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ABSTRACT 
 
After the National Radio Astronomy Observatory’s 20-meter diameter telescope in Green Bank, 
West Virginia was added to the Skynet Robotic Telescope Network - which includes optical 
telescopes spanning four continents - a need for a radio data-processing pipeline arose. Therefore, 
development began to create a pipeline similar to optical Skynet’s Afterglow, and the single-dish 
radio mapping algorithm was born. This algorithm has a number of advantages over traditional 
techniques, such as basket-weaving. (1) The algorithm makes use of weighted modeling, instead 
of weighted averaging, to interpolate between signal measurements. This smooths the data, but 
without blurring it beyond instrumental resolution. Techniques that rely on weighted averaging 
blur point sources sometimes as much as 40%. (2) The algorithm makes use of local, instead of 
global, modeling to separate astronomical signal from instrumental and/or environmental signal 
drift along the telescope’s scans. (3) The algorithm uses a very similar, local modeling technique 
to separate astronomical signal from radio-frequency interference (RFI). (4) Unlike other 
techniques, the algorithm does not require data to be collected on a rectangular grid or regridded 
before processing. (5) Any pixel density may be selected for the final image. Here, the procedure 
is presented and evaluated using both simulated and real data. The algorithm is being integrated 
into the image-processing library of Skynet. Default data products will be generated on the fly, 
but will be customizable by the user in real time. 
 
1. INTRODUCTION 
 
1.1. Skynet 
 
Founded in 2005, Skynet is a global network of fully automated, robotic, volunteer telescopes, 
scheduled through a common web interface. Currently, the optical telescopes range in size from 
14 to 40 inches, and span four continents. It was originally created to follow-up on gamma-ray-
bursts, but has since been used for studying other astronomical phenomena, a few of which 
include exoplanetary systems, a wide variety of variable stars, and near Earth objects. Today, 
Skynet’s mission is split evenly between supporting professional astronomers, students, and the 
public. Most users are students either those in middle school, high school, or students taking lab 
courses at a select number of universities throughout the country. 
 

Figure 1:  NRAO-Green Bank 20-meter diameter radio 
telescope. (Photo credit:  NRAO) 
 
We just recently added the refurbished 20-meter radio telescope 
in Green Bank, West Virginia to the network. The beauty of 
Skynet is its ability to connect people all over the world, of 
different purposes and education, to Astronomy through robotic 
telescopes, the newest of which is a radio telescope. Radio 
telescopes are extremely expensive, and they are usually only 

used by professionals because of the expensive instrumentation required to operate and maintain 
an accurate radio telescope. Therefore, Skynet’s addition of the 20-meter will open up another 
branch of astronomy to people all over the world, specifically one that specializes in pulsar 



detection, supernova remnants, quasars, and masers. 
 
1.2. Single-Dish Mapping 
 
While interferometry is used quite extensively throughout the field of radio astronomy, because 
there is only one radio telescope currently available for Skynet, it was necessary to focus on 
single-dish mapping. Therefore, the single-dish mapping algorithm is presented in the following 
pages. 
 
1.2.1. Mapping Pattern 
 
Many single-dish mapping algorithms (Sofue & Reich 1979, Emerson & Graeve 1988) require 
the signal to be sampled on a rectangular grid, where the telescope stops and integrates data at 
each point of this grid on the sky. However, this is an inefficient way to observe because it 
requires the telescope to accelerate and decelerate many times during a particular map, putting 
more wear-and-tear on the movement gears of the telescope. The 20-meter telescope utilizes on-
the-fly (OTF) mapping, in which the signal is integrated as the telescope moves, minimizing the 
above concerns, as long as the integrations span no more than about 0.2 beamwidths along the 
telescope’s direction of motion (along the telescope’s “scan”), to avoid blurring point sources by 
more than 1% (Mangum, Emerson & Greisen 2007). 
 
A variety of OTF mapping patterns may be employed, but only three will be discussed here (see 
Figure 2): 
 

 
 
Figure 2: OTF mapping patterns. Left: Raster (horizontal). Center: Nodding. Right: Daisy.  
 
It is important to note that as long as the gaps between any two scans are smaller than Nyquist 
sampling (or about 0.4 beamwidths), in theory all information between the scans can be 
recovered. Therefore, given the different mapping patterns available and not wanting to limit 
users of Skynet to any set of patterns, the algorithm must work independently of the mapping 
pattern. 
 
1.2.2. Signal Averaging vs. Signal Modeling 
 
Some single-dish algorithms get around the problem of not collecting data on a rectangular grid 
by resampling the data onto a rectangular grid (Winkel, Floer, & Kraus 2012). This is known as 
“regridding”, and it is typically done by taking a weighted average of the data around each grid 
point. However, this blurs the resultant images significantly. If a weighted-averaging kernel of 



width equal to the telescopes beamwidth is used (which many seem to use), it can result in about 
40% blurring and about 40% errors in the reconstructed image. To create better images, some 
oversample the data so that they can use a narrower kernel. The drawbacks here are two-fold:  for 
one, oversampling takes more time and secondly, the data is still being averaged over a particular 
area around the desired point. For instance, Winkel, Floer, and Kraus (2012) collected about three 
times more data as required by Nyquist sampling, and use a ½-beamwidth kernel, yet their results 
still show about 12% blurring and 18% errors in the reconstructed image (see Figure 3). 

 
Figure 3: First Row: Simulation of a point 
source sampled with a Gaussian beam 
pattern on a 1/5-beamwidth grid recovered 
using, from left to right: 1-beamwidth 
weighted averaging, 2/3-beamwidth 
weighted averaging, ½-beamwidth weighted 
averaging, and weighted modeling. Second 
Row: Residual error associated with each of 
these techniques. Third Row: Cassiopeia A 
observed with one of the 20-meter’s L-band 
linear polarization channels using a 1/5-
beamwidth raster, recovered using the 
above techniques. One can see that weighted 
averaging fails to recover the telescope’s 
beam pattern, as well as accurately hit the 
true flux value of the center of the point 
source. Fourth Row: The difference 
between each of these techniques and 
weighted modeling. Square-root and 
squared scalings for the colors are used in 
the third and fourth rows, respectively, to 
emphasize fainter beam structure. 

 
Because single-dish maps already suffer from poor resolution (when compared to interferometric 
maps), it would be unfortunate if the Skynet Algorithm further reduced the resolution due to 
processing. Therefore, the algorithm uses weighted modeling instead of weighted averaging to 
produce a final image. Essentially, weighted modeling fits a two-dimensional polynomial surface 
to the data, as long as the model is sufficiently flexible over the scale of the weighting function 
and the sampling is enough to over constrain this model. For instance, the weighted modeling 
routine is able to recover the simulated data in Figure 3 (top right corner) with <1% errors near 
the center of the beam pattern. It is important to note that the Skynet Algorithm uses weighted 
modeling as the last step of the process, not the first. Although many algorithms use weighted 
averaging and regridding as the first step before contaminant removal, this is a bad practice:  it is 
always best to operate on real data for as long as possible and then approximate, interpolate, or 
model, not the other way around. 
 
1.2.3. Contaminant Removal 
 
Single-dish algorithms must address signal contaminants, lest the images are unusable for 
accurate photometry and other scientific processes. All contaminants can be separated into three 
main categories:  (1) en-route signal drift, (2) radio-frequency interference, and (3) elevation-
dependent signal. Figure 4 illustrates each of these contaminants.  



Figure 4: Raw map of Virgo A (top), 3C 270 (center 
right), and 3C 273 (bottom), acquired with the 20-
meter in L band, using a 1/10-beamwidth horizontal 
raster. Left and right linear polarization channels 
have been independently calibrated (see §2.1) and 
summed, partially symmetrizing the beam pattern 
(Figure 3). Locally modeled surface (§1.2.1, see 
§2.7) has been applied for visualization only. All 
three signal contaminants are demonstrated: (1) en-
route drift, the low-level variations along the 
horizontal scans, (2) an extended period of RFI, 
during the scan that passes through 3C 273, and (3) 
elevation-dependent signal, toward the upper right, 
which was only ≈11 ̊ above the horizon. Square-root 
scaling is used to emphasize fainter structures. 
 

En-route drift:  Even with stable, modern receivers, the detected signal can drift in time, due to 
changing atmospheric emission or ground emission as the telescope moves. This results in low-
level variations between scans, as can be seen above in Figure 4. 
 
To eliminate en-route drift, others use a combination of techniques. For instance, Sofue & Reich 
(1979) used unsharp-masking to separate en-route drift from larger-scale structure. They then 
modeled the en-route drift along each scan with a second-order polynomial and used sigma-
clipping to remove the contaminants. The issues with this approach include blurring the data to 
correct the data, using low-order polynomials to model entire scans (not a good approximation 
over the length of a scan), and sigma-clipping is too crude of an outlier rejection routine. Emerson 
& Graeve (1988) Fourier transform the data, mask it in Fourier space, and transform back. 
Unfortunately, this routine requires that the data consist of two orthogonal mappings, and, 
therefore, two rectangular grids, which is a constraint that the Skynet Algorithm must avoid. 
Haslam, Quigley & Salter (1970), Haslam et al. (1974), Seiber, Haslam & Salter (1979), and 
Haslam et al. (1981) used a technique called basket-weaving, which involves two mappings (with 
intersecting scans) that do not need to be orthogonal. This technique minimizes the signal 
differences at the intersections, but it assumes that en-route drift can be well modeled by a single 
low-order polynomial over the length of the scan. It also requires iteration. Winkel, Floer & 
Kraus (2012) introduced a routine that does not require iteration, but it does require regridding 
and two near-orthogonal mappings (no single maps, daisies, etc.). 
 
RFI: Typically, RFI is localized to specific frequencies. Therefore, if spectral data is available, 
one can mask the particular frequencies that correspond to RFI. It is also common for RFI to be a 
temporal source in continuum data, characterized either by its drawn-out, en-route drift-like 
variation, or its short, Dirac delta function-like signature that is unlikely to occur at the same 
position in adjacent scans. In most of the above references, RFI was identified and then removed 
by hand. However, for the Skynet Algorithm, which will be utilized by a large, diverse group of 
people, RFI removal needs to be automatic. 
 
Elevation-dependent signal: Atmospheric emission increases as the elevation decreases. If small- 
scale structures need to be preserved, it is quite easy to remove this elevation-dependent signal 
along with en-route drift and long-duration RFI (see §2.3). Otherwise, if large-scale structures 
need to be retained, then this background needs to be removed separately. 
 
As the reader will see in the following pages, the Skynet Algorithm handles each of these 



contaminants in a similar way:  first, each is modeled locally (not globally) using simple 
parameterizations, such as first- or second-order polynomials that hold over short angular scales. 
To make sure that the models are as accurate as possible, the Skynet Algorithm utilizes robust 
Chauvenet outlier rejection to separate contaminants from the astronomical signal. Finally, the 
algorithm combines these locally fitted models into a global model, and then we check the 
procedure against simulated data. 
 
1.2.4. Overview 
In §2, we discuss the contaminant-cleaning routines and the mapping of small-scale structures. In 
§3 we summarize our findings and discuss future algorithm development. 
 
2. MAPPING SMALL-SCALE STRUCTURES WITH CONTINUUM OBSERVATIONS 
 
In this section, we will discuss the contaminant-cleaning routines and the mapping of small-scale 
structures (and all of the required routines to do so as accurately as possible). First, gain-
calibration and “robust” Chauvenet outlier rejection (and its uses) will be introduced. Then, we 
measure the noise in each scan, using an iterative point-to-point variation routine. With these 
newly-determined noise measurements, each scan can then be separated into large-scale 
contaminants and the astronomical signal using an iterative background-modeling routine. The 
algorithm then subtracts the modeled background from the real data. Next, cross-correlation is 
used in-between consecutive scans to measure and correct for any time delay between the 
coordinate and integrated signal measurements. After cross-correlation, we utilize robust 
Chauvenet rejection, but this time to measure the noise level across scans. This new across-scan 
noise measurement, along with the previous one within the scans, allows the algorithm to separate 
astronomical small-scale structure from short-duration RFI. Finally, after RFI removal is finished, 
the algorithm employs a weighted modeling interpolation routine to produce an image of 
contaminant-cleaned data, without blurring it beyond instrumental limitations (§1.2.2). 
 
Figure 5: Flowchart of the Skynet Algorithm for 
contaminant-cleaning and mapping small-scale 
structures. Blue are the component algorithms. 
Green are the inputs to and outputs of these 
component algorithms, consisting of data, 
corresponding noise models, and ultimately maps. 
Red are user-selected scales, for separating 
wanted and unwanted structures, and for modeling 
the final surface. 
 
2.1. Gain Calibration and “Robust” Chauvenet 
Outlier Rejection 
 
As with any other precision instrument, the 20-
meter telescope needs to be gain-calibrated 
correctly before its data products can provide 
physically viable astronomical information. After 
significant testing, it was found that 20-meter’s 
gain varies negligibly over the course of an observation. Therefore, we perform calibration at the 
beginning and at the end of observations instead of in-between scans. The Skynet Algorithm 
allows users to choose either the initial calibration (Δ1), final calibration (Δ2), or a linear 
interpolation between the two (Δ(t) = Δ1 + (Δ2 – Δ1)*(t – t1)/(t2 – t1)). 

 



However, this technique is sensitive to possible outliers that may occur during the on and off 
periods of calibration, so the algorithm uses a variation of Chauvenet outlier rejection that we call 
“robust” Chauvenet rejection to reject these outliers. Essentially, Chauvenet rejection is an 
improvement on sigma clipping, as sigma clipping does not account for the size of a set of data. 
For instance, in a data set of 100 points, 2-sigma variations are expected, but 4-sigma variations 
would be extreme. However, in a data set of 10000 points, 3-sigma variations would be expected, 
but 5-sigma variations would not. The criterion for Chauvenet rejection is as follows: 
 

𝑁𝑃 > 𝑧 < 0.5, (1) 
 
where N is the total number of points and P(> |z|) is the cumulative probability that a particular 
measurement is more than z standard deviations from the mean of a Gaussian distribution. 
However, the mean and the standard deviation are usually unknown, so we must measure them 
from the data. Nevertheless, both the mean and the standard deviation are very sensitive to the 
outliers within the data that the algorithm is trying to reject. 
 
Therefore, “robust” Chauvenet rejection is used, which determines the 50th-percentile value (the 
median) and the 68.3-percentile deviation. These quantities approximate the mean and the 
standard deviation, respectively, but both are significantly less sensitive to outliers. We apply the 
routine iteratively to the calibration data, rejecting one point at a time to ensure stability (see 
Figure 6). 

 
Figure 6: 40-foot gain calibration data, 
with the noise diode first on (high points) 
and then off (low points). Circled points 
have been robust Chauvenet rejected, 
including data taken during the transitions 
and RFI- contaminated data (discrepant 
points within each set of high or low points). 
 
The algorithm calibrates each polarization 
channel separately, but then processes three 
maps, one for each polarization channel and 
the other for the combined, averaged, flux-
calibrated two channels. We will employ 
Robust Chauvenet rejection in the many 
sections ahead. 
 
2.2. 1D Noise Measurement 
 

We measure the noise directly from the newly gain-calibrated data by looking at the variations 
from point to point. For each non-rejected point, the algorithm draws a line connecting the (non-
rejected) values to the left and right of the point, and measures the middle point’s deviation from 
that line. Iteration over each scan and then each successive scan ensues, and the calculated 
median of deviations is generally around zero and the standard deviation is measured at the 68.3-
percentile deviation in each of the scans. The algorithm then robust Chauvenet rejects any outlier 
deviations that occur and recalculates (see Figure 7). Eventually, no more points can be rejected, 
and the user is left with the 68.3-percentile standard deviation measurement as the value for the 
point-to-point noise measurement.  
 
 



Figure 7: Point-to-point noise measurement 
technique. Top: Applied to gain-calibrated 20-
meter data. The circled point at the top has 
been robust Chauvenet rejected. Bottom: A 
plot of the residuals (after subtraction). The 
median and 68.3-percentile values are 
calculated from the non-rejected points. 
 
To make sure that this technique gives 
accurate values, we tested it on a data set of 
Gaussian random noise with a known mean of 
zero and a standard deviation of one. We 
found that the point-to-point technique 
overestimates the noise’s true standard 
deviation by about 22.9%. Therefore, each 
scan’s point-to-point noise measurement is 
corrected accordingly by multiplying by 0.814 

(to correct for the overestimation). Now that the algorithm has determined the point-to-point 
noise measurements of every scan, it can combine them into a single model that accounts for 
changes in the noise level with time by fitting a quadratic polynomial to the noise as a function of 
scan number. Again, we use robust Chauvenet rejection to reject overly discrepant point-to-point 
noise scans (see Figure 8). 
 
Figure 8: Corrected 1D noise measurements 
vs. scan number for a particular 20-meter 
observation. As can be seen by the circled 
points, only two noise measurements were 
rejected, although this is unusual because all 
of the discrepant intra-scan measurements 
have been rejected. Here, the noise level 
increases by about 20% from the beginning to 
the end of the observation. 
 
2.3. 1D Background Subtraction 
 
Now that the algorithm has a noise level for 
each scan at its disposal, it now has a criterion 
for which it can model backgrounds 
throughout each scan. With the 1D 
background subtraction routine, the goal is to 
separate all large-scale contaminants (en-route drift, long-duration RFI, elevation-dependent 
signal) from the small-scale astronomical point sources and short-duration RFI. Since long-
duration RFI and en-route drift are 1D structures that vary along the scans, the algorithm begins 
by modeling and subtracting structures larger than the user-defined scale along the scans only (1D 
background subtraction). 
 
It is important to note that one should be careful when picking the 1D background subtraction 
scale, as the user should define a scale that is larger than the scale over which the telescope blurs 
point sources. If the user chooses a shorter scale, it is likely that many of the point sources would 
be underestimated in the final result (having been partially subtracted out by this routine). 
Therefore, we determined the minimum recommended values for the 20-meter L band receiver 



before the upgrade empirically by two different criteria. The first required that the background 
scale at multiple parallactic angles did not affect the peak value of a point source, and the second 
required that the entire structure of the beam pattern (including faint outskirts) was visible. 
Therefore, the minimum for the first criterion was determined to be 6.5 beamwidths, and the 
second 8 beamwidths. 
 
Using this scale, the basic approach to 1D background subtraction is to draw a line from each 
point to another point within one scale length, such that all other points (within this scale length) 
are above the line. We then repeat this for each point, but in the backward direction, and the 
minimum of all the linear individual models is a non-linear background model. Although this 
does work pretty well in modeling the shape of the background, it underestimates the true 
background behavior (see Figure 9). 
 

Figure 9: Top: A forward-directed local 
background model, anchored to a point in a 
scan going across 3C 270 in Figure 4. Circled 
points are within one background scale length, 
but are above the model. Middle: Forward- and 
backward-directed local background models, 
each corresponding to a point in the scan. 
Bottom: The global background model, 
constructed from all of the local background 
models. Notice how it rides under the 
background and not through it, as it should. 
 
In addition to riding under the true background 
structure, this algorithm is also very sensitive to 
negative noise fluctuations. Therefore, using a 
similar but superior routine, the algorithm gives 
better results (see Figure 10). 
 
Figure 10: Top: A forward-directed local 
background model, anchored to the same point 
as in Figure 9. This time, however, all of the 
circled points have been iteratively rejected (as 
they are above the calculated noise level) using 
robust Chauvenet rejection. Middle: Final local 
background models originally (but no longer) 
anchored to every point in the scan. Bottom: 
The global background model, which has been 
constructed from the linear final local 
background models (solid curve), and from the 
quadratic local background models (dashed 
curve). 
 
This new routine, as demonstrated in Figure 10 
(top), continues to use the anchor method 
demonstrated before, but this time it uses the 

calculated noise measurement to determine which points to keep and which to reject within the 
scale length desired by the user. After fitting a first or second order polynomial to the points 
within the domain, the iterative rejection process begins until the model fits into the middle of a 



specific set of points within the desired, calculated noise measurement. Next, the algorithm 
rejects the anchor point and refits to the non-rejected points, resulting in a lower standard 
deviation. To raise the deviation back up to the calculated value determined in §2.2, the routine 
iteratively adds the least-outlying rejected points to the left and right of the non-rejected points 
until the standard deviation value is consistent with the noise measurement. This gives a final 
local background model for each of the points in the scan (Figure 10, middle panel). 
Consequently, the model does not underestimate nor overestimate the background behavior. To 
construct the final, global background model illustrated in the bottom panel of Figure 10, the 
algorithm again uses robust Chauvenet rejection to reject outliers and determine the median value 
for each point in these background models. However, based upon the nature of these models, and 
the fact that points toward the center of fitted data are better constrained than those on the edges, 
each of the points must be weighted by the number of non-rejected points contributing to its local 
background model and by its position in its local background model: 
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where wij is the weight of the jth point of the ith local background model, xij is the angular 
distance of this point along the scan, Ni is the number of non-rejected points to which the ith local 
background model was fitted, µi is the average angular distance of these points along the scan, σi 
is the standard deviation of these values, τi is the values’ kurtosis: 
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and δ is zero for linear local background models and one for quadratic local background models. 
For the rest of this paper, quadratic local background models are used because of their increased 
flexibility over linear background models, and their robustness (insensitivity to wild variations 
and above noise-level errors). 
 
2.3.1. Simulation: Gaussian Random Noise 
 
In the next few sections, we will test the background subtraction algorithm by applying it to 
simulated data of increasing complexity. The first test is on a grid of Gaussian random noise 
(Figure 11). 
 
Figure 11: 20-meter 1/10th-beamwidth horizontal raster 
replaced with Gaussian noise. This noise has a mean of 
zero and a standard deviation equal to one. The locally 
modeled surface (see §2.7) has been used for 
visualization only. 
 
In this section, we test the background subtraction 
routine on the 6-, 12-, and 24-beamwidth scales (see the 
top row of Figure 12). Residuals, or the difference 
between the Gaussian noise data and the newly 
background subtracted data, are presented in the bottom 
row of Figure 12. Residuals in this instance are an 
important data product, as, theoretically, the background 
subtraction routine should not change anything because 



the data is simply flat noise. Therefore, how close the residuals are to zero is an important metric 
of the quality of the background subtraction routine. 
 

 
 
Figure 12: Top row: Data from Figure 11 background-subtracted with 6-, 12-, and 24-
beamwidth scales, moving from left to right. The map is 24-beamwidths across. Bottom row: 
Data from Figure 11 minus the top row (at each of the different scales, respectively). As can be 
seen from the colors, background-subtracted data is biased neither high nor low. The noise levels 
of the data sets in the top row, from left to right, are ~97.8%, ~98.7%, and ~99.1% compared to 
the noise level of Figure 11, while the noise level of the residuals are only ~19.7%, ~15.1%, and 
~12.1% respectively. Locally modeled surfaces have been applied for visualization only. 
 
Overall, the background subtraction algorithm works as expected in subtracting flat data, and 
smaller angular scales result in higher RMS noise in the residuals, while larger background 
subtraction scales have lower RMS noise. The reason for this is the difference in quality of each 
of the background subtractions (which is directly related to the number of points available to fit to 
within each scale).  
 
2.3.2. Simulation: Small-Scale Structures 
 
Next, we add simulated point sources and short-duration RFI to the Gaussian noise simulation 
data of the previous section. Again, we use the background subtraction algorithm at 6-, 12-, and 
24-beamwidth scales to analyze the behavior of the algorithm both visibly and quantitatively by 
applying locally modeled surfaces to both the background-subtracted data and the residual data. 
However, to distinguish the noise residuals from the small-scale structure residuals, we subtract 
the corresponding data from the bottom row of Figure 12 from the residuals produced by 



background-subtracting Figure 13 at each of the scales. 
 

Figure 13: Simulated data from Figure 11 to 
which we have added Gaussian point sources 
and short-duration RFI. To create the short 
duration RFI, we use the absolute value of a 
sum of rapidly varying sine functions 
multiplied by a short-duration Gaussian 
envelope function. Locally modeled surfaces 
have been applied for visualization only, and 
square root scaling is used to emphasize 
fainter structure. 
 
After looking at the residuals (bottom row) of 
Figure 14, it is clear that background 
subtraction has a few small effect on the point 
sources, but effects nonetheless.  
  
1. Background-subtracted data are biased low 
near small-scale structures, but this bias is at 
or below noise level, as well as independent of  

 

 
 
Figure 14: Top row: Data from Figure 13 after background subtraction with 6-, 12-, and 24-
beamwidth scales. Bottom row: Data from the top row minus the data from Figure 13 and the 
Gaussian residuals from the bottom row of Figure 12. It can be seen that small-scale structure 



residuals are biased negative, and that each of the different scales result in residuals of ~1/2 – 1, 
~1/4 – 1/2, and ~1/8 – 1/4 of the noise level from left to right. Larger residuals are possible when 
small-scale structures blend with large-scale structures, and even larger residuals will occur at 
the end of scans. Locally modeled surfaces have been applied for visualization only, and square 
root and squared scalings are used in the top and bottom rows, respectively, to show fainter 
structures. 
 
the brightness of the small-scale structure. For example, we see that the 1000 signal/noise point 
source in the middle gives about the same residuals as the other ~10 signal/noise sources across 
the image. The bias level is greatest in the center of these regions, and is only dependent upon the 
noise level (directly proportional) and the background subtraction scale (inversely proportional), 
not the brightness of the source. Although this is an introduction of systematic error, the error that 
it does introduce is so low that it can be ignored. 
 
2. Unfortunately, the bias can be somewhat larger when small-scale structures are blended 
together (look at Figure 14, bottom row on the left at the area of blue on the right side of the 
image). The reason for this is that the two point sources, when blended together, become a larger 
structure that may exceed the user’s background subtraction scale. For instance, the 6-beamwidth 
background subtraction scale is smaller than the blended structure, so it gives residuals about 2.5 
times the noise level, but the 12- and 24-beamwidth scales show typical, sub-noise level 
residuals. However, we will eliminate background subtraction bias in §3. 
 
3. The bias can be significantly larger when small-scale structures fall at the end of a scan. The 
reason for this is that our models run out of data to fit to near the end of a scan (the brightness of 
the source in the top row at the bottom left of each of the images of Figure 14 is about 40% 
smaller than it should be). Unfortunately, not too much can be done about this right now, 
although this issue should be largely resolved in §3. 
 
2.3.3. Simulation: 1D Large-Scale Structures 
 
Next, simulated long-duration RFI and en-route drift are added to our simulation data from 
§2.3.2. We follow the same procedure in this section, where background subtraction is used on 6-, 
12-, and 24-beamwidth scales. 
 
Figure 15: Simulated data from Figure 13 to 
which we have added en-route drift and long-
duration RFI. We created the en-route drift by 
adding a few sinusoidal functions with different 
phases, the shortest period of which is 12-
beamwidths. From the bottom to the top, we 
linearly increase the amplitude of the en-route 
drift from zero times the noise level to 12 times 
the noise level. We created the long-duration RFI 
using the same procedure as we did for the short-
duration RFI, but with a long-duration Gaussian 
envelope function. The long-duration RFI in this 
image is significantly brighter than the en-route 
drift. Locally modeled surfaces have been applied 
for visualization purposes only, and square root 
scaling is used to emphasize fainter structures. 
 



The residuals are presented in the bottom row of Figure 16, but here we have only subtracted off 
the residuals from the bottom rows of Figures 12 and 14 to emphasize the residuals from the 
large-scale 1D structures only. 
 

 
 
Figure 16: Top row: Data from Figure 15 after background subtraction with 6-, 12-, and 24-
beamwidth scales. Bottom row: Data from the top row minus the data from Figure 14 (residuals) 
and the Gaussian residuals from the bottom row of Figure 12. En-route drift and long-duration 
RFI are not eliminated, but are significantly reduced, especially for the shorter background 
subtraction scales (6-beamwidth). These long-duration contaminants are again reduced 
significantly when we remove RFI in §2.6. Locally modeled surfaces have been applied for 
visualization purposes only, and square root and hyperbolic-arcsine scalings are used in the top 
and bottom rows, respectively, to emphasize faint structures. 
 
Since background subtraction occurs along the scans in the same direction as en-route drift and 
long-duration RFI, it makes sense that the background subtraction routine would be effective at 
reducing these contaminants significantly, especially at smaller beamwidth subtraction scales (i.e. 
6). Qualitatively, one can see from the top row of images in Figure 16 that background 
subtraction is working, and working well. Quantitatively, en-route drift and long-duration RFI 
(beamwidth variation scale = 12) are reduced by factors of about 4 and 5, corresponding to about 
87% of the noise level and 40 times the noise level, respectively, when using a 24-beamwidth 
subtraction scale (double the beamwidth variation scale of large-scale contaminants). 
Additionally, en-route drift and long-duration RFI are reduced by factors of about 61 and 590, 
corresponding to about 5% and 36% of the noise level, respectively, when background-subtracted 
using a 6-beamwidth scale (half the beamwidth variation scale of large-scale contaminants). 
Figure 17 illustrates each of the reductions for a variety of scales. 



Figure 17: Top: Factor by which background subtraction 
reduces en-route drift (red), long-duration RFI (green), 
large-scale astronomical signal (blue), and elevation-
dependent signal (black). Bottom: Fraction of the noise 
level to which the above are reduced. 
 
2.3.4. Simulation: 2D Large-Scale Structures 
 
Next, we add simulated large-scale 2D structures to the 
data in Figure 15 (see Figure 18). We then follow a similar 
procedure as we did in the previous sections, first using 6-, 
12-, and 24-beamwidth baselines for background 
subtraction (and the producing the resultant images), and 
then determining the residuals afterwards. 
 

Figure 18: Simulated data from Figure 15, but this time with 
added 2D large-scale structures: large-scale astronomical 
signal and elevation-dependent signal. For the large-scale 
astronomical signal, we use a sum of 2D Gaussian 
distributions with a full-width at half-maximum (FWHM) of 
12-beamwidths. For the elevation-dependent signal, we use a 
cosecant function. As can be seen in the figure, the elevation 
decreases as one approaches the top-right corner of the 
image. The locally modeled surface has been applied for 
visualization purposes only, and hyperbolic arcsine scaling is 
used to emphasize fainter structures. 
 
 

 



Figure 19: Top row: Data from Figure 18 after background subtraction with 6-, 12-, and 24-
beamwidth scales (from left to right). Bottom row: Data from the top row minus the data from 
Figure 16 (residuals), Figure 14 (residuals), and the Gaussian residuals from the bottom row of 
Figure 12. The elevation-dependent signal is effectively eliminated, while the large-scale 
astronomical signal is not completely eliminated, but is significantly reduced, especially for the 
shorter background subtraction subtraction scales (6-beamwidth). The large-scale contaminants 
are again reduced, but only marginally, when we remove RFI in §2.6. Locally modeled surfaces 
have been applied for visualization purposes only, and square root and squared scalings are used 
in the top and bottom rows, respectively, to emphasize faint structures. 
 
Figure 19 illustrates these products, but it is important to note that, to emphasize the residuals of 
these 2D large-scale structures, we have subtracted out the residuals from the bottom rows of 
Figures 12, 14, and 16. As mentioned in Figure 19’s caption, the algorithm is effective at 
reducing/eliminating these large-scale contaminants, especially on smaller beamwidth scales of 
background subtraction. Quantitatively, we find that large-scale astronomical signal and 
elevation-dependent signal are reduced by factors of about 15 and 190, to about 3 times and 17% 
of the noise-level, respectively, when using a background subtraction scale of 24-beamwidths (the 
size of the map). For a subtraction scale of 12-beamwidths, we reduce the large-scale 
astronomical signal and elevation-dependent signal by factors of about 510 and 710, to about 9% 
and 5% of the noise level, respectively. We reduce these structures by even greater factors at 
smaller scales (see Figure 17). After RFI removal (see §2.6), these numbers are reduced even 
further, albeit minimally. 
 
If one looks very hard at the 6-beamwidth scale residual map, one can see that additional noise 
and sub-noise level residuals remain near small-scale structures. These residuals can be either 
negative or positive, depending upon the nature of the background around the small-scale 
structures, but, as in §2.3.2, the residuals are not very significant and we should almost 
completely remove them after we model large-scale structures in §3. As before, there are also 
relatively large residuals near the end of scans, but again we will eliminate these after RFI 
subtraction in §2.6 and large-scale structure modeling in §3. 
 
2.3.5. 20-Meter and 40-Foot Data 
 

 



Figure 20: Left: Figure 4 after background subtracting with an 8-beamwidth scale. Right: 
Figure 4 after background subtracting with a 24-beamwidth scale. The locally modeled surface 
has been applied for visualization only, and square root scaling is used to emphasize fainter 
structures. 
 
After having applied this algorithm to almost every case of simulated data, we can now move 
onto real data. First, we apply it to the 20-meter L-band raster in Figure 4 (see Figure 20). As can 
be seen from both the left and the right images, we successfully eliminated the elevation-
dependent signal. In addition, much of the 1D and 2D large-scale structures are significantly 
reduced. However, streaks remain from the background subtraction, although RFI subtraction will 
remove these artifacts (§2.6). 
 
Figure 21: Top row: Time-
corrected (see §2.4) raw maps 
of Andromeda (left and 
middle), acquired with the 40-
foot telescope in L-band, using 
a maximum slew speed 
nodding pattern (Figure 2, 
middle). The difference of the 
left and right panels is 
displayed in the rightmost 
column. Instrumental signal 
drift dominates each map. 
Bottom row: Data from the top 
rows background subtracted 
using a 5-beamwidth scale. 
Despite the overwhelming 
instrumental signal in the top 
maps, the source is extracted 
(and the maps look similar) 
after background subtraction! 
Locally modeled surfaces have 
been applied for visualization 
only. 
 
In Figure 21, we have applied the algorithm to 40-foot maps that utilize the nodding pattern in 
Figure 2. Clearly, the 40-foot’s stability is inferior to the 20-meter’s, although after subtracting 
the top left and middle panels of Figure 21, the result is noise level fluctuations. 

 
Figure 22: Left: Raw map of 3C 84 in X 
band using the 20-meter’s 20-petal daisy 
pattern. Right: Left, after background 
subtraction with an 8.6-beamwidth scale 
(the map is 8.6-beamwidths across). A 
locally modeled surface has been applied 
for visualization purposes only, and 
hyperbolic arcsine scaling is used to 
emphasize fainter structure. 
 
Here, we apply the algorithm to a daisy 



map of 3C 84 to demonstrate this algorithm’s application to non-rectangular mapping patterns. 
We treat each slew of the telescope across the diameter of the observing region as a separate scan 
for background subtraction purposes. 
 
2.4. Time-Delay Correction (Optional) 
 
Both the 20-meter and 40-foot telescopes perform on-the-fly integration of signal as they create 
these 2D maps. Unfortunately, the integrated signal values do not always match up with the 
correct right ascension (RA) and declination (DEC) because of a time delay in between read outs 
of the RA and DEC and the integrated flux value. This lack of synchronization is always present 
in 40-foot maps because of a RC filter with a time-constant of 0.1 seconds. This essentially delays 
the flux measurements, resulting in maps that look like the top left corner of Figure 23. The 20-
meter, on the other hand, integrates the signal over a user-defined time, and the position is 
recorded at the midpoint of the integration time, effectively eliminating any time-delay issues in 
maps. 
 
Figure 23: Top row: 40-foot L band 
map of the sun after background 
subtraction. The left image is done 
without time-delay correction, while 
the right image is after time-delay 
correction. If one looks closely at 
the left image, one can see zig-zags 
near the edge of the red portion of 
the source, indicating the time-delay 
problem. The six spokes illustrate 
the diffraction pattern of the 40-foot 
telescope, and the center is 
saturated. Bottom row: 20-meter 
background-subtracted map of 
Cassiopeia A in L band, where the 
20-meter’s signal and position 
computers’ clocks are not 
synchronized in the left image. In 
the right image, we utilized our 
time-delay correction routine. 
Locally modeled surfaces have been 
applied for visualization purposes 
only, and hyperbolic arcsine scaling 
is used to emphasize fainter 
structures. 
 
Clearly, if nothing was done about this issue whenever it appeared, output images from the 
algorithm would be neither appealing nor scientifically accurate. Because the 40-foot always 
needs this correction, and the 20-meter may need it sometimes, we designed the algorithm to 
check for time-delay issues. Once the algorithm determines a time-delay correction is needed, it 
utilizes cross-correlation between adjacent scans, takes the weighted median of the angular shifts 
derived from the cross-correlation of the observation, and uses robust Chauvenet rejection to 
reject outliers until it arrives at an appropriate median value. Half of this median value is how 
much each scan is misaligned (on average) in alternating directions. However, it is important to 
consider that the data are not misaligned in angle. The data are misaligned in time. Therefore, this 



median value must be divided by the median slew speed of the telescope (for rasters or noddings), 
which is measured from the data (robustly, of course). We then take this time and shift each 
signal measurement accordingly by interpolating the telescope’s position that time ago. For 
daisies, the telescope’s slew speed changes constantly and it reaches its max in the center of the 
desired source. Therefore, we use this maximum slew speed instead of the median of the other 
maps because of source domination. 
 
In terms of when this correction procedure should be done, it is best to proceed with time-delay 
correction after background subtraction, as cross-correlation works best when it is dominated by 
sources, not the noisy background present in pre-background-subtracted data. 
 
2.5. 2D Noise Measurement 
 
The key to RFI removal in the next section is the 2D noise determination on the newly 
background-subtracted data. We approach this issue similarly to how we dealt with the 1D noise 
measurement. Except, this time, the noise is measured across the scans instead of through them. 
 
For each point, we draw a line between the most-similar point in the previous scan and the most 
similar point in the next scan. We then measure the deviation of the center point from this line 
(see Figure 24). We use robust Chauvenet rejection to determine the median and 68.3-percentile 
deviation for each scan of these deviations. Outliers are typically caused by RFI and signal 
variations around bright sources, but Chauvenet rejection, as in §2.1, rejects these. The final noise 
measurement (what we call the scan-to-scan noise measurement) is the sum in quadrature of the 
final median and the final 68.3-percentile deviation. 

 
Figure 24: Scan-to-scan noise 
measurement technique applied to 
rasters (top left), noddings (top 
right), daisies (bottom left). 
Residuals are measured as in the 
bottom right panel, and the 
median and 68.3-percentile 
deviation values are determined 
from the non-rejected residuals 
from each scan. 
 
Following a similar procedure to 
§2.2, we calibrate this technique 
by applying it to Gaussian random 
noise of known mean (0) and 
standard deviation (1). We find 
that the scan-to-scan noise 
measurement overestimates the 
true standard deviation of the 
noise by about 23.2% currently, 
although this routine is still in 
development. We will correct 

each scan’s noise measurement accordingly. Finally, we combine all of the scans’ noise 
measurements into a single model for the entire observation, again utilizing a second-order 
polynomial after robust Chauvenet rejecting one outlier at a time. 
 



2.6. 2D RFI Subtraction 
 
Before going completely into our 2D RFI subtraction routine, we will note that this code remains 
in development as of late. Originally, we utilized a 1D RFI subtraction routine that fit a one-
parameter, squared-cosine model to each scan, similar to how we used a three-parameter 
quadratic to model the background throughout a scan. However, this 1D RFI’s goal was to 
eliminate any structures smaller than a particular scale. Therefore, point sources that are blurred 
to the telescope’s diffraction limit could be retained, and any short-duration, temporal RFI would 
be eliminated. To do this, we fit a 1D squared cosine function with a particular FWHM (specified 
by the user) to the data within each scan. If the cosine function could fit “up into” a source, it was 
retained. Otherwise, anything that the squared cosine could not fit into would be eliminated, as 
the squared cosine function would only fit to the points corresponding to the bottom of the 
temporal spike. Therefore, any points above the squared cosine function through iteration would 
be dropped down to noise-level fluctuations (see Figure 26). 
 
Our new algorithm, however, makes use of a 2D squared cosine function. Like the 1D RFI 
subtraction routine, the 2D algorithm also has many similarities to the background subtraction 
routine, but there are a few key differences: 
 
1. 2D RFI subtraction separates sub-beamwidth structures from larger structures, instead of 
hyper-beamwidth structures from smaller structures. 
 
2. Instead of using a three-parameter quadratic local model, we utilize a one-parameter squared 
cosine local model: 
 

𝑧 Δθ = 𝑓𝑐𝑜𝑠! !"#
!!!"#

  𝑖𝑓  Δθ < θ!"#. (4) 
 
This is set to zero if Δθ > θRFI, where Δθ is the angular distance and θRFI is the user-defined RFI 
subtraction scale, and f, the free parameter, normalizes the function. The arguments within the 
cosine function are chosen so that when θRFI is about 1-beamwidth, it mimics a background-
subtracted point source with shorter wings (see Figure 25). In addition, the beauty of this specific 
squared cosine function allows us to choose the θRFI to correspond to a number just shy of the 
telescope’s true FWHM of its beam pattern so we can separate very small-scale structures from 
those that correspond to important point sources that we want to preserve. 
 
Figure 25: Local squared cosine model (solid line) 
with θRFI = 1, Airy function (dashed line), and 
Gaussian function (dotted line), each with FWHM = 
1-beamwidth. 
 
To go into more detail, the iterative process consists 
of centering on every point in a scan, and then fitting 
the squared cosine function to all points within range 
(Δθ < θRFI). The standard deviation of these points 
around the model is then calculated. If it turns out 
that the measured standard deviation is greater than 
the recently calculated (§2.5) noise level, then we 
reject the most positive outlier if f > 0, or the most 
negative outlier if f < 0, and then refit. This process 
repeats until the standard deviation of the non-



rejected points is consistent with the noise model (see Figure 26).  
 
Figure 26: First: 1D cross-section, along a 
scan, of a 2D local model, centered on an 
arbitrary point from the left panel of Figure 3, 
near Virgo A. We have contaminated the scan 
with three instances of simulated RFI. Circled 
points have been iteratively rejected as being 
above the modeled noise level. Second: 1D 
cross-sections of every 2D local model that 
intersects this scan. Boxes correspond to 
single-point 1D cross-sections. All instances 
of simulated RFI have been rejected as too 
narrow, either along this scan or across 
adjacent scans, compared to the RFI-
subtraction scale (in this case θRFI = 1 
beamwidth). Third: Global model, constructed 
from the local models. Fourth: Original, 
uncontaminated data and resulting, nearly 
identical, global model. 

 
After the iterations finish, a single local model remains for only the non-rejected points. We then 
repeat this process for every point (as the center) in the observation, resulting in a collection of 
local models. 
 
3. As in §2.3, we construct the global model from the local models by taking the median of the 
local models at each point and iteratively rejecting outliers through robust Chauvenet rejection. 
Again, we must weight each of the models for each of the points based upon its accuracy 
(dependent upon its position in the local model): 
 

𝑤!" =
!!

!!(!!!")
, (5) 

 
where wij is the weight of the jth point in the ith local model, Δθij is the angular distance of this 
point from the model’s center, and Ni is the number of non-rejected points utilized by the ith local 
model. However, unlike in §2.3, we do not subtract the global model from the data. The global 
model, in this routine, is the RFI subtracted result. This model is a smoother version of the 
original data, but it does not result in any additional blurring. 
 
In theory, we should be able to choose the RFI subtraction scale, θRFI, up to the true FWHM of 
the telescope’s beam pattern. However, as with most routines in practice, choosing a FWHM 
within that vicinity may result in partial subtraction of point sources. The reason for this is that 
beam patterns of telescopes are not necessarily perfect (they may be peaked more in one direction 
than another, or even asymmetric. Therefore, it is necessary for us to choose a smaller RFI 
subtraction scale. The recommended values for θRFI are yet to be determined (a discussion of 
future analysis/routines will be given in §3). 
 
In the near future, we will begin analyzing the 2D RFI subtraction routine in a similar manner to 
the qualitative and quantitative analysis given in §2.3.1 - §2.3.5. However, as a sneak-peek of 
what our inferior 1D RFI subtraction algorithm could do, here is one of the simulations 
background-subtracted and then RFI subtracted: 



 

 
 
Figure 27: Left: See Figure 18 for caption. Middle: The left panel after 6-beamwidth 
background subtraction. Right: The left panel after 6-beamwidth scale background subtraction 
and 0.5-beamwidth scale 1D RFI subtraction. Locally modeled surface has been applied for 
visualization purposes only, and hyperbolic arcsine, square root, and square root scalings were 
used (from left to right). 
 
Qualitatively, it is clear that we have significantly decontaminated the image on the left after 
sending it through background subtraction and 1D RFI subtraction (result: right image). We will 
perform quantitative analysis as soon as the 2D RFI subtraction algorithm is perfected. 
 
2.7. 2D Surface Modeling 
 
In this section, we present our 2D surface-modeling algorithm which regrids the data into an 
image. As was discussed back in §1, our algorithm’s approach is unique among other the 
algorithms described in other papers, as it uses weighted modeling instead of averaging and can 
be used after the data has been cleaned of contaminants. It is also important to stress that 
modeling is superior to averaging because it does not blur the original data. Moreover, our routine 
can be applied after any particular step, if visualization is wanted. As the reader has seen, there 
have been many examples (see many of the figures) throughout this paper illustrating the results 
of the surface-modeling algorithm. 
 
Additionally, this approach allows us to arbitrarily choose the pixel density of the final image, 
unlike other routines that require regridding data to perform their contaminant cleaning routines. 
We have set a default pixel scale of 1/20th of a beamwidth, but the user can change this scale. For 
each pixel, we fit a flexible, third-order, 2D polynomial function to all data within 1-beamwidth 
of the center pixel. In addition, we weight the points higher the closer they are to the center pixel. 
Our modeling routine utilizes: 
 

𝑧 Δ𝑥,Δ𝑦 = 𝑎!"(Δ𝑥)!(Δ𝑦)!!!!
!!!

!
!!! , (6) 

 
where z is the locally modeled signal, Δx and Δy are the angular distances from the center pixel 
along each direction, and aij are the polynomial coefficients. We determine z for every pixel in the 
image. 
 
We set a 1-beamwidth hard limit for our weighting function, and anything outside this limit does 
not contribute to the modeled surface value. This is important because it preserves the continuity 



of the modeled surface. We use the following weighting function: 
 

𝑤 Δθ = 𝑐𝑜𝑠! !"#
!

  𝑖𝑓  Δθ < 1  𝑏𝑒𝑎𝑚𝑤𝑖𝑑𝑡ℎ,𝑤ℎ𝑒𝑟𝑒  α = − !"#  (!)

!"#  (!"# !!!
! )

 (6) 

 
and where θw is the user-defined FWHM of the weighting function, and w = 0 if Δθ > 1-
beamwidth. 
 
Figure 28: Weighting function with FWHM 
θw = 1/3- (solid), 2/3- (dashed), and 1- 
(dotted) beamwidths. 
 
From the above equations, it can be shown 
rather easily that a choice of a smaller θw 
results in a larger α, therefore favoring the 
data that is closer to the central pixel. 
However, smaller θw values reduce the 
precision of the fit, as the local modeled 
surface has less data points to which to fit. It 
is important to note that choosing θw values 
below about 1/3-beamwidth provides no 
additional benefit, as RFI subtraction should 
eliminate information smaller than 1/3-
beamwidths. 
 
Expectedly, there is a “sweet spot” for this 
θw; making the angular radius of weighting too small results in fits that are under constrained and 
likely discrepant. Therefore, it is necessary to define θw more robustly: 
 

θ! = max !
!
  𝑏𝑒𝑎𝑚𝑤𝑖𝑑𝑡ℎ𝑠, !

!
×θ!"# , (7) 

 
where θgap is a measure of the largest distance between any two consecutive scans in an entire 
observation. This works very well with rasters and noddings, but daisies are a unique challenge, 
due to their odd shape and the unclear division of scans. Noddings are slightly more complicated 
than rasters because of the large differences between consecutive scans (at turn-around points the 
scans are very close together), but it again comes down to the largest angular gap between 
consecutive sweeps in any area of the map. For daisies, we again adapt a largest gap model to 
account for the lack of points a single local model may have, but this time there are three gap 
factors, each dependent upon the radius away from the center of the pattern. These three gap 
factors are the inter-, and intra-petal gaps, as well as the robust Chauvenet-rejected median gap 
along the scans. These gaps cannot exceed ¾-beamwidths or else the model will be under 
constrained and it will likely arrive at a wrong modeled value for that particular point in the grid. 
 
The Skynet algorithm will also be able to append multiple observations/maps, but that section of 
the code remains in development with preliminary tests looking promising. 
 
2.7.1. Applications to Asymmetric Structures 
 
Although we have focused upon the mapping of symmetric structures so far, the weighted 2D 
surface modeling algorithm also maps asymmetric structures very accurately due to the cross 



terms for z (see page 21), the locally-modeled signal. See Figure 29 for an example. 
 

 
 
Figure 29: 3-minute 20-meter X-band raster of Centaurus A, background-subtracted, time-delay 
corrected, and RFI-removed. The radio jet is marginally resolved and oriented correctly with 
respect to the galaxy (right). Optical picture of NGC 5128 (left) taken with Skynet’s PROMPT-2 
telescope at Cerro-Tololo Inter-American Observatory, courtesy of the Star Shadows Remote 
Observatory astrophotography group. 
 
2.7.2. Default Data Products 
 
After completing each 20-meter or 40-foot mapping, Skynet automatically produces the following 
data products for the left, right, or combined polarizations (or any combination of the three): 
 
Raw maps: Maps produced by our surface-modeling algorithm immediately after reading the 
signal, so the user can visualize the data before processing. A θw scale of 4/3*θgap is used to better 
visualize sub-beamwidth contaminants. 
 
Contaminant-cleaned maps: Maps produced by our surface-modeling algorithm after data 
processing, which includes gain-calibration, background subtraction, time-delay correction, RFI 
subtraction, and finally surface modeling, using the user-recommended scales or our 
recommended values for each step. 
 
Path maps: A grid of the same size as the contaminant-cleaned maps and raw maps is created, but 
the path maps instead use values of one and zero to distinguish the path that the telescope 
“draws” on the sky. A one (1) or negative one (-1) is given to points at particular angular 
coordinates at which signal integration occurs (alternating each scan), and all others are given 
zeros. Path maps are useful for determining whether the telescope had any issues in mapping the 
sky or whether the encoders for the RA or DEC malfunctioned. 
 
Scale maps: These maps visualize the weighting scale used for each surface-modeled point. 
Rasters are usually very simple (a single value across the entire map), but daisies’ and noddings’ 
scale maps are much more complicated and vary over the grid. Scale maps are important for 
photometry (see §2.8), as only regions of images with θw ≤ 1/3-beamwidths should be trusted. 
 
Weight maps:  These maps visualize the weighted number of data points to which each z (see 
Equation 6) in the final surface model was fitted. These are important if we decide to 



stack/average images, as weights need to be appropriately determined when averaging. We use 
weight maps later in our photometry routine and in the production of the edge maps. 
 
Edge maps: These maps measure how far any pixel in an image is from the edge of the data, and 
as one approaches the edge of an image, there may not be enough data to adequately constrain the 
surface-modeling polynomial. Therefore, when generating the final images, we remove the pixels 
that are too far from the rest of the data using the edge map. We generate these maps by 
calculating a “center-of-mass” for each collection of data points to which Equation 6 was fitted. 
The criterion for which we remove pixels from the final contaminant-cleaned maps is still being 
tested, although the most recent value was found to be about 0.1 weighting scales, where greater 
values exclude the pixel from the final image. However, this threshold will be configurable so the 
user can see more or less of the image if need be. 
 
2.8. Aperture Photometry 
 
Because this algorithm produces a contaminant-cleaned, accurately modeled surface spanning a 
grid of pixels, one can perform operations on it, much as one would on a reduced optical image. 
Therefore, the algorithm can utilize a simple aperture photometry routine to measure the 
brightness of astronomical sources. The only requirement for aperture photometry is that the 
locally modeled surface was produced with a weighting scale less than ~1/3-beamwidths. 
 
We perform photometry by slapping a circular aperture and a concentric annulus around a source 
of interest. We do this by determining the center-of-mass of the pixel values within the aperture 
and iterating as necessary. The photometry routine then sums these values, subtracting a constant, 
near-background value calculated from the robust Chauvenet rejection-determined weighted 
median value of the annulus. This routine is still in development, pending further testing. 
 
3. FUTURE WORK AND CONCLUSIONS 
 
Ultimately, our algorithm succeeds in removing contaminants from radio maps, regardless of the 
mapping pattern used. The algorithm requires no further work in noise determination, background 
subtraction, or weighted modeling mapping. However, the 2D RFI removal routines still require 
further work. In addition, we will use spectral data to facilitate the removal of RFI of specific 
frequencies. We must also implement code to clean and map large-scale structures separately 
from the small-scale structure code already present. Finally, once development of the algorithm is 
complete, we will implement the code into Skynet. Once implemented, we will generate default 
data products that are customizable by the user in real time. Ultimately, Radio Skynet will 
provide a means to make the invisible sky visible to a diverse group of people for years to come. 
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