
COMPUTATIONAL METHODS FOR STUDYING PARENT-OF-ORIGIN EFFECTS VIA
RECIPROCAL MOUSE CROSSES

Daniel G. Oreper

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in par-
tial fulfillment of the requirements for the degree of Doctor of Philosophy in the Curriculum of
Bioinformatics and Computational Biology

Chapel Hill
2018

Approved by:

Daniel Pomp

Leonard McMillan

Michael Love

William Valdar

Fernando Pardo-Manuel de Villena



©2018
Daniel G. Oreper

ALL RIGHTS RESERVED

ii



ABSTRACT

Daniel G. Oreper: Computational methods for studying parent-of-origin effects via reciprocal mouse
crosses

(Under the direction of William Valdar)

Imprinted genes have been linked with diseases ranging from cancer, to metabolic syndromes,

to psychiatric illness. For psychiatric illness in particular, numerous lines of evidence, both from

human and mouse studies, suggest imprinted genes affect behavior along with brain development and

function. Nonetheless, the effect of imprinted genes on most complex traits is not well characterized.

Moreover, the architecture of environment-by-imprinting effects is even less well-understood.

The lack of characterization is likely due to the general difficulty of observing “parent-of-origin

effects” (POEs), which typically arise in mammals from maternal effects—or from imprinting. To

study POE/environment-by-POE, we can employ a relatively neglected but maximally powerful POE-

detection system: the reciprocal cross (RX). Towards this end, we develop and apply computational

methods for designing and analyzing RX experiments. Here, these techniques are applied in the

context of RXs of inbred lines of mice, with a focus on behavior—but these techniques could be

similarly employed in any model organism subject to POE, and on any complex trait.

The first set of methods focuses on the analysis of expression and behavioral data from RXs of a

single pair of classical inbred mouse strains, with offspring exposed in utero to various diets. In this

analysis, we detected dozens of POE/diet-by-POE on gene expression, a handful of similar effects on

behavior, and a possible connection between POE on expression and behavior. Motivated by these

results, we engaged in a similar but larger study, the CC-POE, in which we RXd multiple pairs of

inbred lines drawn from the Collaborative Cross (CC)—a panel of multiparental recombinant inbred

mouse strains. To aid in the CC-POE design, we developed a novel method for selecting an optimal

set of reciprocal crosses: the Reciprocal Cross Explorer. Finally, with the goal of analyzing CC-POE

iii



data, we develop a resource for variant imputation in the CC: the Inbred Strain Variant Database

(available online at https://isvdb.unc.edu ). Taken together, methods developed in this

dissertation represent progress towards a new way of studying POEs via RXs.
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PREFACE

Chapter 2 has been adapted with permission from a submission to G3. Chapter 3 is adapted from

a manuscript in preparation for submission. Chapter 4 has been adapted with permission from a

submission to G3.
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CHAPTER 1

Introduction

Imprinted genes have been estimated to play a role in as many as 100 diseases (Ubeda and

Wilkins, 2008), having been at least tentatively linked with maladies ranging from cancer, to

metabolic syndromes, to psychiatric illness (Kalish et al., 2014). Diseases more definitively known

to be caused in part by imprinted gene mutations and/or defective imprinting include Beckwith-

Wiedemann, Russell–Silver, Prader–Willi and Angelman Syndromes, as well as Albright hereditary

osteodystrophy, and transient neonatal diabetes (Robertson, 2005; Kalish et al., 2014). These are

all complex diseases, though in some cases they can be caused by a single gene mutation—such as

deletion of UBE3A, which causes Angelman Syndrome. But even for Angelman syndrome, 10% of

cases cannot be explained by any mutation. More broadly, there is still a gap in understanding of

imprinting-related diseases, and in general, the effect of imprinted genes on complex traits is not

well-characterized.

The lack of characterization is likely due to the difficulty of directly observing the “parent-

of-origin effects” (POEs) that imprinted genes exert on complex traits. For imprinted genes, each

inherited allele’s expression changes depending on its parent-of-origin, and traits affected by im-

printed alleles are in turn subject to parent-of-origin effects (Lawson et al., 2013). As a result,

identifying imprinting-driven POE on complex traits requires that reciprocal heterozygotes for a

given imprinted locus exist in the population under study; for example, assuming an “A” and “B”

allele exist at some imprinted locus, “AB” organisms (maternal A) need to be compared to “BA”

organisms.

The outbred populations typically used for studying POE—be they human or model organism—

can generate the requisite reciprocal heterozygotes. But these populations are not ideal, in part

because POE in these outbred populations can be confounded with genetic differences at every other

locus. An alternate, but rarely used population for studying POE, is one consisting of reciprocal F1

hybrids (RF1s), each generated by a reciprocal cross (RX); in a RX of inbred strains S1 and S2, any
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resulting female S1xS2 and S2xS1 RF1s are (almost) genetically identical, differing only in allelic

parent-of-origin. Consequently, by comparing the S1xS2 and S2xS1 subpopulations, POE can be

detected without confounding, and with maximal power.

Reciprocal crosses of model organisms are the focus of this dissertation: I describe the develop-

ment of computational methods for employing reciprocal crosses to study POEs on complex traits.

These techniques are also applied in this work, specifically to crosses of inbred lines of mice, and with

an additional focus on POEs on behavior. But these same techniques could be employed in any model

organism subject to parent-of-origin effects, and on any complex trait. The first set of techniques,

described in chapter 2, focuses on the analysis and integration of multiple modes of data, in the

context of a reciprocal cross of a single pair of strains. The second set of techniques, described in

chapter 3, focuses on experimental design—specifically the optimal selection of multiple genetically

distinct reciprocal crosses from a panel of candidate crosses. Third, in chapter 4, I describe an

online resource for variant imputation, which was designed to help map POE in an experiment using

multiple reciprocal crosses. Before delving more deeply into these three areas, the remainder of the

introduction more fully elucidates the biology of imprinting and POE, the mouse resources we use,

and the motivation behind the development of each of the three areas.

1.1 Imprinted genes

Imprinted genes are subject to an epigenetic process whereby either either the maternally or

paternally inherited allele (depending on the gene), is (at least partially) silenced (Crowley et al.,

2015; Bartolomei and Ferguson-Smith, 2011) relative to the other allele.

This asymmetry is believed to largely (though not necessarily exclusively) result from differential

methylation of gametic DNA, with certain regions of DNA being methylated in egg cells, and other

regions methylated in sperm cells. After fertilization, methylation at these gametic differentially

methylated regions (DMRs) is then maintained in somatic cells during cell division. Gametic DMRs

are also associated with nearby “somatic DMR”, regions affected by parental-chromosome-specific

methylation that is only acquired after fertilization.

Both somatic and gametic DMRs are associated with the silencing of alleles in the vicinity of

the methylated region in one parental chromosome, but not the other. The silenced alleles are not
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necessarily on the methylated chromosome; in fact, for imprinted gene clusters controlled by gametic

DMR—which account for the majority of known imprinted genes—methylation seems to silence a

long noncoding RNA (lncRNA) while at the same time activates other genes in the vicinity of the

methylation mark. The exact mechanisms underlying this effect are uncertain, but two of the major

hypotheses are that either: i) methylation interferes with the formation of an insulator, allowing an

enhancer to activate expression of nearby alleles on the methylated chromosome (and preventing

that enhancer from instead activating the lncRNA); or ii) methylation silences a lncRNA, preventing

the lncRNA from in turn silencing nearby alleles on the methylated chromosome. (Barlow and

Bartolomei, 2014).

Among the obstacles to studying imprinted gene effects is the fact that imprinting can be

developmental stage specific, and tissue specific—even to the extent that different regions of the

brain exhibit different patterns of imprinting (Koerner et al., 2009; Prickett and Oakey, 2012).

Consequently, an effect measured at the wrong time or in the wrong tissue may not be observed. On

the other hand, imprinted gene effects present certain opportunities:

1. There are only ∼150 mouse genes typically identified as imprinted (Blake et al., 2010)

(although in much of this document we end up using a slightly larger set that includes imprinted

genes identified in Crowley et al. (2015)), so effects following a parent-of-origin dependent

pattern may be more readily mapped back to these genes.

2. Given that maintenance of imprinting depends on availability of methyl donors (Crider et al.,

2012), imprinted genes may present an ideal path for understanding the interaction of genetics

and environmental exposures—in particular dietary methyl donors—on development.

1.2 Parent-of-origin effects and an introduction to the reciprocal cross

Hager et al. (2008) used “parent-of-origin-dependent effect” to describe any genetic effect that

causes phenotypic differences in reciprocal heterozygotes. Similarly, Lawson et al. (2013) described

parent-of-origin effects as the phenomenon in which an allele’s effect changes depending on whether

it is maternally or paternally inherited. Accordingly, imprinted genes can be described as exerting

POEs; for imprinted genes, each allele’s expression depends on its parent-of-origin, and traits affected

by imprinted alleles are then in turn subject to parent-of-origin-effects.
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Parent-of-origin-effect-causing mechanisms such as imprinting exist at a locus whether or not

they are observed. But if a parent-of-origin effect is to be observed, it requires that genetic variation

exist at the causal locus. This is perhaps most clearly demonstrated in the context of the reciprocal

cross (RX). Suppose inbred mouse strains B6 and NOD were reciprocally crossed (RXd). Such a RX

generates two reciprocal F1 hybrid (RF1) populations, B6xNOD and NODxB6.

Referring to Figure 1.1, suppose that some locus is silenced due to maternal imprinting. Only

the gray version of the allele is expressed in B6xNOD, whereas only the blue version is expressed

in NODxB6. Consequently, if the two alleles differ in their effect on some phenotype, a POE on

the phenotype will be observable in the form of a phenotypic difference between the B6xNOD and

NODxB6 populations. By contrast, suppose B6 and NOD bear the same gray allele (or two different

alleles identical in their effect on the phenotype) at the locus controlling phenotype: in this case,

since in both RF1 subpopulations the gray version of the allele is expressed, imprinting has no

apparent effect, and so a parent-of-origin effect can not be observed. Thus, when we claim that a

parent-or-origin effect has been observed, we are actually claiming that a parent-of-origin effect

interacting with genetic background has been observed. As a shorthand, we will primarily refer to

background-dependent parent-of-origin effects in the rest of this document simply as POEs.

Such imprinting-by-genetic interaction POEs have been described in multiple contexts (Georges

et al., 2003; Vrana et al., 2000; Wolf et al., 2014; Schultz et al., 2015), although they have not always

been named as such, and typically have been detected using populations other than RF1s.

1.2.1 Maternal factors and POEs

In mammals, maternal factors affecting offspring can include include maternal behavior (Peripato

and Cheverud, 2002), oocyte composition (Tong et al., 2000), and in utero environment (Cowley

et al., 1989; Kirkpatrick and Lande, 1989). To the extent that such factors depend on maternal

genetics at some locus, RF1s that are reciprocal heterozygotes at that same locus will differ. This is

the primary weakness of the RX: it cannot distinguish between POEs driven by imprinted genes and

those driven by maternal factors.
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B6NODB6 NOD

XX

B6NODB6 NOD

XX(A)

(B)

Figure 1.1: A reciprocal cross investigating POE on size. A) A reciprocal cross in which
the locus causal to POE is reciprocally heterozygous. Imprinting-based silencing of the
maternally inherited chromosome results in the blue allele being expressed in B6xNOD,
whereas the gray allele is expressed in NODxB6. Consequently, the two RF1s differ in the
size of animal, and a genetic-background-by-POE can be detected. B) A reciprocal cross in
which the locus causal to POE is homozygous in the RF1s. Despite the fact that imprinting
exists, silencing has no effect because in both populations the gray allele is expressed.
Consequently, the two RF1s are identical in average size, and no genetic-background-by-
POE can be detected.
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1.2.2 On the power of the RX to study POE

Returning to Figure 1.1A, we note that the comparison is limited to only include RF1s that were

female. In this case, both RF1 subpopulations would be almost (save for mitochondria) genetically

identical, differing only in allelic parent-of-origin. Accordingly, any phenotypic differences can be

attributed with high likelihood to POEs. Not only does the RX generate reciprocal heterozygotes at

many loci—which are necessary for detection of POEs—but the RX does so in a manner such that

POEs are not confounded with other genetic effects. It is this property that makes the RX maximally

powerful for studying POE.

1.3 Other approaches and populations for studying POEs

Most of the imprinting-driven POEs identified (or tentatively identified) so far have been found by

observing large effects caused by uniparental disomy, imprinted gene knockouts, and overexpression

assays (Wolf et al., 2008; Cleaton et al., 2014; Dent and Isles, 2014). Such studies, while effective,

are laborious, expensive, and may not be able to identify more subtle effects because of the disruptive

effect of a large genetic perturbation (Wolf et al., 2008).

An alternate and more cost effective approach is employ association or QTL mapping, whose

results can then be used prioritize target validation. The typical populations used in these association

studies are outbred—e.g., F2, backcross populations, and heterogeneous stock populations (Lawson

et al., 2013). Such populations, just like RF1s, can generate the requisite reciprocal heterozygotes per

locus needed to study POE. The advantages of such outbred populations over RF1s are that: 1) POE

can be detected simultaneously with non-POE genetic effects; and 2) POE arising from imprinting vs

maternal effects can be disambiguated—a significant difference between reciprocal heterozygote (at

some locus) offspring from heterozygote (at that same locus) mothers can be ascribed to imprinting

rather than to a maternal effect (Hager et al., 2008).

However, outbred populations have disadvantages as well: i) Due to the fact that every animal is

genetically distinct in an outbred population (unlike in RF1 populations), alternate parent-of-origin

states can never be observed in the exact same genetic background, and this confounding limits the

power of outbred populations to estimate POE; ii) in many of the outbred populations, especially F2s,

determining each allele’s parent-of-origin at heterozygous loci is challenging (i.e., AB and BA cannot
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be distinguished) and needs to be imputed using additional information (Wolf et al., 2008)—whereas

in RF1s, if the parental genomes are known, the allelic parent-of-origin in the offspring is known

with total certainty; and iii) the irreplicability of outbred animals makes it impossible to perfectly

recreate genetic state for a validation study, or for a studying investigating some treatment effect,

whereas RF1s are (almost) perfectly reproducible.

1.4 POE on behavior

Much of this dissertation describes analysis of POE on behavior in mice. Here, we provide

motivation, describing evidence for the utility and tractability of studying behavioral POE, drawing

from both human and animal studies.

1.4.1 POE on psychiatric illness

The lifetime prevalence of mental illness among Americans has been estimated to be ∼47%

(Insel, 2008), and effective treatment options are limited (Sachs et al., 2007; Naber and Lambert,

2009; Sultzer et al., 2008). The necessary insights for devising new treatments may require a better

understanding of POE: multiple psychiatric diseases exhibit patterns of transmission consistent with

POEs (Davies et al., 2001; Isles and Wilkinson, 2000). In particular, the canonical demonstration of

imprinted gene POEs on psychiatric disease is given by Prader–Willi and Angelman syndromes, both

of which can be caused by improper imprinting of the cluster of imprinted genes in the 15q11-13

region (Dykens et al., 2011). Copy number variants in 15q11-13 have also been associated with

ASD (Dykens et al., 2011) and schizophrenia (McNamara and Isles, 2013). Outside of 15q11-13, a

mutation in LRRTM1 has been associated paternally with schizophrenia (Francks et al., 2007; Linhoff

et al., 2009).

Despite these assorted POE findings in humans—as well as other findings more generally

suggesting the heritability of psychiatric illness (Lee and Avramopoulos, 2014)—the precise genetic

and epigenetic mechanisms underlying inherited susceptibility are generally not well understood.

Studying behaviors that model psychiatric illness in an experimentally tractable organism such as

mouse, may provide a potential avenue to gaining this understanding.
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1.4.2 Mouse models of POE on behavior

Mouse has the virtue of rapid gestation and development and is versatile as a model for behavioral

genetics and environmental perturbation. Moreover, imprinting is functionally consistent between

mice and humans (Bartolomei and Ferguson-Smith, 2011).

So far, studies using mouse models have found that imprinting affects brain development,

function, and behavior. Many imprinted genes are active (some exclusively) in the brain (Prickett

and Oakey, 2012), especially during embryogenesis (Wilkinson et al., 2007). Among the functions

characterized so far: Igf2 and Igf2r affect brain size and organization (Wilkinson et al., 2007), and

GSα affects control of nutritional resources (Bartolomei and Ferguson-Smith, 2011). Affecting

behavior: Peg1 and Peg3 affect maternal nesting, pup-gathering and pup-grooming; Gnasxl deletions

prevent mice from suckling properly; Nesp affects exploratory behavior; and Grb10 affects social

dominance (Dent and Isles, 2014).

Adding to the appeal of mouse, a handful of mouse studies have identified POE on behavior

specifically using the RX. Affected behaviors include various measures of emotionality, as well

as urinary odor preferences (Putterman, 1998; Isles et al., 2001; Calatayud and Belzung, 2001;

Calatayud et al., 2004).

1.4.3 Diet-by-POE on behavior

Behavioral phenotypes may also be particularly well-suited for studying the interaction of POE

with developmental diet. Rodent and human studies have demonstrated that certain perinatal diets

affect both imprinting and behavior: for example, perinatal protein deficiency (PD) and vitamin

D deficiency (VDD) both induce methylation changes (Vucetic et al., 2010; Lillycrop et al., 2007;

Kesby et al., 2010, 2012) and alter behaviors that model schizophrenia (Burne et al., 2004a,b, 2006;

Palmer et al., 2008; Franzek et al., 2008; Kesby et al., 2006, 2010; Burne et al., 2006; Harms et al.,

2008, 2012; Turner et al., 2013; Vucetic et al., 2010). Similarly, other perinatal diets that imply a

deficiency in methyl donors have been linked to reduced methylation in the brain (Davison et al.,

2009; Niculescu et al., 2006; Konycheva et al., 2011), increased anxiety-like behaviors (Ferguson

et al., 2005; Konycheva et al., 2011), and changes in learning and memory (Konycheva et al.,

2011; Berrocal-Zaragoza et al., 2014). In general, epigenetic effects have repeatedly been shown
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to be sensitive to maternal diet during the prenatal period: classically in agouti mouse experiments

(Waterland and Jirtle, 2003); and observationally in studies of human physiology, mental health, and

gene expression during the Dutch Hunger Winter (Heijmans et al., 2008; Tobi et al., 2009).

1.5 The Collaborative Cross as a platform for studying POE on behavior

One RX can detect POE, but in principle, multiple RX could map POE. Chapter 3 and chapter 4

are largely devoted to developing tools towards this end. In particular, these chapters focus on

employing RX of inbred mouse lines drawn from the Collaborative Cross (CC) reference population.

Before describing the overarching effort to map POE, we describe the properties of the CC first.

The Collaborative Cross (CC) is a large panel of recombinant inbred mouse lines derived from

a genetically diverse set of eight inbred founder strains: A/J (AJ), C57BL/6J (B6), 129S1Sv/ImJ

(129), NOD/ShiLtJ (NOD), NZO/HlLtJ (NZO), CAST/EiJ (CAST), PWK/PhJ (PWK), and WSB/EiJ

(WSB). These eight founder strains were first outcrossed for three generations to produce mice with

contributions from all eight founder strains. These outcrosses were initiated, with different founder

orderings, in over 1000 independent breeding funnels (Shorter et al., 2017). Mice within each funnel

were subsequently inbred for multiple generations until two or more animals were identified by

MegaMUGA genotyping collectively as having over 90% of the genome fixed (i.e., homozygous and

consistent for a founder haplotype).

These animals, hereafter termed the most recent common ancestors (MRCAs), were then chosen

to become the obligate ancestors of all subsequent generations and bred to produce a distinct CC strain.

The set of MRCAs from all strains composes the CC’s obligate ancestors, that is, the set of individuals

that together circumscribes the initial genetic material that can be passed on to subsequent CC mice.As

a result of this breeding scheme, the inbred CC strain genomes are random and independent mosaics of

the eight founder haplotypes Collaborative Cross Consortium (2012); Srivastava et al. (2017) (Figure

1.2; more details are available at http://csbio.unc.edu/CCstatus/index.py?run).
This combination of independent genomes and high genetic diversity, along with the repro-

ducibility of inbred strains, has made the CC a unique resource in mammalian genetics, and early

studies on the CC have begun to exploit these features (Aylor et al., 2011; Ferris et al., 2013; Phillippi

et al., 2014; Rasmussen et al., 2014; Mosedale et al., 2017; Green et al., 2017; Gralinski et al., 2017).
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Figure 1.2: Breeding process for two CC strains. Both funnels begin by outcrossing
the same eight founders, but the initial outcrossing order differs, resulting in completely
independent populations per funnel. Animals are outcrossed for three generations, then
inbred until genotyping reveals at least two animals with over 90% consistent homozygosity
by haploytpe. These homozygous animals (a.k.a., the MRCAs) are chosen to become the
obligate ancestors for the CC strains; all subsequent generations of a CC strain descend
from a subset of the MRCAs. In (a), arrows show CC1 MRCA regions of inconsistent
homozygosity (L1) and residual heterozygosity (L2, L3). After further inbreeding, only L2
continues to segregate. In (b), the CC2 MRCA set includes three animals rather than two.
After further inbreeding, only L1 continues to segregate, but a de-novo mutation has become
fixed at L2.
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1.6 Multiple RXs: the CC-POE study

RXs of even a single pair of strains can powerfully detect POE. But RXs of multiple pairs

of strains could be used to perform a sort of mapping of POE. In more detail, suppose RXs of

multiple pairs of strains were performed. Each of the resulting pairs of RF1s would have their own

heterozygosity and homozygosity mosaic. Given that a POE cannot be observed without reciprocal

heterozygosity at some locus, if the same POE is observed in multiple sets of genetically distinct

RF1s, it suggests that the POE arose from the loci that are reciprocally heterozygous in every

genetically distinct RF1; each additional genetically distinct RX that detects POE progressively

narrows the space of candidate POE. If we further assume that POEs we observe are caused by

imprinting rather than maternal effects (admittedly a strong assumption) we can further narrow the

space of candidate loci.

This type of approach, along with the goal of mapping behavioral POE and diet-by-POE,

motivated the CC-POE study, a focus of part of this dissertation. The overarching CC-POE experiment

is illustrated in Fig 1.3, and described below at a high level.

We selected RXs from the panel of CC lines, using Rexplorer (chapter 3), an experimental design

tool. Nine genetically distinct RXs were generated, with resulting RF1s exposed in utero to one of

four of diets. Males were unused, but of the female RF1s, one subset was behaviorally phenotyped

and the other subset was concurrently expression phenotyped (RNA-seq of whole brain tissue). To

our knowledge, the only previous effort to use a panel of RXs (technically, reciprocal backcrosses) to

perform POE mapping was presented in Gonzalo et al. (2007), a study employing over 200 inbred

strains of corn.
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Figure 1.3: A Collaborative Cross (CC) experiment to map POE using RXs. The CC is an existing
population; it is not being developed in this project: a) The 8 inbred founder lines of the CC (including
NOD and B6) b) were outbred in a funnel breeding scheme, mixing their genomes c) then inbred
for multiple generations d) resulting in the CC, a panel of recombinant inbred lines. e) A RX is
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POE. i) The top genes will be further biologically validated.
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1.7 Chapter progression

The introduction (this chapter) provides background and motivation useful for understanding the

three primary efforts presented in this dissertation.

In the first effort, we develop and apply techniques for analyzing data from a RX of a single pair

of classical inbred lines, to detect POEs and diet-by-POEs on behavior and gene expression. Both

types of data are integrated into a unified Bayesian mediation model. Multiple testing correction

methods, including a bespoke permutation testing procedure are employed. These techniques lay the

groundwork for the future analysis of the much larger CC-POE experiment involving multiple RXs

of CC lines.

The second effort occurs in the context of the CC-POE, an experiment which is motivated (in

part) by the desire to map POE detected in the first effort; towards this end, the CC-POE employs

RXs of multiple pairs of CC lines. In this context, we describe the development and application of

an experimental design method, the “Reciprocal Cross Explorer” (Rexplorer), for choosing the best

RXs from a panel of inbred line for the purposes of POE-mapping. An operations research approach

is taken to ensuring that POE is detected while simultaneously ensuring mapping resolution.

In the third effort, motivated by a desire to improve the fidelity of Rexplorer, as well by the need

to analyze the CC-POE data, we develop a variant imputation resource for the CC population and for

RXs of CC lines. This resource, the “Inbred strain variant database” (ISVdb) is publicly available

online, and can be useful to any researcher performing design or analysis of CC experiments—and

not just for POE studies.

This dissertation concludes with key findings and potential future efforts.
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CHAPTER 2

Reciprocal F1 hybrids of two inbred mouse strains reveal parent-of-origin and peri-
natal diet effects on behavior and expression. 1

2.1 Introduction

It is well established that susceptibility to psychiatric disorders arises from a combination of

genetics and environmental exposures (Lee and Avramopoulos, 2014). Less well-studied is the

phenomenon that this susceptibility seems to vary depending on whether certain harmful alleles were

carried by the mother— or by the father (Davies et al., 2001; Isles and Wilkinson, 2000). That is, it

is unclear to what extent the heritable component of disease risk is driven by parent-of-origin effects

(POEs). Especially poorly understood is the extent to which POEs depend upon environmental

context during development, and therefore how alternate environmental exposures could modulate a

POEs impact on disease risk. A better understanding of POEs and their environmental modifiers

could lead to improved interpretation of existing studies, to more effective experimental design, and

even to novel public health interventions. Nonetheless, rigorous estimation of POEs in humans is

difficult, especially on complex traits; even in animals it requires specialized experimental design

attuned to POE biology.

Hager et al. (2008) used “parent-of-origin-dependent effect” to describe any genetic effect

that causes phenotypic differences in reciprocal heterozygotes. Similarly, here we use “POE” as a

shorthand for any effect driven by the interaction of genetic background with either maternal factors

(e.g., maternal behavior, etc.), or imprinting, an epigenetic process in which either the maternally

or paternally inherited allele of certain genes is at least partially silenced (Crowley et al., 2015;

Bartolomei and Ferguson-Smith, 2011).

1This chapter has been adapted from a manuscript submitted to G3. The citation will be as follows: Oreper D.,
Schoenrock S., McMullan R. C., Ervin R., Farrington J., et al., 2018 Reciprocal F1 hybrids of two inbred mouse strains
reveal parent-of-origin and perinatal diet effects on behavior and expression. G3: Genes, Genomes, Genetics.
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Imprinting-driven POEs may be particularly relevant to psychiatric disease given the numerous

lines of evidence suggesting imprinted genes affect behavior as well as brain development and

function, drawn from both human and animal studies Imprinted genes may present an ideal path

for understanding the interaction of genetics and environmental exposures — especially diet — on

development: not only can imprinting be developmental-stage (and tissue)-specific (Koerner et al.,

2009; Prickett and Oakey, 2012), but it is also believed to largely result from differential allelic

methylation, and thus to require dietary methyl donors (Crider et al., 2012). For previous human

and animal studies that have demonstrated or suggested the importance of POE or diet-by-POE on

psychiatric illness and behavior, see section 1.4.

2.1.1 Reciprocal F1 hybrids (RF1s) for investigating POE and its environmental modifiers

The points above motivate an experiment to directly determine the extent of POEs on psychiatric

disease across multiple perinatal dietary exposures in a simple, controlled, and replicable system —

something only possible in an animal model. An ideal population is provided by (female) reciprocal

F1 hybrids (RF1s) of inbred strains: in female RF1s, genetic background is constant (save for

mitochondria), and only the direction of inheritance varies, allowing POEs to be measured directly.

RF1s have been used to identify POEs on behavior in a handful of studies so far (Putterman, 1998;

Isles et al., 2001; Calatayud and Belzung, 2001; Calatayud et al., 2004). Here we exploit the

replicability of RF1s further to study the unconfounded effect of an environmental modifier on POE,

varying diet while genetic background stays constant. To our knowledge, this approach has only

been followed in Schoenrock et al. (2017), our recent related study in which we reciprocally crossed

Collaborative Cross strains.

Here we examine, under four different in utero dietary exposures, behavior and expression in

RF1s of the inbred mouse strains C57BL/6J (B6) and NOD/ShiLtJ (NOD). B6 and NOD inbred

strains were selected because: 1) B6 is the reference genome and is the best characterized strain with

respect to behavior; 2) B6 and NOD are among the founder strains for the Collaborative Cross, a

population that is an area of focus for our labs; 3) B6 and NOD were both readily available, and

B6-NOD crosses generate large litters, facilitating replication; 4) NOD is genetically similar enough

to B6, that standard B6-expression microarrays were appropriate for NOD alleles as well (Oreper
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et al., 2017c), but different enough that a substantial number of POEs on gene expression could still

be revealed by B6-NOD RF1s.

Our replication of the RF1s under four different in utero dietary exposures serves several

purposes, namely to: 1) increase the likelihood of observing POE, as POE may be diet-specific; 2)

estimate the extent to which POE generalizes across alternate perinatal dietary exposures; and 3)

estimate the perinatal diet effect itself.

Our study, the first to examine the connection between POE on expression and POE controlled

behavior, demonstrates: 1) the presence of POEs on behavior and gene expression, many of which

are robust to differences in perinatal diet; 2) a possible explanatory pathway connecting imprinting,

to gene expression, to behavior; and 3) the usefulness of our approach as a template for further

animal model studies of POE and developmental exposures on complex traits.

2.2 Experimental Materials and Methods

2.2.1 Mice

C57BL/6J (B6) and NOD/ShiLtJ (NOD) mice originated from a colony maintained by Gary

Churchill at Jackson Laboratory, and were transferred in 2008 to the FPMdV lab at UNC (this

originating colony also produced the G1 breeders of the CC; see Srivastava et al. 2017). Six-week

old B6 females (3-8 dams/diet) and NOD females (3-5 dams/diet) were transferred from the FPMdV

lab to the Tarantino lab at UNC and acclimated for one week. At 7 weeks of age, dams were placed

on one of 5 different diets. At 12 weeks, dams were mated with males of the opposite strain to

produce either B6xNOD or NODxB6 F1 hybrids (dam strain listed first; Figure 2.1B). Pregnant

dams remained on their experimental diet until litters were weaned, ensuring that offspring were

exposed to the diet throughout the entire perinatal period. At postnatal day (PND) 21, F1 hybrids

were weaned onto a standard laboratory chow (Pico rodent chow 20; Purina, St. Louis, MO, USA)

(Figure 2.1A). F1 hybrids were bred in one vivarium, but then transferred to a separate behavioral

testing vivarium, and were then acclimated to this testing vivarium for at least one week before

testing began. Mice were housed in a specific pathogen free facility on a 12-hour light/dark cycle

with lights on at 7 A.M. All procedures and animal care were approved by the UNC Institutional
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Animal Care and Use Committee and followed the guidelines set forth by the National Institutes of

Health (NIH) Guide for the Care and Use of Laboratory Animals.
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Figure 2.1: Experimental design to assess POE, perinatal diet, and diet-by-POE on behavior
and gene expression in reciprocal F1 hybrids (RF1s). Female NOD/ShiLtJ (NOD) and
C57BL/6J (B6) mice were placed on one of 4 experimental diets (protein deficient, vitamin
D deficient, methyl enriched, standard) at 7 weeks of age (A). After 5 weeks, NOD females
were mated to B6 males and B6 females to NOD males forming NODxB6 and B6xNOD RF1
hybrids, respectively (B). Dams remained on their experimental diet throughout gestation
and the postnatal period. At PND 21, female F1 hybrids were weaned and placed onto a
regular laboratory diet (A). Upon reaching adulthood at PND 60, F1 hybrids were tested in
one of two behavioral pipelines. After behavioral testing, mice were euthanized, and their
brain tissue collected for gene expression analysis via microarray and qPCR (C).

2.2.2 Experimental Diets

The following diets, purchased from Dyets Inc. (Bethlehem, PA), were administered: vitamin D

deficient (VDD; #119266), protein deficient (PD; 7.5% casein; #102787), methyl donor deficient

(MDD; #518892), methyl donor enriched (ME; #518893) and control (Std; #AIN-93G). The PD

and VDD diets were nutritionally matched to the Std diet while the MDD was matched to the ME

diet; Table A.1 specifies each diet’s nutrient composition. Food and water were available ad libitum

throughout the experiment.

2.2.3 Behavior Assays

To ensure a standardized genetic background that included the sex chromosomes, the only

tested F1 hybrids were female. Mice were 61.7 days old 2.6 standard deviations at the onset of

testing. All behavioral testing was performed during the light part of the light/dark cycle between
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8:00 A.M. and 12:00 P.M. Mice were placed into one of two behavioral pipelines (Figure 2.1C) to

assess anxiety- and depressive-like behavior, stress response, sensorimotor gating or response to

a psychostimulant: Pipeline 1— light/dark assay, startle/prepulse inhibition (PPI), stress-induced

hyperthermia (SIH), forced swim test (FST) and cocaine response (N = 91); Pipeline 2— open field

(OF), social interaction test, tail suspension and restraint stress (N = 87). In total, 34 behavioral

measures were collected, with 22 in pipeline 1 and 12 in pipeline 2 (Table 2.1). For each pipeline,

mice were tested in 3 batches, over 3 months. Offspring from both RF1 directions, as well as from at

least 2 diet exposures, were included in each batch, to avoid confounding. For each diet and RF1

direction, we tested litters from at least 2 dams (N = 4 1.4; see Table A.2 for dam and offspring

counts). One mouse in the NODxB6 ME group was euthanized due to injury on the day of social

interaction testing; there is no data for this mouse for social interaction or for any subsequent test.

There is no restraint stress data for another 4 mice (1 NODxB6 ME, 2 B6xNOD Std, 1 B6xNOD

VDD), due to either death in the restrainer or insufficient serum collected for radioimmuno assay

(RIA) analysis of corticosterone (CORT) levels.

2.2.3.1 Open Field (OF)

Mice were placed in the OF arena for 10 minutes. The OF apparatus (ENV-515-16, Med

Associates, St. Albans, VT, USA) was a 43.2x43.2x33 cm arena, consisting of a white Plexiglas

floor and clear Plexiglas walls with infrared detection beams at 2.54 cm. intervals on the x, y, and z

axes that automatically tracked mouse position and activity throughout each experimental session.

The apparatus was in a sound-attenuating chamber (73.5x59x59 cm) fitted with two overhead light

fixtures containing 28-V lamps. Mice were placed in the OF arena for 10 minutes. The OF apparatus

(ENV-515-16, Med Associates, St. Albans, VT, USA) was a 43.2x43.2x33 cm arena, consisting of a

white Plexiglas floor and clear Plexiglas walls with infrared detection beams at 2.54 cm. intervals

on the x, y, and z axes that automatically tracked mouse position and activity throughout each

experimental session. The apparatus was in a sound-attenuating chamber (73.5x59x59 cm) fitted

with two overhead light fixtures containing 28-V lamps. Mice were scored for total distance traveled

(cm), average velocity (cm/s), number of vertical movements (rearing), and percent time spent in the

center of the arena (a 22.86 cm2 central part of the arena). These measurements were recorded in 5

bins of 2-minute width, and were scored in post-session analyses using Activity Monitor 5.1 software
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(Med Associates). The testing apparatus was cleaned with a 0.25 % bleach solution between test

subjects.

2.2.3.2 Social Interaction

Social approach was measured in a 3-chamber social interaction apparatus during a 20-minute

test (described fully in Moy et al. (2007)). Briefly, the first 10 minutes was a habituation period

in which the test mouse was given free access to all 3 chambers. The total number of transitions

between all chambers during this 10 min period was measured. During the second 10 minutes, the

test mouse was given the choice between a chamber containing a circular mesh enclosure that held a

stranger mouse (B6), and a chamber containing an empty mesh enclosure. The amount of time the

test mouse spent in the chamber with the stranger mouse was recorded and is reported as “percent

stranger time”, a measure of social preference.

2.2.3.3 Tail Suspension

Mice were suspended by a piece of laboratory tape wrapped around the tail and hung from a hook

at the top of a 24.13 cm x 17.78 cm x 17.78 cm white acrylic enclosure. Mice were videotaped for the

entire 4-minute session, and videotapes were analyzed for immobility during the last 2 minutes using

the Actimetrics Freeze Frame analysis program (Actimetrics, Wilmette, IL). Percent immobility

during the last two minutes is reported as a measure of depressive-like behavior (Miller et al., 2010).

2.2.3.4 Restraint Stress

Restraint was used to elicit a stress response that was then quantified by measurement of CORT

levels in the serum. A retroorbital blood sample was taken immediately prior to placing the mice

into a Broome-Style restraint tube (Plas Labs, Inc., Lansing, MI, USA) for 10 minutes. Immediately

upon removal from the restrainer, a second retroorbital eye bleed was performed. Whole blood was

centrifuged to isolate serum, and then the CORT levels were measured by competitive RIA per the

manufacturers protocol (MP Biomedicals, Santa Ana, CA, USA).
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2.2.3.5 Light/Dark

The open field arena described above was converted to a light dark apparatus by placement of

an opaque polycarbonate black box that occupied one third of the arena space, thus allowing the

mouse to choose between the light or dark part of the apparatus. Mice were placed in the lighted area

immediately adjacent to and facing the entry to the dark enclosure and remained in the apparatus for

10 minutes. The amount of time (sec), distance moved (cm) and number of transitions between the

dark and light zones was scored in 5-minute bins in post-session analyses using Activity Monitor

5.1 software (Med Associates). The testing apparatus was cleaned with a 0.25 % bleach solution

between test subjects.

2.2.3.6 Startle and prepulse inhibition (PPI)

Acoustic startle and PPI of the startle response were both measured using the San Diego

Instruments SR-Lab system (San Diego, CA), and following the protocol in Moy et al. (2012). Mice

were placed in a plexiglas cylinder located in a sound-attenuating chamber that included a ceiling

light, fan, and a loudspeaker that produced the acoustic stimuli (bursts of white noise). Background

sound levels (70 dB) and calibration of the acoustic stimuli were confirmed with a digital sound level

meter. Each test session consisted of 42 trials, presented following a 5-min habituation period. There

were 7 types of trials: no-stimulus trials, trials with a 120 dB acoustic startle stimulus (a.k.a., ASR),

and 5 trials in which a 20 ms prepulse stimulus (74, 78, 82, 86, or 90 dB) was presented 100 ms

before the onset of the 120 dB startle stimulus. The different trial types were presented in 6 blocks of

7, in randomized order within each block, with an average intertrial interval of 15 sec (range: 10 to

20 s). Measures were taken of the startle response amplitude (RA) for each trial, defined as the peak

response recorded from the onset of startle stimulus to the end of the 65-msec sampling. The PPI for

each prepulse sound level was calculated as:

PPI = 100−
[

RA with prepulse & startle stimulus
RA with only startle stimulus

]
× 100
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2.2.3.7 Stress-induced hyperthermia (SIH)

Each tested mouse was individually removed from its home cage, and then its body temperature

(T1) was measured. Specifically, a lubricated digital thermometer probe was inserted 1-1.5 cm into

the rectum for approximately 10 seconds. The mouse was then returned to its home cage, and 10

minutes later the temperature measurement was repeated (T2). The difference in body temperature,

∆T = T2− T1, was used as a measure of anxiety-like behavior. Basal temperature was measured

for all mice within a single cage in under a minute, to avoid increases in body temperature due to

anticipatory stress.

2.2.3.8 Forced swim test (FST)

Mice were placed in a glass-polycarbonate cylinder (46cm tall X 21cm in diameter) filled with

water (25-28 C) to a depth of 15 cm for 6 minutes. The duration of immobility during the last 4

minutes of the test period was scored using Ethovision 7.0 automated tracking software (Noldus,

Leesburg, VA). Immobility was defined as no movements other than those needed to stay afloat. Mice

were monitored continuously, and removed if they were unable to keep their nose or heads above

water for more than 30 seconds. Percent immobility was reported as a measure of depressive-like

behavior.

2.2.3.9 Cocaine-induced locomotor activation

Cocaine-induced locomotor activity was measured over a 3-day test protocol in the OF arena

described above. On days 1 and 2, mice were given an intraperitoneal injection of saline before being

placed into the OF arena for 30 minutes, and then returned to their home cage. The day 3 protocol

was nearly identical, but instead of saline, mice were injected with 20 mg/kg cocaine (Cocaine

HCl; Sigma-Aldrich, St. Louis, MO). The total distance traveled was calculated for each day, and

cocaine-induced locomotor activation was calculated by subtracting the distance on day 2 from day

3.
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2.2.3.10 Body Weight

Adult body weight was recorded for mice in pipeline 1 prior to startle/PPI and cocaine adminis-

tration.

2.2.4 Gene Expression

To identify genes subject to POE and/or perinatal-diet effect, whole-brain expression was

measured by microarray, and key expression results were later validated with qPCR.

2.2.4.1 Tissue extraction

Three days after completion of behavioral testing, mice were euthanized, cerebellar tissue was

removed, and the brain was split midsagitally into left and right hemispheres. Brain tissue was

flash frozen in liquid nitrogen. Right brain hemispheres were pulverized using a BioPulverizer unit

(BioSpec Products, Bartlesville, OK). Pulverization batches were designed to prevent contamination

between mice from different crosses or diets.

2.2.4.2 RNA extraction

Total RNA was extracted from 25 mg of powdered brain hemisphere tissue using an automated

bead-based capture technology (Maxwell 16 Tissue LEV Total RNA Purification Kit, AS1220;

Promega, Madison, WI). Purified mRNA was evaluated for quality and quantity by Nanodrop

Spectrophotometer (Thermo Scientific).

2.2.4.3 Microarray expression measurement

Of the 178 behaviorally-phenotyped, female B6xNOD and NODxB6 F1s, 96 females were

selected for microarray measurement of gene expression. The choice of 96 mice was balanced

to include both directions of reciprocal cross offspring, all 4 diets, as well as both behavioral test

pipelines, while simultaneously maximizing the number of represented litters. Gene expression

was measured using the Affymetrix Mouse Gene 1.1 ST Array. All samples were processed by the

Functional Genomics Core at UNC.
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2.2.4.4 qPCR expression measurement

Commercially available Taqman qPCR assays for Carmil1 (Life Technologies,

Mm01158156 m1) and Meg3 (Life Technologies, Mm00522599 m1) were used to estimate

gene expression levels. For each sample, mRNA was retro-transcribed to cDNA using 200ng of

starting RNA (SuperScript III First-Strand Synthesis System, 18080051; ThermoFisher Scientific,

Waltham, MA) following the manufacturers protocol. The amplification curve was calibrated

using an Rfng (Life Technologies, Mm00485703 m1) reference assay. All assays were performed

following the manufacturers protocol on an ABI StepOne Plus Real-Time PCR System (Life

Technologies, Carlsbad, CA), and in duplicate; each sample was assayed on 2 of 3 available plates.

Samples were plated such that breeding batch, which explained much of the microarray expression

variance, was partially confounded with qPCR plate. Cycle thresholds were determined using ABI

CopyCaller v2.0 software on default settings. All available brain samples were assayed, regardless of

hemisphere.

2.3 Computation and statistical models

2.3.1 Statistical Analysis of Behavior

Diet effects, POE, and diet-by-POE were evaluated using a mosgtly similar linear mixed model

(LMM) for every behavior. Specifically, each behavioral phenotype was transformed to ensure

residual normality (see In depth: subsection 2.4.2), and then modeled by an LMM that: 1) controlled

for batch and any test-specific nuisance factors; 2) controlled for population structure by modeling

dam as a random effect; and 3) modeled diet, PO, and diet-by-PO using categorical fixed effects. See

subsection 2.4.1 for more details.

Every behavioral LMM was fit in R (R Core Team, 2016) using lme4 (Bates et al., 2015)

and p-values calculated by a type I (i.e., sequential) sum of squares ANOVA using Satterthwaite’s

approximation using lmerTest (Kuznetsova et al., 2015). To account for multiple testing, the p-values

were pooled over all behaviors in each pipeline, but separated per effect type (diet effects, POE,

diet-by-POE); then, each pipeline/effect type combination was subject to a Benjamini-Hochberg

false discovery rate correction, generating q-values (Benjamini and Hochberg, 1995).
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Most test-specific nuisance factors were modeled as fixed effects, including: 1) the swimming

chamber for the forced swim test; 2) the testing order for the stress induced hyperthermia and

restraint stress tests; and 3) the box holding the stranger mouse for the sociability test. In repeated

measures models of the startle/PPI phenotypes, random effects were used for pup and chamber

(subsection 2.4.1)

For ASR data, the modeled outcome was the raw ASR divided by the mouse body weight. For

the PPI at each prepulse intensity, the modeled outcome was the average PPI response divided by the

weight-adjusted ASR value— a weight-and-ASR-adjusted PPI.

2.3.2 Microarray Preprocessing

Microarray probe alignments to the GRCm38.75 C57BL/B6J reference genome (the reference

we use throughout) were used to infer probe binding locations (In depth: subsection 2.4.7). Us-

ing these locations, along with Affymetrix Power Tools (APT) 1.18 software (Affymetrix, 2017),

probes and probesets at biased/uninformative binding locations (In depth: subsection 2.4.8) were

masked. Masking reduced the original set of 28,440 non-control probesets to only 20,099 probesets

(representing 19,224 unique genes, including X chromosome genes). For each remaining probeset,

RMA (Irizarry et al., 2003) was applied to the non-masked probes to compute a probeset expression

score. Each probeset’s position was defined as the binding location of its first non-masked probe.

The expression of one mouse was inadvertently measured twice; these probeset measurements were

pairwise averaged.

2.3.3 Statistical Analysis of Gene Expression

Data from 95 microarray-assayed mice and 20,099 probesets was used to test diet effects, POE,

and diet-by-POE on gene expression as follows. For each probeset: 1) fixed nuisance effects were

regressed out of the expression score to generate adjusted expression values (see below); 2) the

adjusted expression was transformed to ensure residual normality; 3) the resulting values were tested

for diet, POE and diet-by-POE using an LMM that accounted for dam (using the R package nlme

Pinheiro et al. 2016).

The p-value distribution for each effect type appeared to be inflated. To correct for the inflation,

p-values were adjusted by a genomic-control-like procedure (Dadd et al., 2009) whereby, for all
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p-values within an effect-type, an inflation factor was estimated and then divided out (In depth:

subsection 2.4.5). Then, to control for multiple testing, we used two complementary approaches:

Benjamini-Hochberg false discovery rate (FDR; Benjamini and Hochberg 1995), applied separately

per effect type; and family-wise error rate (FWER) control, using a bespoke permutation procedure

that makes minimal parametric assumptions while accounting for between-probeset correlations (see

In depth: subsection 2.4.6).

2.3.3.1 Adjusted expression, SSVA estimated nuisance factors

Prior to testing for diet effects, POE and diet-by-POE, expression values for each probeset

were first adjusted by regressing out nuisance effects; this was done to facilitate permutation-based

threshold calculation (see In depth: subsection 2.4.6). Nuisance effects were estimated by fitting a

simple linear model (to the original expression) that accounted for nuisance factors only — batch,

pipeline, and a set of estimated unobserved factors. These unobserved factors were themselves

estimated using a modified form of Supervised Surrogate Variable Analysis (Leek 2014), which we

adapted to accommodate random effects (see In depth: subsection 2.4.4).

2.3.4 Analysis of imprinting status

Each microarray probeset was classified as measuring imprinted gene expression, if its probe

sequences either: 1) hybridized to the sequence of an imprinted gene identified in Mousebook (Blake

et al., 2010) or in Crowley et al. (2015); or 2) hybridized within 100bp of these known imprinted

genes. All together, 241 probesets were classified as measuring imprinted regions, corresponding

to 182 unique imprinted genes. Each probeset was also categorized as to whether it revealed a

significant (q-value < 0.05) POE on expression of the probed region. Fishers exact test was used to

calculate p-values for the association between imprinting status and significant expression POE.

2.3.5 Analysis of qPCR validation data

An apparent POE on microarray expression of Carmil1 and a diet-by-POE on Meg3 were

validated by analysis of their respective qPCR data as follows. Each gene’s qPCR relative-cycle-

threshhold (relative to Rfng, In depth: subsection 2.4.9) was transformed for residual normality, and

then modeled by an LMM that accounted for pipeline, the interaction of breeding batch with qPCR
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plate (as a random efffect), and dam (random effect), as well as the diet, POE, and diet-by-POE

effects. LMMs were fit using lme4 (Bates et al., 2015), with p-values computed using lmerTest

(Kuznetsova et al., 2015). qPCR data analysis was repeated in three sets of mice: 1) 85 mice assayed

by both microarray and qPCR; 2) 30 mice newly assayed by qPCR alone; and 3) all 115 qPCR’d

mice.

2.3.6 Mediation Analysis

POEs were observed upon several behaviors, as well as upon the expression of the non-imprinted

gene, Carmil1. To identify (potentially imprinted) genes exerting POE on these outcomes, we applied

a genomewide mediation analysis. That is, for each outcome above, and for each potential mediator

gene, we tested whether the gene’s expression mediated POE on the outcome (details in In depth:

subsection 2.4.10). For completeness, and to generate percentile-based significance thresholds, we

tested every gene as a candidate mediator whether or not we observed POE on the candidate in

mediation-free analysis.

This test was performed using a model (see Figure 2.9 notation) in which the outcome was the

sum of: 1) outcome-specific nuisance effects (which also affect the candidate mediator gene); 2) a

diet-specific direct effect of parent-of-origin (c′d), and 3) a diet-specific indirect effect of parent-of-

origin, that is mediated by way of POE on the candidate mediator gene’s expression (adb). Candidate

mediator genes with a significant average indirect effect (ab = adb) on POE were identified as true

mediators. Candidate mediator genes for which the indirect and direct effect had opposite signs were

further classified as suppressors.

We note that in this model, diet does not modulate the effect of mediator expression on outcome;

the indirect effect is diet-specific only insofar as diet affects mediator expression.

2.3.6.1 Mediation analyzed using a Bayesian approach

Most simple mediation analyses are handled using frequentist methods. However, our mediation

model required that we estimate an indirect effect across multiple diets, all while accounting for

the random effect for dam. For this type of complexity, a Markov Chain Monte Carlo (MCMC)-

based Bayesian approach was ideal, providing the necessary flexibility to easily provide point and

interval estimates of the indirect effect, all without the need to derive an analytic form (Yuan and
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MacKinnon, 2009; Wang and Preacher, 2015). Our mediation model, described in more detail in

In depth: subsection 2.4.10, was implemented in JAGS [Just Another Gibbs Sampler; Plummer

(2003, 2016)]. Posterior medians and credible intervals for direct and indirect effects were estimated

from Gibbs samples. To obtain a measure of “mediation significance”, we estimated the indirect

effect’s “Combined Tail Probability” (CTP): the minimum of the sample-based, upper and lower

tail probabilities of the indirect effect, where we deemed CTP ≤ .05 significant (as used in, e.g.,

Schoenrock et al. 2016).

2.3.6.2 Mediation of Carmil1 expression

Mediation modeling of the Carmil1 expression outcome was restricted to data from mice in

which expression was measured. Batch, pipeline, and dam (a random effect), were modeled as

nuisance effects acting on both the mediator gene and on Carmil1.

2.3.6.3 Mediation of behavior

All behavior outcomes were tested for gene mediation of POE, whether or not expression-free

analysis had revealed POE on that outcome. Modeling was restricted to data from mice in which

expression and behavior were both measured. Dam, batch, and behavior-specific covariates were

modeled as nuisance effects on both mediator and outcome. Pipeline was not modeled, as each

behavior was only measured in one pipeline. For PPI outcomes, groups of measurements from the

same mouse/prepulse intensity were averaged together into a single value.

2.3.6.4 Aggregate mediation of behavior

To quantify each gene’s aggregate level of mediation over all behaviors, we defined a statistic

inspired by the Fisher combined p-value (Fisher, 1925): the “Combined Tail Probability” (CTP; In

depth: subsection 2.4.10). Aggregate levels of mediation were also assessed by counting how often a

given mediator was among the 3 most significant mediators for any behavior.

2.3.7 Reporting significant genes vs. probesets

The number of genes we report as significantly affected by some factor (e.g., diet) is generally

not equal to the number of significantly affected probeset measurements. The mismatch arises
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because some genes (e.g., Snord 115) are assayed by more than one probeset, and some probesets

simultaneously assay more than one gene (e.g., overlapping genes). For each significantly affected

multi-gene probeset, we propagate significance to all of its assayed genes.

2.3.8 Test for miRNA regulation of significantly affected genes

To evaluate the validity of the diet-by-POE on Mir341, we tested whether the set of other

genes showing diet-by-POE (by FDR) was enriched for Mir341’s predicted targets of regulation.

Specifically, we used miRHub (Baran-Gale et al., 2013), allowing it to consider all miRNA targets

predicted by TargetScan (Agarwal et al., 2015), regardless of whether those targets were conserved

in another species.

2.3.9 Segregating variant determination

Variants segregating between NOD and B6 with > .95 probability were identified using ISVdb

(Oreper et al., 2017c).

2.3.10 Computational resources

Computation was performed on Longleaf, a slurm based cluster at UNC. Up to 400 jobs were

run at a time in parallel. Computation completed in approximately 6 days.

2.4 Computational Methods: in depth

2.4.1 Behavior Models

The LMM used to model behavioral phenotypes (excluding the startle/PPI phenotypes) was as

follows. The behavioral outcome ymi of mouse mi was modeled as

f(ymi) = intcovmi + dietd[m] + POEs[m] + diet.by.POE(sd)[m] + damm + εmi , (2.1)

where mi denotes the ith mouse of mother m; d[m] denotes mother m’s diet, where d = 1, . . . , 4,

corresponding to diets Std, ME, VDD and PD; s[m] denotes the mother’s strain, where s = 1, 2

corresponds to B6 and NOD respectively; (sd)[m] denotes the mother’s diet and strain combination.
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Modeled effects consisted of: intcovmi, a fixed intercept and a set of (behavior-specific) fixed effect

covariates; dietd, a fixed effect of diet d; POEs, a fixed effect of POE (technically, strain-by-POE);

diet.by.POEsd a fixed effect of diet-by-POE; and damm, a random effect of dam. The function

f() is a transformation chosen to ensure the residuals εmi are approximately normal (see In depth:

subsection 2.4.2).

2.4.1.1 Startle/PPI Models

For every prepulse intensity, 6 measurements of the average startle response were taken per

mouse (all in the same chamber). The startle/PPI LMMs therefore accounted for repeated measures.

Letting ymi,j be mouse mi’s jth measurement, we modeled:

f(ymi,j) = intcovmi + dietd[m] + POEs[m] + diet.by.POEb[m]+

chamberh[mi] + damm + pupmi + εmi,j (2.2)

where chamberh[mi] is a random effect of chamber, and pupmi is the random effect of mouse mi.

2.4.2 Variable transformation procedure

A transformation procedure was applied to both the expression and the behavior phenotypes

to ensure residual normality. For a given LMM requiring a transformation of the outcome y, the

procedure was as follows. Center and scale y to mean 0 and standard deviation 1 to give z. Apply a

shifted Box-Cox transformation (Sakia, 1992; Box and Cox, 1964), restricted to the ladder of powers

λ ∈ {−3,−2,−1,−.5, 0, .5, 1, 2, 3} to give in each case values z(λ). For each transformation z(λ),

the LMM is fitted, and residual normality is evaluated using the Shapiro-WilkW statistic (Shapiro and

Wilk, 1965); denote the optimal λ as λ̂. If λ̂ ∈ {0, .5, 1, 2}, then use z(λ̂); if λ̂ ∈ {−2,−1,−.5}, then

additionally negate the value, in order to ensure the monotonicity of the transformation and thereby

improve interpretability of effect estimates; if the λ̂ ∈ {−3, 3}, then discard the transformation

and instead apply a rank inverse normal transform (Van der Waerden, 1952). Rescale the selected

transformed variable to mean 0 and standard deviation 1.

29



2.4.3 Microarray expression models

Expression was first adjusted by regressing out nuisance factors, and then the adjusted expression

was modeled to test diet, POE, and diet-by-POE. This two-step process was employed to facilitate

permutation testing later on.

2.4.3.1 Generation of the adjusted expression outcome

Letting ymi,j be the average expression of probes in probeset j for mouse mi, we obtained

adjusted expression values as residuals ε̂mi,j from the linear model:

f(ymi,j) = intcovmi,j + SVmi,j + εmi,j , (2.3)

where the covariates in intcovmi,j were the nuisance effects of pipeline and behavioral batch. The

SVmi,j term modeled fixed effects for 7 ”surrogate variables” (SVs), which represented aggregate

effects of unobserved confounding on the microarray (see In depth: subsection 2.4.4). Specifically,

SVmi,j =
∑7

k=1 βk,jvmi,k, where vmi,k is mouse mi’s value for the kth SV, and βk,j is the fixed

effect of that SV on the expression of probeset j. (Estimation of the SVs themselves is described in

In depth: subsection 2.4.4)

2.4.3.2 Model of adjusted expression outcome

For each probeset j, adjusted expression (a.k.a., the residuals from Eq 2.3 ) was then analyzed

using the LMM,

f (ε)(ε̂mi,j) = µj + dietd[m],j + POEs[m],j + diet.by.POE(sd)[m],j + damm,j + εmi,j , (2.4)

where µj and εmi,j are the intercept and residual error, f (ε) is a transformation that may be different

from f in Eq 2.3, and other terms are defined as in Eq 2.1.

2.4.4 Surrogate variable estimation allowing for random effects

Gene expression measurements by microarray are typically affected by many unobserved factors,

some of which can have a large confounding effect on transcript levels across many genes. One way
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to control for such unobserved factors is to first model their aggregate effects as linear combinations

of ”surrogate variables” (SVs; Leek and Storey 2007), and then include these SVs as predictors in

subsequent modeling, and/or regress these effects out (as in In depth: subsection 2.4.3).

Here we mostly— deviating somewhat to accommodate random effects and variable

transformation— follow the Supervised Surrogate Variable Analysis (SSVA) approach of Leek

(2014), which defines the SVs using negative control probes; success of this approach requires that

unobserved confounding effects arise from technical rather than biological variation. As a further

aside, we note that our approach is also largely equivalent to the ”remove unwanted variation with

negative control genes” (RUVg) strategy (Risso et al., 2014), applied to microarray data.

In our implementation of SSVA, we first estimate a standardized matrix of the aggregate effects

that arise from unobserved factors, E. For each negative control probe c = 1, . . . , C, we fitted the

LMM

f(ymi,c) = intcovmi,c + dietd[m],c + POEs[m],c + diet.by.POE(sd)[m],c + damm,c + εmi,c ,

where terms are defined as in Eq 2.1 and Eq 2.4, and where the estimated residuals, ε̂mi,c, were

standardized and stored in n-vector ec. These steps were repeated for all C negative control probes

to give the n× C matrix E.

Let the SVD of E be denoted as UΣV′. Under this parameterization, the space of aggregate

unobserved factor effects on the control probes is (by construction) spanned by the n columns of

U. Since a model for main probes that included all n columns as surrogate variables would be

unidentifiable, the first K = 7 columns of U were chosen as an approximating subset of surrogate

variables. K = 7 was chosen by following the strategy described in Sun et al. (2012) for K-selection

in SVA with random effects: a plot of the squared eigenvalues from Σ was examined, and it revealed

an inflection point at 7 eigenvalues.

Of note, the original implementation of SSVA did not regress any effects out of control probes,

under the assumption that these probes should be unaffected; in contrast, we regress these effects

out before computing eignevectors. We justify this by noting that if in fact the treatments of interest

somehow did affect the control probes, we would not want these treatment effects to be incorporated
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into the surrogate variables. And if the control probes truly are unaffected by any of the observed

experimental factors, then there should be no harm in residualizing out these size-zero effects.

2.4.5 Bias-adjustment for gene expression p-values

For some effect types that were tested in the gene expression model of Eq 2.4, the distribution

of nominal p-values across all transcripts was consistent with those p-values being downwardly

biased. To remove this bias, which would otherwise invalidate our use of FDR, we applied an

empirical adjustment similar to the genomic control procedure of Devlin et al. (2001) (see also

Dadd et al. 2009). Let pj be the p-value associated with a given effect type (diet, POE, or diet-

by-POE) on the jth probeset, let F (x) be the cumulative distribution function for the χ2
1 density,

and define xj = F−1(pj) and x = (x1, . . . , xm). Under unbiasedness, p-values associated with

testing for given effect should, under the null, have a uniform distribution, pj ∼ Unif(0, 1), such

that xj ∼ χ2
1. Assuming most results are in fact null, in the dataset as a whole we would expect

median(x) ' F−1(0.5). However, if significances were systematically inflated, the null xj’s would

appear as if from a scaled χ2
1 such that xj/λ ∼ χ2

1 with inflation factor λ > 1. Therefore, we correct

for this systematic inflation by first estimating the inflation factor as λ̂ = median(x)/F−1(0.5) and

then calculating bias-adjusted p-values as p̃j = F (xj/λ̂).

2.4.6 Permutation-based FWER thresholds for gene expression p-values

For gene expression, empirical p-value thresholds that controlled for the family-wise error rate

(FWER) across all probesets were determined by permutation. A separate FWER threshold was

computed per effect of interest (diet, parent-of-origin, and diet-by-parent-of-origin). Below, we

describe the permutations that were generated, the statistic that was collected per permutation, and

how this was translated into a significance threshold.

2.4.6.1 Structure of permutation

For every permutation-tested effect type, we generated a separate set of W = 401 permutations

(including the identity permutation), w = 1 . . . ,W . Litters were taken as exchangeable units;

diet/strain labels were permuted amongst the dams, and all pups of a given dam were assigned their
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dam’s diet/strain label. Permuting labels, rather than outcomes, enabled us to allow for varying litter

sizes between dams.

For the main effects we employed a form of restricted permutation (Anderson and Braak, 2003;

Good, 2005); i.e., for parent-of-origin effects, we randomly permuted the strain labels (s in Eq

2.4) between dams that had been exposed to the same diet, whereas for diet effects, we randomly

permuted diet labels (d) between dams of the same strain.

For the interaction effect of diet-by-POE, we employed a form of unrestricted permutation

(Anderson and Braak, 2003; Good, 2005) of the interaction labels. In particular, we permuted the

interaction labels g between dams. However, the s and d labels were held constant even as the

interaction labels g were permuted.

2.4.6.2 Permutation statistic and threshold computation

For each permutation w and probeset j = 1, . . . , J we fitted the expression LMM of Eq 2.4.

Note that the modeled outcome in this equation is adjusted gene expression from which all nuisance

covariates have already been regressed; following Gail et al. (1988), this residualization was

performed to facilitate exchangeability for the effects of interest. For every permutation, the fitting

of 2.4 included recalculation of the transformation f (ε). Furthermore, for every permutation, we

bias-adjusted (through genomic control, In depth: subsection 2.4.5) the p-values, p̃ = p̃
(w)
1 , . . . , p̃

(w)
J

and recorded the minimum, p(w)min .

The set of W such minimum p-values from all permutations was then used to estimate the

FWER α = 0.05 threshold via modeling of a generalized extreme value (GEV) distribution after

Dudbridge and Koeleman (2004); Manly (2006). Specifically, a GEV was fitted to Tw = − log[p
(w)
min ]

for w = 1, . . . ,W using R package evir (Pfaff and McNeil, 2012), and the fitted GEV was used

to estimate the upper 5% quantile, Tα=.05. Tα=.05 was then translated back into a threshold on the

p-value scale as pα=.05 = e−Tα=.05 . Note that, as a conservative measure, the GEV fit included the

identity permutation.

2.4.7 Probe alignments and estimated probeset positions

Probe alignments were downloaded from the Ensembl 38.75 funcgen database (Yates et al.,

2016). Notably, this database contained alignments for MoGene1.0 ST probes, rather than for the
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MoGene1.1 ST probes that we used in our experiment. To address this mismatch, we imputed 1.1

alignments by using the fact that every 1.1 probe is identical to at least one 1.0 probe in sequence

(though not in probe id); we formed correspondences from each 1.1 probe to its identical-sequence

1.0 probe alignment. Since most probes aligned to multiple positions, we estimated per probe and per

probeset, the “intended” target position, defining this self-referentially as the position that minimizes

the sum of distances between probes in the same probeset.

2.4.8 Criteria for masking biased and uninformative

probes/probesets

APT masking was used to eliminate four types of probes: 1) probes aligning to ≥ 100 locations;

2) probes aligning outside of annotated exons; 3) probes whose “interior” (basepairs 3-21) aligned to

regions in which NOD possesses a variant relative to B6, i.e., probes with a binding affinity difference

between strains (Dannemann et al., 2009), where NOD variants were extracted from the Inbred

Strain Variant Database (Oreper et al., 2017c); or 4) redundant probes mapping to the same position.

Following probe masking, probesets were eliminated if they contained <4 non-masked probes, or if

every remaining non-masked probe measured <32 units of expression across all samples.

2.4.9 qPCR analysis

2.4.9.1 qPCR model

Letting y′mi,j be the qPCR relative cycle threshold for a targetted gene (Meg3 or Carmil1), we

modeled:

f(y′mi,j) = intcovmi+dietd[m]+POEs[m]+diet.by.POEb[m]+damm+batch.platea[mi]+εmi,j ,

where intcov includes the intercept and behavioral pipeline, batch.platea is a random effect of the

combination a of breeding batch and qPCR plate, and the other terms are akin to those defined in the

microarray model (In depth: subsection 2.4.3).
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2.4.9.2 qPCR normalization

The raw value measured by qPCR is a target gene’s cycle threshold. To allow comparison

between qPCR batches, which can vary in replication efficiency, the cycle threshold for a target

gene must be normalized by some reference gene that is unaffected by biological factors. As

such, rather than modeling the cycle threshold, we model the relative cycle threshold, defined as

∆Ct = Cttarget−Ctreference. The ∆Ct relative cycle threshold represents the relative gene expression

level of the target gene on the log scale (Didion et al., 2015). The larger ∆Ct is, the less the target

gene expression.

We chose Rfng as the reference gene, because microarray data suggested negligible effects of

diet, POE and diet-by-POE on Rfng expression. Specifically, each candidate reference gene was

assigned a score equal to the minimum of the p-values for POE, diet-by-POE, and diet effects on the

candidate reference’s microarray-measured expression. Rfng had the largest such score.

2.4.10 Bayesian mediation model

Mediation analysis is typically posed as the estimation of the model in Figure 2.2: An intervention

or predictor variable X affects an outcome Y either directly or/and through an observed mediator

outcome M . In our case, X is reciprocal direction (i.e., parent-of-origin, coded as the maternal

strain), M is the expression of a mediator gene, and Y is the outcome of primary interest, either

expression of Carmil1 or a behavioral phenotype. By common convention, the effect of X on M ,

i.e., the POE on M , is denoted a, which in our case is ad to allow different effects under each diet d,

and the effect of M on Y is denoted b. The product adb is then the expression-mediated effect of

parent-of-origin on Y , conditional on the diet d, and our primary quantity of interest is this value

averaged over diets, ab = adb. The direct effect of X on Y after accounting for mediation by M is

denoted c′, which in our case is analogously diet-specific and denoted here as c′d with average direct

effect c′ = c′d. (Not explicitly calculated here but used elsewhere is c, which would be the effect of

X on Y if mediation were unmodeled.) When ab and c′ have opposite signs, mediation by way of

M acts to suppress the overall parent-of-origin effect on the outcome Y .
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Y

ad

c’d

b

Figure 2.2: Multilevel mediation model in which the levels are diets. X represents the
maternal-strain treatment, Y is the outcome (behavior or expression), and M is the mediat-
ing gene expression factor. ad is the (diet-specific) effect of the treatment on the mediator,
c′d is the (diet-specific effect) direct effect of the treatment on the outcome, and b is the
(diet-independent) effect of the mediator value on the outcome.

2.4.10.1 Linked LMMs

Our mediation model for the effect of a gene-expression-mediator z on an outcome y is specified

via two linked LMMs as:

f(ymi) = intcovmi + dietd[m] + POEs[m] + diet.by.POE(sd)[m] + b · f (z)(zmi)︸ ︷︷ ︸
effect of z on y

+damm + εmi,

(2.5)

where f (z) denotes a transformation that may be different from f , b is the effect of mediator z on y,

and the combined contribution of POE and diet.by.POE provides the direct effect c′d. Meanwhile,

mediator z is simultaneously modeled as

f (z)(zmi) = intcov(z)mi + diet(z)d[m] + POE(z)
s[m] + diet.by.POE(z)

(sd)[m] + dam(z)
m + ε

(z)
mi , (2.6)

where, for example, the notation intcov(z)mi means the same regression input as intcovmi but with

regression coefficients specific to mediator z rather than outcome y, and the combined contribution

of POE(z) and diet.by.POE(z) provides the effect ad. Specifically, the correspondence of Eq 2.5 and
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Eq 2.6 to the more general mediation analysis is as follows:

Xmi = I(s[m] = NOD) (i.e., 1 if NOD maternal strain, 0 o/w)

Mmi = f (z)(zmi)

Ymi = f(ymi)

b = b (effect of z on y)

ad = POE(z)
NOD + diet.by.POE(z)

NOD, d

c′d = POENOD + diet.by.POENOD, d

a = ad (all-diets-average POE on z)

ab = adb (all-diets-average mediated POE on y)

c′ = c′d (all-diets-average direct POE on y)

where POENOD is the effect of switching from an NOD mother to a B6 mother, and diet.by.POENOD, d

is the additional effect of this for diet d.

2.4.10.2 Transformations, expression adjustment, priors, and MCMC sampling.

Prior to fitting the Bayesian mediation model, all candidate mediators and outcomes were

transformed using the same process as described earlier; i.e., transforms were chosen to ensure

normality using the frequentist, mediation-free models (subsection 2.4.2, C). Additionally, akin

to the mediation-free microarray analysis, surrogate variable effects (In depth: subsection 2.4.4)

were regressed out of every gene’s expression prior to mediation modeling. However, unlike the

mediation-free analysis of expression, batch and pipeline were not regressed out, and were included

as nuisance effects on mediator and outcome in the mediation model. Priors were specified as follows,

noting that M and Y by construction have means of 0 and standard deviation 1: fixed effects (i.e.,

all effects except dam) were given priors of N(0, 52); and the random effect of dam was modeled

as drawn from N(0, τ2) with τ2 ∼ Unif(0, 25). Model fitting proceded by running a single MCMC

chain for 16,000 timesteps, of which the first 3,200 were discarded (i.e., as burn-in), and the last

12,800 were retained for estimation.
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2.4.10.3 Combined Tail Probability: a statistic to quantify aggregate mediation

To quantify the extent to which a given gene’s expression mediated POE on multiple outcomes,

we use a statistic inspired by the Fisher combined p-value that we refer to as the “Combined Tail

Probability” (CTP). The CTP is the probability that a value drawn from χ2
2K is at least as extreme

as the statistic T = −2
∑K

k ln(pk), where K is the number of outcomes tested for mediation, and

pk is the CTP for the mediator’s indirect effect on outcome k. Although the implicit distributional

assumption is not strictly justified, the CTP associated with T provides a statistic for evaluating

which mediators are strongest in aggregate.

2.4.11 Data Availability

Data and supplemental results files are stored on Zenodo at

https://doi.org/10.5281/zenodo.1168578 (Oreper et al., 2018). File S1 contains detailed de-

scriptions of all supplemental files. File S2 contains chromosome sizes. File S3 contains exon data.

File S4 contains Snord data. Files S5, S6, and S7, contain imprinted genes from Crowley et al.

(2015), Mousebook, and the union thereof, respectively. File S8 contains NOD variants. File S9

contains covariates for RF1s. Files S10 and S11 contain Affymetrix library files for the Exon 1.1 ST

and 1.0 ST microarrays, respectively. File S12 contains 1.0 ST probe binding locations. File S13

contains raw (CEL) microarray-measured expression for RF1s. File S14 contains a summary of

microarray expression— the output from APT-summarize, but with default args. File S15 contains

pulverized brain data, pre-qPCR validation. File S16 contains qPCR data. File S17 contains behavior

models for mediation analysis. File S18 contains bodyweights. File S19 contains cocaine responses.

File S20 contains FST data. File S21 contains light/dark data. File S22 contains OF data. File S23

contains restraint stress data. File S24 contains SIH data. File S25 contains sociability data. File S26

contains startle/PPI data. File S27 contains tail suspension data. File S28, S29, and S30 contain POE,

diet, and diet-by-POE expression modeling results, respectively. File S31 and S32 contain mediation

analysis results for the Carmil1 and behavior outcomes, respectively. Code to generate results is

available at https://github.com/danoreper/mnp2018.git.

38



2.5 Results

2.5.1 Overview and key results

NOD and B6 mice were reciprocally crossed, with F1 hybrids exposed perinatally to Std,

VDD, ME, MD, and PD diets (the MD diet was eventually dropped due to a near total lack of

reproductive/weaning productivity; Table A.2). Following weaning, the female F1 hybrids were

tested in one of two different pipelines, each of which consisted of a different set of behavioral tests

(Figure A.1). Following behavioral testing, whole brain gene expression was measured via microarray.

Analysis and validation lead to the following key results (detailed in subsequent subsections):

• Parent-of-origin affected 7 behaviors, including multiple locomotor behaviors and SIH behav-

ior.

• Perinatal diet affected body weight and PPI behavior.

• Diet-by-POE acted on OF percent center time.

• Diet, POE, and diet-by-POE significantly (by FWER) acted on expression of 37, 15, and 16

genes respectively.

• The significance of diet’s effect on expression was primarily driven by ME.

• Notable POE were observed on Snord 115, Airn, and most significantly on Carmil1, a non-

imprinted gene.

• The Carmil1 POE was qPCR-validated in two sets of mice: the microarrayed mice, and a new

set of mice.

• Genes affected by POE are enriched for imprinting.

• POE on Carmil1 seems to be mediated (specifically, suppressed) by the expression of the

imprinted gene Airn;

• Carmil1, and Snord 115, and especially Airn seem to mediate POE on multiple behaviors.

These, along with other identified mediators of behavioral POE, tend to be suppressors.

39



2.5.2 Effects on behavior

At a nominal level, POE, diet, and diet-by-POE acted significantly upon 7, 4, and 2 behaviors,

respectively. Post-FDR correction, POE, diet, and diet-by-POE acted upon 3, 0, and 0 behaviors,

respectively. Table 2.1 shows per-variable p-values, whereas Table A.5 shows tukey p-values for

variable level contrasts.

2.5.2.1 POE acts upon several locomotor behaviors, as well as SIH and PPI outcomes

Across several assays and both pipelines, a significant POE was observed on 5 different assess-

ments of locomotor behavior. In all 5 assesments, NODxB6 mice moved more than B6xNOD mice.

In pipeline 1, in the Light/Dark test, a POE was observed on both total distance and distance moved

on the dark side of the arena (p=0.0493, q=0.181; p=0.0187, q=0.103 respectively), but not on light

side distance (p=0.273; Figure 2.3A). Also in pipeline 1, in the cocaine response assay, a POE was

observed on total OF distance, on both the baseline and the habituation day (Day 1, p=0.000671,

q=.00975; Day 2, p=0.00221, q=0.0162 respectively) (Figure 2.3B). In pipeline 2, in a separate set of

OF-assessed mice, a POE was observed upon total-distance moved (p=0.013, q=0.156; (Figure 2.3B).

POE was also observed on post-stress temperature in the SIH assay, with B6xNOD mice having

higher temperatures (p=0.000887, q=0.00975; Figure 2.4). A smaller, non-significant effect in

the same direction was also seen for both basal temperature (SIH-T1) and change in temperature

(SIH-delta), consistent with a small difference in basal temperature being magnified after stress. A

significant POE was also observed on PPI at 82 decibels, with B6xNOD mice exhibiting a higher

percent PPI than NODxB6 (p=0.0307 and q=0.00274; Figure A.2A). A similar effect (to that at 82

decibels) was observed at 86 decibels, but it was not significant (Figure A.2A).

2.5.2.2 Diet has nominally significant effects on body weight and PPI

At a nominal level, perinatal diet significantly affected body weight (p=0.00541, q=.0595;

Figure 2.5), with mice exposed to ME diet weighing less than mice exposed to Std and VDD diets

(Tukey post-hoc p=0.0228 and p=0.0402). Diet also significantly affected measures of sensorimotor

gating: in particular, PPI at 82 decibels (p=0.00274, q=0.0595; Figure A.2B). At 78 decibels, PD had

a non-significant (p=.0714, q =.524), but similar effect (Figure A.2B). At both 78 and 82 decibels,
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Pipeline Test Phenotype Covariates 
p-value FDR adjusted p-value 

POE Diet DietxPOE POE Diet DietxPOE 

1 

Light/Dark 

Total Distance 

Batch, Dam 

0.0493* 0.481 0.99 0.181 0.814 0.99 

Distance Dark 0.0187* 0.646 0.985 0.103 0.836 0.99 

Distance Light 0.273 0.247 0.905 0.43 0.68 0.99 

% Time Dark 0.373 0.175 0.392 0.547 0.561 0.92 

% Time Light 0.226 0.129 0.341 0.414 0.561 0.92 

Total Transitions 0.0772. 0.904 0.61 0.243 0.904 0.92 

Startle/Prepulse 

Inhibition 

AS50 Average Batch, 

Chamber, Dam 

0.399 0.617 0.0904. 0.548 0.836 0.731 

AS50 Latency 0.935 0.149 0.432 0.98 0.561 0.92 

Average PPI 74 

Batch, 

Chamber, Dam, 

Pup 

0.217 0.481 0.565 0.414 0.814 0.92 

Average PPI 78 0.22 0.0714. 0.636 0.414 0.524 0.92 

Average PPI 82 0.0307* 0.00274** 0.445 0.135 0.0595. 0.92 

Average PPI 86 0.123 0.179 0.669 0.301 0.561 0.92 

Average PPI 90 0.988 0.62 0.0997. 0.988 0.836 0.731 

Stress-Induced 

Hyperthermia 

SIH-T1 
Batch, Test 

Order, Dam 

0.273 0.828 0.61 0.43 0.904 0.92 

SIH-T2 0.000887*** 0.628 0.0624. 0.00975** 0.836 0.731 

SIH-Delta 0.648 0.879 0.473 0.839 0.904 0.92 

Forced Swim % Immobility 
Batch, Arena, 

Dam 
0.111 0.317 0.531 0.301 0.776 0.92 

Cocaine 

Response 

Day1 Distance 

Batch, Dam 

0.000671*** 0.43 0.332 0.00975** 0.814 0.92 

Day2 Distance 0.00221** 0.47 0.325 0.0162* 0.814 0.92 

Day3 Distance 0.782 0.692 0.876 0.906 0.846 0.99 

Day3-Day2 Distance 0.73 0.771 0.897 0.892 0.893 0.99 

Body Weight Body Weight Batch, Dam 0.908 0.00541** 0.913 0.98 0.0595. 0.99 

2 

Open Field 

Distance Moved 

Batch, Dam 

0.013* 0.647 0.555 0.156 0.647 0.832 

% Center Time 0.319 0.234 0.0144* 0.638 0.592 0.172 

Average Velocity 0.428 0.128 0.145 0.638 0.511 0.435 

Jump Counts 0.788 0.312 0.223 0.788 0.592 0.447 

Vertical Counts 0.0763. 0.103 0.932 0.318 0.511 0.932 

Boli Count 0.466 0.113 0.301 0.638 0.511 0.517 

Social Interaction 
% Time Stranger Batch, Stranger 

Box, Dam 

0.425 0.493 0.182 0.638 0.592 0.438 

Transitions 0.705 0.633 0.72 0.769 0.647 0.864 

Tail Suspension % Immobility Batch, Dam 0.536 0.305 0.652 0.643 0.592 0.864 

Restraint Stress 

Basal CORT 
Batch, Test 

Order, Dam 

0.478 0.475 0.923 0.638 0.592 0.932 

10 min CORT 0.0796. 0.372 0.0735. 0.318 0.592 0.388 

Δ CORT 0.113 0.412 0.097. 0.338 0.592 0.388 

 

Table 2.1: POE, perinatal diet effect, and diet-by-POE on behavioral phenotypes. For each
phenotype, the table shows the modeled variables, along with the p-values of interest, and
their corresponding q-values (FDR), which account for multiple testing within a behavioral
pipeline. Significant values are bolded, and *, **, and ***, indicate significance levels of
*0.05, **0.01, ***0.001 respectively. POE = parent of origin effect; PPI = prepulse inhibition;
CORT = corticosterone; SIH-T1 = basal temperature; SIH-T2 = post-stress temperature;
SIH-delta = (T2-T1)
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Figure 2.3: POEs on locomotor behavior are consistent across behavioral tests and pipelines.
(A) Light side, dark side, and total distance moved in the light/dark arena for individual
B6xNOD (n=46) and NODxB6 (n=45) mice (bars indicate mean). (B) OF distance moved
for B6xNOD (n=46) and NODxB6 (n=45) mice, in Pipeline 1 on Day 1 and 2 of a 30 min
cocaine response test when the mice received an ip saline injection; Distance moved in
Pipeline 2 in a separate 10 min OF test (B6xNOD:n=39, NODxB6:n=48). For all assays,
NODxB6 mice move significantly more than B6xNOD mice. *p < 0.05, **p < 0.01, ***p <
0.001
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Figure 2.4: POEs on baseline (SIH-T1) and post-stress induced temperature (SIH-T2) in
the stress induced hyperthermia test. Data are for individual B6xNOD (n=46) and NODxB6
(n=45) mice (bars indicate mean). For SIH-T2 B6xNOD mice have higher temperature than
NODxB6 mice. A similar, though non-significant pattern seems to occur in the the SIH-T1
data
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PPI seemed greatest for PD mice compared to other diets, although individual contrasts were not

significant (Figure A.2B, Table A.5)
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Figure 2.5: Effect of perinatal diet exposure on body weight in adulthood. Body weight
of individual mice (bars indicate mean) exposed to either standard (Std, n=31), methyl
enriched (ME, n=24), protein deficient (PD, n=18) or vitamin D deficient (VDD, n=18) diet
during the perinatal period. Perinatal diet significantly affected body weight (p=0.00541).
*indicates a significant difference between ME from Std and VDD mice (p < 0.05)

2.5.2.3 Diet interacts with parent-of-origin to alter percent center time

A nominally significant diet-by-POE was observed on percent center time in the OF test

(p=0.0144, q=0.172; Figure 2.6). In this test, NODxB6 mice exposed to VDD and PD diets

spent more time in the center of the arena than diet-matching B6xNOD mice, but no such difference

was seen for ME or Std diets. Similar but non-significant effects were seen on OF locomotor activity

(Figure A.3).

2.5.3 Effects on whole-brain gene expression

Gene expression at each microarray probeset was tested for POE, diet effects, and diet-by-POE.

Significance was assessed in two ways: using the false discovery rate (FDR), and using a more

conservative, permutation-based family wise error rate (FWER) threshold. The FDR (q-value = 0.05)

and FWER (adjusted p-value = 0.05) thresholds were nearly identical for POE, were similar for

diet-by-POE, but were over two orders of magnitude different for diet, with FWER more conservative.

43



Basal Stress-induced
0

30
34

35

36

37

38

39

B6xNOD

NODxB6

***
T

e
m

p

C

Std ME PD VDD
0

30
36

37

38

39
B6xNOD

NODxB6

Perinatal Diet Exposure

S
tr

e
s

s
-i

n
d

u
c

e
d

 T
e

m
p

C **

**

Std ME PD VDD
0

4

8

12

16

20

24

28

Perinatal Diet Exposure

%
 C

e
n

te
r 

T
im

e

B

A

C

Figure 2.6: Perinatal diet-by-POE on percent center time in the 10 min OF test, for B6xNOD
and NODxB6 mice exposed to Std (n=15,14), ME (n=8,14), PD (n=7,9) or VDD (n=9,11)
diets; although no individual contrast is significant, diet-by-POE (p=0.0144) is significant
overall.

2.5.3.1 POE detected on 15 genes, 9 imprinted.

POE was FWER-significant for 15 genes (Table A.9; Figure 2.7), a significant subset of which

(nine) were imprinted (p< 2.2x10−16). Across the 16 genes, greater expression was not associated

with either cross direction (seven more expressed in NODxB6; ten more expressed in B6xNOD).

Both patterns were seen in imprinted genes Snord 113 and Snord 115, depending on the subregion

(Table A.9). Significant POEs clustered on (Figure 2.7A) chromosome 7 in the vicinity of the

imprinted Snord 115/116 family, and on chromosome 12 near the imprinted Snord 113 family.

2.5.3.2 POE on non-imprinted Carmil1 validated by qPCR.

The most significant POE was on Carmil1 (− log10(p) =13.8). This POE was consistent across

diets (Figure 2.7B), and was validated by qPCR. qPCR was performed on 115 mice, 85 of which had

already been assayed by microarray. POE on Carmil1 was significant whether considering qPCR data

from all 115 (p=6.3e-7), only the 85 (p=4.4e-07), or the qPCR-only 30 (p=9.7e-11) (see Table A.4).

2.5.3.3 According to FWER, diet affects 37 (solely non-imprinted) genes

The most significantly affected was Cnot2 (− log10(p) = 7.4). For 35 of the 37 genes (Table A.10,

Figure A.5), significance was driven by the ME diet: across the 4 diets, these 35 genes were either

most or least expressed in ME mice (See the “ME group rank” field in Table A.10; Figure A.5).

By the less stringent FDR threshold, diet significantly affected 958 genes. This included even Y
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Effect 
Type 

Significance 
threshhold 

# Significantly  
affected 

Type -log10(thresh) Probesets Genes Imprinted  
genes 

POE FWER 5.08 20 15 9 

Diet FWER 4.97 33 37 0 

Diet x POE FWER 4.68 17 16 1 

POE FDR 4.25 26 19 10 

Diet FDR 2.61 983 958 12 

Diet x POE FDR 3.43 149 154 7 

 

Table 2.2: Microarray-measured effects on expression. For each effect type/significance
threshold type, the table specifies the significance threshold value, as well as the number of
probesets, genes, and imprinted genes whose expression was significantly affected. Note
that: i) some probesets measure multiple genes, and some genes are measured by multiple
probesets; ii) the FDR and FWER thresholds for diet differ greatly; iii) imprinting is enriched
among genes subject to POE, and iv) by FWER, diet does not affect any imprinted gene,
whereas one imprinted gene is subject to diet-by-POE

chromosome genes (Table A.10), suggesting, since we only use females, that the FWER threshold is

more appropriate.

2.5.3.4 According to FWER, diet-by-POE affects 16 genes, with only Mir341 imprinted

Not only was Mir341 the only significantly affected imprinted gene, but it was also the most

significantly affected (− log10(p) =6.5; Table A.11). However, despite Mir341 being expected

to regulate hundreds of genes (Targetscan) the 149 (FDR selected-genes significantly subject to

diet-by-POE were not enriched for Mir341’s predicted regulatory targets (p=.999; using miRHub;

Baran-Gale et al. (2013)). Following Mir341, the imprinted gene Meg3 was the next most significant

imprinted gene, subject diet-by-POE (but only by FDR; − log10(p) =4.4; Figure 2.8; Figure A.4A).

However, this weakly significant effect on Meg3 was not reproduced in qPCR validation (Table A.4).

2.5.4 Mediation of POE by way of gene expression

2.5.4.1 POE on the gene expression of non-imprinted gene Carmil1 may be mediated by Airn

The microarray and qPCR-based evidence for POE on Carmil1 expression raised the question:

given that Carmil1 is not known to be imprinted, might Carmil1 expression be regulated (i.e.,

mediated) by some imprinted genes expression?
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Figure 2.7: POEs on Carmil1 gene expression. (A) Manhattan-like plot of p-values of POE
on microarray-based gene expression; each point corresponds to a probeset’s genomic
location, coupled with the p-value of POE on expression at that location. Probesets with a
nominal p-value > .05 are not shown. The dashed and solid lines represent the FDR and
FWER thresholds, respectively. Probesets above the FWER threshold are labeled with the
gene(s) that they interrogate. The S113, S115, and S116 labels are shorthand for Snord
113, Snord 115, Snord 116 respectively. Labeled points are shaped according to whether
expression was greater in B6xNOD or NODxB6. The most significant POE is on Carmil1.
(B) Raw microarray expression data for Carmil1; circles and squares represent expression
for B6xNOD and NODxB6 hybrids, respectively. POE on expression is evident under all
dietary exposures. (C) qPCR validation data for Carmil1, showing the same significant
pattern of POE in all dietary exposures, confirming the microarray findings. In any qPCR
assay, increased expression reduces ∆Ct; consequently, we use the y-axis to depict −∆Ct,
ensuring that an increased y-value represents increased expression in both (B) and (C).

We first attempted to answer this question through a ChIPBase-driven analysis (Yang et al.,

2013) of predicted and recorded transcription factor binding sites. We found that the protein product

of Wt1, an imprinted gene, might bind upstream of Carmil1— suggesting that the POE on Carmil1

might be mediated by Wt1. However, we deemed this hypothesis unlikely given that, in our data, Wt1

expression levels were unaffected by POE (p=.267).

This focused bioinformatic analysis having failed to clearly identify a mediator, we applied

a genome-wide analysis: for every microarray-measured gene, we tested whether its expression

mediated the POE on Carmil1 expression. The model used to test for mediation is shown in

Figure 2.9.
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Figure 2.8: Manhattan-like plot of P-values of diet-by-POE effects on gene expression.
Plotting format is similar to that used in Figure 2.7A. The dashed line represents the FDR
threshold, and the solid line represents the FWER threshold. Mir341 expression is the most
significantly affected by diet-by-POE. Note that Meg3, an imprinted gene just below the
FWER threshhold, is also labelled.

The expression of 8 different genes was found to significantly (Combined Tail Probability,

CTP<.05) mediate POE on Carmil1 expression. For 7 of these 8 genes, their mediation (i.e.,

indirect) effect acted against the direct effect (Figure 2.9); rather than explaining POE, expression of

these 7 genes actually suppressed the overall POE on Carmil1. 3830406C13Rik, a non-imprinted

protein coding gene of unknown function (Yue et al., 2014), was the most significant (CTP=.00289)

overall mediator of POE on Carmil1. Airn was the most significant (CTP=.0134) mediator that was

imprinted; specifically, Airn acted to suppress POE on Carmil1 (Table A.6; Figure 2.10).

2.5.4.2 POE on behavior may be mediated by Carmil1 and Airn.

We repeated a similar genome-wide POE-mediation analysis for every behavioral outcome

(including behaviors without significant POE in mediation-free analysis). A significant (CTP<.05)

gene mediator of POE was observed for 10 of the 34 modeled behavioral outcomes. POE on some

outcomes was mediated by more than one gene, and some genes mediated POE on more than one

outcome. Although 16 different significant mediator-outcome pairs were observed, there were only 6
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(e.g., Airn expression) 
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Figure 2.9: Model of gene-expression mediation of POE on the outcome, which is either
behavior or Carmil1 expression. Parent-of-origin, encoded as the maternal strain, in
conjunction with diet, acts both directly upon the outcome, with effect size c′d, and indirectly
upon the outcome, with effect size adb. This indirect effect is composed of the diet specific
POE on some mediator’s expression (ad) and the diet-independent effect of the mediator’s
expression on the outcome (b). Not shown in this figure for clarity, but present in the actual
model, are nuisance effects of dam, pipeline, batch, and behavior specific covariates, that
all can affect both mediator expression and the outcome. Mediation is determined by testing
whether the average indirect effect (ab = adb) is significant according to its Combined Tail
Probability (CTP).
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Figure 2.10: Histograms of the − log10 Combined Tail Probabilities (CTPs) for candidate
gene mediators of POE on Carmil1 expression. The red and blue histograms correspond
to CTPs for non-imprinted and imprinted candidate mediators, respectively. Mediators
whose mediation effect has a CTP<.05 (the dashed line threshold) are labeled. Notably,
the imprinted gene Airn is one of the top 3 mediators of POE on Carmil1.
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distinct genes/gene families significantly mediating any behavioral outcome: Snord 113, Snord 115,

Snord 116, 3830406C13Rik, Rian, Carmil1. In 15 of the 16 significant mediator-outcome pairings,

the gene expression mediator suppressed POE; i.e., 15 of 16 gene mediators acted in the opposite

direction of the direct POE on behavior (Table A.7).

To determine each genes mediation of POE on behavior in the aggregate, we combined the

CTPs for a given gene, over all behaviors, into a single metric: the “Combined Tail Probability”

(CTP; In depth: subsection 2.4.10). By this metric, 21 probesets, corresponding to 17 distinct

genes/gene families mediated POE on behavior in the aggregate at CTP<.05. Even though Airn

was not a significant mediator for any individual behavior (see above), it was the most significant

mediator in the aggregate (CTP=5.09e-05). Airn was followed closely by (a subregion of) Snord 115

(CTP=.000408) and Carmil1 (CTP=.000518). See Table A.8.

To gain further insight into aggregate mediation, for each outcome we determined the 3 most

significant POE gene-mediators. Each gene was then scored according to the number of behaviors

for which it was one of the 3 top mediators. According to this metric, Airn was the most notable

mediator, acting as one of the 3 most-significant POE-mediators for 12 behavioral outcomes, while

Carmil1 was a top-3 mediator for 8 outcomes. The enrichment for Airn, Carmil1, and Snord 115

in the sets of top-3 mediators is also readily apparent in Figure 2.11: for each behavior, genes with

a significant CTP are labelled, as are Carmil1 and Airn if they were among the top 3 mediators;

mediation CTPs for Airn and Carmil1 are often extreme.

2.6 Discussion

Our study identifies POEs on behavior, POEs on gene expression, and shows that many of these

— with notable exceptions — are robust to differences in perinatal diet. We also provide evidence for

a possible explanatory pathway connecting imprinting to gene expression to behavior, and are the

first study to do this.

But beyond its specific results, our study also serves to advance a general protocol based on

reciprocal F1s for studying POE and perinatal environment effects on a complex trait. The RF1 holds

genetic background constant while varing parent of origin, making it the most powerful design for

detecting POE. To investigate the interaction of developmental-environment with POE, we further
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Figure 2.11: Histograms of the − log10 Combined Tail Probabilities (CTPs; akin to p-values)
for candidate gene mediators of POE on various behaviors. Each panel corresponds to a
behavioral outcome that may be mediated by gene expression. The red and blue histograms
correspond to CTPs for non-imprinted and imprinted candidate mediators, respectively.
Mediators having a CTP<.05 (threshold denoted by the dashed line) are labelled, as are
Airn and Carmil1 when they are one of the top-3 mediators. These two genes show up
repeatedly (along with Snord 113/115) as one of the top mediators per behavior, especially
when mediator/behavior pairs with a non-significant mediation p-value are also considered.
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varied in utero nutrition, using four different diets: diet was a relatively easy variable to control, and

ample evidence suggested its importance in POE. By repeating the behavioral and expression assays

under multiple dietary conditions, we: 1) enabled detection of environment-by-POE, 2) hedged our

bets, as an effect that would be unobservable in one environment might be amplified in another, and

3) enabled detection of POE that generalizes across environments.

In the remainder, we discuss the range of mechanisms that might explain POE as discoverable

by our approach; our specific results on POE, diet, and diet-by-POE; and lastly, we reflect on the use

of replicable vs non-replicable populations for POE discovery and investigation.

2.6.1 Coding-POE vs eQTL-POE, and POE observability

The two examined groups of female RF1s, NODxB6 and B6xNOD, were (aside from mitochon-

dria) genetically identical. Consequently, differences in phenotype between these two groups could

with high probability be attributed to POE. But for such observable POE to exist, imprinting/maternal

factors must have interacted with a locus differing in sequence between parents (Figure 2.12A). This

difference driving the POE could have been in a coding region, making it a “coding-POE”, and/or in

a regulatory region, making it an “eQTL-POE”.

In coding-POE, the expressed allele’s coding sequence differs between the two cross directions.

Consequently, the RF1 populations are equal in total expression, but allele-specific expression (ASE)

differs (Figure 2.12B). Although the microarrays in our study cannot quantify ASE, ASE differences

can still manifest as an observable POE on an emergent phenotype such as behavior, or as POE on

total expression of a downstream gene.

By contrast, eQTL-POE could arise by way of non-coding cis-eQTLs that alter total expres-

sion of an imprinted gene. For example, an eQTL-POE could arise from differences in promoter

attractiveness, (Figure 2.12C). Or, perhaps more interestingly, eQTL-POE could arise by way of

genetic background-dependent loss of imprinting (Vrana, 2007; Duselis et al., 2005; Wolf et al.,

2014) (Figure 2.12D). In our study, all directly-observed POE on expression are necessarily instances

of eQTL-POE, because we did not employ assays capable of measuring ASE.

eQTL-POE and coding-POE both require a genetic difference between parents in some imprinted

or maternally-affected gene. However, any gene can exhibit POE— provided it is regulated by
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the imprinted/maternal-effect gene. This trans effect can occur either by way of coding-POE

(Figure 2.12E) or eQTL-POE (Figure 2.12F).

Both types of POE may be undetected by our study. As mentioned above, coding-POE is

unobservable by our microarrays. Additionally, by measuring expression once, ∼8 weeks after birth,

we may have failed to observe POE during transient, developmental-stage-specific imprintin. And by

measuring whole-brain gene expression, we may have occluded POE arising from imprinting that is

specific to subregions of the brain (Koerner et al., 2009; Prickett and Oakey, 2012).

2.6.2 POE on expression

All 9 imprinted genes that were subject to POE contain non-coding variants that differ between

NOD and B6, a finding consistent with cis-driven, eQTL-POE (Figure 2.12C,D). However, six of the

genes subject to POE were non-imprinted, including Carmil1. POE on such genes may be driven by

maternal effects, or perhaps by trans-acting imprinted regulators (as in Figure 2.12F).

2.6.3 Mediation of POE on Carmil1

To determine potential imprinted regulators of Carmil1 expression, we applied mediation

analysis, identifying Airn. Unexpectedly however, Airn exerted its mediation effect in the opposite

direction of the overall POE on Carmil1 (ab and c′ have opposite signs in Table A.6), suggesting

that Airn suppresses POE on Carmil1 in trans. All but one of the other significant mediators also

acted as POE suppressors. The lack of explanatory mediation in the same direction as the overall

POE may be due to the many unobservable forms of POE on expression: genes that fail to exhibit

POE in their own expression cannot be statistically significant mediators of POE on another genes

expression. Alternatively, Airn and the other imprinted mediator may be suppressing unobserved

maternal effects on Carmil1.

2.6.4 POE on behavior and its mediation by gene expression

Five behaviors were significantly affected by POE, four of which were locomotor behaviors. The

enrichment for POE could in part be due to increased power: locomotor activity has been found to be

among the most stable of behaviors across laboratories and time (Crabbe et al., 1999; Wahlsten et al.,

2006), resulting in more power to observe group differences. Also, however, given that locomotor
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activity has been used to measure rodent emotionality (Hall, 1934) and predict addiction-related

behavior (Piazza et al., 1989), our POE results on locomotor activity may suggest that POEs are in

fact important determinants of emotionality and/or addiction.

For the 5 POE-significant behaviors (and the other non-POE-significant behaviors too), POE

must have been driven by some gene subject to POE; to identify such genes, we applied mediation

analysis, finding 17 genes that mediate behavioral POE. However, for 16 of the 17 genes, the

estimated mediation effect was to suppress POE; i.e, these genes did not explain the overall POE on

behavior. We posit that explanatory POE on gene expression may simply have been unobservable,

for the reasons described earlier.

2.6.5 Airn and Carmil1 as mediators of POE

The most commonly shared mediators of behavior were Carmil1 and Airn, with Airn also being

the top mediator of POE on Carmil1.

Airn’s mediation of POE is likely trans-acting. Airn is an imprinted, paternally-expressed, long

non-coding RNA (lncRNA), which to our knowledge has not been found to affect any complex trait

directly. Rather, Airn is known to control imprinting of three nearby maternally-expressed genes:

Slc22a2, Slc22a3, and Igf2r (Cleaton et al., 2014). But none of the three genes were at all significant

mediators of POE on any outcome of interest in our dataset. So, akin to other lncRNAs and imprinted

genes found to affect distal gene expression (Vance and Ponting, 2014; Gabory et al., 2009), we

posit that Airn may be exerting POE on behavior by affecting distal genes, such as Carmil1 or Snord

115 (as in Figure 2.12E). Our study is underpowered to directly examine this two-step mediation

hypothesis.

Carmil1 may provide a link between cytoskeleton dynamics and cell migration, and behavioral

change. Carmil1 has a known cellular role in: 1) interacting with Capping Protein, which regulates

actin elongation; and 2) activating the small GTPase Rac1, an important regulator of cytoskeletal

dynamics (Gonzalez-Billault et al., 2012). Such actin cytoskeleton dynamics, critical for cytokinesis

and cell migration (Rottner et al., 2017), are important throughout the lifespan for neurodevelopment

and neural plasticity (Menon and Gupton, 2016; Gordon-Weeks and Fournier, 2014). In C. elegans,

neuronal cell and axon growth cone migration has been shown to be negatively regulated by CRML-1,

54



the homolog of Carmil1 (Vanderzalm et al., 2009). Our study, in a mammal, is the first to find a

direct association between variation in Carmil1 expression and behavior.

2.6.6 Caveats to mediation analysis of POE on Carmil1 and behavior

We note that our analysis was applied one candidate mediator at a time; thus, any significant

mediators may simply be co-expressed with the true mediator gene(s). We also note that for both

mediation analyses (Carmil1/behavior outcome) we assumed a direction of causality in which some

imprinted gene mediates POE on the outcome; although this might seem intuitive, it cannot be

verified, and the “outcome” might actually mediate the imprinted gene.

Our directionality assumption is particularly uncertain in the behavioral analysis: expression in

the brain was, out of necessity, measured after behavior; consequently, stressful behavioral assays

could have altered expression. In future studies, we intend to address this weakness by a matching-

based imputation: behavior-unperturbed expression will be imputed in behaviorally-assayed mice

using expression data from mice that were unexposed but are genetically identical and otherwise

perfectly matched (cf. related matching-based designs in Crowley et al. 2014)

2.6.7 Diet effects

Our data revealed significant diet effects on gene expression, with significance primarily driven

by extremely low/high expression under the ME diet. This may be unsurprising given the direct

role of methyl donors on DNA methylation and, consequently, on the regulation of gene expression.

Future perinatal-diet studies may benefit from a ladder of methyl enrichment values.

Notably, diet significantly altered the expression of only 37 genes according to the strict FWER

threshold, but 958 according to the FDR threshold. Some of these additional hits are likely false-

positives (e.g. Y chromosome genes). But it is conceivable that diet did in fact cause a systemic,

diet-buffering change to the overall network of gene expression levels (MacNeil and Walhout, 2011).

Indeed, our FDR numbers seem consistent with earlier work: in the few examples (to our knowledge)

of FDR corrected results from previous rodent studies of perinatal diet effects on gene expression

(Mortensen et al., 2009; Altobelli et al., 2013; Barnett et al., 2015), 500-1000 genes were differentially

expressed.
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Although diet significantly altered the expression of numerous genes, the only complex phe-

notypes affected were body weight and PPI, and those effects were barely significant. The lack of

significant diet effects on behavior, even in the presence of expression changes, is surprising but not

entirely unexpected. Among other possibilities, the diet effects on behavior may be too small to

overcome a sample size that was split among four different diets. Moreover, we measured a limited

set of behaviors that may not have been altered by diet-driven gene expression changes.

2.6.8 Diet-by-parent-of-origin effects

Although our study perturbed nutrients involved in imprinting, the only imprinted gene subject

to diet-by-POE and passing FWER was Mir341. The next most significant imprinted gene, which

passed FDR but not FWER, was Meg3. However, these results are both uncertain: the genes predicted

to be regulated by Mir341 do not seem to manifest diet-by-POE effects in our data; and Meg3’s

diet-by-POE was observed in microarray data but failed to replicate in qPCR data (Figure A.4).

In addition to inevitable lower power for testing interaction effects, the relative lack of observed

diet-by-POE on imprinted genes may also be in part due to the aforementioned transience and/or

tissue specificity of some imprinted genes (Ivanova et al., 2012), or because our diets are insufficiently

extreme to elicit diet-by-POE. Insufficiently extreme diets may also contribute to lack of diet-by-POE

on most of our behaviors (save for percent center time).

As for the 16 non-imprinted genes subject to diet-by-POE (by FWER), these may be regulated by

imprinted genes that are subject to the aforementioned unobservable diet-by-POE (Figure 2.12E,F).

Or, perhaps more likely, the 16 imprinted genes are controlled by maternal effects.

2.6.9 Studying POE in replicable vs non-replicable (outbred) populations

A number of previous studies of POE on complex traits have used outbred populations, such

as F2, backcross, or heterogeneous stocks (Lawson et al., 2013). The advantages of such outbred

populations over the RF1 are that: 1) POE can be detected simultaneously with non-POE genetic

effects; and 2) POE arising from imprinting vs maternal effects can be disambiguated— a significant

difference between reciprocal heterozygote (at some locus) offspring from heterozygote (at that

locus) mothers can be ascribed to imprinting rather than to a maternal effect (Hager et al., 2008).
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However, outbred populations have disadvantages as well: due to the fact that every animal is

genetically distinct in an outbred population, alternate parent-of-origin states can never be observed

in the exact same genetic background; this confounding limits the power of outbred populations to

estimate POE. By contrast, in the RF1, individuals of alternate parent-of-origin state can always be

perfectly matched in the same genetic background (save for the mitochondrial genome), allowing

unconfounded and unbiased estimates of the causal POE. Moreover, whereas the irreplicability of

outbred animals makes it impossible to perfectly recreate genetic state for a validation study, e.g.,

a future study evaluating the effect of a knockout of Carmil1 on behavioral POE, this is readily

available for the RF1.

Only a handful of other studies have used an RF1 strategy to study POE on complex mammalian

traits such as behavior. But none of these studies (save for a recent one of our own in Schoen-

rock et al. (2017)) simultaneously varied environment. Nor have other RF1 studies simultaneously

measured gene expression. We are the first to demonstrate that combining the RF1 design, environ-

mental perturbation, and observation of gene expression, provides a powerful paradigm for studying

environment-by-POE on a complex mammalian trait.
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CHAPTER 3

Rexplorer: optimal reciprocal cross selection for mapping parent-of-origin effects

3.1 Introduction

Imprinted genes have been estimated to play a role in as many as 100 diseases (Ubeda and

Wilkins, 2008), having been linked with maladies ranging from cancer, to metabolic syndromes,

to psychiatric illness (Kalish et al., 2014). Psychiatric illness may be a particularly important

manifestation of imprinted gene mutations, as numerous lines of evidence from mouse and human

studies suggest imprinted genes affect behavior as well as brain development and function (see

section 1.4). Nonetheless, despite such evidence for the importance of imprinted genes, their effect

on most complex traits is not well characterized.

This lack of characterization is likely due to the difficulty of directly observing the “parent-

of-origin effects” (POEs) that imprinted genes exert on complex traits. In more detail, imprinted

genes are subject to an epigenetic process whereby either the maternally or paternally inherited

allele (depending on the gene), is (at least partially) silenced (Crowley et al., 2015; Bartolomei

and Ferguson-Smith, 2011). That is, for imprinted genes, each allele’s expression depends on its

parent-of-origin, and traits affected by imprinted alleles are in turn subject to parent-of-origin effects

(Lawson et al., 2013). As a result, identifying imprinting-driven POE on complex traits requires that

reciprocal heterozygotes for a given imprinted locus exist in the population under study; for example,

assuming an “A” and “B” allele exist at some imprinted locus, “AB” organisms (maternal A) need to

be compared with “BA” organisms.

The requisite reciprocal heterozygotes can be generated in the outbred populations typically used

for studying POE. But these populations are not ideal, in part because POE in can be confounded

with genetic differences at every other locus. An alternate, but relatively unused population, is one

consisting of reciprocal F1 hybrids (RF1s), each generated by a reciprocal cross (RX); in a RX

of inbred strains S1 and S2, any resulting female S1xS2 and S2xS1 RF1s are (almost) genetically
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identical, differing only in allelic parent-of-origin. Consequently, by comparing the S1xS2 and S2xS1

subpopulations, POE can be detected without confounding, and with maximal power.

3.1.1 Rationale for the development of Rexplorer

Motivated by the existing evidence for POE on behavior, as well as by the power of RXs, we

engaged in a POE pilot study employing RXs of C57BL/6J (B6) with NOD/ShiLtJ (NOD) mice.

Behavior and gene expression data from the B6xNOD and NODxB6 RF1s suggested the presence

of POEs (Oreper et al., 2018). These results then motivated a follow-up study, which we refer to

here as the CC-POE study. The CC-POE’s design largely mirrored that of the pilot, but rather than

reciprocally crossing mice from a single pair of strains, we intended to reciprocally cross eight pairs

of parental lines (Schoenrock et al., 2017) and then measure behavior and expression in the eight

resulting sets of RF1s (Figure 3.1).
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Figure 3.1: A Collaborative Cross (CC) experiment to map POE using reciprocal crosses
(RXs). The CC is an existing population; it is not being developed in this project: a) The
8 inbred founder lines of the CC (including NOD and B6) b) were outcrossed in different
founder orderings for 3 generations and c) then inbred for multiple generations in a funnel
breeding scheme resulting in the CC, a panel of recombinant inbred lines. d) 8 pairs of
CC lines were chosen from among 43 available lines, and reciprocally crossed (RXd),
generating 8 genetically identical pairs of reciprocal F1 hybrids (RF1s), that differ in allelic
parent-of-origin. e) These RF1 mice were either behaviorally tested or whole-brain RNA-
seqd. For completeness—although this aspect is not relevant to Rexplorer—we note that
the whole experiment was repeated under 4 different perinatal diets.

In part, the intent of generating 8 additional RF1 populations was to coarsely map POEs on

behavior back onto imprinted loci: if well-chosen, each additional RX would be able to progressively
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narrow the search space of imprinted loci potentially causal to POE. Toward this end, parental lines

for the CC-POE RXs were drawn from the Collaborative Cross (CC) reference population, an existing

panel of recombinant inbred lines of mice whose genomes are independent, high in genetic diversity

(Shorter et al., 2017; Oreper et al., 2017c), and, critically, are derived in part from NOD and B6

(along with 6 other founder lines). But the more difficult decision was: which CC lines in particular

should be crossed?

At the time of the experiment, 43 CC lines were available, allowing us to potentially generate

over 900 genetically distinct RF1 populations. Generating every such RF1 was clearly impractical

given breeding, housing, and other costs. On the other hand, a set of 8 RXs carelessly chosen could

have resulted in RF1s that lacked mapping resolution, or that even failed to detect POE at all. To

avoid these small-population pitfalls, we selected the RXs using the Reciprocal Cross Explorer

(Rexplorer), a method we have developed to select RXs from a panel of candidate inbred strain

parents, for the purpose of studying POE.

3.1.2 Relationship of Rexplorer to existing methods

The experimental design problem that Rexplorer seeks to address—of selecting RXs from a panel

of inbred lines—could be considered as partially related to that of selecting animals for breeding:

both problems require computationally exploring a large space of potential crosses, and then choosing

those that optimize properties of the resulting population. For example, breeding selection methods

used in livestock and for agriculture involving genomic estimation of breeding value (Meuwissen

et al., 2001) employ genetic information towards optimizing some phenotype (e.g., milk yield). Other

breeding algorithms may seek to also optimize genetic properties of the bred population such as

genetic diversity, and/or to limit inbreeding (Kemper et al., 2012). And some breeding methods go

so far as to optimize a mate selection index (Kinghorn, 2000, 2011), which measures the goodness of

a set of particular pairings of animals.

But although breeding selection bears similarities to the Rexplorer problem, Rexplorer does

not seeks to optimize for a particular phenotype; indeed, Rexplorer selects crosses without any

knowledge of the parental phenotypes, relying solely on genetic information. Furthermore, in the

Rexplorer context of crossing inbred lines, and unlike in breeding selection, the genetic state of

the potential RF1 offspring from candidate breeding pairs is known with near-total certainty; it
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is as though these offspring already exist. As such, Rexplorer attempts to solve a problem that is

in fact quite closely related to that of selective phenotyping, a process (first proposed in Darvasi

1998), in which a subset of genotyped organisms are prioritized for costly phenotyping, in order to

most efficiently map quantitative trait loci. Rexplorer performs a similar function—using imputed

offspring genetic state—to prioritize a subset of organisms for costly generation, which are to be

used for mapping POE.

Previous approaches to selective phenotyping include those described in: Jin et al. (2004) and

Huang et al. (2013a), in which greedy and clustering algorithms were employed to maximize the

phenotyped organisms’ genetic diversity; Jannink (2005), in which a greedy algorithm maximized

the number of mapping intervals for which at least one phenotyped animal’s genome contained

a recombination event, to maximize mapping resolution; and in Vision et al. (2000) and Xu et al.

(2005), in which greedy and optimal algorithms were employed to minimize the sum of squares of

“bin lengths”, defined as the lengths of contiguous intervals in which no recombination occurs within

any of the phenotyped population—by minimizing bin lengths, mapping resolution is optimized.

Although selective phenotyping approaches are motivating, Rexplorer has been designed specifi-

cally to optimize the experimental design of RF1 populations for studying POE. We present simula-

tions comparing its performance to naive selection, and also employ Rexplorer in the CC-POE study.

Our efforts provide a method and demonstration of experimental design for studying POE in any

model organism.

3.2 Methods

Given a candidate set of RXs, Rexplorer seeks to select a subset of RXs that is optimal for

studying POE arising from imprinted genes. Towards this end, Rexplorer chooses RXs that maximize

a metric on the imprinted loci. Per locus contributions to the metric are weighted according to

the types of heterozygosity in the RF1 populations. Maximization of the metric is formulated as

equivalent to a generalized maximum coverage problem, which is solved using integer programming.
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3.2.1 Optimized metric

Rexplorer optimizes a metric which is intended to reward sets of crosses that, regardless of the

mapping algorithm, should generate a population conducive to mapping POE, and in a manner which

hedges over all candidate loci as being potentially causal to POE. Towards this end, the Rexplorer

metric rewards crosses with high potential “exploration” and “discrimination”, concepts that we

describe below (illustrated in Fig 3.2).

exploration A POE driven by some locus can only be detected by observing individuals that

are reciprocally heterozygous at that locus. Accordingly, a RX whose RF1 offspring are

heterozygous at a locus can “explore” that locus for POE. The more loci a RX can explore, the

greater the chance it will detect POE.

discrimination If a locus causal to POE exists, a RX that generates RF1s whose genomes are mostly

heterozygous is likely to detect the POE. However, such a RX will fail to provide mapping

resolution: a detected POE could have come from any heterozygous locus. POE detection

can only enable an observer to discriminate between a pair of loci as potentially causal, if one

locus is heterozygous and the other homozygous. Accordingly, we describe a RX as being able

to “discriminate” between a pair of loci. The more locus pairs a RX discriminates between,

the finer the RXs mapping resolution.

Combining these two concepts, the overall metric optimized by Rexplorer is a weighted sum of

exploration and discrimination.

Exploration and discrimination were described in the context of a single RX, but both can be

adapted to apply to a set of RXs as well: for a set of RXs, the explored loci are those which are

explored by at least one RX in the set, whereas the discriminated pairs of loci are those discriminated

by at least one RX.

3.2.1.1 Weights for exploration and discrimination and “best-possible weight” RX scoring

Not all types of exploration are necessarily equivalent. Suppose that at some locus, alleles A

and B only differ by a single base pair, whereas alleles C and D differ by a multi-base insertion:

a comparison of CD vs DC animals is more likely to reveal POE than one of AB vs BA animals.
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Figure 3.2: Exploration and discrimination metrics in the context of a single RX. A) A RX
with high exploration. The resulting RF1s are heterozygous at every locus but #4, and so
if a POE exists, this RX is highly likely to reveal that POE in a comparison between the
phenotypes of the two RF1 directions. Exploration can be quantified by counting the number
of heterozygous loci: in this case, 7. On the other hand, this RX has low discrimination;
even if a POE were detected by this RX, it would be unclear which locus caused the POE.
Discrimination can be quantified by counting all the pairs of loci in which one locus is
homozygous, and the other is heterozygous. Discriminated pairs include (1,4), (2,4), (3,4),
(4,5), (4,6), (4,7), and (4,8), adding up to a discrimination score of 7. B)) A different RX, with
lower exploration—only 4 loci are reciprocally heterozygous—but higher discrimination—a
total of 16 unique locus pairs include one homozygous and one heterozygous locus.
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Accordingly, we can assign RX exploration by CD/DC heterozygosity a higher weight. Similarly,

not all discrimination is equivalent: for a locus pair, if one locus is homozygous, but the other

locus is a barely heterozygous AB/BA locus, the two loci are nearly indiscriminable—and so, RX

discrimination in which one of the two loci is CD/DC should be assigned a higher weight.

In addition to RX-by-locus specific weighting, some loci may be believed a priori to be more

likely than others to be causal to POE—independent of the RX. Exploration and discrimination

weights can both be adjusted accordingly, on a per locus basis.

We decided to account for these weights in the Rexplorer metric as follows: a locus contributes

to the Rexplorer score according to the best possible selected RX weight at that locus; if a locus can

be explored by only one selected RX, that RX’s locus-specific weight is accrued, but if exploration

is possible by more than one selected RX, the maximum locus-specific weight over these RX is

accrued instead. Discrimination weights for locus-pairs are accounted for similarly: the best possible

weight at each locus-pair is used. An example of such “best-possible weight” scoring is illustrated in

Figure 3.3.

L1 L2 L3 L4 L5 L6

RX1 0 1 0 0 1 1

RX2 0 0 1 0 10 1

RX3 0 0 0 10 0 0

Score 0 1 1 10 10 1

Figure 3.3: Best possible weight scoring for exploration by 3 RXs. The first three rows of this
table encode a RX, the columns encode loci, and each cell (of the first three rows) contains
the weight associated with exploring a particular locus by a particular RX. For example,
RX3 can explore locus 4 and accrue 10 points worth of exploration. The last row shows the
score at each locus assuming all 3 RX are used. At each locus, the best possible weight is
accrued; if two RXs can explore the same locus (i.e., locus 5), the largest weight is accrued.
The total exploration score is 23.

Best-possible weight scoring leads naturally to a maximum coverage formulation, described

further in subsection 3.2.2: “Weighted maximum coverage formulation”.
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3.2.2 Weighted maximum coverage formulation

To choose RXs that maximize both exploration and discrimination, the Rexplorer method

formulates RX choice as a modified version of the generalized maximum coverage problem

(GMCP) (Cohen and Katzir, 2008). To provide intuition, an example of the GMCP is as follows:

suppose a business can profit from a set of tasks, each of which can be completed once. The business,

subject to a fixed budget, can hire from a pool of candidates, each of whom can complete (i.e., cover)

a different subset of the tasks, but with differing ability. And some tasks yield more profit than others.

The business wants to hire the subset of candidates that would accrue maximal profit. By analogy,

every possible RX is like a candidate that can be hired. Each RX has differing ability, depending on its

heterozygosity, to explore some loci (i.e., complete certain tasks), but cannot explore some loci at all.

Similarly, each RX can discriminate between some pairs of loci, but not others. Some loci are more

important (i.e., weighted) than others. If more than one RX can explore a given locus/discriminate

between loci, we assume results from the best RX will be used. On a budget allowing k RXs, we

would like to maximize a weighted sum of discrimination and exploration (profit). Once RX selection

is formulated as a GMCP, several existing integer programming solvers can be used to determine a

solution (Hutter et al., 2010); Rexplorer uses Gurobi (Gurobi Optimization, Inc., 2015). Although

GMCP is NP-hard in general (Cohen and Katzir, 2008), in the context of the CC-POE, the problem

size allows for an exact solution.

The specific GMCP formulation Rexplorer uses is presented below, with variable definitions in

Table 3.1.
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The maximized weighted sum is

max θ
∑
i∈I
αh,iYh,i + (1− θ)

∑
(i,i′)∈I2

βh,i,i′Zh,i,i′ , (3.1)

and this maximization is performed subject to the constraints:

Xj∈{0, 1} j∈J (3.2)

Yh,i∈{0, 1} i∈I (3.3)

Zh,i,i′ ∈{0, 1} (i, i′)∈I2,h∈Hi∪Hi′ (3.4)∑
j∈J

Xj =k (k RXs must be selected from the candidate RXs) (3.5)∑
j∈Jh,i

Xj≥Yh,i i∈I (If a RX in Jh,i is selected, (3.6)

it can explore locus i, accruing value αh,i)∑
h∈Hi

Yh,i ≤ 1 i∈I (Exploration is rewarded at most once per locus; (3.7)

redundant/weaker selected RXs accrue no value)∑
j∈Jh,i,i′

Xj≥Zh,i,i′ (i, i′)∈I2,h∈Hi∪Hi′ (If a RX in Jh,i,i′ is selected, it can discriminate (3.8)

between locus i and i′, accruing value βh,i,i′)∑
h∈Hi∪Hi′

Zh,i,i′≤ 1 (i, i′)∈I2 (Discrim. is rewarded at most once per locus-pair; (3.9)

redundant/weaker selected RXs accrue no value)∑
j∈Js

Xj≤1 s∈S (No two selected RXs can share a parental strain) (3.10)

Where terms are defined as follows:
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I The set of loci for which we are choosing an optimal RX set.
J The set of all candidate RXs, from which RXs are selected.
Js The set of all candidate RXs, in which strain s is a parent.
Hi The set of all possible types of heterozygosities at locus i, across all candidate RXs
Jh,i The set of all candidate RXs that are heterozygous of type h at locus i.
k The number of RXs to select from the candidate set of RXs.
Xj 1 iff candidate RX j is selected, 0 otherwise
Yh,i 1 iff the ith locus is assigned to be explored by a RX which at locus i has heterozygosity

type h, 0 otherwise. Since at most 1 RX can be assigned to explore a locus, this is not
the same as a RX being capable of exploring a locus.

αh,i A weight reflecting the value of exploring the ith locus with heterozygosity type h,
which also takes into account prior belief that locus i is causal to POE.

I2 The set of all unique locus pairs—with (i, i′) and (i′, i) considered to be equivalent.
Jh,i,i′ The set of all candidate RXs that that are homozygous at locus i, but heterozygous with

type h at locus i′, or vice versa.
Zh,i,i′ 1 iff locus pair (i, i′) is assigned to be discriminated by a RX which at locus i or i′ has

heterozygosity type h. 0 otherwise.
βh,i,i′ A weight reflecting the value of discriminating between the ith and i′th loci using

heterozygosity type h. Also accounts for prior belief that locus i or i′ is causal to POE.
θ Weight denoting the importance of exploration vs. discrimination.

Table 3.1: Terms in the maximum cover formulation

For emphasis, we reiterate that the maximized metric is computed solely using genetic informa-

tion and no phenotype information.

3.2.2.1 Departures from the typical GMCP

The Rexplorer formulation departs from the typical GMCP formulation in three ways:

1. Rather than encoding the two types of elements to be covered simply as elements, we specify

them separately: exploration elements, and discrimination pair elements. This admittedly

complicates the formulation, but it does makes more explicit exactly how Rexplorer defines

coverage of exploration vs. discrimination. The explicit discrimination terms are accounted

for in the bottom half of Table 3.1.

2. Ordinarily, weights in the GMCP can be different for every candidate-set/element combination;

however in the Rexplorer context, there are only a handful of different types of heterozygosities

per locus, and we consider exploration by two different RXs with the same heterozygosity to

be equivalent—so only as many weights as there are heterozygosities per locus are needed.

Accordingly, we did not need a separate variable per RX-locus combination (i.e., Yj,i), and
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could instead account for maximum exploration coverage using Yh,i variables. Similar rea-

soning holds for discrimination coverage. By capitalizing on the small number of possible

heterozygosity types relative to the number of RXs, we reduce the GMCP problem size by a

factor of at least 20.

3. We include a RX-to-RX constraint encoding that no RX cannot be selected if one of its parental

strains has already been used in another selected RX—see Equation 3.2.2. The intent is to

preserve genetic independence between RXs.

3.2.3 CC-POE-specific inputs to Rexplorer

Although Rexplorer accepts a general set of inputs, in order to actually apply Rexplorer to

CC-POE design, we needed to determine problem-specific inputs. In particular, we needed to

determine:

1. An input set of candidate loci over which to optimize (I in subsection 3.2.2)

2. A specification of which RXs would be heterozygous (and with which alleles) at each locus

(i.e., Jh,i in subsection 3.2.2),

3. A set of heterozygosity-and-locus-specific exploration and discrimination weights (i.e., αh,i,

βh,i) in subsection 3.2.2).

Before describing the CC-POE-specific inputs we chose, we note that our subjective choices

here (especially with respect to (i) and (iii)) were based in large part upon previous studies that

had RXd CC founder strains and revealed POE; we reasoned that POEs revealed in RXs of CC

founders were likely to also be revealed in RXs of CC lines. Specifically, we drew upon results from

Crowley et al. (2015), in which RXs between NZO, PWK, and CAST revealed POE on whole-brain

gene expression, and from Oreper et al. (2018), in which RXs of NOD and B6 revealed POE on

whole-brain expression, as well as on behavior.
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3.2.4 Candidate loci

For the choice of candidate loci, we elected to use a set of imprinted genes (Oreper et al., 2018)

composed of the union of the genes identified as imprinted in Mousebook (Blake et al., 2010) and

the genes identified as imprinted in Crowley et al. (2015).

3.2.5 Heterozygosity determination per RX based on identity-by-descent per locus

In the context of CC-POE design, we defined heterozygosity according to non-identity-by-

descent: RF1s generated by a RX are defined as heterozygous at locus i if the two parental CC lines

of that RX are, at that locus, non-identical-by-descent (non-IBD). We note that identity by descent

was determined with respect to some ancestor of the CC founders; consequently, at some loci, even

two different CC founders could themselves be IBD with one another. IBD determination per CC

line and locus was extracted from the online resource developed in Wang et al. (2012), which in turn

was based in large part upon IBD analysis of the CC founders in Yang et al. (2011).

3.2.6 Exploration and discrimination weights

In our exploration weight scheme (shown in Table 3.2), we upweighted imprinted genes found

to be brain-expressed and/or subject to a POE in Crowley et al. (2015). We also upweighted

heterozygosity types that mirrored the NODxB6 pilot RXs. Specifically, (on a per-locus basis) we

assigned non-zero weight to 4 types of “heterozygosity-by-descent”: i) “NOD-B6”, in which one

parental strain is IBD with NOD, the other parental strain is IBD with B6, and NOD is non-IBD with

B6; ii) “NOD-*”, where one parental strain is IBD with NOD, and the other strain is neither IBD

with NOD nor IBD with B6; iii) “B6-*”—akin to (ii), but with one parental strain IBD with B6; and

iv) “*-*”, in which both parental strains are neither IBD to B6 nor to NOD, and the two parental

strains are also non-IBD to each other.

For the choice of locus-pair discrimination weights (shown in Table 3.3), we used a simpler

scheme which only took into account heterozygosity type. Locus pairs in which one locus was

NOD-B6 heterozygous were given the largest weight. Pairs in which one locus was either NOD-*, or

was B6-*, were given lower weight, and all other locus pairs were given 0 weight.
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Brain-expressed &
strain-by-POE

Brain-expressed &
no-strain-by-POE

No brain expression

NOD-B6 40 32 4
B6-* 36 28 0

NOD-* 36 28 0
*-* 12 8 0

Table 3.2: Exploration weights for the CC-POE study. The rows encode heterozygosity types,
whereas the columns describe locus characteristics (as measured in (Crowley et al., 2015)) that are
independent of heterozygosity. Each cell contains the corresponding weight for that type of locus
and heterozygosity. For example, cell (B6-*, “Brain Expressed & no strain-by-POE”) specifies that
an exploration weight of αh,i = 28 should be applied to loci (i) that are brain-expressed but showed
no POE, and that are explored by a RX whose heterozygosity type (h) is B6-* (where * denotes any
founder that is non-IBD to B6 or to NOD).

NOD-B6 4
B6-* 2

NOD-* 2

Table 3.3: Discrimination weights for CC-POE study. Each contains the weight βh,i,i′ for a pair of
loci in which locus is homozygous and the other locus is some type of heterozygous. For example,
cell NOD-B6 specifies that a discrimination weight of βh,i,i′ = 4 should be applied to those locus
pairs (i, i′) that are discriminated by a RX whose heterozygosity type (h) is NOD-B6 (at either i or
i′).

3.3 Results

To select CC lines to be RXd for the CC-POE, we applied Rexplorer. It chose the following

8 pairs of parental lines to be reciprocally crossed: (CC001/Unc, CC011/Unc), (CC041/TauUnc,

CC051/TauUnc), (CC004/TauUnc, CC017/Unc), (CC023/GeniUnc, CC047/Unc), (CC028/GeniUnc,

CC038/GeniUnc), (CC006/TauUnc, CC026/GeniUnc), (CC003/Unc, CC014/Unc), and (CC035/Unc,

CC062/Unc).

3.3.1 Comparison of Rexplorer results to alternate methods

Having computed this “Rexplorer solution”, in order to gain an understanding of its relative

usefulness we compared its exploration and discrimination scores to those of the following alternate

methods:
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1. “Random”, in which RXs are selected at random, subject only to the constraints that: i) no

selected RX could share a parental line with another, and ii) a total of 8 RX were to be selected.

Random effectively models a naive experimental design.

2. A “Select-all” algorithm, in which every available RX is selected, ignoring any and all

constraints. This effectively provides an upper bound on any algorithm’s performance.

Although exploration and discrimination are metrics that are internal to Rexplorer—and thus Rex-

plorer would be expected to succeed in optimizing them—an examination of these metrics across

different approaches provides a starting point for comparison. This comparison is shown in Figure 3.4.

Rexplorer outperforms Random across both metrics, and is nearly as valuable as the best possible

Select-all solution.

3.3.2 Breeding and analysis of data from the Rexplorer crosses

Having examined the relative value of the Rexplorer solution, we engaged in a breeding program

to actually generate the RF1s for each Rexplorer-selected RX. At this point, it was discovered that the

pairing of (CC028/GeniUnc, CC038/GeniUnc) could not produce offspring in one of its reciprocal

directions—(CC038/GeniUnc x CC028/GeniUnc)—and so would not be useful in detecting POE. To

compensate for the loss of this RX, and to hedge against future reproductive failures, 2 additional

RXs were added to the CC-POE study, primarily based on their observed high fertility (rather than

on their Rexplorer exploration/discrimination score). Both of the compensatory RXs successfully

generated RF1 offspring.

An initial set of analyses of behavioral data from the 9 viable RXs revealed POE on multiple

phenotypes, with 8 of 9 RXs revealing at least one POE (Schoenrock et al., 2017)— suggesting that

the Rexplorer solution successfully prioritized locus exploration for POE. With regard to Rexplorer’s

ability to ensure mapping resolution, we have not yet completed the eventual coarse-mapping of

observed POEs in this dataset.

3.4 Discussion & future work

In this work, we developed Rexplorer, a method for selecting an ideal set of RXs for studying

POE,and also demonstrated its viability and usefulness by applying Rexplorer to an ongoing ex-
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Figure 3.4: A comparison of the Rexplorer selected RXs for the CC-POE to other ap-
proaches’ selected RXs. Each point corresponds to the exploration and discrimination of
a set of RXs. Each point-color encodes the approach that generated that RX set, where
approaches shown include: i) Select-all, an unlimited budget solution (red); random RX
set selection under an 8 RX budget (blue); and iii) the Rexplorer solution under our budget
(orange). A random solution was generated 1000 times, and most of these solutions are
only represented as part of a cloud, rather than as individual points.
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periment, the CC-POE. In a comparison to other approaches, the Rexplorer solution dominated all

random solutions, and was nearly as good as a solution composed of every possible RX, under an

infinite budget (a.k.a, select-all). And the Rexplorer selected crosses were generated, resulted in

published work, and the detection of multiple POE.

Despite Rexplorer’s success in the CC-POE, there are several potential areas for improvement.

Perhaps most pressing is the need for Rexplorer to generate RX sets that account for the possibility of

breeding failure: although in the CC-POE only a single RX failed, Dobzhansky-Muller incompatibil-

ity theory (Dobzhansky, 1936; Muller, 1942) suggests crosses of inbred lines in general will be prone

to failure, and existing CC cross-breeding data (personal communications with Darla Miller) suggests

cross-breeding of CC lines fails at a rate of 20%. At present, Rexplorer, being a maximum-cover

approach, prioritizes RX sets that lack redundancy; this does not, however, provide any particular

resiliency to breeding failures.

One way to account for potential breeding failure would be to reformulate the RX selection

problem not as a maximum cover, but rather as a Maximum Expected Covering Location Problem

(MEXCLP). Under this formulation, each RX would be assumed to have a constant probability p of

failure, and RXs would be chosen to maximize expected exploration/discrimination (Daskin, 1983).

Other more involved formulations, such as the Adjusted MEXCLP, could be drawn upon to allow for

different probabilities of failure per RX (Batta et al., 1989).

A second potential area for improvement is in the assignment of exploration/discrimination

weights. For applying Rexplorer to the CC-POE study, we used heterozygosity-by-descent per-locus

to determine weights. However, our weighting scheme did not take into account the size, the number

of know variants, or the variant types within each locus. One way to address this issue would be

to incorporate CC variant info from the ISVdb (Oreper et al., 2017c) into the weighting scheme

per locus. We do note, however, that even if variant information is included, future iterations of

Rexplorer are likely to continue to optimize over loci—contiguous discrete regions—rather than over

individual variants; preliminary results suggest optimization at the variant scale is unsolvable in a

reasonable amount of time.

Last, an ideal implementation of Rexplorer would readily allow for more loci and candidate RXs,

and still generate a solution. Although solution generation for the CC-POE did not tax Rexplorer’s

current integer programming implementation—and nor did a problem with ten times as many loci—
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even larger instances of this NP-hard problem do become unsolvable. As such, it may prove to be

necessary to instead use some form of randomized greedy algorithm, an approach found to perform

well in a different selective phenotyping context (Vision et al., 2000).
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CHAPTER 4

Inbred Strain Variant Database (ISVdb): A repository for probabilistically informed
sequence differences among the Collaborative Cross strains and their founders 1

4.1 Introduction

The Collaborative Cross (CC) is a large panel of recombinant inbred mouse strains derived from

a genetically diverse set of eight inbred founder strains—A/J (AJ), C57BL/6J (B6), 129S1Sv/ImJ

(129), NOD/ShiLtJ (NOD), NZO/HlLtJ (NZO), CAST/EiJ (CAST), PWK/PhJ (PWK), and WSB/EiJ

(WSB)—which were outcrossed and then inbred in a multi-funnel breeding scheme. Within each

funnel, mice were inbred until two or more animals were identified by MegaMUGA genotyping

collectively as having over 90% of the genome fixed (i.e., homozygous and consistent for a founder

haplotype). These animals, hereafter termed the most recent common ancestors (MRCAs), were then

chosen to become the obligate ancestors of all subsequent generations and bred to produce a distinct

CC strain.
As a result of their breeding scheme, the inbred CC strain genomes are random and independent

mosaics of the eight founder haplotypes (Collaborative Cross Consortium (2012); Srivastava et al.

(2017); more details in section 1.5, Figure 1.2, and in http://csbio.unc.edu/CCstatus/

index.py?run).

These properties, along with the reproducibility of inbred strains have made the CC a unique

resource in mammalian genetics. But to make optimal use of the CC strains, it is desirable to have

an accurate catalog of the genetic differences between them—specifically, the positions and other

characteristics of all known CC strain genetic variants—and to be able to predict which variants will

be polymorphic in future hypothetical crosses of CC strains and of CC strains with other laboratory

strains.

1This chapter has been adapted from a manuscript published in G3. The citation is as follows: Oreper, D., Cai, Y.,
Tarantino, L. M., Villena, F. P.-M. d., and Valdar, W. (2017). Inbred Strain Variant Database (ISVdb): A Repository for
Probabilistically Informed Sequence Differences Among the Collaborative Cross Strains and Their Founders. G3: Genes,
Genomes, Genetics, 7(6):16231630.
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Such information could be determined directly by sequencing, but CC sequencing, soon to be

released for a single male per strain Srivastava et al. 2017, is not yet easily accessible. Furthermore,

sequencing from a single animal will not resolve uncertainty arising from residual heterozygosity,

since two animals from the same strain could easily differ at residually heterozygous loci. More

generally, whole-genome sequencing in most organisms is expensive and inconvenient.

A commonly used alternative is haplotype-based variant imputation, whereby comparatively

sparse and cheap genotyping data is combined with more complete information about allelic state in

(even extremely distant) relatives to infer allelic state at ungenotyped positions in the target sample.

This typically involves inferring shared haplotype blocks and, by assuming that individuals sharing a

haplotype block also share the corresponding allelic state, using this to impute genotype (Li et al.,

2009; Marchini and Howie, 2010). A broad array of such imputation methods have been developed

for use in humans (eg, Hawley and Kidd 1995; Scheet and Stephens 2006; Marchini et al. 2007;

Browning and Browning 2009; Howie et al. 2009; Li et al. 2010) and livestock (eg, VanRaden et al.

2011; Hickey et al. 2012; Sargolzaei et al. 2014); these typically either start by inferring haplotypes

from the genotype data or by approximating the pool of extant haplotypes via a large reference panel,

and then use those haplotypes as a means to impute variant genotypes, which are assumed to be the

primary interest.

In multiparental populations (MPP) of model organisms, where the founder haplotypes are

usually known, it is more common for primary interest to focus on reconstructing the haplotype

mosaic itself, eg, for the purpose of linkage disequilibrium mapping (Mott et al., 2000; Liu et al.,

2010; King et al., 2012; Fu et al., 2012; Gatti et al., 2014; Verbyla et al., 2014; Zheng et al., 2015). In

such cases, haplotype-based imputation of specific variants may proceed as a second, refinement step

to inform fine-mapping and candidate prioritization (Yalcin et al., 2005; Tian et al., 2011). In any

analyses using imputed variants, it important to note that the haplotype based variant imputation is

inherently probabilistic. A failure to account for variant imputation uncertainty can negatively affect

the robustness of downstream decisions (eg, overconfidence in a functional assignment), and also

can produce misleading estimation of association significance and/or variant effects (eg, Marchini

et al. 2007; Guan and Stephens 2008; Kutalik et al. 2011; Zheng et al. 2011; Zhang et al. 2014).

Haplotype-based variant imputation lends itself particularly well to MPPs because the haplotype

blocks and the variants within are drawn from a known and relatively limited number of founders that
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can be (more) affordably deeply sequenced and genotyped. This in turn reduces variant imputation

uncertainty. For MPP RI strains, in particular, once an animal’s variants are imputed, the need for

even sparse genotyping is largely obviated in its inbred descendants—they are effectively genotyped

as well. Haplotypes can, and have been, similarly imputed for the entire CC population based on

the CC MRCAs. In particular, a Hidden Markov Model (HMM) based method (Fu et al., 2012)

has previously been applied to MegaMUGA genotyping of the CC MRCA animals coupled with

MegaMUGA genotyping from founder animals, (Welsh et al., 2012; Morgan et al., 2015; Srivastava

et al., 2017) to impute a probabilistic estimate of each CC strain’s haplotype mosaic. Sequencing

of the founders by the Sanger Institute has provided a catalog of the sequence variants within the

founder haplotypes (Keane et al., 2011) as well as their predicted functional consequences (McLaren

et al., 2010), allowing for CC variant imputation.

However, although probabilistic imputed descriptions of CC haplotypes are already available,

the final step of imputing probabilistic CC variant state using these haplotypes is currently left up to

the researcher. This imputation step can be time-consuming, especially genome-wide, and it typically

requires the researcher to develop their own ad-hoc, non-trivial scripts to parse and process input files.

We seek to ease this burden by creating the Inbred Strain Variant Database (ISVdb). This database

computes and stores imputed probabilistic CC variant information once, and then provides efficient,

uniform and convenient access through a publicly accessible webtool.

4.2 ISVdb stored data and functionality

For all Sanger Institute sequencing variant positions that are exonic (or 100 bp upstream or

downstream), polymorphic between CC founders, and correspond to SNP/indels, the ISVdb provides

conveniently accessible information on the following:

• unphased genotypes for CC strains/founders, including the functional consequences per geno-

type, per transcript.

• unphased haplotype pairs (hereafter, “diplotypes”) for CC strains, derived probabilistically

from MegaMUGA genotyping;

• unphased genotypes for hypothetical F1 crosses amongst and between CC and founder strains;
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• unphased diplotypes for hypothetical F1 crosses amongst and between CC and founder strains.

All information in the ISVdb is associated with a probability, to reflect the uncertainty of inference

(discussed in the next section). The ISVdb interface is designed to be practical, oriented towards

concrete tasks. For example, the ISVdb could be used to answer the following questions:

• Given microarray measurements of CC expression, which probes ought to be masked from anal-

ysis to minimize the effect of differential hybridization due to variants within the corresponding

probed regions?

• Where should PCR primers be designed to bind so as to avoid differential hybridization, while

still amplifying informative regions?

• What are the alleles per variant per CC strain in a given region, in order to perform association

mapping?

• Given a pair of CC strains, or set of pairs of CC strains, where would the resulting F1 offspring

be heterozygous? Which CC strains could be crossed with one another, or against a founder

strain, to ensure that a certain region is heterozyogous in the offspring?

• Which CC strains contain a stop-gain codon in a particular gene?

• What is the ratio of missense to synonymous mutations on a particular chromosome?

• Which regions are fixed across all CC strains? Which regions are still segregating in a subset

of CC strains?

• Which regions are most uncertain, either in haplotype or in genotype, across CC strains?

4.3 ISVdb preserves uncertainty

The primary purpose of the ISVdb is to provide genome-wide, inferred CC genotypes. But this

inference depends on several processes and measurements that are themselves imprecise: 1) sequenc-

ing of founder strains was imperfect so some founder variant calls are ambiguous or incorrect; 2)

uncertainty in the sparse, genotyping-based estimates of CC diplotypes; 3) the CC strains themselves

are still segregating in some regions.
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Properly representing and accounting for such sources of uncertainty is essential to avoid

inaccuracies in downstream inference. Consider the effect of diplotype uncertainty on predicting the

functional consequences of the alleles in an F1 hybrid from two CC mice.

Suppose one of the CC parents had a 40:30:30 probability of AJ/AJ vs 129/129 vs NOD/NOD

diplotype, and where AJ carries a synonymous mutation, whereas 129 and NOD both carry a stop-

gain mutation. Assuming the most likely diplotype, AJ/AJ, would imply a synonymous mutation in

the F1, even though there is a greater (60%) probability of a stop-gain mutation.

The closest similar resource to the ISVdb, the CC ”pseudogenomes” set, (Morgan and Welsh,

2015; Huang et al., 2013b) was designed primarily for sequence alignment: it employs most-likely

point estimates of genotype and assumes all alleles are fixed. Therefore, a key secondary goal of

the ISVdb is to provide a resource that retains all of the aforementioned uncertainty in CC and F1

genotype inference. The ISVdb achieves this by storing multiple records per variant, in which each

record includes a probability of that variant state.

4.4 Materials and Methods

4.4.1 Inputs for Database Construction

All inputs are based on the GRCm38 mouse reference assembly. Probabilistic estimates of CC

unphased diplotypes were computed as of 2016-03-24. These diplotype estimates were derived from

a hidden Markov model (HMM) applied to MegaMUGA microarray measurements (Morgan and

Welsh, 2015).

Founder variants were determined using the Sanger Institute, Mouse Genomes Project, mouse

variant VCF files, REL-1410 (from 2014-10), corresponding to Ensembl release 75 of GRCm38

(Keane et al., 2011). These VCF files included SNPs and indels (1-100bp). Exon boundaries were

drawn from Ensembl release 75 as well (Ramasamy et al., 2013).

4.4.2 CC genotype and diplotype inference: derivation

By tracing the potential transmission path of alleles from founders to CC strains, an expression

can be derived for the probabilistic distribution of the unphased CC genotype, entirely in terms of

known quantities. That is, we can derive an expression for the unphased CC genotype at each founder
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variant position, in terms of known unphased founder genotype probabilities from sequencing, and

known unphased MegaMUGA haplotyping at markers. Along the way, we can also derive the

probability distributions of the CC diplotypes. The equations below are specific to a given variant;

they need to be recalculated for every founder variant and CC strain combination.

First, note that the unphased CC genotype probability distribution can be defined in terms of that

of the phased CC genotype:

p(UGc = {a, a′}) = p(Gc = (a, a′) + p(Gc = (a′, a)) , (4.1)

where UGc is the unphased genotype of CC strain c, {a, a′} is an unphased genotype with (possibly

identical) alleles a and a′, Gc is the phased genotype of CC strain c, and (a, a′) is a phased genotype

such that a is inherited maternally, and a′ is inherited paternally.

The probability of the (typically unobservable) phased CC genotype can be expressed in terms

of phased founder diplotype as

p(Gc=(a, a′))=
∑

(h,h′)∈H×H

p(Gc = (a, a′) | Dc = (h, h′)) · p(Dc = (h, h′)) , (4.2)

where Dc is the phased diplotype of c at the variant, (h, h′) describes the phased diplotype composed

of (possibly identical) haplotypes h and h′, which transmit alleles a and a′ respectively, and H is the

set of all haplotypes.

Assuming maternal and paternal alleles are transmitted independently, the first term in the

product of the right hand side of (4.2) can be expressed as:

p(Gc = (a, a′) | Dc = (h, h′)) = p(Th = a) · p(Th′ = a′) , (4.3)

where Th is the allele transmitted from parental haplotype h. Th in turn depends on the founder h

genotype, which is uncertain due to potential sequencing error, and on the number of a alleles in

that founder genotype, which could be 0 (homozygous for the minor allele), 2 (homozygous for the

major allele), or even 1 (heterozygous), as some loci are not fully inbred in the founders. Assuming
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transmission of either copy is equally likely,

p(Th = a) =
∑
g∈G

(
1

2
number of a alleles in g

)
· p(UGh = g) , (4.4)

where UGh is the unphased genotype for the founder of haplotype h, G = the set of all possible

genotypes, and g is a genotype.

The second term in the product within Figure (4.2), p(Dc = (h, h′)), also needs to be derived in

terms of known values: we do not know the probability of a given diplotype at any arbitrary variant

position. Rather, we do know diplotype probabilities of the markers to the left and right of each

variant position. As such, we can linearly interpolate between the two markers:

p(Dc = (h, h′)) =
wl · p(D(c,l) = (h, h′)) + wr · p(D(c,r) = (h, h′))

wl + wr
(4.5)

where wl and wr are the distances from the variant position to the left-nearest and right-nearest

haplotyping markers, respectively. D(c,l) and D(c,r) are the phased diplotypes of the cc strain at the

left-nearest and right-nearest haplotyping markers, respectively.

Eq. (4.5) is expressed in terms of phased diplotypes, but our observed MegaMUGA marker

diplotype probabilities are unphased. If we assume that both phasings are equally likely; then for the

left marker (similarly for the right),

p(D(c,l)) = p(D(c,l)) =
1

2
p(UD(c,l)) (4.6)

where UD is the unphased diplotype. The probabilities of each unphased diplotype are known from

microarray assays of the CC strains.

This concludes the derivation: using (4.1)-(4.6), the unphased CC genotype distribution, p(UGc),

can be fully expressed from known unphased founder genotype distribution, p(UGh) and known

unphased CC marker diplotype distributions, p(UD(c,m)).
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4.4.3 Genotype and Diplotype inference for simulated F1 offspring

Once CC genotype/diplotype probabilities have been inferred, unphased genotype/diplotype

probabilities for F1 offspring between CC strains and/or founder strains can be inferred as well. As in

the previous derivation we can begin by expressing unphased genotype in terms of phased genotype:

p(UG12 = {a, a′}) = p(G12 = (a, a′)) + p(G12 = (a′, a)) (4.7)

Where UG12 is the unphased genotype of the offspring of inbred strain 1, and inbred strain 2. G12 is

the phased genotype.

Each phased genotype can then be rewritten in terms of the alleles transmitted from its parent

strains. Assuming transmission of an allele from strain 1 is independent of transmission of an allele

from strain 2,

p(G12 = (a, a′)) =
p(T1 = a) · p(T2 = a′) + p(T1 = a′) · p(T2 = a)

2
(4.8)

Combining (4.7), (4.8) and (4.4), the unphased offspring genotype distribution can be expressed in

terms of known quantities. Diplotype probabilities for F1 offspring can be derived nearly identically.

4.4.4 Functional consequence inference

Functional consequences per variant, and per transcript, have been predicted in the founder

strains by the variant effect predictor (McLaren et al., 2010). We assume that any CC strain inheriting

a founder’s haplotype, inherits the same transcripts and functional consequences as were in the

founder in that haplotype region. This assumption that the genetic background will not affect

functional consequence is not necessarily true: if a recombination event were to occur within a gene

(joining the sequence of two different founders into the same gene in a CC strain), and upstream

of some variant, that variant might no longer have the same effect. Nonetheless, our assumption is

mostly reasonable: given the relatively small number of recombinations per CC line – on average

135 (Srivastava et al., 2017) – the number of mid-gene recombinations is necessarily small, and an

even smaller number of these recombinations will actually have an effect on downstream variants.

What might in fact be problematic to functional prediction within the CC, more so than within-gene
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recombination, is the original process by which functional consequences were predicted in the

founder strains: predictions were made a single variant at a time, without accounting for other,

potentially compensatory variants within the same gene.

Of note, functional consequences in the ILVDB are represented as uncertain; i.e, the probability

of a given CC genotype is also applied to the functional consequence of that genotype.

4.4.5 Database and GUI implementation

Scripts to parse VCF and haplotype files, perform genotype and diplotype inference, and store

the resulting processed information in a MariaDB database, were implemented using a combination

of Python, VCFtools (Danecek et al., 2011), and R (R Core Team, 2016). The ISVdb online GUI was

implemented using the Python Flask library. The GUI was deployed online on the Carolina Cloud

Apps managed platform, provided by UNC Information Technology Services.

Two sets of tables are stored within the MariaDB database: 1) An almost completely normalized

set of tables with minimal redundancy, and 2) A set of pre-joined, non-normalized tables derived

from the normalized table that are designed to allow the GUI (which provides for typical ISVdb use

cases) to return results efficiently, using a minimum number of joins. This second set of tables was

an intentional trade-off of space for time.

A few additional database optimizations of note were necessary, especially to rapidly generate

probabilistic variant states for F1 crosses. In particular, the ISVdb.v1.1 “database” is actually

implemented (using R code) as a collection of smaller databases, in which each smaller database

represents a single chromosome. Where applicable, most tables were indexed by variant and strain.

Tables sizes were reduced by dropping those variant diplotypes (and corresponding genotypes) whose

probability was less than .001. Consequently, probability distributions at some variants may not sum

exactly to 1.

4.4.6 Data Availability

The ISVdb version corresponding to this publication is ISVdb.v1.1, uploaded on March 15, 2017.

A frozen snapshot of ISVdb.v1.1, including the v1.1 website interface and the variant information

it provides, will be maintained at http://isvdb.unc.edu/archive. Subsequent ISVdb

versions will be housed in the archive as well. The frozen ISVdb.v1.1 contents, and the inputs used
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to generate those contents, are also permanently stored on Zenodo at https://doi.org/10.

5281/zenodo.399474 (Oreper et al., 2017b). All ISVdb.v1.1 results can be recreated from File

S8 and File S9, which are briefly described below, and in further detail in File S1. As subsequent

versions of ISVdb are developed, their contents will also be archived (at another location) on Zenodo.

For ISVdb.v1.1: File S1 contains detailed descriptions of all supplemental files. File S2 contains

marker diplotype data for CC strains. File S3 contains non-mitochondrial snps for founders. File S4

contains indels for founders. File S5 contains mitochondrial snps for founders. File S6 contains the

custom format specification for these VCF files. File S7 contains BL37.75 exons (along with other

genomic features)

File S8 contains an ISVdb.v1.1 dump of the imputed CC diplotypes per strain and per chromo-

some, in CSV format. File S9 contains an ISVdb.v1.1 dump of the imputed CC genotypes per strain

and per chromosome, in CSV format.

Code used to generate the ISVdb and its GUI is available at https://github.com/

danoreper/ISVdb.git (Oreper et al., 2017a).

4.5 Results and Discussion

The ISVdb houses and provides GUI access to imputed probabilistic genotype and diplotype

data, for all 8 founders and all (as of 2016-03-24) 72 CC strains. CC allelic state is imputed at all

exonic (+/- 100bp) founder SNPs and indels (which can be as long 100bp), but not at founder large

structural variant positions (Morgan et al., 2017).

According to the ISVdb estimates of allelic state across strains, the genotype in most variants is

known with high certainty (File S10, Figure S1). Variants with uncertain genotype appear widely and

evenly distributed across the genome (File S10, Figures S2:S103). Residual heterozygosity, a key

driver of uncertainty, is estimated to affect 3.1% of exonic (+/- 100bp) variants overall, but can vary

dramatically between strains and chromosomes; e.g., the proportion of variants affected by residual

heterozygosity ranges from 0 in CC003 on chr 2, to .38 in CC056 on chr 8 (Table S1). Note that

heterozygous variants are defined as those with at least a 25% chance of continuing to segregate.

Approximately 72.6% of (the polymorphic) CC strain variants are identical to the B6 mouse

reference genome (Table S1). Intronic (8.8%), downstream (4.3%), non-coding transcript (3.4%) and
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upstream variants (2.9%) differing with respect to B6 are the next most common mutations, while

alleles expected to have a large effect, such as stop-gain (.003%) or stop-loss (.001%) mutations, are

extremely rare (Table S2).

4.5.1 Database accessibility/usability: ISVdb GUI

The intended interface to ISVdb data is through the publicly accessible ISVdb GUI, hosted at

https://isvdb.unc.edu; the GUI allows what we believe to be the most common types of

queries.

The ISVdb GUI can be broken up into roughly 3 panels:

• A Primary query panel that allows the user to: i) query the ISVdb for inbred strain genotypes,

diplotypes, and F1 genotypes and diplotypes ii) specify strains of interest; and to iii) specify the

genomic region(s) of interest—by basepair window, by genes, or by (internal ISVdb) variant

IDs.

• A Secondary restriction panel that allows the user to limit results: i) to the max probability

estimate of variant state; ii) and/or only to that variant state which is more likely than a

user-specified probability threshold; iii) to variants of a particular zygosity; iv) for genotype

and genotype cross queries, to variants having particular functional consequences.

• An Output panel that allows the user to: i) submit the primary query with secondary restric-

tions; ii) save the full results by opening a download URL in a browser, and; iii) examine the

(first 1000) results in a sortable and searchable table displayed online.

Additionally, the GUI provides: i) a link to complete archived versions of the ISVdb, and ii) a

link to CSV dump files of genotype and diplotype, per strain, per chromosome.

4.5.2 GUI-based genotype query

The ISVdb is most typically used to determine the genotype of a set of CC strains in some region.

When the ISVdb GUI is queried for genotype, it produces a table with the following columns:

• variant id: an internal ISVdb variant ID per variant
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• chrom: chromosome of variant

• pos: variant start position, in mm10 coordinates

• strain: the inbred strain– either a CC or a founder strain.

The unphased genotype (allele 1 and allele 2 are arbitrary):

• allele 1: the sequence of one allele at the variant.

• allele 2: the sequence of the other allele at the variant.

• prob: the probability that at this variant, this is the actual genotype. Note that at any given

variant position there is a distribution of possible genotypes; as such there will be multiple

rows representing each variant position, each with its own probability.

• is max: Whether this is the maximum likelihood genotype at this variant.

• gene id: The Ensembl ID of a gene enclosing the variant. There may be multiple overlapping

genes enclosing a variant, resulting in a separate row per gene for the same variant.

• transcript id: The Ensembl ID of a transcript enclosing a variant. A single variant will usually

be enclosed by multiple transcripts, each of which is affected differently by the variant; i.e.,

there will different consequences per transcript, at the same variant, necessitating a separate

row per transcript for the same variant.

• consequence 1: the predicted consequence of allele 1 on the transcript, with respect to B6. If

allele 1 is the B6 allele, the consequence is ”reference”. Note that a consequence is always

with respect to some transcript.

• consequence 2: the predicted consequence of allele 2 on the transcript.

4.5.3 Example workflow for a genotype query

We provide an example of a genotype query to illustrate a partial ISVdb workflow, and also to

demonstrate how uncertainty is represented in the ISVdb by storing multiple rows for a single variant

in a single strain. Details are provided in the Figure 4.1 caption.
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4.5.4 Genotype queries are similar to other ISVdb queries

Genotype queries are just one of the four types of queries enabled by the ISVdb GUI. The

remaining types of ISVdb queries are almost identical to a genotype query, and all of them represent

uncertainty in the same manner as a genotype query. Rather than describing them exhaustively, we

will emphasize how each differs from a genotype query.

• Genotype cross query: rather than accepting a list of strains, this query only accepts two

strains, simulates their F1 offspring, and returns data nearly identical in structure to genotype

query data– except for a second strain per record.

• Diplotype query: there is no notion of a functional consequence with regard to a diplotype,

and thus, diplotype queries return neither functional consequences, nor transcript IDs, which

are closely tied to functional consequence in the ISVdb. Additionally, instead of records with

(allele1,allele2) genotype, a diplotype query returns records with (haplotype1,haplotype2)

diplotypes.

• Diplotype cross query: just like the genotype cross query, this query accepts two strains as

input, and simulates their F1. It returns diplotype data which is nearly identical in structure to

that from a diplotype query.
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Figure 4.1: A) Example workflow of the ISVdb online GUI. A user has queried the
genotype of CC0012, on chromosome 19, from 6054740:6054749. The ”Primary
Query” panel also allows additional strains, and/or specification of the region by genes
instead. The user is interested in all zygosity variants, of all consequences, and all
probabilities, and thus has applied no secondary restriction. After the user clicked
”Submit!”, a URL to download the resulting table was generated, as well as an online
version of the table. The first three rows of the table are shown here: noticeably they
all represent the same variant in the same strain. The difference between the rows
is highlighted in the yellow box: the genotype per row and its associated probability.
Collectively, the three rows represent that there is a 25% probability of a C/C genotype,
25% of T/T , and 50% of T/C at this variant in CC0012. B) The remaining wrapped
columns of output from part A (A was too wide). Note that each genotype has a
different consequence, accentuating that only accounting for the most likely genotype
would cause a non-negligible loss of information. Also, note that this figure was pieced
together from a screen capture to fit on a single page.
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4.5.5 Incorporation of CC Sequencing and up-to-date CC genotyping

The basis for the current version of ISVdb variant calls is integration of MegaMUGA genotyping

data from the MRCAs of each CC strain with the sequencing data from a single mouse per founder

strain (Keane et al., 2011; Fu et al., 2012; Srivastava et al., 2017) Consequently, the ISVdb currently

has important limitations regarding completeness, heterozygosity, and imputation precision. With

regard to completeness, in the generations since the MRCAs, additional mutations have accumulated

and, thanks to the extremely small effective population size within each CC strain, rapidly become

fixed. Sequencing results suggest that the number of variants now segregating in the CC has increased

by 2% since the MRCA generation. (Srivastava et al., 2017). Similarly, many of the regions harboring

residual heterozygosity in the MRCA animals have by now become fixed. Regarding the precision of

the imputation itself, the ability to construct the underlying haplotype mosaic is limited by, among

other things, the resolution of the MegaMUGA genotyping array (or of any array) and in particular

how well that array can mitigate the inherent difficulties arising with inferring haplotype state at

recombination breakpoints and regions of identity by descent between founders. Our imputed variants

thus reflect an incomplete and uncertain view of the current generation’s CC genomes.

To address these limitations and gain a deeper understanding of the CC population, finer

resolution data from a more recent breeding generation has been collected: the genome of a single

male per CC strain has been sequenced (Srivastava et al., 2017), and this will not only identify the

de novo CC mutations but also reduce the uncertainty in CC strain genotypes at known variants.

Nonetheless, since sequencing is limited to a single animal per strain, it does not by itself provide a

definitive answer genome-wide, largely due to residual heterozygosity. In the near future, a set of 3

other males per strain from the sequencing generation will be genotyped on the MUGA platform

(PMV personal communication, 2017).

The ISVdb will progressively incorporate these new sets of data into its variant representation

according. Towards this end, outstanding tasks include improved representation of the following:

• Whole genome: The published version of ISVdb focuses on exon data, but we have imputed

variants across the whole genome, and all that remains is to make them publicly available.

• Denovo variants: Inclusion of sequenced de-novo variants as new records in the ISVdb.
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• Known MUGA variants: Improved imputation of known MUGA variant by incorporating

sequencing data; ISVdb probabilities will be some sort of weighted sum of the data sources.

• Founder genotypes CC sequencing data can indirectly provide us with ultra-deep founder

sequencing, which can be used for a form of ancestral variant imputation.

• Structural Variants: Structural variant data (>100bp) is available and can be incoporated.

As the reference genome and its exon annotations changes, the ISVdb will be updated as well.

In addition to updating the ISVdb with more accurate state, incorporation of the newest high

resolution data will allow a useful comparison between generations. In particular, detection of loci

that have become fixed since the MRCA generation will open a new line of inquiry as to the possible

selective advantage of the newly fixed alleles.

In summary, we have developed a database that stores imputed probabilistic variant state

for CC strains and founder strains, and can rapidly generate probabilistic variants states for F1

populations. Imputed state includes alleles as well as predicted functional consequences of those

alleles. This resource is a useful complement to sequencing data, and is easily accessible at https:

//isvdb.unc.edu.
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CHAPTER 5

Conclusion and future efforts

In this conclusion, for each work chapter we will: i) summarize a subset of the major devel-

opments; ii) reconsider the implications of some of the results—with much of this portion being

speculative; and iii) propose potential future efforts.

5.1 Reciprocal F1 Hybrids of NOD and B6

In chapter 2, we used RXs of a single pair of classical inbred strains, NOD and B6, exposing

offspring to one of four diets, in order to detect POE, diet effects, and diet-by-POE on behavior and

gene expression. Among the notable pieces of work in this effort, we developed a bespoke surrogate

variable estimation procedure and permutation testing procedures, as well as a Bayesian mediation

approach for integrating expression and behavior data; to our knowledge this is the first application

of Bayesian mediation analysis in this context. The paper describing our efforts has been submitted.

But some questions remain, and we discuss them below.

5.1.1 Discussion, with speculation

POEs on total expression were detected on genes throughout the genome, and although detections

were enriched for imprinted genes, some genes subject to POE were non-imprinted. These non-

imprinted genes are probably either regulated by an imprinted gene or subject to maternal effects.

Although mediation analysis can suggest imprinted regulators, the true mechanism of POE on these

non-imprinted genes cannot be known with certainty in our study design. If RNA-seq data were

available, examination of ASE could increase our certainty: for a non-imprinted gene to be regulated

by an imprinted gene, the ASE patterns of the two genes should match. Similarly, the POEs we

detected on behavior (primarily locomotor-related) may be driven by imprinting or maternal effects,

but in this context, ASE would be less helpful.
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In general, POEs were quite significant in the contexts of both expression and behavior. By

contrast, it seemed to be much easier to detect significant diet effects and diet-by-POE on expression

than on behavior: diet effects and diet-by-POEs on behavior were not significant after FDR correction,

whereas diet effects and diet-by-POEs were readily detected on the total expression of dozens of

genes. Beyond the typical signal-to-noise-ratio limitations in studying behavior, possible reasons for

the absence of diet/diet-by-POE on behavior include the following:

1. It was possible to significance test (almost) every gene. By contrast, although we tried to select

a representative set of behavioral assays, there may be a near infinite set of behaviors that

could be tested, and so it may be easy to overlook the behaviors affected by diet.

2. Individual genes may have been significantly more or less expressed depending on diet, but

mouse behavior, which can be thought of as an emergent property of all gene expression taken

together, may have evolved to be robust in the presence of most environmental perturbation; as

such, the diets may have been insufficiently extreme to overcome compensatory pathways.

3. Given that over 20,000 genes were tested for significant effects, surrogate variable estimates

of unobserved batch effects could be constructed by borrowing information between genes;

and these surrogate variable effects (these results were not shown) often explained a large

percentage of expression variance. By contrast, in a study akin to ours with far fewer (only

34) behaviors over which to borrow information, we could neither estimate nor control for

unobserved batch effects on behavior.

Perhaps our most interesting biological finding was the suppression of Carmil1 expression by

Airn. To our knowledge, our study provides the first report of Airn—a lncRNA whose transcription

is believed to control an immediate-vicinity imprinted gene cluster (Latos et al., 2012)—somehow

affecting a gene distal to the cluster. If data from the CC-POE turn out to be consistent with this

finding, a more targeted experiment focusing on the relationship between Airn and Carmil1 may be

worthwhile.
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5.1.1.1 Changes to the existing study

Were I to redesign and/or perform further analysis on this or a similar study, I would consider

the following:

1. Given the difficulties in achieving enough power to observe diet and diet-by-POE on behavior,

I would restrict a new experiment to consider only two diets: standard and methyl enriched

(given that methyl enrichment drove the majority of diet effects on expression). Alternately, a

ladder of methyl enrichment values may be appropriate. Using 4 entirely different diets may

have hedged our bets in the current study, but at the cost of an overly great reduction in power.

2. In the current set of analyses, we employed a statistical model in which each outcome was a

value (behavior or expression) from a single animal. Given our experience in a similar study

(Schoenrock et al. (2016), not discussed in this dissertation), we may have had more power to

detect POE had we modeled differences between matching mice. That is, for every NODxB6

mouse on some diet, we would identify a matching B6xNOD mouse on the same diet, and

then model the difference in phenotype between these matched mice as a function of diet and

other covariates. No two mice could ever be matched perfectly, but the differences (e.g., dam,

batch, etc.), could, with non-significant effort, be accounted for in the model.

3. We only employed permutation-based FWER testing in the context of testing gene expression.

But a similar procedure could be derived for behavioral testing. Essentially, behavior-specific

covariates would need to be regressed out of each behavior prior to permuting diet and/or

parent-of-origin labels. As an aside, this point also emphasizes our difficulties with observing

significant diet effects and diet-by-POE on behavior; none of these effects were significant

following multiple testing correction even using FDR rather than a more conservative FWER.

4. Our mediation analysis searched for imprinted mediators of POE on Carmil1, the non-

imprinted gene most significantly affected by POE. It would be interesting to see whether

likely imprinted mediators could be identified for the other non-imprinted genes significantly

affected by POE.

5. Inspection of the microarray images derived from CEL files revealed patches of irregularities,

at different locations in each microarray. We decided that these were minor effects not worth
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accounting for, but an ideal analysis would automatically search for these irregularities, and

mask out the probes within such patches. With training data, image processing tools could be

developed toward this end, and be enormously helpful for many other researchers; microarrays

are still used extensively instead of RNA-seq in many contexts.

6. As mentioned earlier, surrogate variable estimation of unobserved batch effects had a large

impact on detection of effects on total gene expression. To estimate these effects in our

study, we adapted SSVA, a method which estimates surrogate variables based on negative

control probe expression. By contrast, SVA is a method that estimates unobserved batch

effects based on the main probes, and so we believed regressing out SVA-based surrogate

variable would result in the elimination of true positives; it was for this reason we chose SSVA.

However, recent developments in surrogate variable estimation include “Single cell partial least

squares” (scPLS; Chen and Zhou 2017), which estimates surrogate variables by simultaneously

modeling both spike-in controls, and target gene expression; similarly, scPLS could be used

to estimate surrogate variables by simultaneously modeling both negative control probes and

primary probes. This type of method may better balance avoidance of false positives and false

negatives.

5.2 Rexplorer

In chapter 3, we developed a novel method for selecting optimal RXs from a panel of inbred

lines for the study of POE. We then applied this method to the CC panel in the CC-POE project.

The method took an operations research approach toward simultaneously ensuring POE would be

detected while maintaining mapping resolution. We then used the method to select 8 RXs to be

used in the CC-POE study, and showed that our choice of crosses was better than any set of crosses

picked at random. Although partially similar ideas have been presented in the context of selective

phenotyping, we formulated our approach to specifically focus on the study of POE. We are in the

process of adapting the dissertation chapter corresponding to Rexplorer for paper submission.
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5.2.1 Desired improvements

We were a bit fortunate in our application of Rexplorer: only one of its RXs selected for the

CC-POE failed, even though we might have expected on average two RX to fail. Preliminary

simulation-based efforts (not shown) to evaluate the robustness of our choice of RXs suggested our

solution would remain fairly good at detecting POE and maintaining mapping resolution even if 1 or

2 crosses failed— but in no way did we succeed in searching for an optimally robust solution; our

initial attempts at this were too computationally intensive. As such, the most pressing improvement

is to incorporate a measure of resiliency into our formulation. One way to do this would be integrate

our GMCP formulation with the MEXCLP formulation— which would allow for a (constant)

probability of failure per RX to be taken into account in the selection of RXs. If a linear programming

formulation of this sort proves computationally unfeasible, a randomized-greedy algorithm may be a

nearly optimal alternative.

5.3 ISVdb

In chapter 4, with the intention of analyzing CC data from the CC-POE, we developed a

probabilistically informed database of imputed variants in CC lines. The paper describing this effort

has been published. We have also provided a publicly available website for querying variants, at

http:isvdb.unc.edu. In addition to users external to UNC, our database is currently being

used by other Valdar lab members in non-CC-POE-related merge-analyses of CC data.

5.3.1 Desired Improvements

In the conclusion of the ISVdb paper, we listed several desired (and intended) improvements. I

restate a few of the key desired improvements here, and also summarize progress.

1. The initial implementation of the ISVdb used an SQL database to store its data. Due to the

enormous disk-space requirements of this implementation, we limited ISVdb contents to only

include variants within exons. In the months following publication, we have reimplemented

the underlying representation of ISVdb to be a collection of compressed flat files. By virtue of

existing and extremely fast decompression algorithms, along with the speed of the data.table
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“fread” function for reading files into memory (Dowle and Srinivasan, 2017), our new imple-

mentation is nearly as fast, but uses two orders of magnitude less disk space. Accordingly, we

now represent the entire genome in the ISVdb. Although we use this whole genome database

within the Valdar lab, we are still working on making this data publicly available.

2. At the same time that the ISVdb was being developed, finer resolution data from a more recent

breeding generation was collected: the genome of a single male per CC strain was sequenced

(Srivastava et al., 2017). The de novo CC mutations and newly fixed alleles from this data

need to be incorporates into the ISVdb. Nonetheless, since sequencing is limited to a single

animal per strain, it cannot by itself provide a definitive answer genome-wide, largely due to

residual heterozygosity.

3. Related to the de novo mutations detected by sequencing, the ISVdb does not currently

represent structural variants (greater than 100 bp). These may become critical in future CC

analyses.

5.3.2 Desired use: variant modeling

The ISVdb is a useful resource for the design or analysis of any study employing the CC.

However, the primary motivation for its development was to map POE in CC-POE data. Below, we

propose one way of incorporating ISVdb information into models of CC-POE study expression and

behavior. Both of these models will share the same form, described in progressively more detail

below.

By the experimental design of the CC-POE, each RX generates well-matched pairs of individuals

that are genetically identical, and environmentally similar (same diet and cage), but that differ in

allelic parent-of-origin. Thus (leaving out any interaction effects with diet for now) we can can

model the phenotypic difference (akin to [(Gonzalo et al., 2007)]) within reciprocally-matched pairs

as a sum of an overall RX POE, and a variant specific POE:

Yijk−Yikj ≡ ∆Yijk = POEjk + θjkv + εijk, εijk ∼ N(0, σ2) (5.1)
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In the ith matched pair, Yijk is the phenotype of an individual with maternal strain j, paternal

strain k; Yikj is the phenotype of its matched pair; and ∆Yijk is the modeled difference between the

two phenotypes. POEjk represents the cumulative POE (both imprinting and maternal effects) from

a RX of lines j and k, excluding the POE contribution—θjkv—from variant v. εijk is unmodeled

noise.

At this point, ISVdb variant information can be incorporated. Each θjkv corresponds to the

POE caused by a difference between the maternal and paternal alleles, which we denote allelejv

and allelekv, respectively. We could encode each allele∗v at a variant as an integer that depended

on the ISVdb predicted allele and predicted functional consequence; alleles with very different

consequences such as the reference allele vs. a stop mutation should have a large difference in their

allele coefficient, to reflect the greater likelihood of such differences driving POE. Using this sort of

reasoning to encode allele effects, we could specify the model:

∆Yijk = POEjk + (allelejv − allelekv)θv + εijk (5.2)

Where θv encodes the effect that variant v has on POE, assuming a “one-unit” difference between

the alleles of parent j and k. In the simplest case, assuming a biallelic model with the two alleles

encoded as 0 and 1, the design matrix for this LM would be 0 for mouse pairs that were homozygous

at variant v, and 1 or −1 for pairs that were heterozygous at v (depending on the direction of the

cross); the need for heterozygosity to reveal POE is encoded in this model.

Significant θv would correspond to variants with a higher likelihood of being causal to POE.

Genes containing those significant variants would be prioritized for further study.

This model could be extended in a straightforward way to include interaction effects with diet,

although we note that there would be no main effect of diet; animals within each matched pair are

both on the same diet, so such an effect would be zeroed out.

We also note that ∆Yijk will vary depending on the matchings that are chosen: there were

typically 4 mice on the same diet and generated by the same RX in each cage, with two mice in

one direction of the cross, and two in the other, yielding two different ways that animals could be

matched in that cage. Accordingly, there are on the order of 2#Cages possible vectors ∆Yijk that
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could be modeled. To account for the uncertainty associated with modeling different sets of matched

pairs, we could employ a multiple imputation technique as described in Schoenrock et al. (2016).

5.4 Overall conclusion

In this work, we developed methods for analysis of POE and diet-by-POE using RXs of a

single pair of inbred strains. Employing these methods, our results motivated a follow up study, the

CC-POE, involving multiple diets and RXs of multiple pairs of inbred CC lines. We selected the RXs

for the CC-POE by developing a new experimental design tool. To aid with analysis of data from the

CC-POE, we developed a database of imputed variants in CC lines. Looking at this dissertation more

broadly, we have built a set of tools, and used these tools to demonstrate new ways of studying POE

via reciprocal crosses.
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APPENDIX A

Supplemental materials for “Reciprocal F1 Hybrids of two inbred mouse strains re-
veal parent-of-origin and perinatal diet effects on behavior and expression”

A.1 Figures

A B

Light/Dark Startle/PPI SIH Open Field

Social 

Interaction

Restraint 

Stress

Cocaine 

Response

Figure A.1: Correlation of behavioral phenotypes. A) Pipeline 1 behaviors. B) Pipeline 2
behaviors
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Figure A.2: POE and perinatal diet effect on sensorimotor gating. (A) POE on sensorimotor
gating; mean (bars indicate SEM) percent prepulse inhibition for B6xNOD (n=46) and
NODxB6 (n=45) mice. At 82 dB, a significant POE was observed on PPI (p=0.0307). (B)
Diet effect on senorimotor gating; mean (bars indicate SEM) percent prepulse inhibition for
standard (Std, n=31), vitamin D deficient (VDD, n=18), methyl enriched (ME, n=24) and
protein deficient (PD, n=18) groups. At 82 dB, diet exposure significantly affected prepulse
inhibition (p=0.00274).
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Figure A.3: Non-significant but suggestive diet-by-POE on distance moved in a 10min open
field test. ) Data are individual B6xNOD and NODxB6 animals exposed to Std (N=15,14),
ME (N=8,14), PD (N=7,9) or VDD (N=9,11) diet. The pattern across diets follows that for
percent center time (Figure 2.6).
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BA

Figure A.4: Perinatal diet-by-POE on Meg3 gene expression levels. Each point corresponds
to Meg3 expression of an individual B6xNOD or NODxB6 mouse exposed to standard (Std),
vitamin d deficient (VDD), methyl enriched (ME), or protein deficient (PD) diet, as measured
by A) microarray, and B) Taqman qPCR analysis. Meg3 expression was significantly subject
to diet-by-POE in the microarray analysis but not in qPCR validation.
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A

B

Figure A.5: P-values of diet effects on gene expression. (A) Manhattan-like plot of p-values
of diet effect on microarray-measured expression; each point corresponds to a probeset
location and the p-value of the diet effect on that probeset’s expression. The dashed line
represents the FDR threshold, and the solid line represents the FWER threshold. Probesets
above the FWER threshold are marked by a shape, which depends on whether ME exposed
mice have (on average) the highest expression relative to mice on the other diets (up arrow),
the lowest expression relative to mice on the other diets (empty down arrow), or somewhere
in middle of the 4 diets (plus sign); expression on the methyl diet is almost always at one or
the other extreme. (B) Zoomed in view of just the genes significantly affected by diet. Cnot2
is the most significantly affected
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A.2 Tables

 AIN-93G Standard 
(Std;110700) 

Protein Deficient 
(PD;102787) 

Vitamin D Deficient 
(VDD;119266) 

Methyl Enriched 
(ME;518893) 

Methyl Deficient 
(MDD; 518892) 

Ingredient g/kg kcal/kg g/kg kcal/kg g/kg kcal/kg g/kg kcal/kg g/kg kcal/kg 

Casein 200 716 75 269 200* 716 - - - - 

L-Cystine 3 12 0.9 3.6 3 12 - - - - 

Sucrose 100 400 100 400 100 400 382.19 1528.76 396.57 1586.28 

Cornstarch 397.486 1430.9496 481.196 1732.3056 397.486 1430.9496 100 360 100 360 

Dyetrose 132 501.6 160 608 132 501.6 100+ 363 100+ 363 

Soybean Oil 70 630 70 630 70 630 50++ 450 50++ 450 

t-Butyl 
hydroquinone 

0.014 0 0.014 0 0.014 0 - - - - 

Cellulose 50 0 50 0 50 0 50 0 50 0 

Choline 
Bitartrate 

2.5 0 2.5 0 2.5 0 14.48 0 0 0 

Mineral Mix 
#210025 

35 30.8 
35@ 

(#213266) 
30.8 35 30.8 - - - - 

Vitamin Mix           
# 310025 

10 38.7 10 38.7 
10** 

(#319255) 
38.7 10 

38.7@@ 

(#300050) 
10 

38.7@@ ,# 

(#317754) 

Calcium 
Phosphate 
Dibasic 

- - 10.97 0 - - - - - - 

Calcium 
Carbonate 

- - 4.42 0 - - - - - - 

Primex - - - - - - 100 900 100 900 

Salt Mix 
#215001 (no 
Fe Added) 

- - - - - - 35 16.45 35 16.45 

Sodium 
Bicarbonate 

- - - - - - 4.3 0 4.3 0 

Ferric Citrate, 
U.S.P. 

- - - - - - 0.33 0 0.33 0 

Succinyl 
Sulfathiazole 

- - - - - - 10 0 10 0 

L-AA - - - - - - 143.7 574.8 143.8 575.2 

 

 

Table A.1: Nutritional content of experimental diets. The PD and VDD diets were nutritionally
matched to the Std diet and the ME was matched to the MDD. Red indicates the main
nutritional component that was changed in each diet (pelleted). The product number
associated with each diet, vitamin mix, and mineral mix are provided (Dyets, Inc; Bethlehem,
PA). @Ca and P free, @@Vitamin K1/Dextrose mix free w/ addition of menadione sodium
bisulfite; #folic acid free; *vitamin free, ** no vitamin D, +dextrin instead of dyetrose, ++corn
oil instead of soybean oil, #folic acid free
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Pipeline Strain Diet 
# of 

Dams 

# F1 
Female 

Offspring 

# Tested/Batch 

1 2 3 

1 

B6xNOD 

Standard  8 20 5 6 9 

Methyl Enriched 3 9 9 0 0 

Protein Deficient 6 9 4 5 0 

Vitamin D Deficient 3 8 0 4 4 

NODxB6 

Standard  4 11 7 4 0 

Methyl Enriched 4 15 6 9 0 

Protein Deficient 3 9 2 3 4 

Vitamin D Deficient 3 10 5 5 0 

2 

B6xNOD 

Standard  5 15 5 6 4 

Methyl Enriched 3 8 4 4 0 

Protein Deficient 3 7 7 0 0 

Vitamin D Deficient 3 9 0 3 6 

NODxB6 

Standard  5 14 4 10 0 

Methyl Enriched 3 14 9 5 0 

Protein Deficient 4 9 4 5 0 

Vitamin D Deficient 4 11 4 7 0 

 

Table A.2: Diets, number of dams, and female F1 hybrids per diet, broken down by various
categories. The number of female F1 hybrids tested and the number of dams that produced
those females in each behavior pipeline is broken down by reciprocal direction and perinatal
diet exposure. The last column shows the breakdown of groups tested by behavior batch
within each pipeline.

Dam Strain 
Diet 
Exposure 

# 
Dams
Mated 

# 
Litters 

% 
Pregnant 

# Pups 
Born 

# Pups 
PND21 

% 
Survival 
PND21 

Mean 
Litter 
Size 

# F 
Pups 

PND21 

% F 
Pups 

# F 
Tested 

C57BL/6J 
(B6) 

Standard 11 11 100 73 71 97.3 6.6 ± 2.4 35 49.30 35 

Methyl 
Enriched 

10 9 90 65 47 72.3 7.2 ± 1.9 21 44.68 17 

Methyl 
Donor 
Deficient 

12 2 16.7 18 0 0 9 - - - 

Protein 
Deficient 

12 12 100 52 44 84.6 4.3 ± 2.1 21 47.73 16 

Vitamin D 
Deficient 

10 10 100 54 52 96.3 6 ± 3 22 42.31 17 

NOD/ShiLtJ 
(NOD)  

Standard 7 7 100 63 61 96.8 9 ± 1.1 25 40.98 25 

Methyl 
Enriched 

8 7 87.5 63 52 82.5 9 ± 1.3 29 55.77 29 

Methyl 
Donor 
Deficient 

9 3 33.3 6 0 0 2 - - - 

Protein 
Deficient 

10 9 90 65 55 84.6 6.9 ± 1.7 20 36.36 18 

Vitamin D 
Deficient 

8 6 75 51 47 92.2 8.5 ± 2.1 21 44.68 21 

 

Table A.3: Effect of perinatal diet and strain on breeding fitness. PND 21 = postnatal day 21
(time of weaning); F = females
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Effect Dataset # Pups p value

POE on Carmil1 full 115 6.3e-07

POE on Carmil1 old 85 4.4e-07

POE on Carmil1 new 30 9.7e-11

DietxPOE on Meg3 full 115 0.39

DietxPOE on Meg3 old 85 0.72

DietxPOE on Meg3 new 30 0.48

Table A.4: qPCR-based analysis of POE on Carmil1 expression and Diet-by-POE on
Meg3 expression. Results shown for 3 datasets: i) mice that were both microassayed
and qPCR’d (“old” data); ii) mice that were never microassayed but were qPCR’d (“new”);
and iii) the union of the first 2 datasets (“full”). Parent-of-origin significantly affects qPCR-
measured expression of Carmil1 in all 3 datasets, whereas diet-by-parent-of-origin does not
significantly affect qPCR-measured expression of Meg3 in any dataset.

 

Pipeline Test Phenotype Covariates 

p value 

ME - 
Std 

PD - 
Std 

VDD - Std 
PD - 
ME 

VDD - 
ME 

VDD 
- PD 

ME:NODxB6 - 
Std:NODxB6 

PD:NODxB6 - 
Std:NODxB6 

VDD:NODxB6 
- Std:NODxB6 

PD:NODxB6 - 
ME:NODxB6 

VDD:NODxB6 
- ME:NODxB6 

VDD:NODxB6 
- PD:NODxB6 

1 

Light/Dark 

Total Distance 

Batch, Dam 

0.859 0.996 <1 0.931 0.899 0.997 0.927 0.959 0.878 0.997 <1 0.991 

Distance Dark 0.999 0.977 0.999 0.997 0.998 0.975 0.976 0.946 0.872 0.998 0.98 0.995 

Distance Light 0.342 <1 <1 0.375 0.525 <1 0.822 0.971 0.928 0.917 0.979 0.998 

% Time Dark 0.0285* 0.986 0.973 0.084. 0.0469* 0.921 0.673 0.992 0.999 0.617 0.367 0.956 

% Time Light 0.0143* 0.991 0.993 0.0421* 0.0377* 0.967 0.623 0.998 <1 0.434 0.424 0.999 

Total Transitions 0.841 0.931 0.997 0.987 0.834 0.914 0.87 0.984 0.999 0.928 0.655 0.923 

Startle/Prepulse 
Inhibition 

AS50 Average Batch, 
Chamber, Dam 

0.304 0.208 0.886 <1 0.223 0.16 0.4 0.0814. 0.977 0.665 0.43 0.0634. 

AS50 Latency 0.332 0.59 0.696 0.94 0.128 0.226 0.728 0.405 0.941 0.884 0.912 0.562 

Average PPI 74 

Batch, 
Chamber, Dam, 

Pup 

0.863 0.992 0.969 0.761 0.768 0.998 0.469 0.351 0.785 0.996 0.884 0.781 

Average PPI 78 0.769 0.28 0.937 0.0881. 0.988 0.248 0.458 0.793 0.543 0.86 0.995 0.969 

Average PPI 82 0.74 0.246 <1 0.0666. 0.839 0.489 0.639 0.842 <1 0.968 0.354 0.677 

Average PPI 86 0.494 <1 0.94 0.556 0.909 0.957 0.597 0.75 0.98 0.99 0.654 0.852 

Average PPI 90 0.123 0.803 <1 0.542 0.326 0.922 0.0789. 0.0797. 0.613 <1 0.379 0.413 

Stress-Induced 
Hyperthermia 

SIH-T1 
Batch, Test 
Order, Dam 

0.784 0.792 0.993 0.997 0.933 0.959 0.382 0.653 0.6 0.888 0.935 <1 

SIH-T2 0.998 0.0822. 0.67 0.14 0.742 0.793 0.187 0.0015** 0.019* 0.0717. 0.724 0.671 

SIH-Delta 0.755 <1 <1 0.756 0.811 <1 0.88 0.982 0.999 0.364 0.841 0.918 

Forced Swim % Immobility 
Batch, Arena, 

Dam 
0.872 0.835 0.996 0.504 0.968 0.827 0.968 0.994 0.897 0.726 0.458 0.953 

Cocaine 
Response 

Day1 Distance 

Batch, Dam 

0.601 0.724 0.808 0.185 0.985 0.392 0.0612. 0.532 0.0982. 0.335 0.971 0.702 

Day2 Distance 0.992 0.344 0.997 0.367 0.981 0.669 0.644 <1 0.34 0.434 0.949 0.25 

Day3 Distance <1 0.985 0.999 0.995 <1 0.999 <1 <1 0.95 0.999 0.866 0.916 

Day3-Day2 Distance <1 <1 0.999 <1 <1 <1 0.993 <1 0.99 0.977 0.879 0.985 

Body Weight Body Weight Batch, Dam 0.0228* 0.36 0.989 0.397 0.0402* 0.39 0.92 0.892 0.951 <1 0.997 0.994 

2 

Open Field 

Distance Moved 

Batch, Dam 

0.656 0.999 0.954 0.681 0.536 0.992 0.782 0.999 <1 0.715 0.611 0.999 

% Center Time 0.99 0.347 0.00971** 0.572 0.107 0.745 0.99 0.2 0.172 0.112 0.133 <1 

Average Velocity 0.998 0.748 0.0328* 0.866 0.176 0.61 0.992 0.64 0.65 0.205 0.258 <1 

Jump Counts 0.977 0.95 0.51 0.832 0.482 0.932 0.842 0.899 0.992 0.185 0.485 0.953 

Vertical Counts 0.629 0.815 0.958 0.997 0.949 0.988 0.771 0.937 0.949 0.966 0.942 <1 

Boli Count 0.799 0.451 0.998 0.135 0.932 0.548 0.163 0.667 0.384 0.644 0.891 0.973 

Social Interaction 
% Time Stranger Batch, Stranger 

Box, Dam 

0.997 0.173 0.999 0.308 <1 0.412 0.482 0.117 0.828 0.673 0.867 0.302 

Transitions 0.949 0.975 0.771 <1 0.63 0.719 0.751 0.961 0.997 0.919 0.716 0.981 

Tail Suspension % Immobility Batch, Dam 0.238 <1 0.496 0.344 0.981 0.699 0.896 0.999 0.94 0.71 0.997 0.853 

Restraint Stress 

Basal CORT 
Batch, Test 
Order, Dam 

0.696 0.895 <1 0.991 0.837 0.953 0.969 <1 <1 0.922 0.955 0.999 

10 min CORT 0.0153* 0.31 0.909 0.758 0.279 0.835 0.0148* 0.0391* 0.155 0.983 0.617 0.857 

Δ CORT 0.0268* 0.416 0.791 0.755 0.489 0.961 0.0254* 0.0526. 0.15 0.992 0.762 0.917 

 

Table A.5: Tukey contrast p-values. For each phenotype, the table shows the modeled
variables, along with the Tukey p-values for contrasts between all pairs of diets, and also
between all pairs of diet-by-parent-of-origin effects. NOD:NODxB6 indicates an interaction
between diet D with descent from maternal NOD. Significant values are bolded, and *, **,
and ***, indicate significance levels of *0.05, **0.01, ***0.001 respectively. POE = parent of
origin effect; PPI = prepulse inhibition; CORT = corticosterone; SIH-T1 = basal temperature;
SIH-T2 = post-stress temperature; SIH-delta = (T2-T1)
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Mediator Gene Imprinted
Mediation Effect Direct Effect

Suppressor
ab CTP c' CTP

3830406C13Rik FALSE -0.465 0.00289 2.27 <7.81e-05  TRUE

Irak1bp1 FALSE 0.158 0.00914 1.62 <7.81e-05 FALSE

Airn_10441787  TRUE -0.166 0.0134 1.97 <7.81e-05  TRUE

Tmem40 FALSE -0.115 0.0281 1.91 <7.81e-05  TRUE

Pcdhb2 FALSE -0.123 0.0372 1.92 <7.81e-05  TRUE

Mir485,Mirg  TRUE -0.116 0.0409 1.93 <7.81e-05  TRUE

Table A.6: Coefficients and Combined Tail Probabilities (CTPs; akin to a p-value) for the
significant gene mediators of Carmil1 expression. The average mediation coefficient, a.k.a.,
the indirect effect, is ab, and is grouped together with its corresponding CTP. The direct
effect, c′, is also grouped together with its associated CTP. The mediation effect is generally
suppressing the direct effect of POE; for 7 of 8 significant mediators, ab is opposite in sign
to c′. Airn (as measured at probeset 10441787) is the most significant imprinted gene
mediating the expression of Carmil1.
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Behavior Mediator Gene Imprinted

Mediation
Effect

Direct Effect
Suppressor

ab CTP c' CTP

LD Total Distance Carmil1 FALSE -1.39 0.0408 2.15 0.0393  TRUE

Boli 3830406C13Rik FALSE -0.857 0.0386 0.867 0.171  TRUE

Day 1 Distance s115_10563911  TRUE 0.348 0.0398 0.304 0.339 FALSE

Day 2 Distance s113,Rian  TRUE 0.66 0.0271 -0.0562 0.478  TRUE

Day 3 Distance Carmil1 FALSE -1.5 0.0486 1.62 0.0912  TRUE

Basal Cort s113_10398354  TRUE 0.734 0.0415 -1.24 0.12  TRUE

SIH_T1 3830406C13Rik FALSE -1.43 0.0134 1.01 0.208  TRUE

Pct Time Stranger Carmil1 FALSE    1 0.0227 -0.658 0.297  TRUE

Pct Time Stranger s113_10398354  TRUE 0.709 0.0272 -0.526 0.317  TRUE

Pct Time Stranger s115_10563949  TRUE 0.665 0.0296 -0.432 0.366  TRUE

Pct Time Stranger s115_10563959  TRUE 0.594 0.0415 -0.381 0.377  TRUE

Pct Time Stranger s116_10564209  TRUE -0.489 0.043 0.824 0.22  TRUE

Pct Time Stranger s113_10398370  TRUE 0.567 0.0477 -0.231 0.427  TRUE

PPI86 3830406C13Rik FALSE 1.45 0.0245 -1.86 0.0422  TRUE

PPI90 s113_10398370  TRUE 0.633 0.0435 -0.495 0.319  TRUE

Table A.7: Coefficients and Combined Tail Probabilities (CTPs; akin to a p-value) for the
significant gene mediators of behavior. Mediation of POE was tested using each probeset’s
expression as a mediator, against each behavior as an outcome; the behavior-probeset
pairs in this table are the nominally significant associations. The mediator probeset is
named according to the gene that is probed, followed by the specific probeset ID that was
found to be significant if more than one probeset interrogates that gene. As was the case of
mediation of expression, the mediation effect, a.k.a., the indirect effect, is ab, and is grouped
together with its corresponding CTP. The direct effect, c′, is also grouped together with its
associated CTP. As the coefficients are on a transformed scale, they are not especially
informative, but they do demonstrate that for 17 of the 18 significant mediator-behavior
pairings, the direct and indirect effect act opposite one another; i.e., when ab has the
opposite sign of c′, mediation is suppressing the direct effect. We note that Carmil1 and
Airn both appear as significant mediators of behavior.
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Mediator Gene Imprinted
# Behavior POEs

CTP
strongly (top-3) mediated suppressed

Airn_10441787  TRUE 12 27 5.09e-05

Carmil1 FALSE 8 28 0.000518

s115_10563949  TRUE 7 23 0.000408

s115_10563911  TRUE 6 24 0.000857

1700063H04Rik FALSE 4 18 0.0234

s113,Rian  TRUE 4 25 0.0152

3830406C13Rik FALSE 4 24 0.00366

s113_10398370  TRUE 4 25 0.00484

s113_10398354  TRUE 4 27 0.0104

Mamdc2 FALSE 3 19 0.0208

Zrsr1  TRUE 3 19 0.0288

s116_10564209  TRUE 3 24 0.0192

Mir485,Mirg  TRUE 3 20 0.0164

Ndn  TRUE 2 19 0.00767

Irak1bp1 FALSE 1 18 0.0455

s115_10563915  TRUE 1 17 0.0214

Itga7 FALSE 1 24 0.0425

s115_10563989  TRUE 1 22 0.0324

Eps8l1 FALSE 1 22 0.0408

s115_10563959  TRUE 0 28 0.0259

3300002I08Rik FALSE 0 24 0.0496

Table A.8: Genes that significantly mediate POE over all 34 behaviors in the aggregate; i.e.,
genes with a significant Combined Tail Probability<.05 (CTP), for POE mediation; the CTP
essentially totals a gene’s Combined Tail Probabilities over every behavior. The table also
includes the number of behaviors for which a given gene is among the 3 most significant
mediators of POE (whether or not the POE on each behavior separately is significant), as
well as the number of behaviors for which a given gene suppresses rather than contributes
to POE. For example, Carmil1 is one of the 3 most significant mediators of POE on 8
behaviors; for 26 behaviors, its mediation acts to suppress POE on that behavior; its CTP on
POE mediation over all 34 behaviors is .00028. S113/S115/S116 are shorthand for Snord
113/115/116 respectively; Snord genes may be concatenated with a specific probeset ID
when more than 1 probed region within the gene family is a mediator.
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Gene Chr
Probeset
Location

Probeset ID
F1 with
Higher

Expression
Imprinted

-log10

p value q value

Tmem40 6 115729288 10547056 NODxB6 N 5.7 2.7

Eps8l1 7 4460832 10549655 B6xNOD N 8.2 4.9

s115 7 59364519 10563911 NODxB6 Y 9.3 5.8

s115 7 59368241 10563915 NODxB6 Y 8.9 5.6

s115 7 59414112 10563949 B6xNOD Y 9.4 5.9

s115 7 59423060 10563959 B6xNOD Y 10.5 6.8

s115 7 59451136 10563989 B6xNOD Y 6.4 3.3

s115 7 59470043 10564005 NODxB6 Y 5.2 2.2

s116 7 59904755 10564209 NODxB6 Y 13.2 9.2

Ndn 7 62348358 10553833 B6xNOD Y 6.1 3.0

Irak1bp1 9 82830047 10587495 B6xNOD N 5.6 2.6

s113 12 109631074 10398354 B6xNOD Y 9.1 5.7

s113,Rian 12 109653064 10398360 B6xNOD Y 7.5 4.3

s113 12 109679951 10398370 NODxB6 Y 9.8 6.2

Mir485,Mirg 12 109734899 10398426 B6xNOD Y 7.5 4.3

Mir154 12 109738424 10398428 NODxB6 Y 5.1 2.1

Lrrc16a 13 24012417 10408280 NODxB6 N 13.8 9.5

3830406C13Rik 14 12285388 10412701 NODxB6 N 13.0 9.2

Airn 17 12814566 10441787 B6xNOD Y 7.6 4.4

Pmaip1 18 66458621 10456357 B6xNOD N 6.1 3.0

Table A.9: Genes whose expression is significantly affected by parent-of-origin, at the
FWER threshold level. Chr = chromosome; N = no; Y = Yes; ME = methyl enriched diet;
imprinted status determined using Crowley et al. (2015) and mousebook.org (Blake et al.,
2010); p-values and q-values (FDR-corrected) are -log10 transformed.
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Gene Chr
Probeset
Location

Probeset ID
ME

Group
Rank

Imprinted
-log10

p value q value

Capn2 1 182467280 10360806 1 N 5.3 2.3

Disp1 1 183135366 10598178 3 N 5.0 2.2

Rif1 2 52073219 10472058 1 N 5.0 2.2

Caprin1 2 103766040 10485514 1 N 5.3 2.3

Usp8 2 126707411 10475665 1 N 6.0 2.4

Snhg11,Gm25187 2 158378222 10478073 4 N 5.0 2.2

Golim4 3 75876220 10498775 1 N 5.5 2.4

B4galt2,Ccdc24 4 117869344 10515500 4 N 5.4 2.3

Gpn2 4 133584404 10508901 4 N 5.2 2.3

Gm26205 5 121205020 10525185 4 N 5.1 2.2

Rny3 6 47781624 10537909 3 N 5.1 2.2

Dact3 7 16875425 10550383 4 N 5.2 2.3

Zfp866,Zfp963 8 69742939 10579089 1 N 5.4 2.3

Dhps 8 85071953 10573566 4 N 5.7 2.4

Trpc6 9 8544203 10583163 4 N 5.1 2.2

Kri1 9 21273705 10591497 1 N 5.5 2.4

Usp28 9 48985437 10585099 1 N 5.3 2.3

Scamp5 9 57441459 10593927 4 N 5.4 2.3

Cnot2 10 116485263 10372534 1 N 7.4 3.1

4632419I22Rik 11 86201483 10379953 1 N 5.4 2.3

Nbr1,NBR2 11 101552329 10381419 1 N 6.1 2.4

Kidins220 12 24986906 10395005 1 N 5.8 2.4

Hist1h1a 13 23763753 10404069 4 N 6.0 2.4

Gm6169 13 97098259 10411359 4 N 5.2 2.3

Ppwd1 13 104205516 10411915 1 N 6.2 2.4

Slc38a1 15 96572325 10431872 1 N 5.8 2.4

Gm6640 16 23717234 10438726 1 N 5.5 2.4

Neu1 17 34931317 10444578 4 N 5.9 2.4

Ik 18 36744733 10454966 1 N 5.5 2.4

Tm7sf2 19 6062921 10465342 4 N 5.5 2.4

Plp2 X 7667967 10603346 4 N 5.7 2.4

Gripap1 X 7790043 10598422 1 N 5.1 2.2

Cul4b X 38533328 10604199 1 N 5.1 2.2

Table A.10: Genes whose expression is significantly affected by perinatal diet exposure,
at the FWER threshold level. Chr = chromosome; N = no; Y = Yes; ME Group rank = This
gene’s expression rank, in mice exposed to methyl enriched (ME) diet, relative to mice on
the other 4 diets— e.g., 1 means ME mice expressed this gene the most, whereas 4 means
ME mice expressed this gene the least; imprinted status determined using Crowley et al.
(2015) and mousebook.org (Blake et al., 2010); p-values and q-values (FDR-corrected) are
-log10 transformed.
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Gene Chr
Probeset
Location

Probeset ID Imprinted
-log10

p value q value

Mir128-1 1 128202355 10349510 N 5.2 1.7

Snhg11 2 158375822 10478066 N 4.7 1.5

Szt2 4 118387131 10515706 N 4.6 1.5

Szt2 4 118388309 10515714 N 5.3 1.8

Zcchc17 4 130316037 10516778 N 6.0 2.1

Cdc42 4 137319843 10517559 N 5.3 1.8

Efcc1 6 87730951 10539810 N 5.0 1.7

Olfml1 7 107567521 10556076 N 4.5 1.5

Plekha1 7 130865914 10558134 N 4.9 1.6

Ginm1 10 7768202 10367717 N 6.0 2.1

Gm10418 11 70540048 10387907 N 4.9 1.6

Mir341 12 109611500 10398350 Y 6.5 2.1

Gdi2 13 3538226 10403258 N 5.1 1.7

Adk 14 21052639 10413086 N 4.5 1.5

Trav13d-1 14 52851305 10414751 N 4.8 1.6

B230359F08Rik 14 53795368 10414973 N 5.5 1.8

Tcp1 17 12916535 10441797 N 4.8 1.6

Table A.11: Genes whose expression is significantly affected by diet-by-POE, at the FWER
threshold level. Chr = chromosome; N = no; Y = Yes; imprinted status determined using
Crowley et al. (2015) and mousebook.org (Blake et al., 2010); p-values and q-values
(FDR-corrected) are -log10 transformed.
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