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ABSTRACT 
 

Anh Tram Nguyen 
Biological functions of DOT1L, the histone H3 lysine 79 methyltransferase 

(Under the direction of Dr. Yi Zhang) 
 

 
The enzymes responsible for epigenetic modifications are key regulators of gene expression, 

ultimately influencing cell fate and function during normal and oncogenic biological 

processes. These modifications can occur on histone proteins of the nucleosome to 

dynamically regulate chromatin structure at active and silenced gene loci. Methylation of 

histone H3 lysine 79 by Dot1 (disruptor of telomeric silencing) was first observed in yeast 

and serves as a marker for active transcription.  Yeast Dot1 is a regulator of telomeric 

silencing, DNA damage repair, and the meiotic pachytene checkpoint.  Additionally, Dot1 

activity is regulated by the PAF complex, Rad6-Bre1 ubiquitination of H2B, and charge-

based interaction with histone H4.  Despite extensive research on Dot1, the role and 

regulation of mammalian homolog DOT1L (Like) is unclear. In this dissertation, I aim to 

understand the biological functions of DOT1L in both normal development and cancer.    

 

In mouse, DOT1L has been linked to embryogenesis and erythropoeisis; however, the 

molecular mechanisms underlying these two processes require further elucidation.  Germ-

line disruption of DOT1L resulted in embryonic lethality with cardiovascular defects. In 

these studies, I demonstrate that DOT1L is required for normal heart function. Cardiac-

specific knockout of DOT1L causes dilated cardiomyopathy (DCM), which can be rescued 
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by ectopic expression of minidystrophin. Mechanistically, DOT1L directly regulates 

transcription of dystrophin, which is critical for maintaining sarcolemma integrity and proper 

heart function. Finally, I provide evidence suggesting that malfunction of DOT1L activity 

may be a contributing factor in human DCM.  

 

Previously, DOT1L has been linked to leukemogenesis caused by chromosomal 

rearrangements of the MLL gene, encoding a histone H3 lysine 4 methyltransferase. 

Specifically, DOT1L enzymatic activity is required for MLL-AF10, MLL-ENL, and MLL-

AF4 in vitro leukemic transformation. In these studies, I sought to expand the repertoire of 

MLL-fusion oncoproteins that utilize DOT1L by investigating MLL-AF9 leukemogenesis. 

Through in vitro and in vivo assays, I demonstrate that initial transformation by MLL-AF9 

and maintenance of leukemic stem cell identity require DOT1L activity. These data support a 

universal mechanism involving mis-targeting of DOT1L and H3K79 hypermethylation for 

the up-regulation of leukemia-associated genes. Thus, DOT1L serves as a promising 

candidate for targeted therapeutics to treat MLL-related leukemias. 
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Epigenetic contribution to cellular diversity 

Every cell within an organism is derived from a single totipotent fertilized egg. Although 

each cell contains the same exact genetic information, very different cellular identities arise 

during development to ultimately form all the tissues and organs of the organism. How this 

remarkable phenomenon occurs in the developing embryo was commented on by Conrad 

Waddingtion in his book, An Introduction to Modern Genetics.  

It is, surely, obvious that the fertilized egg contains constituents which have 
definite properties which allow only a certain limited number of reactions to 
occur; in so far as this is true, one may say that development proceeds on a 
basis of the “preformed” qualities of the fertilized egg. But equally it is clear 
that the interaction of these constituents gives rise to new types of tissue and 
organ which were not present originally, and in so far development must be 
considered as “epigenetic”. (Waddington 1939) 

  
As such, the term “epigenetics” is credited to Conrad Waddington who later defined it as “the 

branch of biology which studies the causal interactions between genes and their products, 

which bring the phenotype into being” (Waddington 1942). Epigenetics has now evolved to 

refer to the heritable changes in gene expression that occur without changes in the underlying 

DNA sequence. Today we understand that the dynamic nature of chromatin is a major 

contributor to the establishment, maintenance, and variances in differential gene expression 

within any given cell type.  

 

Two meters of eukaryotic DNA must be tightly condensed into chromatin to fit within the 

cell nucleus.  Nucleosomes, containing 147 bp of DNA wrapped around a histone octamer 

(H3/H4 heterotetramer and two H2A/H2B dimers) serve as the basic building block for 

compaction into chromatin (Van Holde, Allen et al. 1980; Luger, Mader et al. 1997; 

Kornberg and Lorch 1999; Zhang and Dent 2005).  In this highly compressed state, all DNA-
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dependent processes, including replication and transcription, are hindered.  

 

The four core histones, H3, H4, H2A, and H2B, are comprised of a globular domain and 

unstructured NH3-, COOH- tails that protrude from the nucleosome center (Luger, Mader et 

al. 1997; Martin and Zhang 2005; Zhang and Dent 2005).  These tails may influence histone-

DNA interactions as well as histone-histone interactions to dynamically control the 

accessibility state of DNA for transcription.  Histones undergo post-translational 

modifications such as acetylation, methylation, phosphorylation, ubiquitination, sumoylation, 

and ribosylation.  These modifications influence chromatin structure and function directly or 

indirectly through the recruitment of effector proteins at heterochromatic (silenced genes) 

and euchromatic (active genes) regions (Strahl and Allis 2000; Martin and Zhang 2005; 

Kouzarides 2007). 

 

The epigenetic factors responsible for these histone modifications are key regulators of gene 

expression, cell lineage commitment, and oncogenesis.  In particular, methylation of histones 

has been shown to be critical in development (Cavalli 2006; Minard, Jain et al. 2009).  

Altered methylation by disruption of histone methyltransferase (HMTase) activity affects the 

expression level of both tumor suppressors and oncogenes, and has been implicated in 

hematologic, breast, prostate, and lung cancers (Feinberg, Oshimura et al. 2002; Handel, 

Ebers et al. 2009).  Specifically, H3 methylation is important for X-inactivation, cell fate, 

terminal differentiation, and the spatio-temporal patterning of Hox genes during 

embryogenesis (Cavalli 2006; Minard, Jain et al. 2009).   
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Histone lysine methylation 

In mammals, lysine methylation exists in the mono-, di-, and tri- states, occurring on histone 

H3 at residues K4, K9, K27, K36, and K79 and on histone H4 at residue K20 (Zhang and 

Reinberg 2001; Martin and Zhang 2005).  These marks serve as a platform for the 

recruitment of effector proteins to regulate transcription. For example, H3K4me recruits 

activating proteins such as remodeling factors Chd1 and NURF and histone acetyltransferase 

complexes SAGA and NuA3 as well as the repressive deacetylase complex Sin3-Ndac1 

(Berger 2007).  Additionally, H3K36me is thought to recruit a histone deacetylase complex 

(Carrozza, Li et al. 2005; Joshi and Struhl 2005; Keogh, Kurdistani et al. 2005), while 

H3K9me recruits HP1 for the formation of pericentromeric heterochromatin (Bannister, 

Zegerman et al. 2001; Lachner, O'Carroll et al. 2001; Nakayama, Rice et al. 2001).  The 

multitude of effector or “reader” proteins and their associated binding modules has been 

extensively reviewed by Taverna et al. (Taverna, Li et al. 2007).  

 

Histone methylation results from the transfer of a methyl group from S-adenosylmethionine 

(SAM) to nitrogen atoms of lysine and arginine residues.  Two classes of lysine 

methyltransferases exist. The first class of proteins contain an evolutionarily conserved SET 

(Su(var)3-9, Enhancer of Zeste (E(Z)), Trithorax (trx)) domain, first identified in D. 

melanogastor (Zhang and Reinberg 2001; Zhang and Dent 2005).  The second class does not 

possess a SET domain, but rather, a catalytic methylase fold resembling that of class I 

methyltransferases (Ng, Feng et al. 2002; Min, Feng et al. 2003; Schubert, Blumenthal et al. 

2003). Methylation at H3K9, H3K27, and H4K20 demarcate transcriptionally inactive genes, 

while H3K4, H3K36, and H3K79 methylation are indicative of actively transcribed genes 
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(Kouzarides 2002; Peterson and Laniel 2004; Martin and Zhang 2005).   

 

Dot1-mediated H3K79 methylation marks active transcription 

Dot1 (disruptor of telomeric silencing) is the only member of the second class of lysine 

methyltransferases. The DOT1 gene contains four sequence motifs – I, post I, II, and III – 

that form an open α/β structure composed of a seven-stranded β-sheet, which is characteristic 

of the catalytic methylase fold found in arginine methylases (Cheng and Roberts 2001; 

Dlakic 2001; Min, Feng et al. 2003; Sawada, Yang et al. 2004). Despite its structure, yeast 

Dot1 and its mammalian homolog DOT1L, are histone H3 lysine 79 (H3K79) 

methyltransferases, whose substrate site is located within the globular domain of histone H3 

instead of its N-terminal tail (Feng, Wang et al. 2002; Lacoste, Utley et al. 2002; van 

Leeuwen, Gafken et al. 2002; Zhang, Hayashizaki et al. 2004). 

 

Dot1 was originally identified in S. cerevisiae as a regulator of telomeric silencing (Singer, 

Kahana et al. 1998).  Conflicting data supports a requirement for both the presence and 

absence of H3K79 methylation to mediate association of SIR (silent information regulator) 

proteins, heterochromatic formation, and telomeric silencing in a mechanism reminiscent of 

position-effect-variegation observed in D. melanogastor.  Surprisingly, over-expression and 

deletion of Dot1 and mutation of H3K79 results in a loss of telomeric silencing (Singer, 

Kahana et al. 1998; Ng, Feng et al. 2002; Ng, Ciccone et al. 2003).  In all three cases, the 

level of SIR proteins bound at telomeres is reduced thus limiting their ability to silence 

genes.  Since ~90% of the yeast genome is methylated at H3K79 and the remaining ~10% 

account for transcriptionally silenced genes, it is thought that H3K79 methylation by Dot1 
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affects the distribution of SIR proteins and serves as a euchromatic mark (Laurenson and 

Rine 1992; van Leeuwen, Gafken et al. 2002).  

 

Data from several genome-wide profile analyses also support a role for H3K79 methylation 

in active transcription. Using chromatin immunoprecipitation (ChIP) coupled with gene 

expression microarray analysis, Schübeler et al. mapped the chromatin modification status of 

over 5000 Drosophila genes. They discovered that the presence of histone acetylation, 

H3K4me2, H3K4me3, and H3K79me2 positively correlate with active gene transcription 

(Schubeler, MacAlpine et al. 2004). Another study used ChIP-Chip with mouse 3T3 cells to 

show that H3K79 methylation marks are localized within the body of transcribed genes and 

that the amount of enrichment correlated with expression level (Steger, Lefterova et al. 

2008). Furthermore, Zhao and colleagues used human CD4+ T cells to show that all levels of 

H3K79 methylation coincide with active transcription (Wang, Zang et al. 2008). 

Collectively, analyses of yeast, fly, mouse, and human genomes all reveal that H3K79 

methylation is marker of euchromatin. 

 

Trans-histone crosstalk regulates Dot1 enzymatic activity 

During characterization of DOT1L enzymatic activity, it was observed that DOT1L 

preferentially methylates H3K79 in the context of nucleosomes rather than core histones or 

recombinant H3 (Feng, Wang et al. 2002). Based on the nucleosome structure, K79 lies 

within loop 1 that connects the first and second α-helices of the histone H3 globular domain 

and is in close proximity to histone H2B lysine 123 (H2B-K123) (Luger, Mader et al. 1997). 
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The unique position of H3K79 suggested that a trans-histone crosstalk may play a role in 

regulating DOT1L enzymatic activity. 

 

In yeast, histone H2B is monoubiquitinated at lysine 123 (H2B-K123ub). This modification 

is catalyzed by the ubiquitin-conjugating enzyme Rad6 and its E3 ubiquitin ligase Bre1 

(Robzyk, Recht et al. 2000; Wood, Krogan et al. 2003). Shortly after the characterization of 

Dot1 enzymatic activity, it was discovered that Rad6-mediated H2B-K123 ubiquitination is 

required for H3K79 methylation (Briggs, Xiao et al. 2002; Ng, Xu et al. 2002). This trans-

histone regulation did not appear to play a general role in histone methylation as H3K36 

methylation is unaffected by Rad6 deletion (Briggs, Xiao et al. 2002; Ng, Xu et al. 2002). 

The role of H2B ubiquitination in trans-histone crosstalk is evolutionarily conserved as 

human Bre1 was found to regulate ubiquitination of H2B-K120, corresponding to K123 in 

yeast, and, subsequently, methylation of and H3K79 (Ng, Robert et al. 2003). The PAF 

complex, composed of the proteins Rtf1, Paf1, Cdc73, Leo1, and Ctr9, associates with the 

elongating form of RNA Pol II (Costa and Arndt 2000; Mueller and Jaehning 2002; 

Pokholok, Hannett et al. 2002; Squazzo, Costa et al. 2002) and also regulates Dot1-mediated 

H3K79 methylation (Krogan, Dover et al. 2003). Mechanistically, Rtf1 and Paf1 are required 

for Rad6-Bre1 ubiquitination of H2B-K123, which, in turn, modulates H3K79 methylation 

(Krogan, Dover et al. 2003; Ng, Dole et al. 2003; Wood, Schneider et al. 2003).  

 

In addition to H2B-K123 ubiquitination, interaction with histone H4 also regulates Dot1 

enzymatic activity. Mutational analysis identified a basic patch within histone H4 tail 

(R17H18R19) that is required for Dot1 interaction with histone H4 and for H3K79 methylation 
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but not H3K4 or H3K36 methylation (Fingerman, Li et al. 2007). Interestingly, post-

translational modifications of histone H4, including acetylation and phosphorylation, have no 

effect on H3K79 methylation (Altaf, Utley et al. 2007).  

 

Although Dot1 retains the ability to bind nucleosomes in the absence of histone H4 tail or its 

basic patch, loss of these two regions still affect H3K79 methylation (Altaf, Utley et al. 2007; 

Fingerman, Li et al. 2007), suggesting allosteric regulation of Dot1 enzymatic activity 

through R17H18R19 binding. Since the positive charge of R17H18R19 was most critical in 

regulating H3K79 methylation, it was reasoned that a negatively charged, acidic patch may 

exist in Dot1. Correspondingly, an acidic patch, EDVDE, within an exposed loop structure of 

the C-terminus of yeast Dot1 (aa 557-561) was shown to be required for Dot1 interaction 

with histone H4 tail and for di- and tri-methylation of H3K79 (Fingerman, Li et al. 2007). 

Collectively, these data exemplify intra-nucleosome cross-talk to regulate HMTase activity 

for tight control of gene expression. 

 

Dot1 and the cell cycle response to DNA damage 

Prior to cell division, the entire genome of a proliferating cell must be replicated in a highly 

efficient and accurate manner to preserve genetic integrity and genome stability. Therefore, 

progression through the cell cycle is tightly regulated by a number of checkpoints that 

become activated in response to DNA damage induced by both intrinsic and extrinsic factors. 

Several studies have linked Dot1 and its associated H3K79 methylation marks to DNA 

damage checkpoint function and repair in response to numerous extrinsic-induced injuries. 
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Human 53BP1 protein contains a tandem tudor domain that binds to methylated H3K79 and 

is recruited to DNA double strand breaks (DSBs). Strikingly, mutation of the tudor domain 

and Lys 79 of H3 or suppression of DOT1L all inhibit recruitment of 53BP1 to DSBs. Since 

H3K79 methylation levels do not accumulate upon DNA damage, it is believed that DSBs 

induce changes in chromatin structure to expose methylated H3K79, which are then 

recognized by 53BP1 (Huyen, Zgheib et al. 2004). The interaction of 53BP1 to H3K79me is 

evolutionarily conserved as Rad9, the yeast ortholog of 53BP1, also binds to H3K79me via 

its Tudor domain. In addition, loss of Dot1-mediated H3K79 methylation disrupts the 

activation and recruitment of Rad9 and phosphorylation of Rad53 upon ionizing radiation 

(IR) damage (Wysocki, Javaheri et al. 2005). Budding yeast cells treated with IR at G1 

typically undergo a G1 checkpoint delay. Interestingly, Dot1 mutants are defective in G1 and 

intra-S phase checkpoints and progress through the cell cycle at a normal rate even after IR 

induced DNA damage (Wysocki, Javaheri et al. 2005). In addition, mutations that affect 

Dot1 methyltransferase activity such as disruption of H2B-K123 ubiquitination or mutation 

of H3K79 display the same checkpoint delay defects in response to multiple genotoxic 

stresses (Giannattasio, Lazzaro et al. 2005; Game, Williamson et al. 2006; Chernikova, Dorth 

et al. 2010).  

 

In response to IR damage, the DOT1/Rad6/Bre1 pathway mediates G1 homologous 

recombination repair (Game, Williamson et al. 2006). Although dot1 deletion mutants do not 

display a G2 arrest phenotype (Game, Williamson et al. 2006), Dot1 is required for Rad9 

recruitment to repair foci at G2 upon IR-induced damage (Toh, O'Shaughnessy et al. 2006). 

It is proposed that Dot1-mediated H3K79 methylation plays two distinct roles during Rad9 
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DNA damage response, the first being G1/S checkpoint activation and the second being late 

G2 DNA repair (Grenon, Costelloe et al. 2007).  

 

Repair of DSBs can occur via homologous recombination (HR) or nonhomologous end 

joining (NHEJ). HR with the sister chromatid (SCR) in mitosis ensures faithful transmission 

of the genetic material. A number of proteins, including cohesin, are required to maintain 

chromosome structure and for efficient SCR. Interestingly, not only is Dot1 required for the 

proper recruitment of Rad9 to sites of DSBs, it also promotes recruitment of cohesin and is 

necessary for efficient SCR (Conde, Refolio et al. 2009). Resection of DSBs is an important 

step in DNA damage repair, producing 3’ single-stranded DNA (ssDNA) tail intermediates. 

It was demonstrated that H3K79 methylation and Rad9 recruitment play an integral role in 

regulating resection to limit the amount of ssDNA that is produced (Lazzaro, Sapountzi et al. 

2008).  

 

Ultraviolet radiation (UV) causes formation of cis-syn cyclopyrimidine and 6-4 photoproduct 

dimers, which can be repaired by nucleotide excision repair (NER), recombination repair, 

and post-replication repair (PRR). Dot1 and its associated H3K79 methylation are required to 

elicit an appropriate response to UV damage (Giannattasio, Lazzaro et al. 2005) with loss of 

methylation affecting all three repair pathways, resulting in hypersensitivity (Bostelman, 

Keller et al. 2007; Lazzaro, Sapountzi et al. 2008). When DNA damage cannot be repaired, 

cell cycle progression and cell survival may be achieved by the translesion synthesis pathway 

(TLS) that utilizes error-prone polymerases to bypass DNA lesions. Evidence indicate that 
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Dot1 negatively regulates TLS, thereby maintaining genome integrity upon DNA damage 

(Conde and San-Segundo 2008; Conde, Ontoso et al. 2010; Levesque, Leung et al. 2010). 

 

Diploid parental cells undergo meiotic cell division to generate haploid gametes. Proper 

segregation of chromosomes during meiosis is ensured by the pachytene checkpoint, which 

monitors completion of chromosome synapsis and recombination to prevent premature 

nuclear division. In the event of defective meiotic recombination, the pachytene checkpoint 

induces arrest at mid-meiotic prophase. In yeast, arrest at pachytene can be observed in dmc1 

and zip1 mutants, which are required for proper synapsis formation and repair of DSBs. In a 

genetic screen for pachytene checkpoint components, it was observed that dmc1 and zip1 

mutants failed to arrest in the absence of Dot1. The failure to arrest is in part due to mis-

localization of the nucleolar proteins Pch2 and Sir2, both required for pachytene checkpoint 

function (San-Segundo and Roeder 2000). 

 

Collectively, an overwhelming amount of data supports a vital role for DOT1 in regulating 

cell cycle progression in yeast upon DNA damage. Surprisingly, very little work has been 

performed to determine if Dot1’s role in checkpoint function is evolutionarily conserved. 

With respect to mouse DOT1L, reports show that the depletion of DOT1L elicits cell cycle 

arrests at both G1 and G2 in the absence of extrinsic-induced DNA damage; however, the 

molecular mechanisms governing these phenotypes have not been addressed (Jones, Su et al. 

2008; Barry, Krueger et al. 2009; Feng, Yang et al. 2010) .  
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DOT1L regulatory role in cardiovascular development 

The majority of research dedicated to understanding the function of Dot1-mediated H3K79 

methylation were performed in yeast. When I first began my Ph.D. training in Dr. Zhang’s 

lab, the only biological function known about mammalian DOT1L was its mis-targeting in 

leukemia. DOT1L and its associated methylation marks are evolutionarily conserved from 

yeast to humans, suggesting that it may have critical biological roles in mammals. Therefore, 

I sought to elucidate DOT1L biological functions using the mouse as a model system with a 

focus on the cardiovascular system.  

 

The first indication of a DOT1L regulatory function in cardiac development arose from ex 

vivo studies investigating epigenetics in cardiac development.  Mouse ES cells exposed to 

laminar shear stress undergo myocardiogenesis.  During this process there is a correlation 

between increased H3K79 methylation and induced expression of cardiovascular marker 

genes, such as vascular endothelial growth factor (VEGF) receptor 2, smooth muscle actin 

(SM-actin), smooth muscle protein 22-alpha (SM22-α), platelet-endothelial cell adhesion 

molecule-1 (PECAM-1), myocyte enhancer factor-2C (MEF2C), and α-sarcomeric actin (Illi, 

Scopece et al. 2005).   In addition, analysis of differentiated/lineage specific cells revealed 

that the transcription activator SRF (serum response factor) binds to a distinct histone 

modification signature at smooth muscle specific promoters (H3K4me2, H3K79me2, 

H3K9ac, H4ac) (McDonald, Wamhoff et al. 2006).   

 

In collaboration with the Epigenetics Program at Novartis, we generated a DOT1L 

conditional knockout mouse. Germ-line deletion of DOT1L resulted in embryonic lethality 
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after the onset of organogenesis at E9.5-E10.5.   Knockout embryos displayed defects in the 

cardiovascular system such as heart enlargement, decreased vasculature, and reduced red 

blood cells (Jones, Su et al. 2008). Collectively, these phenotypes suggested a DOT1L 

regulatory function in cardiovascular and hematopoiesis development. Subsequently, Fields 

and colleagues demonstrated that primitive erythropoiesis requires DOT1L. In the absence of 

DOT1L, erythroid progenitor cells undergo a G1 cell cycle arrest and fail to differentiate 

(Feng, Yang et al. 2010).   

 

The heart enlargement phenotype observed in knockout embryos may be a primary 

abnormality due to DOT1L loss of function or a secondary defect in response to insufficient 

blood supply from a reduced vasculature network or defective erythropoiesis.  To elucidate 

the role of DOT1L in cardiac development and/or function, we generated a cardiac-specific 

knockout mouse model, which is the focus of my first project. A further understanding of 

DOT1L’s regulatory role in cardiac function may provide insight into the genetic causes of 

congenital heart diseases and lead to the development of novel gene therapies. 

 

Mis-targeting of DOT1L in MLL-related leukemias 

Chromosomal translocation of the MLL (mixed lineage leukemia) gene results in the 

expression of oncogenic fusion proteins and is a common cause of acute leukemia (Ayton 

and Cleary 2001; Hess 2004). MLL rearrangements account for 7-10% of acute lymphoid 

leukemias (ALL) and 5-6% of acute myeloid leukemias (AML). In addition, ~10% of these 

MLL-related leukemias are caused by chemotherapy (Daser and Rabbitts 2004). Importantly, 

MLL rearrangements account for ~80% of ALL and ~60% of AML infant leukemias (Ayton 
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and Cleary 2001; Hess 2004; Krivtsov and Armstrong 2007). Due to the high incidence of 

MLL-mediated acute leukemias, a better understanding of the molecular mechanisms utilized 

by MLL-fusion proteins is vital for the development of effective treatments. 

 

MLL, an H3K4 methyltransferase, aids in maintaining the “on” state of Hox gene expression 

during embryonic development and hematopoiesis (Hsieh, Cheng et al. 2003; Guenther, 

Jenner et al. 2005). In acute myeloid leukemia, genes of the Hoxa cluster are frequently up-

regulated and have been shown to be required for leukemogenesis (Argiropoulos and 

Humphries 2007; Guenther, Lawton et al. 2008). While the catalytic domain of MLL is 

removed upon translocation, its N-terminus, containing two DNA-binding domains (AT-

hooks and DNMT homology region) and subnuclear localization motifs is retained in fusion 

proteins.  Thus, MLL-fusion proteins are likely directed to genes targeted by MLL.  

Meanwhile, aberrant regulation of gene expression for leukemogenesis is mediated by 

activity of wild type MLL expressed from the non-mutant allele and by the fusion partner 

(Li, Liu et al. 2005; Krivtsov and Armstrong 2007).   

 

Among the over 50 MLL fusion partners, AF4, AF9, AF10, ENL, and ELL account for 2/3 

of all MLL-associated leukemias.   With the exception of ELL, the other four proteins have 

been reported to associate with each other through direct and indirect protein-protein 

interactions, suggesting that a common mechanism may be exploited during leukemia 

development (Slany 2005; Krivtsov and Armstrong 2007). Interestingly, DOT1L has also 

been shown to associate with a number of MLL-fusion partners and participates in the 

activation of a leukemic transcriptional program (Okada, Feng et al. 2005; Zhang, Xia et al. 
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2006; Bitoun, Oliver et al. 2007; Mueller, Bach et al. 2007; Krivtsov, Feng et al. 2008; 

Mueller, Garcia-Cuellar et al. 2009). 

 

For example, the Zhang lab previously demonstrated that DOT1L specifically associates with 

the OM-LZ region of AF10 and is required for leukemic transformation by MLL-AF10.  

Importantly, it was shown that mis-targeting of DOT1L to the Hoxa9 gene and subsequent 

activation of Hoxa9 by H3K79 hypermethylation contributes to the transformation capability 

of MLL-AF10 (Okada, Feng et al. 2005).   AF17, another fusion partner of MLL, has an 

OM-LZ domain similar to that of AF10, making it a potential DOT1L interacting protein 

(Prasad, Leshkowitz et al. 1994).  Through mutating ENL, Mueller et al. were able to 

demonstrate that DOT1L interaction is required for MLL-ENL transformation and increased  

expression of Hoxa7 and Hoxa9 (Mueller, Bach et al. 2007).  Furthermore, knockdown of 

DOT1L in MLL-AF4 transformed cells impaired proliferation and caused down-regulation of 

Hoxa genes (Krivtsov, Feng et al. 2008).  

 

Collectively, these data support a universal mechanism by which DOT1L is mis-targeted to 

gene loci for aberrant H3K79 methylation and transcriptional activation to promote MLL-

mediated leukemogenesis. To further support this common pathway, my second project 

focuses on the role of DOT1L in MLL-AF9 leukemia development. I will utilize our DOT1L 

knockout mouse model in combination with bone marrow transplantation to investigate 

whether DOT1L is essential for in vivo acute leukemia development and progression, which 

has not been demonstrated before. The findings from this project may lead to the 

development of novel target-based drugs for the treatment of MLL-related leukemias. 
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Abstract 

Histone methylation plays an important role in regulating gene expression. One such 

methylation occurs at lysine 79 of histone H3 (H3K79) and is catalyzed by the yeast Dot1 

(disruptor of telomeric silencing) and its mammalian homolog DOT1L. Previous studies have 

demonstrated that germ line disruption of Dot1L in mouse resulted in embryonic lethality. 

Here we report that cardiac-specific knockout of Dot1L results in increased mortality rate 

with chamber dilation, increased cardiomyocyte cell death, systolic dysfunction, and 

conduction abnormalities.  These phenotypes mimic those exhibited in patients with dilated 

cardiomyopathy (DCM).  Mechanistic studies reveal that DOT1L performs its function in 

cardiomyocytes through regulating Dystrophin (Dmd) transcription and, consequently, 

stability of the Dystrophin-glycoprotein complex important for cardiomyocyte viability. 

Importantly, expression of a mini-Dmd can largely rescue the DCM phenotypes indicating 

that Dmd is a major target mediating DOT1L function in cardiomyocyte. Interestingly, 

analysis of available gene expression data sets indicates that DOT1L is down-regulated in 

idiopathic DCM patient samples compared to normal controls. Therefore, our study not only 

establishes a critical role for DOT1L-mediated H3K79 methylation in cardiomyocyte 

function, but also reveals the mechanism underlying the role of DOT1L in DCM. In addition, 

our study may open new avenues for the diagnosis and treatment of human heart disease. 
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Introduction 

Chromatin is subject to reversible post-translational modifications that may directly alter 

chromatin structure and function or indirectly through the recruitment of effector proteins at 

heterochromatic (silenced) and euchromatic (active) DNA. Histone methylation plays an 

important role in regulating transcription at target loci and is important for X-inactivation, 

cell fate maintenance, and terminal differentiation (Peterson and Laniel 2004; Martin and 

Zhang 2005; Kouzarides 2007). One particular histone methylation event occurs at Lysine 79 

within the globular domain of histone H3 (H3K79) and is catalyzed by yeast Dot1 (disruptor 

of telomeric silencing) and its mammalian homolog DOT1L (Feng et al. 2002; Lacoste et al. 

2002; Ng et al. 2002a; van Leeuwen et al. 2002). Although Dot1 was originally identified as 

a regulator of telomeric silencing (Singer et al. 1998), more recent studies suggest that Dot1-

mediated H3K79 methylation is linked to euchromatic gene transcription (Schubeler et al. 

2004; Barski et al. 2007; Steger et al. 2008).  

 

In yeast, Dot1 activity is positively regulated during transcription elongation through Rad6-

Bre1 mono-ubiquitination of H2B (Ng et al. 2002b; Krogan et al. 2003; Wood et al. 2003). 

Additionally, Dot1 has been linked to the meiotic pachytene checkpoint control (San-

Segundo and Roeder 2000) and DNA damage repair (Giannattasio et al. 2005; Wysocki et al. 

2005; Conde et al. 2009). However, the biological function of mammalian DOT1L, 

particularly in the context of the animal, is less characterized. A recent study indicates that 

DOT1L exists in a large protein complex and regulates the expression of Wingless target 

genes (Mohan et al. 2010). We and others have previously demonstrated that mis-targeting of 

DOT1L and subsequent H3K79 hypermethylation plays an important role in leukemic 
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transformation (Okada et al. 2005; Okada et al. 2006; Mueller et al. 2007; Krivtsov et al. 

2008). Most recently, DOT1L has been shown to regulate the erythroid and myeloid lineage 

switch during differentiation (Feng et al. 2010). In addition, loss of function studies revealed 

a critical role of DOT1L during mouse embryogenesis as germ-line Dot1l knockout (KO) 

causes lethality at embryonic day E10.5 with growth impairment, yolk sac angiogenesis 

defects, and cardiac dilation (Jones et al. 2008).   

 

Congestive heart failure (CHF) is a common manifestation of cardiomyopathy, a disease 

caused by malfunction of the heart muscle (Seidman and Seidman 2001; Liew and Dzau 

2004).  Dilated cardiomyopathy (DCM) is characterized by dilation of the left or both 

ventricles and reduced contractile function (systolic dysfunction), and is the most prevalent 

form of cardiomyopathy (Seidman and Seidman 2001; Liew and Dzau 2004). Recent studies 

suggest that, in addition to genetic alterations, epigenetic factors also contribute to DCM. For 

example, several studies have linked histone acetylation to cardiac hypertrophy and DCM 

(Zhang et al. 2002; Kook et al. 2003; Montgomery et al. 2007; Ha et al. 2010; Hang et al. 

2010). However, whether histone methylation contributes to DCM is not clear, although 

dysregulation of histone methylation has been linked to a number of human diseases 

(Feinberg et al. 2002; Handel et al. 2009).  

 

To further characterize the function of DOT1L in the mouse heart, we generated a 

cardiomyocyte-specific knockout mouse model using the α-MHC-Cre line and demonstrate 

that DOT1L plays an important role in heart function. We provide evidence suggesting that 
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dysregulation of Dystrophin in cardiomyocytes is largely responsible for the phenotypes 

exhibited in the Dot1L cardiac conditional knockout mice. 
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Results 

Dot1L deficiency in cardiomyocytes does not cause embryonic lethality 

Previous studies demonstrate that germ-line Dot1l knockout (KO) causes lethality at 

embryonic day E10.5 with diverse impairments that include growth retardation, yolk sac 

angiogenesis defects, and cardiac dilation (Jones et al. 2008).  To understand the molecular 

mechanism underlying the embryonic phenotypes, we take advantage that the Dot1L 

conditional allele contains a promoterless β-geo cassette (Jones et al. 2008) and analyzed 

Dot1L expression by X-gal staining. This study revealed that the heart is one of the highest 

Dot1L-expressing organs (Figure S2-1A). RT-qPCR analysis also indicates that cardiac 

expression of Dot1L peaks after birth (Figure S2-1B). This Dot1L expression pattern in 

combination with the timing of lethality suggests that heart defects might contribute to the 

embryonic lethality phenotype.  

 

To explore a role for DOT1L in the heart, we generated a cardiac-specific conditional 

knockout mouse model by first crossing DOT1L2lox/+ and DOT1L1lox/+ with the (α-myosin 

heavy chain) α-MHC-Cre line (Abel et al. 1999) (Figure S2-2A). Cardiac conditional 

knockout (referred to as CKO for the remainder of the manuscript), DOT1L2lox/1lox;α-MHC-

Cre, mice were then obtained by crossing DOT1L2lox/+;α-MHC-Cre mice with 

DOT1L1lox/+;α-MHC-Cre mice.  Cre-mediated deletion results in removal of 108 amino acids 

in the catalytic domain of DOT1L, rendering an enzymatically inactive DOT1L (Figure S2-

2B). CKO mice were born at Mendelian ratio (Figure S2-2C) and recombination efficiency 

was verified by RT-qPCR using hearts derived from new-born, postnatal day 1 (P1) mice 

(Figure S2-2D). Consistent with loss function of DOT1L in the CKO hearts, Western blot 
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analysis and immunostaining using an antibody that recognizes both di- and tri-methylation 

of H3K79 (H3K79me2/3) demonstrate loss of H3K79me2/3 in the CKO hearts (Figure S2-

2E, F). These results suggest that loss function of DOT1L in cardiomyocytes alone is not 

sufficient to cause embryonic lethality.  

 

DOT1L deficiency in cardiomyocytes causes heart dilation and postnatal lethality  

Although CKO mice are born in Mendelian ratio, sudden death was observed in 50% of the 

CKO mice within two weeks after birth, and the remaining 50% CKO mice die by six 

months of age (Figure 2-1A), indicating DOT1L has an important function in postnatal and 

adult cardiomyocytes. Analysis of the CKO mice revealed severely enlarged hearts (Figure 

2-1B) and dilation of both chambers (Figure 2-1C). Consistently, heart to body weight ratios 

were also increased in CKO mice compared with that of their littermate controls (Figure 2-

1D).  The increased heart to body weight ratio is mainly caused by increased heart weight 

(Figure 2-1E) as the body weight is not significantly altered between WT and CKO mice 

(Figure S2-3A).   

 

To determine whether concentric hypertrophy contributes to the increase in CKO heart mass, 

tissue sections were stained with Laminin antibody followed by measuring cardiomyocyte 

circumference. Quantification using ImageJ software indicates that the average cell 

circumference is not altered in CKO mice (Figure S2-3B, C), suggesting that the increase in 

CKO heart mass is in part due to eccentric hypertrophy. These data collectively indicate that 

loss of DOT1L function, particularly its H3K79 methyltransferase activity, in 
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cardiomyocytes results in congestive heart failure (CHF) that is likely due to dilated 

cardiomyopathy (DCM).  

 

CKO hearts exhibit similar cardiac remodeling observed in DCM patients  

In addition to chamber dilation, gross changes in heart morphology, such as deviation from 

an elliptical shape to a more spherical one and increased heart mass, was also observed 

(Figure 2-1C, E) indicating loss function of DOT1L in cardiomyocytes caused cardiac 

remodeling. Since DCM is often accompanied with pathologic remodeling (Cohn et al. 

2000), we analyzed the histopathology of CKO hearts at P10. TUNEL staining revealed a 

dramatic increase in apoptotic cell death in CKO hearts compared to the WT control (Figure 

2-2A). In addition, transmission electron microscopic (TEM) analysis revealed a significant 

increase of vacuoles in CKO myocytes (Figure 2-2B, ii, arrows), suggesting an increase in 

autophagic cell death, consistent with previous studies linking autophagy to DCM (Knaapen 

et al. 2001). In addition, TEM also revealed interstitial fibroblast cells in CKO heart tissue 

(Figure 2-2B, compare i. and iii.) indicating reactive fibrosis, a common feature of cardiac 

remodeling found in DCM (de Leeuw et al. 2001; Luk et al. 2009), took place in CKO hearts. 

Additionally, immunostaining with anti-HSPG2 (also known as Perlecan) shows increased 

interstitial HSPG2 staining (Figure 2-2C, arrowheads) as well as increased HSPG2 and 

myofibroblasts lining the inner left ventricular chamber (Figure 2-2C, yellow outlined) in 

CKO hearts supporting the presence of reactive fibrosis, which is further confirmed by 

Masson’s Trichrome staining (Figure 2-2D, blue staining).  
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Previous studies have established that reactivation of a fetal gene expression program and 

increase in cellular proliferation is concomitant with the degeneration of cardiomyocytes in 

DCM (Kajstura et al. 1998; Cohn et al. 2000; Houweling et al. 2005). Consistent with the 

notion that DOT1L deficiency resulted in DCM, RT-qPCR demonstrated that expression of 

the fetal genes Myh7, Acta1, Nppa, and Nppb are up-regulated in CKO hearts (Figure 2-2E). 

In contrast, adult gene Myh6 is down-regulated. Mouse cardiomyocytes retain a small 

capacity to proliferate after birth (Ahuja et al. 2007; Banerjee et al. 2007). To determine 

whether DOT1L deficiency results in an increased cell proliferation, as exhibited in DCM, 

heart tissue sections were immunostained for Ki-67 at P1 and P5.  Results shown in Figure 2-

2F demonstrate that the percentage of proliferating cells (ratio of Ki-67 positive nuclei to 

total nuclei, multiplied by 100) is significantly increased in the CKO hearts compared to the 

control, which may contribute to the observed increase in the CKO heart mass. We note that 

this increased cell proliferation in the DOT1L-deficient heart is in contrast to previous 

studies showing a requirement for DOT1L in ES cell cycle progression (Jones et al. 2008; 

Barry et al. 2009), suggesting cell type specificity. Taken together, the above data support 

that CKO hearts exhibit multiple phenotypes similar to those observed in DCM. 

 

CKO hearts exhibit similar functional defects observed in DCM patients  

To gain further support that DOT1L deficiency in cardiomyocytes results in DCM, we asked 

whether the morphological changes and cardiac remodeling observed in CKO hearts affect 

their function. To this end, we performed echocardiography (ECHO) analysis at different 

mouse age groups. Conscious ECHOs performed on P10 pups during the first stage of 

lethality (n=5 per genotype) demonstrate that CKO mice have increased left ventricular 
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internal dimensions and volume. Analysis of cardiac output by measuring ejection fraction 

(EF) and fractional shortening (FS) revealed that both EF and FS is reduced by almost half in 

CKO mice when compared with that of WT mice (Table 2-1). These results are indicative of 

left ventricular systolic dysfunction and are consistent with clinical DCM outcome 

(Karkkainen and Peuhkurinen 2007; Luk et al. 2009). Similar results were obtained at 2 and 

5 months of age (Table 2-1). Interestingly, the smaller difference between WT and CKO 

mice at 2 months may reflect a compensation that allowed these mice to bypass the first stage 

of lethality. 

 

Cardiac conduction abnormalities are frequently observed in DCM heart failure patients with 

left ventricular systolic dysfunction (Olson 2004).  During heart contraction, an electrical 

impulse transmits from atria (P-wave) to ventricles (QRS-wave) at the atrioventricular node 

(AVN). The time delay for electrical propagation can be directly measured by 

electrocardiography (EKG) (Hatcher and Basson 2009). To determine whether the 

conduction system is perturbed in CKO mice, EKG was performed at 5 months of age (n=8 

per genotype). All CKO mice displayed minimally a first degree heart block at the AVN, 

with an 80% penetration of either non-sustained ventricular tachycardia (n=1/8) (Figure 2-

3A, CKOa), periodic third degree heart block (n=3/8), or second degree Type II heart block 

(n=3/8) (Figure 2-3A, CKOb). Overall, CKO mice have a significant increase in RR interval 

(Figure 2-3B), PR interval (Figure 2-3C), P-wave duration (Figure 2-3D), and QRS interval 

(Figure 2-3E). These EKG data from CKO mice are consistent with EKG findings in human 

DCM patients (Seidman and Seidman 2001; Towbin and Bowles 2006; Luk et al. 2009). The 
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physiological studies further support that DOT1L deficiency in cardiomyocytes confers 

phenotypes similar to those observed in patients with DCM. 

 

Dot1L deficiency in cardiomyocytes down-regulates dystrophin expression  

Having established that DOT1L deficiency in cardiomyocytes causes phenotypes similar to 

those observed in DCM, we next attempted to understand the molecular mechanism. To date, 

mutations in over 30 genes have been linked to human DCM (Table S2-1) (Towbin and 

Bowles 2006; Karkkainen and Peuhkurinen 2007; Kimura 2008; Luk et al. 2009). Given that 

DOT1L-mediated H3K79 methylation is associated with actively transcribed genes (Martin 

and Zhang 2005; Wang et al. 2008b), we anticipated that one or more of the DCM-associated 

genes might be down-regulated due to loss of H3K79 methylation in the CKO heart. To this 

end, we performed four independent gene expression microarrays using the dual-color 

Agilent 4X44K Whole Mouse Genome Array system.  Data analysis revealed 751 down-

regulated probes representing 471 genes that are statistically significant with a false positive 

rate of 0.06%. Comparison of the microarray data with known DCM-associated genes 

identified two common genes, Titin (Ttn) and Dystrophin (Dmd).  

 

Ttn is a giant myofilament protein important for maintaining sarcomere structure and 

elasticity (Kostin et al. 2000).  Mutations in Ttn have been reported in autosomal dominant 

forms of familial DCM (Gerull et al. 2002). Mouse models expressing M-line deficient Ttn 

exhibit widened M-lines and gradual disassembly of sarcomeres, which lead to cardiac 

failure (Gotthardt et al. 2003; Weinert et al. 2006). If Ttn down-regulation is responsible for 

the DCM in CKO mice, we anticipate abnormal sarcomere structure in DOT1L CKO hearts. 
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However, TEM analysis revealed that sarcomere integrity is maintained in DOT1L CKO 

hearts (Figure S2-4), suggesting that down-regulation of Ttn is not a major contributing 

factor for the DCM in DOT1L CKO mice.  

 

Dmd was the first discovered DCM-associated gene that can cause both DCM and muscular 

dystrophy. Dmd is a membrane-associated protein that forms a dystrophin-glycoprotein 

complex (DGC), which connects contractile sarcomeres to the sarcolemma and extracellular 

matrix (ECM). This connection is vital for lateral force transduction between cardiomyocytes 

as well as for relieving mechanical stress on sarcolemma during contraction (Kostin et al. 

2000; Kimura 2008).  Since a loss of Dmd expression may be the cause of cell death and 

cardiac remodeling observed in CKO hearts, we first confirmed the microarray results by 

RT-qPCR. Data presented in Figure 2-4A demonstrate that the Dmd mRNA levels are down-

regulated to ~25% of the WT level in the CKO hearts. In contrast, expression of other 

randomly selected DCM-relevant genes (Actn2, Ldb3, Des, and Taz) was not significantly 

altered by DOT1L deficiency (Figure 2-4A). Consistent with a reduction at the RNA level, 

immunostaining revealed that Dmd protein level is also greatly diminished in CKO hearts 

(Figure 2-4B,C). Previous studies have demonstrated that mutations affecting expression of 

Dmd or any sarcoglycan (Sgc) gene lead to DGC instability and reduced levels of all 

complex proteins (Deconinck et al. 1997; Grady et al. 1997). Consistently, immunostaining 

revealed great loss of β-dystroglycan (βDG) and α-sarcoglycan (SGCA) proteins in CKO 

mice (Figure 2-4B, C) although none of the DGC components is altered at the RNA level by 

DOT1L deficiency (Figure 2-4A). These results suggest that loss of Dmd caused degradation 

of the DGC components, which in turn affects cardiomyocyte viability.   
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We next sought to determine whether DOT1L directly regulates Dmd expression in mouse 

heart by chromatin immunoprecipitation (ChIP). Despite extensive efforts, none of the home-

made or commercial DOT1L antibodies (Abgent: AP1198a, AP1198b; Cell Signaling: 

D8891, D8890; Abcam: ab7295) were able to detect endogenous DOT1L protein (data not 

shown); thus, unsuitable for ChIP. Therefore, we performed ChIP assays across the Dmd 

locus using an anti-H3K79me2/3 antibody. Results shown in Figure 2-4D demonstrate that 

relatively less H3K79me2/3 is observed upstream of Dmd transcription start site (TSS) but 

greatly increases downstream, continues to rise at 20kb downstream of TSS, and is still 

present as far as 59kb downstream of TSS. This H3K79me2/3 distribution pattern is 

consistent with published ChIP-seq results using various cell lines (Barski et al. 2007; Wang 

et al. 2008b). Importantly, the H3K79me2/3 enrichment on the Dmd gene depends on 

functional DOT1L as the enrichment is abolished when samples derived from Dot1L CKO 

hearts are used. In addition, the detected signals are specific as enrichment was not observed 

when IgG was used in a parallel ChIP assay. Previous studies have demonstrated that 

DOT1L-deficiency leads to a complete loss of H3K79 methylation (Jones et al. 2008), 

indicating DOT1L is the only H3K79 methyltransferase. The demonstration that H3K79 

methylation of the Dmd gene is dependent on functional DOT1L supports the notion that 

Dmd is a direct DOT1L target. 

 

It has been previously reported that Dmd expression is positively regulated by the binding of 

the transcription activator SRF (serum response factor) to a CArG box consensus sequence 

within the muscle-specific Dmd promoter (Galvagni et al. 1997). To examine whether 

transcription activation by SRF is affected in CKO hearts, we analyzed SRF RNA levels by 
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RT-qPCR. Results shown in Figure 2-4A demonstrate that SRF expression is not 

significantly altered in CKO hearts. In addition, ChIP analysis using an anti-SRF antibody 

indicates that SRF binding to the TSS or CArG box consensus region of Dmd is not affected 

by Dot1L knockout (Figure 2-4E). These results support that DOT1L and SRF function 

independently of each other and that transcriptional regulation of Dmd by DOT1L-mediated 

H3K79 methylation functions downstream of SRF.   

 

DOT1L directly regulates dystrophin expression in C2C12 cells 

To further demonstrate that DOT1L directly regulates Dmd expression we performed 

lentiviral shRNA knockdown (KD) and retroviral rescue experiments in C2C12 myoblast 

cells. KD of mDot1L effectively reduced both mDot1L and Dmd expression compared to 

control shRNA, whereas Srf is not significantly affected (Figure 2-4F). Despite similar 

expression levels of the WT and a catalytic mutant Flag-hDOT1L (Figure S2-5), Dmd 

expression is rescued only by WT Flag-hDOT1L, but not the catalytic mutant, indicating that 

DOT1L-mediated H3K79 methylation is critical for Dmd expression (Figure 2-4F). ChIP 

analysis demonstrates that the effect of DOT1L on Dmd expression is direct as both WT and 

catalytic mutant Flag-hDOT1L bind to the Dmd locus (Figure 2-4G). Consistent with 

transcriptional regulation of Dmd by DOT1L histone methyltransferase activity, H3K79 

methylation is also enriched at the Dmd locus in control shRNA and WT Flag-hDOT1L 

rescued samples, while enrichment is reduced in mDOT1L KD and catalytic mutant rescued 

cells (Figure 2-4H). Thus, these data establish that H3K79 methylation by DOT1L directly 

regulates Dmd transcription. 
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Postnatal dystrophin gene delivery and expression in cardiomyocytes rescues cardiac 

function in CKO mice  

Gene expression and ChIP analyses suggest that DOT1L’s role in cardiomyocytes may be 

mediated through its regulation of Dmd expression. To determine if Dmd is a key target 

contributing to the DCM phenotype, we performed in vivo rescue experiments using an 

adeno-associated virus serotype 9 (AAV9) vector expressing a minidystrophin gene under the 

control of CMV promoter. AAV-mediated gene therapy with minidystrophin has been 

previously shown to effectively treat dystrophic pathology (Wang et al. 2000).  The vector 

used to rescue Dot1L CKO mice, rAAV9-CMV-Dys∆3990 (rAAV9-miniDmd), provides 

high expression of minidystrophin in all muscle tissues including the heart (Wang et al. 

2008a). To rescue CKO mice, rAAV9-miniDmd was administered at two different age 

groups, either at P3 via intraperitoneal injection or at 2 months via tail vein injection and 

analyzed by ECHO. As shown in Table 2-2, cardiac function, EF and FS, are restored in 

CKO rescued mice injected at P3 (compare Tables 2-1 and 2-2). Additionally, increases in 

LVID, LV Vol and LV mass are significantly reduced by expression of minidystrophin 

(compare Tables 2-1 and 2-2). Similar improvements were also observed in adult mice 

rescued at 2 months of age (compare Tables 2-1 and 2-2). Most significantly, adult rescued 

mice are able to survive past the second stage of lethality with no impairments in cardiac 

function (Table 2-2, 8 months).  

 

In addition to ECHO analysis, EKG of rescued CKO mice was also analyzed. At 5 months 

during the second stage of lethality, EKG was obtained from mice rescued at P3. Results 

demonstrate that RR interval (Figure 2-5A), PR interval (Fig. 2-5B), P duration (Figure 2-
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5C), and QRS interval (Figure 2-5D) were restored in the CKO mice. For mice rescued as 

adults, EKG was analyzed at 5 months and 8 months of age. The RR interval (Figure 2-5E), 

P duration (Figure 2-5G), and QRS interval (Figure 2-5H) were restored in these mice, while 

PR intervals improved partially (Figure 2-5B, compare p-values with Figure 2-3C). In 

addition, heart blocks observed prior to injection were no longer present in rescued CKO 

mice as indicated by the EKG images and echocardiograms of the same mice before and after 

treatment (Figure S2-6A, B). Collectively, the above studies demonstrate that the functional 

defects caused by DOT1L deficiency in cardiomyocytes can be largely rescued by postnatal 

expression of Dmd, supporting that Dmd is a key DOT1L target in cardiomyocytes. 
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Discussion 

DOT1L is the only known H3K79 methyltransferase and is conserved from yeast to humans.  

It is highly expressed in the heart, blood cells, and testis although its expression in mammals 

is ubiquitously.  Germ-line knockout of Dot1L has been shown to be embryonic lethal with 

cardiovascular and hematopoietic defects. In this study, we demonstrate that DOT1L H3K79 

methyltransferase activity is vital for cardiac function in the mouse using a cardiac-specific 

knockout model.  DOT1L loss of function results in postnatal and adult lethality from dilated 

cardiomyopathy and congestive heart failure due to down-regulation of dystrophin (model in 

Figure 2-6). 

 

Dot1L CKO mouse is a useful model for understanding DCM 

Cardiac-specific loss of DOT1L H3K79 methyltransferase activity caused gross changes in 

cardiac growth and shape that are reminiscent of dilated cardiomyopathy.  DCM is a disease 

of the heart muscle characterized by enlargement of one or both heart chambers, eccentric 

hypertrophy, interstitial fibrosis, systolic dysfunction, and conduction defects. In this study, 

we show that Dot1L CKO mice hearts are spherical in shape with enlarged chamber volumes 

and increased mass.  Through immunostaining, we demonstrate that eccentric hypertrophy, 

increased proliferation, and reactive fibrosis may contribute to the increase in heart mass.  In 

addition, a significant increase in cellular apoptosis was observed in CKO hearts.  Finally, 

EKG and ECHO analysis revealed severe defects in cardiac force transmission and output. 

Collectively, these data support that loss function of DOT1L in cardiomyocytes results in 

phenotypes similar to those observed in DCM patients making our mouse a valuable model 

for understanding DCM. 
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Dystrophin is a key target mediating DOT1L function in the heart 

As the only known H3K79 methyltransferase, DOT1L is thought to play a genome-wide role 

in transcriptional regulation.  Therefore, it may be inferred that loss of DOT1L enzymatic 

activity would silence a large number of genes vital for cardiac function. Microarray analysis 

revealed 751 down-regulated probes corresponding to 471 genes in CKO hearts. However, 

only two of these genes have been directly linked to DCM in mouse and humans, Ttn and 

Dmd. Our histopathology data, including myocyte loss and remodeling, is consistent with a 

Dmd-deficiency (Heydemann and McNally 2007) and not loss of Ttn since sarcomeres 

remain normal.  

 

We demonstrate that cardiac Dmd expression correlates with DOT1L-mediated H3K79 

methylation. In addition, we show that DOT1L methyltransferase activity regulates Dmd 

transcription in C2C12 myoblast cells and that exogenous Flag-DOT1L is localized to the 

Dmd locus. Collectively, these data conclusively demonstrates that DOT1L is a 

transcriptional regulator directly involved in Dmd expression. While other genes regulated by 

DOT1L may contribute to the DCM phenotype observed in CKO mice, the fact that the 

cardiac functional defects can be rescued by expression of a minidystrophin supports that 

Dmd is a critical target mediating DOT1L function in the heart.  

 

In the mdx mouse, a nonsense mutation results in the loss of Dmd expression in all muscle 

cells.  Surprisingly, these mice do not develop severe DCM phenotypes (Hoffman et al. 

1987; Grady et al. 1997), while DOT1L deficiency caused Dmd down-regulation does.  Since 
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the DOT1L deficiency in CKO mice occurs only in cardiomyocytes, Dmd expression is 

retained in CKO skeletal muscle, allowing for normal levels of exercise.  The increased 

exercise in CKO mice compared to mdx mice causes additional workload and stress on the 

heart, which would escalate the severity of DCM.  Indeed, it has been reported that targeted 

repair in mdx mice using a skeletal-muscle restricted minidystrophin transgene significantly 

enhanced cardiac injury and DCM (Townsend et al. 2008).  

 

The apparent inconsistency between CKO and mdx mice can also be explained by the lack of 

a similar compensation mechanism. Previous studies have demonstrated that loss of Dmd 

expression in the mdx mouse is compensated by up-regulation of Utrophin (Utrn), an 

autosomal Dmd homolog (Deconinck et al. 1997; Grady et al. 1997).  However, this 

compensation mechanism does not seem to exist in CKO mice as DOT1L deficiency did not 

cause up-regulation of Utrn (Figure S2-7). Thus, the Dot1L CKO mouse may serve as a 

useful model for comparative analysis of the molecular mechanisms underlying the 

regulation of Utrn.   

 

A potential link between DOT1L and DCM/DMD 

Congestive heart failure is a common manifestation of cardiomyopathy, a disease caused by 

malfunction of the heart muscle (Seidman and Seidman 2001; Liew and Dzau 2004). DCM is 

the most common form of cardiomyopathy affecting 36.5 per 100,000 people (Seidman and 

Seidman 2001; Liew and Dzau 2004; Luk et al. 2009). Although extensive work has been 

performed to identify signature DCM genes through global expression profiling (Barrans et 

al. 2002; Barth et al. 2006; Camargo and Azuaje 2008), little effort has been focused on the 
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epigenetic contribution with the exception of histone acetylation (Zhang et al. 2002; Kook et 

al. 2003; Montgomery et al. 2007; Ha et al. 2010; Hang et al. 2010). With regard to histone 

methylation, only two studies have investigated changes in methylation patterns in heart 

failure (Movassagh et al. ; Kaneda et al. 2009). However, whether it directly contributes to 

the development of DCM is not known.  

 

The demonstration that loss of DOT1L enzymatic activity results in DCM not only 

establishes a connection between dysregulation of histone methylation to DCM, but also 

raises the possibility that malfunction of DOT1L might account for some DCM patients. To 

explore this possibility, we analyzed hDOT1L expression level in idiopathic DCM (n=27) 

and normal (n=11) myocardial samples from publically available microarray data 

(http://cardiogenomics.med.harvard.edu/project-detail?project_id=229). This analysis 

indicates that DOT1L is down-regulated in idiopathic DCM patients with all Affymetrix 

probe sets (n=11 probes per set) (Figure S2-8), supporting the notion that dysfunction of 

DOT1L may be a contributing factor to human idiopathic DCM. Mutations in Dmd is also 

the cause of both Duchenne and Becker Muscular Dystrophy (DMD and BMD, respectively), 

affecting 1 out of 3,500 males (Hoffman et al. 1987). Up to 90% of those patients manifest 

cardiomyopathies and many die of heart failure (Connuck et al. 2008). In this study, we 

established that DOT1L regulates Dmd expression in both cardiac and C2C12 cells, 

suggesting that a DOT1L-deficiency may contribute to DCM and human muscular 

dystrophy. Future studies should reveal whether DOT1L is genetically linked to DCM, 

DMD, and BMD in human patients. 

http://cardiogenomics.med.harvard.edu/project-detail?project_id=229�
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Materials and Methods 

Generation of cardiac-specific Dot1L CKO mice. The targeting vector and generation of 

DOT1L chimeric mice has been described previously (Jones et al. 2008). DOT1L2lox/+ and 

DOT1L1lox/+ mice were mated with α-MHC-Cre+/+ transgenic mice to obtain DOT1L2lox/+;α-

MHC-Cre+/+ and DOT1L1lox/+;α-MHC-Cre+/+ mating pairs. Mice are kept on a 129SvJ, 

C57BL/6J mixed background.  DOT1L2lox/1lox;α-MHC-Cre+/+ mice and DOT1L2lox/2lox; α-

MHC-Cre+/+ mice were used as CKO mice. Upon Cre recombination, exons 5 and 6 are 

excised from the DOT1L locus. After splicing of the DOT1L transcript from the CKO allele, 

exons 4 and 7 of the mature mRNA are translated in-frame generating a mutant DOT1L 

protein lacking a portion of the SAM-binding motif. All mice procedures were performed 

following the guidelines set by the Institutional Animal Care and Use Committee. 

Echocardiography and electrocardiography. Experiments were performed at the Mouse 

Cardiovascular Models Core Facility at UNC-CH or in the lab of Dr. Xiao Xiao, UNC-CH. 

To restrain postnatal pups, paws are taped to a plastic board. For adult mice, soft cotton 

thread loops are placed around each leg, just proximal to the paw and gently snugged with a 

plastic slider. The distal ends of the threads are placed in notches cut into a plastic board and 

gently tightened to hold the animal in a supine position to prevent self-mutilation of the 

forelimbs. Warmed Aquasonic™ gel is applied over the thorax and a 30MHz probe is 

positioned over the chest in a parasternal position. Long and short axis B-mode and M-mode 

images are recorded. Upon completion of the procedure, the gel is wiped off and the animal 

is returned to its cage housed in a warm chamber. Time of restraint is 5 minutes or less. For 

electrocardiography, mice are anesthetized with inhaled isoflurane. Mice are taped to a 

warmed mouse board and their body temperature is monitored with a rectal probe and 
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maintained at 37+/-1 0C throughout the procedure. Thin (29 ga.) sharpened needle electrodes 

are passed subcutaneously into the area at the ventral base of each limb. After three leads are 

recorded, the needles are removed and the animals are allowed to recover. 

Histology and Immunofluorescence staining. For all tissue sectioning, beating hearts were 

harvested from euthanized mice and immediately transferred to ice cold PBS containing 1M 

KCl until the hearts stopped beating at diastole state. For H&E staining, hearts were fixed in 

4% paraformaldehyde overnight and paraffin embedded. Serial sections at 5 µm thickness 

were used for staining. Hearts used for all immunofluorescence staining were fixed in 4% 

PFA and subjected to sequential incubation with 10%, 20%, and 30% sucrose in PBS at 4ºC. 

Hearts were then flash frozen in OCT medium using liquid nitrogen and frozen serial 

sections of 5 µm thickness were prepared using a Leica Cryostat. Primary antibodies used for 

staining include anti-Dystrophin (Abcam; ab15277-500), anti-HSPG2 (Neomarkers; RT-

794), anti-a-Laminin (Chemicon; AB2034), anti-H3K79me2/3 (Abcam; ab2621-100), anti-

Ki-67 (Abcam; ab15580). Secondary antibodies used are Alexa Fluor 594 goat anti-rat IgG 

(Invitrogen; A21212), Alexa Fluor 594 donkey anti-rabbit IgG (Invitrogen; A21207), Alexa 

Fluor 488 donkey anti-rabbit IgG (Invitrogen; A21206). Sections were counterstained with 

DAPI. 

TUNEL assay. TUNEL staining was performed on frozen sections using the ApopTag 

Fluorescein In Situ Apoptosis Detection Kit (Millipore; S7110) and counterstained with 

DAPI. 

Masson’s Trichrome Staining.  Paraffin sections, 5 µm thick, of hearts from 5 month old 

mice were used for staining. Masson’s Trichrome Stain Kit was purchased from Dako 
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(AR173) and procedures were followed according to manufacturer’s specifications manually, 

without an Artisan staining system. 

Transmission Electron Microscopy. WT and CKO mice were injected with 25U heparin 

i.m. prior to euthanasia by isofluorane overdose. The hearts were quickly exposed, and 

perfused with 3 mg/ml 2,3-Butanedione monoxime in Hepes-buffered Krebs solution, 

followed by perfusion with 2% glutaraldehyde plus 6% sucrose in 75 mM Na-Cacodylate 

buffer (pH 7.4) supplemented with 3 mg/ml BDM and 0.1% tannic acid, followed by 2% 

osmium tetroxide. Samples were stained with uranyl acetate en bloc. Images were acquired 

on a Zeiss EM 910 transmission electron microscope utilizing a Gatan SC1000 digital 

camera. 

Microarray and RT-qPCR analysis. Hearts were flash frozen in liquid nitrogen and ground 

to a fine powder. Total RNA was purified from tissue powder using Qiagen RNeasy Kit. 

RNA from three hearts, 1ug each, was pooled together. Four pairs of pooled RNA, 

representing a total of 12 WT and 12 CKO hearts, were used for gene expression analysis. 

Samples were submitted to the UNC Genomics and Bioinformatics Core Facility for RNA 

labeling, amplification, hybridization, and scanning. The dual-color Agilent 4X44K Whole 

Mouse Genome Array system was used. All reagents were purchased from Agilent and 

procedures were followed according to Agilent’s protocols. Raw data was uploaded into the 

UNC Microarray Database (Agi-Scanner-Reg-MM-4X44K-D20060807-BARCODE14868; 

Slide Run US82800149). Data was analyzed using the SAM algorithm (Tail strength 51.4%, 

se 63.8%) to yield 1379 significant probes with a Median number of false positives = 0.81 

and false discovery rate of 0.06%. For RT-qPCR analysis, RNA prepared above was treated 

with DNase I, and first-strand DNA synthesis was performed using Improm II (Promega). 
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SYBR GreenER qPCR SuperMix (Invitrogen) was used for qPCR.  Relative expression was 

normalized to gapdh. Primers are shown in Table S2-2. 

Micro-Chromatin Immunoprecipitation and Western blot. Micro ChIP from frozen heart 

biopsies was performed as described previously (Dahl and Collas 2008) with the following 

modifications. Frozen hearts from P10 pups were ground to a fine powder prior to 

formaldehyde cross-linking. DNA was fragmented into 300-500 bp by sonication at 15% 

power (2X15 sec, 0.5 sec on and 2 sec off). Immunoprecipitation was performed using anti-

H3K79me2/3 (Abcam) and anti-Rabbit IgG (Santa Cruz; sc-2027). ChIP’ed samples were 

washed twice with low salt (140 mM NaCl) RIPA buffer, once with high salt (500 mM 

NaCl) RIPA buffer, and twice with TE buffer. DNA was purified using the Chelex-100 

method and qPCR was performed using the ChIP primers listed in Table S2-2. For Western 

blot analysis, P1 frozen hearts were ground to a fine powder for histone extraction and 

Western blot as described previously (Fang et al. 2002).  

C2C12 knockdown and rescue. C2C12 cells were maintained in Dulbecco’s modified 

Eagle’s medium supplemented with 10% FBS and 1% penicillin/streptomycin.  To establish 

stable KD cell lines, the lentivirus pTY-EF1a system was used as described previously (Cao 

et al. 2008; He et al. 2008). To knockdown mDOT1L, a shRNA 19mer was designed 

targeting the coding region (5’- GGAGCCAGATCTCAGAGAA-3’). The control shRNA is 

targeted against a bacterial protein with no mouse or human homology (5’- 

GTTCAGATGTGCGGCGAGT-3’). KD cells were selected and maintained in media 

containing 2µg/mL puromycin. For rescue experiments, KD cells were infected with 

retrovirus expressing WT and catalytic mutant Flag-tagged human DOT1L (Flag-hDOT1L) 

as described previously (Okada et al. 2005). Retrovirus infected cells were selected and 
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maintained in media containing 2µg/mL blasticidin. RNA was isolated using RNeasy Kit 

from Qiagen. The same micro-ChIP procedure described above was followed for ChIP using 

50,000 cells per sample. Dynabeads Protein A and M2 Flag antibody  (Sigma; F3165) were 

also used. 

Postnatal rescue of CKO mice with rAAV-miniDmd.  The functional miniature version of 

human dystrophin gene ∆3990 (miniDmd) under the transcriptional control of CMV 

promoter has been described previously (Wang et al. 2000). The miniDmd gene expression 

cassette was packaged into adeno-associated virus (AAV) serotype 9 vector using the helper-

free, triple plasmids transfection method and purified by double CsCl density 

ultracentrifugation (Xiao et al. 1998). The rAAV9-CMV-miniDmd titers were determined by 

DNA dot blot at approximately 1 x 1013 viral genome (v.g) particles per ml. For 3-day-old 

neonatal CKO mice, a single dose of 1 x 1011 v.g./mouse in 50 µl was injected 

intraperitoneally (i.p). For 2-month-old CKO mice, a single dose of 1 x 1012 v.g./mouse in 

600 µl was injected via tail vein (i.v.). 

Statistics. Indicated p-values were calculated using two-tailed t-test. 
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Figure 2-1. Disruption of DOT1L function in mouse cardiomyocytes results in heart 

dilation and lethality. (A) Dot1L CKO in mouse heart causes postnatal and adult lethality. 

Survival curves of WT, HET, and CKO mice.  Fifty percent of CKO mice die within the first 

2 wks after birth and the remaining 50% die by 6 months of age. (B) CKO hearts are severely 

enlarged compared to WT. Shown are WT and CKO hearts harvested from P10 and 5 month 

adult mice, respectively. Scale bar=1mm. (C) H&E staining of paraffin tissue sections 

indicated that CKO hearts are enlarged due to ventricular chamber dilation. Scale bar=1mm. 

(D) CKO mice have increased heart to body weight ratios. Heart weight (mg) to body weight 

(g) ratios were calculated using an analytical balance. CKO mice have increased ratios 

compared to WT littermates; * p<0.06, ** p<0.006, *** p<0.0006. (E) CKO mice have 

increased heart weight. Heart weight (mg) was measured using an analytical balance. * 

p<0.06.  
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Figure 2-2. Disruption of DOT1L function in mouse cardiomyocytes results in 

pathologic cardiac remodeling. (A) Positive TUNEL staining (green) merged with DAPI 

(blue) demonstrates increased cell death in CKO hearts (P10, Scale bar=5 µm). (B) TEM 

analysis of P10 hearts demonstrates increased autophagic cell death (compare i. and ii.; 

yellow box is enlarged from ii.; vacuoles indicated by yellow arrows; scale bar=2 µm) and 

myofibroblast infiltration (indicated by * in iii) in CKO hearts. Note that myocytes in WT 

hearts show tight lateral association, whereas myocytes in CKO hearts have large gaps due to 

myofibroblasts infiltration. (C) Increased interstitial ECM, indicated by staining of the ECM 

component HSPG2 (red), is observed in the CKO hearts (arrowheads). Increased ECM and 

myofibroblasts lining the inner left ventricular chamber wall (between the two yellow lines) 

is also observed in CKO hearts. Scale bar=10 µm. (D) Masson’s trichrome staining of 

paraffin tissue sections of mouse hearts (5 Mo. old).  Two enlarged regions are shown (black 

and yellow boxes).  Interstitial fibrosis is seen in CKO hearts but not in WT counterparts. 

Scale bar=5 mm. (E) RT-qPCR analysis demonstrates activation of fetal-specific genes 

(Myh7, Acta1, Nppa, and Nppb) in the CKO hearts. In contrast, down-regulation of adult 

Myh6 is also observed. (F) Increased cell proliferation in CKO hearts (P1 and P5). Frozen 

tissue sections were stained with anti-Ki-67, a marker of cell proliferation, and 

counterstained with DAPI.  The percentage of proliferating cells were calculated by dividing 

the number of Ki-67 positive nuclei by total nuclei and multiplying by 100. 
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Figure 2-3. Disruption of DOT1L function in mouse cardiomyocytes results in 

conduction abnormalities. (A) Representative electrocardiography for WT and CKO mice. 

The analysis was performed using 5 month old mice (n=8 per group). CKOa has complete 

AV dissociation as evidence by non-sustained ventricular tachycardia, while CKOb has a 

Type II second-degree heart block. Scale bar=200 ms. (B-E) Quantification of ECG data 

indicated an overall significant increase in RR interval (B), PR interval (C), P-wave duration 

(D), and QRS interval (E). p-values calculated by student t-test. 
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Figure 2-4. Dystrophin is a direct target of DOT1L. (A) RT-qPCR analysis using RNAs 

isolated from P10 WT and CKO hearts (n=12). Dmd and Ttn expression is down-regulated in 

Dot1L CKO hearts. Other members of the dystrophin-glycoprotein complex (Dag1, Sgca, 

Sgcb, Sgcd, and Sgcg) as well as selected DCM causal genes (Actn2, Ldb3, Des, and Taz) 

remain unchanged. (B-C) Immunostaining of frozen heart sections demonstrated loss of Dmd 

protein in CKO hearts (green). Consistent with a Dmd-deficiency and complex instability, 

reduction of βDG (B) and SGCA (C) is observed.  (D) Micro-ChIP using heart tissues from 

P10 pups demonstrates that H3K79me2/3 is enriched in the gene body of Dmd, and the 

enrichment is dependent on functional DOT1L. Amplicon #1 located about 15 kb upstream 

of TSS serves as background for H3K79me2/3 enrichment. (E) ChIP using an anti-SRF 

antibody demonstrates that SRF binding to the CArG box consensus region of the Dmd 

muscle-specific promoter is not affected in Dot1L CKO hearts. Amplification at -15kb TSS 

serves as a background for SRF enrichment. (F) RT-qPCR analysis demonstrates that Dot1L 

knockdown in C2C12 cells results in down-regulation of Dmd. Error bars represent s.d. of 

three independent experiments. (G,H) ChIP analysis demonstrates binding of F-DOT1L to 

the Dmd locus and its methylation on H3K79 is dependent on DOT1L enzymatic activity. 
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Figure 2-5. Rescue of electrical conduction in CKO mice by expression of 

minidystrophin gene. (A-D) The defective function of CKO heart can be rescued by 

expression of a mini-dystrophin gene when injected at P3 and analyzed at 5 months of age as 

indicated by the lack of significant difference between WT and CKO rescued mice. (E-H) 

Additionally, minidystrophin can rescue adult CKO mice injected at 2 months in terms of RR 

interval (E), P-wave duration (G), and QRS interval (H). In addition, PR interval (F) was 

partially rescued as the difference observed is less than without miniDmd. (p=0.02 in rescue 

vs *** p<0.0006 in without rescue at 5 months). At 8 months of age, past the second stage of 

lethality, CKO+miniDmd mice still maintain similar rescued levels of electrical conduction 

performance (E-F). 
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Figure 2-6. Model for role of DOT1L in regulating dystrophin transcription and cardiac 
function. DOT1L-mediated H3K79 methylation is required for active transcription of the 
dystrophin locus. In the absence of DOT1L enzymatic activity, dystrophin is silenced, 
resulting in reduced protein levels and destabilization of the DGC complex. Without DGC, 
sarcolemma damage, cell death, and reduced myocardial performance occur. Compensatory 
remodeling and chamber dilation is observed in an attempt to repair cardiac performance. 
However, this becomes maladaptive and is manifested by dilated cardiomyopathy and heart 
failure. 
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Table 2-1. Heart function of WT and CKO mice as measured by Echocardiography. 
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Table 2-2. Heart function of rAAV-miniDmd rescued CKO mice as measured by 

Echocardiography. 
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Figure S2-1. DOT1L expression in mouse heart tissue. (A) The Dot1L conditional allele 

contains a promoterless b-geo cassette. LacZ staining was performed to analyze Dot1L 

expression in mouse tissues. As shown, Dot1L is highly expressed in the heart. (B) RT-qPCR 

analysis of heart RNA extracts during embryonic development indicates that Dot1L 

expression peaks after birth. Relative expression normalized to Gapdh and expression at 

E10.5 set to 1. 
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Figure S2-2. Generation of cardiac-specific DOT1L CKO mice. (A) Schematic diagram 

of Dot1L locus to generate cardiac conditional knockout (CKO) by crossing DOT1L2lox/+ and 

DOT1L1lox/+ mice with α-MHC-Cre mice. The DOT1L2lox/+ conditional allele contains loxP 

sites (triangles) flanking Exons 5 and 6. Primer pairs DF1 and DR1 were used for 

genotyping, RTa and RTb were used for RT-qPCR analysis. (B) Diagram of DOT1L WT and 

CKO protein that harbors a deletion of 108 aa in the SAM binding motif (+, positive-charged 

region; NES, nuclear export signals; LZ, leucine zipper motif). (C) Dot1L CKO mice are 

born at Mendelian ratio from intercrosses of heterozygote mice (DOT1L2lox/+;α-MHC-Cre 

with DOT1L1lox/+;α-MHC-Cre). (D) RT-qPCR analysis confirms efficient recombination at 

Dot1L locus in P1 CKO hearts. (E) Western blot analysis demonstrates loss of H3K79me2/3 

in CKO P1 heart histone extracts. (F) Immunostaining of frozen mouse heart sections (5 µm 

thick) with anti-H3K79me2/3 (red) demonstrates loss of H3K79me2/3 in CKO hearts. The 

sections were counterstained with DAPI (blue). 
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Figure S2-3. Concentric hypertrophy does not contribute to increased CKO heart mass. 

(A) Body weights of WT and CKO mice were measured (g) using an analytical balance. No 

significant difference in body weights was observed between WT and CKO littermates. (B) 

No significant difference in the size of WT and CKO cardiomyocytes is observed. Frozen 

tissue sections were stained with anti-Laminin and cardiomyocyte circumference measured 

(pixels) using ImageJ software. The average circumference with s.d. are shown with the 

number of cells measured per sample indicated. (C) Representative images of cardiomyocyte 

cross-sections visualized by anti-Laminin staining. 
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Figure S2-4. Sarcomere integrity remains intact in CKO hearts. Sections from P10 

perfused hearts were analyzed by TEM. The overall sarcomere length and structure appears 

normal in CKO mice and do not exhibit the defects observed in Ttn-deficient hearts. 

Representative image of each genotype is shown. 
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Figure S2-5. Expression level of human DOT1L rescue constructs. WT and catalytic 

mutant, Mut, retrovirus constructs are expressed at similar levels in shRNA KD cells. 

Relative expression was normalized to mouse Gapdh and background level of hDOT1L 

primers in shRNA sample was set to one. 
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Figure S2-6. Heart blocks absent in adult rescued CKO mice. Representative EKG (A) 

and echocardiogram (B) images of the same mice taken from an ECHO machine before and 

after tail vein injection with rAAV9-miniDmd. The data indicates that a heart block observed 

before the injection is alleviated by 5 months of age. 
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Figure S2-7. Utrophin expression is not up-regulated in CKO hearts. RT-qPCR was 

performed to compare Utrn RNA levels in WT and CKO hearts (n=12 per genotype). 

Relative expression is shown, normalized to Gapdh. 
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Figure S2-8. hDOT1L is down-regulated in human idiopathic DCM myocardia. 

hDOT1L expression level was analyzed from a publically available microarray database 

(CardioGenomics). The database represents myocardial samples from patients undergoing 

heart transplantation with different etiologies as well as “normal” organ donors whose hearts 

could not be used for transplants. Gene expression microarray was performed using 

Affymetrix Human Genome U133 Plus 2.0 Array. Data from three different probe sets for 

hDOT1L is shown. Each probe set consists of 11 different probes. p-Values were calculated 

using two-tailed t-test. 
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Table S2-1. Genes with DCM-associated mutations. 
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Table S2-2. RT-qPCR and ChIP-qPCR primer sequences. 
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Abstract 

Chromosomal translocations of the MLL, mixed lineage leukemia, gene are a common cause 

of acute leukemias. The oncogenic function of MLL fusion proteins is partly mediated 

through aberrant up-regulation of Hoxa and Meis1 genes. Here we use a tamoxifen-inducible 

Cre mouse model to demonstrate that DOT1L, the H3K79 methyltransferase, is required for 

both initiation and maintenance of MLL-AF9 induced leukemogenesis in vitro and in vivo. 

Through gene expression and ChIP analysis we demonstrate that mis-targeting of DOT1L, 

subsequent H3K79 methylation, and up-regulation of Hoxa and Meis1 genes underly the 

molecular mechanism of how DOT1L contributes to MLL-AF9 mediated leukemogenesis. 

Our provides the first in vivo evidence for the function of DOT1L in leukemia and reveals the 

molecular mechanism for DOT1L in MLL-AF9 mediated leukemia. Thus, DOT1L may serve 

as a potential therapeutic target for the treatment of leukemia caused by MLL translocations. 
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Introduction 

MLL1 (mixed lineage leukemia 1) is a SET domain-containing protein, capable of 

methylating histone H3 lysine 4 (H3K4), which correlates with transcriptional activation 

(Martin and Zhang 2005; Kouzarides 2007). One important function of MLL is to maintain 

the “on” state of homeobox (Hox) gene expression during embryonic development and 

hematopoiesis (Guenther et al. 2005). The full-length MLL1 precursor protein is 

proteolytically cleaved by Taspase1 to generate N-terminal 300kDa (MLL1N) and C-

terminal 180kDa (MLL1C) proteins that form a heterodimer as part of a multi-subunit 

protein complex (Hsieh et al. 2003a). Previous studies indicated that MLL dimerization is 

required for its stability as well as proper spatio-temporal activation of Hox gene expression 

(Hsieh et al. 2003a; Hsieh et al. 2003b).  

 

The gene that encodes human MLL1 is located at 11q23 and harbors an 8.3kb breakpoint 

cluster region, which is known to be involved in chromosomal rearrangements with over 50 

different genes (Ayton and Cleary 2001; Hess 2004). Translocation of MLL is a common 

cause of acute leukemias, accounting for 5-10% of adult acute myeloid leukemia (AML) and 

acute lymphoid leukemia (ALL). Of these MLL-related leukemias, 10% are secondary 

cancers caused by chemotherapy (Daser and Rabbitts 2004). Strikingly, MLL rearrangements 

also account for ~80% of ALL and ~60% of AML in infants (Ayton and Cleary 2001; Hess 

2004). In MLL-related leukemias, genes of the Hoxa cluster are frequently up-regulated, and 

their sustained expression is required for leukemic stem cell (LSC) maintenance 

(Argiropoulos and Humphries 2007).  
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The MLL N-terminus retained in oncogenic fusion proteins lack the enzymatic SET domain, 

but maintain two DNA-binding domains (AT-hooks and DNMT homology region) and 

subnuclear localization motifs (Li et al. 2005).  Thus, MLL-fusion proteins are likely directed 

to MLL gene targets, and heterodimerization with wild type MLL1C expressed from the non-

rearranged allele confers Hoxa gene activation. Meanwhile, the translocation partner proteins 

also contribute to maintaining gene expression either through intrinsic transcriptional 

activation activity or recruitment of other effector molecules (Krivtsov and Armstrong 2007).  

 

Among the ~50 different MLL fusion partners, AF4, AF9, AF10, and ENL account for over 

2/3 of all MLL-related leukemias and have been reported to associate with each other 

through direct or indirect protein-protein interactions (Erfurth et al. 2004; Zeisig et al. 2005; 

Krivtsov and Armstrong 2007). AF4 and AF9 are serine/proline rich nuclear proteins with 

transcriptional activation domains and directly interact with one another. Not only does AF4 

associate with AF9, it also binds directly to ENL. ENL belongs to a family of proteins which 

contain a YEATS domain responsible for H3 binding and association with histone-modifying 

complexes. In addition, ENL interacts with AF10, and AF10 co-localizes with AF4 (Slany 

2005; Zeisig et al. 2005; Krivtsov and Armstrong 2007). Recently, AF4, AF9, and ENL were 

shown to be components of a large protein complex named AEP (Yokoyama et al. 2010) or 

EAP (Bitoun et al. 2007), which also contain the transcription elongation factor P-TEFb.  

 

Yeast Dot1 (disruptor of telomeric silencing) and its mammalian homolog DOT1L methylate 

Lysine 79 within the globular domain of histone H3 (H3K79) (Feng et al. 2002; Lacoste et al. 

2002; van Leeuwen et al. 2002). Although Dot1 was originally identified as a regulator of 
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telomeric silencing (Singer et al. 1998), data suggest that Dot1-mediated H3K79 methylation 

is linked to euchromatic gene transcription (Schubeler et al. 2004; Steger et al. 2008) and 

transcription elongation. A recent study indicates that DOT1L exists in a large protein 

complex that regulates expression of Wingless target genes (Mohan et al. 2010). 

Additionally, DOT1L has been shown to regulate erythroid differentiation during embryonic 

hematopoiesis (Feng et al. 2010).  

 

Using in vitro methylcellulose re-plating assays, we have shown that mis-targeting of 

DOT1L and dysregulation of MLL-target genes contributes to leukemogenesis in MLL-AF10 

and CALM-AF10 (Okada et al. 2005; Okada et al. 2006). Similar in vitro studies were also 

reported for leukemic transformation caused by MLL-ENL (Mueller et al. 2007) and MLL-

AF4 (Krivtsov et al. 2008). Interestingly, DOT1L was previously shown to be part of the 

EAP complex (Bitoun et al. 2007; Mueller et al. 2009). These data raise the possibility that 

DOT1L interaction with MLL-fusion proteins and aberrant targeting to gene loci may be a 

universal mechanism mediating MLL leukemogenesis. To further substantiate the role of 

DOT1L in leukemia, we generated a conditional DOT1L knockout mouse model and 

evaluated the role of DOT1L in MLL-AF9-mediated leukemogenesis. Our studies not only 

establish a critical function of DOT1L in the initiation and maintenance of leukemia in vivo, 

but also demonstrate a role for DOT1L in the activation of leukemia genes such as Meis1 and 

the Hoxa cluster. 
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Results 

DOT1L is required for MLL-AF9-induced transformation in vitro 

Previous studies had only analyzed the role of DOT1L in MLL-mediated leukemogenesis in 

vitro (Okada et al. 2005; Okada et al. 2006; Mueller et al. 2007; Krivtsov et al. 2008), and the 

pathophysiological relevance of those data need to be confirmed in vivo. To this end, we 

generated an inducible knockout system by crossing mice harboring a Dot1L conditional 

allele (DOT1l2lox) (Jones et al. 2008) with mice harboring a Cre-recombinase-Oestrogen-

Receptor-T2 allele (Cre-ERT2) at the ubiquitous ROSA26 locus (Ventura et al. 2007). Upon 

tamoxifen (TAM) administration, the Cre-ERT2 system allows for translocation of Cre-

recombinase into the nucleus, resulting in efficient recombination of genomic loxP sites 

(Ventura et al. 2007). Previous studies have confirmed that Cre-recombination of the DotL 

allele removes exons 5 and 6, which encode part of the SAM binding motif required for 

enzymatic activity, to generate the DOT1l1lox null allele, abolishing all H3K79 mono-, di-, 

and tri-methylation (Jones et al. 2008). 

 

Using this inducible system, we first investigated the role of DOT1L in the initial 

transformation of hematopoietic progenitor cells (HPCs) by expression of MLL-AF9. FACS 

sorted c-Kit+ HPCs from bone marrow of conditional DOT1L2lox/1lox;Cre-ERT2 (2l/1l) and 

control DOT1Lwt/wt;Cre-ERT2 (wt/wt) mice (Figure 3-1B) were infected with retroviruses 

expressing MLL-AF9 or empty vector control. After infection, cells were treated with TAM 

for 7 days and efficient deletion of Dot1l was confirmed by RT-qPCR (Figure 3-1C). To 

evaluate the effect of DOT1L depletion on MLL-AF9 mediated transformation, infected 2l/1l 

and wt/wt cells were subjected to serial methylcellulose re-plating, which selects for self-



 

84 
 

renewing cells. As shown in Figure 3-1D, no colonies were observed by the second and third 

round in DOT1L depleted cells, suggesting that DOT1L is required for initial transformation 

by MLL-AF9.  

 

DOT1L is required for MLL-AF9-mediated leukemogenesis in vivo 

We next asked whether DOT1L is required for MLL-AF9 mediated leukemogenesis in the 

mouse via bone marrow transplantation (BMT). In our system, donor 2l/1l and wt/wt mice 

are maintained on a 129Sv/Jae and C57/B6 Ly5.2 mixed background, while recipient mice 

are maintained on a C57/B6 Ly5.1 background. Thus, donor leukemic cells (LCs) can be 

distinguished from wild-type recipient and radio-protector cells, which do not contain the 

Dot1L conditional allele or Cre-ERT2 allele, by fluorescence activated cell sorting (FACS). 

Donor MLL-AF9 LCs, collected from the third round of methylcellulose re-plating, were 

mixed with radio-protector Ly5.1/Ly5.2 BMCs at a 1:5 ratio and transplanted into recipient 

mice. TAM administration was initiated three weeks post-BMT, prior to the detection of LCs 

in bone marrow (Figure 3-2E), to induce Dot1L recombination in donor LCs. RT-qPCR 

analysis confirmed efficient deletion of Dot1L by the TAM treatment (Figure S3-1). As 

expected, all mice transplanted with wt/wt MLL-AF9 LCs died by 14 weeks post-BMT 

(Figure 3-2B). However, TAM treatment increased survival of mice transplanted with 2l/1l 

MLL-AF9 LCs (Figure 3-2B). The extended life span of the 2l/1l MLL-AF9 TAM treated 

group (red dotted line) is not due to other effects of TAM as only a 1-2 weeks increase in 

survival was observed between treated and untreated wt/wt MLL-AF9 (Figure 3-2B, dotted 

and solid black lines). Consistent with increased survival, TAM treatment prevented 

splenomegaly (Figure 3-2C) and leukemia infiltration of liver (Figure 3-2D) in mice that 
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received 2l/1l MLL-AF9 LC transplantation, but not to those receiving wt/wt MLL-AF9 LCs. 

Furthermore, FACS analysis demonstrates that donor wt/wt MLL-AF9 LCs constituted a 

third (or 58%) of the bone marrow population at 6 weeks (or 9 weeks) post-BMT, whereas 

no 2l/1l MLL-AF9+TAM LC donor cells were detectable (Figure 3-2E-F), indicating that the 

ability of MLL-AF9 LCs to repopulate the recipient bone marrow requires functional 

DOT1L. Strikingly, by 24 weeks post-BMT no 2l/1l MLL-AF9 LCs are detected in the 

peripheral blood of TAM treated mice (Figure 3-2G), demonstrating that MLL-AF9 LCs fail 

to establish AML in the absence of DOT1L.  Collectively, these results demonstrate a critical 

function for DOT1L in the initiation of leukemia in vivo.  

 

DOT1L is required for maintaining MLL-AF9 leukemic transformation in vitro 

Having established the function for DOT1L in the initiation of leukemia, we next asked 

whether DOT1L is also required for maintaining the leukemic state induced by MLL-AF9. 

To this end, MLL-AF9 LCs were propagated in liquid culture in the presence or absence of 

TAM for a period of 7 days. After verification of efficient TAM-induced Dot1l 

recombination by genotyping (Figure 3-3B) and RT-qPCR (Figure 3-3C), an equal number 

of cells were plated onto methylcellulose.  MLL-AFX LCs were used as a negative control 

since DOT1L was previously shown not to be required for maintaining transformation 

induced by MLL-AFX (Okada et al. 2005). Results shown in Figure 3-3D demonstrate that 

2l/1l MLL-AF9 transformed cells failed to produce colonies upon TAM-induced depletion of 

DOT1L. In contrast, similar treatment exhibited no effect on MLL-AFX transformed cells, 

indicating that depletion of DOT1L did not cause a general cytotoxic effect. Additionally, 

TAM treatment by itself had no effect on wt/wt LC colony formation potential (Figure 3-3D). 
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This study demonstrates that MLL-AF9 transformed cells require DOT1L for maintaining 

leukemic self-renewal in vitro. 

 

DOT1L is required for MLL-AF9-induced acute leukemia progression in vivo 

The in vivo results in Figure 3-2E-J suggest that DOT1L is required for MLL-AF9 

leukemogenesis. In those experiments, TAM administration was initiated at 3 weeks post-

BMT. At this stage, acute leukemia has yet to develop since donor LCs in the bone marrow 

were undetectable by FACS (Figure 3-2E). To investigate the importance of DOT1L in the 

maintenance of MLL-AF9-induced acute leukemia in vivo, we administrated TAM at 6 

weeks post-BMT when the transplanted LCs account for ~30% of the bone marrow 

population (Figure 3-2F). At 9 weeks post-BMT, TAM-induced DOT1L depletion greatly 

reduced splenomegaly (Figure 3-4B) and liver infiltration (Figure 3-4C) in 2l/1l MLL-AF9 

mice. FACS analysis of recipient bone marrow revealed that 2l/1l MLL-AF9 LCs 

represented a lower percentage of total BMCs in treated mice compared to untreated controls 

(Figure 3-4D; 44.2% vs 60.7% at 9 weeks; 27.9% vs 83.0% at 12 weeks). In TAM treated 

mice, we also observed a decrease in 2l/1l MLL-AF9 donor LCs at 12 weeks compared to 9 

weeks post-BMT (Figure 3-4D; 27.9% vs 44.2%). In contrast, the percentage of wt/wt donor 

LCs increased from 60.7% to 83.0% in the same period (Figure 3-4D). Moreover, FACS 

analysis indicated that the remaining DOT1L deficient donor LCs at 12 weeks expressed 

lower levels of stem cell/progenitor cell marker c-Kit (Figure 3-4D), indicating a depletion of 

clonogenic leukemic progenitor/stem cells in the absence of DOT1L.  
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To analyze the effect of in vivo DOT1L deficiency on the self-renewal capacity of LCs, we 

sorted donor LCs at 12 weeks post-BMT and plated equal numbers onto methylcellulose. 

Results shown in Figure 3-4E demonstrate that the colony formation capacity of 2l/1l LCs 

from TAM treated mice is greatly reduced. Although colonies were observed after the first 

round of plating, those cells failed to give rise to additional colonies after the second round. 

In contrast, wt/wt LCs have increased colony formation capacity (Figure 3-4E). Thus, TAM-

induced DOT1L depletion in vivo blocks AML progression by disrupting MLL-AF9 LC self-

renewal capacity, which is consistent with the decreased c-Kit expression (Figure 3-4D).   

 

Loss of DOT1L function causes cell cycle arrest in MLL-AF9-induced leukemic cells 

Previous studies have shown that loss of DOT1L induces cell cycle arrest in ES cells (Jones 

et al. 2008; Barry et al. 2009) and erythroid cells (Feng et al. 2010).  To analyze the effect of 

DOT1L on cell proliferation, we cultured LCs in liquid media in the presence or absence of 

TAM.  Results shown in Figure 3-5A demonstrate that loss of DOT1L inhibits proliferation 

of cells transformed by MLL-AF9, but not cells transformed by MLL-AFX, indicating that 

depletion of DOT1L did not cause a general cytotoxic effect. FACS analysis of cells stained 

with propidium iodide demonstrates that MLL-AF9 LCs arrest at G0/G1 after DOT1L 

depletion, while no effect on cell cycle progression was observed for MLL-AFX LCs (Figure 

3-5B). General cytotoxic effects from TAM treatment were not responsible for the cell cycle 

arrest as no effect was observed with wt/wt MLL-AF9 LCs (Figure 3-5A-B). Consistent with 

a G0/G1 arrest, substantial up-regulation of two regulators of G1 progression, pRb and the 

CDK inhibitor p16 (Lukas et al. 1995; Medema et al. 1995), was detected in 2l/1l MLL-AF9 

LCs upon loss of DOT1L (Figure 3-5C). Since H3K79 methylation is generally linked to 
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transcription activation, DOT1L loss of function is expected to down-regulate direct gene 

targets of DOT1L. Therefore, the observed up-regulation of p16 and pRb expression is likely 

to be an indirect consequence.  

 

DOT1L regulates expression of Hoxa cluster and Meis1 

Previous studies have shown that the Hoxa gene cluster is up-regulated in MLL-AF9 LSCs 

(Krivtsov et al. 2006; Somervaille and Cleary 2006). To determine whether DOT1L is 

involved in Hoxa genes up-regulation, we analyzed their expression by RT-qPCR. We found 

that all analyzed Hoxa genes are up-regulated in MLL-AF9 transformed cells when 

compared to normal HPCs (Figure 3-6A). Importantly, DOT1L plays a crucial role in 

activation of the Hoxa cluster as TAM-induced DOT1L depletion resulted in their down-

regulation (Figure 3-6A). In addition, two Hoxa co-factors, Meis1 and Pbx3, required for 

maintaining MLL-AF9 leukemic stem cell potential (Wong et al. 2007), are also down-

regulated in response to TAM-induced DOT1L depletion (Figure 3-6A). Studies have shown 

that in addition to their role in maintaining LSC identity, continued Hoxa and Meis1 

expression also help block differentiation (Somervaille and Cleary 2006; Muntean et al. 

2010). Accordingly, Csf3r and Ltf, genes associated with myeloid differentiation and down-

regulated in MLL-AF9 LCs, are re-activated upon TAM-induced DOT1L deletion (Figure 3-

6B). These data support the notion that DOT1L is required for maintaining a transcriptional 

program that supports LSC self-renewal and blocks differentiation. 

 

Next, chromatin immunoprecipitation (ChIP) was performed to determine whether DOT1L is 

directly targeted to Hoxa and Meis1 loci to regulate their expression in MLL-AF9 LCs. 
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Because no ChIP-grade DOT1L antibody is available, we used an antibody that recognizes 

H3K79 di- and tri-methylation (H3K79me2/3; Abcam), modifications deposited by DOT1L 

(Feng et al. 2002). Hoxa5 and Hoxa9 loci were analyzed because they were shown to be 

required for leukemogenesis of various MLL-fusion proteins (Okada et al. 2005; Okada et al. 

2006; Faber et al. 2009). Hoxa10 was also included because its over-expression has been 

reported to induce transplantable AML in mice (Thorsteinsdottir et al. 1997). ChIP analysis 

verified that all three loci, in addition to Meis1, are preferentially enriched for H3K79me2/3 

in MLL-AF9 transformed cells when compared to control HPCs (Figure 3-6C,D). These data 

suggest that DOT1L-mediated H3K79 methylation contributes directly to Hoxa and Meis1 

gene activation in MLL-AF9 induced leukemogenesis.  
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Discussion 

Leukemia caused by MLL-AF9 fusions represents ~1/3 of all infant acute leukemias and 

~1/3 of adult AML (Krivtsov and Armstrong 2007). Recent studies demonstrating the 

interaction between MLL-AF9 and several functional partners such as Menin (Yokoyama et 

al. 2005; Chen et al. 2006; Caslini et al. 2007), wild-type MLL (Thiel et al. 2010), and the 

PAF complex (Milne et al. 2010; Muntean et al. 2010) have shed some light on the 

underlying mechanisms of MLL-AF9 leukemogenesis. DOT1L has been previously shown to 

directly interact with the C-terminus of AF9 (Zhang et al. 2006) and has been identified in 

AF9-associated protein complexes (Zeisig et al. 2005; Bitoun et al. 2007; Mueller et al. 

2009). In addition, H2B ubiquitination mediated by the PAF complex is required for both 

DOT1L methyltransferase activity (Krogan et al. 2003; Wood et al. 2003) and for MLL-AF9 

leukemic transformation (Milne et al. 2010; Muntean et al. 2010). These data suggest a 

possible link between DOT1L and MLL-AF9-mediated leukemogenesis. 

 

In this study, we demonstrate that DOT1L is required for the initiation of leukemic 

transformation by MLL-AF9 both in vitro by methylcellulose colony formation assays and in 

vivo by bone marrow transplantation assays (Figure 3-1). Additionally, we demonstrate that 

DOT1L is required for maintaining the transformed state of MLL-AF9 leukemic cells in vitro 

and in vivo as loss of DOT1L abrogated colony formation in methylcellulose colony re-

plating as well as AML progression in mice (Figure 3-2). Further analysis revealed that 

DOT1L is required for maintaining LSC identity, self-renewal capacity, and proliferation of 

MLL-AF9 transformed, but not MLL-AFX transformed, cells (Figures 3-2 and 3-3). 

Moreover, gene expression analysis demonstrates that activation of a group of LSC-
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associated genes, including the Hoxa cluster, Meis1, and Pbx3, is compromised upon loss of 

DOT1L function (Figure 3-4). Finally, ChIP assay supports that DOT1L-mediated H3K79 

methylation directly contributes to activation of these genes.  

 

It is important to note that during completion of this study two papers were published 

confirming a requirement for DOT1L in MLL-AF9 transformation (Chang et al. 2010; 

Monroe et al. 2011). However, neither one evaluated the role of DOT1L in vivo, leaving 

open the question of pathobiological relevance of their studies. Through bone marrow 

transplantation, we demonstrate that DOT1L plays a critical role in the initiation and 

maintenance of MLL-AF9-mediated acute leukemia; thus, firmly establishing the function of 

DOT1L in leukemogenesis. In contrast to our data on MLL-AFX, Chang and colleagues 

(Chang et al. 2010) found that DOT1L is required for maintaining MLL-AFX transformation 

in vitro. One possible explanation is that the two studies used different mouse models. Upon 

Cre-recombination of the Dot1L conditional allele in our mouse, both exons 5 and 6 are 

excised. Given that exons 4 and 7 will still be transcribed and translated in-frame, a truncated 

DOT1L mutant missing 108 residues within the catalytic domain can still be generated. 

However, recombination of the conditional allele used in Chang et al. only removes exon 5, 

which results in a frame-shift and the expression of a truncated protein containing only the 

first 87 residues (Chang et al. 2010). Their deletion may have a more severe phenotype due 

to loss of other DOT1L functions aside from its methyltransferase activity. 

 

We and others have previously shown that mis-targeting of DOT1L and subsequent 

methylation on H3K79 plays an important role in the leukemic process involving MLL-
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AF10, MLL-ENL, MLL-AF4 transformation in vitro (Okada et al. 2005; Mueller et al. 2007; 

Krivtsov et al. 2008). Consistently, DOT1L has been shown to associate with all three of the 

aforementioned MLL fusion partners through direct or indirect interactions (Erfurth et al. 

2004; Okada et al. 2005; Zeisig et al. 2005; Bitoun et al. 2007; Mueller et al. 2007; Mueller 

et al. 2009). Of noteworthy, two reports have failed to identify DOT1L in an AF4-associated 

complex (Lin et al. 2010; Yokoyama et al. 2010), putting into question the role of DOT1L in 

MLL-AF4 leukemia. However, direct interaction of AF4 with AF9 and AF9 with DOT1L is 

unquestionable; thus, DOT1L may be mis-targeted to genomic loci by MLL-AF4 indirectly 

through their mutual association with AF9. In support of this possibility, it has been 

demonstrated that disruption of the AF4-AF9 interaction by the synthetic peptide PFWT 

inhibits MLL-AF4 leukemic cell proliferation (Srinivasan et al. 2004), which is similar to the 

results we observe with MLL-AF9 in the absence of DOT1L.  

 

This study, together with previous ones, strongly suggests a common mechanism by which 

DOT1L contributes to leukemogenesis of MLL-fusion proteins. We believe that mis-

targeting of DOT1L to Hoxa and Meis1 genes, subsequent H3K79 methylation, and up-

regulation of these genes is a common mechanism underlying the involvement of DOT1L in 

leukemogenesis (Figure 3-7). Although a similar mechanism for MLL-AF10 and MLL-AF4 

has been previously proposed (Okada et al. 2005; Guenther et al. 2008; Krivtsov et al. 2008), 

all previous studies were performed using an in vitro system with DOT1L knockdown. Here 

we not only extended the those studies by demonstrating the involvement of DOT1L in 

MLL-AF9 mediated leukemogenesis, but also provided the first evidence demonstrating an 

essential role for DOT1L in leukemogenesis in vivo. Our study thus solidifies DOT1L’s role 
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in leukemias involving MLL rearrangements and makes DOT1L a prime candidate for 

targeted therapeutic intervention. 
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Materials and Methods 

Mice and in vivo Tamoxifen Treatment. The DOT1L conditional mouse was previously 

described (Jones et al. 2008). The R26-Cre-ERT2 mice were generated by Tyler Jacks lab 

(Ventura et al. 2007) and were obtained from the NCI Mouse Models of Human Cancers 

Consortium (Strain 01XAB). DOT1L2lox/+ and DOT1L1lox/+ mice were intercrossed to 

generate DOT1L2lox/1lox;Cre-ERT2 and DOT1L+/+;Cre-ERT2 mice. Mice were kept on a 

129Sv/Jae and C57/B6 Ly5.2 background. Wild type C57/B6 Ly5.1 and Ly5.2 mice were 

purchased from Jackson Laboratory and were intercrossed to generate Ly5.1/Ly5.2 mixed 

background BMCs. For in vivo Cre-recombination, tamoxifen (Sigma) was administered via 

intraperitoneal injection every 2 days (100 µl of 100 mg/ml in corn oil) for a period of 3 

weeks. All animal protocols adhere to the National Institutes of Health Guide for the Care 

and Use of Laboratory Animals and were approved by the UNC Institutional Animal Care 

and Use Committee. 

Retrovirus Production, Transduction, Methylcellulose Colony Re-plating Assay, and 

Cell Culture. The pMSCN-MLL-AF9 construct was a gift from Jay Hess . The pMSCN-

MLL-AFX construct was a gift from Michael Cleary . Retroviral production was performed 

as described previously (Okada et al. 2005). Briefly, pMSCN-MLL-AF9 and pMSCN-MLL-

AFX were co-transfected with pGag-pol and pVSVG into 293T cells using Superfect 

(Qiagen). At 48 hrs post-transfection, viral supernatant were collected for transduction of c-

Kit positive HPCs purified as follows: Mice 4-10 weeks old were injected intravenously with 

5-fluorouracil (150 mg/kg). Bone marrow was harvested from both femurs 5 days post-

injection and stained with c-Kit-APC (BD Biosciences). Positive stained HPCs were FACS 

sorted using a BD FACSAria II Flow Cytometer. Viral supernatants were used to transduce 
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the FACS sorted cells via spinoculation, and cells plated onto methylcellulose 24hrs post-

infection. For methylcellulose colony formation assays, 1x10^4 transduced cells were plated 

into 0.9% Methocult M3534 (StemCell Technologies) supplemented with 10 ng/ml GM-CSF 

and 1 mg/ml G418 (GIBCO) for selection. After 7 days of culture, G418-resistant colonies 

were collected and single-cell suspensions re-plated into M3534 with GM-CSF in the 

absence of G418. Re-plating was performed every 7-10 days. Liquid cultures of transformed 

HPCs and LSCs were maintained in mFTOC (20% FBS in RPMI1640, 1 mM MEM sodium 

pyruvate, 1% MEM non-essential amino acid, 10 mM HEPES at pH 7.3, 50 µm 2-

mercaptoethanol with 5 ng/ml mIL-3 (Peprotech). For in vitro recombination, 4-OHT 

(Sigma) was resuspended in ethanol and added to cell culture media at final concentration of 

250 µM. Media was changed daily during 7 day period of 4-OHT treatment. 

Bone Marrow Transplantation. Recipient C57/B6 Ly5.1 mice (6-12 weeks old) began a 

prophylactic regimen to prevent gastro-intestinal infections through oral administration of 

sulfamethoxazole/trimethoprim (SMZ, TW Medical) at a concentration of 6 mg/1.2 mg per 

mL water one week prior to bone marrow transplantation (BMT) procedures and continued 

for 4 weeks post-transplantation.  SMZ containing water was changed every other day.  On 

the day of transplantation recipient mice received two doses, 4.8 Gy each, of total body 

irradiation (TBI) 4 hours apart using a cesium radiation source. Four hours after the second 

irradiation dose, recipient mice were anaesthetized through intraperitoneal injection of 300 ul 

per 10 g body weight of avertin (0.0125 g/ml 2,2,2, tribromoethanol and 1.25% tert-amyl 

alcohol in PBS).  Once anaesthetized, 0.5x10^5 LCs plus 2.5x10^5 radio-protector 

Ly5.1/Ly5.2 cells resuspended in 100 µl PBS (1:5 ratio) were transplanted via retro-orbital 

injection. 
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Histology. Tissues were harvested from mice and fixed in 4% paraformaldehyde. Livers 

were paraffin embedded and tissue sections, 5 µm thick, were used for hematoxylin and 

eosin staining.  

FACS Analysis and Cell Sorting. Bone marrow cells were flushed from both femurs of 

mice using 25G needle and syringe. Red blood cells were lysed using ammonium chloride 

(StemCell Technologies). Cells were resuspended in PBS + 2% FBS at a concentration of 

10^6 cells per 100 µl. Cells were stained for 30min at 40C, washed three times with PBS, and 

resuspended in PBS + 2% FBS. Antibodies used for FACS analysis and sorting are: Rat anti-

mouse c-Kit-APC, Ly5.1-PE-Cy7, and Ly5.2-PerCP-Cy5.5 plus corresponding Rat IgG2a 

Isotype controls (EBiosciences). All analysis and sorting was performed using BD FACSAria 

II Flow Cytometer. 

PI Staining for DNA content. Cells grown in liquid culture were washed twice with ice cold 

PBS and resuspended in 500 µl of PBS. While vortexing gently, 4.5 ml of ice cold 70% 

ethanol was slowly added and then stored at 40C overnight. On the following day, fixed cells 

were pelleted by centrifugation at 40C for 5 minutes at 1500rpm. Cell pellet was washed with 

PBS, centrifuged, and resuspended in 250 µl of PBS. PI staining mix (RNase A 100 µg/ml, 

propidium iodide 40 µg/ml, and 0.1% Triton X-100 in PBS) was prepared fresh, and 750 µl 

added to cells. Cells were incubated for 15 minutes at 370C and then analyzed by FACS 

using a Beckman Coulter CyAn Flow Cytometer. Data was analyzed using ModFit LT 

software. 

RT-qPCR and ChIP. For gene expression analysis, total RNA was isolated from cells using 

RNeasy Kit (Qiagen) and reverse transcribed using Improm II (Promega). SYBR GreenER 

qPCR SuperMix (Invitrogen) was used for qPCR.  qPCR was performed using Applied 
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Biosystems 7300 Real-Time PCR System. Relative expression was normalized to Gapdh. 

Primer sequences are listed in Table S3-1. ChIP experiments were carried out as previously 

described (Okada et al. 2005) with the following modifications. DNA was fragmented into 

300-500 bp in length by sonication. Immunoprecipitation was performed using anti-

H3K79me2/3 (Abcam) and anti-Rabbit IgG (Santa Cruz; sc-2027) and DynaBeads 

(Invitrogen).  ChIP’ed samples were washed twice with low salt (140mM NaCl) RIPA 

buffer, once with high salt (500 mM NaCl) RIPA buffer, and twice with TE buffer.  DNA 

was purified using Chelex-100. Quantitative real-time PCR of ChIP’ed DNA was analyzed 

using SYBR GreenER qPCR SuperMix (Invitrogen) and Applied Biosystems 7300 Real-

Time PCR System. Primer sequences are listed in Table S3-2. 
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Figure 3-1. DOT1L is required for MLL-AF9-induced leukemic transformation in vitro. 

(A) Diagram of the procedure used for in vitro analysis. (B) Bone marrow cells were stained 

with rat IgG2a-APC isotype control to identify c-Kit negative population. Bone marrow cells 

were stained with rat anti-mouse c-Kit-APC. c-Kit+ cells were sorted using a BD FACSAria 

II instrument. (C)RT-qPCR analysis of DOT1L expression level, normalized to Gapdh, after 

7 days of TAM treatment (250 nM final concentration) demonstrates efficient recombination. 

Mouse genotype is indicated. (D) Serial methylcellulose colony re-plating assay shows that 

MLL-AF9 fails to transform HPCs in the absence of DOT1L. An equal number of cells 

transduced with empty vector MSCN or MLL-AF9 were plated at each round and colony 

forming units (CFUs) counted after 7-10 days. Experiment was performed three times and 

presented as average number of CFUs with standard deviation (SD).  
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Figure 3-2. DOT1L is required for MLL-AF9-mediated leukemogenesis in vivo. (A) 

Diagram of the bone marrow transplantation procedure to examine the effect of DOT1L 

depletion on the establishment of AML by MLL-AF9 LCs in vivo. TAM treatment began at 3 

weeks post-transplantation. (B-G) In vivo deletion of DOT1L prevents MLL-AF9 mediated 

acute leukemia development. (B) Kaplan-Meier plot showing survival of transplanted mice 

treated and untreated with TAM. Median survival of wt/wt MLL-AF9 transplanted mice 

without TAM = 7 weeks (n=17) and wt/wt MLL-AF9 transplanted mice treated with TAM = 

7 weeks (n=14). All 2lox/1lox MLL-AF9 transplanted mice treated with TAM (n=18) survive 

at least 24 weeks post-transplantation. (C) Image of spleens harvested from transplanted 

mice at 6 weeks post-transplantation show splenomegaly in wt/wt MLL-AF9 transplanted 

mice. (D) H&E staining of liver tissue sections at 6 weeks post-transplantation show 

leukemic infiltration in wt/wt MLL-AF9 transplanted mice. (E) Donor leukemic cells 

depleted of DOT1L are absent in recipient bone marrow. Representative images showing 

FACS analysis of bone marrow cells isolated from transplanted mice. Donor MLL-AF9 LCs 

are Ly5.2+ (blue) while recipient/protector cells are Ly5.1+/Ly5.2+ (red). (F) Percentage of 

MLL-AF9 LCs present in recipient bone marrow at 6 and 9 weeks post-transplantation as 

determined by FACS analysis (n=3 per group). (G) No leukemic cells are detected by FACS 

analysis of peripheral blood obtained from 2lox/1lox MLL-AF9+TAM mice at 24 weeks 

post-transplantation. Representative image from one of the 6 mice analyzed. 
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Figure 3-3. MLL-AF9 leukemic cells require DOT1L to maintain transformation in 

vitro. (A) Diagram of the procedure analyzing role of DOT1L for LC maintenance in vitro. 

(B) Genotyping to verify efficient Cre-mediated recombination of DOT1L2lox conditional 

allele. (C) RT-qPCR analysis of DOT1L expression level in 2lox/1lox MLL-AF9 LCs, 

normalized to Gapdh, after 7 days of TAM treatment (250 nM final concentration) 

demonstrates efficient recombination. (D) DOT1L is required for maintaining MLL-AF9 

leukemic transformation but not for MLL-AFX. Methylcellulose colony formation assay 

after TAM treatment of LCs. Equal number of cells were plated and average numbers of 

CFUs from 3 independent experiments are shown. Error bars represent SD.  
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Figure 3-4. DOT1L is required for MLL-AF9-induced acute leukemia progression in 

vivo. (A) Diagram of bone marrow transplantation procedure to examine the requirement of 

DOT1L in MLL-AF9 AML progression. TAM treatment began at 6 weeks post-

transplantation after leukemia development. (B-E) In vivo deletion of DOT1L prevents MLL-

AF9 acute myeloid leukemia progression. (B) Reduced spleen size in TAM-treated 2lox/1lox 

MLL-AF9 recipient mice. Representative images of spleens harvested from transplanted 

mice at 9 weeks post-transplantation. (C) TAM-induced DOT1L deletion prevents leukemic 

infiltration of the liver. H&E staining of liver tissue sections at 9 weeks post-transplantation. 

(D) Upon DOT1L depletion, the percentage of leukemic cells in bone marrow diminishes 

over time. FACS analysis of bone marrow cells isolated from transplanted mice. Donor 

MLL-AF9 LCs are Ly5.2+ (blue) while recipient/protector cells are Ly5.1+/Ly5.2+ (red). 

Percentage of donor Ly5.2 cells in the total bone marrow cell population at 9 weeks and 12 

weeks post-transplantation are indicated. At 12 weeks post-transplantation, cells were also 

stained with the stem cell/progenitor marker c-Kit. Leukemic donor Ly5.2 population is 

gated and percentage of c-Kit+ cells indicated. Shown are representative images from three 

independent experiments. (E) Loss of in vivo clonogenic leukemic stem cells after DOT1L 

depletion. Methylcellulose colony formation assay of LC donor cells sorted from mice at 12 

weeks post-transplantation. Average CFUs are shown for 3 different mice. Error bars 

represent SD. 
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Figure 3-5. Loss of DOT1L inhibits cell proliferation due to a G0/G1 cell cycle arrest. 

(A) In vitro TAM-induced DOT1L deletion inhibits MLL-AF9 LC proliferation in liquid 

culture but not MLL-AFX. Total cell numbers were counted every 2 days. Shown is the 

average of three independent experiments with error bars. (B) In vitro TAM-induced DOT1L 

deletion causes cell cycle arrest at G0/G1 phase for MLL-AF9 transformed cells. Cell cycle 

analysis was performed by propidium iodide staining. Experiment was repeated twice. Data 

was analyzed using ModFit software. (C) Gene expression analysis by RT-qPCR shows up-

regulation of CDK inhibitors after DOTL depletion, normalized to Gapdh. 
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Figure 3-6. DOT1L directly regulates expression of Hoxa and Meis1 genes in MLL-AF9 

leukemic cells. (A) RT-qPCR analysis shows up-regulation of Hoxa cluster and their co-

factors Meis1 and Pbx3, normalized to Gapdh, in MLL-AF9 LCs, which become down-

regulated upon DOT1L deletion. (B) RT-qPCR analysis shows down-regulation of myeloid 

differentiation markers, normalized to Gapdh, in MLL-AF9 LCs, which become up-regulated 

upon DOT1L deletion. (C) ChIP analysis demonstrates that H3K79me2/3 is enriched in 

Hoxa loci in MLL-AF9 LCs compared with that in the control HPCs. IgG was used for 

control ChIP and amplicon positions are indicated. TSS indicates transcription start site. (D) 

ChIP analysis demonstrates that H3K79me2/3 is enriched in the Meis1 gene in MLL-AF9 

LCs compared with that in the control HPCs. IgG was used for control ChIP and amplicon 

positions are indicated. TSS indicates transcription start site. 
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Figure 3-7. Model for mis-targeting of DOT1L by MLL-fusion proteins to up-regulate 
Hoxa gene expression. 
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Figure S3-1. In vivo tamoxifen-induced recombination efficiency. DOT1L2lox/1lox;Cre-
ERT2 mice were administered TAM via intraperitoneal injection every 2 days for 3 weeks. 
Bone marrow cells were purified to evaluate recombination efficiency by RT-qPCR. DOT1L 
expression was normalized to Gapdh. 
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Table S3-1. Primers used for RT-qPCR gene expression analysis. 
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Table S3-2. Primers used for ChIP-qPCR analysis. 
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DOT1L and the mammalian cell cycle 

The studies herein provide a small glimpse of the many functions of mammalian DOT1L. 

Without a doubt DOT1L is a critical enzyme for both normal biological and oncogenic 

processes. However, a great deal of information remains to be elucidated. For instance, 

exactly what part does DOT1L play in regulating cell cycle progression and the DNA 

damage response in mammalian cells? In yeast, Dot1 is a vital component of DNA damage 

repair pathways, but does this role translate into mammals?  

 

Thus far, several observations suggest mechanisms exist in mammalian cells involving 

DOT1L-mediated H3K79 methylation in checkpoint response and DNA replication. DOT1L 

knockout (KO) mouse embryonic stem (ES) cells exhibit a G2 arrest (Jones, Su et al. 2008) 

and aneuploidy, while KO erythroid progenitor cells undergo G1 arrest (Feng, Yang et al. 

2010). On the other hand, loss of DOT1L in cardiomyocytes and C2C12 myoblasts did not 

impair cell proliferation (Nguyen, Xiao et al. 2011). Of noteworthy, H3K79me2 patterns are 

also different between yeast and human. In HeLa cells, H3K79me2 is high in G1, decreases 

in S, reaches lowest point in G2, and increases again in M phase (Feng, Wang et al. 2002). 

However, in yeast, H3K79me2 is low in G1 and S, begins to increase in late S, and is 

maintained in G2 and M phases (Schulze, Jackson et al. 2009). It is apparent that mammalian 

DOT1L plays distinct cell type specific roles in regulating cell cycle progression. 

Additionally, these data suggest that not all functions of Dot1 are evolutionarily conserved 

from yeast to humans. Further studies are required to determine which DNA repair 

mechanisms involving DOT1L are conserved and to dissect the role of every H3K79 

methylation state during each phase of the mammalian cell cycle.  
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Maintaining telomere length in DOT1L-deficient cells 

A second area of divergence between yeast Dot1 and mammalian DOT1L is their role in 

telomere silencing. In yeast, Dot1 and its associated H3K79 methylation mark block SIR 

protein binding. In the absence of Dot1, SIR protein spreading occurs, diluting their ability to 

effectively maintain telomere silencing and, subsequently, reducing telomere lengths (Singer, 

Kahana et al. 1998; Ng, Feng et al. 2002; Ng, Ciccone et al. 2003). Surprisingly, ES cells 

derived from DOT1L KO embryos have longer, heterogeneous telomeres compared to wild 

type and heterozygote cells (Jones, Su et al. 2008). The aberrant telomere elongation 

observed in KO cells was attributed to activation of the alternative lengthening of telomere 

(ALT) pathway (Jones, Su et al. 2008). The ALT pathway utilizes homologous 

recombination for maintaining telomeres and can be activated in a number of human somatic 

cells and immortalized cells in response to reduced telomerase activity and to by-pass the 

end-replication problem (Bryan, Englezou et al. 1995; Bryan, Englezou et al. 1997; Henson, 

Neumann et al. 2002).  

 

Yeast cells that lack telomerase for maintaining telomere length die within 50-100 cell 

divisions. However, a small fraction of these cells can survive through two different 

mechanisms. Type I survivors use amplification of subtelomeric regions to maintain short 

telomeres (Lundblad and Blackburn 1993). Alternatively, type II survivors use the ALT 

pathway, acquiring a heterogeneous pool of long telomeres (Teng and Zakian 1999). In 

addition, Teng and Zakian demonstrate that type I survivors often convert to the ALT 

pathway to maintain telomere length (Teng and Zakian 1999). If the ALT pathway exists in 

yeast, it is unclear why it is not activated to by-pass the effects of Dot1 deletion for 
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regulating telomere length as is observed in DOT1L KO mouse ES cells. The inconsistency 

in telomere regulation upon loss of yeast Dot1 and mouse DOT1L signifies the need for more 

in-depth analysis of mammalian DOT1L. 

 

DOT1L as a therapeutic target to treat MLL-related leukemias 

Chromosomal rearrangement of the Philadelphia chromosome in chronic myeloid leukemia 

(CML) was first identified in 1973, and the protein product, Bcr-Abl, was demonstrated to be 

the causative agent in 1990. The oncogenic function of Bcr-Abl is mediated by the 

constitutively active tyrosine kinase domain of Abl. In 1996, Imatinib (also known as 

Gleevec), a 2-phenyaminopyrimidine derivative, was discovered as a selective inhibitor of 

tyrosine kinase activity of Bcr-Abl, platelet-derived growth factor (PDGF-R), and c-Kit. 

Surprisingly, the drug had no effect on normal cells and is well tolerated with minor side 

effects. Therefore, in December of 2002, Imatinib was FDA approved for targeted therapy to 

treat human CML (Deininger and Druker 2003).  

 

The first 11q23 rearrangement in acute leukemia was identified in 1985. In 1992, several labs 

mapped the chromosomal breakpoint region at 11q23 to the MLL gene, a homolog of the 

Drosophila gene trithorax (Gu, Nakamura et al. 1992; McCabe, Burnett et al. 1992; 

Tkachuk, Kohler et al. 1992). Although it has been almost two decades since the discovery of 

MLL rearrangements as a cause of acute leukemias, no effective target-based therapy has 

been developed. The lack of targeted therapeutics to treat MLL-related leukemias may be due 

to the large heterogeneity of MLL rearrangements (over 50 different translocation partners). 

Mounting evidence supports a universal mechanism by which oncogenic MLL-fusion 
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proteins mistarget DOT1L to Hoxa and Meis1 genes for H3K79 hypermethylation, up-

regulation, and leukemogenesis. In this dissertation, I demonstrated for the first time that 

DOT1L activity is essential for acute myeloid leukemia development and progression in the 

mouse. These data suggest that targeting DOT1L may be an effective therapeutic to treat the 

majority of MLL-related leukemias.  

 

Due to the unique structure of DOT1L’s catalytic domain compared to all other histone 

lysine methyltransferases (Min, Feng et al. 2003), the ability to generate specific inhibitors of 

DOT1L HMTase activity is feasible. Unfortunately, at least in the mouse, DOT1L is an 

essential enzyme required for development (Jones, Su et al. 2008), ES cell maintenance 

(Jones, Su et al. 2008; Barry, Krueger et al. 2009), cardiac function (Nguyen, Xiao et al. 

2011), and hematopoiesis (Feng, Yang et al. 2010). Leukemia patients treated with DOT1L 

inhibitors may develop adverse side effects, including anemia and heart disease. Therefore, 

any drug designed to inhibit DOT1L enzymatic activity for the treatment of MLL-related 

leukemias must be carefully and thoroughly characterized both in vitro and in vivo long term. 

It is my hope that one day, a drug will be developed that specifically targets DOT1L in 

leukemic cells, leaving normal cells unscathed, reminiscent of Imatinib.  
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