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I. Formulation of Bayesian priors for standard clinical tests of cancer cell detachment from 

primary tumors 

 

 The two standard tests of detachment already in clinical use are: 

 1. Examination of regional lymph nodes (LN) 

 2. Radiologic imaging, especially of sites distant from the primary tumor (RI) 

 

A diagnosis of local disease (i.e. no detachment of cancer cells from the primary tumor) is only 

given when both tests are negative.   

 

A false diagnosis of local disease occurs when detachment has taken place but is not detected by 

either test.  In practice, a false diagnosis of local disease requires false negative test results on 

both standard tests.  For simplicity, if we assume that LN and RI results are independent, we get: 

 

p(false diagnosis of local disease) = p(LN false negative result) x p(RI false negative result) 

 

We develop priors for the sensitivity of LN and RI from the above equation and the following 

background information on colorectal cancer, the kind of cancer studied in our dataset: 

 

a. About 40% of colorectal cancers are diagnosed as being local disease1 

 

b. About 25% of colorectal cancer patients diagnosed with local disease (constituting 10% of all 

colorectal cancer patients) develop recurrent disease after surgery, when in theory this should be 

impossible or extremely rare.  Most of these tumors likely had spread of disease due to cancer 

cell detachment from the primary that was not detected at diagnosis.2 
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c. Therefore, ~10% of all colorectal cancer diagnoses are false diagnoses of local disease.  The 

other roughly 90% of diagnoses are true or accurate diagnoses of cancer cell detachment (either 

true finding of detachment or true finding of no detachment). 

 

The above information is summarized in the following diagram: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

False diagnoses of metastatic disease (i.e. false findings of detachment) are probably rare.  For 

this to happen, a false positive test result would need to occur according to at least one of the two 

standard tests.  This would require a pathologist or radiologist to think he is looking at cancer 

cells under the microscope or in a scan when in fact he is not.  In theory this can happen but 

should be exceptionally rare. 

 

In the absence of more specific, reliable information for LN or RI, we assume that the probability 

of a false negative result for LN is the same as the probability of a false negative result for RI.  

Call this probability Q.  The diagram above suggests that about 70% of colorectal cancer patients 

truly have detachment at diagnosis, and that about 1/7 = ~14.3% of these patients with 

detachment are falsely diagnosed as not having detachment. 

 

100% of annual incident colorectal cancer diagnoses in United States 

60% diagnosed with detachment of 

cancer cells from primary tumor 

(regional or distant disease) 

40% diagnosed with no detachment 

of cancer cells from primary tumor 

(local disease) 

10% diagnosed with no detachment but 

actually has undetected detachment 

(false local disease) 

30% diagnosed with no detachment 

and truly has no detachment 

(true local disease) 
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Therefore: 

 

p(false diagnosis of local disease | has detachment) = p(LN false negative) x p(RI false negative) 

14.3% = 0.143                      = Q x Q = Q2 

 

Q = square root(0.143) = 0.378 = about 38% 

 

In other words, background information suggests that the “average” false negative percentage for 

LN and RI is about 38% for each test.  Since sensitivity = (100% - false negative percentage), the 

average sensitivity of the two standard tests is estimated to be (100 – 38)% = 62%.  In practice, 

one of the tests will have a higher sensitivity than this, and the other will have a lower sensitivity, 

but these are expected to “average out” to about 62%. 

 

Because false positive test results should be very rare for the two standard tests, each test is 

assumed to have a specificity of close to 100%, with allowance for some error. 

 

The above considerations led to the following prior being applied to each of LN and RI: 

 

Sensitivity: 60%-70% 

Specificity: 95%-99% 
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II. Sample WinBUGS code for Bayesian latent class estimation of EMT marker sensitivity 

and specificity  

Let Yij be the classification result of the jth of three tests for individual i (i = 1, …,  N), the latent 

variable Di  denote the true disease status, and i denote the disease probability of the ith subject. 

The correlation in disease misclassification is accommodated by a latent continuous variable Zi ~ 

N(0, 1). The positive result for the jth assessment is assumed to depend on both the latent true 

disease status Di of the ith subject and the Gaussian latent variable Zi through a generalized linear 

mixed regression model, such as a probit model,3  

𝑃(𝑌𝑖𝑗 = 1|𝐷𝑖 = 𝑑𝑖, 𝑍𝑖 = 𝑧𝑖) = Φ(𝑎𝑑𝑖𝑗 + 𝑐𝑑𝑖𝑗𝑧𝑖) 

where di = 0,1. Here, the latent Gaussian random variable Zi is assumed to be independent to the 

latent disease status Di . If Sej and Spj denote the sensitivity and specificity for the jth test based 

on the fully dependent model (𝑐𝑑𝑖𝑗 ≠ 0), then  

𝑆𝑒𝑗 = 𝑃(𝑌𝑖𝑗 = 1|𝐷𝑖 = 1) =  Φ

(

 
𝑎1𝑗

√1 + 𝑐1𝑗
2

)

  

𝑆𝑝𝑗 = 𝑃(𝑌𝑖𝑗 = 0|𝐷𝑖 = 0) =  1 −  Φ

(

 
𝑎0𝑗

√1 + 𝑐0𝑗
2

)

  

Assuming that the multiple exposure assessments are conditionally independent given the latent 

disease status Di and latent Gaussian random variable Zi, the probability of observing Yi = (yi1, 

yi2, yi3) for the ith  subject is  

𝑃(𝑦𝑖1, 𝑦𝑖2, 𝑦𝑖3) = 𝜋𝑖 ∫∏{Φ(𝑎1𝑗 + 𝑐1𝑗𝑧𝑖)
𝑦𝑖𝑗
[1 − Φ(𝑎1𝑗 + 𝑐1𝑗𝑧𝑖)

1−𝑦𝑖𝑗
]}

3

𝑗=1

∞

−∞

𝑑Φ(𝑧𝑖)

+ (1 − 𝜋𝑖) ∫∏{Φ(𝑎0𝑗 + 𝑐0𝑗𝑧𝑖)
𝑦𝑖𝑗
[1 − Φ(𝑎0𝑗 + 𝑐0𝑗𝑧𝑖)

1−𝑦𝑖𝑗
]}

3

𝑗=1

∞

−∞

𝑑Φ(𝑧𝑖) 

The following WINBUGS code estimates the likelihood within the Bayesian framework as per 

Zhang et al. to estimate  = (a11, a12, a13, a01, a02, a03, c11, c12, c13, c01, c02, c03).
3  Note that the 

fully conditionally independent model is obtained by making 𝑐𝑑𝑖𝑗 = 0  for all tests, and setting 

𝑐𝑑𝑖𝑗 = 0 for some tests produces different partially conditionally dependent models.  

 

 



5 
 

model{           

         C<-0           

         for (i in 1:N){                   

         zero[i]<-0                   

            for (j in 1:J){                       

            element1[i,j]<-y[i,j]*log(phi(a1[j]+c1[j]*z[i]))+(1-y[i,j])*log(1-phi(a1[j]+c1[j]*z[i]))                      

element2[i,j]<-y[i,j]*log(phi(a0[j]+c0[j]*z[i]))+(1-y[i,j])*log(1-phi(a0[j]+c0[j]*z[i]))               

}   

  

            p[i]<-pi.ed[i]*exp(sum(element1[i,1:J]))+(1-pi.ed[i])*exp(sum(element2[i,1:J]))          

            pi.ed[i]~dunif(0,1)          

            phii[i]<--log(p[i])+C                   

            zero[i]~dpois(phii[i])       

            z[i]~dnorm(0,1)           

            }           

     for(j in 1:J){                   

                se[j]<-phi((a1[j])/sqrt(1+pow(c1[j],2)))                   

                sp[j]<-1-phi((a0[j])/sqrt(1+pow(c0[j],2)))                      

                c1[j]~dexp(1) 

                c0[j]~dexp(1)     

                } 

    a1[1]~dunif(0,1) 

    a1[2]~dnorm(0.39,204.08) 

    a1[3]~dnorm(0.39,204.08) 

    a0[1]~dunif(0,1) 

    a0[2]~dnorm(1.99,34.60) 

    a0[3]~dnorm(1.99,34.60) 

 } 
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