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ABSTRACT 

Matthew William Boyce: Developing tools for paper-based cultures to interrogate oxygen’s role 

in cancer progression 

(Under the direction of Matthew R. Lockett) 

 

 Oxygen contributes to cellular phenotypes and invasiveness through hypoxia-inducible 

transcription factors. These factors, which induce signaling pathways at low-oxygen tensions, are 

involved with the maintenance of healthy tissue and the progression of cancer. Poor 

vascularization within rapidly growing tumors leads to the production of atypical gradients of 

oxygen. Cells experiencing these gradients develop into heterogeneous populations and develop 

increasingly aggressive phenotypes. To better understand the relationship between extracellular 

oxygen tension and cancer cell phenotype, in vitro models are needed that can easily relate these 

variables while providing experimental control over the environment. 

 Paper-based cultures (PBCs) are an emerging platform capable of generating thick, 

tissue-like constructs of cells by stacking cell-laden paper scaffolds. Controlling the diffusion of 

medium into these cultures results in the formation of oxygen, nutrient, and waste gradients 

through diffusion-consumption mechanisms similar to tumorous tissue. After prolonged 

incubation, these cultures can be peeled apart into individual scaffolds analyzed. The ease of 

generating gradients and disassembling the cultures into individual layers makes this platform 

well suited comparing cell phenotype local oxygen environment.
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 In this work, PBCs were used to explore the relationship between oxygen gradients and 

cancer chemosensitivity. Quantification of oxygen gradients within PBCs was performed using 

luminescent oxygen-sensors. These sensors were developed and characterized, then used to 

measure oxygen gradients in PBCs containing different densities of a colon carcinoma cell line, 

HCT-116. Dosing these cultures with a cytotoxic molecule, SN-38, showed regional differences 

in chemosensitivity, with hypoxic cells exhibiting increased chemoresistance.  

In addition to studying gradients in PBCs, I also fabricated a fluidic device capable of 

generating oxygen gradients across static three-dimensional (3D) cultures. The PBCs used to 

date were unable to generate oxygen gradients across the culture without also generating 

concurrent gradients of nutrients and waste products. With this device, oxygen gradients can be 

decoupled from nutrient and waste gradients. These oxygen gradients are imposed on the 

cultures and are not dictated by cellular consumption.   

The culmination of my doctoral work is a suite of tools and sensors that enable the 

quantitative study of cellular phenotype in three-dimensional cultures relative to the cell’s local 

oxygen environment. 
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CHAPTER 1: ADAPTING PAPER-BASED CULTURES AS A TUMOR MODEL 

 

 Oxygen concentrations within the tumor microenvironment play a critical role in the 

growth, survival, and eventual metastasis of cancers.1–3 Despite the decades of research showing 

oxygen’s role in cancer progression, translating in vitro findings to in vivo behavior has been 

difficult due to a reliance on two-dimensional (2D) cell culture models.4 While these models 

provide a convenient and high-throughput platform for studying cancer biology, they fail to 

replicate the complex three-dimensional (3D) physiochemical environments within tumors.5,6 To 

better recapitulate the tumor environment and improve the biological relevancy of in vitro 

studies, 3D cultures have been developed that emulate the diffusion-limited environment of 

tumors.7,8 By reproducing the mass-transport limitations found within poorly vascularized 

tumors, hydrogel slab and multicellular tumor spheroid cultures promote the formation of 

heterogeneous cell populations whose phenotypes are determined by their chemical 

environment.9,10 Unfortunately, isolating these phenotypically distinct populations of cells from 

three-dimensional cultures is difficult, and often requires laborious histological sectioning which 

prevents recovery of live cell populations for continued culture or downstream analyses. Paper-

based cultures (PBCs) are an emerging cell culture platform that can overcome the limitations of 

current 3D models by providing a novel approach towards culture construction and 

deconstruction.11 In PBCs, tissue-like cultures are constructed by stacking call-laden paper 

scaffolds. After prolonged incubation, cell populations are separated by simply peeling apart the 
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paper scaffolds. Isolated cell populations can then be recovered for further culturing or used in a 

number of downstream analyses.  

To outline the motivation for this dissertation, this chapter will describe the role oxygen 

plays in cancer progression and common approaches for generating oxygen gradients in culture 

systems. The chapter will also cover the application of paper-based culture for studying cancer 

and highlight methods for interrogating cellular responses for down-stream assays. 

 

1.1 Oxygen and cancer progression 

The development of malignant tumors and subsequent invasion to secondary sites (i.e., 

metastasis) is estimated to be responsible for 90% of cancer-associated deaths.12 To develop 

strategies that mitigate cancer-related deaths, cellular and environmental mechanisms that affect 

tumorigenesis must be understood at both the molecular and cellular level. Initiation of tumors 

begins with the accumulation of genetic mutations that lead to uncontrolled proliferation, 

ultimately allowing a mutated cell to propagate into a large mass of cells (Fig. 1.1).13 If left 

unchecked, these cells will develop a unique microenvironment, known as the tumor 

microenvironment (TME). This environment is poorly vascularized and provides environmental 

conditions necessary to promote the development of a metastatic phenotype.14–16 Though genetic 

dysregulation is understood as the underlying mechanism that initiates cancer, understanding the 

TME is vital for understanding the progression of cancer towards malignancy. 

 

1.1.1 Tumor microenvironment 

The TME is composed of a diverse mixture of cellular and non-cellular components that 

contribute to the progression of cancer. Cellular elements include vascular endothelial cells, 
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infiltrating immune cells, and cancer-associated fibroblastic cells.17 The vascular endothelial 

cells help modulate cancer cell invasion18 and take part in angiogenesis, which provides nutrients 

to maintain tumor growth19 and vasculature for cancer dissemination.20 Infiltrating immune cells 

recruited by the tumor produce cytokines that act as immunosuppressers and allow tumors to 

escape immune destruction.21 Fibroblasts remodel the extracellular matrix to promote cellular 

growth and survival,22 and release cytokines that recruit immune cells and direct cellular 

invasion.23,24 

Non-cellular elements of the TME include the evolving extracellular matrix and atypical 

gradients of ambient metabolites (e.g., glucose and oxygen), signaling factors, and waste 

products. Of the non-cellular elements present within tumors, atypical gradients play a 

significant role in tumor progression by applying spatially distinct selection pressures.25 These 

pressures lead to the development of heterogeneous populations of cells and promote the 

development of a metastatic phenotype.26,27  

The formation of these atypical gradients within the tumor is the result of an imbalance 

between cellular growth and tumor vascularization: rapid cellular proliferation outpaces 

angiogenesis and leads to cellular metabolism outpacing diffusional delivery of nutrients. The 

inability of vasculature to adequately sustain tumor growth results in regions of depleted 

nutrients (glucose and oxygen) and accumulated waste products. Of the metabolites found within 

the TME, oxygen has been of particular interest in cancer progression research due to its role in 

reprogramming metabolism towards anaerobic respiration,28 promoting genetic instability,29 and 

instigating the epithelial-to-mesenchymal transition (EMT) via transcriptional regulation.3  
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1.1.2 Oxygen’s role in tumor progression 

Regions of low oxygen tension (i.e., hypoxia) are common within solid tumors, forming 

at ranges of 70 - 200 µm from vasculature.30 The extent of hypoxia within tumors is indicative of 

poor patient outcomes31 due to hypoxia’s role in i) increasing the production of reactive oxygen 

species (ROS), which damage deoxyribonucleic acid (DNA) and cause genetic intability,32,33 and 

ii) coordinating transcriptional changes, which promote the development of a metastatic 

phentoype.3,34 While the specific mechanism that increases ROS production under hypoxic 

conditions are not fully understood, studies have shown that complexes I, II, and III of the 

electron transport chain are involved.35,36 Hypoxia-dependent transcriptional regulation, which is 

coordinated through hypoxia-inducible transcription factors (HIFs), has been thoroughly studied 

in literature and is heavily implicated in cancer progression.2 

HIFs are constitutively expressed transcription activators that serve as regulators of 

oxygen homeostasis in mammalian cells. There are three known HIF isoforms, HIF-1α, HIF-2α, 

and HIF-3α, which form heterodimer pairs with a single β-subunit. Of these isoforms, HIF-1α 

and -2α has been thoroughly studied in mammalian cells and are regulated through post-

transcriptional processes. Under normal oxygen tensions (i.e., normoxia), these transcription 

factors are hydroxylated by prolyl-hydroxylases.1,37 Hydroxylated HIFs are recognized by von 

Hippel Landau proteins and marked for proteasomal degradation via ubiquitination.38 Under 

hypoxic conditions, the HIF-α subunits are allowed to accumulate in the cytosol, where they 

eventually translocate into the nucleus, dimerize with a HIF-1β subunit, and bind to promoter 

sequences known as hypoxia responsive elements (HREs).39 These promoter sequences have 

been found on 70 genes, but studies suggest that these sequences modulate over 200 genes.39 

Stabilization of HIF promotes the expression of vascular endothelial growth factor (VEGF; 
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angiogenesis),40 glucose transporter 1 (GLUT1; anaerobic metabolism),41 carbonic anhydrous IX 

(CAIX; intracellular pH regulation),42 chemokine receptor (CXCR4; chemokine gradient 

detection),43 matrix metalloproteinase 2 (MMP-2, extracellular matrix remodeling),44 p21 (cell 

cycle arrest),45 and p53 (DNA repair).46 HIF-1α also promotes the expression of TWIST, a gene 

sequence responsible for coordinating the EMT.34,47 In addition to orchestrating transcriptional 

regulation, in vitro studies using A549, a non-small lung carcinoma, and MDA-MB-231, a breast 

carcinoma, suggest that oxygen gradients can help direct cellular invasion.48–51 

 

1.2 Oxygen gradients in vitro 

Oxygen’s role as a regulatory metabolite extends beyond cancer regulation, as it plays a 

vital role in sustaining normal metabolic function for most living organisms. Far-reaching 

involvement of oxygen in biological systems has spurred research to develop in vitro assays that 

emulate the oxygen gradients found in vivo. This section will discuss current methods for 

imposing oxygen gradients along 2D and 3D cultures, as well as strategies to quantify the 

oxygen gradients within these systems. 

 

1.2.1 Oxygen gradients in 2D cultures 

 In 2D cultures, cells are grown on a planar surface submerged in nutrient-rich medium. 

To generate chemical gradients within these cultures, microfluidic devices have been developed 

that impose lateral oxygen gradients along the cell culture plane. Generation and maintenance of 

oxygen gradients in 2D cultures have relied on two different designs: network mixer and parallel 

flow models (Fig 1.2). In both of these designs, gasses are flown through channels in close 

proximity to a cell-containing bioreactor. A gas-permeable membrane separates the flow 
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channels from the bioreactor, allowing oxygen to freely diffuse between the structures. 

Equilibration between the bioreactor’s medium and flow channels’ gasses allow oxygen 

gradients to form along the cell culture. 

 Network mixers combine deoxygenated and oxygenated gasses prior to flowing over the 

bioreactor. In the mixing region, gas inputs are partitioned in a stepwise manner to produce a 

concentration gradient. The resulting oxygen gradients can be linear, exponential, or sigmoidal  

depending on the chip design, and can be further modulated by adjusting gas flow rates.52,53 

While these chip designs are less commonly used, in part, due to their design complexity, they 

provide exquisite spatiotemporal control over the oxygen gradients.  

Parallel flow microfluidic chips are the more common approach to generating oxygen 

gradients in cell cultures. In these chips, oxygenated and deoxygenated gasses are flown in 

parallel channels, which flank the bioreactor region. Equilibrium between the gas channels 

results in the formation of linear oxygen gradients across the bioreactor region.52,54–56 The 

steepness of the oxygen gradients can be modulated by changing the gasses used or adjusting the 

distance between the gas flow channels.55 In lieu of deoxygenated gas, oxygen scavenging 

solutions have also been used to generate oxygen gradients in a similar source-sink fashion.48,57 

 

1.2.2 Oxygen gradients in 3D cultures 

 While 2D cultures provide a convenient platform for studying cancer biology, cells 

grown in 2D formats exhibit morphologies and behaviors distinctly different than cells grown in 

3D environments.58 These phenotypic differences make it difficult to use 2D cultures to predict 

the range of responses or phenotypes in a tumor, and highlight the need for 3D cultures that 

introduce tissue-like architectures. There are a number of 3D culture formats, ranging from cells 
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embedded in a hydrogel slab to freestanding cellular masses (i.e., spheroids or organoid). To 

generate oxygen gradients across hydrogel slab cultures seeded at low cell densities and 

correspondingly low oxygen consumption rates, microfluidic devices similar to the methods 

outlined in section 1.2.2 are needed.59,60 Spheroids and hydrogel slab cultures seeded at high cell 

densities passively generate oxygen gradients via cellular consumption—oxygen must penetrate 

into the interior of the culture, and equilibrium between cellular consumption and the diffusional 

delivery results in the formation of gradients in a manner similar to poorly vascularized 

tumors.61,62 

Studies investigating large spheroids (> 500 µm diameter) have shown that oxygen and 

glucose gradients induce the stratification cell subpopulations similar to those of tumors: 

proliferative cells near an oxygen-rich source (e.g., medium or vasculature), senescent cells in 

the oxygen-poor interior, and necrotic cells in the nutrient-depleted core.7,63 Each of these 

subpopulations exhibit distinctly different phenotypes, and recapitulating them allows spheroids 

to serve as a model for evaluating cancer chemotherapeutic resistance,7,64,65 proliferation,66 and 

gene regulation.67 

Identifying how oxygen gradients affect the development of stratified phenotypes in 3D 

cultures often relies on histological sectioning.68 This technique partitions 3D cultures into thin 

cross sections, reaching sub-10 µm thicknesses, and is complimented with histological 

staining.61,69 Using histological sectioning, oxygen gradients have been related to increases in  

DNA repair70 and chemotherapeutic resistance,71 and decreases in proliferation.61,69,72 While this 

technique provides a highly-resolved readout between cellular hypoxia and protein expression, 

sample preparation is laborious and requires cell fixation. Inability to isolate intact live cell 
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populations after sectioning is an obstacle to 3D cultures and prevents downstream analysis of 

the cell populations. 

 

1.2.3 Quantifying oxygen gradients in vitro 

 Emulating oxygen conditions found within tumors requires generating oxygen gradients 

that span from normoxia (140-40 mmHg O2) to anoxia (< 1 mmHg O2). Sections 1.2.1 and 1.2.2 

outlined cell culture formats in which oxygen gradients can be generated in vitro, and this section 

will outline validation and characterization of these oxygen gradients via direct 

quantification.52,59,73 Measurement of oxygen gradients in cell cultures is primarily performed 

using optodes, which consist of an oxygen-sensitive dye suspended in polymer matrix. 

Electroanalytical approaches have also been used to quantify oxygen in spheroids and hydrogel 

slabs via Clarke-type electrodes;62 however, optical techniques are preferred because they do not 

consume oxygen during measurement, and can be easily applied to planar surfaces for two-

dimensional (2D) mapping of oxygen gradients. Oxygen-sensing particles can also be 

incorporated into 3D cultures to enable mapping of 3D oxygen gradients.74  

 A myriad of oxygen-sensitive luminescent dyes have been developed since their 

conception in the 1930’s, and can be grouped into two categories: i) organic and ii) 

metalloporphyrin.75 The organic dyes consist of polycyclic hydrocarbons and include pyrene, 

anthracene, and fullerene. The metalloporphyrin dyes consist of metal-ligand complexes with 

Ru(II)-, Pd(II)-, Ir(II)-, and Pt(II) metal centers with incomplete coordination spheres. Both 

categories of dyes sense oxygen through a similar mechanism: the dyes are normally luminescent 

but are dynamically quenched by oxygen. The emission of these dyes can be related to 

environmental oxygen concentrations via the Stern-Volmer expression: 



9 
 

I0/I = 1+Ksv[O2]    Eq. [1.1] 

where I0 and I represent the emission intensity in the absence and presence of oxygen, and Ksv is 

an empirically derived Stern-Volmer constant. 

 Metalloporphyrin dyes, rather than their organic counterparts, have been exclusively used 

for oxygen quantification in cell cultures due to their increased sensitivity, photostability, and 

phosphorescence lifetimes.75 These dyes are also easily sequestered into films or particles with 

minimal leeching and can be measured using luminescence intensity or lifetime imaging 

microscopy.76 Integration of these dyes into cell cultures is typically done via thin-film 

membranes, where the dye is dispersed throughout a thin polymeric film and placed in close 

proximity to the cell culture. These films enable the mapping of 2D oxygen gradients along cell 

cultures, 48,52,73,79,80 or can also be coated onto the tip of an optical fiber for point measurements. 

77,78 In cases where the dyes are susceptible to leaching or insoluble in the polymer matrix’s 

solvent, they can be encapsulated into particles. These micron- to nanosized particles can then be 

dispersed throughout a substrate/film,59,81 suspended in solution,82 or even sequestered by cells to 

quantify intracellular oxygen concentrations.83 

 

1.3 Paper-based cultures as a tumor model 

Current 3D cell culture models are limited in their ability to selectively isolate 

subpopulations of cells based on their location. Histological sectioning coupled with 

immunostaining have been used to correlate regional cell phenotype with local oxygen tensions 

in 3D cultures; however, this technique requires extensive sample preparation and is relatively 

laborious.  Laser capture microdissection has been used to isolate single cells from tissue and cell 

cultures, but this technique also requires extensive sample preparation prior to laser dissection. 
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To better understand adaptations of cancer cell behavior to environmental conditions, a new 

culture format is needed that is capable of i) replicating the TME in a controllable manner, and 

ii) isolating viable cell subpopulations for downstream analysis. 

Paper-based cultures (PBCs) are an emerging 3D culture platform that overcomes 

limitations of current 3D models by providing a modular approach towards culture 

(de)construction (Fig. 1.3). Within these cultures, cell-laden paper scaffolds are stacked together 

to form tissue-like constructs. After prolonged incubation, these scaffolds are partitioned by 

simply peeling the scaffolds apart. Cells within the individual scaffolds can be recovered for 

continued culture or analyzed via a number of techniques: microscopy,49 fluorescence 

imaging,11,73,84,85 quantitative polymerase chain-reaction (qPCR),84 mass spectrometry,86 or 

enzyme-linked immunosorbent assays (ELISAs).50 By stacking enough paper scaffolds together, 

PBCs can be assembled to resemble poorly-vascularized tumorous tissue and enable mechanistic 

studies into cancer invasion and chemoresistance.51,87,88 

 

1.3.1 Paper-based cultures 

Paper-based cultures consist of porous sheets of paper infused with a cell-laden hydrogel. 

The hydrogel provides a biomimetic 3D environment for the cells and the paper fibers provide 

structural support to the fragile hydrogel matrix. Infusion of the hydrogel into the paper scaffolds 

is straightforward, as the hydrophilic fibers readily wick and retain the hydrogel. These cultures 

have high aspect ratios with heights equivalent to the thickness of the paper scaffolds, and 

individual scaffolds to be stacked together to form tissue-like constructs. By exchanging the type 

of paper used, the thickness and porosity can be modulated.89 Assembling cultures by stacking 

together cell-laden scaffolds provides exceptional control over the spatial arrangement, density, 
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and type of cells in a single stack. Cells can be also be confined to discrete regions along 

individual paper scaffolds by patterning the paper with hydrophobic materials such as wax, 

polydimethylsiloxane (PDMS), photoresist, or polyvinyl chloride.11,90–93 The simplicity of wax-

patterning paper allows novel culture designs to be readily prototyped with nothing more than a 

commercial printer, eliminating the need for photolithography or embossing setups. 

A common strategy in PBCs is to incorporate selectively permeable barriers along the 

outer periphery of the culture. By placing barriers along one side of a stacked culture and leaving 

the opposite side open to nutrient-rich medium, monotonic gradients of nutrients, oxygen, and 

wastes are formed across the thickness of the culture. Barriers made of gas-permeable materials, 

such as PDMS, can be used to effectively decouple gradients of oxygen from gradients of 

nutrient and waste.49,50,87 Because stacked cultures require disassembly to analyze cell 

populations within individual scaffolds, stacked PBCs are suited for end-point assays rather than 

kinetic studies.  

To overcome the limitations of stacked cultures, channel shaped cultures have also been 

developed. In channel-shaped PBCs, cells are seeded throughout the channel or in discrete 

locations. Selectively permeable barriers are interfaced with the channel-shaped culture and 

restrict the free-exchange of medium into the culture. Openings in the barriers allow medium to 

diffuse into the culture at spatial defined locations, and cause metabolite gradients to form 

laterally along the channel of seeded cells. Because cells and gradients exist in a single lateral 

plane in channel-shaped cultures, microscopy can be used to interrogate changes in cell 

distribution49,94 and map chemical environments via planar sensors.73,95 This culture design is 

suited for real-time imaging and kinetic studies, but the inability to spatially isolate cells limits it 

application to end-point assays.   
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1.3.2 Using paper cultures to replicate the tumor 

 Gradients in PBCs form via diffusion-consumption mechanisms similar to the gradients 

that form in poorly vascularized tumors. However, unlike tumorous tissue, PBCs provide a level 

of control over the gradients that form in situ. By changing cellular placement and density within 

a stacked or channel-shaped culture, cellular consumption can be spatially modulated to control 

the shape and steepness of resulting chemical gradients.88 Likewise, interchanging barriers along 

the culture’s periphery allow gradients to be decoupled from one another. Experimental control 

over gradient formation in PBCs enables mechanistic studies to be performed that relate cellular 

behavior within an individual scaffold to that scaffold’s local chemical environment.  

Mosadegh et al. capitalized on PBCs’ ability to modulate the formation of chemical 

gradients by developing a paper-based invasion assay.51 In this assay, oxygen gradients were 

modulated within a stacked PBC by adjusting the gas permeability of the peripheral barriers and 

changing cell proximity to a nutrient-rich source within a stacked PBC. Their findings indicate 

that A459 lung carcinoma cells preferentially invade toward higher oxygen tensions, which was 

contradictory to previous findings in 2D culture.48 Truong et al. and Kenney et al. followed-up on 

this invasion assay using a MDA-MB-231 breast carcinoma cells, and found similar trends in 

invasion towards oxygen sources.49,84 Hypoxia probes and HIF signaling were used to confirm 

differences in extracellular oxygen tensions within the invasion assays, and confirm that gradients 

of oxygen were necessary for directing cellular invasion.50 

Prolonged incubation in PBCs under oxygen and nutrient gradients also leads to cell 

stratification into distinct subpopulations. Early work by the Whitesides laboratory showed that 

cancer cells located at the interior of the a stacked culture exhibit increased death, while cells along 

the nutrient-rich exterior proliferated.89 McGuigan et al. used liquid chromatography-mass 
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spectrometry to map metabolites of a stacked culture, and found that cells experiencing hypoxia 

at the interior of a stacked culture exhibited significant increases in anaerobic glycolysis-associated 

metabolites.86 Further confirmation of the stratification of cell populations were shown by Simon 

et al, who found that cells within the interior of a stacked culture escaped radiotherapy in an 

oxygen-dependent manner.96 

 The ability of PBCs to mimic the tumor environment and measure cancer invasion, 

proliferation, metabolism, and radiosensitivity in a spatially-defined readout demonstrates the 

versatility of this platform. Currently, PBCs are limited to a relatively low throughput; however, 

efforts are being made to increase throughput to match 96-well assays.97 The accessibility of 

paper and simplicity in assembling these cultures make PBCs a promising platform for continued 

study of cancer progression. 

 

1.4. Interrogating cellular responses in paper cultures 

To confirm that heterogeneous environments of stacked and channel-shaped cultures are 

responsible for changes in cell phenotypes, new assays are needed. Initial assays for PBCs 

focused on identifying and enumerating viable cell populations (Fig. 1.4). These assays were 

used to substantiate the presence of oxygen and nutrient gradients, as viable cells are located in 

close proximity to the nutrient source while necrotic cells are at the interior of the culture. To 

validate that cells within the interior of the stacked cultures were experiencing intracellular 

hypoxia, cell-based hypoxia readouts were developed that utilized HRE activation of fluorescent 

proteins and hypoxia-dependent stains (Fig. 1.5).  
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1.4.1 Enumerating viable cells 

To determine whether cell populations are changing within PBCs, methods are needed 

that can accurately enumerate viable cells within paper scaffolds. Early approaches towards cell 

quantification in paper relied on cell lines engineered to constitutively express fluorescent 

proteins. Fluorescent flatbed scanners were used to image entire scaffolds, and calibration curves 

relate the average fluorescent intensity to the total number of cells within a cell-seeded region. 

This method preserves cells for further analysis, and has a reported limit of quantification (LoQ) 

as low as 2000 cells.84 It is important to note that this technique has difficultly discriminating 

live and dead cells, as protein fluorescence can persist during cellular death.98 

Adenosine triphosphate (ATP) bioluminescence assays (e.g., CellTiter-Glo®) provide an 

alternative approach towards enumerating viable cells in PBCs.96 In these assays, cells are lysed 

and ATP released from the cell fuels a bioluminescent reaction involving luciferase.99 The 

resulting luminescence is indicative of the number of metabolically active cells and can be 

related to cell number using calibration curves. While this approach is more selective in 

identifying viable cells than fluorescent protein expression, this technique requires cell lysis 

which prevents downstream analysis of the cells. Additionally, this technique requires ATP 

levels to be comparable between cell populations for an accurate analysis; however, cells 

experiencing hypoxia have diminished ATP levels due to changes in metabolic pathways,100 

which limits these techniques accuracy for cell enumeration in stacked cultures. Another 

common cell-based assay designed to quantify cells involves the metabolic conversion of 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to insoluble formazan crystals.101 

While this assay is commonly considered the gold-standard to enumerating cells in 2D cultures, 

it has not been adapted for use in PBCs.  
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Efforts to develop a cell enumeration assay independent of fluorescent protein expression 

and environmental oxygen led to conception of a quantitative polymerase chain-reaction (qPCR) 

assay.84 In this assay, DNA is extracted from cells within zones along a single paper scaffold and 

qPCR is used to determine the amount of genetic material present within that culture. Calibration 

curves are used to convert qPCR readouts to the number of cells in a scaffold. This technique has 

a LoQ one order of magnitude lower than fluorescent protein expression and is independent of 

environmental conditions; however, intact genetic material of dead cells cannot be discerned 

from living cells, which can lead to an overestimation of viable cells. 

Discrimination between live and dead cell populations within paper scaffolds has been 

done via counterstaining with fluorescent molecules.89 Viable cells with intact membranes are 

identified using fluorescein derivatives that are metabolized by intracellular esterases (e.g., 

calcein AM and fluorescein diacetate). Prior to metabolization, these molecules are non-

fluorescent and freely pass through the cell membrane; however, they become fluorescent and 

cell-permanent upon hydrolysis. Dead cell identification is performed using DNA intercalating 

dyes, such as propidium iodide or 7-aminoactinomycin D. These dyes are normally unable to 

pass through the cell membrane of living cells; however, membranes of dying cells are 

commonly compromised, allowing these dyes to intercalate into the DNA. 

 

1.4.2 Cell-based hypoxia readouts 

 Quantifying the distribution of viable and non-viable cell populations can indicate the 

presence of oxygen and nutrients gradients in paper-based cultures; however, confirmation that 

cells are experiencing these gradients requires cell-based assays. To validate intracellular 



16 
 

hypoxia within stacked cultures, three approaches have been used: expression of a HRE reporter 

gene, immunostaining for HIFs, and bioreactive hypoxia probes.  

 Vordermark et al. first described the use of a genetic vector to identify cells experiencing 

hypoxia via the production of green fluorescent protein (GFP).102  This vector, known as 

5HRE/GFP, contains five HRE promotor sequences followed by a GFP reporter sequence. Under 

hypoxic conditions, HIFs binds to the HRE sequences and upregulate the expression of GFP for 

easy identification of intracellular hypoxia. Truong et al. utilized MDA-MB-231 cells transfected 

with the 5HRE/GFP vector to identify differences in environmental oxygen tensions for cells in 

stacked PBCs.50 In this work, it was found that cells further from the nutrient-rich medium 

exhibited increased GFP expression, and therefore experienced increasingly lower oxygen 

concentrations. 

 Accumulation of HIFs in the nucleus is indicative of cellular hypoxia and can be used to 

identify hypoxia within cells. In this assay, cells are fixed and stained with two dyes: a DNA 

intercalating dye, and a fluorescently labeled anti-HIF antibody. The DNA stain is used to 

identify the nucleus, and the ratio between cytosolic-localized HIF to nuclear HIF provides a 

relative indication of intracellular hypoxia.103 While this technique is qualitative, it has been used 

to identify differences in HIF localization of MDA-MB-231 cells in stacked and channel-shaped 

cultures.49,50 

 Hypoxia-sensing molecules, pimonidazole and EF5, provide an alternative approach to 

identifying hypoxic cells.104,105 Under low oxygen conditions, these nitroimidazole-containing 

molecules undergo reduction and covalently bond to thiol-containing proteins. The resulting 

adducts are stained with fluorescently labeled antibodies, allowing for qualitative analysis of 

intracellular hypoxia.105,106 Comparisons between pimonidazole staining and microelectrodes 
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have shown that staining efficiency significantly increases at oxygen tensions less than 10 

mmHg, which corresponds to hypoxia.107 Pimonidazole has been used in stacked PBCs to 

confirm that cells deeper in a stacked culture experienced reduced oxygen tensions.50 

 

1.5. Overview of the dissertation 

 The work in this thesis focuses on developing new methods to quantify oxygen gradients 

in PBCs, and correlate these gradients to changes in cancer cell chemoresistance. Chapter 2 

describes the fabrication, characterization, and integration of planar oxygen sensors into paper-

based cultures. Chapter 3 outlines the fabrication and characterization of a modular fluidic chip 

capable of generating oxygen gradients across 3D cell cultures. In Chapter 4, a paper-based 

tumor model was developed to study the relationship between regional oxygen tensions and 

chemoresistance of a colon carcinoma cell line. The dissertation concludes with Chapter 5, 

which outlines preliminary work using flow cytometry to characterize cell populations extracted 

from paper scaffolds. 
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1.6 Figures 

 

Fig 1.1 Diagram of the progression of cancer from initial development of a neoplastic cell to the 

growth and evolution of a TME. Interactions between cancer cells and tumor-associated 

fibroblasts, infiltrating immune cells, and vascular endothelial cells contribute the TME and aid 

in the progression of the tumor. Gradients of nutrients and waste extend from the vasculature and 

act as abiotic components of the TME.  
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Fig 1.2 Design examples of microfluidic oxygen gradient generators. (A) Network mixing 

devices have two gas inputs and mix them together in series of split channels. The flow channels 

are adjacent to a bioreactor with a gas permeable membrane separating the two regions. 

Sigmoidal oxygen gradients are imposed across the culture, but the shape of these gradients can 

be modulated by adjusting flow rates, channel design, and input gasses. (B) Parallel flow devices 

flow two gasses in parallel channels to impose linear oxygen gradients across the cell culture. 

The shape of the gradients can be modulated by adjusting the distance between flow channels 

and the gasses used. 

  



20 
 

 

Fig 1.3 Schematic of stack- and channel-shaped paper-based cultures. In these cultures, cell-

laden paper scaffolds are sandwiched between an open barrier (top) and closed barrier (bottom). 

Green regions indicate zones seeded with cells, and pink regions indicate zones seeded with cell-

free Matrigel. Nutrient-rich medium is able to enter the culture through the open barrier, while 

the closed barrier prevents diffusion into the cultures. The metal holders enclose the entire 

assembly and keep each layer in conformal contact. A single culture can fit into the well of a 6-

well plate. Scale bar = 6 mm. 
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Fig 1.4 Overview of common techniques used to enumerate viable cells in PBCs. These 

techniques include measuring the average fluorescence of fluorescently-labeled cell populations, 

the extraction and quantification of DNA via qPCR, and the use of a bioassay to relate ATP to 

cell number. 
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Fig 1.5 Overview of cell-based assays designed to identify intracellular hypoxia in PBCs. These 

assays utilize three techniques: HIF immunostaining to identify localization within cells, staining 

with hypoxia-sensitive probes that bind to proteins under hypoxic conditions, and measuring 

HRE activation by the expression of fluorescent proteins.  
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CHAPTER 2: QUANTIFYING OXYGEN IN PAPER-BASED CELL CULTURES WITH 

LUMINESCENT THIN FILM SENSORS 

 

2.1 Introduction 

Rapid cellular proliferation and the aberrant vasculature associated with solid tumors 

result in a microenvironment that is markedly different than surrounding tissue. Regions of low 

pH, increased interstitial fluid pressure, and decreased oxygen tension (i.e., hypoxia) act as 

selective forces that promote the development of a metastatic phenotype. 1–3 Hypoxia directly 

induces chemical signaling pathways through the regulation of hypoxia inducible factors. These 

transcription factors alter rates of cellular metabolism and proliferation, promote the metastasis 

of tumorigenic cells, and increase resistance to chemo- and radiation-based treatments.4–8 

Two recent studies found oxygen, in addition to orchestrating transcriptional and 

phenotypic changes in the cell, has chemotactic properties.9,10 Both studies showed A549 cells—

adenocarcinoma epithelial cells derived from human alveoli—preferentially move along an 

oxygen gradient. Tung and colleagues found the A549 cells, when cultured as a monolayer in a 

microfluidic channel containing a static oxygen gradient, migrated to regions of lower oxygen 

tension.9 Whitesides and colleagues found the A549 cells invaded regions of higher oxygen 

tension when cultured in a three-dimensional (3D) format.10 These cultures were prepared by 

sandwiching a paper scaffold, which contained cells suspended in a hydrogel, between scaffolds 

containing only hydrogel. This stack formed a thick, tissue-like culture, which was placed



31 
 

holder that limited the exchange of fresh medium into the culture and resulted in the formation of 

an oxygen gradient spanning the thickness of the stack.

The diffusion-limited environment formed in the 3D paper-based cultures mimic the 

microenvironment of a solid tumor, because gradients of nutrients, waste products, and signaling

molecules result from cellular metabolism and lack of exchange with the nutrient-rich culture 

medium. Previous works have relied on cellular responses (e.g., viability, directed invasion, and 

hypoxia inducible transcripts) to confirm the presence of in situ-generated oxygen gradients.10–13 

These responses allowed for relative comparisons of oxygen tension throughout the culture, but 

do not directly quantify the shape or steepness of the oxygen gradients in the paper-based 

cultures. To better correlate cellular response with the formation of oxygen gradients in paper-

based cultures, there is a need for a sensor that: detects small changes in oxygen tension, 

especially in the regions associated with hypoxia (0 – 10 mmHg); quickly responds to changes in 

oxygen tension, to provide good temporal resolution; and possesses good spatial resolution to 

provide an accurate picture of the gradient. 

Optical-based sensors, unlike electrochemical analogs, are preferred for continuous 

monitoring (“sensing”) of oxygen because they do not consume oxygen or generate byproducts 

that can alter the chemical composition of the culture environment.14–17 When encapsulated in 

biocompatible materials (e.g., sol-gels or cross-linked matrices), these oxygen-sensitive dyes are 

compatible with the prolonged culture of mammalian cells and have been used to measure 

cellular oxygen consumption,18 intracellular oxygen concentrations,17,19 and interstitial oxygen 

gradients.20–22 Integration of these dyes into microfluidic devices has provided a quantitative 

means of mapping oxygen gradients formed in a channel,5,20–25 and has elucidated the temporal 

and spatial consumption of oxygen in static cultures.18,26 



32 
 

In this work, we prepared polystyrene thin films containing palladium tetrakis 

(pentafluorophenyl)porphyrin (PdTFPP) molecules, which are dynamically quenched by oxygen. 

We calibrated the oxygen sensing films, which had a linear response between 0 and 160 mmHg 

O2 and an overall sensitivity (I0/I160) of ~35. Placing the oxygen sensing film in contact with the 

cell-containing paper scaffolds allowed us to measure changes of oxygen tension in the culture 

through changes in the luminescence intensity of the film. We prepared paper-based scaffolds 

with 11 x 2.5 mm channels (Fig. 2.1); the scaffolds were wax patterned, providing defined 

hydrophilic regions that readily wick cell-laden hydrogels. We limited the free exchange 

between the paper-scaffolds and the culture medium to discrete locations along the channels, 

causing chemical gradients to form laterally along the scaffold. This format allowed us to 

monitor changes in the luminescence of the oxygen sensing film with a fluorescence microscope. 

Placing the oxygen sensing films in contact with paper-based scaffolds containing fluorescently 

labeled cells allowed us to measure the spatial and temporal evolution of the oxygen gradient in 

the culture with respect to cell location. We used the oxygen gradient profiles obtained at 

different times to estimate the cellular oxygen consumption rate of the cells in different locations 

of the channel. 

 

2.2 Materials and Methods 

2.2.1 Thin film preparation 

 Polystyrene thin films were prepared by combining stock solutions of 25% (w/w) 

polystyrene (280,000 MW, Sigma-Aldrich) in toluene (Fisher Scientific) and 4 mM PdTFPP 

(Sigma-Aldrich) in toluene to make a working solution of 1 mM PdTFPP. The working solution 

was pipetted onto an 18 mm round glass coverslip (Warner Instruments) in 0.5 mL aliquots, and 
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then spin coated in a two-step process: i) 2,000 rpm for 3 sec, ii) 5,500 rpm for 2.5 sec. The thin 

films were placed under vacuum overnight to ensure complete removal of solvent and then 

sterilized by ultraviolet (UV) irradiation for 1 hr prior to usage. New thin films were prepared for 

each experiment. Film thickness was measured with a stylus profilometer (KLA Tencor P-6). 

 

2.2.2 Sensor characterization 

 Sensors were calibrated in polydimethylsiloxane (PDMS) flow cells that were prepared 

by pouring a degassed mixture (10:1 ratio) of PDMS prepolymer and curing agent (Sylgard 184, 

Dow-Corning) into a 3D printed acrylonitrile butadiene styrene (ABS) mold. The PDMS was 

cured overnight at 50 ºC. The ABS mold was designed with a web-based computer assisted 

design application, TinkerCAD, and printed with a Makerbot® Replicator 2.  

The PDMS flow cells were bonded to 75 mm glass microscope slides (Fisher Scientific) 

with uncured PDMS. Oxygen concentrations in the flow cell were modulated by controlling the 

flow rates of a two-gas mixture: balanced air with 5% CO2, and a 95% N2 with 5% CO2 gas. The 

complete apparatus is depicted in Fig. 2.2. A polystyrene thin film without dye was used as a 

blank to account for background signal arising from the experimental setup. Reported emission 

intensities are the average of three locations along three different sensors. 

 

2.2.3 Cell culture 

 MDA-MB-231 cells (ATCC) were transduced with lentiviral particles (LPP-eGFP-

Lv105-025, GeneCopoeia) to constitutively express enhanced green fluorescent protein (M231-

eGFP). The cells were transduced according to the manufacturer’s protocol, and maintained in 

puromycin-containing medium (1 µg/mL). The cells were cultured in RPMI 1640 medium 
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supplemented with 10% (v/v) fetal bovine serum and 1% (v/v) penicillin-streptomycin. M231-

eGFP cells were maintained at 5% CO2 and 37 ºC, and their medium was exchanged every 48 hr. 

The cells were passed when the culture reached 70-80% confluency: the cells were detached 

from their tissue culture flask with Trypsin-EDTA (5 minutes, 37oC), washed with serum-

containing medium, pelleted, and cultured in a fresh flask at the appropriate dilution. All cell 

culture reagents, unless otherwise stated, were acquired from Gibco, Life Technologies. 

 

2.2.4 Paper-based scaffold preparation 

 Paper-based scaffolds were prepared by wax patterning sheets of Whatman 105 lens 

paper with a ColorQube 8570 printer (Xerox). The scaffolds were wax-patterned on both sides, 

cured for 15 min at 150 ºC, and then sterilized with UV light overnight. Two designs were used 

in this work: i) a “channel scaffold”, which contained three 11 x 2.5 mm elliptical zones, and ii) 

an “imprint scaffold”, which contained three 3 x 2.5 mm rectangular zones. The different paper 

scaffolds are portrayed in Fig. 2.1. Detailed schematics of each design are included in Fig. A2.1. 

 Cellulose acetate sheets (overhead transparency, Staples) were cut using a Silver Bullet® 

cutting machine. The sheets were autoclaved before use. Detailed schematics of the cellulose 

acetate sheets are provided in Fig. A2.2. 

 

2.2.5 Sensor cytotoxicity 

            Cytotoxicity assays were performed in paper-based scaffolds containing nine circular 

zones, 3 mm in diameter, in a 3 x 3 arrangement. Corresponding cellulose acetate sheets were 

designed to contain five 3 mm diameter circles, which allowed for the free exchange between the 

culture medium and the cell-containing zones. The culture setup used in these experiments, as 
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well as detailed schematics of the paper-based scaffolds, cellulose acetate sheets, and custom 

stainless-steel holder are provided in Fig. A2.3.  

The paper-based scaffolds and cellulose acetate sheets were prepared as described in 

section 2.2.4. Three different glass supports were used in this assay to distinguish which 

component (if any) of the oxygen sensing films were cytotoxic: i) an 18 mm diameter glass 

coverslip; ii) an 18 mm diameter glass coverslip with a polystyrene thin film; and iii) an 18 mm 

diameter glass coverslip with a PdTFPP-containing polystyrene film (i.e., an oxygen sensor). 

            Prior to seeding M231-eGFP cells into the scaffolds, the cells were detached from their 

culture flask and resuspended in Matrigel (Corning) at a density of 75,000 cells/µL. Cell 

suspensions were stored on ice to prevent gelation during the seeding process. Five zones of the 

scaffold, which corresponded to the openings cut in the cellulose acetate film, were seeded with 

0.5 µL of cells suspended in Matrigel. The remaining four zones were seeded with 0.5 µL of 

Matrigel. After seeding, the scaffolds were incubated in culture medium overnight (37oC, 5% 

CO2) and assembled into stacks the following day. Stacks were layered—cellulose acetate sheet 

(top), cell-containing paper-based scaffold, glass support (bottom)—enclosed in the custom 

stainless-steel holder and incubated for 24 or 48 hr in culture medium at 37 ºC in 5% CO2. 

The stacks were disassembled, and the paper-based scaffolds were imaged on a Typhoon 

9400 variable mode laser scanner (GE Healthcare): the M231-eGFP cells were imaged with a 

488 nm laser and a 526 nm short pass filter. The fluorescence intensities of the cell-containing 

zones in a single scaffold were measured with ImageJ27 and averaged; the average fluorescence 

intensity of the zones containing only Matrigel was used as a background subtraction. All 

intensities were normalized to an additional set of seeded scaffolds that were measured after 
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overnight incubation in medium. Measurements were taken across three different cell passages, 

with each passage including 5 replicates. 

 

2.2.6 Cell culture with sensor integration 

 Prior to seeding M231-eGFP cells into paper scaffolds, the cells were detached from their 

culture flask and resuspended in Matrigel (Corning) at a cell density of 170,000 cells/µL. The 

suspensions were stored on ice to prevent gelation during the seeding process. The rectangular 

regions of the imprint scaffolds were seeded with 0.44 µL of cell suspension, and the channel 

scaffolds seeded with 1.62 µL of Matrigel. Seeded scaffolds were incubated in medium 

overnight, and assembled into stacks the following day. Each stack consisted of a cellulose 

acetate sheet (top), a cell-containing imprint scaffold, a Matrigel-containing channel scaffold, 

and an oxygen sensing film on a glass coverslip (bottom). The entire stack was placed in a 

custom-made stainless-steel holder (Fig. 2.1). Assemblies were maintained at room temperature 

and the reported values represent averaged values from three different channels. Detailed 

schematics of the stainless-steel holders are provided in Fig. A2.4. 

 

2.2.7 Image acquisition and processing 

Fluorescence intensities of the M231-eGFP cells and the oxygen sensors, assembled in 

the holder, were imaged with an inverted microscope (Axiovert 40 CFL, Zeiss) equipped with a 

mercury arc lamp light source. The M231-eGFP cells were imaged with 470 ± 20 nm light and a 

540 ± 25 nm emission filter. The oxygen sensors were excited with 546 ± 12 nm light and the 

emission was filtered with a 590 nm long pass filter. Images were captured with a monochrome 
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12-bit camera (QIC-F-M-12-C, QImaging) with 4X (0.1 NA) objective at an exposure time of 

280 ms. Images were processed with ImageJ.27 

 

2.2.8 Statistical Analysis 

 All reported values are the average and standard deviation of at least 3 replicates. Data 

sets were analyzed with Graphpad Prism v.6.07: a two-way ANOVA with Tukey’s multiple 

comparison post-test was used to compare different data sets. A p-value of < 0.05 was 

considered significant.  

 

2.3 Results and Discussion 

2.3.1 Oxygen sensor characterization 

 Palladium- and platinum-based metalloporphyrins have been widely used for oxygen 

sensing due to their commercial availability, solvent compatibility, and large Stokes shift.28–30 

We chose PdTFPP to quantify oxygen tension in the paper-based cultures, because Pd(II)-based 

metalloporphyrins exhibit longer luminescence lifetimes than Pt(II)-based dyes, resulting in an 

increased sensitivity to oxygen;31 and the pentafluorophenyl molecules appended to the 

porphyrin ring greatly improve the photostability of the dye.28 A number of support matrices 

have been previously described for Pt(II)- and Pd(II)-based dyes (Table 2.1); we chose 

polystyrene because it is optically clear, stable in aqueous solutions, compatible with cell 

culture,26,32,33 and moderately permeable to oxygen. Polystyrene has an oxygen permeability 

coefficient, P, of 0.88 x 10-15 mol/sN;30 increased permeability of the support matrix coincides 

with larger diffusion coefficients, and can decrease the spatial resolution of the sensor.  
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Oxygen sensors were prepared by spin coating mixtures of PdTFPP and polystyrene 

dissolved in toluene onto of 18-mm round glass coverslips. The resulting films (3.61 ± 0.07 μm 

thick) were ideal for our application because they were easily incorporated into our culture setup 

(Fig. 2.1). Oxygen can rapidly diffuse through these thin films, decreasing the response time of 

the film by decreasing the time needed for the film to equilibrate with the apposing environment. 

Response times were measured to be on the order of ~15 secs to fully equilibrate. Glass 

coverslips were used as a support substrate for the polystyrene thin films for three reasons: i) 

they provide rigidity to the sensor; ii) they are impermeable to oxygen and medium, which 

prevents oxygen diffusion into the assembled culture and maintains gradients formed within the 

scaffolds; and iii) they are optically transparent and compatible with fluorescence microscopy, 

allowing us to measure both the luminescence intensity of the oxygen sensing film and 

fluorescence intensity of the M231-eGFP cells in the paper-based scaffolds.  

 To calibrate the sensor’s response to different oxygen tensions, we placed the sensors in 

the gas flow apparatus depicted in Fig. 2.2. The relationship between oxygen tension and 

luminescence intensity was determined with a Stern-Volmer relationship, modeled by the 

equation: 

0
21 [ ]sv

I
K O

I
      Eq[2.1] 

I0 and I represent the emission intensity of the film in the absence and presence of oxygen, 

respectively; KSV is the Stern-Volmer constant relating emission intensity to oxygen 

concentration. We measured the luminescence intensity of the film from 0 to 160 mmHg, and 

derived a Ksv = 0.239 ± 0.003 mmHg O2
-1 from the Stern-Volmer plot (Fig. 2.3A). The 

sensitivity of these films surpasses values previously reported for Pd(II)- and Pt(II)-based dyes 

encapsulated in polystyrene (Table 2.1).26,28,34,35 The standard deviation of the luminescence 
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intensities of the oxygen sensing films increased with increasing oxygen tension. This trend is 

expected, as emission intensity is non-linearly related to oxygen tension and significant 

quenching at higher oxygen tensions lead to diminished differences in signal. While this 

variation in intensity limits our ability to differentiate oxygen tensions at high concentrations, the 

sensors provide a linear response across oxygen tensions used for cell culture, and is particularly 

sensitive to small changes in oxygen tension near hypoxic conditions (i.e., values < 10 mmHg). 

 To ensure cell culture conditions did not affect the responsiveness of the oxygen sensing 

films, we incubated the sensor for 7 days in a flow cell containing medium collected from an 

overly confluent culture flask. This setup emulated the nutrient-exhausted environment seen in 

static, diffusion-limited cultures. After 7 days, the luminescence intensity of the films in oxygen 

tensions ranging from 0 to 79 mmHg was measured. No significant difference in emission 

intensity was observed for films incubated in culture medium and films maintained in dry 

conditions (Fig. 2.3B). Furthermore, there was no significant difference between emission 

intensities of sensors measured prior to and after 7 days of incubation in cell medium. These 

results indicate a number of observations: i) the gas-phase Stern-Volmer calibration is suitable 

for quantifying oxygen tensions in liquids; ii) the sensors are stable in culture medium for at least 

one week, and iii) relative to oxygen, soluble components of the culture medium do not impact 

sensor response.  

The photostability of the oxygen sensing films was also evaluated. Sensors were placed 

in flow cells and continuously illuminated for 1 hr at 0 or 160 mmHg O2. Images were taken in 1 

min increments across three sensors, and the intensities were normalized to t = 0 (Fig. 2.3C). 

After 1 hr, there was no significant change in emission at either oxygen tension indicating that 
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these sensors are photostable. These results agree with a previous study done with PtTFPP in 

polystyrene, which found these films were stable after 50 hr of continuous illumination.28  

 

2.3.2 Sensor cytotoxicity 

 To ensure that the sensors were compatible with cell culture, we seeded M231-eGFP cells 

in paper scaffolds; placed them in contact with a glass coverslip, a glass coverslip with a 

polystyrene thin film, or a glass coverslip with a PdTFPP-containing polystyrene thin film (i.e., 

an oxygen sensing film); and cultured the cells for 24 or 48 hr. The experimental setup is 

provided in Fig. A2.3a. After incubation, the devices were disassembled and fluorescence 

intensities of the seeded zones measured with a fluorescence flatbed scanner. Others have 

demonstrated that the emission intensity of fluorescently labeled cells seeded in paper scaffolds 

is directly related to total number of cells present,12 and decreases in green fluorescent protein 

(GFP) emission can be used to monitor cell death.36 

No significant difference in fluorescence intensity was observed for cells cultured in the 

presence of the glass, polystyrene, or the PdTFPP-containing polystyrene substrates after 24 or 

48 hr of culture (Fig. 2.4). The fluorescence intensity of each zone, prior to and post-culture, 

were also not significantly different. These results suggest the oxygen sensing films are not 

cytotoxic over the duration of our experiments.  

 

2.3.3 Oxygen tension in channel culture  

To visualize the formation of an oxygen gradient in a diffusion-limited environment, we 

assembled the cultures shown in Fig. 2.1. In this setup a cellulose acetate sheet, an imprint 

scaffold, a channel scaffold, and an oxygen sensing film were stacked together and enclosed in a 
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stainless-steel holder. The cellulose acetate sheet and the glass coverslip are both impermeable to 

oxygen and liquids; these materials allowed us to spatially limit nutrient and waste exchange 

between the culture and culture medium to one end of the channel. Each imprint scaffold 

provided a rectangular region in which we could reproducibly seed cells and place them in the 

same position along the channel. The Matrigel-filled channels provided a path for nutrients and 

waste to diffuse along the enclosed stack. In this arrangement, the cell-seeded imprint region at 

the center of the channel should act as an oxygen sink, and cause an oxygen gradient to form 

across the length of the channel from source (opening in the cellulose acetate sheet) to sink.  

The assembled devices were incubated for 48 hr, and images of the M231-eGFP cells and 

the oxygen-sensing films were obtained with an inverted fluorescence microscope. The captured 

images provided a 2D landscape of oxygen tension across the cell-seeded imprint region. To 

reduce the 2D images into a one-dimensional dataset, we used ImageJ to generate “column 

average plot profiles”. The readout of these profiles is the average intensities of all y-pixels per 

x-pixel in a selected region of interest (ROI). We chose an ROI (4.6 x 1.5 mm) that spanned the 

width of the channel, and maintained the size and location of the ROI between images.  

Images of the oxygen sensing film allowed us to quantify spatial changes of oxygen 

tension across the channel (Fig. 2.5A); acquiring images at different time points allowed us to 

quantify the temporal changes of the oxygen tension across the channel. The oxygen profiles 

generated across the length of the channel resemble those predicted for spheroids and solid tumor 

masses.37,38 Oxygen gradients also formed along the borders of the cell-seeded imprint region, 

and the interior portion of the cell-seeded region consistently reached oxygen tensions of less 

than 10 mmHg (hypoxia), similar to regions of a tumor greater than ~50 µm from a blood 

vessel.39 Column average plot profiles of the channels (Fig. 2.5B) indicate the in situ generated 
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oxygen gradients are reproducible, rapidly formed (less than 1 hr), and persistent for up to 48 hr. 

One distinction to note is the difference in error between the imprint region’s borders proximal 

and distal to the oxygen source, which arose from averaging gradients which were not 

completely overlapped. This highlights the need to further characterize parameters which 

influence the formation of oxygen gradients, but confirms the ability of the oxygen sensors to 

discern spatial and temporal differences in oxygen.   

The stability of the gradients suggests the culture, during the course of the experiment, 

was under steady state conditions in which the diffusive flux of oxygen into the cell seeded 

region, Jin, was equal to consumption in that same region, Jout. Diffusive flux into the system can 

be approximated using the one-dimensional steady state solution to Fick’s first law: 

in

C
J D

x


 


     Eq.[2.2] 

where D is the diffusion coefficient of oxygen in Matrigel (1.5 x 10-5 cm2/s),15 and 
∂𝐶

∂𝑥
 is the 

change of oxygen tension running laterally across the channel. Oxygen flux out of the system 

due to cellular consumption can be characterized with: 

outJ Q h      Eq.[2.3] 

where Q is the oxygen consumption rate per cell, ρ is the corrected volumetric cell 

density, and h is the length of the region in the channel being measured. To ensure gradients 

were formed by a static cell population, images of M231-eGFP cells were also obtained. The 

fluorescence intensity of the cell-containing regions did not change over the 48 hr period of the 

experiment (Fig. 2.6), indicating that the gradient profiles are maintained by the same total 

number of cells throughout the incubation. Under steady state conditions, equations [2.2] and 

[2.3] can be rearranged to solve for the oxygen consumption rate per cell (Q): 
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𝑄 =  
−𝐷

𝜕𝐶

𝜕𝑥

𝜌ℎ
     Eq.[2.4] 

D is the experimentally determined diffusion coefficient of oxygen in Matrigel (1.5x10-5 cm-

2/sec).15 The change of oxygen across the seeded region was determined from the linear portion 

of the oxygen gradient profiles (Fig. 2.7).  The slopes of these gradients, converted to 

concentrations, are 170 ± 8 and 105 ± 6 μM/mm for the proximal and distal borders, 

respectively. Rather than using the volumetric cell density used for seeding each imprint zone, a 

corrected cellular volumetric density value, ρ, was used for calculations. This correction was 

done because the cell distribution was not uniform across the imprint region (Fig. 2.7). To 

calculate the corrected cellular volumetric density, two assumptions were made: i) that the cell 

population did not change over time, validated by the constant fluorescence intensity of the 

M231-eGFP cells measured throughout the 48 hr experiment (Fig. 2.6). ii) That the cellular 

distribution is uniform along the width (y-axis) of the imprint region. Given the uniformity of the 

cell distribution along the length of the imprint region, this assumption appears reasonable. By 

making this second assumption, the column average plot profile of the M231-eGFP cells can be 

integrated to spatially quantify cells along the length of the channel. Using the boundaries 

established for the linear range of the oxygen profiles (Fig. 2.7), the total cells in this region were 

calculated to be 3400 ± 500 and 4900 ± 700 cells for the proximal and distal borders, 

respectively. A corrected volumetric density is calculated using the imprint dimensions of 0.25 x 

2.5 x 0.07 mm (two scaffolds are stacked for this assay, and each scaffold has a thickness of 35 

μm), in this case, the length dimension is determined by the length of the linear portion of the 

oxygen gradients (Fig. 2.7, 0.25 mm) and is represented by h in Eg. [2.3]. Having defined all 

pertinent variables, the oxygen consumption rates for the proximal and distal borders of the 

imprint region were 1.3 ± 0.2 x 10-17 and 0.56 ± 0.08 x 10-17 mol/cell•sec. 
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The calculated oxygen consumption rates are within the range of previously reported 

oxygen consumption rates of cancerous cells lines.[18,40] While the estimated values of cellular 

consumption suggest that cells at the distal edge are consuming oxygen at a slower rate than cells 

at the proximal front, further experiments are needed to determine the statistical significance of 

these differences.  We also acknowledge that complimentary measurements—both extra- and 

intracellular—are needed to determine if the rates are of oxygen consumption are different. This 

data does demonstrate, however, that incorporating the oxygen sensing films into the paper-

based cultures provides a means of quantifying the spatial and temporal changes of an oxygen 

gradient.  

 

2.4 Conclusion 

This work describes the preparation and characterization of an oxygen sensing film that, 

when imaged with a fluorescence microscope, provides spatial and temporal information about 

the oxygen gradients formed in three-dimensional cell cultures in paper-based scaffolds. These 

sensors, which are spin-coated onto 18 mm diameter glass supports, are polystyrene films 

containing an oxygen-sensitive metalloporphyrin dye, PdTFPP. Oxygen readily diffuses into 

these thin films, resulting in rapid changes in luminescence intensity with changes in the 

surrounding oxygen tension. The sensors are compatible with optical- and fluorescence-based 

microscopies, sensitive to small changes in oxygen tension (a Ksv of 0.239 ± 0.003 mmHg O2) 

with a linear response between 0 and 160 mmHg O2, photostable after 1 hr of continuous 

emission, and not cytotoxic. We utilized these oxygen sensitive films, after characterization, in 

conjunction with M231-eGFP cells to visualize oxygen gradients formed along cell-containing 

channels of paper-based scaffolds, whose free exchange with the culture medium was limited. 
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These oxygen gradients developed within 1 hr of culture assembly and were unchanged over a 

period of 48 hr. The steady state nature of this gradient allowed us to estimate oxygen 

consumption of the cells in different locations of the channel.  

These sensors will allow us to determine the effects of culture conditions (e.g., cell 

density, cell type, distance from the source of oxygen) on the oxygen gradients established in the 

paper-based cultures. Establishing an analytical model relating these variables with oxygen 

gradients will afford better experimental control in the design of more complicated cultures. 
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2.5 Tables and Figures 

Table 2.1 Pd(II)- and Pt(II)-based oxygen sensors 

  

 

 

  

 

Matrix Dye Sensitivity 

(I0/Iair) 

Ref 

PDMS PtTFPP ~120 18 

PS PdOEPK 

PtOEPK 

PdTFPP 

PtTFPP 

9.5 

3.76 

35 

1.9 

33 

 

This work 

29 

PVC PdOEPK 

PtOEPK 

29 

2.05 

33 

 

PMMA PdOEP 

PtOEP 

21 

1.78 

34 

 

PS = polystyrene, PVC = poly(vinyl chloride), PMMA = 

poly(methyl methacrylate), OEP = octaethylporphyrin, OEPK = 

octaethylporphyrin ketone 
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Figure 2.1 Schematic of the experimental setup used in this chapter. A layered structure 

consisting of: (a) a cellulose acetate film, which was cut to contain openings; (b) a wax-patterned 

sheet of paper containing rectangular zones in which suspensions of cells in hydrogel were 

seeded; (c) a wax-patterned paper containing channels, which were seeded with hydrogel. (d) An 

oxygen sensor was added to the bottom of the stack before it was placed in (e) a custom-made 

stainless-steel holder, which was held together with four screws. The glass backing of the oxygen 

sensing film and the cellulose acetate transparency allowed us to control exchange between the 

medium and the culture. Scale bar = 9 mm. 
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Figure 2.2 Schematic of the flow cell apparatus used to characterize the fluorescence intensity of 

the oxygen sensors exposed to different concentrations of oxygen. A mixture of two gases was 

introduced to the flow cell, and the fluorescence intensity of the film was measured from images 

captured on an inverted fluorescence microscope. The figure inset is a (a) glass microscope slide 

to which a (b) PDMS flow cell was bonded. The (c) center of the flow cell is hollow and the gas 

mixture introduced through one of the two ports. An (d) oxygen sensor was placed inside the 

flow cell. The dotted-line of the top-view image indicates the beginning of the cross-sectional 

image. Scale bar = 10 mm. 

 



49 
 

 

 

Figure 2.3 Sensor characterization. a) Fluorescence intensity of the PdTFPP-containing thin 

films exposed to different concentrations of oxygen, and the Stern-Volmer plot (inset) with a 

linear regression plot used to derive the Ksv. Each data point is the average of nine measurements 

from three independently prepared thin films; the error bars represent a standard deviation. b) 

Emission intensities of sensors stored for 7 days in culture medium or in a dark, dry 

environment. No significant change in emission was measured. Each data bar represents the 

average of three independently prepared thin films; error bars represent a standard deviation. c) 

Photostability of the sensors, exposed to 0 or 160 mmHg O2, under continuous illumination for 1 

hour. Images were taken in one-minute increments, and no significant change in emission was 

measured. Each data point is the average of three measurements from three independently 

prepared thin films; error bars represent a standard deviation. 
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Figure 2.4 Sensor cytotoxicity. Paper scaffolds seeded with M231-eGFP cells were placed in 

contact with a glass support—a glass coverslip, a coverslip coated with a polystyrene thin film, 

or an oxygen sensor—and enclosed in a metal holder. The assembled culture was incubated for 

24 or 48 hr. After incubation, the cultures were disassembled and the fluorescence intensity of 

the cell-containing regions measured. Intensities were normalized to scaffolds measured prior to 

stacking, and no significant difference was measured between any data set. These results indicate 

that the oxygen sensors are not cytotoxic. Each bar is the average of fifteen measurements from 

three independently prepared experiments; error bars represent a standard deviation. 
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Figure 2.5 In situ oxygen quantification. a) Fluorescence images of the assembled holders, 

detailed in Fig. 2.1, were acquired at different time points of a 48 hr experiment. Images of both 

the M231-eGFP cells and the oxygen sensor were taken at each time interval. b) The 

fluorescence intensity across the channel (i.e., the oxygen gradient), measured along the channel 

for each time point. Gradients were overlaid with the normalized cell intensity at 48 hr (dashed 

line) to spatially correlate the oxygen gradient profile with cell location. Each data point is the 

average of three replicate experiments. The bars correspond to a standard deviation. c) A 

representative fluorescence micrograph of the M231-eGFP cells in the assembled channel.  
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Figure 2.6 Average fluorescence intensity of M231-eGFP cells during gradient analysis. M231-

eGFP fluorescence intensities along the imprint regions were normalized to background signal, 

and then normalized to the fluorescence intensity of the cells after 1 hr of incubation. No 

significant change in intensity was measured throughout the 48 hr incubation, and indicates that 

the total cell populations are unchanging after 2 days. This data further corroborates the 

biocompatibility of the oxygen sensors previously measured in the cytotoxicity assay. Each data 

point is the average of three measurements from three independently prepared thin films; error 

bars represent a standard deviation. 
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Figure 2.7 Overlay of the oxygen gradients formed at the cell fronts proximal and distal to the 

cellulose acetate openings in the paper-based cultured. To better visualize differences between 

the proximal and distal borders of the imprint regions, cell fronts and their respective oxygen 

gradients were overlaid. The distributions of each cell front indicate that cells are not seeded 

uniformly along the edges, which causes the resulting oxygen gradients to deviate from linearity. 

To simplify cellular oxygen consumption rate calculations, only the linear portions of the oxygen 

gradients—from 1 to 1.25 mm for the proximal, and 1.17 to 1.33 mm for the distal borders—

were used to calculate the change of oxygen along the proximal and distal borders ( 
∂C

∂x
), which 

were 136 ± 6 and 84 ± 5 mmHg O2/mm, respectively. 
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CHAPTER 3: BLOCCS, AN INEXPENSIVE AND MODULAR FLUIDIC CHIP 

CAPABLE OF GENERATING LINEAR OXYGEN GRADIENT IN THREE-

DIMENSIONAL CULTURES 

 

3.1 Introduction 

Oxygen plays a vital role in maintaining cellular homeostasis, acting as both a metabolite 

and a transcriptional regulator. Low physiological oxygen tensions (i.e., hypoxia) occur during 

the development of normal tissue, promoting angiogenesis and cellular movement.1 Hypoxia also 

occurs in disease states associated with blood vessel occlusion or high rates of cellular 

proliferation.2,3 Cellular reprogramming in response to oxygen stresses is coordinated by 

hypoxia-inducible factors (HIFs). Under low oxygen tensions, the α-subunits are stabilized 

within the cytosol and translocate to the nucleus to dimerize with a HIF-1β subunit.4 Once HIF 

transcription complexes are assembled, they target genes with upstream hypoxia-responsive 

elements. In cancer cells, HIF-mediated gene products increase the cell’s reliance on glycolysis,5 

increase the expression of angiogenic growth factors,6 and halt cell-cycle progression.7 The 

prevalence of hypoxia in poorly vascularized tumors have also implicated HIFs in cancer 

progression and increased mortality,8,9 as prolonged exposure to hypoxic conditions promotes the 

development of chemoresistant and metastatic phenotypes.10–12  

Hypoxia chambers have been widely used to study HIF activation and transcriptional 

regulation.13–16 These devices allow cells to be cultured at defined oxygen tensions for prolonged 

periods of time. A previous study used hypoxia chambers to relate extracellular oxygen tensions 

to HIF stabilization within a number of cell lines, and found that tensions of less than 2% O2 (15 
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mmHg) were necessary for HIF stabilization and accumulation in the nucleous.17 This 

estimation, which was obtained from four different oxygen tensions, highlights a limitation of 

hypoxia chambers: only a single oxygen tension can be imposed across an individual culture, 

making it difficult to study a wide range of oxygen tensions in an efficient manner.  

Rather than studying HIF stabilization under a single static oxygen tension, exposing 

cells to an oxygen gradient greatly increases the amount of information that can be derived from 

a single experiment. Microfluidic devices capable of imposing an experimentally controlled 

oxygen gradient across two-dimensional (2D) and three-dimensional (3D) cultures have been 

developed,18,19 making this platform well suited for relating oxygen tension to HIF stabilization 

and downstream cellular responses. Recent examples of such devices have studied cancer cell 

invasion,20,21 HIF stabilization and downstream expression,22–24 and the production of reactive 

oxygen species25 in oxygen gradients. 

Microfluidic chip fabrication requires expertise and equipment not commonly found in 

tissue culture laboratories. Despite the multitude of microfluidic chips capable of precisely 

controlling oxygen gradients in vitro, engineering obstacles have hindered the widespread 

adoption of these devices.26 For these devices to be widely adopted by laboratories pursuing 

biological questions centered around oxygen gradients and hypoxia, they must i) be simple to 

fabricate, assemble, maintain, and analyze; ii) allow easy manipulation of oxygen gradients, with 

or without the aid of digital flow controllers, and; iii) be able to support three-dimensional (3D) 

tissue-like culture environments. While there are examples of microfluidic devices in the 

literature that overcome the complexity of previous iterations,22,27 they require cells be cultured 

as monolayers, which do not accurately recapitulate the morphology or behavior of cells in 

tissue.28–30   
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The maker movement and ready accessibility of tools such as 3D printers and laser cutters 

have empowered many laboratories to generate customizable devices and pieces of equipment.31 

Here we describe the fabrication and characterization of an easy-to-make, and inexpensive static 

culture device referred to as a Block-Layered Oxygen-Controlling Chip (BLOCC). The device is 

constructed by stacking layers of laser-cut silicone and acrylic, (Fig. 3.1) and is readily modified 

to suit experimental needs by adjusting the design of an individual layer or rearranging the order 

of assembled layers. The gas-permeable silicone gaskets enabled the generation of oxygen 

gradients across 3D cultures within the device, and oxygen-sensing films were used to 

characterize the gradients. By incorporating a cell line engineered to express a fluorescent 

protein upon HIF activation, we are able to relate HIF transactivation to the oxygen tension in 

the local culture environment.   

 

3.2 Materials and Methods 

3.2.1 Cell lines and culture reagents 

This study used both parental and engineered MDA-MB-231 cells (M231, American Type 

Culture Collection). The engineered cells (M231-HRE), which we detailed previously,32,33 

express mCherry fluorescent protein (mCHR) constitutively and enhanced green fluorescent 

protein (eGFP) under hypoxic conditions. The 5HRE/GFP plasmid34 used to engineer the M231 

cells was a gift from Martin Brown and Thomas Foster (Addgene plasmid # 46926). 

 All cells were maintained as monolayers at 37 ºC and 5% CO2 in RPMI 1640 medium 

supplemented with 5% (v/v) fetal bovine serum and 1% (v/v) penicillin-streptomycin, until 

needed. Culture medium was changed every two days and the cells passaged at 70-80% 
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confluence. Unless otherwise stated, all reagents used for cell culture were obtained from Gibco 

(Life Technologies) and used as received. 

 

3.2.2 Chip fabrication and assembly 

Figure 3.1 outlines the fabrication and assembly of a BLOCC. Each component was 

purchased from McMaster-Carr and laser cut using 100% power, 10% speed, and 1000 ppi 

(Universal Laser Systems, ILS9.75). The inner acrylic components were cut from 0.25-inch-

thick sheets of clear cast acrylic and the outer acrylic components were cut from 0.125-inch-

thick sheets of clear cast acrylic. The silicone gaskets were cut from 0.03125-inch-thick sheets of 

50A food-grade silicone. All components were sterilized by ultraviolet exposure for 1 h prior to 

culture assembly. 

 The BLOCC was loaded with cells then assembled in the following order. First, 1 µL of 

cell-free Matrigel (Corning) was loaded into the seeding region and allowed to gelate for 1 min. 

Next, 1 µL of a 2,000 cell/µL Matrigel suspension was loaded directly onto the gelated Matrigel. 

The medium reservoirs of the BLOCC were then filled with 1 mL of medium, and the entire 

device was held together with six 1-inch stainless steel screws with 4-40 threading and matching 

nuts (McMaster-Carr). The assembled BLOCCs were incubated for up to 72 h at 37 ºC. Prior to 

imaging cells within the BLOCCs, the top acrylic component was removed and the reservoir 

regions were washed twice with 1X PBS. 

 

3.2.3 Oxygen gradient generation and quantification 

Deoxygenated and oxygenated gasses were interfaced with the BLOCCs using a wall-

plug design,35 and flown through the channels at a rate of 35 cc/min. The deoxygenated gas 
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mixture contained 95% nitrogen and 5% carbon dioxide. Two different oxygenated gas mixtures 

were used: a high-oxygen mixture containing 75% nitrogen, 20% oxygen, and 5% carbon 

dioxide, and; a low-oxygen mix containing 90% nitrogen, 5% oxygen, and 5% carbon dioxide. 

All gasses were supplied and validated by Airgas. 

 Oxygen sensors were prepared by coating the bottom-most acrylic component of the 

BLOCC assembly (component G, Fig. 3.1) with a 3-µm-thick oxygen sensing film. Preparation 

and characterization of these oxygen sensing films were detailed previously.36 Briefly, a 1 mM 

solution of palladium (II) tetrakis (pentafluorophenyl) porphyrin in a 18.75% (w/w) polystyrene-

toluene solution was spun coat onto the acrylic component. Prior to usage, the oxygen sensor-

coated acrylic components were sterilized by ultraviolet exposure for 1 h. 

  

3.2.4 Image acquisition and analysis 

Fluorescence micrographs of both the fluorescently labeled cells and the oxygen sensors 

were obtained on an Axiovert 40 CFL (Zeiss) inverted widefield fluorescence microscope 

equipped with a LED light source (wLS-LG-MB, QImaging) and monochrome 12-bit camera 

(QIC-F-12-C, QImaging). Fluorescein was imaged with a 470/20 nm excitation filter and 540/40 

nm emission filter, with a 500 ms exposure. PI and the oxygen sensors were imaged with a 

546/12 nm excitation filter and 590 nm long pass filter, with either a 600 ms or 1400 ms 

exposure, respectively. Transmitted light images were also taken and were used to identify the 

boundaries of individual cells within a single image. The Trainable Weka Segmentation plugin in 

FIJI was used to identify cell boundaries.37–39 The percentage of viable cells was determined by 

dividing the number of fluorescein positive cells by the total number of cells measured in a 
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single image. Cells that were positive for both fluorescein and PI were considered dead and not 

included in the viable cell count.  

Fluorescence micrographs of the M231-HRE cells were obtained on an Olympus IX70 

inverted widefield fluorescence microscope. Images were captured with a Hamamatsu Flash 4.0 

V2+ sCMOS camera with a 10X/0.30 Ph1 UPlanFL objective. Fluorescence of mCHR was 

imaged with a 555/25 nm excitation and a 605/52 nm emission filter, with 400 ms exposure. 

Fluorescence of eGFP was imaged with a 490/20 nm excitation and a 525/36 nm emission filter, 

with 200 ms exposure. Z-stack images were constructed by scanning vertically in 10 µm 

increments. The Imaris imaging software package was used to identify mCHR expressing cells in 

the Z-stack images using the following settings: XY diameter 20 µm, Z diameter 40 µm, 

background subtraction, quality above 10.5, region growing type was set to local contrast. 

Outlines of the mCHR cells were applied to the eGFP Z-stack images, and the center intensity 

values of the outlines were extracted from the eGFP images.  

 

3.2.5 Statistical analysis 

Datasets were analyzed with GraphPad Prism® v.7.01: Welch’s t-tests were used to 

compare datasets, and Pearson correlation coefficients were used to define correlations. A p 

value of < 0.05 was considered significant. 

 

3.3 Results and Discussion 

3.3.1 BLOCCs are an inexpensive and simple-to-fabricate cell culture platform 

Block-layered oxygen-controlling chips (BLOCCs) are able to support both 2D and 3D 

cultures in defined oxygen gradients. The chips are composed of an alternating series of acrylic 
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and silicone components. Each component is laser cut separately to incorporate a pattern of 

interest and then stacked to form a complex chip architecture. This stackable format makes the 

design modular and able to support a number of configurations. The acrylic components provide 

structural rigidity to the chip, and their optical transparency enables real-time fluorescence 

imaging of cells within the chip. Acrylic is also biocompatible and impermeable to oxygen,40 

preventing oxygenated medium from affecting the generation of oxygen gradients along the cell 

culture region. The silicone components are highly compressible and act as gaskets, which 

provide water-tight seals between the acrylic layers without the need for solvent bonding the 

acrylic components. The silicone is also highly permeable to oxygen, and enables the formation 

oxygen gradients along the cell culture region by flowing gasses with varying oxygen tensions 

through parallel channels. Once the components are assembled, the BLOCC devices are 

compressed using screws. The robust materials used to construct BLOCCs and ease of 

(dis)assembly allow these chips to be reused. 

The particular BLOCC design we used in this study has seven layers (A through G, Fig. 

3.1). The top (A) and bottom (G) acrylic pieces enclosed the entire device, isolating the cell 

culture from external conditions. Layers B–D acted as a culture medium reservoir, holding a total 

volume of 1 mL.  Layer E connected the culture medium to the five 1.5 x 1.5 x 0.8 mm cell 

culture-containing regions in layer F. Layer F also contained two gas flow channels, which 

flanked the cell-containing regions. We found that the hydrogel readily wicked along the walls of 

the silicone gasket, generating a concave structure that sequestered cells along the perimeter of 

the cell-seeded regions. To ensure cells were uniformly spread throughout the cell-seeded 

regions and evenly distributed along the oxygen gradients formed in the BLOCC, we added cell-

free hydrogel before adding the cell-laden hydrogel.  Once stacked, Layers A–F form integrated 



64 
 

inlet and outlet ports, through which we introduced different gas mixtures into the parallel 

channels in layer F.  

BLOCCs are attractive for both prototyping and manufacturing due to their simplicity in 

design. Fabrication of this device and others is straightforward and requires two essential tools: i) 

a vector drawing program (e.g., Abode Illustrator, Coral Draw, or Vectr), and ii) a laser cutter. 

The vector drawing program allows users to readily convert two-dimensional images in a unique 

vector-file format, which can then be read as a series of x- and y-coordinates by the laser cutter. 

Laboratories with minimal resources to invest in these tools can find free-ware vector drawing 

programs online and tabletop laser cutters for less than $500. The materials needed to fabricate 

these chips are also low cost—a single BLOCC described in this work costs about $1.70 in raw 

materials to fabricate. 

 

3.3.2 BLOCCs are compatible with prolonged cell culture 

Before using the BLOCCs for cell culture, we tested the biocompatibility of the laser cut 

silicone and acrylic components. In this assay, parental M231 cells were suspended in Matrigel 

(2000 cells/ µL) and seeded into a 96-well plate. After a 24 h incubation in culture medium, 30 

mg sections of the acrylic or silicone were added to the wells. After a 48 h incubation period, the 

cells in each well were stained with fluorescein diacetate (5 mg/mL, FDA) and propidium iodide 

(2 mg/mL, PI). The FDA stain allowed us to identify viable cells and the PI stain identified the 

dead cells. Cells that stained for both fluorescein and PI were considered dead. The percentage of 

viable cells in the acrylic- and silicone-containing wells was normalized to control wells. No 

significant differences in cellular viability were observed (Fig 3.2) in any of the wells, 
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confirming the silicone and acrylic components were suitable for culturing mammalian cells for 

up to 48 h. 

 

3.3.3 Oxygen gradients are reproducible, tunable, and persistent across 3D cell cultures 

Oxygen gradients were generated in the BLOCCs by flowing oxygenated and 

deoxygenated gasses through two parallel channels in layer F (Fig 3.1a). By coating the bottom 

acrylic component (Layer G) of the BLOCC with an oxygen-sensing film, we were able to map 

oxygen gradient formation in situ across the cell culture-containing regions in layer F (Fig. 3.3a). 

The oxygen-sensing films used in this study were composed of a thin layer of polystyrene 

impregnated with PdTFPP. These films are ideal for mapping gradients in cell cultures as they 

are biocompatible and are highly sensitive between 0 – 5% O2, the range of oxygen tensions 

found in physiological tissues. We have used these films previously to map oxygen gradients in 

paper-based cultures.41,42 Micrographs collected on an inverted fluorescence microscope were 

used to map the oxygen gradients formed across the chip. The film’s luminescence intensity was 

converted to oxygen tension with an experimentally determined Stern-Volmer relationship. For 

these analyses, oxygen gradients are always orientated perpendicular to the parallel flow 

channels. 

 To generate oxygen gradients of different steepness across the cell culture-containing 

regions of the BLOCC, two different oxygenated gas mixtures were used in this study: a high-

oxygen mixture with 20% O2, and a low-oxygen mixture with 5% O2. Each of these gasses, 

when flowed in parallel with a deoxygenated gas mixture, was able to reach equilibrium within 1 

h (Fig. B3.1). The high-oxygen mixture had a slope of -8.87 ± 0.03% O2/mm and an oxygen 

range extending from 17.4% to 4.2% O2. The low-oxygen gas had a slope of -2.45 ± 0.02% 
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O2/mm and an oxygen range of 4.6% to 0.9% O2 (Fig. 3.3c). These gradient profile differences 

show that the oxygen gradients across the cell culture-containing region of the BLOCCs can be 

modulated by simply exchanging the gasses flown through the parallel channels. Recent work by 

the Eddington group also showed that the oxygen profiles can be modulated by adjusting the 

distance between the parallel flow channels.22 

To map cellular responses in an oxygen gradient, we chose the low-oxygen mixture. 

While the high-oxygen gas would allow cells in a single BLOCC to experience a more diverse 

oxygen environment due to the steeper slope and wider oxygen range, it was unable to reach 

oxygen tensions below 4%. Cellular hypoxia and subsequent hypoxic signaling have been 

measured to occur between 2%–0.5% O2,
13,43 which makes the low-oxygen gas better suited for 

evaluating cellular responses to hypoxia. 

 To ensure oxygen gradients persisted in the presence of cells, BLOCCs were assembled 

with an oxygen-sensing acrylic component and 2,000 parental M231 cells per seeding region. 

Oxygen gradients were imposed across the seeding region using the low-oxygen mixture, and 

were measured over a 12 h period. The resulting oxygen gradients were not only stable 

throughout the duration of the experiment, but their steepness and dynamic range also did not 

significantly differ from those formed in the absence of cells (Fig. 3.3d). These results confirm 

that oxygen gradients were unaffected by the presence of cells. 

 

3.3.4 Oxygen gradients in BLOCCs can be correlated to HIF activation in MDA-MB-231 cells 

With the oxygen-sensitive films, we were able to map oxygen gradients along a single 

plane at the bottom of the cell-seeded region. To ensure cells throughout the 3D culture were 

experiencing oxygen gradients, we loaded hypoxia-responsive M231-HRE cells into the seeding 
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region. The M231-HRE cells were engineered to express two fluorescent proteins: mCHR and 

eGFP. The mCHR protein is expressed constitutively and served as a marker to identify cell 

location within the seeded regions. The gene coding for eGFP is downstream from five hypoxia-

response element (HRE) promoter sequences and is only expressed under hypoxic conditions. 

The two fluorescent proteins enabled cellular location and relative hypoxia to be assessed with 

fluorescence microscopy.  

 BLOCCs seeded with M231-HRE cells were incubated for 24 h in the presence of an 

oxygen gradient or at ambient oxygen conditions. Afterwards, confocal microscopy was used to 

construct z-stack representations of mCHR and eGFP expression. To identify cell location within 

the z-stack images, we used the Imaris software package to extract the center intensity mCHR 

and eGFP values. We chose to use center intensity values because the optical point spread along 

the z-axis required us to overestimate cell volume when identifying cell location. This 

overestimation led to the formation of cell boundaries that incorporated non-uniform amounts of 

background signal and made averaged intensities inconsistent. 

The center intensity values of eGFP and mCHR were correlated to their x-axis placement 

in BLOCCs (Fig. 3.4). Of these data, only BLOCCs cultured in the presence of an oxygen 

gradient showed a significant correlation between eGFP intensity and position in the cell seeded 

region. M231-HRE cells incubated in BLOCCs cultured at ambient oxygen tensions did not 

show a significant correlation. Additionally, no correlation was observed for mCHR intensity 

and cell location for BLOCCs cultured with or without oxygen gradients. The lack of correlation 

for mCHR expression suggests that oxygen gradients did not affect global protein expression, 

and that differences in eGFP expression seen within BLOCCs was due to differences in 

intracellular hypoxia. 
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 To better visualize the relationship between eGFP expression and local oxygen tensions, 

cell populations across the seeded regions were pooled into four stratified populations (Fig. 3.4): 

stratum 1 corresponds to cells located between 0-0.375 mm, with an oxygen tension range of 4.5-

3.6% O2; stratum 2 corresponds to cells between 0.376-0.750 mm, with an oxygen tension range 

of 3.6-2.7% O2; stratum 3 corresponds to cells between 0.751-1.125 mm, with an oxygen tension 

range of 2.7-1.8% O2, and; stratum 4 corresponds to cells between 1.126-1.5 mm, with an 

oxygen tension range of 1.8-1.0% O2. From these data, there is a clear relationship between low 

oxygen tension and increased eGFP expression, with strata 4 experiencing oxygen tensions 

between 2%-1% O2 and exhibiting significantly higher eGFP expression than the other three 

strata (Fig. 3.5a). There are statistically significant differences in eGFP intensity for strata 4 – 2, 

highlighting that hypoxic response is proportional for certain ranges of oxygen tension. The 

eGFP intensities of strata 2 and 1 are not significantly different.  

When comparing eGFP expression between M231-HRE cells cultured in the absence of 

an oxygen gradient, cell populations along the border have a significantly higher (p < 0.05) eGFP 

intensity relative to those along the interior (Fig. 3.5b). It is unclear what causes this trend; 

however, eGFP expression for cells cultured in the presence of an oxygen gradient was 

significantly higher than cells cultured at ambient oxygen tensions (Fig. B3.2). These results are 

unsurprising, as cells cultures at ambient oxygen tensions have greatly attenuated HIF-1α 

expression relative to cultures experiencing less than 4% O2.
13The difference in eGFP expression 

in the gradient-present cultures validate that cells distributed vertically throughout the BLOCC 

are experiencing the imposed oxygen gradient, and that BLOCCs can be used to correlate spatial 

differences between hypoxic signaling and regional oxygen tensions. 
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3.4 Conclusions 

In this work, we fabricated and characterized a modular fluidic chip platform capable of 

generating oxygen gradients across 3D cell cultures. The device consists of alternating layers of 

acrylic and silicone components, which can be compressed together with screws. The 

components are simple to design and fabricate, and allow for cultures to be readily assembled 

and disassembled for reuse of the device. Stable oxygen gradients are readily generated across 

the 3D cell cultures within the device and can be modulated by simply exchanging gasses. By 

incorporating hypoxia-responsive cells into this device, we were able to spatially correlate 

hypoxic signaling with oxygen tension. The accessibility and simplicity-in-design makes this 

device a promising resource for laboratories that lack microfluidic chip fabrication expertise or 

facilities but wish to develop cultures capable of relating cell phenotype to oxygen gradients.   
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3.5 Figures 

 

 
Figure 3.1 Schematic depicting the fabrication and assembly of a BLOCC. a) 1) Individual 

components are first cut out of the acrylic and silicone sheets using a laser cutter. 2) Components 

F and G are compressed together by hand and loaded with a cell-free hydrogel. 3) After the cell-

free hydorgel has gelated, a cell-laden hydrogel is added to the cell seeding regions. 4) 

Components B-G are stacked and compressed together by hand, and 1 mL of culture medium is 

added to the resevoir. 5) Component A is added to the top and the entire chip is closed using nuts 

and screws. Oxygenated and deoxygenated gasses are applied to the inlets and an oxgen gradient 

is formed along the 3D cell culture. Note: the schematics are not drawn to scale. b) Each acrylic 

and silicone component used to construct a BLOCC is ordered from left to right (A-G) with the 

assembled chip on the far left. (Scale bar = 15 mm) 
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Figure 3.2 The biocompatibility of the silicone and acrylic components used to construct the 

BLOCCs was measured after a 48 h incubation. Each bar represents the percent of viable 

parental M231 cells, normalized to the control samples. No statistically significant difference 

was found for any of the culture conditions. (n = 3, error bars = SD)  
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Figure 3.3 Characterization of oxygen gradients within an assembled BLOCC. a) Oxygen 

gradients were measured with an oxygen-sensing film, which was coated onto the bottom acrylic 

component of the BLOCC and placed in contact with the cell-containing regions. After the 

device is closed, phase contrast and fluoresence microscopy was used to visualize cell location 

and map the oxygen gradient, respectively. The scale bar in the image inset is equal to 0.75 mm. 

b) The 2D oxygen maps were converted into one-dimensional oxygen gradients along the 1.5 

mm wells of the cell seeding region. c) Oxygen gradients were generated using 5% or 20% O2 

gas mixes in parallel with a 0% O2 gas. (black dots = SD, n = 3) d) Oxygen gradients were 

generated in the presence and and absence of cells using a 5% oxygen mix, and no significant 

difference was seen between profiles. (black/red dots = SD, n = 3) 
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Figure 3.4. The eGFP and mCHR fluorescence intensities of single cells correlated to their 

spatial location for cultures under an oxygen gradient or ambient oxygen conditions. The (a) 

eGFP and (b) mCHR intensities of M231-HRE cells incubated under a 5% oxygen gradient. The 

eGFP cells exhibited a significant correlation relative to x-axis placement under the oxygen 

gradient (Pearson’s r = 0.263, P < 0.0001); however, the mCHR cells did not exhibit a significant 

relationship. The (c) eGFP and (d) mCHR intensity of M231-HRE cells cultured under ambient 

oxygen conditions did not exhibit a significant correlation with spatial placement. (red line = 

average % oxygen, black dots = SD % oxygen, n = 3)  
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Figure 3.5 Correlating hypoxia-responsive signaling in M231-HRE cells to spatial placement 

along an oxygen gradient. M231-HRE cells were incubated in BLOCC assemblies with (a) an 

oxygen gradient or (b) under ambient oxygen conditions. The seeding region was stratafied into 

four consecutive regions with equal lengths, and the eGFP intensities were pooled within each 

region (n ≥ 95). The eGFP intensities are represented by arbitrary units (a.u.), and the overlain 

oxygen gradients (red line = average % oxygen, black dots = SD) depict the oxygen tension 

range experienced within each stratified region. (* = P < 0.05, ** = P < 0.01, *** = P < 0.001, 

**** = P < 0.0001) 
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CHAPTER 4: ASSESSING CHEMOTHERAPEUTIC EFFECTIVENESS USING A 

PAPER-BASED TUMOR MODEL 

 

4.1 Introduction 

Cell-based screens used to identify potential chemotherapeutics rely heavily on two-

dimensional (2D) assays in which cells are cultured as monolayers. These assays are easily 

assembled and amenable to screening libraries of potential therapeutics in a high-throughput and 

parallel manner. Despite their utility, monolayer cultures fail to replicate the complex chemical 

and physiological conditions that promote in vivo drug-resistance.1–4 This disparity between 2D 

cultures and in vivo conditions is, in part, attributed to why a majority of therapeutic candidates 

fail in pre-clinical trials.2 To better identify potential therapeutic candidates during the drug 

discovery phase, more predictive in vitro assays are needed.  

A growing body of research suggests that three-dimensional (3D) cultures can be used to 

bridge the biological gap between monolayer cultures and animal models.2,4–6 Cells cultured in 

3D environments as aggregates (i.e., spheroids) or in hydrogel scaffolds develop distinct 

morphologies,5 behaviors,6 and chemosensitivities4 that are more representative of cells found in 

vivo. Spheroids have been widely used to assess therapeutic efficacy and toxicity,2,7–11 as mass-

transport limitations within spheroids produce chemical gradients similar to those within poorly 

vascularized tumor tissue.12,13 These chemical gradients lead to the formation of stratified zones 

of cells: proliferating cells along the exterior of the spheroid, quiescent cells in the spheroid’s 

interior, and necrotic cells at the spheroid’s core.12–16 Each of these zones exhibit varying degrees 

of sensitivity to therapeutic dosing, and yield physiochemical conditions that 
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allow spheroids to better predict in vivo responses.2,4,17–19 Despite their benefits, spheroids face a 

number of limitations: i) only a small subset of cell lines are capable of forming aggregates;7 ii) 

deriving spatial information requires laborious histological sectioning; and iii) spheroids offer 

limited experimental control over the chemical gradients which form across the culture.  

Paper-based cultures (PBCs) are an emerging 3D culture platform that overcomes many 

of the limitations associated with spheroids. PBCs are compatible with a wide range of cell 

types, because they are prepared by suspending cells in a hydrogel, which is then infused into 

sheets of wax-patterned filter paper.  The paper fibers provide structural integrity to the hydrogel 

slabs, allowing the individual sheets to be stacked together in a modular fashion. Wax patterns 

on the paper act as hydrophobic barriers and provide discrete zones for seeding cells. By 

introducing impermeable barriers, diffusional exchange is limited to one side of the stacked 

culture, resulting in the formation of monotonic gradients similar to the chemical gradients found 

in poorly vascularized tumors.20 The modularity of the PBCs also provide control over the 

chemical environment formed in the stacked cultures, as cell density, thickness, and orientation 

can be changed to suit experimental needs. 

The ability to separate the stacks into individual layers after an experiment provides 

spatially resolved datasets relating cellular responses to the chemical environment experienced 

during incubation. Cell-containing sheets have been analyzed with a number of different 

readouts, including: quantitative polymerase chain reaction (qPCR), fluorescence microscopy, 

immunohistochemistry (IHC), enzyme-linked immunosorbent assay (ELISA), and mass 

spectrometry.21–24 Due to the similarities between chemical environments in PBCs and avascular 

tissue, this platform has been used to investigate the invasion of breast and lung 

carcinomas,21,23,25,26 cardiac ischemia,27 and cancer metabolism.24,28,29  
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In this study, we used PBCs to relate differences in the chemoresistance of a colorectal 

carcinoma cell line to the oxygen environment experienced by those cells. The PBCs are 

described in Fig. 4.1, and were used to impose monotonic gradients of nutrients and wastes 

vertically along the stacked cultures. By adjusting the cell density of these cultures, we showed 

that we could manipulate the profile of the chemical gradients that form and tune the chemical 

environment. We confirmed our ability to modulate these gradients by quantifying oxygen 

profiles in cultures seeded at a high and low density: 84,000 cells/zone and 21,000 cells/zone, 

respectively. As expected, cultures seeded at lower densities experienced shallower oxygen 

gradients. By dosing these cultures with a chemotherapeutic agent, SN-38, we compared cellular 

viability between each scaffold. This information allowed us to relate spatial differences in 

relative chemoresistance to the layer’s local oxygen environment. Our findings show that high-

density cultures experiencing chronic hypoxia exhibit increased sensitivity to therapeutic dosing, 

while low density cultures have increased resistance. Through this work, we expand on the 

application of PBCs by demonstrating the ability of this platform to assess chemotherapeutic 

efficacy in a colon tumor model with varying chemical environments. 

 

4. 2 Experimental 

4.2.1 Cell culture 

HCT116 colorectal carcinoma cell lines were obtained from the American Type Culture 

Collection (ATCC), and validated by Short Tandem Repeating (STR) sequencing in 2016. The 

cells were maintained as adherent cultures at 5 % CO2 and 37 °C in McCoy’s 5A medium with 

L-glutamine, supplemented with fetal bovine serum (10%, v/v) and penicillin-streptomycin (1%, 

v/v). Medium was exchanged approximately every 48 h, and cells were passaged at 70-80% 
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confluency. Cells were passaged by detachment with trypsin-EDTA (5 min, 37 °C). Cells were 

washed with serum-containing medium, pelleted, resuspended, and cultured in a fresh flask at a 

1/10 dilution. All cell culture reagents, unless otherwise stated, were acquired from Gibco by 

Life Technologies. 

Lines of HCT116 cells constitutively expressing mCherry fluorescent protein (HCT116 

mCHR) were generated via transfection with a 3:1 ratio (g/L) of mCherry2-C1 plasmid to 

EndoFectin™ Max (GeneCopoeia). The mCherry2-C1 plasmid was a gift from Michael 

Davidson (Addgene, plasmid # 54563). The transfection was performed according to the 

manufacturer’s suggested protocol. Stable lines were maintained with 500 µg/mL of Geneticin® 

(ThermoFisher) until a single clone was selected. 

 

4.2.2 Paper scaffold and PET film preparation 

Paper-based scaffolds were prepared as detailed previously.21,30 Sheets of Whatman 105 

lens paper were wax-patterned with a ColorQube 8570 printer (Xerox) and sterilized with ultra-

violet (UV) light overnight prior to usage. Two paper designs were used in this study: i) a “9-

zone scaffold,” which contained nine circular zones (2.5 µm diameter) for seeding with cell-free 

or cell-laden Matrigel, and ii) a “single-zone scaffold”, which contained one circular zone (2.5 

mm diameter) for seeding. Schematics of the 9-zone scaffolds can be found in the Electronic 

Supplementary Information (ESI) of reference #21. Schematics of the single-zone scaffolds are 

provided in Appendix 3, Fig. C4.1. 

Polyethylene terephthalate (PET) films (overhead transparency, Staples®) were prepared 

as detailed previously.21,30 Two PET designs were used for this study: i) an “open” design, which 
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contained nine openings matching the locations of the zones in the 9-zone scaffold; and ii) a 

“closed” design, which prevented the exchange with medium by containing no openings.30 
 

 

4.2.3 Assembling PBCs 

Prior to seeding the 9-zone scaffold with HCT116 mCHR cells, the cells were suspended 

in Matrigel (Corning) at a density of either 168,000 cells/µL or 42,000 cells/µL. Once prepared, 

the Matrigel suspensions were stored on ice to prevent gelation. In the cell-containing paper 

scaffolds, five zones were seeded with 0.5 µL of the cell-laden Matrigel. The remaining four 

zones were filled with 0.5 µL of cell-free Matrigel and served as background controls for image 

analysis. In the cell-free scaffolds, all nine zones were filled with 0.5 µL of cell-free Matrigel. 

After seeding, the scaffolds were incubated in medium for 4 h before assembling the stack 

culture. 

The stacked PBCs used in this study are detailed in Fig. 4.1. Each stack consisted of: i) 

an open PET film (top), ii) a 13-mm diameter, 0.4 µm pore size track-etched membrane 

(Whatman), iii) a cell-free paper scaffold, iv) 11 cell-laden paper scaffolds, and v) a closed PET 

film (bottom). The entire stack was placed between stainless steel holders, which ensured the 

individual scaffolds were in conformal contact throughout the experiment. Stacked cultures used 

for oxygen measurements contained either 1, 4, 8, or 12 paper scaffolds. In assemblies with 4, 8, 

and 12 scaffolds, the first scaffold was cell-fee with the remaining scaffolds containing either 

84,000 cells/zone or 21,000 cells/zone.  

Assembled cultures were placed in 6-well plates containing McCoy’s 5A medium and 

incubated on an orbital shaker set to 300 rpm. Medium in each well was exchanged every three 



83 
 

days. Prior to fluorescence imaging or staining, the stacks were disassembled and each scaffold 

washed twice with phosphate buffer saline (PBS). 

 

4.2.4 Immunocytochemistry 

Within 15 min of disassembling a PBC, the individual scaffolds were fixed in PBS with 

4% (v/v) paraformaldehyde for 15 min. Scaffolds were then blocked and permeabilized for 1 h in 

PBS containing 5% normal goat serum (Cell Signaling Technologies) and 0.3% Triton™ X-100 

(Sigma-Aldrich) prior to immunostaining. Scaffolds were incubated in the primary antibody 

solution overnight at 4 ºC, and then incubated in the secondary antibody solution for 4 h at room 

temperature. Antibodies were diluted with PBS containing 1% (w/v) bovine serum albumin (Cell 

Signaling Technologies) and 0.3% Triton™ X-100: rabbit anit-Ki-67 (primary antibody, H-300, 

Santa Cruz, 1:100 dilution) and goat anti-rabbit IgG-CFL488 (secondary antibody, sc-516248, 

Santa Cruz, 1:500 dilution). 

 

4.2.5 Oxygen sensor integration and interrogation 

The oxygen sensors consisted of a palladium tetrakis (pentafluorophenyl) porphyrin 

(PdTFPP)-containing polystyrene thin film coated onto a PET sheet. The fabrication and 

characterization of these sensors are detailed in previous work.20 Briefly, a 1 mM solution of 

PdTFPP in 18.75% (w/w) polystyrene-toluene was spin-coated onto a 13-mm circular PET sheet. 

Prior to incorporation into PBCs, the sensors were sterilized with UV light for 1 h. 

The oxygen sensors were placed at the bottom of stacks containing 1-, 4-, 8-, or 12-

scaffolds in lieu of the closed PET films, and the cultures were maintained at normal cell culture 
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conditions in 6-well plates. Oxygen measurements were collected at 24, 72, 96, 120, and 168 h 

after initial assembly. Medium was exchanged every three days. 

 

4.2.6 SN-38 dose-response assay 

A 5 mM stock solution of SN-38 (Cayman Chemical) was prepared in DMSO (Sigma-

Aldrich). A range of SN-38 concentrations were prepared at 2x the working concentration (0, 

0.001, 0.002, 0.01, 0.02, 0.1, 1, 10 µM) by dissolving the SN-38 stock solution into McCoy’s 5A 

medium. Each SN-38 solution contained 0.2% (v/v) DMSO.  

3D cultures were prepared by pipetting 0.5 µL of cell-laden Matrigel (20,000 cells/µL) 

into single-zone scaffolds (Fig. C4.1). Additional scaffolds were prepared with 0.5 µL of cell-

free Matrigel to serve as background controls. The single-zone scaffolds were placed into 

individual wells of a 96-well plate containing 100 µL of McCoy’s 5A medium and incubated for 

24 h prior to dosing. Scaffolds were dosed with SN-38 by adding 100 µL of the respective 

concentrations to each well. After dosing for 48 h, scaffolds were transferred to wells containing 

100 µL of culture medium.  

2D cultures were prepared by adding 5,000 cells in 100 µL of medium to wells of a 96-

well plate. Cultures were incubated for 24 h, then dosed with 100 µL of the respective SN-38 

concentrations for 48 h. After dosing, 100 µL of medium was removed from each well. 

Cellular viability was assessed with CellTiter-Glo™ (CTG, Promega). For the 3D and 2D 

cultures, 100 µL of CTG reagent was added to each cell-containing well. The plates were 

agitated on an orbital shaker at 800 rpm at room temperature for 15 min prior to analysis. 

Chemiluminescence was measured on a SpectraMax M5 (Molecular Devices) 

spectrophotometric plate reader with an integration time of 500 ms. Emission intensities from 
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wells without cells (2D cultures) or wells with cell-free single-zone scaffolds (3D cultures) were 

used as background. All background-subtracted intensities were averaged and normalized to the 

vehicle control. 

 

4.2.7 Fluorescein penetration assay 

 Sodium fluorescein (Fluka) was dissolved in McCoy’s 5A medium to prepare a 0.5 

mg/mL solution. PBCs containing 12 scaffolds seeded at a cell density of 84,000 cells/zone were 

placed in a 6-well plate without additional medium and situated on the stage of an incubated 

inverted microscope (Axiovert 40 CFL, Zeiss). The wells of the top metal holder were filled with 

100 µL of the fluorescein solution, and fluorescence images were of the bottom of the stack were 

recorded every minute for 11 h. Images were taken using an Axiovert 40 CFL (Zeiss) inverted 

microscope equipped with a LED light source (wLS-LG-MB, QImaging), 470±20 nm excitation 

filter, 540±40 nm emission filter, and monochrome 12-bit camera (QIC-F-12-C, QImaging). 

 

4.2.8 Image acquisition and analysis 

Fluorescence images of the individual scaffolds were acquired with a Typhoon 9400 

scanner (GE Life Sciences) at a resolution of 200 µm. HCT116 mCHR cells were imaged using a 

532 nm laser and 610±30 nm emission filter. The Ki-67 stained cells were imaged using a 488 

nm laser and 526 nm short pass emission filter. 

Viability measurements were performed by measuring the average mCHR fluorescence 

value of each zone using ImageJ software.31 Reported fluorescence values for a single scaffold 

were obtained by subtracting the average fluorescence intensity of the four cell-free zones from 

the average fluorescence intensity of the five cell-containing zones. Relative proliferation was 
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determined by dividing Ki-67 images by their corresponding mCHR image. Reported values are 

a ratio of Ki-67 intensity to mCHR intensity. 

Fluorescence images of the of the oxygen sensors and fluorescein penetration studies 

were taken using an Axiovert 40 CFL (Zeiss) inverted microscope equipped with a LED light 

source (wLS-LG-MB, QImaging) and monochrome 12-bit camera (QIC-F-12-C, QImaging). The 

oxygen sensors were imaged with a 546±12 nm excitation filter and 590 nm long pass filter. 

Fluorescein was imaged using a 470±20 nm excitation filter and 540±40 nm emission filter. 

 

4.2.9 Statistical analysis 

Unless otherwise stated, all reported values are the average and standard error of the 

mean (SEM). Datasets were analyzed with GraphPad Prism® v.7.01: a two-way ANOVA with 

Tukey’s multiple comparison post-test was used to compare different data sets. A p value of < 

0.05 was considered significant. 

 

4.3 Results and discussion 

4.3.1 Constructing a paper-based colon tumor model 

In poorly vascularized tumor tissue, mass transport limitations of nutrients and waste 

products lead to the development of stratified cell populations.32 Cells closest to the vasculature 

receive the supply of nutrients needed for proliferation, while cells further from the vasculature 

receive limited nutrients due to consumption outpacing diffusional delivery. Within these regions 

of depleted nutrients, cells adopt a quiescent phenotype or become necrotic. Chemotherapeutics 

that target proliferative cells by interfering with some aspect of the cell-cycle yield varying 

cellular responses in the stratified populations of a tumor.33 There is a need for an in vitro culture 
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model that recapitulates the cellular heterogeneity found in tumors, but is as easily setup and 

analyzed as monolayer cultures. To mimic the diffusion-limited environment that gives way to 

population stratification in poorly vascularized tumors, we constructed PBCs of HCT116 mCHR 

cells suspended in Matrigel (Fig. 4.1).  

We chose HCT116 cells because their response to various chemotherapeutics, including 

SN-38 used in this study, has been well characterized in both monolayer and spheroid 

cultures.9,11,19,34 Engineering the HCT116 cells to constitutively express mCherry allowed us to 

relate fluorescence intensity to viability, as mCherry fluorescence intensity and cell number are 

linearly related for HCT116 mCHR cells imaged on a Typhoon scanner (Fig. C4.2).  We chose 

Whatman 105 filter paper to fabricate the paper scaffolds because it has a large void volume 

(~80%) and low fiber density, allowing the scaffolds to readily retain the cell-laden Matrigel 

while still maintaining compatibility with fluorescence imaging.  

The culture system used in this work is summarized in Fig. 4.1. Of the 12 paper 

scaffolds, 11 were seeded with cells to ensure hypoxia was reached in the stack.35 The cell-free 

scaffold at the top of the stack provided a layer in which cells could expand into during 

incubation. A polycarbonate track etch membrane was placed at the top of the paper stack to 

retain cells in the paper scaffolds, ensuring that each culture was 360 µm thick. The PET films 

placed at the top and bottom of the culture allowed us to control diffusion of fresh medium into 

the culture and resulted in the formation of gradients along the stack. Stainless steel holders 

enclosed the entire culture and held the scaffolds together in conformal contact. 

 

4.3.2 Proximity to a nutrient source affects spatiotemporal distribution of cells 



88 
 

Before evaluating drug resistance in the stacked cultures, we investigated the 

spatiotemporal evolution of viable HCT116 cells for culture periods of up to one week. Despite 

the linear trend between fluorescence intensity and number of mCHR-expressing cells under 

normoxic conditions (Fig. C4.2), we report viability in terms of mCHR fluorescence because 

environmental oxygen tensions can potentially attenuate mCherry expression. Specifically, 

hypoxic conditions have been shown to elicit a global down-regulation of protein synthesis.36 

Change in protein expression can make direct comparisons to calibration curves relating cell 

number and mCherry fluorescence prepared under normoxic conditions difficult for cell 

populations experiencing different oxygen tensions. The collected images allowed us to make 

relative comparisons of spatial and temporal changes in viable cell populations for cultures 

incubated at 24-, 72-, 120-, and 168-h intervals (Fig. C4.2a). 

Increased periods of incubation resulted in notable changes in the distribution of viable 

cells (Fig. 4.2a). To help visualize relative changes in cell distributions across the multiple 

incubation intervals, we normalized the average fluorescence intensity of each incubation 

interval to the respective intensity at 24 h (Fig. 4.2b). From these data, three trends appear: i) 

cells in the first three scaffolds increase in number in the first 72 h, but experience a decrease in 

viability during the remainder of the incubation; ii) cells in scaffolds 4-6 remain static for the 

first 72 h, then decrease in viability; and iii) cells in scaffolds 7-12 decline in viability during the 

first 72 h, and remain static for the remainder of the incubation. 

The rapid cellular growth followed by a decline in viability in the first three scaffolds is 

likely due to temporal imbalances between nutrient supply and cellular consumption. In the first 

72 h, this region’s close proximity to the nutrient-rich medium allows cells to rapidly proliferate. 
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After 72 h, we speculate that the rate of consumption outpaces diffusional delivery of nutrients, 

and that the observed decrease in viability is due to this nutrient shortage.  

The temporal changes in viable cell populations within scaffolds 4-6 further support our 

hypothesis above. Within the first 72 h of the incubation, cell populations in scaffolds 4-6 had 

stable fluorescence intensities, suggesting that adequate nutrients were reaching this region. 

After 72 h, scaffolds 4-6 had a decrease in fluorescence intensity, reaching values similar to 

those measured in scaffolds 7-12. The similarity in fluorescence intensities suggests these 

regions are experiencing similar levels of nutrient restriction. Experiments mapping glucose 

concentrations throughout spheroids showed minimal glucose penetration into a spheroid after 

120 µm.37 This distance corresponds to scaffold 4 in the stacked culture, and further supports that 

nutrient consumption within scaffolds 1-3 is limiting nutrient supply to lower layers. 

 

4.3.3 Proliferative populations occur within 90 µm of the nutrient source 

To confirm the presence of proliferative subpopulations in the stacked culture, we stained 

individual scaffolds for Ki-67 after 24, 72, 120, and 168 h of incubation (Fig. 4.2c). We chose 

Ki-67 as it is a nuclear protein expressed during all stages of the cell cycle.38 Proliferative cell 

populations were identified within the first three scaffolds after 72, 120, and 168 h of incubation. 

This region matches the increased number of viable cells in the first 72 h. Despite the decrease in 

the number of viable cells between scaffolds 1-3 after 72 h of incubation, proliferation markers 

in this region persisted for up to 168 h. It is possible that cells in these layers continue to 

proliferate but at a rate that is slower than the rate of cellular death, explaining why total viability 

declines over time.  
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Cell populations in layers 4-12 of the stacked cultures have limited Ki-67 staining. This 

data, in combination with the mCHR fluorescence intensities, indicate that cells in these regions 

were viable but not proliferative. The combination of these observations suggests that these cells 

are likely in a quiescent state to accommodate the limited supply of nutrients within this region. 

We expect these cells to exhibit an increased resistance to therapeutic dosing which accompanies 

with the development of a quiescent phenotype.39 

  

4.3.4 Oxygen gradients can be modulated with cell density 

To better understand the environmental conditions within our PBCs, we incorporated 

oxygen sensors into the stacked cultures and quantified extracellular oxygen tensions in different 

regions. We chose to quantify oxygen as it directly regulates hypoxia-inducible transcription 

factors (HIFs), which promote cellular survival in nutrient deficient conditions,40 and the 

development of a chemoresistant phenotype.41,42 These transcription factors are constitutively 

expressed by cells but degraded under normal oxygen tensions (i.e., normoxia). Under low 

oxygen tensions (i.e., hypoxia, < 5 mmHg O2)—conditions commonly found in poorly 

vascularized tumor tissue—these factors are stabilized and affect transcription.41 By quantifying 

oxygen tensions across our cultures, we can spatially relate cellular responses to the oxygen 

environment experienced by those cells.  

The oxygen sensors used in this study were easily integrated into PBCs by simply placing 

them at the bottom of the PBC in lieu of the closed PET film in Fig. 4.1. These sensors were 

previously used to map the formation of oxygen gradients in PBCs with channel-type cultures.43 

These sensors are selective to molecular oxygen and highly sensitive at low oxygen tensions, 

with a resolution of 0.5 mmHg O2 for measurements below 10 mmHg O2.
20 In the stacked PBCs 
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oxygen gradients run normal to the sensor, limiting our measurements to a single point along the 

gradient. This limitation was overcome by preparing a number of stacked cultures with either 1, 

4, 8, or 12 scaffolds, and using each of the readings to estimate the gradient formed across an 

entire culture with 12 scaffolds. In our setup, the luminescence intensity of the sensors was 

recorded with an inverted microscope and converted to oxygen tension using a Stern-Volmer 

relationship.  

We measured the spatiotemporal evolution of oxygen gradients in 12-scaffold cultures 

seeded at two cell densities: 84,000 cells/zone, and 21,000 cells/zone. The oxygen measurements 

of the culture with 84,000 cells/zone confirm the presence of a steep oxygen gradient, with 

widespread hypoxia across all scaffolds and time points (Fig. 4.3). Fig. C4.3 provides a 

graphical summary of the average oxygen tension and standard deviation values for each culture. 

Previous studies measuring oxygen gradients in tumor xenografts found that oxygen penetrates 

~50 µm into tissue before reaching hypoxia,44 so it was unexpected that these cultures would 

reach hypoxia in less than 30 µm from the oxygen source. We note that the track etch 

membranes placed at the top of cultures can act as a mass transport barrier and attenuate oxygen 

flux into the PBCs, resulting in steeper oxygen gradients than expected. 

Despite the cultures experiencing similar oxygen tensions across all scaffolds, we still 

observed spatial differences in proliferative cell populations. These differences indicate that 

nutrients other than oxygen were also affecting cellular stratification. Glucose gradients could 

explain the spatial differences in proliferation we observed, as this molecule has been shown to 

penetrate further into avascular tumorous tissue than oxygen.45 Additionally, HCT116 cells 

under hypoxic conditions have increased glycolytic activity via HIF-1α expression, allowing 

them to continue to proliferate despite a limited supply of oxygen.46 
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An advantage of the PBCs over spheroids is the ability to modulate the density of cells in 

each scaffold. Seeding PBCs at 21,000 cells/zone lowered overall cellular consumption and 

permitted oxygen to penetrate ~240 µm (Fig. 4.3). At this density, a 1-scaffold culture took 120 

h to reach hypoxia, while a 4-scaffold culture took 72 h. By further modulating the cell density, 

we would expect oxygen penetration to change accordingly, allowing us to readily control the 

steepness and duration of these gradients. Additional chemical sensors capable of measuring 

nutrient, pH, and waste products are needed to corroborate the evolution of these gradients.   

  

4.3.5 Different chemical conditions yield different chemoresistances 

The ability to manipulate local chemical gradients in the stacked cultures allowed us to 

investigate how the chemical environment contributes to regional differences in phenotype and 

chemoresistance. To measure the drug sensitivity of HCT116 cells in 12-scaffold cultures, we 

exposed cultures seeded with two different cell densities (84,000 or 21,000 cells/zone) to varying 

concentrations of SN-38. SN-38 is a topoisomerase I inhibitor and the active metabolite of 

irinotecan, which is commonly used in combination therapies for colorectal cancer.47 In these 

experiments, cultures were incubated for 24 h before being exposed to SN-38. After 48 h of 

dosing, the cultures were disassembled and mCHR fluorescence intensities were measured. 

Relative chemoresistance in each scaffold was determined by comparing the fluorescence 

intensity of SN-38 dosed scaffolds to the fluorescence intensity of scaffolds exposed to the 

vehicle. 

Prior to performing the chemoresistance assays, we characterized: i) penetration of 

fluorescein, an SN-38 substitute, into the stacked cultures, and ii) the response of HCT116 

mCHR cells to increasing doses of SN-38 in 3D and monolayer cultures. Small-molecule 
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penetration into the stacked cultures was assessed to ensure that differences in relative 

chemoresistance can be attributed to drug interactions rather than inaccessibility to SN-38.  To 

estimate the penetration of SN-38 throughout the stacked culture, we substituted sodium 

fluorescein for SN-38. We chose fluorescein because it can be easily measured using 

fluorescence microscopy and possesses a diffusion coefficient similar to an SN-38 analogue.48,49 

For this assay, a 0.5 mg/mL solution of fluorescein was added to the top of a 12-scaffold PBC 

seeded at a density of 84,000 cells/zone. We recorded the fluorescence intensity at the bottom of 

a culture over a period of 11 hours (Fig. C4.4). After ~350 minutes the fluorescein signal 

became static, indicating that equilibrium had been reached throughout the culture. These data 

suggest that the top of the culture will see increased concentrations of SN-38 relative to the 

bottom scaffolds for the first 350 minutes of dosing, ~13% of the total incubation time. 

Additionally, HCT116 cells suspended in a 3D matrix have doubling times of approximately 74 

hours, which means that cells will likely experience the full SN-38 concentration before 

completing a division.50   

We determined the potency (half maximal inhibitory concentration, IC50) of SN-38 for 

well-oxygenated HCT116 mCHR cells cultured in single-zone paper scaffolds and monolayers. 

While previous studies have already characterized the IC50 of SN-38 for HCT116 cells in 2D 

cultures, these values range three orders of magnitude (50 - 0.5 nM) making comparisons with 

literature values difficult.34,51 The IC50 value for the HCT116 cells in the paper scaffolds (0.014 ± 

0.006 µM) was much higher than for monolayer cultures (0.005 ± 0.001 µM). These data are 

summarized in Fig. C4.5. These results support previous findings that 2D cultures often 

overestimate the potency and efficacy of chemotherapeutics relative to 3D cultures and by 

extension, in vivo tumors.4 
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To assess regional chemoresistance in stacked PBCs, 12-scaffold cultures were dosed 

with increasing concentrations of SN-38: 0.014 µM, 0.14 µM, or 1.4 µM, representing 1x, 10x, 

or 100x of the 3D IC50 value. A vehicle control of 0.1% (v/v) DMSO in medium was also 

included in this assay. Fluorescence measurements from the chemoresistance assay show distinct 

differences in regional responses between scaffolds at different SN-38 dosages (Fig. 4.4). A table 

outlining statistical comparisons between dosages is provided in Appendix 3 (Table C4.1).  

Cultures seeded with 84,000 cells/zone and dosed with 0.014 µM or 0.14 µM SN-38 had 

a significant decrease in viable cells between scaffolds 2-5. The decrease in viability was 

expected for scaffold 2 based on the Ki-67 staining; however, SN-38’s effectiveness was less 

predictable for scaffolds 3-5 due to the limited proliferation measured within this region. This 

sensitivity to SN-38 in the non-proliferative region can be explained by SN-38’s ability to inhibit 

HIF-1α expression.52 While the mechanism is not well understood, increasing concentrations of 

SN-38 decrease levels of HIF-1α in the colorectal carcinoma cell lines HT29 and SW480. A 

similar dose-response relationship could be happening in our cultures. The attenuation of HIF-1α 

accumulation via SN-38 should decrease the induction of antiapoptotic pathways in the HCT116 

mCHR cells between scaffolds 3-5, decreasing their overall chemoresistance.  

Chemoresistance assays for 0.014 µM and 1.4 µM SN-38 were also performed on 

stacked cultures containing 21,000 cells/zone. From these data, there is a clear trend between the 

0.014 µM SN-38 and the vehicle data, as scaffolds 2-12 were statistically similar. A table 

outlining statistical comparisons between all dosages is provided in Appendix 3 (Table C4.2). 

The only significant difference between the vehicle and 0.014 µM SN-38 data sets was the first 

scaffold, in which 0.014 µM SN-38 had significantly fewer viable cells. The similarity in viable 
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cells between scaffolds 2-12 suggests that cells further from the medium source exhibit increased 

chemoresistance.  

Dosing the cultures seeded with different cell densities showed distinctly different trends: 

cells in the first scaffold were responsive to SN-38 at low-densities but not at high-densities. 

Additionally, cells deeper in the high-density culture were responsive to SN-38 dosing while 

cells in the low-density cultures were not. The disparity in these results highlight the shifting 

relationship between cancer chemoresistance and local chemical environment, and show the need 

for a model capable of accounting for environmental components when assessing 

chemotherapeutic effectiveness.  

 

4.4 Conclusion 

This work utilized stacked PBCs to relate chemoresistance of colorectal carcinoma cells 

to their local chemical environment. In these assemblies, monotonic gradients of nutrients and 

waste are formed across the stacked culture, providing a range of chemical environments that 

vary for each scaffold. By modulating the cell density of these PBCs, we can experimentally 

manipulate the spatiotemporal evolution of these gradients to suit experimental needs. We 

incorporated oxygen sensors into the cultures seeded with different cells densities to demonstrate 

this control, and found shallower oxygen gradients in cultures with lower cell densities. Cultures 

seeded at different cell densities were also dosed with SN-38. Interestingly, we found a 

significantly higher response to SN-38 dosing in high-density cultures experiencing hypoxia. The 

difference in response between these densities demonstrate the modularity of PBCs and their 

ability to easily assess spatial relationships between chemical environments and 

chemoresistance.  
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While there are a number of 3D culture platforms to assess chemotherapeutic 

effectiveness in vitro, the ability to i) manipulate the chemical environment in situ, and ii) easily 

section cultures into discrete layers, makes PBCs a promising analytical tool for screening 

therapeutics. The cultures described in this work used one cell line and one chemotherapeutic 

agent; however, the modularity of this platform allows cell lines and therapeutics to easily be 

interchanged or combined into a single assay. Additional biomarkers other than Ki-67 can also 

be investigated to relate specific phenotypic changes in the presence and absence of therapeutics. 

This work will serve as the first in a series of studies that focus on developing PBCs as a 

platform for screening therapeutics. 
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4.5 Figures 

 

 

Figure 4.1 Schematic of the 12-scaffold PBC. The experimental setups used in this study 

consisted of 12 paper scaffolds, a track etch membrane, and two PET films sandwiched between 

two stainless steel metal holders. The paper-scaffolds were used to form the cultures by stacking 

together 11 cell-containing scaffolds with a cell-free scaffold at the top. The track etch 

membrane confined the HCT116 cells in the paper scaffolds. The two PET films limited the 

diffusional exchange with the surrounding medium to the top of the stack. The stainless-steel 

holders compressed the entire culture together, and ensured the scaffolds were in conformal 

contact throughout the experiment. (scale bar = 9 mm) 
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Figure 4.2 Stratification of viable and proliferative HCT116 cell populations after 24h, 72h, 

120h, and 168h of incubation. In each graph, scaffold 1 is at the top of the stack and closest to 

the source of fresh medium. (a) mCHR fluorescence intensity was used to assess cellular 

viability in each scaffold of the stack, increased fluorescence correlates with increased viability. 

n = 14-29 replicate measurements, across multiple setups and cell passage numbers. (b) mCHR 

fluorescence intensities were normalized to the 24 h values to help visualize relative changes per 

scaffold over time. (c) Immunocytochemistry (Ki-67) was used to identify proliferative 

populations along the cultures. Fluorescence intensity of secondary labeled anti-Ki-67 antibodies 

were normalized to mCHR fluorescence intensity. Cells in the top 3 scaffolds exhibit increased 

Ki-67 expression after 24 h, indicating the presence of proliferative populations. n = 10-15 

replicate measurements, across multiple setups and cell passage numbers. (* = p < 0.05, ** = p < 

0.01, *** = p < 0.001, **** = p < 0.0001)  
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Figure 4.3. Mapping oxygen tension along stacked cultures containing different cell densities: 

21,000 cells/zone (left) and 84,000 cells/zone (right). Oxygen sensors were placed at the bottom 

of cultures composed of 1-, 4-, 8-, and 12-stacked scaffolds. The corresponding heat maps and 

values represent the average oxygen tension at the bottom of these cultures, with green 

representing atmospheric oxygen tensions (160 mmHg) and red representing hypoxia (< 5 

mmHg). n=5 replicate measurements, obtained from a single setup.  
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Figure 4.4 Density-dependent responses to SN-38 dosing. Stacked PBCs were seeded with either 

(a) 84,000 cells/zone or (b) 21,000 cells/zone and dosed with increasing concentrations of SN-

38. The viability at each zone was measured using fluorescence imaging and compared to 

vehicle controls. mCHR fluorescence intensities were normalized to the 24 h values of the (c) 

84,000 cells/zone and (d) 21,000 cells/zone cultures to help visualize relative changes for each 

dosage.  n = 15 replicate measurements, across multiple setups and cell passage numbers. 
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CHAPTER 5: FUTURE DIRECTIONS ADAPTING PAPER-BASED CULTURES FOR 

FLOW CYTOMETRY 

 

5.1 Introduction 

The future goal of the work outlined in this dissertation is to develop a single, 

comprehensive assay capable of i) evaluating the effectiveness of chemotherapeutics in a tumor-

like environment, and ii) identifying how cells evade cytotoxic agents. Development of 

chemoresistance in cancer cells is a major obstacle to cancer treatment, and results from changes 

in drug metabolism,1–3 expression of efflux pumps,4–6 expression of drug targets,7–10  genetic 

regulation via methylation or mutation,11–15 and regulation of cell cycle/apoptosis.16–18 While 

chemotherapeutics are often evaluated on their short-term efficacy in reducing tumor bulk, cells 

can acquire resistance to therapeutics during treatment and reemerge as a more aggressive 

cancer.19,20 Additionally, cells can develop innate resistances to therapeutics through mechanisms 

involving the tumor microenvironment (TME).21,22 Understanding the relationship between the 

TME environment and resistance to individual chemotherapeutics provides insight on potential 

combinatorial therapeutic regimes to prevent relapse.     

Chapter 4 outlined a PBC setup designed to discern differences in chemosensitivity 

between cell populations experiencing different microenvironments.23 In that assay, viable cells 

were identified based on their expression of a constitutively expressed fluorescent protein, 

mCherry. Despite being able to correlate fluorescence intensity to relative viability, the 

persistence of fluorescent proteins during the process of cellular death limits the accuracy of this 



106 
 

readout.24 Additionally, this assay does not identify the specific cellular mechanisms that allowed 

cells to evade chemotherapeutic agents. Due to the limitations of the single end-point readout 

used in our initial work, a new readout is needed capable of simultaneously i) identifying viable, 

dead, and apoptotic cells and ii) assessing different phenotypes that contribute to 

chemoresistance. To develop this assay, I turned to flow cytometry. 

 Flow cytometry is a bioanalytical technique in which fluorescently-labeled cell 

suspensions are drawn into a microfluidics system, orientated into a line, and then individually 

interrogated with light. The ability to isolate and analyze single cells within a suspension enables 

this technique to study cellular heterogeneity within a population. Flow cytometry has been used 

to study chemosensitivity of cancer cells25,26 and identify chemoresistant phenotypes, including: 

efflux pump activity,27,28 apoptosis suppression,29 and cell-cycle modulation.30 Flow cytometric 

protocols have also been developed to discriminate between live and dead cells, and rely on three 

staining techniques: nuclear incorporation of DNA intercalating dyes, metabolism of fluorogenic 

substrates, and binding of amine-reactive dyes to intracellular proteins. While these staining 

techniques rely on different labeling mechanisms, they all differentiate live and dead cells based 

on whether the cell membrane is intact or compromised. 

In this chapter, I outline my current work focused on adapting paper-based cultures 

(PBCs) for flow cytometric analysis. To develop this workflow, I adjusted the design of the 

paper scaffolds to accommodate for the number of cells necessary for flow cytometry (~2x106 

cells). I then developed protocols to extract, and stain cells for viability and apoptosis. Future 

work will focus on incorporating additional stains to identify senescent cells and difference in the 

expression of efflux pumps. The resulting assay will consist of a paper-based culture capable of 
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correlating relative chemosensitivity to mechanisms that allow cells to escape cytotoxic 

molecules. 

 

5.2 Ongoing work 

5.2.1 Designing a paper-based culture for flow cytometry 

 To adapt the PBC outlined in Chapter 4 for flow cytometric analysis, I changed the 

design of both the paper scaffolds and the holders (Fig. 5.1). Changes to the paper were made to 

accommodate the large number of cells needed to accurately measure population distributions by 

flow cytometry. In the assay described in Chapter 4, the nine-zone scaffolds contained 4.2x105 

cells. While literature does not define the minimum number of cells needed to accurately assess 

population distributions by flow cytometry, protocols provided by flow cytometry facilities often 

recommend analyzing at least 5x104 cells and starting assays with ~2x106 cells to account for 

losses during sample preparation/staining. Using these recommendations, I augmented the paper 

scaffolds to hold 2x106 cells at the same cell density used in Chapter 4 (168,000 cells/µL). To 

achieve this cell number, I adjusted the diameter of the paper and removed the wax patterns. 

These changes allowed me to access more volume of the paper scaffolds, greatly increasing the 

number of cells a single scaffold can hold. It is worth noting two observations: the diameter of 

the paper scaffold can be changed with respect to cell density to ensure that 2x106 cells are 

always seeded per scaffold; and wax patterns will disintegrate into particulate during post-

incubation extraction and staining, which is why no new wax patterns were developed for assays 

described in this chapter. 

  Changes to paper design also required changes to the holder. For these experiments, I 

adopted fabrication techniques outlined in Chapter 3 and used laser-cut, biocompatible acrylic 
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holders. The opening on the top acrylic holder is readily modified to match the diameter of the 

paper scaffolds used for a particular assay. Relative to the metal holders depicted in Chapter 1, 2, 

and 4, fabrication of the acrylic holders is straightforward, as it does not require equipment or 

expertise necessary for machining stainless steel.  

 

5.2.2 Extracting cells from a paper-based culture 

 Flow cytometric analysis of PBCs requires the cells to be extracted from their paper 

scaffolds. To recover the cells from their Matrigel environment, I used a proprietary solution 

specifically developed to depolymerize Matrigel (Cell Recovery Solution, Corning). Cells were 

recovered by incubating the scaffolds in the recovery solution for 4 h at 4 ºC with intermittent 

agitation. After the extraction, cells were centrifuged, washed, and prepared for staining. The 

conditions for staining were recommended by the manufacturer and provided a recovery rate of 

84% of the cells. 

To ensure cell viability was not affected by the extraction process, HCT-116 cells were 

incubated in either static medium or in the recovery solution with increasing amounts of 

agitation. Viability was determined by staining with a positive marker for live cells (fluorescein 

diacetate, FDA) and a positive marker for dead cells (7-aminoactinomycin D, 7-AAD). By using 

a two-dimensional analysis for viability, separation between the two populations becomes more 

pronounced and easier to identify. From the flow cytometric analysis of the live and dead cells, 

three populations were seen: cells positively stained for 7-AAD, cells positively stained for FDA, 

and cells negatively stained for both dyes. (Fig 5.2) The percent of unstained cells increased with 

agitation in recovery solution, suggesting that the recovery solution affected the metabolism of 

FDA. While it is not clear what inhibited this reaction, these results show that FDA should not be 
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used to positively identify viable cells post extraction. Comparing the distribution of positively 

stained 7-AAD cells across all replicates showed there is no significant increase in dead cell 

populations during the extraction (Fig 5.3). These findings indicate that the extraction does not 

cause cell death. 

 

5.2.3 Discerning between live, dead, and apoptotic cells  

 Identification of viable cell populations was performed using two fluorescent stains: an 

amine reactive dye (Zombie Green™, BioLegend), and annexin V labeled with pacific blue 

(ThermoFisher). As described in Chapter 1, amine reactive dyes covalently bond to free amines 

on proteins; dead/dying cells with compromised membranes allow the dye to access intracellular 

proteins, greatly increasing staining relative to viable cells.31 By incorporating annexin V into the 

staining regime, cells experiencing early-stage apoptosis with intact membranes can also be 

discerned from viable cells.32 It is important to note that amine reactive dyes are compatible with 

cellular fixation and permeabilization; however, the staining regime proposed in this chapter will 

not require fixation or permeabilization. 

 After optimizing dye concentration via titrations, these dyes were used to assess relative 

chemosensitivity of colon carcinoma cells (HCT-116) in the PBCs described in section 5.2.1. For 

this work, the PBCs were assembled by stacking 9 cell-laden paper scaffolds and incubating the 

assembly for 24 h. After the initial incubation, the PBCs were dosed for 24 h with either a 

vehicle control or the active metabolite of a chemotherapeutic agent (14 nM SN-38). The 

assemblies were then taken apart, and the cells were extracted and stained.  

Cytograms represent at least 5x104 cells per analysis (Fig. 5.4), and data extracted from 

three different analyses were averaged together to compare chemoresistances across scaffolds 



110 
 

(Fig. 5.5). From these preliminary data, it becomes apparent that cells at the top of the stack—

close to the nutrient and drug source—are sensitive to SN-38, while cells in the nutrient-poor 

region exhibit increased chemoresistance. While these results were similar to those seen in 

Chapter 4, flow cytometry was able to confirm the presence of viable cell populations in 

scaffolds furthest from the nutrient source.  

 

5.3 Future work 

5.3.1 Identifying senescent cell populations 

 Accumulation of DNA damage from chemotherapeutics can induce response pathways 

within cancer cells that lead to apoptosis or permanent growth arrest (i.e., senescence).16 Cells 

that undergo senescence exhibit unique phenotypes which include increased cell size, 

granularity, β-galactosidase activity, and secretion of signaling molecules.16,33 While the 

induction of senescence can be seen as a means to suppress cancer, senescent cells exhibit 

increased chemoresistance and have been shown to promote tumor progression through the 

secretion of cytokines, growth factors, and proteases.33 Using the assays described in this 

chapter, stacked PBCs can be used to better understand how local environmental conditions 

correlate with the induction of cellular senescence. 

 The most common methods for identifying senescent cells via flow cytometry involves 

measuring the activity of β-galactosidase.28,34 These assays are similar to staining with FDA, in 

that a non-fluorescent galactopyranoside substrate is metabolized into a fluorescent product. The 

substrates can be labeled with fluorescein or resorufin to modulate their spectral properties, and 

can also be conjugated to a 12-carbon chain or thiol-reactive moiety to improve cell retention. 

For assays involving PBCs, I will use resorufin-labeled galactopyranoside, because it is 
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spectrally compatible with the viability dyes outlined in 5.2.3, and exhibits improved reaction 

kinetics relative to fluorescein-conjugated substrate.35 Additionally, the traditional 

galactopyranoside substrates do not require as much sample preparation relative to substrates 

modified with cell-retention moieties, as the modified substrates require hypotonic shock to load 

the dyes into the cell. 

 Important considerations when using this stain include optimizing the dye loading time 

and incorporating proper positive controls. The increased secretion of senescent cells promotes 

the efflux of fluorescent products from the cells,36 and will require optimization for determining 

the proper timing of dye loading and analysis. Verapamil, a calcium-channel blocker, can also be 

used during staining to decrease efflux.37 During flow cytometric analysis, positive controls will 

be necessary for determining population gating. Protocols have been developed using 

camptothecin to induce senescence in HCT-116 cells cultured in two-dimensional (2D);38 

however, it is unclear how β-galactosidase activity translates between 2D and three-dimensional 

(3D) cultures. Protocols for the induction of senescence in 3D cultures may be necessary for 

evaluating positive staining in the stacked PBCs. 

 

5.3.2 Evaluating efflux pumps 

 Hypoxia within cancer cells has been shown to activate multidrug resistant (MDR) genes, 

which increase the expression of ATP-binding cassette proteins (ABC)—efflux pumps with 

broad specificity.21 Increased expression of this transport protein allows cancer cells to expel a 

wide range of cytotoxic agents, and is associated with the development of a multi-drug resistant 

phenotype.39 These proteins are usually more abundant in cancers derived from healthy tissues 

that normally express ABCs, which includes epithelial colon cells.5 Overexpression of ABCG2, 
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a specific ABC, has been shown to impart SN-38 resistance to colon carcinomas, including 

HCT-116 cells.40 

 Flow cytometric analysis of efflux pumps can be done through two mechanisms: 

assessment of overall ABC activity through the efflux of fluorescent molecules, or 

immunostaining with fluorescently-labeled antibodies. A breadth of fluorogenic molecules have 

been evaluated to optimize assays studying efflux pump activity;41 however, these assays are 

time sensitive, and have poor resolution between cells expressing increased levels of ABCs 

relative to basal levels.42 Antibodies developed to recognize extracellular sequences of ABCs 

provide a more direct assessment of changes in efflux pump expression, albeit they do not 

indicate pump activity. A number of fluorescently-labeled commercial antibodies are available 

for ABCs, including ABCG2. Due to the availability and simplicity of antibody staining, changes 

in efflux pump expression will be evaluated in the PBC assay using antibodies recognizing 

ABCG2.  

 

5.4 Conclusions 

 The work outlined in this section details current and ongoing efforts to study differential 

cellular responses to chemotherapeutic dosing of cancer cells. By adapting PBCs for flow 

cytometric analysis, a comprehensive assay can be developed that is capable of identifying i) 

heterogenicity in cancer cell responses to therapeutics under different chemical environments, 

and ii) the cellular mechanisms—senescence induction and efflux pump expression—that cause 

these differences. While there are other mechanism that affect cellular responses to 

chemotherapeutics, this work will serve as a foundation for future assays investigating additional 

mechanisms for chemotherapeutic effectiveness.   
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5.5 Figures 

 

 

Figure 5.1 Schematic of new PBC design used for flow cytometric analysis. For this assembly, 

cells were seeded in the circular regions of the paper scaffolds, and assembled between two 

acrylic holders. The bottom acrylic holder was thread, and the entire enclosure was held together 

with screws. (scale bar = 10 mm) 
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Figure 5.2 Representative cytograms showing the viability of HCT-116 cells incubated in (A) 

static medium, (B) static cell recovery solution, and (C) vortexed cell recovery solution. Cells 

were incubated for 4 h, then stained with FDA and 7-AAD to determine viability. 
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Figure 5.3 The distribution of live, dead, and unstained cells were compared between HCT-116 

cells incubated in static medium (Control), cell recovery solution (Rec. Soln.), and vortexed cell 

recovery solution (Rec., vortex). Cells positively stained for FDA were considered alive, cells 

positively stained for 7-AAD were considered dead, and double negative stains were considered 

unstained. Using a two-way ANOVA test with Tukey correction for multiple comparisons, no 

significant differences were measured amongst the dead stains. (n = 3, error bars = standard 

deviation) 

 

  



116 
 

 

 
 

Figure 5.4 Representative cytograms of cell populations extracted from PBCs incubated in either 

a vehicle control (A-C) or cytotoxic molecule (14 nM SN-38, D-F). Cytograms were taken from 

scaffolds 1 (A,D), 5 (B,E), and 9 (C,F). Cells in the bottom-left corner were double negatively 

stained and considered viable. Cells in top-left corner were positively stained for Annexin V and 

negatively stained with the amine reactive dye; cells in this quadrant were considered apoptotic. 

Cells in the top- and bottom-right quadrants were positively stained for the amine-reactive dye 

and were considered dead. 
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Figure 5.5 Comparison of relative chemosensitivity between stacked PBCs. Live, apoptotic, and 

dead cell populations were measured via flow cytometry and compared between PBCs incubated 

in the presence of a (A) vehicle or (B) cytotoxic molecule (14 nM SN-38). Changes in (C) Live 

and (D) dead cell populations were compared between the normal and dosed cultures to evaluate 

difference in response relative to placement within the stack. (* = p < 0.05, n = 3, error bars = 

standard deviation)  
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APPENDIX A: SUPPLEMENTAL INFORMATION FOR CHAPTER 2 

 

 

Figure A2.1 A schematic of paper-based scaffolds used in the oxygen sensing experiments. a) 

Each channel of the channel scaffolds was filled with Matrigel prior to culture assembly. b) Cells 

suspended in Matrigel were seeded in each rectangular zone of the imprint scaffold. These 

rectangular zones allowed us to reproducibly seed cells. The two 2.0 mm holes were used to 

assist in culture assembly. Designs were prepared in Abode Illustrator. Unless otherwise stated, 

all units are in millimeters. 
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Figure A2.2 A schematic of the cellulose acetate sheet design used in the oxygen sensing 

experiments. The three 3.0 x 2.5 mm openings allow for exchange between fresh culture medium 

and the cell-containing paper scaffold. The two 2.0 mm openings are used to assist in assembly. 

Designs were prepared in Abode Illustrator. Unless otherwise stated, all units are in millimeters. 
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Figure A2.3 Schematic of the experimental setup and components used for cytotoxicity 

experiments. a) The experimental setup for measuring cytotoxicity. A (1) cellulose acetate sheet 

with openings to allow for free exchange between medium and seeded cells was placed on top of 

a (2) paper-based scaffold, which had cells seeded along 5 circular zones and cell-free Matrigel 

in the reaming zones. A (3) glass support was placed at the bottom of the stack, and was either a 

coverslip, a coverslip with a polystyrene thin film, of an oxygen sensor. The entire stack was 

then enclosed in a (4) custom stainless-steel holder. Scale bar = 9 mm. b) Schematic of the 

scaffolds used for cytotoxicity measurements. Five of the nine zones were seeded with cell-

suspended Matrigel and the remaining four were filled with Matrigel. c) Schematic of the 

cellulose acetate sheet used for the cytotoxicity assay. The sheets had five 3 mm circular 

openings, which overlapped with regions in the paper-based scaffold where cells were seeded. d) 

Schematic of the holders used to enclose the paper-based cultures for cytotoxicity measurements. 

The holder’s (1) top and (2) bottom halves interlock through a flange along the top half, and the 

nine 3.0 mm circular holes allow for medium to reach the paper scaffolds while assembled. 

Holders were held together with four 2-56 x ¼” screws, and the two 1.8 mm holes were used to 

assist in assembly. Designs were prepared in Abode Illustrator. Unless otherwise stated, all units 

are in millimeters.  
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Figure A2.4. Schematic of the stainless-steel holders used to enclose the paper-based cultures. 

The holder’s (a) top and (b) bottom halves interlock through a flange along the top half, and the 

three 12 x 3.3 mm openings present on each half allowed for visualization of the channels in the 

paper-based scaffolds when the holder is assembled. Holders were secured with a four 2-56 x ¼” 

screws, and the two 1.8 mm holes were used to assist in assembly. Designs were prepared in 

Abode Illustrator. Unless otherwise stated, all units are in millimeters.  
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APPENDIX B: SUPPLEMENTAL INFORMATION FOR CHAPTER 3 

 

 

Figure B3.1. Equilibration times for generating stable oxygen gradients in the BLOCCs. Oxygen 

gradients were generated by flowing (a) 20% or (b) 5% O2 gas mixtures through one channel of 

the left fluidic channel and a 0% O2 gas mixture through the right channel. Emission intensities 

represent plot profiles parallel to the oxygen gradients as imaged directly from the oxygen 

sensing films, and were normalized to the initial reading at ambient conditions. Both gas 

mixtures reached equilibrium within 60 min.  
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Figure B3.2 BLOCCs incubated with under an oxygen gradient exhibit increased eGFP 

expression across all strata of the chip. The average center-point intensity values of eGFP were 

compared between BLOCCs incubated with an oxygen gradient or under ambient oxygen 

conditions. All strata in the BLOCCs experiencing an oxygen gradient had significantly higher 

eGFP intensity, which corresponds to an increase in hypoxia response. (error bars = standard 

deviation, **** = p < 0.0001)  

 

 

  



127 
 

APPENDIX C: SUPPLEMENTAL INFORMATION FOR CHAPTER 4 

 

Figure C4.1 a) Schematic of single-zone scaffolds, prepared using previously described 

protocols.1 Each circular scaffold is 6 mm in diameter with a 2.5 mm diameter zone for seeding 

cells. The grey color corresponds to the wax-patterned region of the scaffold. b) Photograph of 

the single-zone scaffold (white outline) being placed into the well of a 96-well plate. 
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Figure C4.2 Calibration curve relating mCHR fluorescence intensity to number of the number of 

HCT116 mCHR cells in a zone of a paper-based scaffold, imaged with a Typhoon 9400 scanner. 

These measurements utilized scaffolds patterned with the 9-zone format: five zones contained 

0.5 µL of cell-laden Matrigel with increasing densities of HCT 166 mCHR cells, the remaining 

four zones contained 0.5 µL of cell-free Matrigel. Each point on the curve represents the average 

and standard deviation of n = 5 zones.  
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Figure C4.3 Oxygen tensions at the bottom of stacked cultures containing 1, 4, 8, or 12 

scaffolds. These cultures were seeded at cell densities of either a) 84,000 cells/zone or b) 21,000 

cells/zone, and incubated for up to 168 h. The inset of a) is to better visualize differences in 

oxygen tension for cultures with 84,000 cell/zone. Each point represents the average and 

standard deviation of n = 5 measurements from the same experimental setup. 
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Figure C4.4 Measuring the penetration of fluorescein into stacked paper-based cultures (PBCs) 

using fluorescence microscopy. a) Experimental setup. A 12-stack PBC culture was assembled, 

100 µL of a 0.5 mg/mL fluorescein was added to the top of each culture, and images of the 

bottom collected with an inverted fluorescence microscope. b) Fluorescence intensity at the 

bottom over an 11 h incubation period at 37 oC. Images were collected in 1-minute increments. 

The constant fluorescence intensity after ~350 minutes indicates that an equilibrium in 

fluorescein had been reached.  
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Figure C4.5 Dose-response curves for SN-38 treatment of HCT116 mCHR cells in 2D and 3D 

cultures. Doses of SN-38 were administered at increasing concentrations to adherent (2D; 5,000 

cells/well) and Matrigel-suspended (3D; 20,000 cells/zone) HCT116 mCHR cells. The resulting 

IC50 values for 2D and 3D conditions were 0.006±0.001 and 0.014±0.006, respectively. Each 

point represents the average and standard error of the mean of n = 4 measurements. 
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Table C4.1: Statistical comparisons between mCHR fluorescence intensity of cultures seeded at 

84,000 cells/zone and dosed with different concentrations of SN-38.a 

 Vehicle vs. 1.4 µM vs. 

0.14 µM 

vs. 

Scaffoldb 1.4 µM 

0.14 

µM 

0.014 

µM 0.14 µM 0.014 µM 0.014 µM 

1 **** - - **** **** * 

2 **** **** **** ** *** - 

3 **** **** **** **** * - 

4 **** **** **** - - - 

5 **** ** ** - - - 

6 - - - - - - 

7 - - - - - - 

8 - - - - - - 

9 - - - - - - 

10 - - - - - - 

11 * - - - - - 

12 - - * - - - 

 

a The comparisons in this table correspond to the data presented in Figure 4.4a of the main text. 

(* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001) 

b Scaffold 1 was closest to the source of fresh medium, and scaffold 12 was the furthest from the 

source of fresh medium. 
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Table C4.2: Statistical comparisons between mCHR fluorescence intensity of cultures seeded at 

21,000 cells/zone and dosed with different concentrations of SN-38.a  

 Vehicle vs. 

1.4 µM 

vs. 

Scaffoldb 1.4 µM 

0.014 

µM 0.014 µM 

1 **** **** ** 

2 **** - **** 

3 **** - * 

4 **** - **** 

5 ** - **** 

6 * - **** 

7 - - * 

8 ** - * 

9 ** - ** 

10 - - - 

11 *** - **** 

12 - - - 

 

a The comparisons in this table correspond to the data presented in Figure 4.4b of the main text. 

(* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001) 

b Scaffold 1 was closest to the source of fresh medium, and scaffold 12 was the furthest from the 

source of fresh medium. 

 


