interaction under physiological conditions and CP was able to inhibit the peroxidase reaction of MPO 

in vitro
12

.  Upon the discovery of CP to inhibit MPO, MPO-ANCA weas determined to disrupt the 

binding of CP and MPO.  Griffin et. al. reported that ANCA had a greater affinity to MPO than CP 

and  were able to reverse the inhibition of MPO by CP
66

.  More evidence of the affect MPO-ANCA 

has on the CP-MPO complex was reported by Xu et. al. to showed that MPO-ANCA were able to 

influence the oxidative activity of MPO.  They reported a correlation between the oxidation activity 
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of MPO after binding MPO-ANCA which positively correlated with the level of ceruloplasmin 

binding MPO in the presence of MPO-ANCA
67

.   

Many studies have tried to correlate the serum levels of ceruloplasmin in patients with ANCA 

glomerulonephritis with disease activity in order to prove the initial hypothesis that CP levels in these 

patients would be decreased compared to healthy subjects.  A study done in 1999 by Ara et. al. 

assayed sera CP levels in 21 patients with ANCA glomerulonephritis and found that in active disease 

none of the patients had low CP protein levels and 57% of their cohort had higher than normal 

levels
68

.  A second study done in 2002 by Baskin et. al. assayed sera CP levels in 45 patients during 

both active disease and clinical remission
69

.  They reported that samples taken from patients during an 

active disease state had on average higher than normal levels of CP and in disease remission CP 

levels were normal.  Again zero patients had lower than normal levels of CP in either active or 

remittent disease. In all of these studies, the CP that was assayed for was full length ceruloplasmin of 

130kD or 151kD.   

There is no resolved crystal structure which reveals the exact location of where CP binds to 

MPO but Sokolov et. al. characterized the complex of CP and MPO by three separate methods
70

.  

Using electrophoresis, gel filtration and photon-correlation spectroscopy they determined that the 

normal plasma stoichiometry of these protein levels was 1MPO:2CP.  They hypothesized that two CP 

molecules bound to the exposed heavy chain of MPO.  If CP does indeed bind to the heavy chain of 

MPO, this would lend more credence to previous reports of MPO-ANCA ability to disrupt this 

interaction which we now know primarily target the heavy chain.  

Our results diverge with these finding because instead of ANCA inhibiting the MPO/CP 

complex, a proteolytic CP fragment is prohibiting the binding of an anti- aa448-459 autoantibody.  

Despite the contrast, if MPO epitope aa448-459 is an autoantigenic site it is plausible, in order to 

protect against ANCA, for the body to produce more CP for the goal of generating more of the CP 

fragment to block the binding of a pathogenic autoantibody.  We do not know what the affect this 
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would have on the function of MPO.  We have uncovered that both full length CP and a CP fragment 

bind MPO epitope aa448-459 but only the fragment is able to compete for binding in the presence of 

MPO-ANCA.  The binding site, which is the epitope, can be seen on the crystal structure of MPO 

(Fig. 3.8). 

 

 

Figure 3.8  Myeloperoxidase crystal structure shown as a monomer.  Predicted glycosylation residues are 

shown in pink spheres with a multi-color heme in the center of the molecule.  MPO epitope 448-459 is shown in 

green. 

Figure 3.8 Ceruloplasmin fragment binding site of MPO epitope aa448-459 
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This observation suggests the existence of a positive feedback loop of an important CP 

fragment after an unexpected release of MPO to prevent endothelial damage by MPO byproducts, yet 

we know CP levels do not correlate with decreased disease severity.  This begs the question: Do 

patients with MPO-ANCA have a SNP in ceruloplasmin that makes this fragment non-functional or 

unable to bind MPO epitope aa448-459?  There are numerous SNPs found in CP and MPO that have 

been validated and result in a change in the amino acid sequence.  However, there are no studies 

connecting these known SNPs to ANCA disease.  None of the known SNPs found in MPO results in 

an amino acid change within the MPO epitope aa448-459.  With new data implicating a new role of a 

ceruloplasmin fragment, it is important to further study the known SNPs in CP and whether they play 

a role in proteolytic cleavage or MPO binding.  Uncovering a deficiency in function of CP or its 

cleavage enzyme may be an important aspect of the pathogenicity of ANCA. The data presented in 

this chapter brings to the forefront future directions to examine ceruloplasmin and its function in 

ANCA disease.  
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SUMMARY 

 

This body of work focuses on the specificity of autoantibody-antigen interactions and how 

differences in autoantibody binding sites (epitopes) impact disease.  In Chapter 1, while LAMP-2 was 

not identified as an important autoantigen specific to ANCA disease, we were able to uncover 

autoantigenic sites on MPO.  Little may be gleaned, from the clinical perspective, pertaining to the 

ability to predict remission and relapse in MPO-ANCA glomerulonephritis using autoantibody titer. 

Efforts in epitope mapping anti-MPO-autoantibodies using peptide libraries and chimeric molecules 

have been previously reported, and together have failed to uncover an immunodominant epitope.
20, 22, 

24
  

Our data in Chapter 2, illustrates that the majority (16/18) of disease associated anti-MPO-

autoantibodies are dependent on conformational structures for successful binding. MPO epitopes 

aa516-524 and aa448-459, which are both found exclusively in ANCA disease, correlate with disease 

activity. Further, when B6 mice were immunized with a T cell epitope, overlapping with the B cell 

epitope aa448-459, the mice mounted an autoantibody response similar to an active ANCA patient. 

Chapter 3 describes how MPO epitope aa448-459 was found to be blocked by a specific cleavage 

product of ceruloplasmin by a blood clotting factor.
12, 71

 Once ceruloplasmin was removed, sera from 

some patients diagnosed as ANCA-negative were reactive to MPO, specifically epitope aa448-459.  

The specificity of the autoantibody autoantigen interaction could be responsible for differences in 

disease expression, and may explain why clinical tests developed for autoantibody detection do not 

correlate with disease activity.
35, 64

 

 The mass spectrometry based method presented in this study is drastically more sensitive 

than current clinical testing and has uncovered extremely low titer MPO epitopes found in healthy 
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subjects as well as specific epitopes that correlate with disease activity. The utility of a more sensitive 

method to monitor patient epitope profiles over their disease course would not only enable more 

accurate diagnostics but also the ability to predict clinical outcomes based on the appearance of 

pathogenic autoantibodies possibly preventing organ damage.  

 

 

 



 

 

EPILOGUE 

THE ROLE OF ANCA IN GLOMERULONEPHRITIS: DISEASE 

DIAGNOSIS, PROGNOSIS AND TREATMENT 

Insight into the origin of ANCA disease 

In the past several years, the theory of molecular mimicry in GPA has resurfaced as a 

possible resolution to the question of the origin of ANCA.  The mechanism whereby infectious agents 

cause a compromise in immune tolerance leading to generation of self-reactive antibodies remains 

speculative. Taking into account the many purported theoretical possibilities from numerous research 

groups, molecular mimicry remains the main postulated mechanism 
72-74

.  According to this 

hypothesis, a susceptible
 
host acquires an infection with an agent that

 
is immunologically similar to 

the host antigens but differs
 
sufficiently to induce an immune response when presented to

 
T cells. As 

a result, tolerance to autoantigens breaks down,
 
and the pathogen-specific antibody cross-reacts with 

host structures to cause tissue damage and
 
disease.  Although LAMP-2 autoantibodies were not 

specific for ANCA disease, they were found in individuals with UTI infections which lends credence 

to the theory of molecular mimicry through cross reaction with a bacterial protein FimH.  A similar 

hypothesis can be made concerning MPO epitopes. Disease associated immunodominant MPO 

epitopes could mimic the sequence of a foreign antigen, bacterial or viral, and be responsible for 

triggering disease in susceptible individuals.   

Implications in the field of autoimmunity 

The data in this dissertation presents a novel utility for proteomics in autoimmune disease.  

The obvious next step is to determine the disease associated epitopes relevant in PR3-ANCA.  We 

have begun to use the same MS epitope excision approach to map anti-PR3 autoantibody specificity 

and have encountered many complications.  PR3 is an autocatalytic protein which can cleave itself as 
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well as autoantibodies, and the use of an inhibitor or recombinant PR3 diminishes the accuracy of 

results compared to the use of native protein.  Also, PR3 does not have ideal enzymatic cleavage sites 

which are essential for MS analysis. Given the numerous caveats in generating studying human PR3-

ANCA epitope profiles, further investigation will build the current knowledge base of epitope 

mapping in PR3-ANCA disease. 

The ability to uncover conformationally dependent disease associated epitopes is not only 

valuable to ANCA disease but to other antibody mediated autoimmune diseases as well.  For many 

years the pathogenic epitopes of a debilitating skin disease, pemphigus foliaceus (PF), have been 

sought after.  PF causes spontaneous cutaneous blistering on the epidermis as the result of IgG 

targeting the cell surface of keratinocytes, specifically one of the desmosomal cadherins, desmoglein 

1
75

.  Autoantibodies targeting desmoglein 1 disrupt cell-cell adhesion through an unknown 

mechanism.  Efforts to uncover the pathogenic epitopes of desmoglein utilizing overlapping peptide 

arrays have been unsuccessful thus requiring immunoblotting to assay reactivity
76

.  All epitopes 

targeted by autoantibodies were determined to be conformationally dependent.  PF is an excellent 

candidate for analysis by MS epitope excision because of the known autoantibody specificity and 

favorable properties of desmoglein 1. 

This technique can also be used to identify autoantigens in diseases long thought to be 

autoimmune in nature, including two common kidney diseases--minimal change disease (MCD) and 

focal segmental glomerulosclerosis (FSGS).   These diseases affect podocyte architecture and thus the 

ability of the glomerular filter to prevent urinary protein loss. These podocytopathies are believed by 

many to lie along a continuum, with MCD reversed by immunosuppression, whereas the changes of 

FSGS develop into irreversible scar.  Investigators since the 1970's have believed MCD to be 

immunologic in origin, yet it's pathogenesis is still poorly understood
77

.  Ninety percent of children 

with idiopathic nephrotic syndrome have MCD. Electron microscopy of kidney biopsies reveals 

diffuse effacement of podocyte foot processes, the clinical effect of which is dramatic proteinuria.  No 
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immune deposits or cellular infiltrate are seen by light microscopy
77

. Our hypothesis is that MCD is 

caused by development of autoantibodies against a circulating leukocyte (rather than tissue) which 

releases toxic cytokines damaging the podocytes.  MS epitope excuision is useful to test this 

hypothesis by 'fishing' for autoantigens in patient's serum and leukocyte lysates. Uncovering 

autoantigens is essential for defining the pathogenesis of autoimmune diseases, allowing for precise 

diagnosis and therapy.   

Potential for improvement on current therapies 

Current treatments for autoimmune diseases center around the same immunosuppression 

options used in various cancer or anti-organ rejection therapies.  Drugs like cyclosporine, steroids, 

and more recently rituximab have been used to eliminate the immune cells thought to be responsible 

for autoimmunity.  The same risk of secondary infection holds for patients with autoimmune disease 

who are treated with immunosuppression.  While their immune system is disabled, their disease 

progression arrests but for many patients upon the return of their B and T cells, relapse occurs.  In 

order to manipulate the immune system in patients suffering from autoimmune diseases, Stienman et. 

al. purpose an idea called inverse vaccination in order to eliminate specific B cell and T cell 

responses and reduce the risk of nonspecific immunosuppression
78

.  Researchers have successfully 

created a vaccine for multiple sclerosis (MS) in mice which targets autoantibody binding sites on 

myelin.  Stienman et. al reported that the DNA based vaccines were able to tolerize mice against 

particular sites on myelin after their first episode of paralysis and reduce or eliminate relapses.  These 

studies have translated to human phase I and II clinical trials with patients diagnosed with MS and 

have yielded promising results.  The identification of pathogenic epitopes on MPO could be used for 

not only disease profiling but potential therapies not unlike the idea of an inverse vaccine.  Peptide or 

protein treatments could be used to tolerize patients to autoantigenic epitopes.  Drugs that target 

certain B cell clones or better timing of immune therapy may save patients from unnecessary 

immunosuppression.   
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Another autoimmune disease that has had significant progress in the development of a 

vaccine is type 1 diabetes.  This is a disease in which autoantibodies target pancreatic islet cells 

causing the destruction of the only source of insulin in the body.  There is currently no cure or 

prevention of type 1 diabetes, only a life-long treatment of daily injections of recombinant insulin.  

Antigen specific immunotherapy is thought to be the best course of action to prevent or disrupt the 

autoimmune response in this disease
79

.  Type 1 diabetes usually develops in adolescence and 

therefore a vaccine which immunizes against the initial autoantigen (which is still under debate) could 

be enough to prevent the subsequent development of autoimmunity.  Vaccination of NOD mice with 

a single autoantigen or a disease associated epitope have been successful and have been translated to 

human clinical trials
79

.  Antigen specific immunotherapy and inverse vaccination are promising 

therapies that may enable prevention or someday even a cure for autoimmune diseases which 

autoantigens and pathogenic epitopes are known.  

Future directions 

Like any dissertation project there are many future directions to consider.  With the 

knowledge of disease associated MPO epitopes, a more sensitive clinical test can be developed not 

only for diagnosis but to monitor disease progression.  A method must be established to study 

conformational epitopes to determine the immunodominant epitope across disease populations.  

Translating human epitope profiles into animal models can also further the understanding of other 

disease factors such as: complement activation and the innate immune response in vivo.  

 Additional studies to pinpoint the role of a potentially protective ceruloplasmin fragment and 

how this fragment is functional or nonfunctional may play a role in disease severity.  The enzyme 

responsible for the cleavage of CP requires analysis of its serum levels and functionality in patients 

during active disease and clinical remission compared to healthy controls.  Once an epitope or 

inhibitor is determined, progress can be made to acquire better treatments or even prevention of 

ANCA disease. 
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Conclusions 

 

In the past decade, the field of antibody mediated autoimmune disease has made very slow 

progress in elucidating the origins of autoimmunity.  Equally important to discerning the cause of a 

break in self tolerance, is uncovering B cell epitope specificity.  The knowledge of autoantigenic 

epitopes is useful not only for diagnosis and treatment but also for the prevention of disease through 

vaccination. The importance of the site of autoantibody-autoantigen interaction is as essential to 

understanding disease pathogenesis as the existence of the autoantibodies themselves. 
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