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Abstract

RACHEL LOUISE BAYLESS: Entropy of Transformations that Preserve an Infinite
Measure

(Under the direction of Jane Hawkins)

In this dissertation we study transformations that preserve an infinite measure, with

a focus on functions which preserve Lebesgue measure on the real line. More specifi-

cally, we investigate measure-theoretic properties of rational R-functions of negative

type. We prove all rational R-functions of negative type are conservative, exact,

ergodic, rationally ergodic, pointwise dual ergodic, and quasi-finite. We also explic-

itly construct the wandering rates and return sequences for all rational R-functions

of negative type. The primary topic of study, however, is entropy of transforma-

tions preserving an infinite measure. We provide a method of computing the Krengel

entropy for all rational R-functions of negative type. We also provide complete iso-

morphism invariants for c-isomorphisms between degree two rational R-functions of

negative type.
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CHAPTER 1

INTRODUCTION

In this dissertation we study the dynamics of transformations that preserve an

infinite measure. In particular, we investigate the measure-theoretic properties of

rational functions which preserve Lebesgue measure on the real line. While the liter-

ature on measure-theoretic properties of finite-measure-preserving transformations is

well elaborated, there is not always a clear analogue of these properties for infinite-

measure-preserving systems. In particular, entropy does not have a clear extension to

transformations that preserve an infinite measure. The entropy of a system measures

the amount of information gained with each application of an experiment or transfor-

mation. Higher entropy corresponds to more disorder and less predictable systems.

The classical Kolmogorov-Sinai definition of entropy relies heavily on the ability to

associate probabilities to possible events or outcomes. Thus, there is no universal

analogue of entropy for infinite-measure-preserving systems. Different possibilities

have been given independently by Krengel [Kre], Parry [Par], and Roy [Roy]. Two

of these definitions have been around since the late 1960’s, but there exist very few

examples where any of these entropies have been computed explicitly. In this disser-

tation we provide a method of computing the Krengel entropy for an entire class of

rational maps which preserve Lebesgue measure on the real line. Furthermore, we

prove that these transformations are quasi-finite, so the three definitions of Krengel,

Parry, and Roy coincide.

The transformations of interest in this thesis are a negative variant of R-functions.

An R-function is an analytic map on the upper-half plane, R2+ = {x + iy : y > 0},

that leaves R2+ invariant. R-functions have been studied in harmonic analysis under



various names including Herglotz functions or Nevanlinna functions. The name R-

function, however, dates back to Kac and Krein [KK]. No single source provides a

complete history of R-functions, so in Chapter 3 we give a detailed description of

the context in which such functions arise. This work is primarily concerned with

dynamics of one-dimensional maps, so we impose an extra condition on R-functions.

Given an R-function, f , we require that for Lebesgue almost every x ∈ R, we have

limy→0 f(x+ iy) = F (x), where F : R→ R is a measurable map. Such maps F which

are called the boundary functions associated to R-functions.

This dissertation provides an in depth study of the boundary functions associated

to rational R-functions of negative type. These are rational maps, T : R → R such

that T = −F , where F is the boundary function associated to an R-function to R.

In [Let] Letac proved that all rational R-functions (of both positive and negative

type) preserve Lebesgue measure. Furthermore, the measure-theoretic properties of

R-functions of positive type have been studied by Aaronson in [Aar2].

In Chapter 2 we give a brief introduction to classical measure-theoretic dynamical

properties such as conservativity, ergodicity, and exactness. We also detail some

nonstandard properties which arise only when considering infinite-measure-preserving

systems. These properties are rational ergodicity and pointwise dual ergodicity. In

Chapter 3 we give an overview of Aaronson’s results on R-functions of positive type

to provide context for our work on the negative case.

In Chapter 4 we prove that all rational R-functions of negative type are conser-

vative, exact, and ergodic with respect to Lebesgue measure. We further prove that

all rational R-functions of negative type are rationally ergodic and pointwise dual er-

godic. These results are less restrictive than the aforementioned results of Aaronson

for R-functions of positive type.

In Chapter 5 we provide a method of computing the Krengel entropy for all ratio-

nal R-functions of negative type. The method is modeled after Rohlin’s formula for

entropy of expanding interval maps preserving an absolutely continuous probability

2



measure. Furthermore, in Chapter 4 we show that all rational R-functions of negative

type are quasi-finite, which implies that the three definitions of entropy coincide.

The usefulness of entropy in ergodic theory arises from the fact that it is an

isomorphism invariant. That is, if two probability-preserving transformations are iso-

morphic, then they have the same entropy. For infinite-measure-preserving systems,

however, there exist less restrictive isomorphisms called c-isomorphisms. In fact, if

two infinite-measure-preserving transformations are c-isomorphic where c 6= 1, then

they do not necessarily have the same Krengel entropy. In Chapter 6 we provide

complete invariants (involving entropy) for c-isomorphisms between quadratic ratio-

nal R-functions of negative type. We also give preliminary results on 1-isomorphism

invariants for cubic rational R-functions of negative type.

Finally, in Chapter 7 we discuss open problems and possible future directions. In

particular, we lay the framework for proving that R-functions of negative type (which

are not necessarily rational) are exact.

3



CHAPTER 2

BACKGROUND

2.1. Preliminary Definitions

We begin with a few basic definitions of classical properties in ergodic theory. We

use (X,B,m) to denote a measure space X together with a σ-algebra of measurable

sets, B, for a measure, m. We assume throughout that the measure m is σ-finite.

We use (X,B,m, T ) to denote a σ-finite measure space (X,B,m) together with a

transformation T : X → X such that T−1B ⊆ B. In this dissertation we consider

only nonsingular systems (X,B,m, T ). That is, given A ∈ B, we have m(T−1A) = 0

if and only if m(A) = 0. In fact, we are primarily interested in measure-preserving

transformations (defined below) which is stronger than nonsingular.

Definition 2.1.1. A measurable function T : (X,B,m) → (X,B,m) is called

measure-preserving if m(T−1A) = m(A) for all A ∈ B.

We study the dynamical properties of measure-preserving transformations. In

particular, we focus on transformations which preserve an infinite measure. That

is, we consider measure-preserving systems (X,B,m, T ) such that m(X) = ∞. We

call such systems infinite-measure-preserving. A few of the most commonly studied

measure-theoretic properties are defined below.

Definition 2.1.2. A nonsingular system (X,B,m, T ) is ergodic if for every A ∈ B

such that T−1A = A we have m(A) = 0 or m(Ac) = 0.



In other words, T is ergodic if the only invariant sets are trivial or the entire

space. The next property also involves the preimages of sets and is closely related to

ergodicity.

Definition 2.1.3. A nonsingular system (X,B,m, T ) is exact if

(2.1.1) ∩n>0T
−nB = {∅, X} mod m.

Equivalently, a nonsingular system (X,B,m, T ) is exact if A ∈ B such that

(2.1.2) T−n(T n(A)) = A for all n > 0,

implies m(A) = 0 or m(Ac) = 0.

The following classical result can be found in [Roh2], and is given here for com-

pleteness.

Lemma 2.1.4. Let T be a nonsingular transformation of (X,B,m). If T is exact,

then T is ergodic.

In general the converse of Lemma 2.1.4 does not hold. For example, if T is

invertible, then T is not exact. Furthermore, Eigen and Hawkins have constructed

noninvertible shift maps which are ergodic but not exact (see [EH]).

Another classical property of interest is related to the recurrence of points to

positive measure sets.

Definition 2.1.5. A set A ∈ B is called wandering for the nonsingular system

(X,B,m, T ) if the sets {T−iA}∞i=0 are pairwise disjoint.

Definition 2.1.6. A nonsingular system (X,B,m, T ) is called conservative if

there does not exist a wandering set of positive measure.

We note that a measure-preserving system (X,B,m, T ) such that m(X) < ∞ is

automatically conservative. We give an intuitive argument for the proof. If m(A) > 0

5



and m(T−1A) = m(A), then A only has so much room to “wander” throughout a

finite space X. On the other hand, if m(X) = ∞, then conservativity of T is not

automatic, because the inverse images of A won’t necessarily fill the entire infinite

space. Conservativity is, however, tied to the existence of measurable sets which do

sweep out the entire space X.

Definition 2.1.7. Let (X,B,m, T ) be a nonsingular system. A set A ∈ B is

called a sweep-out set for T if

(2.1.3)
∞⋃
n=0

T−nA = X mod m.

Equivalently, A is a sweep-out set if for almost every x ∈ X there exists an nx such

that T nx(x) ∈ A.

The following theorem relates the existence of sweep-out sets to conservativity of

measure-preserving transformations.

Theorem 2.1.8 (Maharam’s Recurrence Theorem, [Mah]). Suppose (X,B,m, T )

is a measure-preserving system. If there exists a sweep-out set A ∈ B with m(A) <∞,

then T is conservative.

Finally, we introduce the notion of an isomorphism between measure-preserving

transformations.

Definition 2.1.9 (Isomorphic). Let (X1,B1,m1, T1) and (X2,B2,m2, T2) be two

measure-preserving systems. Suppose we have two sets M1 ∈ B1 and M2 ∈ B2 with

m1(X1 \M1) = 0 and m2(X2 \M2) = 0 such that T1(M1) ⊆ M1 and T2(M2) ⊆ M2.

We say (X1,B1,m1, T1) is isomorphic to (X2,B2,m2, T2) (or T1 is isomorphic to T2)

if there exists an invertible map φ : M1 →M2 such that for all A ∈ B2|M2 ,

(1) φ−1(A) ∈ B1|M1 ,

(2) m1(φ−1(A)) = m2(A), and

6



(3) (φ ◦ T1)(x) = (T2 ◦ φ)(x) for all x ∈M1.

We will denote this situation by φ : T1 → T2, and φ is called an isomorphism.

It is clear that measure-theoretic properties such as conservativity, exactness, and

ergodicity are invariant under isomorphism.

2.2. The Induced Transformation and Return-Time Sets

As stated above, we are primarily interested in studying measure-theoretic prop-

erties of transformations preserving an infinite measure. One technique that will be

used throughout the following sections is inducing on a set of finite measure. The

induced transformation provides a way to study the dynamics of transformations that

preserve an infinite measure by looking only at a finite piece of the space.

Let (X,B,m, T ) be a nonsingular system. Given A ∈ B let Ã ⊆ A be the set

defined by Ã =
⋂∞
n=1

⋃∞
i=n T

−iA. That is, Ã is the set of points in X which “hit” A

infinitely often under iteration of T . For x ∈ Ã define φA(x) = min{n : T n(x) ∈ A}.

That is, φA(x) is the first-hitting-time of x to A. If x ∈ A, then φA(x) is often referred

to as the first-return-time of x to A. The induced transformation, TA : A → A, is

defined by

TA(x) = T φA(x)(x) for x ∈ Ã

TA(x) = x for x /∈ Ã.

We note that if T is a conservative transformation and A is a sweep-out set for

T , then by Definition 2.1.7 we have A = Ã. Letting B|A = {B ∩ A : B ∈ B} and

m|A(B) = m(A ∩B), we have the following classical result.

Theorem 2.2.1. Suppose (X,B,m, T ) is a measure-preserving system. If A is a

sweep-out set for T , then TA is a measure-preserving transformation of (A,B|A,m|A).

7



If (X,B,m, T ) is an infinite-measure-preserving system and A is a sweep-out

set with m(A) < ∞, then inducing on A yields a finite-measure-preserving sys-

tem (A,B|A,m|A, TA). We can often deduce information about the original infinite-

measure-preserving system, (X,B,m, T ), from the dynamics of the finite-measure-

preserving system (A,B|A,m|A, TA). For example, we have the following classical

theorem which can be found in [AW].

Theorem 2.2.2. If (A,B|A,m|A, TA) is ergodic, then (X,B,m, T ) is also ergodic.

In subsequent sections we will discuss similar results for studying the behavior

of (X,B,m, T ) via (A,B|A,m|A, TA). Thus, it is important to know when sweep-

out sets exist for infinite-measure-preserving systems. The following theorem says

that if (X,B,m, T ) is conservative and ergodic, then every positive-measure set is a

sweep-out set.

Theorem 2.2.3. Let (X,B,m, T ) be an infinite-measure-preserving system. If T

is conservative and ergodic, then every A ∈ B such that m(A) > 0 is a sweep-out set

for T .

Proof. Let A ∈ B such that m(A) > 0. Set

(2.2.1) CA = {x ∈ X :
∞∑
n=1

(1A ◦ T n)(x) =∞}.

We have that CA is invariant for T . Therefore, by ergodicity, m(CA) = 0 or m(Cc
A) =

0. However, by conservativity of T , we have that A ⊆ CA, so CA = X mod m. That

is, almost every x ∈ X hits A infinitely often under iteration of T , so A is a sweep-out

set. �

For the rest of this section, we assume (X,B,m, T ) is a conservative, ergodic,

measure-preserving system, and A ∈ B with 0 < m(A) <∞ is a sweep-out set for T .

We develop some notation to describe precise hitting-times to A.

8



Let A denote the first-return partition of A. That is, A = {Ak}, where

(2.2.2) Ak = {x ∈ A : φA(x) = k} = A ∩ T−kA \
k−1⋃
j=1

T−jA.

Let B = {Bk} be a similar partition of Ac. That is,

(2.2.3) Bk = {x ∈ Ac : φA(x) = k} = Ac ∩ T−kA \
k−1⋃
j=1

T−jA = T−kA \
k−1⋃
j=0

T−jA.

It is useful to view the action of T on the sets Ak and Bk as a two-story tower (see

Figure 2.1).

B1 B2 B3
...

A1 A2 A3 A4
...

A

Ac

A

Figure 2.1. How the atoms of A and B move under T .

We now further develop the notation and make a few observations that will be

helpful in subsequent sections. We define another collection of sets {Dn}n≥0 by setting

(2.2.4) D0 = A and Dn = {x ∈ A : φA(x) > n} for n ≥ 1.

We note that Dn = ∪∞k=n+1Ak and the {Dn}n≥0 are nested such that Dn+1 ⊂ Dn.

Furthermore, we can relate Dn and Bn via the following result.

Lemma 2.2.4. Let (X,B,m, T ) be a conservative, ergodic, measure-preserving sys-

tem. Given the sets {Dn}n≥0 and {Bn}n≥1 defined as above we have

(2.2.5) m(Dn) = m(Bn) for all n ≥ 1.

9



Proof. By the definition of {An} and {Dn} we have

(2.2.6) m(A) = m

(
n⋃
k=1

Ak

)
+m

(
∞⋃

k=n+1

Ak

)
=

n∑
k=1

m(Ak) +m(Dn).

We also have

(2.2.7) T−1A = (T−1A ∩ A) ∪ (T−1A \ A) = A1 ∪B1.

Therefore,

(2.2.8)

T−2A = T−1A1 ∪ T−1B1 = T−1A1 ∪ (T−1B1 ∩A) ∪ (T−1B1 \A) = T−1A1 ∪A2 ∪B2.

Thus, repeated application of (2.2.7) yields

(2.2.9) T−nA = T−(n−1)A1 ∪ T−(n−2)A2 ∪ ... ∪ T−1An−1 ∪ An ∪Bn,

which is a disjoint union. By assumption m is an invariant measure for T , so

m(T−nA) = m

((
n⋃
k=1

T−(n−k)Ak

)
∪Bn

)

=
n∑
k=1

m(T−(n−k)Ak) +m(Bn)

=
n∑
k=1

m(Ak) +m(Bn)

=
n∑
k=1

m(Ak) +m(Dn)

= m(A),

where the last two lines come from the definition of Dn and the observation in (2.2.6).

�

The following lemma gives a way to construct an invariant measure for T from an

invariant measure for the induced transformation. It will be important in our study

10



of entropy in Chapter 5. The statement can be found in [Yur], however no proof is

given there.

Lemma 2.2.5. Let (X,B,m, T ) be a nonsingular system. Let A ∈ B with 0 <

m(A) < ∞ be a sweep-out set, and suppose νA << m|A is a TA-invariant measure.

Then the following formula gives a T -invariant measure µνA << m:

(2.2.10) µνA(E) =
∞∑
k=0

νA(Dk ∩ T−kE), for all E ∈ B.

Proof. Given E ∈ B, we have

µνA(E) =
∞∑
k=0

νA(Dk ∪ T−kE) =
∞∑
k=0

∫
Dk

1(T−kE)dνA.

Therefore,

µνA(T−1E) =
∞∑
k=0

νA(Dk ∩ T−(k+1)E) =
∞∑
k=0

∫
Dk

1(T−(k+1)E)dνA

=
∞∑
k=1

∞∑
j=k

∫
Aj

1(T−kE)dνA

=
∞∑
k=1

∫
Ak

1(T−kE)dνA +
∞∑
k=2

∞∑
j=k

∫
Aj

1(T−kE)dνA

= νA(T−1
A (A ∩ E)) +

∞∑
k=1

∫
Dk

1(T−kE)dνA.(2.2.11)

The measure νA is invariant for TA, so we have νA(T−1
A (A ∩E)) = νA(A ∩E). Thus,

(2.2.11) becomes

(2.2.12) νA(A ∩ E) +
∞∑
k=1

∫
Dk

1(T−kE)dνA =
∞∑
k=0

∫
Dk

1(T−kE)dνA = µνA(E).

�

The following lemma says, if the TA-invariant measure νA = µ|A and A is a sweep-

out set, then the T -invariant measure obtained from Lemma 2.2.5 is precisely µ. The

statement and proof can be found in both [Aar4] and [Yur].
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Lemma 2.2.6. If A is a sweep-out set, and µ|A is TA invariant, then µµ|A = µ.

Proof. Given n ≥ 0 and E ∈ B, we have

(2.2.13) µ(E) = µ|A(A ∩ E) +
n∑
k=1

µ|A(Dk ∩ T−kE) + µ

((
n⋃
k=0

T−kA

)c

∩ T−nE

)
.

Since A is a sweep-out set we know limn→∞ µ
((⋃n

k=0 T
−kA

)c)
= 0, so

(2.2.14) µ(E) = µ|A(A ∩ E) +
∞∑
k=1

µ|A(Dk ∩ T−kE) = µµ|A(E).

�

2.3. The Perron-Frobenius Operator

In this section we develop a few more tools for studying the behavior of dynamical

systems which will be used in subsequent sections. We say a nonsingular system

(X,B,m, T ) is n-to-1 if for almost every x ∈ X, the set T−1(x) contains precisely n

distinct points. Given a nonsingular, n-to-1 system (X,B,m, T ), we call a partition

P = {Pi}ni=1 of X a Rohlin partition for T if T : Pi → X is one-to-one and onto for

each i = 1, ..., n (see [Roh1]). Furthermore, we denote each branch T |Pi by Ti.

Definition 2.3.1. Let (X,B,m, T ) be a nonsingular n-to-1 system, and let P =

{Pi}ni=1 be a Rohlin partition of X. We define the Jacobian of T by

(2.3.1) JT (x) =
n∑
i=1

1Pi(x)
dmTi
dm

(x).

We note that if X = R, m is Lebesgue measure, and T is piecewise C1, then

JT (x) = |T ′(x)|.

Definition 2.3.2. Given a nonsingular n-to-1 system (X,B,m, T ) and f ∈ L1(m),

we define the Perron-Frobenius operator by

(2.3.2) LTf(x) =
∑

y∈T−1(x)

f(y)

JT (y)
.
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Given a nonsingular n-to-1 system (X,B,m, T ) and a Rohlin partition P =

{Pi}ni=1 we let ψi denote the inverse of T restricted to Pi. Therefore, ψi = T−1
i :

X → Pi is a one-to-one and onto mapping. We can rewrite (2.3.2) as LTf(x) =∑n
i=1

f(ψi(x))
JT (ψi(x))

. We note that T (T−1(x)) = x for all x ∈ X, so T (ψi(x)) = x for all

i = 1, .., n and x ∈ X. Taking the Jacobian of both sides yields JT (ψi(x)) ·Jψi(x) = 1.

Therefore, Jψi(x) = 1
JT (ψi(x))

. Therefore, for f ∈ L1(m) equation (2.3.2) can be

rewritten as

(2.3.3) LTf(x) =
n∑
i=1

f(ψi(x)) · Jψi(x).

The following lemma relates the Perron-Frobenius operator to the existence of an

invariant measure for T and can be found in [Haw].

Lemma 2.3.3. Given a nonsingular n-to-1 system (X,B,m, T ), a function f ∈

L1(m) satisfies LTf = f if and only if the measure ν defined by fdm = dν is invariant

for T .

Proof. Suppose f ∈ L1(m) such that LT (f) = f and ν is a measure on X

defined by fdm = dν. For A ∈ B we have

(2.3.4) ν(A) =

∫
X

1A(x)dν(x) =

∫
X

1A(x) ·f(x)dm(x) =

∫
X

1A(x) ·(LTf)(x)dm(x).

By the definition of LT in (2.3.3) we have that (2.3.4) is equal to

(2.3.5)

∫
X

1A(x) ·
n∑
i=1

f(ψi(x)) · Jψi(x)dm(x).

We let ψi(x) = y, so the above line becomes

(2.3.6)

∫
X

n∑
i=1

1ψiA(y) · f(y)dm(y) =

∫
X

1T−1Af(y)dm(y) = ν(T−1(A)).

The reverse direction is similar. �
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Another well-studied operator that is related to the Perron-Frobenius operator is

the Koopman operator.

Definition 2.3.4. Given f ∈ Lp(m), the Koopman operator is defined by

(2.3.7) UT (f)(x) = (f ◦ T )(x).

It is well known that UT : Lp(m) → Lp(m) is a linear isometry, but for our

purposes we will restrict to the case where p =∞. From functional analysis we have

that the dual of L1(m) is L∞(m). The dual pairing 〈·, ·〉 : L1(m) × L∞(m) → R

satisfies

(2.3.8) 〈f, g〉 =

∫
X

f(x) · g(x)dm(x), for (f, g) ∈ L1(m)× L∞(m).

Now letting (f, g) ∈ L1(m) × L∞(m) and considering the operators LT and UT ,

we have

(2.3.9) 〈LTf, g〉 =

∫
X

(LTf)(x) · g(x)dm(x) =

∫
X

n∑
i=1

f(ψi(x)) · Jψi(x) · g(x)dm(x).

We change variables setting y = ψi(x), and (2.3.9) becomes

(2.3.10)
n∑
i=1

∫
ψi(X)

f(y) · (g ◦ T )(y)dm(y) =

∫
X

f(y) · (g ◦ T )(y)dm(y) = 〈f, UTg〉.

Therefore, the Perron-Frobenius operator is dual to the Koopman operator, and LT

is often referred to as the dual operator (as in [Aar4]). We adopt this language in

the subsequent sections.

2.4. Rational Ergodicity and Pointwise Dual Ergodicity

We begin by stating the well-known Birkhoff Ergodic Theorem. A proof of this

result can be found in any introductory ergodic theory text (see for example [Wal]

or [Pet]).
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Theorem 2.4.1. Suppose (X,B,m, T ) is a system preserving a σ-finite measure,

and let f ∈ L1(m). Then

(2.4.1) lim
n→∞

1

n

n−1∑
i=0

f(T ix) = f ∗ almost everywhere,

where f ∗ ∈ L1(m). Furthermore, f ∗ ◦ T = f ∗ almost everywhere.

We are interested in studying “Birkhoff-like” properties for ergodic transforma-

tions preserving an infinite measure. Two such properties are called rational ergodici-

tiy and pointwise dual ergodicity. Both definitions are due to Aaronson and have been

studied in [Aar1], [Aar2], and [Aar4]. These are nonstandard notions, and no single

source gives their entire story (including motivation, definition, and relationship to

each other). Thus, we give a complete description here.

2.4.1. Rational Ergodicity. If (X,B,m, T ) is an ergodic finite-measure-preserving

system, then we have the following consequence of the Birkhoff ergodic theorem. If

A,B ∈ B, then

(2.4.2) lim
n→∞

1

n

n−1∑
k=0

m(B ∩ T−kA) =
m(A)m(B)

m(X)
.

On the other hand, if m(X) =∞, then (2.4.2) is not well defined. We are interested

in properties in the flavor of (2.4.2) that are satisfied by transformations preserving

an infinite measure.

Let A ∈ B with 0 < m(A) <∞, and let an(A) =
∑n−1

k=0 m(A ∩ T−kA). Let W (T )

denote the collection of sets, A ∈ B, satisfying

(2.4.3) lim
n→∞

1

an(A)

n−1∑
k=0

m(B ∩ T−kC) =
m(B)m(C)

m(A)2
,

for all B,C ∈ B ∩ A. We say that T is weakly rationally ergodic if T is ergodic and

W (T ) 6= ∅.

15



We now introduce a stronger condition than weak rational ergodicity. Let R(T )

denote the collection of sets for which

(2.4.4) sup
n≥1

∫
A

(
1

an(A)

n−1∑
k=1

1A ◦ T k
)2

dm <∞.

We say that T is rationally ergodic if T is ergodic and R(T ) 6= ∅. We will show

that rational ergodicity implies weak rational ergodicity. First, we must catalogue

the following well-known property of Hilbert spaces. A proof can be found in most

functional analysis text books (see for example [Wei]).

Theorem 2.4.2. Let H be a Hilbert space. Every bounded sequence (fn) in H

contains a weakly convergent subsequence (fnk).

Using Theorem 2.4.2 we prove the following lemma, which was originally stated

in [Aar1]. Recall from Section 2.2 that TA denotes the induced transformation and

φA(x) denotes the first-return-time of x to A.

Lemma 2.4.3. Let A ∈ R(T ) and ωn = (1/an(A))
∑n−1

k=0 1A ◦ T k. Then, there

exists a subsequence such that ωnk → ω weakly in L2(A) and ω ◦ TA = ω.

Proof. Let A ∈ R(T ) and ωn = (1/an(A))
∑n−1

k=0 1A ◦ T k be as above. Then,

by (2.4.4) for all n ≥ 1 we have ωn ∈ L2(A) and there exists an M such that

||ωn||2 ≤ M . Thus, by Theorem 2.4.2 there exists a subsequence of ωnk of ωn such

that ωnk → ω weakly in L2(A). We abuse notation and write ωn → ω after passing

to the subsequence if necessary. Now, for x ∈ A we have
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(ωn ◦ TA)(x) =
1

an(A)

n−1∑
k=0

1A(T k(TA(x)))

=
1

an(A)

n−1∑
k=0

1A(T k+φA(x)(x))

=
1

an(A)

n−1+φA(x)∑
k=φA(x)

1A(T k(x))

=
1

an(A)

n−1+φA(x)∑
k=0

1A(T k(x))−
φA(x)−1∑
k=1

1A(T k(x))− 1A(x)


The middle term

∑φA(x)−1
k=1 1A(T k(x)) = 0 since T k /∈ A for all 1 ≤ k ≤ φA(x) − 1.

Also, x ∈ A, so 1A(x) = 1. Thus, we have,

(ωn ◦ TA)(x) = ωn+φA(x)(x)− 1

an(A)
.

Taking the limit of both sides we see that ω ◦ TA = ω almost everywhere. �

Before proving that rational ergodicity is indeed stronger than weak rational er-

godicity we make one final note about each ωn. We have

∫
A

ωndm =
1

an(A)

∫
A

n−1∑
k=0

1A ◦ T k

=
1

an(A)

n−1∑
k=0

m(A ∩ T−kA) = 1.

Thus, we have that
∫
A
ωndm = 1 ∀n.

Theorem 2.4.4. If an ergodic measure-preserving system, (X,B,m, T ), is ratio-

nally ergodic, then it is weakly rationally ergodic.

Proof. We will show that R(T ) ⊆ W (T ). Let A ∈ R(T ), and let ωn =

(1/an(A))
∑n−1

k=0 1A ◦ T k. By Lemma 2.4.3 we have ω ◦ TA = ω, and the ergodicity of

TA implies that ω is constant a.e. We also know that
∫
A
ωndm = 1 ∀n, so

∫
A
ωdm = 1.
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Thus, we have that ω = 1/m(A) almost everywhere. Further, if B ∈ B ∩ A, then∫
B
ωn →

∫
B
ω. Integrating we see that

(2.4.5)
1

an(A)

n−1∑
k=0

m(B ∩ T−kA)→ m(B)

m(A)
for all B ∈ B ∩ A.

The same argument applies to T−1 since T is measure-preserving, so

(2.4.6)
1

an(A)

n−1∑
k=0

m(A ∩ T−kB)→ m(B)

m(A)
for all B ∈ B ∩ A.

Now choose any C ∈ B ∩ A and let σn = (1/an(A))
∑n−1

k=0 1C ◦ T k, then ||σn||2 ≤ M ,

for n ≥ 1. An argument similar to that in the proof of Lemma 2.4.3 shows that∫
A
σn →

∫
A
σ, and σ is constant almost everywhere. Integrating σn over A we obtain

∫
A

σndm =
1

an(A)

∫
A

n−1∑
k=0

1C ◦ T kdm

=
1

an(A)

n−1∑
k=0

m(T−kC ∩ A).

Thus, by (2.4.6) we have
∫
A
σndm→ m(C)

m(A)
, so

(2.4.7) σn →
m(C)

m(A)2
.

In particular, integrating both sides of (2.4.7) over B ∈ B ∩ A yields

(2.4.8)
1

an(A)

n−1∑
k=0

m(B ∩ T−kC)→ m(B)m(C)

m(A)2
.

�

In [Aar1] Aaronson commented that there is no known weakly rationally ergodic

transformation which is not rationally ergodic. To our knowledge the question of

whether rational ergodicity is strictly stronger than weak rational ergodicity remains

an open problem.
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2.4.2. Pointwise Dual Ergodicity. Now, we turn our attention to another prop-

erty of ergodic transformations preserving an infinite measure. We have the following

consequence of the Birkhoff ergodic theorem (Theorem 2.4.1). If T is ergodic and

m(X) <∞, then

(2.4.9) lim
n→∞

1

n

n−1∑
i=0

f(T ix) =
1

m(X)

∫
fdm,

almost everywhere for all f ∈ L1(m). Again, (2.4.9) holds only if m(X) <∞. We are

interested in a property in the flavor of (2.4.9) that is well defined when m(X) =∞.

We now state the definition of a pointwise dual ergodic transformation, which is a

system preserving a σ-finite measure that has a “Birkhoff-like” property.

Definition 2.4.5. A conservative, ergodic, infinite-measure-preserving system

(X,B,m, T ) is called pointwise dual ergodic if there are constants an(T ) such that

lim
n→∞

1

an(T )

n−1∑
k=0

LkTf(x) =

∫
X

fdm,

almost everywhere for all f ∈ L1(m).

Aaronson proved the following theorem which shows pointwise dual ergodicity is

stronger than rational ergodicity.

Theorem 2.4.6 ([Aar4]). Let (X,B,m, T ) be a conservative ergodic measure-

preserving system. If T is pointwise dual ergodic, then T is rationally ergodic.

In order to study infinite-measure-preserving transformations, we often study the

transformation on a finite piece of the space. Thus, in infinite ergodic theory we are

often interested in the existence of particularly nice sets called Darling-Kac sets.

Definition 2.4.7. Let (X,B,m, T ) be a conservative, ergodic, measure-preserving

system. A set A ∈ B with 0 < m(A) < ∞ is called a Darling-Kac set for T if there
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exist constants an(A) > 0 such that

(2.4.10)
1

an(A)

n−1∑
k=0

LkT1A → 1 uniformly for almost every x ∈ A.

We will draw a connection between Darling-Kac sets and pointwise dual ergodic

transformations (and therefore an(A) and an(T )) via Hurewicz’s ergodic theorem. For

completeness, we state Hurewicz’s ergodic theorem here.

Theorem 2.4.8 (Hurewicz’s Ergodic Theorem, [Hur]). Suppose that (X,B,m, T )

is a conservative, ergodic, nonsingular system. Then, for all f, g ∈ L1(m) we have

(2.4.11) lim
n→∞

∑n
k=1 LkTf(x)∑n
k=1 LkTg(x)

=

∫
X
fdm∫

X
gdm

for almost every x ∈ X.

It is well known that if a conservative, ergodic, measure-preserving transforma-

tion T has Darling-Kac sets, then it is pointwise dual ergodic ([Aar4]). This result

follows from Hurewicz’s ergodic theorem letting g = 1A and an(T ) = an(A)
m(A)

, where

A is a Darling-Kac set. Another consequence of Hurewicz’s ergodic theorem is the

asymptotic universality of an(T ).

Definition 2.4.9. Given two sequences {an} and {bn} of real numbers we write

(2.4.12) an ∼ bn, if lim
n→∞

an
bn

= 1.

In this case we say {an} is asymptotic to {bn}.

From Hurewicz’s ergodic theorem, if both A,A′ are Darling-Kac sets for T , then

(2.4.13) an(T ) =
an(A)

m(A)
∼ an(A′)

m(A′)
.
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CHAPTER 3

R-FUNCTIONS

3.1. Boole and Generalized Boole Transformations

This dissertation focuses on transformations of the real line. Our primary measure

of interest is one-dimensional Lebesgue measure, which we will always denote by λ.

Boole’s transformation is defined by B(x) = x− 1
x
. In 1857 Boole showed

(3.1.1)

∫
R
g(x)dx =

∫
R
g (B(x)) dx,

for all integrable functions g. It is clear that (3.1.1) is equivalent to showing that

the transformation B preserves λ. Boole’s transformation has become an archetypal

example in infinite ergodic theory.

In 1973 Adler and Weiss proved the following theorem.

Theorem 3.1.1 ([AW]). Boole’s transformation is conservative and ergodic with

respect to λ.

Extensions of B called generalized Boole transformations have the form

(3.1.2) G(x) = x+ β +
N∑
k=1

pk
tk − x

,

where β, tk, pk ∈ R and pk > 0 for all k = 1, ..., N .

In 1972 the following exercise appeared in a book by Pólya and Szegő ([PS]):

“Show that ±G gives a complete characterization of all rational functions preserving

λ.” Later, in 1977 Letac solved this exercise and proved that a rational function

preserves λ if and only if it is ±G ([Let]). This result is discussed in more detail in



Section 3.4. The ergodic properties of generalized Boole transformations were studied

by Li and Schweiger in 1978, and they proved the following theorem.

Theorem 3.1.2 ([LS]). Let G be a generalized Boole transformation. If β = 0,

then G is conservative and ergodic with respect to λ.

The generalized Boole transformations have been studied under many names,

including rational R-functions and rational inner functions. We will refer to transfor-

mations in the form of (3.1.2) as rational R-functions of positive type. The subsequent

sections of this chapter give the history of R-functions from a harmonic analysis point

of view. The results presented here provide a larger framework from which generalized

Boole transformations arise.

3.2. Functions on the Unit Disc

Let Dr = {z : |z| < r} denote an open disc of radius r centered at 0 in C, and

Tr = {z : |z| = r} denote a circle of radius r. When r = 1 we may drop the subscript

and denote the unit disc by D = {z : |z| < 1} and the unit circle by T = {z : |z| = 1}.

Also, let z = x+ iy ∈ C and <(z) and =(z) denote the real and imaginary parts of z.

The Poisson integral formula represents a function, u : Dr → R, which is harmonic

in Dr and continuous on Tr. If z ∈ Dr, then we have

(3.2.1) u(z) =
1

2π

∫ 2π

0

u(reiθ)<
(
reiθ + z

reiθ − z

)
dθ.

For more discussion of (3.2.1) see [Con] or [Rem]. Now, suppose we have an analytic

function, f : Dr → C, such that <(f(z)) = u(z). That is, f(z) = u(z) + iv(z) for

some harmonic function v : Dr → R. We claim

(3.2.2) f(z) =
1

2π

∫ 2π

0

u(reiθ)
reiθ + z

reiθ − z
dθ + iv(0).

In order to prove the claim we set f(z) = u(z)+iv(z) and g(z) = 1
2π

∫ 2π

0
u(reiθ) re

iθ+z
reiθ−zdθ+

iv(0), and we show that f(z) = g(z). First, taking the real part of g and comparing
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it to (3.2.1), we have <(g(z)) = u(z) = <(f(z)). Therefore, by the Cauchy-Riemann

equations f and g differ by a purely imaginary constant. Evaluating at z = 0, we have

f(0) = u(0) + iv(0) = g(0). Thus, f(0) − g(0) = 0, and f(z) = g(z) for all z ∈ Dr.

Equation (3.2.2) is known as the Schwarz integral formula (for more discussion see

[Con] or [Rem]).

Our goal is to use the Schwarz integral formula to obtain a general form for analytic

functions, f : D→ C (not necessarily continuous on T), which have nonnegative real

part. First, we must develop a bit more material and notation. LetM(T) denote the

space of all Borel measures on T. For each harmonic function h on D and 0 < r < 1

there is a corresponding Borel measure τr ∈M(T) defined by

(3.2.3) dτr(e
iθ) =

1

2π
h(reiθ)dθ.

The following theorem concerning convergence of measures can be found in [RR].

Theorem 3.2.1. Let {µn}∞n=1 be a sequence of Borel measures on T. Suppose

there exists a constant M <∞ such that µn(T) ≤M , for n ≥ 1. Then there exists a

subsequence {µnk}∞k=1 and a Borel measure µ on T such that µ(T) ≤M and

(3.2.4) lim
k→∞

∫
T
fdµnk =

∫
T
fdµ,

for every continuous complex-valued function f on T.

We have the following theorem concerning functions which are analytic in D and

take values in the right half-plane. The proof has been modified from [Tsu] and

[GG].

Theorem 3.2.2. A function, f , is analytic in D with <(f(z)) > 0 for all z ∈ D

if and only if f can be written as

(3.2.5) f(z) = iγ +

∫
T

eiθ + z

eiθ − z
dτ(eiθ),
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where γ ∈ R and τ is a finite nonnegative measure on T.

Proof. If f admits a representation as in (3.2.5), then for z ∈ D where z = reiψ

we have

(3.2.6) <(f(z)) = <
(∫

T

eiθ + z

eiθ − z
dτ(eiθ)

)
=

∫
T

1− r2

1− 2r cos(θ − ψ) + r2
dτ(eiθ) ≥ 0.

To prove the other direction, we suppose that f is analytic in D, so f(z) = u(z)+iv(z)

where u, v : D → R are harmonic. Thus, for each r < 1 f is harmonic on Dr and

continuous on Tr. By the Schwarz integral formula, for each r < 1 we have

(3.2.7) f(z) = iv(0) +
1

2π

∫
T
u(reiθ)

reiθ + z

reiθ − z
dθ.

Recasting (3.2.7) in the language of measures as in (3.2.3) we have

(3.2.8) f(z) = iv(0) +

∫
T

reiθ + z

reiθ − z
dτr(e

iθ),

where τr is a measure on T such that dτr(e
iθ) = 1

2π
u(reiθ)dθ. Note that u(reit) > 0,

so the measure τr is nonnegative. Now, we show that τr is finite on T. That is,∫
T dτr(e

iθ) <∞. By definition of τr we have

(3.2.9)

∫
T
dτr(e

iθ) =
1

2π

∫ 2π

0

u(reiθ)dθ.

In order to show the right-hand side of (3.2.9) is finite, we apply the Poisson integral

formula to u and obtain

(3.2.10) u(0) =
1

2π

∫ 2π

0

u(reiθ)dθ.

Finally, we recall u(0) = <(f(0)) <∞, because f is analytic in D. Therefore, τr is a

finite measure on T. Considering f(rz) together with (3.2.8) we have

(3.2.11) f(rz) = iv(0) +

∫
T

eiθ + z

eiθ − z
dτr(e

iθ).

24



Finally, by Theorem 3.2.1 there exists a sequence {rn} ↑ 1 and a finite nonnegative

measure τ on T such that

(3.2.12) f(z) = iv(0) +

∫
T

eiθ + z

eiθ − z
dτ(eiθ).

�

3.3. Functions on the Upper Half-Plane

Let R2+ denote the upper half-plane in C. That is, R2+ = {x + iy : x, y ∈

R and y > 0}.

Definition 3.3.1 (Kac and Krein, [KK]). An analytic function f : R2+ → R2+

is called an R-function.

Let φ be the conformal map taking R2+ to D defined by

(3.3.1) φ(z) =
z − i
z + i

and φ−1(z) = i
1 + z

1− z
.

We will change variables using φ in the proof of the following theorem, so for conve-

nience we make a note about the procedure. If τ is a Borel measure on T\{1}, define

(τ ◦ φ)(A) = τ(φ(A)) for every Borel set A ⊆ R, so that τ ◦ φ is a Borel measure on

R. For every g ∈ L1(τ), g ◦ φ ∈ L1(τ ◦ φ) and

(3.3.2)

∫
T\{1}

g(eiθ)dτ(eiθ) =

∫
R
(g(φ(t))d(τ ◦ φ)(t).

The following theorem can be found in [KK], but no proof is given. We have

modified the proof given in [GG].

Theorem 3.3.2. An analytic function, f , is an R-function if and only if it can

be represented in the form

(3.3.3) f(z) = βf + αfz +

∫
R

1 + tz

t− z
dµ(t),
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where βf , αf ∈ R, αf ≥ 0, and µ is a finite nonnegative measure on R.

Proof. Let z = x+ iy ∈ R2+. If f(z) = u(z) + iv(z) is of the form (3.3.3), then

(3.3.4)

f(z) = βf + αfx+

∫
R

t− x+ t2x− tx2 − ty2

(t− x)2 + y2
dµ(t)︸ ︷︷ ︸

u(z)

+i

(
αfy +

∫
R

y + t2y

(t− x)2 + y2
dµ(t)

)
︸ ︷︷ ︸

v(z)

.

Thus, we can see that if y > 0, then v(z) > 0. To prove the other direction we suppose

f is an R-function. Let φ be as in (3.3.1). We have that F (z) = −i(f ◦φ−1)(z) satisfies

the conditions of Theorem 3.2.2, so

(3.3.5) F (z) = iγ +

∫
T

eiθ + z

eiθ − z
dτ(eiθ),

where γ ∈ R and τ is a finite nonnegative measure on T. Furthermore, f(z) =

i(F ◦ φ)(z), so we have

f(z) = i

(
iγ +

∫
T

eiθ + z−i
z+i

eiθ − z−i
z+i

dτ(eiθ)

)

= −γ + i

∫
T\{1}

eiθ + z−i
z+i

eiθ − z−i
z+i

dτ(eiθ) + iτ ({1})

(
1 + z−i

z+i

1− z−i
z+i

)

= −γ + αz + i

∫
T\{1}

eiθz + ieiθ + z − i
eiθz + ieiθ − z + i

dτ(eiθ).(3.3.6)

The last line comes from letting α = τ ({1}) and noting that i
1+ z−i

z+i

1− z−i
z+i

= φ−1(φ(z)) = z.

Consider the integrand of (3.3.6), and define g(eiθ) = eiθz+ieiθ+z−i
eiθz+ieiθ−z+i . Using the change

of variables laid out in (3.3.2) we obtain

(3.3.6) = −γ + αz + i

∫
R

(
t−i
t+i

)
z + i

(
t−i
t+i

)
+ z − i(

t−i
t+i

)
z + i

(
t−i
t+i

)
− z + i

d(τ ◦ φ)(t)

= −γ + αz +

∫
R

tz + 1

t− z
d(τ ◦ φ)(t).(3.3.7)
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Thus, letting βf = −γ, αf = α, and µ = τ ◦ φ yields

(3.3.8) f(z) = βf + αfz +

∫
R

tz + 1

t− z
dµ(t).

�

Given an R-function, f , the following lemma gives another way to classify the

coefficient αf .

Lemma 3.3.3. If f is an R-function as in (3.3.3), then

(3.3.9) lim
y→∞

=(f(iy))

y
= αf .

Proof. If f is an R-function, then f has the form (3.3.3) and can be written in

terms of its real and imaginary parts as in (3.3.4). Therefore, we have

(3.3.10)
=(f(iy))

y
= αf +

∫
R

1 + t2

t2 + y2
dµ(t).

We will show that the second term on the left-hand side of (3.3.10) approaches 0 as

y →∞. If y > 1, then 1+t2

t2+y2
< 1, so for sufficiently large N we have

(3.3.11)

∫ −N
−∞

1 + t2

t2 + y2
dµ(t) +

∫ ∞
N

1 + t2

t2 + y2
dµ(t) <

∫ −N
−∞

dµ(t) +

∫ ∞
N

dµ(t) <
ε

2
.

On the other hand, if y is sufficiently large, then

(3.3.12)

∫ N

−N

1 + t2

t2 + y2
dµ(t) <

ε

2
.

�

Given an R-function, f , the following lemma gives a condition under which we

can write f in a simpler form.

Lemma 3.3.4. If f is an R-function as in (3.3.3), and
∫
R t

2dµ(t) < ∞, then f

can be written in the reduced form
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(3.3.13) f(z) = αfz + β′f +

∫
R

dν(t)

t− z
,

where dν(t) = (1 + t2)dµ(t) and β′f = βf −
∫
R tdµ(t).

Proof. We have

f(z) = αfz + βf +

∫
R

1 + tz

t− z
dµ(t)

= αfz + βf +

∫
R

1 + t2 − t2 + tz

t− z
dµ(t)

= αfz + βf +

∫
R

(1 + t2)− t(t− z)

t− z
dµ(t)

= αfz + βf −
∫
R
tdµ(t) +

∫
R

1 + t2

t− z
dµ(t)

= αfz + β′f +

∫
R

dν(t)

t− z
.

�

Definition 3.3.5 (Kac and Krein [KK]). An R-function, f , is an element of R0

if f admits the following representation

(3.3.14) f(z) =

∫
R

dν(t)

t− z
,

where ν is a finite nonnegative measure on R.

Lemma 3.3.6. If f is an R-function such that limy→∞ iyf(iy) = c < ∞, then

f ∈ R0.

Proof. We have that f is an R-function, so f has form (3.3.3). Writing f(iy) in

terms of its real and imaginary parts yields

(3.3.15) f(iy) = βf +

∫
R

t− ty2

t2 + y2
dµ(t) + i

(
αfy +

∫
R

y + t2y

t2 + y2
dµ(t)

)
.
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Therefore,

(3.3.16) iyf(iy) = −αfy2 −
∫
R

(1 + t2)y2

t2 + y2
dµ(t) + iy

(
βf +

∫
R

t− ty2

t2 + y2
dµ(t)

)
.

Convergence of the real part along with Lemma 3.3.3 gives af = 0. Convergence of

the real part also yields
∫
R(1 + t2)dµ(t) <∞. Therefore, we may apply Lemma 3.3.4

to obtain

(3.3.17) f(z) = β′f +

∫
R

dν(t)

t− z
,

where β′f =
∫
R tdµ(t). To see that β′f = 0 we consider the imaginary part of (3.3.16).

We have

(3.3.18) y

(
βf +

∫
R

t− ty2

t2 + y2
dµ(t)

)
→ 0 as y →∞.

Therefore,

(3.3.19) y

(
βf −

∫
R

ty2

t2 + y2
dµ(t)

)
+ y

(∫
R

t

t2 + y2
dµ(t)

)
→ 0 as y →∞.

Since the first piece of (3.3.19) converges, we know

(3.3.20) βf −
∫
R

ty2

t2 + y2
dµ(t)→ 0 as y →∞.

Hence, βf =
∫
R tdµ(t) and β′f = 0. �

We are interested in studying transformations on the real line, so we impose an

extra restriction on R-functions.

Definition 3.3.7. A function, f , is an inner function on the upper half-plane,

if f is an R-function such that for λ-almost every x ∈ R the limit limy→0 f(x + iy)

exists and is real. We let F (x) = limy→0 f(x + iy) and call F the boundary function

associated to f .
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We have the following relationship between inner functions and R-functions:

{inner functions of the upper half-plane} ⊂ {R-functions}.

The following classical theorem is stated here for completeness, and the proof can

be found in [RR].

Theorem 3.3.8 (Fatou’s Theorem). Let

(3.3.21) h(z) =
y

π

∫
R

dσ(t)

(t− x)2 + y2
, y > 0,

where σ is a nonnegative Borel measure on R such that
∫
R
dσ(t)
1+t2

<∞. Suppose σ has

the following Lebesgue decomposition

(3.3.22) dσ = Hdλ+ dσs,

where λ is Lebesgue measure and σs is the singular piece. Then,

(3.3.23) lim
z→x

h(z) = H(x) for almost every x ∈ R.

Using Fatou’s Theorem we obtain the following theorem which is a special case

of Theorem 3.3.2 and provides a general form for all inner functions of the upper

half-plane. The statement can be found in [Aar4], but we give a different proof.

Theorem 3.3.9. An R-function, f , is an inner function if and only if for every

z ∈ R2+ it can be represented as

(3.3.24) f(z) = βf + αfz +

∫
R

1 + tz

t− z
dµ(t),

where βf ∈ R, αf ≥ 0, and µ is a positive finite measure on R that is singular with

respect to Lebesgue measure.
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Proof. If f is an inner function, then f is an R-function. By Theorem 3.3.2 we

have that

(3.3.25) f(z) = βf + αfz +

∫
R

1 + tz

t− z
dµ(t),

where βf ∈ R, αf ≥ 0, and µ is finite nonnegative measure on R. If we let dσ(t) =

(1 + t2)dµ(t), then

(3.3.26) f(z) = βf + αfz +

∫
R

(
1

t− z
− t

1 + t2

)
dσ(t),

where dσ defines nonnegative measure on R, such that
∫∞
−∞

dσ(t)
1+t2

<∞. Thus, we need

only show that σ is singular with respect to Lebesgue measure. We let dσ = Hdλ+dσs

be the Lebesgue decomposition of σ. Letting z = x+iy and considering the imaginary

part of f we have

(3.3.27) =(f(x+ iy)) = αfy +

∫
R

y

(t− x)2 + y2
dσ(t).

We apply Fatou’s Theorem to =(f(x+ iy)) and dσ to obtain limz→x=(f(z)) = H(x)

a.e. on R. However, we have that limy→0=(f(x + iy)) = 0, because f is inner.

Therefore, H = 0, and σ = σs is singular.

For the other direction, it is clear that if f has the form in (3.3.24), then f is an

inner function. �

3.4. Dynamics of Boundary Functions on the Real Line

We are interested in measure-theoretic dynamical properties of the boundary

functions associated to inner functions, so we study maps F such that F (x) =

limy→0 f(x + iy) for λ-almost every x ∈ R, where f is an inner function. We have

F : R \M → R, where λ(M) = 0.

The following theorem due to Letac connects inner functions with measurable

functions F : R→ R preserving the class of Cauchy distributions. If z = a+ ib, then
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we denote a Cauchy distribution by

(3.4.1) σz(t) =
dPz
dλ

(t) =
b

π ((t− a)2 + b2)
.

We note that Pz is a measure (sometimes called a Cauchy measure) on R is given by

(3.4.2) Pz(A) =

∫
R
1A(t)

b

π ((t− a)2 + b2)
dλ(t),

for any measurable set A.

Theorem 3.4.1 ([Let]). Let ε = ±1. A measurable function, F : R → R,

preserves the class of Cauchy distributions if and only if ε · F is a boundary function

associated to an inner function. In particular, if f is the inner function corresponding

to F and z ∈ C, then

(3.4.3) Pz ◦ F−1 = Pf(z).

We have the following corollary of Theorem 3.4.1 which was first proved by Letac

in [Let] and shown again by Aaronson in [Aar2]. Our proof follows the outline of

Aaronson.

Corollary 3.4.2. If F is the boundary function associated to an inner function,

then F preserves λ if and only if αF = 1.

Proof. Let f be an inner function as in (3.3.24), and let F : R → R be the

boundary function associated to f . We write f in terms of its real and imaginary

parts as f(z) = u(z) + iv(z). We consider the action of f on z = ib. We note

(3.4.4) u(ib) = b

∫
R

t(1− b2)

t2 + b2
dµ(t) and v(ib) = αF b+

∫
R

b(1 + t2)

t2 + b2
dµ(t).

By the dominated convergence theorem we have limb→∞ u(ib) = µ(R) and limb→∞ v(ib)−

b = 0.
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Thus, we have

(3.4.5)
u(ib)

b
→ 0 and

v(ib)

b
→ αT as b→∞.

Suppose αF = 1. For A ∈ B we have

(3.4.6) πbPib(A) = πb

∫
R
1A(t)

b

π (t2 + b2)
dλ(t),

so limb→∞ πbPib(A) = λ(A). Also,

(3.4.7) πbPf(ib)(A) = πb

∫
R
1A(t)

v(ib)

π ((t2 − u(ib)2) + v(ib)2)
,

so using (3.4.5) we have limb→∞ πbPf(ib)(A) = λ(A). Finally, by Theorem 3.4.1 we

have Pib(F
−1A) = Pf(ib)(A), so taking the limit as b → ∞ yields λ(F−1A) = λ(A).

For the reverse direction suppose αF 6= 1. We now have that limb→∞ πbPf(ib)(A) =

1
αF
λ(A), so λ(F−1A) = 1

αF
λ(A). �

We are primarily interested in transformations that preserve an infinite measure,

so our study of inner functions and their variants will be restricted to the case where

αF = 1. Aaronson proved the following theorem for infinite-measure-preserving

boundary functions associated to inner functions, which can be written in a reduced

form like (3.3.13).

Theorem 3.4.3 ([Aar4]). Suppose that F is the boundary function associated to

an inner function and

(3.4.8) F (x) = x+ β +

∫
R

dν(t)

t− x
,

where β ∈ R and ν is singular and compactly supported on R. If β = 0, then F is

exact and pointwise dual ergodic with respect to λ. The return sequence is given by

an(F ) ∼ 1
π

√
2n
ν(R)

. If β 6= 0, then F is totally dissipative and non-ergodic with respect

to λ.
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We note that generalized Boole transformations as in (3.1.2) are boundary func-

tions associated to reduced form inner functions, and therefore they fall into the scope

of Theorem 3.4.3. Let δx denote a point mass measure with mass 1 at the point x. If

G is a generalized Boole transformation, then we can represent G as

(3.4.9) G(x) = x+ β +

∫
R

dν(t)

t− x
, where ν =

N∑
i=1

piδti .

Thus, Letac’s 1977 [Let] result (Corollary 3.4.2) completes the exercise of Pólya and

Szegő showing that ±G are the only rational functions preserving λ. Also, Aaron-

son [Aar2] took Li and Schweiger’s result (Theorem 3.1.2) further when he proved

Theorem 3.4.3, showing that if β = 0 then generalized Boole transformations are also

exact and pointwise dual ergodic.

3.5. R-functions of Negative Type

We study a slight variant of R-functions called R-functions of negative type. As

the name suggests we have the following definition.

Definition 3.5.1. An analytic map, h, is an R-function of negative type if h :

R2+ → R2− and h : R2− → R2+. That is, h permutes the upper and lower half planes

in C.

We are primarily interested in rational R-functions of negative type. That is,

h(z) = P (z)
Q(z)

, where P and Q are polynomials. Holtz and Tyaglov [HT] have proved

the following theorem which classifies all rational R-functions of negative type.

Theorem 3.5.2. A function, h, is a rational R-function of negative type if and

only if

(3.5.1) h(z) = −αz − β −
N∑
k=1

pk
tk − z

,

where α, β, tk, pk ∈ R, and α, pk > 0 for k = 1, ..., N .
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The rest of this dissertation is an in-depth study of the one-dimensional dynamics

of the boundary functions associated to rational R-functions of negative type. That

is, we study S : R \M → R where λ(M) = 0 such that S(x) = limy→0 h(x+ iy).

We note that if α = 1, then rational R-functions of negative type are precisely the

negatives of generalized Boole transformations. Both the exercise in Pólya and Szegő

[PS] and Letac’s result [Let] (Theorem 3.4.2) imply that all rational R-functions of

negative type with α = 1 preserve λ. Throughout the rest of this thesis we assume

S is the boundary function associated to a rational R-function of negative type, and

α = 1.

In Future Work (Section 7.1) we lay the framework for using the machinery devel-

oped in the first sections of this chapter to extend some of our results to R-functions

of negative type which are not necessarily rational.
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CHAPTER 4

RATIONAL R-FUNCTIONS OF NEGATIVE TYPE

From now on, when we say S is a rational R-function of negative type we mean

that S : R → R is the restriction of a rational map h : R± → R∓. We also assume

throughout that αS = 1. Therefore, S has the following form

(4.0.1) S(x) = −x− β −
N∑
k=1

pk
tk − x

,

where β, tk, pk ∈ R, and pk > 0 for k = 1, ..., N . We also assume throughout that the

poles {ti}Ni=1 are in ascending order. That is, ti < ti+1 for all i = 1, ..., N − 1.

4.1. Basic Properties

In this section we catalogue some basic properties of rational R-functions of neg-

ative type.

The derivative of any rational R-function of negative type has the following form

(4.1.1) S ′(x) = −1−
N∑
k=1

pk
(tk − x)2

,

where tk, pk ∈ R and pk > 0. Thus, S ′(x) < −1 for all x ∈ R, and S is everywhere

decreasing.

Lemma 4.1.1. If S is a rational R-function of negative type, then S : (tk, tk+1)→

R is one-to-one and onto for k = 1, ..., N − 1. The same is true outside the smallest

and largest poles. That is, both S : (−∞, t1)→ R and S : (tN ,∞)→ R are one-to-one

and onto mappings.



Proof. We know S is continuous on (−∞, t1), (tN ,∞), and (tk, tk+1) for k =

1, ..., N − 1, and by (4.1.1) S is everywhere decreasing. These observations paired

with the following limits yield the result. We have

lim
x→t+k

S(x) =∞ lim
x→−∞

S(x) =∞

lim
x→t−k

S(x) = −∞ lim
x→∞

S(x) = −∞.

�

As a consequence of Lemma 4.1.1 we have that any rational R-function of negative

type is an (N + 1)-to-1 mapping with respect to λ on R. The general shape of any

rational R-function of negative type is shown in Figure 4.1.

t1 t2 t3 t4

Figure 4.1. An example of S when N = 4.

4.2. Exactness and Ergodicity

Recall from Section 2.1 that a non-singular system (X,B,m, T ) is ergodic if A ∈ B

is T -invariant implies m(A) = 0 or m(Ac) = 0. Furthermore, we say T is exact if

A ∈ B such that

(4.2.1) T−n(T n(A)) = A for all n > 0,

implies m(A) = 0 or m(Ac) = 0. By Lemma 2.1.4 if T is exact, then T is ergodic.
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Recall that a consequence of Theorem 3.4.3 says that the restriction of a rational

R-function of positive type, F (x) = x + β +
∑N

k=1
pk
tk−x

, where β, tk, pk ∈ R and

pk > 0, is exact if β = 0. Otherwise, F is totally dissipative and nonergodic. We will

appeal to this result while proving all rational R-functions of negative type are exact,

which in contrast to Aaronson’s result places no restriction on the constant, β. The

following theorem is the main result of this section.

Theorem 4.2.1. Let S be a rational R-function of negative type. That is,

S(x) = −x− β −
N∑
k=1

pk
tk − x

,

where tk, pk ∈ R and pk > 0. Then S is exact and ergodic with respect to Lebesgue

measure.

Before proving Theorem 4.2.1 we note the following lemma on exactness of a

transformation and its iterates

Lemma 4.2.2. If (X,B,m, T ) is a nonsingular system such that T 2 is exact with

respect to m, then T is exact with respect to m.

Proof. If A ∈ B is a set for T as in (4.2.1), then T−2nT 2n(A) = A for all n > 0.

Thus, (T 2)−n(T 2)nA = A, so A also has the property in (4.2.1) for T 2. In other words

we have

{A : T−nT nA = A, for all n > 0} ⊆ {B : (T 2)−n(T 2)nB = B, for all n > 0}.

T 2 is exact, so all B as above have the property that m(B) = 0 or m(Bc) = 0.

Therefore, the set A is such that m(A) = 0 or m(Ac) = 0, and T is exact. �

The following proposition characterizes the second iterate of a rational R-function

of negative type.

38



Proposition 4.2.3. Let S be a rational R-function of negative type. That is,

S(x) = −x − β −
∑N

k=1
pk
tk−x

, where β, tk, pk ∈ R and pk > 0. Then, S2 is the

restriction of a rational R-function of positive type, and S2 has form

(4.2.2) S2(x) = x+
N2+2N∑
k=1

ρk
τk − x

,

where τk, ρi ∈ R, ρk > 0.

The proof of Proposition 4.2.3 will require the following formula for partial fraction

decomposition. Given two polynomials P (x) and Q(x) such that deg(P ) < n and

Q(x) = (x− α1) · · · (x− αn) where the αi are distinct, we have

(4.2.3)
P (x)

Q(x)
=

n∑
i=1

P (αi)

Q′(αi)

1

(x− αi)
.

Proof of Proposition 4.2.3. Suppose S is a rational R-function of negative

type as in the proposition. Let S2 be the second iterate of S. We have,

(4.2.4) S2(x) = x+
N∑
k=1

pk
tk − x

−
N∑
k=1

pk
tk − S(x)

,

where tk, pk ∈ R and pk > 0. The first two terms of (4.2.4) look like pieces from

a rational R-function of positive type and are in the correct form. Considering the

third term in (4.2.4) we will show that for a fixed k

(4.2.5)
−pk

tk − S(x)
=

N+1∑
j=1

ak,j
rk,j − x

,

where rk,j, ak,j ∈ R and ak,j > 0.

First, we write out the denominator of the left-hand-side of (4.2.5) and obtain

tk − S(x) = tk + x+ β +
N∑
i=1

pi
ti − x

=
(tk + x+ β)

∏N
i=1(ti − x) +

∑N
i=1 pi

∏
j 6=i(tj − x)∏N

i=1(ti − x)
.(4.2.6)
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From Lemma 4.1.1 we have tk − S(x) = 0 has N + 1 distinct real solutions. That is,

S−1(tk) = {r(k,1), ..., r(k,N+1)}. Thus, (4.2.6) becomes

(4.2.7)
−
∏N+1

i=1 (rk,i − x)∏N
i=1(ti − x)

.

The negative in the numerator of (4.2.7) comes from the fact that if N is even, then

sign(xN+1) = +1, and if N is odd, then sign(xN+1) = −1. Therefore, the entire

fraction on the left-hand-side of (4.2.5) can be written

(4.2.8)
−pk

tk − S(x)
=
pk
∏N

i=1(ti − x)∏N+1
i=1 (rk,i − x)

=
−pk

∏N
i=1(x− ti)∏N+1

i=1 (x− rk,i)
.

Now, to use (4.2.3) we let

(4.2.9)
P (x)

Q(x)
=
−pk

∏N
i=1(x− ti)∏N+1

i=1 (x− rk,i)
,

and note that Q′(rk,j) =
∏N+1

i 6=j (rk,j − rk,i). Therefore,

P (x)

Q(x)
=

N+1∑
j=1

P (rk,j)

Q′(rk,j)
· 1

(x− rk,j)

=
N+1∑
j=1

−pk
∏N

i=1(rk,j − ti)∏
i 6=j(rk,j − rk,i)

· −1

(rk,j − x)

=
N+1∑
j=1

ak,j
rk,j − x

,(4.2.10)

where ak,j =
pk

∏N
i=1(rk,j−ti)∏

i6=j(rk,j−rk,i)
. Finally, we will show that ak,j > 0 for each j = 1, ..., N+1.

We do this by considering the sign of the numerator and denominator separately.

First, we consider the denominator of ak,j. We assume {r(k,1), ..., r(k,N+1)} are in

ascending order, so

(4.2.11) j > i =⇒ (rk,j − rk,i) > 0 and j < i =⇒ (rk,j − rk,i) < 0.
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Therefore, in the denominator of ak,j we have

(4.2.12)
∏
i 6=j

(rk,j − rk,i) =

j−1∏
i=1

(rk,j − rk,i)︸ ︷︷ ︸
+

·
N+1∏
i=j+1

(rk,j − rk,i)︸ ︷︷ ︸
(−1)N−j+1

.

Now, we consider the the numerator of ak,j. We know pk > 0. We also know

there is exactly one rk,j in each atom of the partition in Lemma 4.1.1. That is,

rk,1 ∈ (−∞, t1), rk,N+1 ∈ (tN ,∞), and rk,j ∈ (tj−1, tj) for j = 2, ...N . Thus, we have

the following three cases:

(1) j > i =⇒ (rk,j − ti) > 0,

(2) j = i =⇒ (rk,j − ti) < 0, and

(3) j < i =⇒ (rk,j − ti) < 0.

Therefore, we can count the number of sign changes coming from (1), (2), and (3) in

the numerator of ak,j and obtain

(4.2.13)
N∏
i=1

(rk,j − ti) =

j−1∏
i=1

(rk,j − ti)︸ ︷︷ ︸
+

· (rk,j − tj)︸ ︷︷ ︸
−1

·
N∏

i=j+1

(rk,j − ti)︸ ︷︷ ︸
(−1)N−j

.

Thus, sign(ak,j) = (−1)(N−j+1)

(−1)(N−j+1) which is positive. We have shown

S2(x) = x+
N∑
k=1

pk
tk − x

+
N∑
k=1

N+1∑
j=1

ak,j
rk,j − x

= x+
N2+2N∑
k=1

ρk
τk − x

,(4.2.14)

where τk, ρk ∈ R and ρk > 0. �

Note that Proposition 4.2.3 shows that if S is a rational R-function of negative

type, then S2 is a rational R-function of positive type with constant term 0. We are

now ready to prove the main theorem of this section.
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Proof of Theorem 4.2.1. Let S be a rational R-function of negative type as

in the theorem. That is, S(x) = −x− β −
∑N

k=1
pk
tk−x

where β, tk, pk ∈ R and pk > 0.

Let S2 the second iterate of S. By Proposition 4.2.3 we have that S2 is a rational

R-function of positive type and can be written

(4.2.15) S2(x) = x+
N2+2N∑
k=1

ρk
τk − x

,

where τk, ρk ∈ R and ρk > 0. The constant term in S2 is 0, so we may appeal to

Theorem 3.4.3 to obtain S2 is exact. Therefore, S is exact, by Lemma 4.2.2. Finally,

by Lemma 2.1.4 S is also ergodic. �

4.3. Conservativity

Recall from Section 2.1 that a nonsingular system (X,B,m, T ) is conservative if

there does not exist a wandering set of positive measure. In other words, for all A ∈ B

with m(A) > 0, there exists k > 0 such that

(4.3.1) m(T−kA ∩ A) > 0.

Again we consider rational R-functions of negative type, so

S(x) = −x− β −
N∑
k=1

pk
tk − x

,

where β, tk, pk ∈ R and pk > 0.

Let ω1, .., ωN+1 denote the fixed points of S in ascending order. For the rest of

this chapter it is convenient to conjugate S so that ω1 = 0. That is, S(0) = 0 and all

other fixed points are positive. Let

φ(x) = x− ω1 and φ−1(x) = x+ ω1.

Consider the transformation S̃ = φ ◦ S ◦ φ−1. We have
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S̃(x) = −x− 2ω1 − β −
N∑
k=1

pk
(tk − ω1)− x

.

We note that S̃(0) = (φ ◦ S ◦ φ−1)(0) = (φ ◦ S)(ω1) = φ(ω1) = 0. Also, if the

poles of S are {t1, ..., tN} in ascending order, then the poles of S̃ are tk − w1 for

k = 1, ..., N in ascending order. The smallest pole of S̃ is t1 − w1 which is greater

than 0. Furthermore, φ : S → S̃ is an isomorphism (as in Definition 2.1.9), so S and

S̃ have the same measure theoretic properties. Thus, without loss of generality we

may assume that ω1 = 0 is the smallest fixed point of S, and all other fixed points,

{ωi}N+1
i=2 , as well as all the poles, {ti}Ni=1, are positive. For the rest of this chapter we

assume S has the general shape in Figure 4.2.

t1 t2 t3 t4

Figure 4.2. An example of conjugated S when N = 4.

Let q1, ..., qN+1 denote the roots of S. Note that q1 = ω1 = 0. We define a

partition Q = {Q1, ..., QN+1} of R to be the intervals between the roots. That is,

Qi = [qi, qi+1) for i = 1, ..., N and QN+1 = (∞, q1) ∪ [qN+1,∞). The general shape of

S along with the partition Q are depicted in Figure 4.3.

Remark 4.3.1. Using a process similar to that in Lemma 4.1.1 we know S maps

the individual atoms of Q one-to-one and onto R. That is, S : Qi → R is one-to-one

and onto for i = 1, ..., N + 1, and Q is a Rohlin partition for S.
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Q1 Q2 Q3 Q4 Q5

Q5
q2 q3 q4 q5

Figure 4.3. An example of the Q partition for S when N = 4.

The above remark motivates the following notation. We let ψi denote the inverse

of S restricted to Qi. That is

(4.3.2) ψi = S−1|Qi ,

so ψi : R→ Qi is one-to-one and onto for i = 1, ..., N + 1. We denote the refinement

Qi1 ∩ S−1Qi2 ∩ ... ∩ S−(n−1)Qin by Qi1...in , and let

(4.3.3) ψi1...in = S−1|Qi1...in , so ψi1...in = ψi1...in−1 ◦ ψin .

Note that ψi1...in : R → Qi1...in is one-to-one and onto. We define one more piece of

notation and let

(4.3.4) ψi[k] = ψi ◦ ψi ◦ ... ◦ ψi︸ ︷︷ ︸
k−times

.

Proposition 4.3.2. The set A =
⋃N
i=1Qi = [q1, qN+1] is a sweep-out-set for S.

That is,
⋃
n≥0 S

−nA = R mod λ.

Before we prove Proposition 4.3.2 we need the following lemma.

Lemma 4.3.3. Let {xk}∞k=0 be a sequence of positive numbers. If c is a positive

constant and x2
k+1 ≥ x2

k + c, then xk >
√

c
2
·
√
k.
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Proof. If x2
1 ≥ x2

0 + c, then x1 ≥ (
√
x2

0 + c)
√

1 ≥
√

c
2

√
1. Now we proceed by

induction. Assume xk >
√

c
2
·
√
k. Thus, we have

(4.3.5) x2
k+1 ≥ x2

k + c ≥ c

2
· k + c =

c

2
(k + 2) >

c

2
(k + 1).

Therefore, xk+1 >
√

c
2
·
√
k + 1. �

We are now ready to prove Proposition 4.3.2.

Proof of Proposition 4.3.2. Without loss of generality let S(x) = −x− β −∑N
i=1

pi
ti−x , where β, ti, pi ∈ R with ti, pi > 0 and S(0) = 0. Let {Qi}N+1

i=1 be the

partition defined above, let and ψi be the inverse of S defined in (4.3.2). We define a

sequence {zk}∞k=0 such that

(4.3.6) z0 = q1 = 0 and zk = ψ(N+1)(xk−1) = ψ(N+1)[k](0).

In order to better understand the sequence {zk} it is convenient to define two

separate sequences corresponding to the even and odd terms. We will denote the

even terms by {Wk}k≥0. That is, W0 = 0 and Wk = z2k. The odd terms will be

{Vk}k≥0 such that V0 = qN+1 and Vk = z2k+1. These two sequences are precisely the

endpoints of the union of pullbacks of A, because

[W0, V0] = A,(4.3.7)

[W1, V0] = A ∪ S−1,

[W1, V1] = A ∪ S−1A ∪ S−2A,

[W2, V1] = A ∪ S−1A ∪ S−2AS−3A,(4.3.8)

and so on. In general, we have

(4.3.9) [Wdk/2e, Vbk/2c] =
k⋃
j=0

S−jA
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where dxe and bxc denote the ceiling and floor functions respectively.

In order to show A is a sweep-out-set, we need to show

(4.3.10) lim
k→∞

Vk =∞ and lim
k→∞

Wk = −∞.

We will show the first statement in (4.3.10), and the second statement follows by

a similar argument. We first note that Vk = ψ(N+1)[2k](qN+1). This implies that

Vk = S2(Vk+1). By Proposition 4.2.3 we have S2(x) = x +
∑N2+2N

i=1
ρi
τi−x , where

τi, ρi ∈ R and ρi > 0. That is, letting N = N2 + 2N we have

(4.3.11) Vk = Vk+1 +
N∑
i=1

ρi
τi − Vk+1

.

We will show that

(4.3.12) Vk ≥ c1

√
k,

which implies Vk → ∞ as k → ∞. First, for k ≥ 1 we have Vk > 0 and Vk ∈ QN+1.

Thus, Vk > τi for all i = 1, ...,N. By (4.3.11) we have that for k ≥ 1

(4.3.13) Vk ≤ Vk+1 −
ρN
Vk+1

.

Multiplying both sides by Vk+1 we have

(4.3.14) VkVk+1 ≤ V 2
k+1 − ρN.

Therefore, by the quadratic formula we have

(4.3.15) 4V 2
k+1 ≥ 2V 2

k + 2Vk

√
V 2
k + 4ρN + 4ρN.

We note that
√
V 2
k + ρN ≥ Vk, so (4.3.15) implies

(4.3.16) V 2
k+1 ≥ V 2

k + ρN.
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By Lemma 4.3.3 Vk ≥
√

ρN
2
·
√
k. Thus, Vk → ∞. A similar argument shows

Wk < −c2

√
n, so Wk → −∞. �

The following theorem is the main result of this section, and says that all rational

R-functions of negative type are conservative.

Theorem 4.3.4. If S is a rational R-function of negative type, then S is conser-

vative with respect to λ.

Proof. Without loss of generality assume S(x) = −x − β −
∑N

k=1
pk
tk−x

where

β, tk, pk ∈ R with tk, pk > 0, and S(0) = 0. By Proposition 4.3.2 the set A =⋃N+1
i=1 Qi = [q1, qN+1] is a sweep-out-set for S. Therefore, by Maharam’s Recurrence

Theorem (Theorem 2.1.8), we have that S is conservative. �

4.4. Wandering Rates

If (X,B,m, T ) is a conservative, ergodic, measure-preserving system, then the

wandering rate of a finite-measure set A ∈ B measures the amount of X which is

“seen” by A after n iterations of T .

Definition 4.4.1. Let (X,B,m, T ) be a conservative, ergodic, measure-preserving

system. The wandering rate of a set A ∈ B with m(A) <∞ is the sequence

(4.4.1) LA(k) = m

(
k⋃
i=0

T−iA

)
.

Let S be a rational R-function of negative type, and let A = [q1, qN+1] be the

same sweep-out-set for S as in Section 4.3. The following Proposition is the main

result of this section.

Proposition 4.4.2. The wandering rate of the set A = [q1, qN+1] under a rational

R-function of negative type, S, is given by

(4.4.2) LA(k) = 2

√√√√k
N2+2N∑
j=1

ρj,
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where the ρj are the weights on the linear factors coming from the second iterate S2.

Before proving Proposition 4.4.2 we need a few auxiliary results. Let {Vk}k≥0

be the sequence defined as in Proposition 4.3.2. That is, V0 = qN+1 and Vk =

ψ(N+1)[2k](qN+1). In Proposition 4.3.2 we showed limk→∞ Vk = ∞. The following

lemma provides the precise growth rate of Vk.

Lemma 4.4.3. If Vk is the sequence defined as in Proposition 4.3.2, then

(4.4.3) Vk+1 ∼

√√√√2k
N2+2N∑
j=1

ρj,

where the ρj are the weights on the linear factors coming from the second iterate S2.

Proof. Let S(x) = −x− β −
∑N

j=1
pj
tj−x , where β, tj, pj ∈ R with tj, pj > 0, and

S(0) = 0. By Proposition 4.2.3 we have S2(x) = x +
∑N2+2N

j=1
ρj
τj−x , where τj, ρj ∈ R

and ρj > 0. By Proposition 4.3.2 and its proof we have Vk = Vk+1 +
∑N2+2N

j=1
ρj

τj−Vk+1
.

Therefore,

V 2
k+1 − V 2

k = (Vk+1 − Vk)(Vk+1 + Vk)

=

(
−

N2+2N∑
j=1

ρj
τj − Vk+1

)(
2Vk+1 +

N2+2N∑
j=1

ρj
τj − Vk+1

)

=

(
N2+2N∑
j=1

−2Vk+1ρj
τj − Vk+1

)
︸ ︷︷ ︸

(I)

−

(
N2+2N∑
j=1

ρj
τj − Vk+1

)2

︸ ︷︷ ︸
(II)

.(4.4.4)

By Proposition 4.3.2 we have that limk→∞ Vk =∞, so (I)→ 2
∑N2+2N

j=1 ρj and (II)→

0 as k →∞. That is, limk→∞ V
2
k+1 − V 2

k = 2
∑N2+2N

j=1 ρj, so

(4.4.5) V 2
k+1 ∼ V 2

k + 2
N2+2N∑
j=1

ρj.
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We also know, V 2
k ∼ V 2

k−1 + 2
∑N2+2N

j=1 ρj, so we can rewrite (4.4.5) as

(4.4.6) V 2
k+1 ∼ V 2

k−1 + 2 · 2
N2+2N∑
j=1

ρj.

Continuing in this way yields

(4.4.7) Vk+1 ∼

√√√√2k
N2+2N∑
j=1

ρj.

A similar argument also shows that for {Wk}k≥0 defined as in Proposition 4.3.2 we

have

(4.4.8) Wk+1 ∼ −

√√√√2k
N2+2N∑
j=1

ρj.

�

We will use the following lemma on asymptotics in our study of the wandering

rates for rational R-functions of negative type.

Lemma 4.4.4. If k ∈ N, then

√
dk/2e+

√
bk/2c ∼

√
2k,

where d·e and b·c denote the ceiling and floor functions respectively.

Proof. If k is even, then

√
dk/2e+

√
bk/2c = 2

√
k/2 =

√
2k.

If k is odd, then k/2 = m.5 for some m ∈ N. Therefore,

√
dk/2e+

√
bk/2c =

√
m+ 1 +

√
m.

Comparing this to
√

2k =
√

2(m+ 1 +m) =
√

4m+ 2, we have
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lim
k→∞

√
dk/2e+

√
bk/2c√

2k
= lim

m→∞

√
m+ 1

4m+ 2
+

√
m

4m+ 2
= 1,

which completes the proof. �

Proof of Proposition 4.4.2. Let S be a rational R-function of negative type,

and S2 the second iterate of S. Suppose A = [q1, qN+1] is the sweep-out-set for S as

in Proposition 4.3.2. By the definition of wandering rate (Definition 4.4.1) and the

proof of Proposition 4.3.2 we have

(4.4.9) LA(k) =
k⋃
j=0

S−jA = m
[
Wdk/2e, Vbk/2c

]
.

By Lemma 4.4.3 we understand the asymptotics of Vk and Wk, so the right-hand-side

of (4.4.9) becomes

m
[
Wdk/2e, Vbk/2c

]
∼

√√√√2dk/2e
N2+2N∑
j=1

ρj +

√√√√2bk/2c
N2+2N∑
j=1

ρj

=

√√√√2
N2+2N∑
j=1

ρj ·
(√
dk/2e+

√
bk/2c

)

∼ 2

√√√√k
N2+2N∑
j=1

ρj,(4.4.10)

where the last step comes from Lemma 4.4.4. �

There are connections between wandering rates and hitting-times of sweep-out

sets for conservative transformations. Intuitively, the wandering rate measures the

rate at which A sweeps out R under inverse iteration, while the hitting-time of a

point x ∈ X measures the number of forward iterations required for x to hit A.

The rest of this section is devoted to making this connection more precise. Recall

from Section 2.2 that given a conservative measure-preserving system, (X,B,m, T ),

and a sweep-out-set, A ∈ B, we let φA(x) denote the first hitting-time of x ∈ X

to A. That is, φA(x) = inf{n : T n(x) ∈ A}. Furthermore, we can partition A
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and Ac into first hitting-time sets, Ak = {x ∈ A : φA(x) = k} (see (2.2.2)) and

Bk = {x ∈ Ac : φA(x) = k} (see (2.2.3)). We also define sets Dk (as in (2.2.4)) such

that D0 = A and Dk = {x ∈ A : φA(x) > k}.

Lemma 4.4.5. Let (X,B,m, T ) be a conservative, ergodic, measure-preserving sys-

tem, and A ∈ B with m(A) <∞. We have

(4.4.11) LA(n) =
n∑
k=0

m(Dk).

Proof. By definition we have LA(n) = m
(⋃n

k=0 T
−kA

)
, and

(4.4.12)
n⋃
k=0

T−kA = A ∪

(
n⋃
k=1

T−kA \
k−1⋃
j=0

T−jA

)
= A ∪

n⋃
k=1

Bk,

where all unions after the second equals sign are disjoint. Thus, we have

(4.4.13) LA(n) = m(A) +
n∑
k=1

m(Bk).

Recall that in Lemma 2.2.4 we proved m(Bk) = m(Dk) for all k ≥ 1. Therefore,

(4.4.13) equals

(4.4.14) m(A) +
n∑
k=1

m(Dk) =
n∑
k=0

m(Dk).

�

4.5. Pointwise Dual Ergodicity

Recall from Section 2.4.2 that a conservative, ergodic, measure-preserving system

(X,B,m, T ) is called pointwise dual ergodic if there are constants an(T ) such that

lim
n→∞

1

an(T )

n−1∑
k=0

LkTf =

∫
X

fdm for all f ∈ L1(m).

The following proposition says all rational R-functions of negative type are point-

wise dual ergodic. The proof uses techniques developed in [Aar2], [Aar3], and [Let].
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Proposition 4.5.1. If S is a rational R-function of negative type, then S is

pointwise dual ergodic.

Proof. Let S(x) = −x − β −
∑N

i=1
pi
ti−x , where ti, pi ∈ R with ti, pi > 0, and

S(0) = 0. We know S : R → R. Recall from Chapter 3 that S = h|R, where

h : C → C is a rational map which permutes the upper and lower half planes. Also,

recall from Section 3.4 that for t ∈ R and ω = a+ ib ∈ C the Cauchy distribution σω

is defined by

(4.5.1) σω(t) =
1

π
=
(

1

t− ω

)
where =(z) denotes the imaginary part of z. By Theorem 3.4.1 (originally proved in

[Let]) we have

(4.5.2) LS(σω) = σh(ω).

Therefore,

n−1∑
k=0

LkSσω(t) =
n−1∑
k=0

σhk(ω)(t) =
1

π

n−1∑
k=0

=
(

1

t− hk(ω)

)
.(4.5.3)

If hk(ω) = uk + ivk, then (4.5.3) equals

(4.5.4)
1

π

n−1∑
k=0

=
(

1

t− (uk + ivk)

)
=

1

π

n−1∑
k=0

vk
(t− uk)2 + v2

k

.

A calculation (similar to one in [Aar2] or [Aar3]) shows there exists an M ∈ R such

that |uk| < M for all k ≥ 1, and

(4.5.5) lim
k→∞

vk√
2k
∑N

i=1 pi

= 1.
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Therefore, from (4.5.4) we have

(4.5.6) lim
n→∞

1
π

∑n−1
k=0

vk
(t−uk)2+v2k

1
π

∑n−1
k=0

vk
(uk)2+v2k

= lim
n→∞

1
π

∑n−1
k=0 =

(
1

t−hk(ω)

)
1
π

∑n−1
k=0 =

(
−1
hk(ω)

) = 1.

That is, we have

(4.5.7)
n−1∑
k=0

LkSσω(t) ∼ 1

π

n−1∑
k=0

=
(
−1

hk(ω)

)
.

From Theorem 4.2.1 we have S is ergodic with repsect to Lebesgue measure.

Therefore, if f ∈ L1(λ), then by Theorem 2.4.8 (Hurewicz’s Ergodic Theorem) we

have

(4.5.8) lim
n→∞

∑n−1
k=0 LkSf(t)∑n−1
k=0 LkSσω(t)

=

∫
R fdλ∫
R σωdλ

for almost every t ∈ R.

By definition of the Cauchy distribution, σω we have
∫
R σωdλ = 1. Therefore, if

an(S) ∼ 1
π

∑n−1
k=0 =

(
−1
hk(ω)

)
, then

(4.5.9) lim
n→∞

1

an(S)

n−1∑
k=0

LkSf(t) =

∫
R
fdλ

almost everywhere, and S is pointwise dual ergodic. �

If T is a pointwise dual ergodic transformation, then the sequence an(T ) is called

a return sequence for T . We have that an(T ) is intimately related to the wandering

rate (and therefore return times) of sweep-out-sets. We will exploit this fact and

calculate the return sequence for rational R-functions of positive type. First we give

two basic definitions.

Definition 4.5.2. A function f : R+ → R+ is regularly varying at ∞ if there

exists an α ∈ R such that for all m > 0 we have

(4.5.10) lim
x→∞

f(xm)

f(x)
= mα.
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Similarly, a function f : R+ → R+ is regularly varying at 0 if there exists an α ∈ R

such that for all m > 0 we have

(4.5.11) lim
x→0

f(xm)

f(x)
= mα.

The constant α is call the index of variation. A function f : R+ → R+ is slowly

varying if it is regularly varying with index α = 0.

We note that a function f : R+ → R+ is regularly varying at ∞ with index α if

and only if f(x) = xαL(x), where L : R+ → R+ is slowly varying at∞. Furthermore,

x 7→ f(x) is regularly varying at 0 if and only if x 7→ f( 1
x
) is regularly varying at ∞.

We also have the notion of regularly varying sequences. A positive sequence {yn}∞n=1

is regularly varying at ∞ if there exists an α ∈ R such that for all m > 0 we have

limn→∞
ynm
yn

= mα. For more information on regular variation see [Aar4] or [BGT].

Definition 4.5.3. Given two real sequences {yn}∞n=1 and {zn}∞n=1 such that yn, zn >

0 for all n, we write

(4.5.12) yn . zn if lim
n→∞

yn
zn
≤ 1.

The following proposition can be found in [Aar4]. We, however, provide a slightly

different proof.

Proposition 4.5.4. Let (X,B,m, T ) be a conservative, pointwise dual ergodic,

measure-preserving system, and let A be a Darling-Kac set. Then,

(4.5.13) n . an(T )LA(n) . 2n.

Furthermore, if LA(n) is regularly varying at ∞ with index 1− α, then

(4.5.14) an(T ) ∼ 1

Γ(2− α)Γ(1 + α)

n

LA(n)
,

where Γ denotes the gamma function. That is, if <(z) > 0, then Γ(z) =
∫∞

0
tz−1e−tdt.
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We will use the following Tauberian theorem in the proof of Proposition 4.5.4,

so we state it here for completeness. A continuous version was originally proved in

[Kar] and can also be found in [Aar4]. We use a discrete version which can be found

in [BGT].

Theorem 4.5.5 (Karamata’s Tauberian Theorem). Let {yn} be a sequence of

positive real numbers. Define

(4.5.15) Y (s) =
∑
n≥0

yne
−ns.

Suppose that for all s > 0, we have Y (s) <∞. Let f(n) be slowly varying at ∞, and

let p, θ ∈ [0,∞). Further, let Γ(p) =
∫∞

0
tp−1e−tdt. Then the following statements are

equivalent:

(1) Y (s) ∼ θ
(

1
s

)p
f
(

1
s

)
as s→ 0

(2)
∑n−1

k=0 yk ∼
θ

Γ(p+1)
npf(n) as n→∞.

If {yn} is monotone and p > 0, then both (1) and (2) are equivalent to:

(3) yn ∼ θp
Γ(p+1)

np−1f(n) as n→∞.

We are now in a position to prove Proposition 4.5.4.

Proof of Proposition 4.5.4. We first prove (4.5.13). Suppose (X,B,m, T ) is

a conservative, pointwise dual ergodic, measure-preserving system. Given A ∈ B we

define the first return time sets Ak = {x ∈ A : φA(x) = k} (see (2.2.2)). We also

define sets Dk (as in (2.2.4)) such that D0 = A and Dk = {x ∈ A : φA(x) > k}. Note

that

(4.5.16)
n⋃
k=0

T−kA =
n⋃
k=0

T−kDn−k,

because the right-hand-side is the set of all x ∈ X whose orbit enters A within n

applications of T . A point x in the left-hand-side is in the kth set on the right-hand-

side if k is the last time before n that the orbit of x passes through A. Passing to

55



characteristic functions and integrating (4.5.16) over A yields∫
A

1(∪nk=0T
−kA)dm =

∫
A

1(∪nk=0T
−kDn−k)dm,

so we have

m(A) =
n∑
k=0

∫
X

1A · 1Dn−k ◦ T kdm

=
n∑
k=0

∫
X

LkT1A · 1Dn−kdm

=

∫
A

(
n∑
k=0

LkT1A · 1Dn−k

)
dm.(4.5.17)

If we sum the identities in (4.5.17), then we can obtain the identity in (4.5.13) as

follows,

(N + 1)m(A) =

∫
A

(
N∑
n=0

n∑
k=0

LkT1A · 1Dn−k

)
dm

≤
∫
A

(
N∑
k=0

LkT1A

)(
N∑
j=0

1Dj

)
dm(4.5.18)

≤
∫
A

(
2N∑
n=0

n∑
k=0

LkT1A · 1Dn−k

)
dm

= 2(N + 1)m(A).

The set A is a Darling-Kac set, so we can get a handle on (4.5.18) in the following

way

∫
A

(
N∑
k=0

LkT1A

)(
N∑
j=0

1Dj

)
dm ∼ aN+1(A) ·

∫
A

(
N∑
j=0

1Dj

)
dm

= aN+1(A) · LA(N + 1).(4.5.19)

Therefore, we have
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(4.5.20) (N + 1)m(A) . aN+1(A) · LA(N + 1) . 2(N + 1)m(A).

Recall that from Hurewicz’s ergodic theorem we have an(T ) ∼ an(A)
m(A)

(see (2.4.13)).

Therefore, (4.5.20) is equivalent to (4.5.13).

Now, in order to prove the stronger estimate in (4.5.14), we need to more cleverly

handle the convolution in (4.5.17). Taking the discrete Laplace transform yields

m(A)
∑
n≥0

e−ns =

∫
A

∑
n≥0

(
n∑
k=0

LkT1A · 1Dn−k

)
e−nsdm

=

∫
A

(∑
n≥0

LnT1A · e−ns
)(∑

n≥0

1Dn · e−ns
)
dm.(4.5.21)

We want to get a handle on
∑

n≥0 LnT1A · e−ns, so we note the following identity

(similar to Lemma 3.8.4 in [Aar4])

(4.5.22)
∑
n≥0

LnT1A · e−ns = (1− e−s)
∑
n≥0

(
n∑
k=0

LkT1A

)
e−ns.

We know A is a Darling-Kac set, so by definition
∑n

k=0 LkT1A ∼ an(A). Furthermore,

it is clear that (1− e−s) ∼ s as s→ 0, so (4.5.22) becomes

(4.5.23)
∑
n≥0

LnT1A · e−ns ∼ s
∑
n≥0

an(A)e−ns as s→ 0.

Using (4.5.23) combined with the fact that
∑

n≥0 e
−ns ∼ 1

s
as s→ 0, we can substitute

into (4.5.21) to obtain

m(A)

s
∼ s ·

∫
A

(∑
n≥0

an(A)e−ns

)(∑
n≥0

1Dn · e−ns
)
dm

= s ·

(∑
n≥0

an(A)e−ns

)(∑
n≥0

m(Dn)e−ns

)
.(4.5.24)
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Now, we are in a position to apply Karamata’s Tauberian Theorem (Theorem 4.5.5)

to the two sums in (4.5.24). By assumption LA(n) is regularly varying at ∞ with

index 1− α, so we can write LA(n) = n1−αf̃(n), where f̃(n) is slowly varying at ∞.

Since f̃(n) is slowly varying, so is f(n) = f̃(n) ·Γ(2−α). From Lemma 4.4.5 we know

LA(n) =
∑n

k=0m(Dk). Therefore,

(4.5.25) LA(n) =
n−1∑
k−0

m(Dk) =
(n− 1)1−α · f(n)

Γ(2− α)
,

which satisfies part (2) of Theorem 4.5.5 with θ = 1 and p = 1 − α. Therefore, by

part (1) of Theorem 4.5.5 we have

(4.5.26)
∑
n≥0

m(Dn)e−ns ∼
(

1

s

)1−α

f

(
1

s

)
as s→ 0.

Using this, we show
∑

n≥0 an(A)e−ns also satisfies part (1) of Theorem 4.5.5. From

(4.5.24) we have

(4.5.27)
∑
n≥0

an(A)e−ns ∼ m(A)

s2
· 1∑

n≥0m(Dn)e−ns
.

Therefore, substituting from (4.5.26) yields

(4.5.28)
∑
n≥0

an(A)e−ns ∼ m(A)

s2
· 1(

1
s

)1−α
f
(

1
s

) = m(A)

(
1

s

)1+α
1

f(1
s
)
,

which satisfies part (1) of Theorem 4.5.5 with θ2 = m(A), p2 = 1 + α, and f2 = 1
f
.

Therefore, since an(A) is monotone we have from part (3) of Theorem 4.5.5

(4.5.29) an ∼
m(A)(1 + α)

Γ(2 + α)
nαf2(n).

We know f = 1
f2

, and by (4.5.25) we have f(n) = LA(n)Γ(2−α)
n1−α . Substituting for f2 in

(4.5.29) yields

(4.5.30) an ∼
m(A)(1 + α)nα

Γ(2 + α)
· n1−α

LA(n)Γ(2− α)
.
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Noting that

(4.5.31)
(1 + α)

Γ(2 + α)
=

(1 + α)

(1 + α)Γ(1 + α)
=

1

Γ(1 + α)
,

the proof is complete. �

Now, let’s return to rational R-functions of negative type. Recall that by Proposition

4.4.2 we know the wandering rate, LA(n) for A = [q1, qN+1]. Thus, we can understand

the return times rational R-functions of negative type, S.

Lemma 4.5.6. If S is a rational R-function of negative type, then the return

seqence, ak(T ) for S is given by

(4.5.32) ak(S) ∼ 2

π

√
k∑N2+2N

j=1 ρj
.

Proof. Let S(x) = −x − β −
∑N

i=1
pi
ti−x , where β, ti, pi ∈ R with ti, pi > 0, and

S(0) = 0. By By Proposition 4.2.3 we have S2(x) = x+
∑N2+2N

j=1
ρj
τj−x , where τj, ρj ∈ R

with ρj > 0. Let A = [q1, qN+1], so by Proposition 4.4.2 we know the wandering rate

of A is given by LA(k) = 2
√
k
∑N2+2N

j=1 ρj. Note that LA(k) is regularly varying

with index 1/2. Now, Proposition 4.5.4 relates LA(k) to ak(S) in the following way

ak(T ) ∼ 1
Γ(2−α)Γ(1+α)

· k
LA(k)

. Therefore,

(4.5.33) ak(S) ∼ 1

Γ(3
2
)Γ(3

2
)
· k

2
√
k
∑N2+2N

j=1 ρj

.

Noting that Γ
(

3
2

)
=
√
π

2
yields the result. �

4.6. Quasi-Finiteness

Before we can state the definition of a quasi-finite transformation, we need some

notation. Let (X,B,m) be a finite-measure space. The entropy of a countable parti-

tion, α = {ai}, of X is defined to be
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(4.6.1) H(α) = −
∞∑
i=0

m(ai) log(m(ai)).

The following definition is due to Krengel and can be found in [Kre].

Definition 4.6.1. Let (X,B,m, T ) be a conservative measure-preserving system.

The map T is called quasi-finite if there exists a sweep-out-set A ∈ B with m(A) <∞

such that the first return time partition, A = {Ak}k≥1 (as in (2.2.2)), has finite

entropy.

A stronger property than quasi-finite is called log lower bounded. The following

definition can be found in [AP]. Recall from Section 2.2 that for A ∈ B we set

φA(x) = min{n : T n(x) ∈ A}.

Definition 4.6.2. Let (X,B,m, T ) be a conservative, ergodic, infinite-measure-

preserving system. We set

(4.6.2) Flog =

{
A ∈ B : 0 < m(A) <∞ and

∫
A

log(φA)dm <∞
}
.

The transformation T is called log-lower bounded (LLB) if Flog 6= ∅.

The following Lemma is stated as a remark in [AP] with very little explanation.

The details of the proof are, however, outlined in a slightly different context in [Aar1].

We combine the information to state and prove the complete result here.

Lemma 4.6.3. If T is log lower bounded, then T is quasi-finite.

Proof. Let T be an LLB transformation, and let A ∈ Flog. By (4.6.2) we have,∫
A

log(φA)dm =
∞∑
n=1

∫
An

log(n)dm

=
∞∑
n=1

m(An) log(n) <∞.(4.6.3)
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Thus, we need to show that
∑∞

n=1m(An) log(n) <∞ implies

(4.6.4) H(A) =
∞∑
n=1

m(An) log
1

m(An)
<∞.

Let C = {n ≥ 1 : m(An) < 1
(n+1)2

}. Note that the function x log(1/x) is increasing on

(0, 1/4). If n ∈ C, then

(4.6.5) m(An) log
1

m(An)
≤ 1

(n+ 1)2
log

1

(n+ 1)2
≤ 2 log(n+ 1)

(n+ 1)2
.

If n /∈ C (i.e. (n+ 1)2 ≤ 1
m(An)

), then

(4.6.6) m(An) log
1

m(An)
≤ m(An)2 log(n+ 1).

Therefore,

H(A) =
∑
n∈C

m(An) log
1

m(An)
+
∑
n/∈C

m(An) log
1

m(An)

≤
∞∑
n=1

2 log(n+ 1)

(n+ 1)2
+
∞∑
n=1

m(An)2 log(n+ 1).(4.6.7)

The first sum in (4.6.7) clearly converges, and the second sum converges by our

assumption that A ∈ Flog and (4.6.3). �

Given A ∈ B with m(A) < ∞, we consider the sets Dn defined in (2.2.4). The

following lemma gives a necessary and sufficient condition on m(Dn) under which

A ∈ Flog. The idea for the proof has been adapted from [Aar1].

Lemma 4.6.4. Let T be an LLB transformation, then

(4.6.8) A ∈ Flog ⇐⇒
∞∑
n=1

1

n2

n∑
k=0

m(Dk) <∞.

Proof. We begin by making the observation that

(4.6.9)
∞∑
n=k

1

n2
∼ 1

k
.
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This comes from the fact that we can estimate integral remainders, in the following

way ∫ ∞
k+1

1

x2
dx ≤

∞∑
n=k

1

n2
≤
∫ ∞
k

1

x2
dx

=⇒ 1

k + 1
≤

∞∑
n=k

1

n2
≤ 1

k
.

Thus, considering the right-hand-side of (4.6.8) we have

(4.6.10)
∞∑
n=1

1

n2

n∑
k=0

m(Dk) =
∞∑
k=1

m(Dk)
∞∑
n=k

1

n2
<∞ ⇐⇒

∞∑
n=1

m(Dn)

n
<∞.

We now consider

(4.6.11)
∞∑
n=1

m(Dn)

n
=
∞∑
n=1

1

n

∞∑
k=n+1

m(Ak) =
∞∑
k=2

m(Ak)
k−1∑
n=1

1

n
<∞ ⇐⇒

∞∑
n=1

log(n)m(An) <∞.

The equivalence in (4.6.11) comes from the fact that the sequence wk = log(k) −∑k−1
n=1

1
n

converges. By definition A ∈ Flog ⇐⇒
∑∞

n=1 log(n)m(An) < ∞ which

completes the proof. �

Proposition 4.6.5. If S is a rational R-function of negative type, then the set

A = [q1, qN+1] is a quasi-finite set for S.

Proof. By Lemma 4.6.4 we have A ∈ Flog ⇐⇒
∑∞

k=1
LA(k)
k2

< ∞. By Lemma

4.4.2 LA(k) = 2
√
k
∑N2+2N

j=1 ρj, where the ρj are the weights on the linear factors

coming from the second iterate S2. Therefore, A ∈ Flog, so by Lemma 4.6.3 A is

quasi-finite set for S. �

We are now ready to state and prove the main theorem of this section.

Theorem 4.6.6. All rational R-functions of negative type are log-lower bounded

and quasi-finite.
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Proof. By Proposition 4.6.5, there exists a a log-lower bounded (and therefore

quasi-finite) set for every rational R-function of negative type. �
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CHAPTER 5

ENTROPY

5.1. Preliminaries on Entropy

5.1.1. Entropy of Finite-Measure-Preserving Transformations. We begin with

the definition of entropy for transformations preserving a finite measure. Let (X,B,m)

be a finite-measure space, and let α = {ai} be a countable partition of X. The entropy

of α is defined by

(5.1.1) H(α) = −
∞∑
i=0

m(ai) log(m(ai)).

Let α1 = {a(1,i)} and α2 = {a(2,i)} be two partitions of X. We define their

refinement to be

(5.1.2) α1 ∨ α2 = {a(1,i) ∩ a(2,i) : a(1,i) ∈ α1, a(2,i) ∈ α2}.

If α1 = {a(1,i)}, ..., αn = {a(n,i)} are finitely many partitions of X then α1∨α2∨...∨αn

denotes their common refinement.

If α = {ai} is a countable partition, and T is a measure-preserving transformation

of (X,B,m), then T−nα denotes the partition {T−nai}. The entropy of T with respect

to α is defined by

(5.1.3) h(T, α) = lim
n→∞

1

n
H(α ∨ T−1α ∨ ... ∨ T−(n−1)α).

The entropy of the transformation T is defined by

(5.1.4) h(T ) = suph(T, α),



where the supremum is taken over all finite partitions α.

5.1.2. Entropy of Infinite-Measure-Preserving Transformations. Krengel was

the first to extend the notion of entropy to infinite-measure-preserving transforma-

tions (see [Kre]). In order to state Krengel’s definition, we must first recall the

definition of the induced transformation from Section 2.2. That is, if (X,B,m, T ) is

a conservative, measure-preserving system and A ∈ B, then TA is the induced trans-

formation of T on A (see (2.2.1) for a complete definition). We now state Krengel’s

definition of entropy for conservative infinite-measure-preserving transformations.

Definition 5.1.1 ([Kre]). Let (X,B,m, T ) be a conservative measure-preserving

system. Let A ∈ B such that 0 < m(A) <∞. Define

(5.1.5) hKr(T ) = sup
A
h(TA,m|A).

Taking the supremum over all finite-measure sets, A ∈ B, to calculate hKr(T )

would be quite cumbersome. Luckily, Krengel also proved the following theorem

which provides a simplification of Definition 5.1.1 in the case when A is a sweep-out

set.

Theorem 5.1.2 ([Kre]). Let (X,B,m, T ) be a conservative measure-preserving

system. If A ∈ B such that 0 < m(A) <∞, and A is a sweep-out set for T , then

(5.1.6) hKr(T ) = h(TA,m|A).

We note that Krengel’s definition of entropy is equivalent to Abramov’s formula

for entropy in the finite-measure-preserving case. Also, we have written m|A, to

emphasize that we are considering the measure, m, restricted to A (not normalized).

Had we instead normalized m on A, then we would need to multiply the right-hand

side of (5.1.5) by a factor of m(A).
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In 1969 Parry provided a different extension of entropy to transformations pre-

serving an infinite measure (see [Par]). Before stating Parry’s definition, we need a

few definitions concerning conditional entropy.

Let (X,B,m, T ) be a measure-preserving system. Let C be a sub-σ-algebra of B.

If f ∈ L1(m), then dµ = fdm defines a measure such that µ(A) =
∫
A
fdm. By the

Radon-Nikodym Theorem there exists a function E(f |C) such that

(5.1.7)

∫
C

E(f |C)dm =

∫
C

fdm for all C ∈ C.

We call E(f |C) the conditional expectation of f given C. Now, for A ∈ B we define

m(A|C) = E(1A|C). If α = {ai} is a countable partition of X, then we define the

conditional information of α given C to be

(5.1.8) I(α|C) = −
∑
ai∈α

log(m(ai|C)) · 1ai .

Finally, the conditional entropy of α given C is defined by

(5.1.9) H(α|C) =

∫
X

I(α|C)dm.

Given a partition α we write α̂ to denote the σ-algebra generated by α. That is,

elements of α̂ are unions of the atoms in α. For more information on the information

function and conditional entropy see [Par] or [Pet]. We now state Parry’s definition

of entropy for infinite-measure-preserving transformations.

Definition 5.1.3 ([Par]). Let (X,B,m, T ) be a system preserving a σ-finite

measure. The Parry entropy of T is defined by

hPa(T ) = sup{H(α|T̂−1α)},

where the supremum is taken over all finite partitions α such that T−1α ≤ α.
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The following theorem relates hKr(T ) and hPa(T ), and a proof can be found in

[Par].

Theorem 5.1.4. If T is a conservative measure-preserving transformation of a

σ-finite measure space, then hKr(T ) ≥ hPa(T ). If T is quasi-finite, then hKr(T ) =

hPa(T ).

Finally, the Poisson suspension, (X∗,B∗,m∗, T∗), of a system preserving a σ-finite

measure, (X,B,m, T ), is a method of associating a probability-preserving transfor-

mation to a possibly infinite-measure-preserving system. (X∗,B∗,m∗, T∗) is a point

process in which identical particles propagate according to T , do not interact with

one another, and the expected number of particles in each set E ∈ B is determined

(in a Poisson manner) by m(E). A formal description of the Poisson suspension is

given in [Roy] and [JMRdlR].

Definition 5.1.5 ([Roy]). The Poisson entropy of an infinite-measure-preserving

transformation is defined as the Kolmogorov entropy of the Poisson suspension. That

is, hPS(T ) = h(T∗).

The following result relates the Poisson entropy to that of Krengel and Parry, and

a proof can be found in [JMRdlR].

Theorem 5.1.6. If T is a conservative measure-preserving transformation of a

σ-finite measure space, then h(T∗) ≥ hPa(T ), and all three definitions coincide if T

is quasi-finite.

5.2. Krengel Entropy of Rational R-functions of Negative Type

In this section we provide a method of computing the Krengel entropy for all

rational R-functions of negative type. The following theorem is the main result of

this section.
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Theorem 5.2.1. If S is a rational R-function of negative type, then

(5.2.1) hKr(S) =

∫
R

log |S ′(x)|dλ(x).

Before proving Theorem 5.2.1 we give a little motivation and history for the inte-

gral formula. The following definition can be found in [Tha].

Definition 5.2.2. Let I = [a, b] be a closed interval in R. Let TR(I) denote

the class of all transformations T : I → I such that there exists a partition into

subintervals {Ij : j ∈ J} satisfying the following properties:

(1) (piecewise differentiable and surjective) T |Ij is C2 and T (Ij) = I for all j.

Each Ij contains exactly one fixed point of T .

(2) (expanding) There exists a ρ > 1 such that |T ′(x)| ≥ ρ for all x ∈ Ii.

(3) (Adler’s condition)
∣∣∣ T ′′(x)
T ′(x)2

∣∣∣ is bounded on
⋃
j∈J Ij.

If T ∈ TR(I), then T satisfies Renyi’s condition, and T preserves an absolutely

continuous finite measure, µ ([Rén], [Tha]).

The following theorem concerning entropy of T ∈ TR(I) is referred to as Rohlin’s

entropy formula, and it has been studied in [Tha], [Yur], and [PY].

Theorem 5.2.3. [Roh2] Let I = [a, b] be a closed interval of R. If T ∈ TR(I)

and µ is invariant for T , then

(5.2.2) h(T ) =

∫
I

log |T ′(x)|dµ(x).

Let S be a rational R-function of negative type. Consider the Rohlin partition

Q = {Q1, ..., QN+1} for S as in Remark 4.3.1. Recall that 0 = q1, q2, ..., qN+1 are the

roots of S, and Qi = [qi, qi+1) for i = 1, ..., N while QN+1 = (−∞, q1) ∪ (qN+1,∞).

Also, recall that S : Qi → R is one-to-one and onto. Furthermore, we let ψi denote

the inverse of S restricted to Qi, and ψi1,...,in = S−1|Qi1...in . We define the notation

ψi[k] = ψki as in (4.3.4).
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We know from Proposition 4.3.2 that A = [q1, qN+1) is a sweep-out set for S. Let

A = {Ak} be the first-return partition of A as in (2.2.2). That is, Ak = {x ∈ A :

φA(x) = k}. Now, we partition each atom Ak into N sets Ak,i for i = 1, .., N such that

T k : Ak,i → A is one-to-one and onto. Let B = {Bk} the hitting-time partition of Ac

as in (2.2.3). That is, Bk = {x ∈ Ac : φA(x) = k}. Figure 5.1 shows how Ak,i and Bk

move under ψ maps. Each solid arrow depicts a one-to-one and onto mapping, and

the dashed arrows indicate a series of N − 2 one-to-one and onto mappings.

B1 B2 B3
...

A1 A2 A3 A4

...

A

ψN+1

ψN+1 ψN+1 ψN+1

Ac

A

ψ1

A1,1 ...

ψN

A1,N

ψ1

A2,1 ...

ψN

A2,N

ψ1

A3,1 ...

ψN

A3,N

ψ1

A4,1 ...

ψN

A4,N

Figure 5.1. How hitting-time sets move under ψj, j = 1, ..., N + 1.

Recall from Section 2.2 the definition of the induced transformation, SA. We have

that SA is a finite-measure-preserving transformation of (A,B|A, λ|A). Our goal is to

apply Rohlin’s formula to the induced transformation.

Lemma 5.2.4. If S is a rational R-function of negative type and A = [q1, qN+1),

then the induced transformation, SA ∈ TR(A).

Proof. We want so show SA satisfies (1)-(3) of Definition 5.2.2. Consider the

partition Ak,i defined above. To show (1) we note that SA = Sk on each Ak,i, so

SA : Ak,i → A is one-to-one and onto. Furthermore, S is piecewise smooth on R, so
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SA is C2 on each Ak,i. To show (2) we note,

(5.2.3) |S ′(x)| = 1 +
N∑
i=1

pi
(ti − x)2

.

We have |S ′(x)| > 1 for all x ∈ R, but |S ′(x)| → 1 as x → ∞. The set A = [q1, q2],

however, is bounded away from ∞. Therefore, there exists a constant ρ > 1 such

that infx∈A |S ′(x)| ≥ ρ, so by the chain rule |S ′A(x)| ≥ ρ > 1 for all x ∈ A. Finally, to

show (3) we let x ∈ Ak,i and use the chain rule to obtain∣∣∣∣ S ′′A(x)

(S ′A(x))2

∣∣∣∣ ≤ ∣∣∣∣ S ′′(Sk−1(x))

(S ′(Sk−1(x)))2

∣∣∣∣+

∣∣∣∣ S ′′(Sk−2(x))

S ′(Sk−1(x)) · (S ′(Sk−2(x)))2

∣∣∣∣
+...+

∣∣∣∣ S ′′(x)

S ′(Sk−1(x)) · S ′(Sk−2(x)) . . . S ′(S(x)) · (S ′(x))2

∣∣∣∣
≤

k∑
j=1

∣∣∣∣ S ′′(Sk−j(x))

(S ′(Sk−j(x)))2

∣∣∣∣ .(5.2.4)

A calculation shows |S ′′(y)(S ′(y))−2| is bounded and decreases for large |y| satis-

fying |S ′′(y)(S ′(y))−2| ≤M |y|−3. Since x ∈ Ak, we know Sk−j(x) ∈ Bj (as in (2.2.3)).

From our study of A in (4.3.9), we have the following two cases:

(1) If j is even, then Bj = [V(j/2)−1, Vj/2]

(2) If j is odd, then Bj = [Wdj/2e,Wbj/2c].

Therefore, Sk−j ∈ [V(j/2)−1, Vj/2]∪ [Wdj/2e,Wbj/2c]. Considering the right-hand side of

(5.2.4) we have

k∑
j=1

∣∣∣∣ S ′′(Sk−j(x))

(S ′(Sk−j(x)))2

∣∣∣∣ ≤ M

k∑
j=1

|Wbj/2c|−3 + |V(j/2)−1|−3

≤ M
k∑
j=1

1

c3
2(bj/2c)3/2

+
1

c3
1(j/2− 1)3/2

,(5.2.5)

where the second line comes from the proof of Proposition 4.3.2. We see that the

limit as k →∞ of (5.2.5) is finite, and independent of k. �
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We have the following lemma concerning the Krengel entropy of rational R-

functions of negative type.

Lemma 5.2.5. If S is a rational R-function of negative type, and A = [q1, qN+1)

as above, then

(5.2.6) hKr(S) =

∫
A

log |S ′A(x)|dλA(x).

Proof. By Lemma 5.2.4 we know SA ∈ TR(A), so by Theorem 5.2.3 we have

h(SA) =
∫
A

log |S ′A(x)|dλA(x). Proposition 4.3.2 implies that the set A is a sweep-out

set, so by Theorem 5.1.2 we have hKr(S) = h(SA). �

Lemma 5.2.5 provides a theoretical way to compute the Krengel entropy of any

rational R-function of negative type. The integral, however, is nontrivial. Our ul-

timate goal is to use Lemma 5.2.5 to prove Theorem 5.2.1, which says the Krengel

entropy of any rational R-function of negative type can be computed using Rohlin’s

formula. The first step is to show log |S ′| is indeed integrable, and we do in the next

lemma.

Lemma 5.2.6. If S is a rational R-function of negative type, then

(5.2.7)

∫
R

log |S ′(x)|dλ(x) <∞.

Proof. We have that S(x) = −x− β −
∑N

i=1
pi
ti−x , so {t1, ..., tN} are the poles of

S. Assume ti < ti+1, so the ti are in ascending order. We will show the integrability

of log |S ′(x)| in three separate pieces.

(1) The integral between the poles is finite. That is,∫ t(i+1)−ε

ti+ε

log |S ′(x)|dλ(x) <∞,

for i = 1, ..., N − 1.
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(2) The integral near each pole is finite. That is,∫ ti+ε

ti−ε
log |S ′(x)|dλ(x) <∞,

for i = 1, ..., N .

(3) The integral outside the smallest and largest poles is finite. That is,∫ t1−ε

−∞
log |S ′(x)|dλ(x) +

∫ ∞
tN+ε

log |S ′(x)|dλ(x) <∞.

To show (1) we note that log |S ′| is continuous on the compact set [ti+ε, t(i+1)−ε],

so there exists an M ∈ R such that log |S ′(x)| < M for all x ∈ [ti + ε, t(i+1) − ε].

Therefore,

(5.2.8)

∫ t(i+1)−ε

ti+ε

log |S ′(x)|dλ(x) ≤M · λ
(
[ti + ε, t(i+1) − ε]

)
<∞.

Now, to show (2) we let x ∈ [ti − ε, ti + ε] and write

(5.2.9) |S ′(x)| = 1 +
i−1∑
j=1

pj
(tj − x)2

+
pi

(ti − x)2
+

N∑
j=i+1

pj
(tj − x)2

.

If i 6= j, then each term
pj

(tj−x)2
is bounded. Therefore, we need only show

(5.2.10)

∫ ti+ε

ti−ε
log

(
pi

(ti − x)2

)
dλ(x) <∞,

which is equivalent to showing

(5.2.11)

∫ ti+ε

ti−ε
log

(
1

(ti − x)2

)
dλ(x) <∞.

In order to show (5.2.11) we change variables using y = (ti − x), so the integral

becomes

(5.2.12)

∫ −ε
ε

log(y2)dλ(y) = 2 lim
τ→0

∫ ε

τ

log(y2)dλ(y) = 2 lim
τ→0
−2y + y log(y2)

∣∣∣ε
τ
.
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A simple computation shows that 2 limτ→0−2y + y log(y2)|ετ = 2(−2ε + ε log(ε2))

which is finite for all ε and equals 0 as ε→ 0.

Finally, to prove (3) we give an argument which shows
∫∞
tN+ε

log |S ′(x)|dλ(x) <∞,

and we comment that the other piece follows in a similar way. First, choose M > 0

large enough such that 1+
∑N

j=1
pi

(ti−x)2
≤ Np1

(t1−x)2
for all x ∈ (M,∞). Note that log |S ′|

is continuous on the compact set [tN + ε,M ]. Thus, it is bounded and integrable.

Now, we need only show

(5.2.13)

∫ ∞
M

log

(
1 +

N∑
j=1

pi
(ti − x)2

)
dλ(x) <∞,

which by our choice of M is equivalent to showing

(5.2.14)

∫ ∞
M

log

(
1 +

1

x2

)
dλ(x) <∞.

We note log(1 + x) < x for all x ∈ R, so log
(
1 + 1

x2

)
< 1

x2
. Since 1

x2
is integrable, we

have shown (5.2.14), and thus completed the proof of (3). �

Now that we have log |S ′| is integrable, our goal is to prove the following proposi-

tion, which is the main tool that will be used in the proof of Theorem 5.2.1. It says

that if S is a rational R-function of negative type, then the expression in Rohlin’s

formula for the induced transformation, SA, is equal to that in Rohlin’s formula for

the original transformation, S.

Proposition 5.2.7. If S is a rational R-function of negative type and A =

[q1, qN+1), then

(5.2.15)

∫
A

log |S ′A(x)|dλ|A(x) =

∫
R

log |S ′(x)|dλ(x).

The main idea in the proof of Proposition 5.2.7 is to exploit the fact that if x ∈ Ak

as in (2.2.2), then SA(x) = Sk(x). Intuitively, we will unravel the chain rule on the

atoms of the first-return partition via change of variables. Before proving Proposition
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5.2.7 we recall some notation from Section 2.2. Let Dk = {x ∈ A : φA(x) > k} as

in (2.2.4). The following observation will be key in keeping track of how sets move

under SA.

Remark 5.2.8. We have A =
⋃N
i=1 ψi(R) and Ac = ψN+1(R). We also have that

(5.2.16) Dk =
N⋃
i=1

ψi,(N+1)[k−1](A
c)

The following lemma will be used in the proof of Proposition 5.2.7.

Lemma 5.2.9. Let x ∈ Ac, then

(5.2.17)
∞∑
k=1

N∑
j=1

Jψj,(N+1)[k−1]
(x) = 1.

Proof. By Lemmas 2.2.5 and 2.2.6, we have for any C ∈ B

(5.2.18) λ(C) =
∞∑
k=0

λ|A(Dk ∩ S−kC).

Writing Dk in terms of ψ functions as in (5.2.16) yields

λ(C) = λ|A(D0 ∩ C) +
∞∑
k=1

λ|A

(
N⋃
j=1

ψj,(N+1)[k−1](A
c) ∩ S−kC

)

= λ|A(D0 ∩ C) +
∞∑
k=1

λ|A

(
N⋃
j=1

ψj,(N+1)[k−1](A
c ∩ C)

)

= λ|A(D0 ∩ C) +
∞∑
k=1

N∑
j=1

λ|A
(
ψj,(N+1)[k−1](A

c ∩ C)
)
.(5.2.19)

Therefore, for x ∈ Ac

(5.2.20) 1 =
dλ

dλ
(x) =

∞∑
k=1

N∑
j=1

dλ|A
dλ

(ψj,(N+1)[k−1](x)) · Jψj,(N+1)[k−1]
(x).
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We know ψj,(N+1)[k−1](x) ∈ A, so dλ|A
dλ

(ψj,(N+1)[k−1](x)) = 1 for all k. Therefore,

(5.2.21)
∞∑
k=1

N∑
j=1

Jψj,(N+1)[k−1]
(x) = 1.

�

We are now ready to prove Proposition 5.2.7.

Proof of Proposition 5.2.7. Let S be a rational R-function of negative type

and A = [q1, qN+1). By the definition of SA and Ak we have that A =
⋃∞
k=1Ak, and

for x ∈ Ak, SA(x) = Sk(x). Therefore,

(5.2.22)

∫
A

log |S ′A(x)|dλ|A(x) =
∞∑
k=1

∫
Ak

log |(Sk)′(x)|dλ|A(x).

Applying the chain rule and log properties to line (5.2.22) yields

(5.2.23)
∞∑
k=1

k−1∑
j=0

∫
Ak

log |S ′(Sj(x)|dλ|A(x).

By definition D0 = A and Dk =
⋃
n>k An, so line (5.2.23) becomes

∞∑
k=0

∫
Dk

log |S ′(Sk(x)|dλ|A(x)(5.2.24)

=

∫
A

log |S ′(x)|dλ|A(x)︸ ︷︷ ︸
(I)

+
∞∑
k=1

∫
Dk

log |S ′(Sk(x)|dλ|A(x)︸ ︷︷ ︸
(II)

.(5.2.25)

We know that λ|A = λ on A, so (I) =
∫
A

log |S ′(x)|dλ(x). Thus, in order to com-

plete the proof we must show that (II) =
∫
Ac

log |S ′(x)|dλ(x). By the definition of Dk

and ψ together with Remark 5.2.8 we know Dk =
⋃N
j=1 ψj,(N+1)[k−1](A

c). Therefore,

we have

(5.2.26) (II) =
∞∑
k=1

∫
⋃N
j=1 ψj,(N+1)[k−1](Ac)

log |S ′(Sk(x)|dλ|A(x).
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For each k,
⋃N
j=1 ψj,(N+1)[k−1](A

c) is a disjoint union, so changing the integral over

the finite union to a finite sum of integrals yields

(5.2.27)
∞∑
k=1

N∑
j=1

∫
ψj,(N+1)[k−1](A

c)

log |S ′(Sk(x)|dλ|A(x).

Let Sk(x) = y and x = ψj,(N+1)[k−1](y). Therefore, by change of variables (5.2.27)

becomes

(5.2.28)
∞∑
k=1

N∑
j=1

∫
Ac

log |S ′(y)| · Jψj,(N+1)[k−1]
(y)dλ(y).

By Lemma 5.2.6 we have that log |S ′(y)| is integrable. Furthermore, by Lemma

5.2.9 we have
∑∞

k=1

∑N
j=1 Jψj,(N+1)[k−1]

(y) = 1. Thus, by the dominated convergence

theorem line (5.2.28) becomes

(5.2.29)

∫
Ac

log |S ′(y)|dλ(y)

Finally combining (I) and (II), we have

(5.2.30) (I)+(II) =

∫
A

log |S ′(x)|dλ(x)+

∫
Ac

log |S ′(x)|dλ(x) =

∫
R

log |S ′(x)|dλ(x),

which completes the proof. �

We are now ready to prove the main theorem of this section.

Proof of Theorem 5.2.1. By the definition of Krengel Entropy, hKr(S) =

h(SA). Also, Theorem 5.2.3 and Lemma 5.2.4 say we can use Rohlin’s formula for

the entropy of the induced transformation. That is,

(5.2.31) h(SA) =

∫
A

log |S ′A(x)|dλ|A(x).
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By Proposition 5.2.7 we have

(5.2.32)

∫
A

log |S ′A(x)|dλ|A(x) =

∫
R

log |S ′(x)|dλ(x).

Therefore,

(5.2.33) hKr(S) =

∫
R

log |S ′(x)|dλ(x).

�

Corollary 5.2.10. If S is a rational R-function of negative type, then

(5.2.34) hPa(S) = hPo(S) =

∫
R

log |S ′(x)|dλ(x).

Proof. By Theorem 4.6.6 S is quasi-finite with respect to λ. Therefore, by

Theorems 5.1.4 and 5.1.6 we have hKr(S) = hPa(S) = hPo(S). �
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CHAPTER 6

ENTROPY AS AN ISOMORPHISM INVARIANT

6.1. Preliminaries on c-Isomorphisms

Entropy and the notion of uncertainty is a topic of importance in many fields.

In ergodic theory, entropy is an isomorphism invariant for measure-preserving trans-

formations. Suppose (X1,B1,m1, T1) and (X2,B2,m2, T2) are two measure-preserving

systems. We first recall from Definition 2.1.9 the definition of an isomorphism between

two probability-preserving transformations T1 and T2.

We now extend the definition of isomorphism to transformations that preserve

an infinite measure. In this case we also have the notion of c-isomorphisms. The

definition is similar, but property (2) of the isomorphism φ is less restrictive.

Definition 6.1.1 (c-Isomorphic). Let (X1,B1,m1, T1) and (X2,B2,m2, T2) be two

infinite-measure-preserving systems. Suppose we have two sets M1 ∈ B1 and M2 ∈ B2

withm1(X1\M1) = 0 andm2(X2\M2) = 0 such that T1(M1) ⊆M1 and T2(M2) ⊆M2.

For c ∈ (0,∞] we say (X1,B1,m1, T1) is a c-isomorphic to (X2,B2,m2, T2) if there

exists an invertible map φ : M1 →M2 such that for all A ∈ B2|M2 ,

(1) φ−1(A) ∈ B1|M1 ,

(2) m1(φ−1(A)) = c ·m2(A), and

(3) (φ ◦ T1)(x) = (T2 ◦ φ)(x) for all x ∈M1.

We will denote this situation by φ : T1 →c T2, and φ is called a c-isomorphism.

As stated above, we are primarily interested in entropy as an isomorphism in-

variant. For infinite-measure-preserving transformations, however, it is important to

be clear about the measure under c-isomorphisms. Our primary measure of interest



is still 1-dimensional Lebesgue measure, λ, on R. Given two rational R-functions of

negative type we consider only c-isomorphisms (R,B, λ, S1) →c (R,B, λ, S2). If we

write hKr(S), then we assume the measure of interest is λ.

Fixing Lebesgue measure forces the isomorphism φ : (R,B, λ, S1)→c (R,B, λ, S2)

to have the following property

(6.1.1)
d(λ ◦ φ−1)

dλ
(x) = c for almost every x ∈ R.

From now on, when we write φ : S1 →c S2 is a c-isomorphism of rational R-

functions of negative type, we mean φ is a c-isomorphism such that (6.1.1) holds. In

an effort to stay consistent with notation throughout proofs we will often write (6.1.1)

as Jφ−1 = c almost everywhere. Furthermore, rational R-functions of negative type

preserve λ and are piecewise smooth on R, so we often write JS = |S ′(x)|.

As stated above, we are interested in studying Krengel entropy as an isomorphism

invariant. The following lemma shows that a c-isomorphism multiplies the entropy

by a factor of c.

Proposition 6.1.2. If S1 and S2 are rational R-functions of negative type and

φ : S1 →c S2 is a c-isomorphism, then

(6.1.2) hKr(S1) = c · hKr(S2).

Proof. Suppose φ : S1 →c S2 is a c-isomorphism. By definition, S2 = φ◦S1◦φ−1

and λ◦φ−1 = c·λ. We begin by noting Jφ−1(x) = 1/(Jφ(φ−1x)). Then, using Theorem

5.2.1 combined with the chain rule and properties of log yields

c

∫
R

log (JS2(x)) dλ(x) = c

∫
R

log
(∣∣Jφ(S1(φ−1x))

∣∣) dλ(x) + c

∫
R

log
(∣∣JS1(φ

−1x)
∣∣) dλ(x)

− c
∫
R

log
(∣∣Jφ(φ−1x)

∣∣) dλ(x).

After the substitution u = φ−1(x) the last line becomes
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∫
R

log (|Jφ(S1(u))|) dλ(u) +

∫
R

log (|JS1(u)|) dλ(u)−
∫
R

log (|Jφ(u)|) dλ(u).

We note that S1 preserves Lebesgue measure, so we can simplify the first piece and

obtain ∫
R

log (|Jφ(u)|) dλ(u) +

∫
R

log (|JS1(u)|) dλ(u)−
∫
R

log (|Jφ(u)|) dλ(u).

Finally, we have a simple cancellation, and the proof is complete. �

Corollary 6.1.3. Krengel entropy is a 1-isomorphism invariant for rational R-

functions of negative type. That is, if S1 and S2 are 1-isomorphic, then hKr(S1) =

hKr(S2).

We note that Krengel entropy is not a c-isomorphism invariant. That is, if

hKr(S1) 6= hKr(S2), then we cannot immediately determine whether or not S1 and S2

are c-isomorphic. To illustrate this, consider the following example.

Example 6.1.4. Consider the following family of rational R-functions of negative

type

(6.1.3) Ta(x) = −x− (a+ 1)− −(a+ 1)

1− x
, where a < −1.

This family will be studied in detail in Section 6.4, but for now consider the following

two rational R-functions of negative type

(6.1.4) T−2(x) = −x+ 1− 1

1− x
and T−5(x) = −x+ 4− 4

1− x
.

By Theorem 5.2.1 we have hKr(T−2) = 2π, but hKr(T−5) = 4π. Thus, it is clear that

T−2 and T−5 are not 1-isomorphic, but the entropy alone does not determine whether

T−2 and T−5 are c-isomorphic.
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Let φ(x) = 3− 2x, so φ−1(x) = 3−x
2

. A simple computation shows

(φ ◦ T−2 ◦ φ−1) = T−5 and λ ◦ φ−1 = (1/2) · λ.(6.1.5)

Thus, φ : T−2 →1/2 T−5 is a 1/2-isomorphism, and we have the relationship 2π =

hKr(T−2) = (1/2) · hKr(T−5) = (1/2) · 4π between the Krengel entropies.

We describe the possible 1-isomorphisms and c-isomorphisms between quadratic

rational R-functions of negative type in Sections 6.3.1 and 6.3.2 respectively.

6.2. Rational R-Functions of Negative Type are Not Squashable

Jon Aaronson posed the question of whether or not rational R-functions of nega-

tive type are squashable. In this section we give context for Aaronson’s question and

answer it by proving that rational R-functions of negative type are not squashable.

We begin by stating the definition of a squashable transformation as it appears in

Section 8.4 of [Aar4].

Definition 6.2.1. A conservative, ergodic, infinite-measure-preserving system

(X,B,m, T ) is squashable if there exists a nonsingular transformation Q : (X,B) →

(X,B) such that Q ◦ T = T ◦Q and m ◦Q−1 = c ·m for some c ∈ (0,∞] and c 6= 1.

The following proposition answers Aaronson’s question concerning the squasha-

bility of rational R-functions of negative type.

Proposition 6.2.2. If S is a rational R-function of negative type, then S is not

squashable.

The proof of Proposition 6.2.2 requires a few facts about transformations with

law of large numbers. We develop the necessary theory here.
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Definition 6.2.3. A conservative, ergodic, measure-preserving system, (X,B,m, T ),

has law of large numbers if there exists L : {0, 1}N → [0,∞] such that

(6.2.1) L(1A(x),1A(Tx),1A(T 2x), ...) = m(A)

for all A ∈ B and almost every x ∈ X.

The following lemma relating rational ergodicity and law of large numbers can be

found in [Aar4] and is stated here for completeness.

Lemma 6.2.4. If T is rationally ergodic, then T has law of large numbers.

We are now ready to prove Proposition 6.2.2.

Proof of Proposition 6.2.2. By Theorem 4.5.1 we have that if S is a ra-

tional R-function of negative type, then S is pointwise dual ergodic (and thus ra-

tionally ergodic by Theorem 2.4.6). Therefore, by Lemma 6.2.4 S also has law

of large numbers. Assume for contradiction that S is squashable. Let Q be the

commuting map such that Q ◦ S = S ◦ Q and m ◦ Q−1 = c · m. Let Y = {y ∈

R : L(1A(y),1A(Sy),1A(S2y), ...) = m(A) for all A ∈ B}. By definition of law of

large numbers we have λ(R \ Y ) = 0, so by the nonsingularity of Q we also have

λ(Q−1(R \ Y )) = 0. Thus, for λ-almost every y ∈ Y there exists an x ∈ Y such that

Qx = y. Let A ∈ B and y ∈ Y we have

λ(A) = L(1A(y),1A(Sy),1A(S2y), ...)

= L(1A(Qx),1A(S(Qx)),1A(S2(Qx)), ...)

= L(1A(Qx),1A(Q(Sx)),1A(Q(S2x)), ...)

= L(1Q−1A(x),1Q−1A(Sx),1Q−1A(S2x), ...)

= λ(Q−1A).
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This implies that Q is measure-preserving, which contradicts the definition of squash-

able. �

The following lemma shows that if there exists a c-isomorphism between two

rational R-functions of negative type, then c is unique.

Lemma 6.2.5. If S1 and S2 are rational R-functions of negative type, then there

is at most one c ∈ (0,∞] such that φ : S1 →c S2 is a c-isomorphism.

Proof. Suppose φ : S1 →c S2 is a c-isomorphism. Now, assume that ψ : S1 →k

S2 is a k-isomorphism. We have the following commutative diagram

S1 S2

S2

φ

ψ φ ◦ ψ−1

Thus, φ◦ψ−1 : S2 → S2, and for almost every x ∈ R we have Jφ◦ψ−1(x) = Jφ(ψ−1(x)) ·

Jψ−1(x) = (1/c) · k. Therefore, φ ◦ ψ−1 : S2 →k/c S2 is a k
c
-isomorphism. We know,

however, that S2 is not squashable by Proposition 6.2.2. Therefore, k
c

= 1 and c = k.

�

6.3. Isomorphism Invariants for Maps of Degree Two

In this section we provide isomorphism invariants for quadratic rationalR-functions

of negative type. That is, we restrict to maps of degree two. We denote a quadratic

rational R-function of negative type by

(6.3.1) S(β,p,t)(x) = −x− β − p

t− x
,
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where β, p, t ∈ R and p > 0.

There are two main questions of interest in this section. First, we note that for

all β, γ ∈ R

(6.3.2) JS(β,p,t)
(x) = 1 +

p

(t− x)2
= JS(γ,p,t)

(x).

That is, the constant does not affect the Jacobian. Therefore, by Theorem 5.2.1

we have hKr(S(β,p,t)) = hKr(S(γ,p,t)) for all β, γ ∈ R. We know by Lemma 6.1.2

and Remark 6.1.3 that Krengel entropy is a 1-isomorphism invariant. Thus, we are

interested in answering:

Question 6.3.1. Is S(β,p,t) 1-isomorphic to S(γ,p,t) for all β, γ ∈ R?

Second, hKr(S(β,p,t)) may not equal hKr(S(γ,q,s)), but there still may be a c-

isomorphism between S(β,p,t) and S(γ,q,s) (as in Example 6.1.4). That is, perhaps

h(S(γ,q,s)) = c · h(S(β,p,t)). Thus, we are also interested in answering:

Question 6.3.2. If hKr(S(β,p,t)) 6= hKr(S(γ,q,s)), can we determine whether or not

there exists a c-isomorphism φ : S(β,p,t) →c S(γ,q,s)?

Before discussing the answers to Questions 6.3.1 and 6.3.2 we prove the following

lemma, which says two quadratic rational R-functions of negative type have the same

Krengel entropy if and only if the numerators of the linear factors are equal.

Lemma 6.3.1. If S(β,p,t) and S(γ,q,s) are two quadratic rational R-functions of neg-

ative type, then hKr(S(β,p,t)) = hKr(S(γ,q,s)) if and only if p = q.

Proof. Consider a quadratic rational R-function of negative type, S(β,p,t). By

Theorem 5.2.1 we have

(6.3.3) hKr(S(β,p,t)) =

∫
R

log(JS(β,p,t)
(x))dλ(x) =

∫
R

log

(
1 +

p

(t− x)2

)
dλ(x).
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We can compute the integral in 6.3.3 using simple integration by parts. We let

u = log

(
1 +

p

(t− x)2

)
and v = x− t,

so

du =
2p

(t− x)3 + p(t− x)
dx and dv = dx.

Integration by parts yields∫
log

(
1 +

p

(t− x)2

)
dλ(x) = log

(
1 +

p

(t− x)2

)
(x− t)

−
∫

(x− t) 2p

(t− x)3 + p(t− x)
dλ(x).

Considering the remaining integral on the right-hand side and using the substitution

w = x− t, we have∫
(x− t) 2p

(t− x)3 + p(t− x)
dλ(x) = −2p

∫
1

p+ w2
dλ(w) = −2

√
p arctan

(
t− x
√
p

)
.

Thus, we have shown∫
log(JS(β,p,t)

(x))dλ(x) = −2
√
p arctan

(
t− x
√
p

)
+ log

(
1 +

p

(t− x)2

)
(x− t).

Evaluating the right-hand side from −∞ to∞ yields hKr(S(β,p,t)) = 2π
√
p. Similarly,

hKr(S(γ,q,s)) = 2π
√
q. Thus, hKr(S(β,p,t)) = hKr(S(γ,q,s)) if and only if p = q. �

6.3.1. 1-Isomorphisms Between Maps of Degree Two. We begin by noting

that 1-isomorphism is the most natural extension of the concept of isomorphism be-

tween probability-preserving transformations. The following lemma shows that for

finite-measure-preserving transformations there is only one possible c for c-isomorphisms.

Lemma 6.3.2. If (X1,B1,m1, T1) and (X2,B2,m2, T2) are such that both m1(X1),

m2(X2) < ∞, and φ : T1 →c T2 is a c-isomorphism, then c = m1(X1)
m2(X2)

. In particular,

if m1(X1) = m2(X2) = 1, then c = 1.
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Proof. Let φ : T1 →c T2 be a c-isomorphism. We have m1(X1) = m1(φ−1(X2)) =

c ·m2(X2). Therefore, c = m1(X1)
m2(X2)

. �

Now, motivated by Lemma 6.3.2, we return to infinite-measure-preserving trans-

formations and investigate 1-isomorphism invariants for quadratic rationalR-functions

of negative type. Recall that Proposition 6.1.2 and Corollary 6.1.3 show that Krengel

entropy is a 1-isomorphism invariant for rational R-functions of negative type. That

is, if S(β,p,t) and S(γ,q,s) are 1-isomorphic, then hKr(S(β,p,t)) = hKr(S(γ,q,s)). We are in-

terested in a complete invariant for 1-isomorphisms of quadratic rational R-functions

of negative type. The following theorem is the main result of this section.

Theorem 6.3.3. The pair (|2t + β|, hKr(S(β,p,t))) is a complete invariant for 1-

isomorphisms between quadratic rational R-functions of negative type in the form

(6.3.1).

Before we can prove Theorem 6.3.3 we must develop a few auxiliary results. It

is convenient to change each S(β,p,t) into a partially normalized form, S(β′,p,0) (a com-

pletely normalized form will be defined and used in Section 6.3.2).

Lemma 6.3.4 (Partially Normalized Form). Given a quadratic rational R-function

of negative type S(β,p,t), there exists a 1-isomorphism ψt : S(β,p,t) →1 S(β′,p,0), where

β′ = 2t+ β.

Proof. To partially normalize S(β,p,t) to S(β′,p,0), we move the pole from t to 0

via conjugation by the map

(6.3.4) ψt(x) = x− t and ψ−1
t (x) = x+ t.
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Therefore, conjugating S(β,p,t) by ψt we have

(ψt ◦ S(β,p,t) ◦ ψ−1
t )(x) = −(x+ t)− β − p

t− (x+ t)
− t

= −x− (2t+ β)− p

−x

= S(2t+β,p,0)(x) = S(β′,p,0)(x).(6.3.5)

We have that Jψ−1
t

= 1, so ψ is a 1-isomorphism, and does not affect the entropy. �

Lemma 6.3.5. Fix p and let S(β′,p,0) and S(γ′,p,0) be two partially normalized qua-

dratic rational R-functions of negative type. If there exists a c-isomorphism, φ :

S(β′,p,0) →c S(γ′,p,0), then φ(x) = ±x for almost every x ∈ R, and c = 1.

Proof. If φ : S(β′,p,0) →c S(γ′,p,0) is a c-isomorphism, then by definition we have

(6.3.6) φ ◦ S(β′,p,0) = S(γ′,p,0) ◦ φ, for almost every x ∈ R.

By the chain rule, taking the Jacobian of both sides of (6.3.6) yields

(6.3.7) Jφ(S(β′,p,0)(x)) ·JS(β′,p,0)
(x) = JS(γ′,p,0)

(φ(x)) ·Jφ(x), for almost every x ∈ R.

By definition Jφ−1(x) = c and Jφ(x) = 1
c

for almost every x ∈ R, so (6.3.7) becomes

(6.3.8)
1

c
· JS(β′,p,0)

(x) = JS(γ′,p,0)
(φ(x)) · 1

c
, for almost every x ∈ R.

Finally, a simple cancellation yields

(6.3.9) JS(β′,p,0)
(x) = JS(γ′,p,0)

(φ(x)), for almost every x ∈ R.

Note that the constant doesn’t affect the Jacobian (as in (6.3.2)), so we have JS(β′,p,0)
=

JS(γ′,p,0)
. Thus, (6.3.9) is equivalent to

(6.3.10) 1 +
p

x2
= 1 +

p

(φ(x))2
, for almost every x ∈ R.
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Therefore, (φ(x))2 = x2 for almost every x ∈ R, so φ(x) = ±x for almost every x ∈ R.

�

Proposition 6.3.6. If S(β′,p,0) and S(γ′,p,0) are two partially normalized quadratic

rational R-functions of negative type, then S(β′,p,0) is 1-isomorphic to S(γ′,p,0) if and

only if |β′| = |γ′|. Furthermore, the isomorphism φ = I almost everywhere or φ = −I

almost everywhere, where I denotes the identity map.

Proof. (=⇒) We assume there exists a c-isomorphism φ : S(β′,p,0) →c S(γ′,p,0)

and first show |β′| = |γ′|. Then we show φ = ±I almost everywhere. By Lemma

6.3.5 φ(x) = ±x for almost every x ∈ R. Let M ⊆ R be a measurable set such that

φ ◦ S(β′,p,0) = S(γ′,p,0) ◦ φ and λ(R \M) = 0. Note that if E ∈ B is a set such that

λ(E) > 0, then λ(M ∩E) > 0. That is, given any set of positive measure, E, we can

find points in E where the conjugation (as in the definition of c-isomorphism) holds.

Define

A = {x ∈ R : φ(x) 6= ±x} ∪ {0} ∪M c,

B = {x ∈M : φ(x) = +x}, and

C = {x ∈M : φ(x) = −x}(6.3.11)

We have λ(R \ (B ∪ C)) = 0 and λ(A) = 0.

Without loss of generality assume β′ 6= 0 and λ(B) > 0.

Claim 1. λ(S(β′,p,0)(B) ∩B) > 0

To prove Claim 1 we show λ(S(β′,p,0)(B)) > 0 and both λ(S(β′,p,0)(B) ∩ A) = 0

and λ(S(β′,p,0)(B) ∩ C) = 0. Note S(β′,p,0) is λ-preserving, so we have that λ(B) ≤

λ(S−1
(β′,p,0)(S(β′,p,0)(B))) = λ(S(β′,p,0)(B)). That is, λ(S(β′,p,0)(B)) > 0.

By definition of A we have λ(A) = 0, so λ(S(β′,p,0)(B) ∩ A) = 0. Now we show

λ(S(β′,p,0)(B) ∩ C) = 0. Suppose x ∈ S(β′,p,0)(B) ∩ C. Then there exists y ∈ B such
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that S(β′,p,0)(y) = x ∈ C. We know y ∈ M and S(β′,p,0)(y) ∈ M , so by definition of

the c-isomorphism we have

(6.3.12) (φ ◦ S(β′,p,0))(y) = (S(γ′,p,0) ◦ φ)(y).

We have S(β′,p,0)(y) ∈ C, so

(6.3.13) (φ ◦ S(β′,p,0))(y) = S(β′,p,0)(y) = y + β′ +
p

−y
.

We also have y ∈ B, so

(6.3.14) (S(γ′,p,0) ◦ φ)(y) = S(γ′,p,0)(y) = −y − γ′ − p

−y
.

Therefore, (6.3.12) implies the right-hand sides of (6.3.13) and (6.3.14) are equal,

which implies

(6.3.15) 2y2 + (β′ + γ′)y − 2p = 0.

There are at most two possible y’s for which (6.3.15) is satisfied. Therefore, there are

at most two points in S(β′,p,0)(B)∩C, so λ(S(β′,p,0)(B)∩C) = 0. Combining this with

the work above proves Claim 1.

Claim 2. If λ(S(β′,p,0)(B) ∩B) > 0, then β′ = γ′.

To prove Claim 2 we pick x ∈ S(β′,p,0)(B) ∩ B. Then there exists a y ∈ B such

that S(β′,p,0)(y) = x ∈ B. We know y ∈ M and S(β′,p,0)(y) ∈ M , so by definition of

c-isomorphism we have

(6.3.16) (φ ◦ S(β′,p,0))(y) = (S(γ′,p,0) ◦ φ)(y).

We have S(β′,p,0)(y) ∈ B, so

(6.3.17) (φ ◦ S(β′,p,0))(y) = S(β′,p,0)(y) = −y − β′ − p

−y
.
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We also have y ∈ B, so

(6.3.18) (S(γ′,p,0) ◦ φ)(y) = S(γ′,p,0)(y) = −y − γ′ − p

−y
.

By (6.3.16) the right-hand sides of (6.3.17) and (6.3.18) are equal. Therefore, β′ = γ′.

Claim 3. The isomorphism φ = I almost everywhere.

We want to show λ(R \ B) = 0, which is equivalent to λ(C) = 0. We show

λ(S(β′,p,0)(C)) = 0, then use that S(β′,p,0) is nonsingular with respect to λ. To show

λ(S(β′,p,0)(C)) = 0 we show λ(S(β′,p,0)(C) ∩ A) = 0, λ(S(β′,p,0)(C) ∩ B) = 0, and

λ(S(β′,p,0)(C) ∩ C) = 0.

First, by definition of A we have λ(Sβ′,p,0(C) ∩ A) = 0, because λ(A) = 0.

Now, let y ∈ C, and suppose that S(β′,p,0)(y) ∈ B. By Claim 2 we have β′ = γ′.

We also know y ∈ M and S(β′,p,0)(y) ∈ M , so by the definition of c-isomorphism we

have

(6.3.19) (φ ◦ S(β′,p,0))(y) = (S(β′,p,0) ◦ φ)(y).

By (6.3.19) and an argument similar to that of Claims 1 and 2 we have

(6.3.20) y − β′ − 1

y
= −y − β′ + 1

y
,

which implies 2y2 − 2 = 0. Thus, there exist at most two points in S(β′,p,0)(C) ∩ B,

so λ(S(β′,p,0)(C) ∩B) = 0.

Finally, let y ∈ C, and suppose that S(β′,p,0)(y) ∈ C. From Claim 2 we have

β′ = γ′, so again by an argument similar to that above we have

(6.3.21) y − β′ − 1

y
= y + β′ − 1

y
.

Thus, β′ = 0, but we assumed β′ 6= 0 at the beginning. Therefore, λ(S(β′,p,0)(C)∩C) =

0.
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Therefore, λ(Sβ′,p,0(C)) = 0, which implies λ(C) = 0 by the nonsingularity of S

with respect to λ. This completes the proof of Claim 3.

Finally, we note that if we had initially assumed λ(C) > 0 a similar argument

would prove β′ = −γ′ and φ = −I almost everywhere.

(⇐=) For the other direction, let I denote the identity map. If β′ = γ′, then

I : S(β′,p,0) → S(γ′,p,0) is a 1-isomorphism. If β′ = −γ′, then −I : S(β′,p,0) → S(−γ′,p,0)

is a 1-isomorphism. �

We are now ready to prove Theorem 6.3.3 which provides a complete invariant for

1-isomorphisms of quadratic rational R-functions of negative type.

Proof of Theorem 6.3.3. (=⇒) First, we assume there exists a 1-isomorphism,

φ : S(β,p,t) →1 S(γ,q,s), and we show (|2t+β|, hKr(S(β,p,t))) = (|2s+γ|, hKr(S(γ,q,s))). By

Lemma 6.3.1 we have that hKr(S(β,p,t)) = 2π
√
p = 2π

√
q = hKr(S(γ,q,s)), so p = q. For

ease of notation we replace q with p and write S(γ,p,s) = S(γ,q,s). By Lemma 6.3.4 we

can partially normalize S(β,p,t) to S(β′,p,0) and S(γ,p,s) to S(γ′,p,0) via 1-isomorphisms ψt

and ψs respectively. We have that S(β′,p,0) is 1-isomorphic to S(γ′,p,0) via φ = ψs◦φ◦ψ−1
t

(see Figure 6.1). Thus, by Lemma 6.3.6 we have |β′| = |γ′|, where β′ = 2t + β and

γ′ = 2s+ γ.

(⇐=) For the reverse direction, we assume that (|2t + β|, hKr(S(β,p,t))) = (|2s +

γ|, hKr(S(γ,q,s))) and show that there exists a 1-isomorphism ξ : S(β,p,t) →1 S(γ,q,s).

Given hKr(S(β,p,t)) = hKr(S(γ,q,s)), by Lemma 6.3.1 we have that p = q. Furthermore,

by Proposition 6.3.6 if |2t+β| = |2s+γ|, then there exists a 1-isomorphism, ξ, between

the partially normalized forms S(β′,p,0) and S(γ′,p,0). Therefore, ξ = ψ−1
s ◦ φ ◦ ψt :

S(β,p,t) →1 S(γ,q,s) is a 1-isomorphism (see Figure 6.1).

�

6.3.2. c-Isomorphisms Between Maps of Degree Two. In this section we in-

vestigate the possible c-isomorphisms (where c 6= 1) between two quadratic rational

R-functions of negative type. The approach is similar to that for 1-isomorphisms. In
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S(β,p,t) S(γ,q,s)

S(β′,p,0) S(γ′,q,0)

ψt ψs

φ

ξ

Figure 6.1. A commutative diagram of 1-isomorphisms.

this case, however, there is the extra caveat that there may exist a c-isomorphism

φ : S(β,p,t) →c S(γ,q,s), but hKr(S(β,p,t)) 6= hKr(S(γ,q,s)). The following result is the

main theorem of this section.

Theorem 6.3.7. Two quadratic rational maps S(β,p,t) and S(γ,q,s) are c-isomorphic

if and only if

(6.3.22) c =
hKr(S(β,p,t))

hKr(S(γ,q,s))
and

∣∣∣∣2t+ β
√
p

∣∣∣∣ =

∣∣∣∣2s+ γ
√
q

∣∣∣∣ .
The proof of Theorem 6.3.7 uses a completely normalized form of quadratic ra-

tional R-functions of negative type.

Lemma 6.3.8 (Completely Normalized Form). Given a quadratic rational R-

function of negative type, S(β,p,t), there exists a
√
p-isomorphism to a completely nor-

malized form S(β̂,1,0), where β̂ = 2t+β√
p

.
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Proof. To completely normalize S(β,p,t) to S(β̂,1,0) we first conjugate by ψt to

partially normalize S(β,p,t) to S(β′,p,0). We then change the multiplier p to 1 via con-

jugation by the following map

(6.3.23) ζp(x) =
x
√
p

and ζ−1
p (x) =

√
p · x.

That is, conjugating S(β′,p,0) by ζp yields

(ζp ◦ S(β′,p,0) ◦ ζ−1
p )(x) =

1
√
p

(
−√px− (2t+ β)− p

−√px

)
= −x− (2t+ β)

√
p
− 1

−x

= −x− β̂ − 1

−x
= S(β̂,1,0)(x).(6.3.24)

We note that ζp : S(β′,p,0) → S(β̂,1,0) is a
√
p-isomorphism. Thus, ζp ◦ ψt : S(β,p,t) →

S(β̂,1,0) is also a
√
p-isomorphism.

�

We are now ready to prove Theorem 6.3.7.

Proof of Theorem 6.3.7. (=⇒) First, we assume there exists a c-isomorphism,

ξ : S(β,p,t) →c S(γ,q,s), and we show c =
hKr(S(β,p,t))

hKr(S(γ,q,s))
and

∣∣∣2t+β√p ∣∣∣ =
∣∣∣2s+γ√q ∣∣∣. By Proposi-

tion 6.1.2 we have hKr(S(β,p,t)) = c · hKr(S(γ,q,s)). Therefore, c =
hKr(S(β,p,t))

hKr(S(γ,q,s))
. To show∣∣∣2t+β√p ∣∣∣ =

∣∣∣2s+γ√q ∣∣∣ we transform S(β,p,t) and S(γ,q,s) to their completely normalized forms.

That is,

(6.3.25) ζp ◦ ψt : S(β,p,t) →
√
p S(β̂,1,0) and ζq ◦ ψs : S(γ,q,s) →

√
q S(γ̂,1,0),

where β̂ = 2t+β√
p

and γ̂ = 2s+γ√
q

Thus, there exists a map φ = ζq ◦ ψs ◦ ξ ◦ ψ−1
t ◦ ζ−1

p :

S(β̂,1,0) →ĉ S(γ̂,1,0) (see Figure 6.2). By Lemma 6.3.5 ĉ = 1, so by Theorem 6.3.3

|β̂| = |γ̂|.
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(⇐=) We now assume that
∣∣∣2t+β√p ∣∣∣ =

∣∣∣2s+γ√q ∣∣∣ and show there exists a c-isomorphism,

ξ : S(β,p,t) →c S(γ,q,s), where c =
hKr(S(β,p,t))

hKr(S(γ,q,s))
. We transform S(β,p,t) and S(γ,q,s) to their

completely normalized forms. Thus, we are now interested in ĉ-isomorphisms between

S(β̂,1,0) and S(γ̂,1,0). By Theorem 6.3.3 there exists a 1-isomorphism φ : S(β̂,1,0) →1

S(γ̂,1,0), because |β̂| = |γ̂|. Therefore, ξ = ψ−1
s ◦ ζ−1

q ◦ φ ◦ ζp ◦ ψt : S(β,p,t) →c S(γ,q,s)

and c =
√
p
√
q

=
hKr(S(β,p,t))

hKr(S(γ,q,s))
(see Figure 6.2).

S(β,p,t) S(γ,q,s)

S(β′,p,0) S(γ′,q,0)

S(β̂,1,0) S(γ̂,1,0)

ψt ψs

ζp ζq

φ

ξ

Figure 6.2. A commutative diagram of c-isomorphisms.

�
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6.4. Examples from Complex Dynamics

Let R denote a rational map on the Riemann sphere, C∞. The following elemen-

tary theorem can be found in [Bea].

Theorem 6.4.1. Every rational map R : C∞ → C∞ has infinitely many periodic

points.

Some rational maps, however, may lack periodic points of certain periods. The

following theorem due to Baker describes the the possible combinations for degree of

the rational map and the missing periodic points.

Theorem 6.4.2 ([Bak]). Let R be a rational map of degree d, where d ≥ 2, and

suppose that R has no periodic points of period n. Then (d, n) is one of the pairs

(2, 2), (2, 3), (3, 2), (4, 2).

Moreover, there exists an R corresponding to each pair.

In [Hag] Hagihara classified the rational maps (up to conformal conjugacy) which

correspond to the pairs in the previous theorem and proved the following result for

the (2, 2) case.

Theorem 6.4.3. A rational map, R, of degree 2 lacks period 2 orbits if and only

if R is conformally conjugate to a member of the one-parameter family

Ra(z) =
z2 − z
1 + az

, where a ∈ C \ {1}.

Definition 6.4.4. The Fatou set of a rational map, R, is the maximal open

subset of the Riemann sphere on which the iterates, {Rn}, are equicontinuous. We

denote the Fatou set of R by F (R). The Julia set, J(R), is the complement of the

Fatou set.

The following proposition can be found in [Hag].
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Proposition 6.4.5. For a < −1, J(Ra) = R ∪ {∞}.

We are primarily interested in one-dimensional maps, so we study the dynamics

of Ra|J(Ra) when a < −1. That is, from now on we consider Ra : R→ R.

Lemma 6.4.6. For a < −1, Ra preserves the measure ν, where dν(x) = 1
x2
dλ(x).

Proof. By Lemma 2.3.3 we know LRa(f(y)) = f(y) if and only if ν defined by

dν = fdλ is invariant for Ra. Let f(x) = 1
x2

. If x+(y) and x−(y) are solutions to

Ra(x) = y, then

(6.4.1) LRaf(y) = f(x+(y)) · |x′+(y)|+ f(x−(y)) · |x′−(y)|

We compute both x+(y) and x−(y) and obtain

x+(y) =
1

2

(
1 + ay +

√
1 + 4y + 2ay + a2y2

)
, and

x−(y) =
1

2

(
1 + ay −

√
1 + 4y + 2ay + a2y2

)
.(6.4.2)

Computing derivatives we have

x′+(y) =
1

2

(
a+

4 + 2a+ 2a2y

2
√

1 + 4y + 2ay + a2y2

)
, and

x′−(y) =
1

2

(
a− 4 + 2a+ 2a2y

2
√

1 + 4y + 2ay + a2y2

)
.(6.4.3)

Finally, a routine calculation shows LRa(f(y)) = 1
y2

. �

6.4.1. Connection to Rational R-Functions of Negative Type. Define

(6.4.4) Ta(x) = −x− (a+ 1)− −(a+ 1)

1− x
.

We note that Ta is a quadratic rational R-function of negative type.

Lemma 6.4.7. The system (R,B, ν, Ra) is isomorphic to (R,B, λ, Ta).
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Proof. Let φ(x) = 1
x

and φ−1(x) = 1
x
. We have

(6.4.5) (φ ◦Ra ◦ φ−1)(x) =
ax+ x2

1− x
= −x− (a+ 1)− −(a+ 1)

1− x
= Ta(x).

Now, we need to show that ν ◦ φ−1 = λ. Computing the Radon-Nikodym derivative

using the chain rule yields

(6.4.6)
dν

dλ
(φ−1(x)) · Jφ−1(x) =

1

1/x2
· 1

x2
= 1 =

dλ

dλ
.

�

Definition 6.4.8. Let R be a rational map on C. To each fixed point, ω, of R,

we associate a multiplier, m, defined by

(6.4.7) m(R,ω) =


R′(ω) if ω 6=∞

1/R′(∞) if ω =∞,

where R′(∞) = limz→∞R
′(z).

The following theorem due to Milnor also gives necessary and sufficient conditions

for a quadratic rational map to lack period 2 orbits.

Theorem 6.4.9 ([Mil]). A rational map of degree 2 lacks period 2 orbits if and

only if one of its fixed points has multiplier −1.

We know∞ is a fixed point with multiplier −1 for all rational R-functions of neg-

ative type. Therefore, as a consequence of Theorem 6.4.9 we have that any quadratic

rational R-function of negative type is conformally conjugate to an Ra and therefore a

Ta when viewed as a map of the Riemann sphere. Furthermore, the following lemma

produces an explicit c-isomorphism between the boundary function associated to a

quadratic rational R-function of negative type and the boundary function of a Ta.
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Before stating the lemma, we set some notation. Let b = −(1 + a), then

(6.4.8) Ta = Hb = −x+ b− b

1− x
, where b ∈ (0, 2].

Without loss of generality from now on we consider the family {Hb} where b ∈ [0, 2].

Lemma 6.4.10. A quadratic rational R-function of negative type, S(β,p,t) = −x−

β− p
t−x , is c-isomorphic to an Hb for some b ∈ (0, 2]. The isomorphism φ : S(β,p,t) →c

Hb is given by

(6.4.9) χK(x) =
K − t+ x

K
, where K =

1

4

(
β + 2t±

√
(β + 2t)2 + 8p

)
.

Letting K+ = 1
4

(
β + 2t+

√
(β + 2t)2 + 8p

)
and K− = 1

4

(
β + 2t−

√
(β + 2t)2 + 8p

)
yields the following two cases for the isomorphism φ:

(1) If β ≥ −2t, then χK+(x) = K+−t+x
K+

.

(2) If β < −2t, then χK−(x) = K−−t+x
K−

.

Proof. Define ζK2(x) = x
K

and ζ−1
K2(x) = Kx as in the proof of Lemma 6.3.8.

We have that S(β,p,t) is K-isomorphic to

(6.4.10) S(β/K,p/K2,t/K) = −x− β

K
− p/K2

t/K − x

via ζK(x). Now, define ψt/K−1(x) = x− (t/K − 1) and ψ−1
t/K−1(x) = x+ (t/K − 1) as

in the proof of Lemma 6.3.4. We have S(β/K,p/K2,t/K) is 1-isomorphic to

(6.4.11) S(2(t/K−1)+β/K,p/K2,1) = −x− (2(t/K − 1) + β/K)− p/K2

1− x

via the isomorphism ψt/K−1. We want to show S(2(t/K−1)+β/K,p/K2,1) = Hb for some

b ∈ (0, 2]. Thus, we solve for K, by setting

(6.4.12) −(2(t/K − 1) + β/K) = p/K2.
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A calculation shows

(6.4.13) K =
1

4

(
β + 2t±

√
(β + 2t)2 + 8p

)
.

Now, we need to check that −(2(t/K − 1) + β/K) = p/K2 ∈ (0, 2]. Note,

(6.4.14)
p

K2
=

16p

(β + 2t±
√

(β + 2t)2 + 8p)2
,

so p/K2 > 0. Suppose β ≥ −2t, then β + 2t ≥ 0. Therefore,

(6.4.15)
p

K2
+

=
16p

(β + 2t+
√

(β + 2t)2 + 8p)2
≤ 16p

(
√

8p)2
= 2.

Now, suppose β < −2t, then β + 2t < 0. Therefore,

(6.4.16)
p

K2
−

=
16p

(β + 2t−
√

(β + 2t)2 + 8p)2
<

16p

(
√

8p)2
= 2.

Thus, we have shown S(2(t/K−1)+β/K,p/K2,1) = Hb where b ∈ (0, 2], so χK = ψt/K−1 ◦

ζK2 : S(β,p,t) →K Hb is a K-isomorphism. �

Lemma 6.4.11. Two transformations Hb and Hb′ of the form (6.4.8) where b, b′ ∈

(0, 2] are c-isomorphic if and only if b = b′.

Proof. By Theorem 6.3.7 we know Hb is c-isomorphic to Hb′ if and only if
∣∣∣2−b√

b

∣∣∣ =∣∣∣2−b′√
b′

∣∣∣. Therefore, b = b′ or b = 4
b′

. By assumption b, b′ ∈ (0, 2], so b = b′. �

Let [S(β,p,t)] denote the c-isomorphism class of S(β,p,t). That is,

(6.4.17) [S(β,p,t)] = {S(γ,q,s) : S(γ,q,s) is c-isomorphic to S(β,p,t)}.

Theorem 6.4.12. The set of of c-isomorphism classes of quadratic rational R-

functions of negative type are in one-to-one correspondence with the interval (0, 2].

Proof. Let S(β,p,t) be a representative of the c-isomorphism class [S(β,p,t)]. By

Lemma 6.4.10 we have S(β,p,t) is c-isomorphic to an Hb where b ∈ (0, 2]. Furthermore,
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b is unique, because if there exists a c′-isomorphism from S(β,p,t) to Hb′ with b′ ∈ (0, 2],

then Hb is c′

c
-isomorphic to Hb′ . Therefore, by Lemma 6.4.11 we have b = b′. �

6.5. Isomorphism Invariants for Maps of Degree Three

In this section we consider cubic rational R-functions of negative type, that is,

(6.5.1) S(x) = −x− β − p1

t1 − x
− p2

t2 − x
,

where β, pi, ti ∈ R and pi > 0 for i = 1, 2.

We present results for the subset of cubic rational R-functions of negative type

where p1 = p2 and t1 = −t2.

Lemma 6.5.1. If S(x) = −x− β − p
(t−x)

− p
−t−x , then

(6.5.2) hKr(S) = 2π

(√
p− t2 −

√
p2 − 4pt2 +

√
p− t2 +

√
p2 − 4pt2

)
.

Proof. By Theorem 5.2.1 we know

(6.5.3) hKr(S) =

∫
R

log(JS(x))dλ(x) =

∫
R

log

(
1 +

p

(t− x)2
+

p

(−t− x)2

)
dλ(x).

We first get a closed form for the indefinite integral
∫

log
(

1 + p
(t−x)2

+ p
(−t−x)2

)
dx.

We integrate by parts letting u = log
(

1 + p
(t−x)2

+ p
(−t−x)2

)
and v = x, so (6.5.3)

becomes

(6.5.4)

x log

(
1 +

p

(t− x)2
+

p

(−t− x)2

)
−
∫

4px3(3t2 + x2)

(t− x)(t+ x)((t2 − x2)2 + 2p(t2 + x2))
dx.

Considering the integral in (6.5.4), we use partial fractions to obtain

(6.5.5)

∫ [
−2t

−t+ x
+

2t

t+ x
− 4(2pt2 + t4 + px2 − t2x2)

2pt2 + t4 + 2px2 − 2t2x2 + x4

]
dx.
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Considering the integral of the first two pieces of (6.5.5) we have

(6.5.6)

∫ [
−2t

−t+ x
+

2t

t+ x

]
dx = −2t log(−t+ x) + 2t log(t+ x).

Now, we consider the third term of (6.5.5). A calculation shows

(6.5.7)

4(2pt2 + t4 + px2 − t2x2)

2pt2 + t4 + 2px2 − 2t2x2 + x4
=

2(p− t2 +
√
p2 − 4pt2)

p− t2 +
√
p2 − 4pt2 + x2

+
2(p− t2 −

√
p2 − 4pt2)

p− t2 −
√
p2 − 4pt2 + x2

.

Using the fact that
∫

a2

a2+x2
dx = a arctan

(
x
a

)
, we have

∫
2(p− t2 +

√
p2 − 4pt2)

p− t2 +
√
p2 − 4pt2 + x2

dx

= 2

√
p− t2 +

√
p2 − 4pt2 arctan

 x√
p− t2 +

√
p2 − 4pt2

(6.5.8)

and ∫
2(p− t2 −

√
p2 − 4pt2)

p− t2 −
√
p2 − 4pt2 + x2

dx

= 2

√
p− t2 −

√
p2 − 4pt2 arctan

 x√
p− t2 −

√
p2 − 4pt2

 .(6.5.9)

Combining the work in (6.5.4), (6.5.6), (6.5.8), and (6.5.9) gives∫
log |JS(x)|dx = x log

(
1 +

p

(t− x)2
+

p

(t+ x)2

)
+ 2t log(−t+ x)− 2t log(t+ x)

+ 2

√
p− t2 −

√
p2 − 4pt2 arctan

 x√
p− t2 −

√
p2 − 4pt2


+ 2

√
p− t2 +

√
p2 − 4pt2 arctan

 x√
p− t2 +

√
p2 − 4pt2

 .(6.5.10)

Evaluating the right-hand side of (6.5.10) from −∞ to ∞ yields
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(6.5.11)∫
R

log |JS(x)|dλ(x) = 2π

(√
p− t2 −

√
p2 − 4pt2 +

√
p− t2 +

√
p2 − 4pt2

)
,

which proves the result. �

Lemma 6.5.2. Any cubic rational R-function of negative type, S(x) = −x − β −
p

r−x −
p
s−x , where β, p, r, s ∈ R and p > 0 is 1-isomorphic to a cubic rational R-

function of negative type of the form S̃(x) = −x− β′ − p
t−x −

p
−t−x , where β, p, t ∈ R

and p > 0.

Proof. Define ψ r+s
2

(x) = x− r+s
2

, so ψ−1
r+s
2

(x) = x+ r+s
2

. We have

(ψ r+s
2
◦ S ◦ ψ−1

r+s
2

)(x) = −x− r + s

2
− β − p(

s− (r+s)
2

)
− x
− p(

r − (r+s)
2

)
− x
− r + s

2

= −x− (r + s+ β)− p
s−r

2
− x
− p

r−s
2
− x

= −x− β′ − p

t− x
− p

−t− x
,(6.5.12)

where β′ = (r + s+ β) and t = s−r
2

. �

Lemma 6.5.3. Let S1(x) = −x−β− p
(t−x)
− p
−t−x and S2(x) = −x−γ− q

(s−x)
− q
−s−x .

Suppose hKr(S1) = hKr(S2). We have the following two results:

(1) If q = p, then s = ±t.

(2) If s = t, then q = p or q = p+ 2t2 + 2
√

2pt2 + t4.

Proof. We begin by proving (1). Suppose p = q. That is, S1(x) = −x − β −
p

(t−x)
− p
−t−x and S2(x) = −x− γ − p

(s−x)
− p
−s−x . Assuming hKr(S1) = hKr(S2), then

by Lemma 6.5.1 we have√
p− t2 −

√
p2 − 4pt2 +

√
p− t2 +

√
p2 − 4pt2

=

√
p− s2 −

√
p2 − 4ps2 +

√
p− s2 +

√
p2 − 4ps2.(6.5.13)
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Squaring both sides of (6.5.13) and simplifying yields

(6.5.14) s2 − t2 +
√

2pt2 + t4 =
√

2ps2 + s4.

Squaring both sides of (6.5.14) and simplifying yields

(6.5.15) 2pt2 − 2s2t2 + 2t4 + 2s2
√

2pt2 + t4 − 2t2
√

2pt2 + t4 − 2ps2s2 = 0.

We have that (6.5.15) factors as

(6.5.16) −2(p+ t2 −
√

2pt2 + t4)(s2 − t2) = 0.

Then, solving for s shows that s = ±t.

We now show (2) by a similar argument. Suppose t = s. That is, S1(x) =

−x−β− p
(t−x)
− p
−t−x and S2(x) = −x−γ− q

(t−x)
− q
−t−x . Assuming hKr(S1) = hKr(S2),

then again by Lemma 6.5.1 we have√
p− t2 −

√
p2 − 4pt2 +

√
p− t2 +

√
p2 − 4pt2

=

√
q − t2 −

√
q2 − 4pt2 +

√
q − t2 +

√
q2 − 4qt2.(6.5.17)

Squaring both sides of (6.5.17) and simplifying yields

(6.5.18) p− q +
√

2pt2 + t4 =
√

2pt2 + t4.

Squaring both sides of (6.5.18) and simplifying yields

(6.5.19) p2 − 2pq + q2 + 2pt2 + 2p
√

2pt2 + t4 − 2q
√

2pt2 + t4 − 2qt2 = 0.

We have that (6.5.19) factors as

(6.5.20) (q − p)
(
q − (p+ 2t2 + 2

√
2pt2 + t4)

)
= 0.

Then, solving for q shows q = p or q = p+ 2t2 + 2
√

2pt2 + t4. �
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Corollary 6.5.4. Let S1(x) = −x − β − p
(t−x)

− p
−t−x and S2(x) = −x − γ −

q
(s−x)

− q
−s−x .

(1) If S1 and S2 are 1-isomorphic and p = q, then t = ±s.

(2) If S1 and S2 are 1-isomorphic and t = s, then q = p or q = p + 2t2 +

2t
√

2p+ t2.
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CHAPTER 7

FUTURE WORK

7.1. Exactness of Negative R-Functions

In this section lay the framework for studying transformations which are not

necessarily rational. Let F be the boundary function associated to an R-function of

positive type such that

(7.1.1) F (x) = x+ β +

∫
R

dν(t)

t− x
,

where β ∈ R and ν is finite, singular, and compactly supported on R. Recall from

Chapter 3 that Aaronson proved Theorem 3.4.3 which says F is exact.

We study the negatives of such maps. That is, we consider transformations

(7.1.2) H(x) = −x− β −
∫
R

dν(t)

t− x
,

where β ∈ R and ν is finite, singular, and compactly supported on R. Recall that

Letac proved that maps of the form (7.1.2) preserve λ ([Let]). We are interested in

studying the measure-theoretic properties of these transformations.

We first prove the following lemma which relates maps of the form (7.1.2) to

boundary functions associated to an R-functions of positive type.

Lemma 7.1.1. If H is a transformation of the form (7.1.2), then H2 is the bound-

ary function associated to an R-function of positive type.

Proof. Suppose H(x) = −x − β −
∫
R
dν(t)
t−x . Let Fβ,ν be the boundary function

associated to an R-function of positive type such that Fβ,ν(x) = x+β+
∫
R
dν(t)
t−x . That

is, Fβ,ν = −H. Let ν̂ be a measure on R such that ν̂(A) = ν(−A). We have F−β,ν̂ is



an R-function, and F−β,ν̂(x) = x− β +
∫
R
dν̂(t)
t−x . We can write H2 as the composition

of two boundary functions associated to R-functions of positive type. That is,

H2 = F−β,ν̂ ◦ Fβ,ν ,

so H2 is the boundary function associated to an R-function of positive type. �

Now that we have H2 is the boundary function associated to an R-function of

positive type, our goal is to show that H2 satisfies the conditions of Theorem 3.4.3

which would prove the following conjecture.

Conjecture 7.1.1. If H(x) = −x − β −
∫
R
dν(t)
t−x , where β ∈ R and ν is finite,

singular, and compactly supported on R, then H is exact with respect to λ on R.

In the previous sections we our work focused on the case when H is rational.

The results did not use the motivation and theory coming from harmonic analysis,

so there was no need for a notational distinction between the map on R as opposed

to C. In this section, however, we will use the theory developed in Chapter 3. From

now on, we will write H2 is the boundary function of an R-function of positive type,

h2 : R2+ → R2+. From Theorem 3.3.9 we have

(7.1.3) h2(z) = β + αz +

∫
R

1 + tz

t− z
dµ(t),

where β, α ∈ R and µ is finite, singular, and compactly supported on R.

We prove the following lemma, which allows us to apply Lemma 3.3.6 to h2 to

obtain h2 − I − β ∈ R0 where I denotes the idenity function.

Lemma 7.1.2. If g(z) = h2(z)− z, then limy→∞ iyg(iy) = c <∞.

Proof. Given h(z) = −z − β −
∫
R
dν(t)
t−z we have

(7.1.4) h2(z) = z +

∫
R

dν(t)

t− z
−
∫
R

dν(t)

t− h(z)
.

106



Letting g(z) = h2(z)− z we have

(7.1.5) g(z) =

∫
R

dν(t)

t− z
−
∫
R

dν(t)

t− h(z)
.

We evaluate g at iy to obtain

(7.1.6) g(iy) =

∫
R

dν(t)

t− iy
−
∫
R

dν(t)

t+ iy + β +
∫
R
dν(t)
t−iy

.

Rationalizing the denominator of
∫
R
dν(t)
t−iy yields

∫
R
tdν(t)
t2+y2

+i
∫
R
ydν(t)
t2+y2

, so (7.1.6) becomes

(7.1.7)

∫
R

tdν(t)

t2 + y2
+ i

∫
R

ydν(t)

t2 + y2
+

∫
R

dν(t)

t+ β +
∫
R
tdν(t)
t2+y2

+ iy
(∫

R
ydν(t)
t2+y2

) .
Rationalizing the denominator of the third integral in (7.1.6) yields

(7.1.8)∫
R

dν(t)

t+ β +
∫
R
tdν(t)
t2+y2

+ iy
(∫

R
ydν(t)
t2+y2

) =

∫
R

((
t+ β +

∫
R
tdν(t)
t2+y2

)
− iy

(
1 +

∫
R

dν(t)
t2+y2

))
dν(t)(

t+ β +
∫
R
tdν(t)
t2+y2

)2

+
(
y
(

1 +
∫
R

dν(t)
t2+y2

))2 .

Therefore, (7.1.7) equals

∫
R

tdν(t)

t2 + y2
+

∫
R

(
t+ β +

∫
R
tdν(t)
t2+y2

)
dν(t)(

t+ β +
∫
R
tdν(t)
t2+y2

)2

+
(
y
(

1 +
∫
R

dν(t)
t2+y2

))2(7.1.9)

+ i

∫
R

ydν(t)

t2 + y2
−
∫
R

y
(

1 +
∫
R
dν(t)
t2y2

)
dν(t)(

t+ β +
∫
R
tdν(t)
t2+y2

)2

+
(
y
(

1 +
∫
R

dν(t)
t2+y2

))2

 .

Therefore,

iyg(iy) = iy

∫
R

tdν(t)

t2 + y2
+

∫
R

(
t+ β +

∫
R
tdν(t)
t2+y2

)
dν(t)(

t+ β +
∫
R
tdν(t)
t2+y2

)2

+
(
y
(

1 +
∫
R

dν(t)
t2+y2

))2



− y2

∫
R

dν(t)

t2 + y2
−
∫
R

(
1 +

∫
R
dν(t)
t2y2

)
dν(t)(

t+ β +
∫
R
tdν(t)
t2+y2

)2

+
(
y
(

1 +
∫
R

dν(t)
t2+y2

))2

 .(7.1.10)
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It is clear that the imaginary part of (7.1.10) tends to 0 as y →∞. For the real part,

we have

(7.1.11)

∫
R

y2dν(t)

t2 + y2
≤
∫
R
dν(t) = C,

and

y2

∫
R

(
1 +

∫
R
dν(t)
t2y2

)
dν(t)(

t+ β +
∫
R
tdν(t)
t2+y2

)2

+
(
y
(

1 +
∫
R

dν(t)
t2+y2

))2(7.1.12)

≤ y2

∫
R

(
1 +

∫
R
dν(t)
t2y2

)
dν(t)(

y
(

1 +
∫
R

dν(t)
t2+y2

))2 =

∫
R

dν(t)

1 +
∫
R

dν(t)
t2+y2

≤
∫
R
dν(t) = C.

�

Outline for Proof of Conjecture 7.1.1. The idea is to show H2 is exact, then appeal

to Lemma 4.2.2 to show that H is also exact. Let g(z) = h2(z)− z. By Lemma 7.1.2

we know limy→∞ iyg(iy) = c < ∞. This convergence allows us to appeal to Lemma

3.3.6 to show that g ∈ R0 as in Definition 3.3.5. That is,

(7.1.13) g(z) = h(z)− z =

∫
R

dµ(t)

t− z
,

so

(7.1.14) H2(x) = x+

∫
R

dµ(t)

t− x
,

where µ is a finite measure on R. The goal is to apply Theorem 3.4.3 to show that

H2 is exact. The question still remains whether or not the new measure µ is singular

and compactly supported on R.
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7.2. Other Work

7.2.1. Direct Computation of Parry Entropy. We know that all rational R-

functions of negative type are quasi-finite (Theorem 4.6.6), so the Parry entropy is

equal to the Krengel entropy. By Theorem 5.2.1 the Krengel (and therefore Parry)

entropy can be computed using Rohlin’s formula. There are, however, no known

examples where the Parry entropy has been computed directly.

Question 7.2.1. Can the Parry entropy of a boundary function associated to

a rational R-function of negative type be computed without passing through the

Krengel entropy?

7.2.2. Higher-Dimensional Transformations. In [PBGP] it was shown that a

two-dimensional Boole mapping of the form F (x, y) = (x− 1
y
, y − 1

x
) is ergodic with

respect to the invariant product measure dµ(x, y) = dxdy. This result motivates the

following questions along these lines.

Question 7.2.2. Are two-dimensional Boole mappings of the form F (x, y) =

(x− 1
y
, y − 1

x
) also conservative and exact?

Question 7.2.3. Can we obtain the same result as [PBGP] for two-dimensional

negative Boole mappings? In other words, are maps of the form S(x, y) = (−x +

1
y
,−y + 1

x
) ergodic with respect to the invariant product measure dµ(x, y) = dxdy?

Does a similar statement hold for two-dimensional negative generalized Boole trans-

formations (i.e. increasing the number of poles)? If so, are they also exact and

conservative?

The following conjecture on higher-dimensional maps was also made in [PBGP],

which raises the question about whether the above questions can be answered in an

n-dimensional setting.
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Conjecture 7.2.1. If σ is any element of the permutation group Σn, n ∈ Z+,

then a generalized Boole transformation of the form

F (x1, x2, ..., xn) =

(
x1 −

1

xσ(1)

, x2 −
1

xσ(2)

, ..., xn −
1

xσ(n)

)
is ergodic with respect to the measure dµ(x1, x2, ..., xn) = dx1dx2...dxn.
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