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ABSTRACT

Kaiji Motegi: Granger Causality in Mixed Frequency Time Series
(Under the direction of Eric Ghysels)

It is a classic topic in time series econometrics to test Granger causality among multiple

variables. While many Granger causality tests have been invented in the literature, they are

often vulnerable to temporal aggregation which potentially generates or hides causality. Based

on the growing literature of Mixed Data Sampling (MIDAS) analysis, this dissertation proposes

a set of mixed frequency Granger causality tests which are robust against temporal aggregation.

The mixed frequency causality tests take an explicit treatment of data sampled at different

frequencies, and hence enable more accurate statistical inference than the conventional approach

that aggregates all time series into the common lowest frequency.

Depending on the magnitude of the ratio of sampling frequencies, this dissertation proposes

two types of mixed frequency causality tests. The first one handles a small ratio of sampling

frequencies like month vs. quarter. Exploiting Ghysels’ mixed frequency vector autoregressive

(MF-VAR) models, we extend Dufour, Pelletier, and Renault’s VAR-based causality test to

the mixed frequency context. We prove that the mixed frequency approach better recovers the

underlying causal patterns than the existing low frequency approach. Moreover, we demonstrate

via local asymptotic power analysis and simulations that the mixed frequency test has higher

power than the low frequency test in both large sample and small sample. In an empirical

application on U.S. macroeconomy, we show that the mixed frequency approach and the low

frequency approach produce very different causal implications, with the former yielding more

intuitive results.

The second part of this dissertation deals with a relatively large ratio of sampling frequencies

like month vs. year. Inspired by Sims’ regression-based causality tests, we develop a new test

that achieves higher power than the conventional test in both large sample and small sample.

In this framework, a larger ratio of sampling frequencies is likely to improve power since our
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methodology circumvents parameter proliferation. We apply our test to weekly interest rate

spread and quarterly GDP in the U.S. The empirical result shows that the interest rate spread

used to be a valid predictor of GDP but its predictability has declined more recently.
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CHAPTER 1

INTRODUCTION

It is a classic topic in time series econometrics to test Granger’s (1969) causality among multiple

variables. Many kinds of Granger causality tests have been invented in the past fifty years, and

the most prominent ones include Dufour, Pelletier, and Renault’s (2006) test based on vector

autoregression (VAR) models and Sims’ (1972) regression-based test. A well-known problem of

these existing tests is that they are often vulnerable to temporal aggregation which potentially

generates or hides causality, as noted in Granger (1980) and Granger (1988) among many others.

Such a misleading causality is called spurious causality (cfr. Dufour and Renault (1998)). Since

economic time series are often sampled at different frequencies (e.g. daily financial variables,

monthly business-cycle indicators, quarterly gross domestic product), we need new causality

tests that can control spurious causality.

To this end, we propose mixed frequency causality tests based on the growing literature of

Mixed Data Sampling (MIDAS) analysis. Originated with Ghysels, Santa-Clara, and Valkanov

(2004), Ghysels, Santa-Clara, and Valkanov (2006), etc., the MIDAS approach works on data

sampled at different frequencies instead of working on data aggregated to the common lowest

frequency. By expanding the notion of Granger causality into the MIDAS framework, this dis-

sertation establishes mixed frequency Granger causality tests which give us improved statistical

accuracy, namely higher power, than the conventional low frequency approach does.

Depending on the magnitude of the ratio of sampling frequencies m, this dissertation pro-

poses two types of mixed frequency causality tests. The first one handles a small m like month

vs. quarter (m = 3). Exploiting Ghysels’ (2012) mixed frequency vector autoregressive (MF-

VAR) models, we extend Dufour, Pelletier, and Renault’s (2006) VAR-based causality test to



the mixed frequency framework. We prove that the mixed frequency approach better recov-

ers the underlying causal patterns than the existing low frequency approach. Moreover, we

demonstrate via local asymptotic power analysis and Monte Carlo simulations that the mixed

frequency test has higher power than the low frequency test in both large sample and small

sample. In an empirical application involving U.S. macroeconomic indicators, we show that

the mixed frequency approach and the low frequency approach produce very different causal

implications, with the former yielding more intuitive results.

The second part of this dissertation deals with a relatively large ratio of sampling frequencies

like month vs. year (m = 12). Inspired by Sims’ (1972) regression-based causality tests and

Andrews and Ploberger’s (1994) optimal tests involving a nuisance parameter, we develop a

new test that achieves higher power than the conventional test in both large sample and small

sample. We combine multiple parsimonious regression models where the i-th model regresses a

low frequency variable xL onto the i-th high frequency lag or lead of a high frequency variable

xH for i ∈ {1, . . . , h}. Let β̂i be an estimator for the loading of the i-th high frequency

lag or lead, then our test statistic basically takes the maximum among {β̂2
1 , . . . , β̂2

h}. In this

framework, a larger m is likely to improve power since our methodology circumvents parameter

proliferation. We apply our test to weekly interest rate spread and quarterly GDP in the U.S.

The empirical result shows that the interest rate spread used to be a valid predictor of GDP

but its predictability has declined more recently.
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CHAPTER 2

VAR-BASED TEST

2.1 Introduction

It is well known that temporal aggregation may have spurious effects on testing for Granger

causality, as noted by Clive Granger himself in a number of papers, see e.g. Granger (1980),

Granger (1988), Granger (1995). In this paper we deal with what might be an obvious, yet

largely overlooked remedy. Time series processes are often sampled at different frequencies and

then typically aggregated to the common lowest frequency to test for Granger causality. The

analysis of the present paper pertains to comparing testing for Granger causality with all series

aggregated to the common lowest frequency, and testing for Granger causality taking advantage

of all the series sampled at whatever frequency they are available. We rely on mixed frequency

vector autoregressive models to implement a new class of Granger causality tests.1

We show that mixed frequency Granger causality tests better recover causality patterns in

an underlying high frequency process compared to the traditional low frequency approach. We

also formally prove that mixed frequency causality tests have higher asymptotic power against

local alternatives and show via simulation that this also holds in finite samples involving realistic

data generating processes. The simulations indicate that the mixed frequency VAR approach

works well for small differences in sampling frequencies - like quarterly/monthly mixtures.

We apply the mixed frequency causality test to monthly inflation, monthly crude oil price

1MIDAS, meaning Mi(xed) Da(ta) S(ampling), regression models have been put forward in recent work by
Ghysels, Santa-Clara, and Valkanov (2004), Ghysels, Santa-Clara, and Valkanov (2006) and Andreou, Ghysels,
and Kourtellos (2010). See Andreou, Ghysels, and Kourtellos (2011) and Armesto, Engemann, and Owyang
(2010) for surveys. VAR models for mixed frequency data were independently introduced by Anderson, Deistler,
Felsenstein, Funovits, Zadrozny, Eichler, Chen, and Zamani (2012), Ghysels (2012) and McCracken, Owyang,
and Sekhposyan (2013). An early example of related ideas appears in Friedman (1962). Foroni, Ghysels, and
Marcellino (2013) provide a survey of mixed frequency VAR models and related literature.



fluctuations, the real GDP growth in the U.S. We also apply the conventional low frequency

causality test to the aggregated quarterly price series and real GDP for comparison. These

two approaches yield very different causal implications. In particular, significant causality

from oil prices to inflation is detected by the mixed frequency approach but not by the low

frequency approach. The result suggests that the quarterly frequency is too coarse to capture

such causality.

The paper is organized as follows. In Section 2.2 we first briefly review the Granger causality

and MIDAS literatures and then frame mixed frequency VAR models. In Section 2.3 we de-

velop the mixed frequency causality tests. Section 2.4 discusses how we can recover underlying

causality using a mixed frequency approach compared to a traditional low frequency approach.

Section 2.5 shows that the mixed frequency causality tests have higher local asymptotic power

than the low frequency ones do. Section 2.6 reports Monte Carlo simulation results and doc-

uments the finite sample power improvements achieved by the mixed frequency causality test.

In Section 2.7 we apply the mixed frequency and low frequency causality tests to U.S. macroe-

conomic data. Finally, Section 2.8 provides some concluding remarks. All tables and Figures

are provided after Section 2.8. Proofs for all theorems as well as some theoretical details are

provided in Technical Appendices A.

2.2 Mixed Frequency Data Model Specifications

In this section we frame a mixed frequency vector autoregressive (henceforth MF-VAR) model

and derive some asymptotic properties. We first provide a short review of the related literature.

We then formally present the MF-VAR model. Finally, we establish large sample results for

parameter estimators and corresponding Wald statistics.

We will use the following notational conventions throughout. Let A ∈ Rn×l. The l2-norm

is |A| := (
∑n

i=1

∑l
j=1 a2

ij)
1/2 = (tr[A′A])1/2; the Lr-norm is ‖A‖r := (

∑n
i=1

∑l
j=1 E|aij |r)1/r;

the determinant is det(A); and the transpose is A′. 0n×l is an n × l matrix of zeros. IK is the

K-dimensional identity matrix. Var[A] is the variance-covariance matrix of a stochastic matrix

A. B ◦ C denotes element-by-element multiplication for conformable vectors B, C.
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2.2.1 Brief Literature Review

The notion of causality introduced by Granger (1969) is defined in terms of incremental pre-

dictive ability, beyond the past observations of a time series process X, by past observations of

another time series process Y. Although so-called Granger causality has been extended to fairly

general settings including nonlinear and random volatility models, it is typically discussed in a

linear regression framework, in particular since Sims (1972).

Early contributions by Zellner and Montmarquette (1971) and Amemiya and Wu (1972)

pointed out the potentially adverse effects of temporal aggregation on testing for Granger

causality. The subject has been extensively researched ever since, e.g. Granger (1980), Granger

(1988), Lütkepohl (1993), Granger (1995), Renault, Sekkat, and Szafarz (1998), Marcellino

(1999), Breitung and Swanson (2002), McCrorie and Chambers (2006), Silvestrini and Veredas

(2008), among others. It is worth noting that whenever Granger causality and temporal aggre-

gation are discussed, it is typically done in a setting where all series are subject to temporal

aggregation. In such a setting it is well-known that even the simplest models, like a bivari-

ate VAR(1) with stock (or skipped) sampling, may suffer from spuriously hidden or generated

causality, and recovering the original causal pattern is very hard or even impossible in general.

As in the single frequency VAR literature, exploring mixed frequency Granger causality

among more than two variables invariably relates to the notion of multi-horizon causality studied

by Lütkepohl (1993), Dufour and Renault (1998) and Hill (2007). Of direct interest to us is

Dufour and Renault (1998) who generalized the original definition of single-horizon or short run

causality to multiple-horizon or long run causality to handle causality chains: in the presence of

an auxiliary variable Z, Y may be useful for a multiple-step ahead prediction of X even if it is

useless for the one-step ahead prediction. Dufour and Renault (1998) formalize the relationship

between VAR coefficients and multiple-horizon causality and Dufour, Pelletier, and Renault

(2006) formulate accordingly single step Wald tests of multiple-horizon non-causality. Their

framework will be used extensively in our analysis. See Hill (2007) for a sequential method of

testing for multiple-horizon non-causality.

In addition to the causality literature, the present paper also draws upon and contributes

to the MIDAS literature originated by Ghysels, Santa-Clara, and Valkanov (2004) and Ghysels,
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Santa-Clara, and Valkanov (2005). A number of papers have linked MIDAS regressions to

(latent) high frequency VAR models, such as Foroni, Marcellino, and Schumacher (2013) and

Kuzin, Marcellino, and Schumacher (2011), whereas Ghysels (2012) discusses the link between

mixed frequency VAR models and MIDAS regressions. None of these papers study in any detail

the issue of Granger causality.

2.2.2 Mixed Frequency VAR Models

We want to characterize three settings which we will refer to as HF, MF and LF - respectively

high, mixed and low frequency. We begin by considering a partially latent underlying HF

process. Using the notation of Ghysels (2012), the HF process contains {{xH(τL, k)}m
k=1}τL

and {{xL(τL, k)}m
k=1}τL , where τL ∈ {0, . . . , TL} is the LF time index (e.g. quarter), k ∈ {1,

. . . ,m} denotes the HF (e.g. month), and m is the number of HF time periods between LF

time indices. In the month versus quarter case, for example, m equals three since one quarter

has three months. Observations xH(τL, k) ∈ RKH×1, KH ≥ 1, are called HF variables, whereas

xL(τL, k) ∈ RKL×1, KL ≥ 1, are latent LF variables because they are not observed at high

frequencies - as only some temporal aggregates are available.

Note that two simplifying assumptions have implicitly been made. First, there are assumed

to be only two sampling frequencies. Second, it is assumed that m is fixed and does not depend

on τL. Both assumptions can be relaxed at the cost of much more complex notation and algebra

which we avoid for expositional purpose - again see Ghysels (2012).

In reality the analyst’s choice is limited to MF and LF cases. Only low frequency variables

have been aggregated from a latent HF process in a MF setting, whereas both low and high

frequency variables are aggregated from the latent HF process to form a LF process. Following

Lütkepohl (1987) we consider only linear aggregation schemes involving weights w = [w1, . . . ,

wm]′ such that:

xH(τL) =
m∑

k=1

wkxH(τL, k) and xL(τL) =
m∑

k=1

wkxL(τL, k). (2.2.1)

Two cases are of special interest given their broad use: (1) stock or skipped sampling, where

6



wk = I(k = m); and (2) flow sampling, where wk = 1 for k = 1, . . . ,m.2 In summary, we

observe:

• all high and low frequency variables {{xH(τL, j)}m
j=1}τL and {{xL(τL, j)}m

j=1}τL in a HF

process;

• all high frequency variables {{xH(τL, j)}m
j=1}τL but only aggregated low frequency vari-

ables {xL(τL)}τL in a MF process;

• only aggregated high and low frequency variables {xH(τL)}τL and {xL(τL)}τL in a LF

process.

A key idea of MF-VAR models is to stack everything observable given a MF process ac-

cording to their order over time. This results in the following K = KL + mKH dimensional

vector:

X(τL) = [xH(τL, 1)′, . . . , xH(τL,m)′,xL(τL)′]′. (2.2.2)

Note that xL(τL) is the last block in the stacked vector - a conventional assumption implying

that it is observed after xH(τL,m). Any other order is conceptually the same, except that it

implies a different timing of information about the respective processes. We will work with the

specification appearing in (2.2.2) as it is most convenient.

Example 1 : Quarterly Real GDP : A leading example of how a mixed frequency model is

useful in macroeconomics concerns quarterly real GDP growth xL(τL), where existing studies of

causal patterns use monthly unemployment, oil prices, inflation, interest rates, etc. aggregated

into quarters (see Hill (2007) for references). Consider the monthly oil price changes and CPI

inflation [xH(τL, 1)′, . . . , xH(τL, 3)′]′, which will be actually analyzed in Section 2.7. Note that

τL represents a quarter and xH is a 2×1 vector. According to the Bureau of Economic Analysis,

GDP is announced in advance roughly one month after the quarter, with subsequent updates

over the following two months (e.g. the 2014 first quarter advanced estimate is due April 30,

2014). By comparison, oil prices are available on a daily basis and hence their monthly data

2One can equivalently let wk = 1/m for k = 1, . . . , m in flow sampling if the average is preferred to a
summation.
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can be calculated immediately after the month. Also, the monthly CPI is announced roughly

three weeks after the month. Since the two monthly series are announced before the GDP, the

ordering is exactly as shown in (2.2.2).

In order to proceed, we will make a number of standard regulatory assumptions. Let FτL ≡

σ(X(t) : t ≤ τL). In particular we assume E[X(τL)|FτL−1] has a version that is almost surely

linear in {X(τL − 1), ...,X(τL − p)} for some finite p ≥ 1.

Assumption 2.2.1. The process X(τL) is governed by a VAR(p) for some p ≥ 1:

X(τL) =
p∑

k=1

AkX(τL − k) + ε(τL). (2.2.3)

The coefficients Ak are K × K matrices for k = 1, . . . , p. The K × 1 error vector ε(τL) =

[ε1(τL), . . . , εK(τL)]′ is a strictly stationary martingale difference with respect to increasing

FτL ⊂ FτL+1, where Ω ≡ E[ε(τL)ε(τL)′] is positive definite.

Remark 1. Martingale difference errors E[ε(τL)|FτL−1] = 0 allow for conditional heteroskedas-

ticity of unknown form. Nevertheless, in order to test for non-causality using (2.2.3) we estimate

a parameter subset from a (p, h)-autoregression defined in (2.2.5), below. Asymptotics for M-

estimators of the resulting parameter involve finite sums of martingale differences which are not

in general martingale differences, and anyway the martingale difference property alone does not

suffice for Gaussian asymptotics of M-estimators (cf. McLeish (1974), Hall and Heyde (1980)).

We therefore impose a mixing condition in Assumption 2.2.3 below.

Remark 2. Unless {ε(τL)} is an i.i.d. process, the VAR coefficients Ak do not necessarily carry

all the usual information about higher order causation, including volatility spillover (cfr. King,

Sentana, and Wadhwani (1994), Caporale, Pittis, and Spagnolo (2006)). This is irrelevant for

our purposes, however, because in the tradition of Dufour and Renault (1998) our analysis is

primarily about deducing nonlinear restrictions on {A1, ...,Ap} that relate information about

first order predictive ability in X(τL) , and about recovering information on (non-)causation

in HF-VAR by using MF- or LF-VAR models. Nevertheless, without independence the close

relationship between Granger’s (1969) and Sims’ (1972) notions of causality in terms of linear

predictive improvement breaks down, as shown in Florens and Mouchart (1982).
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Remark 3. We assume the lag order p is either known, or the true order resulting in a

martingale difference error ε(τL) is at least as large as p. In practice standard methods for

selecting the lag apply in a mixed frequency environment, including tests of white noise. Indeed,

in general regression model specification tests easily extend to mixed frequency data. A large lag

order and/or a large number of variables, moreover, may lead to empirical size distortions in our

asymptotic chi-squared test statistic. This is particularly relevant in a mixed frequency VAR

since m and therefore K may be large. This topic is well known with bootstrap-based solutions

(e.g. Dufour, Pelletier, and Renault (2006) when regression errors are i.i.d, and Gonçalves

and Killian (2004) when errors may be heteroskedastic of unknown form). See Section 2.6,

below where simulation evidence clearly shows a bootstrap approach for approximating our

test statistic’s critical values work well.

In addition, the following standard assumptions ensure stationarity and α-mixing of the

observed time series and the MF-VAR errors.3 Define Gt
s ≡ σ({X(i), ε(i)} : s ≤ i ≤ t) and

mixing coefficients αh ≡ supA⊂Gt
−∞,B⊂G∞

t+h
|P (A ∩ B) − P (A)P (B)| (cfr. Rosenblatt (1956) and

Ibragimov (1975)).

Assumption 2.2.2. All roots of the polynomial det(IK −
∑p

k=1 Akz
k) = 0 lie outside the unit

circle.

Assumption 2.2.3. X(τL) and ε(τL) are α-mixing:
∑∞

h=0 α2h < ∞.

Remark 4. Recall that α-mixing implies mixing in the ergodic sense, and therefore ergodicity

(see Petersen (1983)). Hence by Assumptions 2.2.1-2.2.3 {X(τL), ε(τL)} are stationary and

ergodic.

Remark 5. Asymptotics for our estimator only requires
∑∞

h=0 α2h < ∞ because under Assump-

tions 2.2.1 and 2.2.2 X(τL) has a positive bounded spectral density (cfr. Ibragimov (1975)).

This allows for geometric memory decay αh = O(ρh) for some ρ ∈ (0, 1), as well as much

slower decay and therefore persistence since αh = O(h−ι) for tiny ι > 0 suffices for Gaussian

asymptotics (cfr. Ibragimov (1975)). Our Wald statistic requires a greater constraint on the

3Although a large body of literature exists on Granger causality in non-stationary or cointegrated systems
(e.g. Yamamoto and Kurozumi (2006)), the generalization is beyond the scope of this paper.
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mixing coefficients αh due to a kernel variance estimator: see Theorem 2.2.2 and Appendix

A.1.1, below.

Remark 6. A mixing property for the scalar components of the error ε(τL) covers a great

variety of conditional volatility processes including GARCH and many asymmetric GARCH

processes (e.g. Boussama (1998), Carrasco and Chen (2002), Meitz and Saikkonen (2008)).

Conditions for geometric ergodicity and therefore α-mixing for the BEKK class of multivariate

strong GARCH(p, q) processes are known and carry over to a latent HF multivariate GARCH(p,

q) process (see Boussama, Fuchs, and Stelzer (2011)). Any finite lag measurable transform of

α-mixing ε(τL) is α-mixing, hence the mixing property for the HF process carries over to the MF

process. If ε(τL) is i.i.d. and has a continuous bounded joint distribution then from stationarity

Assumption 2.2.2 it follows X(τL) is geometrically α-mixing (see § 2.3.1 in Doukhan (1994)).

Otherwise in general an α-mixing property for ε(τL) implies X(τL) is also α-mixing when the

joint distribution of ε(τL) conditional on its history is absolutely continuous and bounded almost

surely (see § 2.3.2 in Doukhan (1994)).

Note also that we do not include a constant term in (2.2.3) solely to reduce notation, thus

X(τL) should be thought of as a de-meaned process. Finally, it is straightforward to allow an

infinite order VAR structure, and estimate a truncated finite order VAR model as in Lewis and

Reinsel (1985), Lütkepohl and Poskitt (1996), and Saikkonen and Lütkepohl (1996).

2.2.3 Estimators and Their Large Sample Properties

If the VAR(p) model appearing in (2.2.3) were standard, then the off-diagonal elements of

any matrix Ak would tell us something about causal relationships for some specific horizon.

The fact that MF-VAR models involve stacked replicas of high frequency data sampled across

different (high frequency) periods implies that potentially multi-horizon causal patterns reside

inside any of the matrices Ak. It is therefore natural to start with a multi-horizon setting. We

do so, at first, focusing on multiple low frequency prediction horizons which we will denote by

h ∈ N .4

4Another reason for studying multiple horizons is the potential of causality chains when KH > 1 or KL > 1.
Note, however, that despite the MF-VAR being by design multi-dimensional there are no causality chains when
KH = KL = 1 since the m × 1 vector of the high frequency observations refers to a single variable.
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It is convenient to iterate (2.2.3) over the desired test horizon in order to deduce simple

testable parameter restrictions for non-causality. Recall that under Assumption 2.2.2 a unique

stationary and ergodic solution to (2.2.3) exists:

X(τL) =
∞∑

k=0

Ψkε(τL − k), (2.2.4)

where Ψk satisfies Ψ0 = IK , Ψk =
∑p

s=1 AsΨk−s for k ≥ 1 and Ψk = 0K×K for k < 0, and

|Ψk| = O(ρk) for some ρ ∈ (0, 1). We then have what Dufour, Pelletier, and Renault (2006)

labeled as a (p, h)-autoregression:

X(τL + h) =
p∑

k=1

A
(h)
k X(τL + 1 − k) +

h−1∑
k=0

Ψkε(τL + h − k), (2.2.5)

where

A
(1)
k = Ak and A

(i)
k = Ak+i−1 +

i−1∑
l=1

Ai−lA
(l)
k for i ≥ 2.

By convention Ak = 0K×K whenever k > p. The MF-VAR causality test exploits Wald statistics

based on the OLS estimator of the (p, h)-autoregression parameter set

B(h) =
[
A

(h)
1 , . . . , A(h)

p

]′
∈ RpK×K . (2.2.6)

If all variables were aggregated into a common low frequency and expanded into a (p, h)-

autoregression, then h-step ahead non-causality has a simple parametric expression in terms

of B(h); cfr. Dufour, Pelletier, and Renault (2006). Recall, however, that the MF-VAR has

a special structure because of the stacked HF vector. This implies that the Wald-type test

for non-causality that we derive is slightly more complicated than those considered by Dufour,

Pelletier, and Renault (2006) since in MF-VAR models the restrictions will often deal with

linear parametric restrictions across multiple equations. Nevertheless, in a generic sense we

show in Section 2.3 that non-causality between any set of variables in a MF-VAR model can be

expressed as linear constraints with respect to B(h). Hence, the null hypothesis of interest is a

linear restriction:

H0(h) : Rvec [B(h)] = r, (2.2.7)
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where R is a q×pK2 selection matrix of full row rank q, and r ∈ Rq. We leave complete details

of the construction of R for Section 2.3.

The OLS estimator B̂(h) of B(h) is

B̂(h) ≡ arg min
B(h)

{
vec [Uh(h)]′ vec [Uh(h)]

}
=

[
W p(h)′W p(h)

]−1
W p(h)′W h(h),

where Uh(h) is a matrix of stacked sums of {Ψk} and {ε(τL)} while W p(h) and W h(h) are

matrices of stacked {X(τL)}. See Appendix A.1.1 for derivation of {Uh(h), W p(h), W h(h)}.

Assumptions 2.2.1-2.2.3 suffice for B̂(h) to be consistent for B(h) and asymptotically nor-

mal. Limits are with respect to TL → ∞ hence T ∗
L → ∞, where T ∗

L = TL −h+1 is the effective

sample size for the (p, h)-autoregression.

Theorem 2.2.1. Under Assumptions 2.2.1-2.2.3 B̂(h)
p→ B(h) and

√
T ∗

Lvec
[
B̂(h) − B(h)

]
d→ N

(
0pK2×1,Σp(h)

)
, (2.2.8)

where Σp(h) is positive definite.

Remark 7. See Appendix A.1.2 for a proof, and see Appendices A.1.1-A.1.2 for a complete

characterization of the asymptotic covariance matrix Σp(h).

If we have a consistent estimator Σ̂p(h) for Σp(h) which is almost surely positive semi-

definite for T ∗
L ≥ 1, we can define the Wald statistic

W [H0(h)] ≡ T ∗
L

(
Rvec

[
B̂(h)

]
− r

)′
×

(
RΣ̂p(h)R′

)−1
×

(
Rvec

[
B̂(h)

]
− r

)
. (2.2.9)

Implicitly, of course, RΣ̂p(h)R′ must be non-singular for any R ∈ Rq×pK2
with full row rank.

In view of positive definiteness of Σp(h) by Theorem 2.2.1, and the supposition Σ̂p(h) = Σp(h)

+ op(1), it follows (RΣ̂p(h)R′)−1 is well defined asymptotically with probability approaching

one.

We therefore obtain the following result, which we prove in Appendix A.1.2.

Theorem 2.2.2. Let Σ̂p(h) be a consistent estimator for Σp(h) that is almost surely positive

semi-definite for T ∗
L ≥ 1. Then under Assumptions 2.2.1-2.2.3, W [H0(h)] d→ χ2

q under H0(h).
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Remark 8. A consistent, almost surely positive semi-definite estimator Σ̂p(h) is easily con-

structed by using Newey and West’s (1987) HAC estimator, given the stronger moment and

mixing conditions ||ε(τL)||4+δ < ∞ and αh = O(h(4+δ)\δ) for some δ > 0. See Appendix A.1.1

for complete details.

In the remainder of the paper we will provide various tests for Granger causality which are

special cases of the generic framework derived so far.

2.3 Testing Causality with Mixed Frequency Data

In this section we define non-causality when data are sampled at mixed frequencies and describe

Wald-type tests associated with it. We first cover some preliminary notions of multiple-horizon

causality and extend it to the mixed sampling frequency case. We discuss in detail testing non-

causality from one variable to another, and whether they are high or low frequency variables.

We also cover non-causality from all high frequency variables to all low frequency variables and

vice versa, cases for which we give explicit formulae for the selection matrix R used in the null

hypothesis (2.2.7) and test statistic (2.2.9).

2.3.1 Preliminaries

We start with adopting the notion of non-causality to a mixed sampling frequency data filtration

setting. Using the notation of Dufour and Renault (1998) we define the relevant information

sets for the purpose of characterizing non-causality. In particular, let L2 be a Hilbert space

of covariance stationary real-valued random variables defined on a common probability space,

and the covariance as inner product. Moreover, let I(τL) be a closed increasing subspace of L2

such that I(τL) ⊂ I(τ ′
L) whenever τL < τ ′

L, where τL, τ ′
L ∈ Z.

Furthermore, define the indices i ∈ {1, . . . , KH} and j ∈ {1, . . . ,KL}, and write x̃H,i(τL) =

[xH,i(τL, 1), . . . , xH,i(τL,m)]′. Note that x̃H,i(τL) is a vector stacking all m observations of the

i-th high frequency variable available at period τL. We are putting a tilde in order to distinguish

it from the aggregated high frequency variable xH,i(τL) =
∑m

k=1 wkxH,i(τL, k) defined in (2.2.1).

Similarly, let xL,j(τL) be a scalar low frequency observation of the j-th low frequency variable

in period τL.
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Denote by x(−∞, τL] the Hilbert space spanned by {x(τ)| τ ≤ τL}. The information set

I is said to be conformable with x if x(−∞, τL] ⊂ I(τL) for all τL. We call the information

set derived from I(τL) = X(−∞, τL], where X(τL) is given in (2.2.2), as the MF reference

information set in period τL, whereas I = {I(τL)| τL ∈ Z} is the MF reference information set.

Therefore, the only information available up to period τL is the high frequency observations of

all high frequency variables and the low frequency observations of all low frequency variables.

In addition, let I(H,i) denote the MF reference information set except for the i-th high frequency

variable xH,i, and let I(L,j) denote the information set except for xL,j . Similarly, I(H) is the

MF reference information set except for all high frequency variables xH,1, . . . , xH,KH
. I(L) is

the MF reference information set except for all low frequency variables xL,1, . . . , xL,KL
. Note

that since the stacked high frequency observations x̃H,i(τL) and the low frequency observation

xL,j(τL) belong to X(τL) for all i ∈ {1, . . . ,KH} and j ∈ {1, . . . ,KL}, it is clear that the MF

reference information set I = {I(τL)| τL ∈ Z} is conformable with x̃H,i(τL) and xL,j(τL).

Finally, let E and F be two subspaces of L2, and let E + F denote the Hilbert subspace

generated by the elements of E and F. Let P [x(τL + h)| I(τL)] be the best linear forecast of

x(τL + h) based on I(τL) in the sense of a covariance orthogonal projection.

For any generic information set and pair of processes (high or low frequency) the notion of

non-causality is defined as follows.

Definition 2.3.1. (Non-causality at Different Horizons). Suppose that I is conformable with

x. (i) y does not cause x at horizon h given I (denoted by y9hx| I) if:

P [x(τL + h)|I(τL)] = P [x(τL + h)|I(τL) + y(−∞, τL]] ∀τL ∈ Z.

Moreover, (ii) y does not cause x up to horizon h given I (denoted by y 9(h) x| I) if y 9k x| I

for all k ∈ {1, . . . , h}.

Definition 2.3.1 applies to a mixed sampling frequency setting when suitable information

set and processes are used.5 Consider, for example, non-causality from the j-th low frequency

variable xL,j to the i-th high frequency variable xH,i. We say xL,j does not cause xH,i at horizon

5Definition 2.3.1 corresponds to Definition 2.2 in Dufour and Renault (1998) for covariance stationary pro-
cesses.
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h given I (denoted by xL,j9hxH,i| I) if P [x̃H,i(τL+h)| I(L,j)(τL)] = P [x̃H,i(τL + h)| I(τL) ] for

all τL ∈ Z. A key here is that we treat the m-dimensional stacked vector of xH,i as one block.

This treatment allows us to apply Definition 2.3.1 to mixed frequency frameworks without any

theoretical complications.

When we consider non-causality between a pair of high frequency series, namely xH,i1 9h

xH,i2 | I for i1, i2 ∈ {1, . . . ,KH}, it should be noted that we focus exclusively on low frequency

horizons h, or equivalently horizons h × m. Any other horizon, not a multiple of m, is not

considered here. They can be handled with the existing same frequency setting of Dufour and

Renault (1998).

We often treat all KH high frequency variables as a group and all KL low frequency variables

as the other group, so provide the explicit definition of non-causality in such a case. We say all

low frequency variables do not cause all high frequency variables at horizon h given I (denoted

by xL9hxH | I) if P [x̃H(τL + h)| I(L)(τL)] = P [x̃H(τL + h)| I(τL) ] for all τL ∈ Z, where

x̃H(τL) = [x̃H,1(τL)′, . . . , x̃H,KH
(τL)′]′.

In summary, there are six basic cases to consider in a mixed frequency setting.

Case 1 (low to low) Non-causality from the j1-th low frequency variable, xL,j1 , to the j2-th

low frequency variable, xL,j2 , at horizon h. The null hypothesis is written as H1
0 (h) : xL,j1

9h xL,j2 | I.

Case 2 (high to low) H2
0 (h) : xH,i1 9h xL,j1 | I.

Case 3 (low to high) H3
0 (h) : xL,j1 9h xH,i1 | I.

Case 4 (high to high) H4
0 (h) : xH,i1 9h xH,i2 | I.

Case I (all high to all low) Non-causality from all high frequency variables xH,1, . . . , xH,KH

to all low frequency variables xL,1, . . . , xL,KL
at horizon h. The null hypothesis is written

as HI
0 (h) : xH 9h xL| I.

Case II (all low to all high) HII
0 (h) : xL 9h xH | I.

Cases 1 through 4 handle individual variables, while Cases I and II handle entire groups

of variables. In the sequel we often consider Cases I and II for simplicity since - viewed as
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a bivariate system - causality chains can be excluded in both cases. In the bivariate system

non-causality at one horizon is synonymous to non-causality at all horizons (see Dufour and

Renault (1998: Proposition 2.3), cfr. Florens and Mouchart (1982: p. 590)). In order to avoid

tedious matrix notation, we do not treat in detail cases involving non-causation from a subset

of all variables to another subset. Our results straightforwardly apply, however, in such cases

as well.

2.3.2 Causality Tests in Mixed Frequency VAR Models

Our next task is to construct the selection matrices R for the various null hypotheses (2.2.7)

associated with the six generic cases. This requires deciphering parameter restrictions for non-

causation based on the (p, h)-autoregression appearing in equation (2.2.5).

Characterizing restrictions on A
(h)
k for each case above requires some additional matrix

notation. Let N ∈ Rn×n, and let a, b, c, d, ι, ι′ ∈ {1, . . . , n} with a ≤ b, c ≤ d, and (b − a)/ι

and (d − c)/ι′ being nonnegative integers. Then we define N(a : ι : b, c : ι′ : d) as the

( b−a
ι +1)× (d−c

ι′ +1) matrix which consists of the a-th, (a+ ι)-th, (a+2ι)-th, . . . , b-th rows and

c-th, (c+ ι′)-th, (c+2ι′)-th, . . . , d-th columns of N . Put differently, a signifies the first element

to pick, b is the last, and ι is the increment with respect to rows. c, d, and ι′ play analogous

roles with respect to columns. It is clear that:

N(a : ι : b, c : ι′ : d)′ = N ′(c : ι′ : d, a : ι : b). (2.3.1)

A short-hand notation is used when a = b : N(a : ι : b, c : ι′ : d) = N(a, c : ι′ : d). When ι = 1,

we write: N(a : ι : b, c : ι′ : d) = N(a : b, c : ι′ : d). Analogous notations are used when c = d

or ι′ = 1, respectively.

By Theorem 3.1 in Dufour and Renault (1998) and from model (2.2.5), it follows that H i
0(h)

are equivalent to:

A
(h)
k (a : ι : b, c : ι′ : d) = 0 for each k ∈ {1, . . . , p}, (2.3.2)

where a, ι, b, c, ι′, d, and the size of the null vector differ across cases i = 1, . . . , 4 and I and
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II.6 In Table 2.1 we detail the specifics for a, ι, b, c, ι′, d in these quantities for each of the six

cases.

Each case in Table 2.1 can be interpreted as follows. In Case 1, the (mKH +j2,mKH +j1)-th

element of A
(h)
k (i.e., the impact of the j1-th low frequency variable on the j2-th low frequency

variable) is zero if and only if H1
0 (h) is true. Likewise, in Case 2, the (mKH + j1, i1)-th,

(mKH + j1, i1 + KH)-th, . . . , (mKH + j1, i1 + (m − 1)KH)-th elements of A
(h)
k are all zeros

under H2
0 (h). Note that we are testing whether or not all mp coefficients of the i1-th high

frequency variable on the j1-th low frequency variable are zeros, i.e., the i1-th high frequency

variable has no impact as a whole on the j1-th low frequency variable at a given horizon h.

When H3
0 (h) holds, all mp coefficients of the j1-th low frequency variable on the i1-th high

frequency variable are zeros at horizon h. Note that the parameter constraints run across the

i1-th, (i1 + KH)-th, . . . , (i1 + (m − 1)KH)-th rows of A
(h)
k , not columns. This means that we

are testing simultaneous linear restrictions across multiple equations, unlike Dufour, Pelletier,

and Renault (2006) who focus mainly on simultaneous linear restrictions within one equation,

and unlike Hill (2007) who focuses on sequential linear restrictions across multiple equations.

In Case 4, the i1-th high frequency variable has no impact on the i2-th high frequency

variable if and only if H4
0 (h) is true. In this case m2 elements out of A

(h)
k are restricted to be

zeros for each k, so the total number of zero restrictions is pm2. Under HI
0 (h), the KL ×mKH

lower-left block of A
(h)
k is a null matrix. Finally, in Case II, the mKH × KL upper-right block

of A
(h)
k is a null matrix if and only if HII

0 (h) is true.

We can now combine the (p, h)-autoregression parameter set B(h) in (2.2.6) with the matrix

construction (2.3.1), its implication for testable restrictions (2.3.2), and Table 2.1, to obtain

generic formulae for R and r so that all six cases can be treated as special cases of (2.2.7).

The above can be summarized as follows:

Theorem 2.3.1. All hypotheses H i
0(h) for i ∈ {1, 2, 3, 4, I, II} are special cases of H0(h) with

R =
[
Λ(δ1)′,Λ(δ2)′, . . . ,Λ(δg(a,ι,b)p)

′]′ (2.3.3)

6Recall that xL,j(τL) and x̃H,i(τL) = [xH,i(τL, 1), . . . , xH,i(τL, m)]′ belong to X in (2.2.2) for all j ∈ {1, . . . ,
KL} and i ∈ {1, . . . , KH}. This is why non-causality under mixed frequencies is well-defined and Theorem 3.1
in Dufour and Renault (1998) can be applied directly.
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and

r = 0g(a,ι,b)g(c,ι′,d)p×1, (2.3.4)

where g(a, ι, b) = (b − a)/ι + 1, δ1 = pK(a − 1) + c,

δl = δl−1 + K + pK(ι − 1)I(l − 1 = zp for some z ∈ N ) (2.3.5)

for l = 2, . . . , g(a, ι, b)p, and Λ(δ) is a g(c, ι′, d) × pK2 matrix whose (j, δ+(j−1)ι′)-th element

is 1 for j ∈ {1, . . . , g(c, ι′, d)} and all other elements are zeros.

Several key points will help us understand (2.3.3) through (2.3.5). First, g(a, ι, b) and g(c, ι′,

d) represent how many rows and columns of A
(h)
k have zero restrictions for each k ∈ {1, . . . , p},

respectively. The total number of zero restrictions is therefore q = g(a, ι, b)g(c, ι′, d)p as in

(2.3.4). Second, Λ(δ) has only one nonzero element in each row that is identically 1, signifying

which element of vec[B(h)] is supposed to be zero. The location of 1 is determined by δ1, . . . ,

δg(a,ι,b)p, which are recursively updated according to (2.3.5). As seen in (2.3.5), the increment

of δl is basically K, but an extra increment of pK(ι − 1) is added when l − 1 is a multiple of p

in order to skip some columns of B(h).

Theorem 2.3.1 provides unified testing for non-causality as summarized below.

Step 1 For a given VAR lag order p and test horizon h, estimate a (p, h)-autoregression.7

Step 2 Calculate a, ι, b, c, ι′, d according to Table 2.1 for a given case of non-causality relation.

Put those quantities into (2.3.3) and (2.3.4) to get R and r.

Step 3 Use R and r in order to calculate the Wald test statistic W [H0(h)] in (2.2.9).

Example 2 : Selection Matrices R and r: Since Table 2.1 and Theorem 2.3.1 are rather

abstract, we present a concrete example of how R and r are constructed in our trivariate

simulation and empirical application. In Section 2.6.2 and Section 2.7, we fit a MF-VAR(1)

7A potential drawback of our approach as well as Dufour, Pelletier, and Renault (2006) is that the prediction
horizon h is fixed at each test and thus the entire set of results for multiple h’s may yield a contradiction. See
footnote 2 in Hill (2007). Hill (2007) avoids this problem by a sequential multiple-horizon non-causation test,
in which a series of individual non-causation tests are performed to deduce causal chains and causation horizon.
The present paper takes the Dufour, Pelletier, and Renault (2006) approach because of its simplicity. See Hill
(2007) and Salamaliki and Venetis (2013) for a comparison of the two methods.
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model with prediction horizons h ∈ {1, 2, 3} to two high frequency variables X and Y and one

low frequency variable Z with m = 3. In this case the mixed frequency vector appearing in

(2.2.2) can be written as:

W (τL) = [X(τL, 1), Y (τL, 1), X(τL, 2), Y (τL, 2), X(τL, 3), Y (τL, 3), Z(τL)]′.

Note that KH = 2, KL = 1, and hence K = 7 in this example. Although the construction of R

and r do not depend on the value of h, consider h = 1 for simplicity, and write the parameter

matrix:

A1 =


a11 . . . a17

...
. . .

...

a71 . . . a77

 or A′
1 =


a11 . . . a71

...
. . .

...

a17 . . . a77

 .

Since p = h = 1, B(h) appearing in (2.2.6) is simply A′
1.

Consider the null hypothesis that Z does not cause X at horizon 1. This null hypothesis is

equivalently a17 = a37 = a57 = 0 since a17, a37, and a57 represent the impact of Z(τL − 1) on

X(τL, 1), X(τL, 2), and X(τL, 3), respectively. Note that a17, a37, and a57 are respectively the

7th, 21st, and 35th element of vec[B(h)] appearing in (2.2.7). Hence, the proper choice of R

and r is:

R =


01×6 1 01×13 0 01×13 0 01×14

01×6 0 01×13 1 01×13 0 01×14

01×6 0 01×13 0 01×13 1 01×14

 and r = 03×1. (2.3.6)

We now confirm that the same R and r can be obtained via Table 2.1 and Theorem 2.3.1.

Non-causality from Z to X falls in Case 3 with i1 = j1 = 1 (i.e. non-causality from the first low

frequency variable to the first high frequency variable). Using Table 2.1, we have that (a, ι, b,

c, ι′, d) = (1, 2, 5, 7, 1, 7) and therefore g(a, ι, b) = 3, g(c, ι′, d) = 1, and {δ1, δ2, δ3} = {7, 21, 35}

by application of Theorem 2.3.1. This implies that r = 03×1 and R = [Λ(7)′,Λ(21)′,Λ(35)′]′,

where Λ(δ) is a 1 × 49 vector whose δ-th element is 1 and all other elements are zeros for

δ ∈ {7, 21, 35}. We can therefore confirm that Table 2.1 and Theorem 2.3.1 provide correct R

and r shown in (2.3.6).
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2.4 Recovery of High Frequency Causality

The existing literature on Granger causality and temporal aggregation has three key ingredients.

Starting with (1) a data generating process (DGP) for HF data, and (2) specifying a (linear)

aggregation scheme, one is interested in (3) the relationship between causal patterns - or lack

thereof - among the HF series and the inference obtained from LF data when all HF series are

aggregated. So far, we refrained from (1) specifying a DGP for HF series and (2) specifying

an aggregation scheme. We will proceed along the same path as the existing literature in

this section with a different purpose, namely to show that the MF approach recovers more

underlying causal patterns than the standard LF approach does. While conducting Granger

causality tests with MF series does not resolve all HF causal patterns, using MF instead of

using exclusively LF series promotes sharper inference.

We first start with a fairly straightforward extension of Lütkepohl (1984), establishing the

link between HF-VAR and MF data representations. We then analyze the link between HF,

MF and LF causality.

2.4.1 Temporal Aggregation of VAR Processes

Lütkepohl (1984) provides a comprehensive analysis of temporal aggregation and VAR pro-

cesses. We extend his analysis to a MF setting. While the extension is straightforward, it

provides us with a framework that will be helpful for the analysis in the rest of the paper.

Let K∗ = KH + KL, and define X(τL, k) = [xH(τL, k)′, xL(τL, k)′]′ ∈ RK∗
for k = 1,

. . . ,m. Note that part of the X vector process is obviously latent, namely the high frequency

observations of the LF process, represented by the xL(τL, k) elements of the vector process.

In order to proceed, let LH denote the high frequency lag operator, in particular

Ll
HX(τL, k) = X(τL − ι, ι′)

with

ι =


0 if 0 ≤ l < k

1 + b l−k
m c if l ≥ k

and ι′ =


k − l if 0 ≤ l < k

ιm + k − l if l ≥ k.
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Note that bxc is the largest integer not larger than x. For example, LHX(τL, 2) = X(τL, 1)

and LHX(τL, 1) = X(τL − 1,m). Letting LL be the low frequency lag operator, we have that

LLX(τL, 1) = Lm
HX(τL, 1) = X(τL − 1, 1).

Assume that {{X(τL, k)}k}τL follows a VAR(p) process with p ∈ N ∪ {∞}:

X(τL, k) =
p∑

l=1

ΦlLl
HX(τL, k) + η(τL, k). (2.4.1)

The coefficient matrix Φl is partitioned in the following manner:

Φl =

ΦHH,l ΦHL,l

ΦLH,l ΦLL,l

 ,

where Φyz,l ∈ RKy×Kz with y, z ∈ {H,L}. The error η(τL, k) satisfies a HF martingale difference

property similar to the LF based Assumption 2.2.1 in Section 2.2.2.8 It is therefore helpful to

define a HF sigma field using a single-index version of X(τL, k). Simply write (2.4.1) as Y t =∑p
l=1ΦlY t−l + ξt, where {Y t, ξt} ∈ RK∗

are single-index versions of {X(τL, k), η(τL, k)}, e.g.

t = m(τL − 1) + k, so that Y 1 corresponds to X(1, 1). See also Section 2.4.2 below. Then ξt

= η(τL, k) is a stationary martingale difference with respect to σ(Y s : s ≤ t) with variance V

≡ E[η(τL, k)η(τL, k)′].

As stated in (2.2.1), a general linear aggregation scheme is considered: xH(τL) =
∑m

k=1 wkxH(τL,

k) and xL(τL) =
∑m

k=1 wkxL(τL, k). By an application of Theorem 1 in Lütkepohl (1984), the

mixed frequency vector X(τL) defined in (2.2.2) and the low frequency vector defined as

X(τL) = [xH(τL)′, xL(τL)′]′ ∈ RK∗
(2.4.2)

follow VARMA processes. More specifically, we have the following.

Theorem 2.4.1. Suppose that an underlying high frequency process follows a VAR(p). Then

the corresponding MF process is a VARMA(pM , qM ), and the corresponding low frequency

8Lütkepohl (1984) only requires the VAR error to be vector white noise. We impose the martingale difference
assumption here for continuity with the paper in general.
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process is a VARMA(pL, qL). Moreover,

pM ≤ deg
[
det(A(LL))

]
≡ g and pL ≤ g,

where g is the degree of polynomial of det(A(LL)). Furthermore,

qM ≤ max
{
deg

[
Akl(LL)

]
− g + pM | k, l = 1, . . . ,mK∗} ,

where Akl(LL) is the (k, l)-th cofactor of A(LL). Similarly,

qL ≤ max
{
deg

[
Akl(LL)

]
− g + pL| k, l = 1, . . . ,mK∗} .

Finally, if the high frequency VAR process is stationary then so are the mixed and low frequency

VARMA processes.

Remark 9. See Appendix A.2 for a proof, and for completeness the construction of A(LL).

In general it is impossible to characterize pM , qM , pL, or qL exactly (cfr. Lütkepohl (1984)).

Nevertheless, if the HF process {X(τL, k)} is governed by a VAR(p) then the MF and LF

processes {X(τL)} and {X(τL)} have VARMA representations, and therefore VAR(∞) rep-

resentations under the assumption of invertibility. Thus, one can still estimate those invert-

ible VARMA processes by using a finite order approximation as in Lewis and Reinsel (1985),

Lütkepohl and Poskitt (1996), and Saikkonen and Lütkepohl (1996). Moreover, the VARMA

order can be characterized under certain simple cases such as stock sampling with p = 1.

Example 3 : stock sampling with p = 1: Suppose that an underlying HF process follows

a VAR(1) X(τL, k) = Φ1L1
HX(τL, k) + η(τL, k) where η(τL, k) is a stationary martingale

difference with respect to the HF sigma field σ(Y s : s ≤ t), Y t is a single-index version of

X(τL, k), and V ≡ E[η(τL, k)η(τL, k)′].

It is easy to show that the corresponding MF process also follows a VAR(1) if we consider

stock sampling:

X(τL) = A1X(τL − 1) + ε(τL). (2.4.3)
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The parameter A1 is

A1 =



0KH×(m−1)KH
Φ[1]

HH,1 Φ[1]
HL,1

...
...

...

0KH×(m−1)KH
Φ[m]

HH,1 Φ[m]
HL,1

0KL×(m−1)KH
Φ[m]

LH,1 Φ[m]
LL,1


, (2.4.4)

where

Φk
l ≡

Φ[k]
HH,l Φ[k]

HL,l

Φ[k]
LH,l Φ[k]

LL,l

 .

By construction

ε(τL) =



∑1
k=1

[
Φ[1−k]

HH,1 Φ[1−k]
HL,1

]
η(τL, k)

...∑m
k=1

[
Φ[m−k]

HH,1 Φm−k]
HL,1

]
η(τL, k)∑m

k=1

[
Φ[m−k]

LH,1 Φ[m−k]
LL,1

]
η(τL, k)


,

hence ε(τL) is a stationary martingale difference with respect to the MF sigma field σ(X(t) :

t ≤ τL), where Ω ≡ E[ε(τL)ε(τL)′] can be explicitly characterized as a function of Φ1 and V .

The covariance matrix Ω has a block representation

Ω =



Ω1,1 . . . Ω1,m Ω1,m+1

...
. . .

...
...

Ω′
1,m . . . Ωm,m Ωm,m+1

Ω′
1,m+1 . . . Ω′

m,m+1 Ωm+1,m+1


∈ RK×K , (2.4.5)

with components

Ωi,j =
i∑

k=1

[
Φ[i−k]

HH,1 Φ[i−k]
HL,1

]
V

Φ[j−k]′

HH,1

Φ[j−k]′

HL,1

 for i, j ∈ {1, . . . ,m} and i ≤ j, (2.4.6)

Ωi,m+1 =
i∑

k=1

[
Φ[i−k]

HH,1 Φ[i−k]
HL,1

]
V

Φ[m−k]′

LH,1

Φ[m−k]′

LL,1

 for i ∈ {1, . . . ,m}
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and

Ωm+1,m+1 =
m∑

k=1

[
Φ[m−k]

LH,1 Φ[m−k]
LL,1

]
V

Φ[m−k]′

LH,1

Φ[m−k]′

LL,1

 . (2.4.7)

Similarly, the LF process follows a VAR(1):

X(τL) = A1X(τL − 1) + ε(τL), (2.4.8)

where

A1 = Φm
1 , (2.4.9)

and ε(τL) is a stationary martingale difference with respect to the LF sigma field σ(X(t) :

t ≤ τL), with Ω ≡ E[ε(τL)ε(τL)′]. Simply note ε(τL) =
∑m

k=1 Φm−k
1 η(τL, k) to deduce the

covariance matrix structure:

Ω =
m∑

k=1

Φm−k
1 V (Φm−k

1 )′ ∈ RK∗×K∗
. (2.4.10)

2.4.2 Causality and Temporal Aggregation

Felsenstein et al. (2013) explore conditions for identifying a HF process based on MF data.

When their conditions are satisfied, recovery of HF causality is trivially feasible by looking at

off-diagonal elements of the identified HF-VAR coefficients. The conditions for identification

are stringent, however, and one may therefore wonder what happens if they are not satisfied.

In this subsection we fill some of the gap by focusing on testing for causality since this does not

require full identification of the entire HF process.

Since Granger causality is based on information sets, we need to define reference information

sets for HF- and LF-VAR processes. Toward this end, we rewrite a HF-VAR(p) process in (2.4.1)

with a single time index t: Y t =
∑p

l=1ΦlY t−l + ξt, where Y t ∈ RK∗
is simply a single-index

version of X(τL, k). One way of mapping (τL, k) to t is to let t = m(τL − 1) + k so that Y 1

corresponds to X(1, 1). The same mapping is used between ξt and η(τL, k). Recall from Section

2.3.1 that I(τL) is the MF reference information set in period τL, while I = {I(τL)| τL ∈ Z} is

the MF reference information set. We now introduce HF and LF versions of the information set.
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The HF reference information set at time t is defined as I(t) = Y (−∞, t]. The HF reference

information set is defined as I = {I(t) | t ∈ Z}. The prediction horizon for non-causality

given I is in terms of the high frequency, denoted by h ∈ Z. For example, non-causality

from all high frequency variables to all low frequency variables at high frequency horizon h

given I is written as xH 9h xL | I. Similarly, the LF reference information set at time τL is

defined as I(τL) = X(−∞, τL], where X(τL) is given in (2.4.2). The LF reference information

set is defined as I = {I(τL) | τL ∈ Z}. Whether (non-)causality is preserved under temporal

aggregation depends mainly on three conditions: an aggregation scheme, VAR lag order p,

and the presence of an auxiliary variable and therefore the possibility of causality chains. The

existing literature has found that temporal aggregation may hide or generate causality even

in very simple cases. We show that the MF approach recovers underlying causality patterns

better than the traditional LF approach.

Theorem 2.4.2. Consider the linear aggregation scheme appearing in (2.2.1) and assume a HF-

VAR(p) with p ∈ N ∪ {∞}. Then, the following two properties hold when applied respectively

to all low and all high frequency processes: (i) If xH 9 xL | I, then xH 9 xL | I. (ii) If

xL 9 xH | I, then xL 9 xH | I.

Proof: See Appendix A.3.

Note that the prediction horizon in Theorem 2.4.2 is arbitrary since there are no auxiliary

variables involved. This follows since we only examine the relationship between all low and all

high frequency processes respectively.9

Theorem 2.4.2 part (i) states that non-causality from all high frequency variables to all low

frequency variables is preserved between MF and LF processes, while part (ii) states that non-

causality from all low frequency variables to all high frequency variables is preserved between HF

and MF processes. One might incorrectly guess from Theorem 2.4.2 part (ii) that xL 9 xH | I

⇒ xL 9 xH | I. This statement does not hold in general. A simple counter-example is a

HF-VAR(2) process with stock sampling, m = 2, KH = KL = 1,

9Theoretical results in the presence of auxiliary variables are seemingly intractable since potential causal
chains complicate causality patterns substantially.
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Φ1 =

φHH,1 0

φLH 0

 , and Φ2 =

φHH,2 0

0 0

 .

Assume that φHH,1, φHH,2, and φLH are all nonzero. Note that, given I, xL does not cause

xH while xH does cause xL. In this particular case, we can derive the corresponding MF-VAR(1)

and LF-VAR(1) processes. The MF coefficient is

A1 =


φHH,2 φHH,1 0

φHH,1φHH,2 φ2
HH,1 + φHH,2 0

φLHφHH,2 φLHφHH,1 0

 , (2.4.11)

while the LF coefficient is

A1 =

φ2
HH,1 + φHH,2 φHH,1φHH,2/φLH

φLHφHH,1 φHH,2

 . (2.4.12)

Equations (2.4.11) and (2.4.12) indicate that xL does not cause xH given I, but xL does cause

xH given I. Thus, we confirm that non-causality from all low frequency variables to all high

frequency variables is not necessarily preserved between MF and LF processes.

Summarizing Theorem 2.4.2 and the counter-example above, a crucial condition for non-

causality preservation is that the information for the ”right-hand side” variables (i.e. xL for

(i) and xH for (ii)) is not lost by temporal aggregation. In this sense, the MF approach yields

more implications on hidden causality patterns than the LF approach, which switches directly

from a HF process by aggregating all variables.

We conclude this subsection by again focusing on stock sampling with p =1 as this particular

case yields much sharper results.

Example 4: stock sampling with p = 1: When p = 1 and stock sampling is of interest, the

exact functional form for the MF and LF processes is known and appear in (2.4.3) and (2.4.8).

Equation (2.4.4) highlights what kind of causality information gets lost by switching from a

HF- to MF-VAR. Similarly, (2.4.9) reveals the information loss when moving from a MF- to

LF-VAR. This brings us to the following theorem.
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Theorem 2.4.3. Consider stock sampling with p = 1. Then, the corresponding MF-VAR and

LF-VAR processes are also of order 1. Furthermore, non-causation among the HF-, MF-, and

LF-VAR processes is related as follows.

i. In Case 1 (low 9 low) and Case 2 (high 9 low), non-causation up to HF horizon m given

the HF information set I implies non-causation at horizon 1 given the MF information

set I, which is necessary and sufficient for non-causation at horizon 1 given the LF

information set I.

ii. In Case 3 (low 9 high) and Case 4 (high 9 high), non-causation up to HF horizon m

given I is necessary and sufficient for non-causation at horizon 1 given I, which implies

non-causation at horizon 1 given I.

iii. In Case I (all high 9 all low), non-causation at HF horizon 1 given I implies non-

causation at horizon 1 given I, which is necessary and sufficient for non-causation at

horizon 1 given I.

iv. In Case II (all low 9 all high), non-causation at HF horizon 1 given I is necessary and

sufficient for non-causation at horizon 1 given I, which implies non-causation at horizon

1 given I.

Proof: See Appendix A.4.

Although Theorem 2.4.3 is much sharper than Theorem 2.4.2 due to much stronger as-

sumptions, they share an interesting feature that causality tends to be contaminated more

when temporal aggregation discards information for ”right-hand side” variables. For example,

item 2 shows that no relevant information for testing low-to-high or high-to-high causality is

lost when moving from I to I (i.e., when aggregating low frequency variables), while some

information is lost when moving from I to I (i.e., when aggregating high frequency variables).

Theorem 2.4.3 suggests that the MF causality test should never perform worse than the low

frequency causality test, and the former should be more powerful than the latter especially when

Cases 3, 4, and II are of interest. Sections 2.5 and 2.6 verify this point by a local asymptotic

power analysis and a Monte Carlo simulation, respectively.
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2.5 Local Asymptotic Power Analysis

The goal of this section is to show that the MF causality tests have higher local asymptotic

power compared to the LF causality test. We need to constrain our attention to analytically

tractable DGPs, which is why we consider a bivariate HF-VAR(1) process with stock sampling.

As shown in the previous section, for the bivariate HF-VAR(1) one can derive analytically

the corresponding MF- and LF-VAR(1) processes. Recall that Case I considers unidirectional

causality from the high frequency variable to the low frequency variable, while Case II considers

unidirectional causality from the low frequency variable to the high frequency variable.

We first compute the local asymptotic power functions for both cases, and then plot them in

a numerical exercise. Since we work with a HF process, define the HF sample size T ≡ TL ×m.

Case I: High-to-Low Causality In order to characterize local asymptotic power, assume

that the high frequency DGP is given by:

X(τL, k) = Φ(ν/
√

T )LHX(τL, k) + η(τL, k), (2.5.1)

where

Φ(ν/
√

T ) =

 ρH 0

ν/
√

T ρL


with ρH , ρL ∈ (−1, 1), where ν ∈ R is the usual Pitman drift parameter. Assume for computa-

tional simplicity that η(τL, k) i.i.d.∼ (02×1, I2), hence X(τL, k) has a strictly stationary solution

and model (2.5.1) fully describes the causal structure of X(τL, k). In the true DGP, the low fre-

quency variable does not cause the high frequency variable, while for ν 6= 0 the high frequency

variable causes the low frequency variable with a marginal impact of ν/
√

T which vanishes as

T → ∞. First note we have p = h = 1. We will therefore simplify notation, namely denote the

least squares asymptotic covariance matrix Σp(h) as Σ1.

Assuming stock sampling and general m ∈ N , the corresponding MF-VAR(1) process of

dimension K = m + 1 (since KH = KL = 1) is as follows:

X(τL) = A(ν/
√

T )X(τL − 1) + ε(τL), (2.5.2)
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where

A(ν/
√

T ) =



01×(m−1) ρH 0
...

...
...

01×(m−1) ρm
H 0

01×(m−1)

∑m
k=1 ρk−1

H ρm−k
L (ν/

√
T ) ρm

L


(2.5.3)

and ε(τL) i.i.d.∼ (0K×1,Ω) See (2.4.5)-(2.4.7) in Section 2.4.1 for a characterization of Ω. The

MF-VAR(1) being estimated is:

X(τL) = A × X(τL − 1) + ε(τL)

with coefficient matrix A = A(ν/
√

T ). Table 2.1 and Theorem 2.3.1 provide us the Case I

selection matrix R to formulate the null hypothesis of high-to-low non-causality:

HI
0 : Rvec

[
A′] = 0m×1 where R ∈ Rm×K2

.

Thus, the corresponding local alternatives HI,L
A are written as

HI,L
A : Rvec

[
A′] = (ν/

√
T )a,

where by (2.5.3) it follows a is the m × 1 vector [0, ..., 0,
∑m

k=1 ρk−1
H ρm−k

L ]′. Now let Â be the

least squares estimator of A. Theorem 2.2.2 implies that W [HI
0 ] d→ χ2

m as T → ∞ under HI
0 .

Similarly, by classic arguments it is easy to verify under HI,L
A that W [HI,L

A ] d→ χ2
m(κMF ),

where χ2
m(κMF ) is the non-central chi-squared distribution with m degrees of freedom and

non-centrality parameter κMF :

κMF = ν2a′ [RΣ1R
′]−1

a, (2.5.4)

where Σ1 is the asymptotic variance of Â, in particular

Σ1 = Ω ⊗ Υ−1
0 with Υ0 =

∞∑
i=0

AiΩAi′ where A ≡ lim
T→∞

A(ν/
√

T ). (2.5.5)
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Equation (2.5.5) can be obtained from non-local least squares asymptotics with A ≡ limT→∞ A

(ν/
√

T ). See Appendix A.1.1 for details on deriving Σ1 in (2.5.5). Using the discrete Lyapunov

equation, Υ0 can be characterized by:

vec[Υ0] = (IK2 − A ⊗ A)−1vec[Ω].

Let F0 : R → [0, 1] be the cumulative distribution function (c.d.f.) of the null distribution,

χ2
m. Similarly, let F1 : R → [0, 1] be the c.d.f. of the alternative distribution, χ2

m(κMF ). The

local asymptotic power of the MF high-to-low causality test, P, is given by:

P = 1 − F1

[
F−1

0 (1 − α)
]
, (2.5.6)

where α ∈ [0, 1] is a nominal size.

We now derive the local asymptotic power of the LF high-to-low causality test. First, the

LF-VAR(1) process corresponding to (2.5.1) is given by:

X(τL) = A(ν/
√

T )X(τL − 1) + ε(τL), (2.5.7)

where

A(ν/
√

T ) =

 ρm
H 0∑m

k=1 ρk−1
H ρm−k

L (ν/
√

T ) ρm
L

 (2.5.8)

and ε(τL) i.i.d.∼ (02×1,Ω). Note that Ω is characterized in (2.4.10).

Suppose that we fit a LF-VAR(1) model with coefficient matrix A ∈ R2×2, that is X(τL) =

A×X(τL − 1) + ε(τL). The null hypothesis of high-to-low non-causality is that the lower-left

element of A is zero:

HI
0 : Rvec

[
A′] = 0,

where R = [0, 0, 1, 0]. The corresponding local alternative hypothesis is:

HI,L
A : Rvec

[
A′] =

m∑
k=1

ρk−1
H ρm−k

L (ν/
√

T ).
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Let Â be the least squares estimator of A. We have that W [HI
0 ] d→ χ2

1 as T → ∞ under HI
0 ,

while W [HI,L
A ] d→ χ2

1(κLF ) under HI,L
A with κLF given by:

κLF =

(
ν

∑m
k=1 ρk−1

H ρm−k
L

)2

RΣ1R′ ,

where Σ1 is the asymptotic variance of Â ≡ limT→∞{A(ν/
√

T )}, in particular as in (2.5.5) it

can be shown Σ1 = Ω⊗Υ−1
0 with Υ0 =

∑∞
i=0 AiΩAi′ . The local asymptotic power of the LF

high-to-low causality test is given by (2.5.6), where F0 is the c.d.f. of χ2
1 and F1 is the c.d.f. of

χ2
1(κLF ).

Case II: Low-to-High Causality Assume that the true DGP is given by (2.5.1) with

Φ(ν/
√

T ) =

ρH ν/
√

T

0 ρL


with ρH , ρL ∈ (−1, 1). Assume again that η(τL, k) i.i.d.∼ (02×1, I2). In the true DGP, the high

frequency variable does not cause the low frequency variable, while the low frequency variable

causes the high frequency variable, a relationship which vanishes as T → ∞.

Assuming stock sampling and general m ∈ N , the corresponding MF-VAR(1) process is

given by (2.5.2) with

A(ν/
√

T ) =



01×(m−1) ρH
∑1

k=1 ρk−1
H ρ1−k

L (ν/
√

T )
...

...
...

01×(m−1) ρm
H

∑m
k=1 ρk−1

H ρm−k
L (ν/

√
T )

01×(m−1) 0 ρm
L


. (2.5.9)

Our model is again a MF-VAR(1) model, so the local asymptotic power of the MF low-to-high

causality test can be computed exactly as in Case I with only two changes. First, a in (2.5.4)

has different elements here: a = [
∑1

k=1 ρk−1
H ρ1−k

L , . . . ,
∑m

k=1 ρk−1
H ρm−k

L ]′. Second, the selection

matrix R is specified according to Case II in Section 2.3.2. These differences will produce

an interesting asymmetry between the MF high-to-low causality test and the MF low-to-high
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causality test.

We now consider the LF low-to-high causality test. The LF-VAR(1) process is given by:

A(ν/
√

T ) =

ρm
H

∑m
k=1 ρk−1

H ρm−k
L (ν/

√
T )

0 ρm
L

 . (2.5.10)

The local asymptotic power of the LF low-to-high causality test can again be computed exactly

as in Case I with the only difference being that R = [0, 1, 0, 0] here, so there is no asymmetry

between the LF high-to-low causality test and the LF low-to-high causality test.

Numerical Exercises In order to study the local asymptotic power analysis more directly,

we rely on some numerical calculations. In Figure 2.1 we plot the ratio of the local asymptotic

power of the MF causality test to that of the LF causality test, which we call the power ratio

hereafter. We assume a nominal size α = 0.05. Panel A focuses on high-to-low causality,

while Panel B focuses on low-to-high causality. Each panel has four figures depending on

ρH , ρL ∈ {0.25, 0.75}. The x-axis of each figure has ν ∈ [0.5, 1.5], while the y-axis has m ∈ {3,

. . . , 12}. The case that m = 3 can be thought of as the month versus quarter case, while the

case that m = 12 can be thought of as the month versus year case. Note that the scale of each

z-axis is different.

In Panel A, the power ratio varies within [0.5, 1], hence the MF causality test is as powerful

as, or is in fact less powerful than, the LF causality test. This is reasonable since a MF process

contains the same information about high-to-low causality test as the corresponding LF process

does (cfr. (2.5.3), (2.5.8), and Theorem 2.4.3) and the former has more parameters: recall that

A is (m+1)× (m+1) while A is 2×2. The power ratio tends to be low in the bottom figures of

Panel A, where ρH = 0.75. This result is also understandable since the information loss caused

by aggregating a high frequency variable is less severe when it is more persistent.

Panel B highlights the advantage of the MF approach over the LF approach. Note that the

power ratio always exceeds one and the largest value of the z-axis is 5, 15, 3, or 6 when (ρH , ρL)

= (0.25, 0.25), (0.25, 0.75), (0.75, 0.25), or (0.75, 0.75), respectively. This result is consistent

with (2.5.9), (2.5.10), and Theorem 2.4.3, where we show that a MF process contains more

information about low-to-high causality test than the corresponding LF process does. Given
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the same ρL, the power ratio tends to be low when the high frequency variable is more persistent.

The reason for this result is again that aggregating a high frequency variable produces less severe

information loss when it is more persistent.

Another interesting finding from Panel B is that the power ratio is decreasing in m for (ρH ,

ρL) = (0.25, 0.25) and increasing in m for (ρH , ρL) = (0.75, 0.75). In order to interpret this fact,

let ρH = ρL = ρ and consider a key quantity in the upper-right block of A,
∑m

k=1 ρk−1
H ρm−k

L =

mρm−1 ≡ f(m). Given m, the upper-right block of A has f(1), . . . , f(m) while that of A has

f(m) only, therefore it is {f(1), . . . , f(m−1)} that determines the power ratio. Hence, whether

the power ratio increases or decreases by switching from m to m+1 depends on the magnitude

of f(m). If f(m) is close to zero, then the power ratio decreases due to more parameters in

a MF-VAR model and negligible informational gain from f(m). If f(m) is away from zero,

then the power ratio increases since such a large coefficient helps us reject the incorrect null

hypothesis of low-to-high non-causality. Figure 2.2 plots f(m) for ρ ∈ {0.25, 0.75}. It shows

that f(m) converges to zero quickly as m grows when ρ = 0.25, while it does much more slowly

when ρ = 0.75. Thus, the power ratio is decreasing in m for ρ = 0.25 and increasing in m for ρ

= 0.75.

In summary, the local asymptotic power of the MF low-to-high causality test is higher than

that of the LF counterpart. The ratio of the former to the latter increases as a high frequency

variable gets less persistent, given the persistence of a low frequency variable. Moreover, the

power ratio increases in m for persistent series, while it decreases in m for transitory series.

2.6 Power Improvements in Finite Samples

This section conducts Monte Carlo simulations for bivariate cases and trivariate cases to evalu-

ate the finite sample performance of the mixed frequency causality test. In bivariate cases with

stock sampling, we know how causality is transferred among HF-, MF-, and LF-VAR processes

and hence we can compare the finite sample power of MF and LF causality tests. In trivariate

cases we have little theoretical results on how causality is transferred because of potential spu-

rious causality or non-causality, so our main exercise there is to evaluate the performance of

the MF causality test itself by checking empirical size and power. In particular, we will show
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that the mixed frequency causality test can capture causality chains under a realistic simulation

design. All tests in this section are performed at the 5% level.

2.6.1 Bivariate Case

This subsection considers a bivariate HF-VAR(1) process with stock sampling as in Section

2.5 so that the corresponding MF- and LF-VAR processes are known. One drawback of this

experimental design is that we cannot easily study flow sampling since the corresponding MF

and LF processes only have VARMA representations of unknown order, and therefore may not

have a finite order VAR representation, by Theorem 2.4.1.10

Simulation Design

We draw J independent samples from a HF-VAR(1) process {X(τL, k)} according to (2.4.1)

with Φ1 partitioned in two possible ways:

(a)

 φHH,1 φHL,1

φLH,1 φLL,1

 =

 0.4 0.0

0.2 0.4

 and (b)

 φHH,1 φHL,1

φLH,1 φLL,1

 =

 0.4 0.2

0.0 0.4

 .

Thus we have in (a) unidirectional causality from the high frequency variable to the low fre-

quency variable and in (b) unidirectional causality from the low frequency variable to the high

frequency variable. Since we assume stock sampling here, these causal patterns carry over to the

corresponding MF- and LF-VAR processes under this parameterization. The innovations are

either mutually and serially independent standard normal η(τL, k) i.i.d.∼ N(02×1, I2), or follow

a GARCH(1,1) process since many macroeconomic and financial time series exhibit volatility

clustering. The latter is best represented using the single-index representation of (2.4.1): Y t

= Φ1Y t−1 + ξt. The components ξi,t of ξt are mutually independent GARCH(1,1) with the

10In simulations not reported here we explored Lütkepohl and Poskitt’s (1996) finite-order approximation for
VAR(∞). The resulting test exhibited large empirical size distortions and was therefore not considered in this
paper.
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same feedback structure:

ξi,t = σi,tzi,t, zt
i.i.d.∼ N(02×1, I2),

σ2
i,t = 0.1 + 0.05ξ2

i,t−1 + 0.9σ2
i,t−1.

(2.6.1)

The chosen parameter values are similar to those found in many macroeconomic and financial

time series. In view of i.i.d. normality for the GARCH innovations the HF error process {ξt}

is stationary geometrically α-mixing (cfr. Boussama (1998)), hence MF and LF errors are also

geometrically α-mixing.

The low frequency sample size is TL ∈ {50, 100, 500}. The sampling frequency is taken from

m ∈ {2, 3}, so the high frequency sample size is T = mTL ∈ {100, 150, 200, 300, 1000, 1500}.

The case that (m,TL) = (3, 100) can be thought of as a month versus quarter case covering 25

years. When m takes a much larger value (e.g. m = 12 in month vs. year), our methodology

loses practical applicability due to parameter proliferations. Handling a large m remains as a

future research question.

We aggregate the HF data into MF data {X(τL)}TL
1 and LF data {X(τL)}TL

1 using stock

sampling; see (2.2.2) and (2.4.2). We then fit MF-VAR(1) and LF-VAR(1), which are correctly

specified. Finally, we compute Wald statistics for two separate null hypotheses of high-to-low

non-causality HH9L: xH 9 xL and low-to-high non-causality HL9H : xL 9 xH , each for hori-

zon h = 1.11 The Wald statistic shown in (2.2.9) is computed by OLS with two covariance

matrix estimators. The first one is based on the Bartlett kernel HAC estimator discussed in

Appendix A.1.1. We use a bandwidth of the form nT ∗
L
≡ max{1, λ(T ∗

L)1/3} since this optimizes

the estimator’s rate of convergence (Newey and West (1994)), while λ is determined by Newey

and West’s (1994) automatic bandwidth selection. This so-called HAC case corresponds to a

situation where the researcher merely uses one robust covariance estimation technique irrespec-

tive of theory results.12 The second covariance matrix is the true analytical matrix, and is

11Note from (2.4.3) and (2.4.8) that HH9L corresponds to A1(m + 1, 1 : m) = 01×m in the MF-VAR and to
A1(2, 1) = 0 in the LF-VAR models, while HL9H corresponds to A1(1 : m, m + 1) = 0m×1 in the MF-VAR and
to A1(1, 2) = 0 in the LF-VAR models.

12 In the special case when h = 1, a consistent and almost surely positive definite least squares asymptotic
variance estimator is easily computed without a long-run variance HAC estimator (see Appendix A.1.1). Based
on this insight, we also tried a sufficiently small λ instead of Newey and West’s (1994) automatic selection. The
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therefore called the benchmark case. This case corresponds to a complete-information situation

where the researcher knows the true parameters. The benchmark covariance matrix for the

MF-VAR model can be computed according to (2.5.5). In the LF-VAR model, A and Ω in

that expression should be replaced with A and Ω, respectively (see (2.4.4), (2.4.5), (2.4.9), and

(2.4.10)).

We circumvent size distortions for small samples TL ∈ {50, 100} by employing parametric

bootstraps in Dufour, Pelletier, and Renault (2006) and Gonçalves and Killian (2004).13 Dufour,

Pelletier and Renault’s (2006) procedure assumes i.i.d. errors with a known distribution while

Gonçalves and Killian’s (2004) wild bootstrap does not require knowledge of the true error

distribution and is robust to conditional heteroskedasticity of unknown form. Although p =

h = 1 in this specific experiment, we present the bootstrap procedures with general p and

h for completeness. We present the concrete procedures with respect to H2
0 (h) : xH,i1 9h

xL,j1 | I(H,i1), non-causality from the i1-th high frequency variable to the j1-th low frequency

variable, but all other cases can be treated analogously.

We use Dufour, Pelletier and Renault’s (2006) [DPR] parametric bootstrap for the model

with i.i.d. errors. The model with GARCH errors leads to greater size distortions, hence in

that case we use Gonçalves and Killian’s (2004) [GK] wild bootstrap detailed below. The DPR

bootstrap procedure in the MF-VAR case follows, the LF-VAR case being similar.

Step 1 We fit an unrestricted MF-VAR(p) model for prediction horizon one to get B̂(1) and

Ω̂ (cfr. (2.2.3) and (2.2.6)). We also fit an unrestricted MF-VAR(p) model for prediction

horizon h to get B̂(h) (cfr. (2.2.5)).

Step 2 Using (2.2.9), we compute the Wald test statistic based on the actual data, W [H2
0 (h)].

Step 3 We simulate N samples from (2.2.5) using B(h) = B̂(h) and Ω = Ω̂ and the correct

assumption that ε(τL) is jointly standard normal, where we impose parametric constraints

corresponding to H2
0 (h), found in (2.3.2) and Table 2.1. Estimates of the impulse response

results were similar to those of the HAC case, hence we do not reported them here.

13Chauvet, Götz, and Hecq (2013) explore an alternative approach of parameter reductions based on reduced
rank conditions, the imposition of an ARX(1) structure on the high frequency variables, and the transformation
of MF-VAR into LF-VAR models.
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coefficients Ψk can be obtained using B̂(1) and (2.2.4). We denote by Wi[H2
0 (h)] the Wald

test statistic based on the i-th simulated sample, where i ∈ {1, . . . , N}.

Step 4 Finally, we compute the resulting p-value p̂N (W [H2
0 (h)]), defined as

p̂N (W [H2
0 (h)]) ≡ 1

N + 1

(
1 +

N∑
i=1

I(Wi[H2
0 (h)] ≥ W [H2

0 (h)])

)
.

The null hypothesis H2
0 (h) is rejected at level α if p̂N (W [H2

0 (h)]) ≤ α.

We use the GK bootstrap for all models, hence for i.i.d. or GARCH errors. In this case

bootstrap errors are drawn as ε̂(τL)◦ξ(τL) with ξ(τL) i.i.d.∼ N(0K×1, IK). All other steps remain

the same as the DPR procedure above.

For small sample sizes TL ∈ {50, 100}, we draw J = 1, 000 samples with N = 499 bootstrap

replications. For the larger sample size TL = 500, we draw J = 100, 000 samples without

bootstrap since size distortions do not occur.

We expect the following two results based on Theorem 2.4.3 and Section 2.5. First, the

MF high-to-low causality test should have the same or lower power than the LF high-to-low

causality test does since they contain the same amount of causal information and the former

entails more parameters. Second, the MF low-to-high causality test should have higher power

than the LF low-to-high causality test does since the former contains more causal information

than the latter.

Simulation Results

In Tables 2.2-2.4 we report rejection frequencies. These three tables are different in terms of

the error structure and bootstrap method: i.i.d. error with the DPR bootstrap in Table 2.2,

i.i.d. error with the GK bootstrap in Table 2.3, and GARCH error with the GK bootstrap in

Table 2.4. Also, the benchmark case with analytical covariance matrices is omitted in Tables

2.3 and 2.4 since the HAC case and the benchmark case produce very similar results as shown

in Table 2.2. Finally, the large sample case TL = 500 with i.i.d. errors and without bootstrap

is omitted in Table 2.3 simply because that is covered in Table 2.2.

Note that, in case (a), size is computed with respect to low-to-high causality while power is
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computed with respect to high-to-low causality. In case (b), size is computed with respect to

high-to-low causality, while power is computed with respect to low-to-high causality. Values in

parentheses are the benchmark rejection frequencies based on the analytical covariance matrix,

and values not in parentheses concern the HAC case.

Consider the model with i.i.d. error and use of the DPR bootstrap: Table 2.2. Empirical

size varies within [0.039, 0.069], so there are no serious size distortions in any case. Focusing

on power, the results are consistent with the two conjectures above. First, the gap between

rejection frequencies for MF and LF causality tests for HH9L is not large (see case (a) in Table

2.2). For example, when (m,TL) = (2, 50) and the HAC covariance matrix is used, power for the

MF high-to-low causality test is 0.128 while power for the LF high-to-low causality test is 0.189.

Second, the MF low-to-high causality test has clearly higher power than the LF counterpart

(see case (b)). This difference is most prominent for the largest m and TL, where the rejection

frequencies in the HAC case are 0.997 and 0.556 for the MF- and LF-VAR models, respectively.

All these implications hold for both the HAC case and the benchmark case.

The remaining simulation results are not too surprising. When Gonçalves and Killian’s

(2004) bootstrap is used for i.i.d. errors, the rejection frequencies are similar to when i.i.d.

normality is merely assumed. In the GARCH case, empirical power tends to be slightly lower

than the i.i.d. case, logically following from the added noise to the VAR signal.

2.6.2 Trivariate Case

We now focus on a trivariate MF-VAR model with multiple prediction horizons in order to see

if the mixed frequency causality test can capture causality chains properly. While there is no

clear theory on how causality is linked between MF- and LF-VAR processes in the presence of

causality chains, we also consider LF-VAR models with flow sampling and stock sampling for

comparison. We also allow for non-i.i.d. errors to better match conditional volatility dynamics

in macroeconomic and financial data.

Simulation Design

Suppose that there are two high frequency variables X and Y and one low frequency variable

Z with sampling frequency m = 3 so that KH = 2, KL = 1, and K = 7. The low frequency
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sample size is TL = 100. This setting matches with the empirical application in Section 2.7,

where we analyze monthly inflation, monthly oil price changes, and quarterly real GDP growth

covering 300 months (100 quarters, 25 years).

Define a mixed frequency vector:

W (τL) = [X(τL, 1), Y (τL, 1), X(τL, 2), Y (τL, 2), X(τL, 3), Y (τL, 3), Z(τL)]′.

Our true DGP is MF-VAR(1):

W (τL) = A × W (τL − 1) + ε(τL). (2.6.2)

As in the bivariate model, we assume the errors {ε(τL)} are either mutually and serially in-

dependent standard normal, or are mutually independent GARCH. Taking the error εZ(τL)

for the low frequency variable Z as an example, the GARCH parameterization is identical to

(2.6.1): εZ(τL) = σZ(τL)η(τL) where η(τL) i.i.d.∼ N(0, 1) and σ2
Z(τL) = 0.1 + 0.05ε2Z(τL − 1) +

0.9σ2
Z(τL − 1). The same GARCH structure is applied for high frequency errors of X and Y .

The MF errors ε(τL) are therefore stationary and geometrically α-mixing (cfr. Nelson (1990),

Boussama (1998), Carrasco and Chen (2002)). In the case of i.i.d. errors we use either Dufour,

Pelletier and Renault’s (2006) or Gonçalves and Killian’s (2004) bootstrap, and in the case of

GARCH errors we use Gonçalves and Killian’s (2004) bootstrap since otherwise size distortions

exist.

The coefficient matrix A in the DGP (2.6.2) is set as follows.

A =



0.2 0 −0.3 0 0.6 0 0

0.3 0.3 0.3 −0.4 0.4 0.5 0

0 0 −0.2 0 0.4 0 0

0 0 0.2 0.2 0.2 0.4 0

0 0 0 0 0.3 0 0

0 0 0 0 0.3 0.3 0

0
¤£ ¡¢0.3 0

¤£ ¡¢0.3 0
¤£ ¡¢0.4 0.6



, (2.6.3)
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where the nine elements in rectangles represent the impact of X on Y , the three underlined

elements represent the impact of X on Z, and the three boxed elements represent the impact

of Y on Z. All other non-zero elements are autoregressive coefficients, so not directly relevant

for causal patterns. Equation (2.6.3) thus implies that there are only two channels of causality

at h = 1: X →1 Y | I and Y →1 Z | I. In particular, note that X does not cause Z at h = 1.

For h ≥ 2, we have three channels of causality because of a causal chain from X to Z via Y :

X →h Y | I, Y →h Z | I, and X →h Z | I (cfr. Dufour and Renault (1998)). This point is

verified by observing A2 and A3:

A2 =



0.04 0 0 0 0.18 0 0

0.15 0.09 -0.14 −0.04 0.61 0.14 0

0 0 0.04 0 0.04 0 0

0 0 -0.08 0.04 0.22 0.04 0

0 0 0 0 0.09 0 0

0 0 0 0 0.18 0.09 0

0.09
¤£ ¡¢0.27 0.15

¤£ ¡¢0 0.30
¤£ ¡¢0.63 0.36



(2.6.4)

and

A3 =



0.01 0 −0.01 0 0.08 0 0

0.06 0.30 0.00 −0.03 0.29 0.07 0

0 0 −0.01 0 0.03 0 0

0 0 0.02 −0.01 0.05 0.03 0

0 0 0 0 0.03 0 0

0 0 0 0 0.08 0.03 0

0.10
¤£ ¡¢0.19 0.02

¤£ ¡¢-0.00 0.50
¤£ ¡¢0.47 0.22



. (2.6.5)

We fit a (p, h)-autoregression with p = 1 and h ∈ {1, 2, 3} to implement the mixed frequency

causality test from an individual variable to another. We are particularly interested in whether

we can find non-causality from X to Z at h = 1 and causality from X to Z at h = 2, 3. We

draw J = 1, 000 samples and N = 499 bootstrap samples to avoid size distortions. The HAC

covariance estimator with Newey and West’s (1994) automatic bandwidth selection is used as
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in the bivariate simulation.

Aggregating the mixed frequency data {W (τL)} into low frequency, we also fit a trivariate

low frequency (p, h)-autoregression with p, h ∈ {1, 2, 3} and then repeat the individual Granger

causality tests. Given the presence of causal chains in the mixed frequency DGP, there is no

theoretical conjecture on the causal pattern on the low frequency basis. Our exercise is thus

simply observing how rejection frequencies change after temporal aggregation. As in the MF

study, we draw J = 1, 000 samples and N = 499 GK bootstrap samples to avoid size distortions.

Simulation Results

Table 2.5 reports the rejection frequencies on the mixed frequency basis. Empirical size always

lies in [0.037, 0.071], a fairly accurate result due to the DPR or GK bootstrap. Empirical size

is in general more accurate when the errors are i.i.d., as expected; the boundary values 0.037

and 0.071 indeed realized in the GARCH case as seen in Panel C.

In the remaining discussion we will focus on empirical power in the case of GARCH errors

with the GK bootstrapped p-values: Panel C. The other two panels have very similar implica-

tions and hence we will not mention them. Empirical power for the test of X 9h Y is 0.994,

0.754, and 0.128 for horizons 1, 2, and 3, respectively. Diminishing power is reasonable given

the diminishing impact of X on Y ; see the elements in rectangles in (2.6.3), (2.6.4), and (2.6.5).

Power for the test of Y 9h Z vanishes more slowly as h increases: 0.999, 0.989, and 0.724

for horizons 1, 2, and 3, respectively. In fact the boxed elements of A2 and A3 contain relatively

large loadings 0.63 and 0.47, respectively. The intuitive reason for this slower decay is that Y

has a more persistent impact on Z than X does on Y ; see the upper triangular structure of the

rectangles in (2.6.3).

Finally, the rejection frequency for X 9h Z is 0.050, 0.594, and 0.648 for horizons 1, 2, and

3, respectively. At horizon 1 we get the desired result of non-causality from X to Z, while we

have relatively high power for h = 2, 3 capturing the indirect impact of X on Z via Y (see the

underlined elements in (2.6.3)-(2.6.5)). Thus, our mixed frequency causality test performs very

well even in the presence of a causality chain.

We now review the results for LF-VAR. See Table 2.6 for flow sampling and Table 2.7 for

stock sampling. In Panel A, the underlying mixed frequency error is i.i.d. and we use the GK
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bootstrap. In Panel B, the underlying mixed frequency error is GARCH and we use the GK

bootstrap. The DPR bootstrap is not considered since there is no theoretical guarantee that

the LF-VAR process has i.i.d. errors even if the mixed frequency error is i.i.d. Focusing on

flow sampling, we find that the rejection frequencies have very similar patterns with the mixed

frequency experiments. First, the rejection frequencies on X 9h Y are high at h = 1 but decay

quickly. Second, the rejection frequencies on Y 9h Z are high and decay much more slowly.

Third, the rejection frequency on X 9h Z is close to the nominal size 0.050 for h = 1 but soars

to 0.442 - 0.690 for h = 2, 3. These results suggest that all causal patterns in the MF-VAR are

preserved under flow sampling. Finally, empirical power tends to decrease as the LF-VAR lag

length p increases from 1 to 3, which suggests that including one lag is enough to capture all

causality patterns.

Turning on to stock sampling, there is an interesting difference from flow sampling. Focusing

on Panel B, the rejection frequency on X 9h Z for h = 1 is 0.073, 0.310, and 0.329 when p

is 1, 2, and 3, respectively. This result suggests that X does cause Z at horizon h = 1 (i.e.

spurious causality) while that can only be captured by including at least two lags (i.e. delayed

causality). Since the rejection frequency on X 9h Z for h = 1 was always close to the nominal

size in the flow sampling case, we can conclude that different aggregation schemes may produce

different causal patterns.

2.7 Empirical Application

In this section we apply the mixed frequency causality test to U.S. macroeconomic data. We

consider 100× annual log-differences of the U.S. monthly consumer price index for all items

(CPI), monthly West Texas Intermediate spot oil price (OIL), and quarterly real GDP from

July 1987 through June 2012 as an illustrative example. We use year-to-year growth rates

to control for likely seasonality in each series. CPI, OIL and GDP data are made publicly

available by the U.S. Department of Labor, Energy Information Administration, and Bureau

of Economic Analysis, respectively.

The causal relationship between oil and the macroeconomy has been a major applied re-

search area as surveyed in Hamilton (2008). See Payne (2010) for an extensive survey on the
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use of causality tests to determine the relationship between energy consumption and economic

growth. We introduce the mixed frequency concept into these literatures by analyzing CPI,

OIL, and GDP.

Figure 2.3 plots the three series, while Table 2.8 presents sample statistics. There is fairly

strong positive correlation between CPI and OIL although the latter is much more volatile than

the former. The sample standard deviation is 1.316% for CPI and 30.60% for OIL. The sample

correlation coefficient between these two is 0.512 with the 95% confidence interval based on the

Fisher transformation being [0.423, 0.591]. Since CPI, OIL, and GDP have a positive sample

mean of 2.913%, 6.979%, and 2.513%, we de-mean each series and fit VAR without a constant

term. The sample kurtosis is 4.495 for CPI, 3.485 for OIL, and 6.625 for GDP. These figures

suggest that the three series follow non-normal distributions, but note that the asymptotic

theory of the mixed frequency causality test is free of the normality assumption (cfr. Section

2.2).

Using mean-centered 100× annual log-differenced data, we fit an unrestricted MF-VAR(1)

model with low frequency prediction horizon h ∈ {1, . . . , 5} to monthly CPI, monthly OIL, and

quarterly GDP. We therefore have KH = 2, KL = 1, m = 3, K = 7, TL = 100, and T = 300.

This setting matches the one used in trivariate simulation study in Section 2.6.2. Since the

dimension of the MF-VAR is K = 7, there are as many as 49 parameters even with the lag

order one. Ghysels (2012) proposes a variety of parsimonious specifications based on the MIDAS

literature, but they involve nonlinear parameter constraints. The trade-off between unrestricted

and restricted MIDAS regressions is discussed in Foroni, Marcellino, and Schumacher (2013).

A general consensus is that the unrestricted approach achieves higher prediction accuracy when

m is small, such as monthly and quarterly (m = 3).

All six causal patterns (CPI9OIL, CPI9GDP, OIL9GDP and their converses) are tested.

We use Newey and West’s (1987) kernel-based HAC covariance estimator with Newey and

West’s (1994) automatic lag selection. In order to avoid potential size distortions and to allow

for conditional heteroskedasticity of unknown form, we use Gonçalves and Killian’s (2004)

bootstrap with N = 999 replications. See Section 2.6 for the details.

For the purpose of comparison, we also fit an unrestricted LF-VAR(4) model with low

frequency prediction horizon h ∈ {1, . . . , 5} to quarterly CPI, quarterly OIL, and quarterly
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GDP. Since parameter proliferation is less of an issue in LF-VAR, we let the lag order be 4 in

order to take potential seasonality into account.

Table 2.9 presents bootstrapped p-values for MF and LF tests at each quarterly horizon

h ∈ {1, . . . , 5} (recall h is the low frequency prediction horizon). We denote whether rejection

occurs at the 5% or 10% level. Note that the MF and LF approaches result in very different

conclusions at standard levels of significance. At the 5% level, for example, the MF case reveals

three significant causal patterns: CPI causes GDP at horizon 3, OIL causes CPI at horizons 1

and 4, and GDP causes CPI at horizon 1. The LF case, however, has two different significant

causal patterns: CPI causes OIL at horizon 1 and OIL causes GDP at horizons 2 and 4.

Note that significant causality from OIL to CPI is found by the MF approach but not

by the LF approach, whether the 5% level or 10% level is used. Intuitively, such a causality

should exist since (i) oil products are a component of the all-item CPI and (ii) crude oil is

a key natural resource for most sectors. Our result suggests that the quarterly frequency is

too coarse to capture the OIL-to-CPI causality while the mixed frequency data contain enough

information for us to capture it successfully. Conversely, none of the LF causal patterns appear

in the MF data. For example, in LF data at the 5% level CPI causes OIL at horizon 1. The

p-value is .035, roughly 1/10th the magnitude of the MF p-value. Similarly, OIL causes GDP

in low frequency data with p-values less than 1/10th the MF p-values.14

2.8 Concluding Remarks

Time series processes are often sampled at different frequencies and are typically aggregated to

the common lowest frequency to test for Granger causality. This paper compares testing for

Granger causality with all series aggregated to the common lowest frequency, and testing for

Granger causality taking advantage of all the series sampled at whatever frequency they are

14 In view of Theorem 3.2 of Hill (2007), our empirical results have some conflicts with causation theory.
Focusing on the mixed frequency case in Table 2.9, the significant causation from CPI to GDP at horizon 3
implies a causal chain via OIL at least from a theoretical point of view. We do not observe significant causation
from CPI to OIL or causation from OIL to GDP, however. The LF approach is facing a similar problem; OIL
causes GDP at horizons 2 and 4 but we do not observe significant causation from OIL to CPI or causation from
CPI to GDP. As noted in footnote 7, this sort of discrepancy stems from treating each prediction horizon h
separately. Hill (2007) proposes a sequential multi-horizon test as a solution which in principle can be applied
to the present MF context for small horizon causation tests, e.g. h ≤ 3.
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available. We rely on mixed frequency vector autoregressive models to implement the new class

of Granger causality tests.

We show that mixed frequency causality tests better recover causality patterns in an under-

lying high frequency process compared to the traditional low frequency approach. Moreover, we

show formally that mixed frequency causality tests have higher asymptotic power against local

alternatives and show via simulation that this also holds in finite samples involving realistic

data generating processes. The simulations indicate that the mixed frequency VAR approach

works well for small differences in sampling frequencies like month versus quarter.

We apply the mixed frequency causality test to a monthly consumer price index, monthly

crude oil prices, and the real GDP in the U.S. We also apply the conventional low frequency

causality test to the aggregated quarterly price series and the real GDP for comparison. These

two approaches produce very different results at any standard level of significance. In particular,

significant causality from oil prices to CPI is detected by the mixed frequency approach but not

by the low frequency approach. This result suggests that the quarterly frequency is too coarse

to capture such causality while the mixed frequency data contain enough information for us to

capture that successfully.
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Table 2.1: Linear Parametric Restrictions of Non-causality
The null hypotheses of non-causality cases Hi

0(h) for i = 1, . . . , 4 and I and II. can be written as A
(h)
k (a : ι : b, c : ι′ : d) = 0

for all k ∈ {1, . . . , p}, where a, ι, b, c, ι′, d, and the size of the null vector appear as entries to the table.

Cases a ι b c ι′ d 0
H1

0 (h) mKH + j2 1 mKH + j2 mKH + j1 1 mKH + j1 1 × 1
H2

0 (h) mKH + j1 1 mKH + j1 i1 KH i1 + (m − 1)KH 1 × m
H3

0 (h) i1 KH i1 + (m − 1)KH mKH + j1 1 mKH + j1 m × 1
H4

0 (h) i2 KH i2 + (m − 1)KH i1 KH i1 + (m − 1)KH m × m
HI

0 (h) mKH + 1 1 K 1 1 mKH KL × mKH

HII
0 (h) 1 1 mKH mKH + 1 1 K mKH × KL
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Table 2.2: Rejection Frequencies (Bivariate VAR with i.i.d. Error and DPR Bootstrap)
Rejection frequencies at the 5% level for mixed and low frequency causality tests at horizon h = 1. The error term in

the true DGP is i.i.d. Stock sampling is used when we aggregate mixed frequency data into low frequency data. The

two cases are (a) φHL,1 = 0 and φLH,1 = 0.2 (unidirectional high-to-low causality) and (b) φHL,1 = 0.2 and φLH,1 = 0

(unidirectional low-to-high causality). In case (a), size is computed with respect to low-to-high causality, while power is

computed with respect to high-to-low causality. In case (b), size is computed with respect to high-to-low causality, while

power is computed with respect to low-to-high causality. Entries in parentheses are based on the benchmark analytical

covariance matrix, and entries not in parentheses are based on the HAC estimator. Dufour, Pelletier, and Renault’s (2006)

[DPR] parametric bootstrap is employed for TL ∈ {50, 100} to avoid size distortions. m is the sampling frequency and TL

is the sample size in terms of low frequency.

Sample Size TL = 50 (DPR bootstrap)
Case (a) Case (b)

m=2 m=3 m=2 m=3

Size
MF: 0.063(0.059)
LF: 0.057(0.059)

MF: 0.053(0.045)
LF: 0.063(0.054)

MF: 0.056(0.055)
LF: 0.053(0.051)

MF: 0.039(0.051)
LF: 0.044(0.046)

Power
MF: 0.128(0.155)
LF: 0.189(0.198)

MF: 0.060(0.068)
LF: 0.072(0.088)

MF: 0.241(0.266)
LF: 0.175(0.205)

MF: 0.187(0.237)
LF: 0.097(0.110)

Sample Size TL = 100 (DPR bootstrap)
Case (a) Case (b)

m=2 m=3 m=2 m=3

Size
MF: 0.051(0.062)
LF: 0.047(0.056)

MF: 0.045(0.040)
LF: 0.042(0.051)

MF: 0.050(0.051)
LF: 0.049(0.050)

MF: 0.060(0.069)
LF: 0.053(0.056)

Power
MF: 0.221(0.262)
LF: 0.311(0.338)

MF: 0.098(0.120)
LF: 0.133(0.150)

MF: 0.456(0.506)
LF: 0.323(0.340)

MF: 0.415(0.454)
LF: 0.163(0.168)

Sample Size TL = 500
Case (a) Case (b)

m=2 m=3 m=2 m=3

Size
MF: 0.059(0.051)
LF: 0.056(0.052)

MF: 0.064(0.051)
LF: 0.055(0.051)

MF: 0.060(0.052)
LF: 0.056(0.050)

MF: 0.066(0.052)
LF: 0.056(0.053)

Power
MF: 0.900(0.898)
LF: 0.943(0.944)

MF: 0.414(0.390)
LF: 0.557(0.551)

MF: 0.998(0.998)
LF: 0.943(0.944)

MF: 0.997(0.997)
LF: 0.556(0.550)
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Table 2.3: Rejection Frequencies (Bivariate VAR with i.i.d. Error and GK Bootstrap)
Rejection frequencies at the 5% level for mixed and low frequency causality tests at horizon h = 1. The error term in

the DGP is i.i.d. Stock sampling is used when we aggregate mixed frequency data into low frequency data. The two

cases are (a) φHL,1 = 0 and φLH,1 = 0.2 (unidirectional high-to-low causality) and (b) φHL,1 = 0.2 and φLH,1 = 0

(unidirectional low-to-high causality). In case (a), size is computed with respect to low-to-high causality, while power is

computed with respect to high-to-low causality. In case (b), size is computed with respect to high-to-low causality, while

power is computed with respect to low-to-high causality. The HAC covariance estimator with Newey and West’s (1994)

automatic bandwidth selection is used. Gonçalves and Killian’s (2004) [GK] wild bootstrap is employed for TL ∈ {50, 100}
to avoid size distortions. See Table 2.2 for the result with TL = 500 and without bootstrap. m is the sampling frequency

and TL is the sample size in terms of low frequency.

Sample Size TL = 50 (GK bootstrap)
Case (a) Case (b)

m=2 m=3 m=2 m=3

Size
MF: 0.071
LF: 0.055

MF: 0.037
LF: 0.063

MF: 0.061
LF: 0.054

MF: 0.049
LF: 0.045

Power
MF: 0.135
LF: 0.187

MF: 0.076
LF: 0.073

MF: 0.216
LF: 0.173

MF: 0.161
LF: 0.102

Sample Size TL = 100 (GK bootstrap)
Case (a) Case (b)

m=2 m=3 m=2 m=3

Size
MF: 0.054
LF: 0.047

MF: 0.038
LF: 0.043

MF: 0.050
LF: 0.046

MF: 0.066
LF: 0.056

Power
MF: 0.238
LF: 0.293

MF: 0.117
LF: 0.134

MF: 0.435
LF: 0.318

MF: 0.386
LF: 0.158
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Table 2.4: Rejection Frequencies (Bivariate VAR with GARCH Error and GK Bootstrap)
Rejection frequencies at the 5% level for mixed and low frequency causality tests at horizon h = 1. The error term in the

true DGP follows a GARCH process. Stock sampling is used when we aggregate mixed frequency data into low frequency

data. The two cases are (a) φHL,1 = 0 and φLH,1 = 0.2 (unidirectional high-to-low causality) and (b) φHL,1 = 0.2

and φLH,1 = 0 (unidirectional low-to-high causality). In case (a), size is computed with respect to low-to-high causality,

while power is computed with respect to high-to-low causality. In case (b), size is computed with respect to high-to-low

causality, while power is computed with respect to low-to-high causality. The HAC covariance estimator with Newey and

West’s (1994) automatic bandwidth selection is used. Gonçalves and Killian’s (2004) [GK] wild bootstrap is employed for

TL ∈ {50, 100} to avoid size distortions. m is the sampling frequency and TL is the sample size in terms of low frequency.

Sample Size TL = 50 (GK bootstrap)
Case (a) Case (b)

m=2 m=3 m=2 m=3

Size
MF: 0.053
LF: 0.047

MF: 0.035
LF: 0.039

MF: 0.066
LF: 0.056

MF: 0.055
LF: 0.043

Power
MF: 0.136
LF: 0.143

MF: 0.079
LF: 0.083

MF: 0.228
LF: 0.188

MF: 0.142
LF: 0.090

Sample Size TL = 100 (GK bootstrap)
Case (a) Case (b)

m=2 m=3 m=2 m=3

Size
MF: 0.050
LF: 0.044

MF: 0.047
LF: 0.052

MF: 0.056
LF: 0.051

MF: 0.057
LF: 0.048

Power
MF: 0.227
LF: 0.314

MF: 0.092
LF: 0.132

MF: 0.416
LF: 0.306

MF: 0.353
LF: 0.146

Sample Size TL = 500
Case (a) Case (b)

m=2 m=3 m=2 m=3

Size
MF: 0.060
LF: 0.055

MF: 0.068
LF: 0.057

MF: 0.061
LF: 0.057

MF: 0.065
LF: 0.056

Power
MF: 0.894
LF: 0.937

MF: 0.418
LF: 0.554

MF: 0.997
LF: 0.937

MF: 0.996
LF: 0.553
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Table 2.5: Rejection Frequencies for Trivariate MF-VAR
Rejection frequencies at the 5% level based on (p, h)-autoregression with p = 1 and h ∈ {1, 2, 3}, where we have two high

frequency variables X and Y and one low frequency variable Z with m = 3. Each test deals with the null hypothesis of

non-causality from an individual variable to another at horizon h. The upper-right triangular matrices have empirical size

for Y 9h X, Z 9h X, and Z 9h Y . Also, the rejection frequency for X 91 Z is regarded as empirical size since X

indeed does not cause Z at horizon 1. All other slots represent empirical power. We draw J = 1, 000 samples and N = 499

bootstrap replications. The HAC covariance estimator with Newey and West’s (1994) automatic bandwidth selection is

used. The error term in the true DGP follows either an i.i.d. or a GARCH process, and we use either Dufour, Pelletier

and Renault’s (2006) [DPR] or Gonçalves and Killian’s (2004) [GK] bootstrapped p-value.

Panel A: i.i.d. Error and DPR Bootstrap

Null Hypothesis h = 1 h = 2 h = 3
2

4

− Y 9h X Z 9h X
X 9h Y − Z 9h Y
X 9h Z Y 9h Z −

3

5

2

4

− 0.050 0.052
0.997 − 0.050
0.051 0.999 −

3

5

2

4

− 0.057 0.041
0.822 − 0.054
0.567 0.996 −

3

5

2

4

− 0.049 0.062
0.154 − 0.041
0.648 0.711 −

3

5

Panel B: i.i.d. Error and GK Bootstrap

Null Hypothesis h = 1 h = 2 h = 3
2

4

− Y 9h X Z 9h X
X 9h Y − Z 9h Y
X 9h Z Y 9h Z −

3

5

2

4

− 0.054 0.062
0.998 − 0.055
0.064 0.999 −

3

5

2

4

− 0.055 0.046
0.794 − 0.053
0.568 0.997 −

3

5

2

4

− 0.045 0.065
0.134 − 0.047
0.633 0.703 −

3

5

Panel C: GARCH Error and GK Bootstrap

Null Hypothesis h = 1 h = 2 h = 3
2

4

− Y 9h X Z 9h X
X 9h Y − Z 9h Y
X 9h Z Y 9h Z −

3

5

2

4

− 0.061 0.053
0.994 − 0.044
0.050 0.999 −

3

5

2

4

− 0.054 0.071
0.754 − 0.050
0.594 0.989 −

3

5

2

4

− 0.047 0.064
0.128 − 0.037
0.648 0.724 −

3

5

50



Table 2.6: Rejection Frequencies for Trivariate LF-VAR (Flow Sampling)
Rejection frequencies at the 5% level based on (p, h)-autoregression with p, h ∈ {1, 2, 3}, where we have two high frequency

variables X and Y and one low frequency variable Z with m = 3. The high frequency variables X and Y are aggregated into

low frequency using flow sampling. Each test deals with the null hypothesis of non-causality from an individual variable

to another at horizon h. We draw J = 1, 000 samples and N = 499 bootstrap replications. The HAC covariance estimator

with Newey and West’s (1994) automatic bandwidth selection is used. The error term in the true mixed frequency DGP

follows either an i.i.d. or a GARCH process, and we use Gonçalves and Killian’s (2004) [GK] bootstrapped p-value.

Null hypothesis:

 − Y 9h X Z 9h X
X 9h Y − Z 9h Y
X 9h Z Y 9h Z −


Panel A: i.i.d. Error and GK Bootstrap

Lag length \ Prediction horizon h = 1 h = 2 h = 3

p = 1

2

4

− 0.052 0.065
0.999 − 0.051
0.063 0.999 −

3

5

2

4

− 0.037 0.058
0.516 − 0.069
0.690 0.989 −

3

5

2

4

− 0.044 0.049
0.151 − 0.063
0.570 0.730 −

3

5

p = 2

2

4

− 0.057 0.055
0.994 − 0.056
0.045 0.998 −

3

5

2

4

− 0.052 0.051
0.374 − 0.040
0.607 0.925 −

3

5

2

4

− 0.046 0.052
0.138 − 0.048
0.534 0.521 −

3

5

p = 3

2

4

− 0.047 0.057
0.989 − 0.046
0.049 0.998 −

3

5

2

4

− 0.054 0.058
0.307 − 0.049
0.569 0.894 −

3

5

2

4

− 0.052 0.056
0.115 − 0.056
0.442 0.411 −

3

5

Panel B: GARCH Error and GK Bootstrap

Lag length \ Prediction horizon h = 1 h = 2 h = 3

p = 1

2

4

− 0.048 0.046
0.999 − 0.060
0.053 0.999 −

3

5

2

4

− 0.058 0.064
0.466 − 0.041
0.713 0.992 −

3

5

2

4

− 0.043 0.051
0.163 − 0.048
0.579 0.773 −

3

5

p = 2

2

4

− 0.045 0.062
0.996 − 0.063
0.052 0.998 −

3

5

2

4

− 0.046 0.060
0.374 − 0.045
0.591 0.936 −

3

5

2

4

− 0.049 0.049
0.115 − 0.059
0.501 0.532 −

3

5

p = 3

2

4

− 0.049 0.056
0.988 − 0.050
0.052 0.999 −

3

5

2

4

− 0.048 0.065
0.315 − 0.053
0.541 0.876 −

3

5

2

4

− 0.063 0.071
0.101 − 0.050
0.426 0.416 −

3

5
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Table 2.7: Rejection Frequencies for Trivariate LF-VAR (Stock Sampling)
Rejection frequencies at the 5% level based on (p, h)-autoregression with p, h ∈ {1, 2, 3}, where we have two high frequency

variables X and Y and one low frequency variable Z with m = 3. The high frequency variables X and Y are aggregated into

low frequency using stock sampling. Each test deals with the null hypothesis of non-causality from an individual variable

to another at horizon h. We draw J = 1, 000 samples and N = 499 bootstrap replications. The HAC covariance estimator

with Newey and West’s (1994) automatic bandwidth selection is used. The error term in the true mixed frequency DGP

follows either an i.i.d. or a GARCH process, and we use Gonçalves and Killian’s (2004) [GK] bootstrapped p-value.

Null hypothesis:

 − Y 9h X Z 9h X
X 9h Y − Z 9h Y
X 9h Z Y 9h Z −


Panel A: i.i.d. Error and GK Bootstrap

Lag length \ Prediction horizon h = 1 h = 2 h = 3

p = 1

2

4

− 0.043 0.046
0.822 − 0.057
0.058 0.984 −

3

5

2

4

− 0.041 0.061
0.310 − 0.052
0.604 0.998 −

3

5

2

4

− 0.050 0.052
0.079 − 0.055
0.788 0.828 −

3

5

p = 2

2

4

− 0.043 0.059
0.697 − 0.039
0.295 0.979 −

3

5

2

4

− 0.053 0.041
0.254 − 0.048
0.629 0.962 −

3

5

2

4

− 0.052 0.056
0.069 − 0.043
0.710 0.638 −

3

5

p = 3

2

4

− 0.045 0.051
0.618 − 0.061
0.338 0.947 −

3

5

2

4

− 0.055 0.061
0.173 − 0.043
0.556 0.918 −

3

5

2

4

− 0.056 0.053
0.073 − 0.057
0.647 0.518 −

3

5

Panel B: GARCH Error and GK Bootstrap

Lag length \ Prediction horizon h = 1 h = 2 h = 3

p = 1

2

4

− 0.051 0.046
0.823 − 0.053
0.073 0.998 −

3

5

2

4

− 0.047 0.050
0.283 − 0.056
0.620 0.998 −

3

5

2

4

− 0.045 0.054
0.087 − 0.039
0.784 0.820 −

3

5

p = 2

2

4

− 0.053 0.053
0.705 − 0.050
0.310 0.975 −

3

5

2

4

− 0.045 0.053
0.230 − 0.063
0.585 0.959 −

3

5

2

4

− 0.042 0.066
0.080 − 0.068
0.699 0.630 −

3

5

p = 3

2

4

− 0.063 0.057
0.618 − 0.062
0.329 0.966 −

3

5

2

4

− 0.061 0.056
0.198 − 0.069
0.555 0.936 −

3

5

2

4

− 0.046 0.053
0.081 − 0.058
0.617 0.521 −

3

5

Table 2.8: Sample Statistics
Sample statistics for 100× annual log-differences of monthly U.S. CPI, monthly spot West Texas Intermediate oil price,

and quarterly real GDP. The sample period is July 1987 through June 2012.

mean median std. dev. skewness kurtosis
CPI 2.913 2.900 1.316 -0.392 4.495
OIL 6.979 7.777 30.60 -0.312 3.485
GDP 2.513 2.783 1.882 -1.670 6.625
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Table 2.9: Granger Causality Tests for CPI, OIL, and GDP
The mixed frequency approach uses monthly CPI, monthly OIL, and quarterly GDP. The low frequency approach uses

all quarterly series. A box indicates rejection at the 5% level of the null hypothesis of non-causality at the quarterly

horizon h ∈ {1, . . . , 5}. A circle ◦ indicates rejection at the 10% level. All data are mean centered annual log-differences.

The sample period covers July 1987 through June 2012, which has 300 months (100 quarters, 25 years). We use Newey

and West’s (1987) kernel-based HAC covariance estimator with Newey and West’s (1994) automatic lag selection, and

Gonçalves and Killian’s (2004) bootstrapped p-value with N = 999 replications.

Panel A. Mixed Frequency
h 1 2 3 4 5

CPI9OIL 0.391 0.128 0.559 0.636 0.165
CPI9GDP 0.195 0.098◦ 0.049 ◦ 0.100 0.180
OIL9GDP 0.680 0.548 0.236 0.300 0.196
OIL9CPI 0.002 ◦ 0.182 0.439 0.029 ◦ 0.605
GDP9CPI 0.015 ◦ 0.570 0.583 0.125 0.500
GDP9OIL 0.724 0.833 0.895 0.855 0.946

Panel B. Low Frequency
h 1 2 3 4 5

CPI9OIL 0.035 ◦ 0.095◦ 0.095◦ 0.116 0.492
CPI9GDP 0.380 0.215 0.272 0.238 0.683
OIL9GDP 0.145 0.044 ◦ 0.088◦ 0.027 ◦ 0.066◦

OIL9CPI 0.206 0.320 0.986 0.710 0.521
GDP9CPI 0.680 0.497 0.323 0.596 0.645
GDP9OIL 0.095◦ 0.164 0.516 0.376 0.541
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Note: The z-axis of each figure has the power ratio (i.e. the ratio of the local asymptotic power of the MF

causality test to that of the low frequency causality test). Note that the scale of each z-axis is different. The

x-axis has ν ∈ [0.5, 1.5], while the y-axis has m ∈ {3, . . . , 12}.

Figure 2.1: Local Asymptotic Power of Mixed and Low Frequency Causality Tests
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Figure 2.2: Plot of the Function mρm−1 - Driver of Local Asymptotic Power Ratios
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Figure 2.3: Time Series Plot of CPI, OIL, and GDP
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CHAPTER 3

REGRESSION-BASED TEST

3.1 Introduction

Time series are often sampled at different frequencies, and it is well known that temporal aggre-

gation may hide or generate Granger causality. Existing Granger causality tests typically ignore

this issue and they merely aggregate date to the common lowest frequency, which may result

in spurious non-causality or spurious causality. See Zellner and Montmarquette (1971) and

Amemiya and Wu (1972) for early contributions. This subject has been extensively researched

ever since, e.g. Granger (1980), Granger (1988), Lütkepohl (1993), Granger (1995), Renault,

Sekkat, and Szafarz (1998), Marcellino (1999), Breitung and Swanson (2002), McCrorie and

Chambers (2006), Silvestrini and Veredas (2008), among others.

One of the most popular Granger causality tests is a Wald test based on multi-step ahead

vector autoregression (VAR) models since this approach can handle causal chains among more

than two variables. See Lütkepohl (1993), Dufour and Renault (1998), Dufour, Pelletier, and

Renault (2006), and Hill (2007). This test suffers from the adverse effect of temporal aggregation

since standard VAR models require to work on a single frequency. To alleviate this problem,

Ghysels, Hill, and Motegi (2013) develop a set of Granger causality tests that explicitly take

advantage of data sampled at mixed frequencies. They extend Dufour, Pelletier, and Renault’s

(2006) VAR-based causality test using Ghysels’ (2012) mixed frequency vector autoregressive

(MF-VAR) models. MF-VAR models avoid temporal aggregation by stacking all observations

of high frequency variables.1

1MIDAS, standing for Mi(xed) Da(ta) S(ampling), regression models have been put forward in recent work by
Ghysels, Santa-Clara, and Valkanov (2004), Ghysels, Santa-Clara, and Valkanov (2006), and Andreou, Ghysels,
and Kourtellos (2010). See Andreou, Ghysels, and Kourtellos (2011) and Armesto, Engemann, and Owyang



Ghysels, Hill, and Motegi’s (2013) tests have higher power than the conventional low fre-

quency causality tests in large sample, but they suffer from size distortions in small sample with

a large ratio of sampling frequencies, m. The essential reason for the size distortions is that

the dimension of MF-VAR models soars as m increases. We need to invent a mixed frequency

Granger causality test that performs well even when m is large or sample size is small. Such a

contribution would be especially relevant for multivariate macroeconomic time series analysis,

where we tend to have a small sample size and Granger causality has been of great interest

since Sims (1972, 1980) among others.

Based on this motivation, the present paper proposes regression-based mixed frequency

Granger causality tests. Our methodology is based on Sims’ (1972) two-sided regression, not

on the MF-VAR framework. We combine multiple parsimonious models where the i-th model

regresses a low frequency variable xL onto the i-th high frequency lag or lead of a high frequency

variable xH for i ∈ {1, . . . , h}. Let β̂i be an estimator for the loading of the i-th high frequency

lag or lead, then our test statistic basically takes the maximum among {β̂2
1 , . . . , β̂2

h}. In this

sense our test can be called the max test for short.

While the max test statistic follows a non-standard asymptotic distribution under the null

hypothesis of Granger non-causality, a simulated p-value is readily available through simulation

from the null distribution. Our test is thus very easy to implement in practice.

We will show that the max test is consistent under any type of Granger causality like

decaying or lagged causality. In local power analysis, we show that our test is more powerful

than the Wald test based on a näıve regression model. In small sample, we show via Monte

Carlo simulations that our test produces no size distortions under realistic parameterizations

and it is more powerful than the näıve Wald test.

As an empirical application, we conduct a rolling window analysis on weekly interest rate

spread and real GDP growth in the U.S. We get an intuitive result that the yield spread used

to be a strong predictor of GDP until 1980 or around, and its predictability has declined more

recently. We also find that the mixed frequency approach that works on weekly spread achieves

(2010) for surveys. VAR models for mixed frequency data were independently introduced by Anderson, Deistler,
Felsenstein, Funovits, Zadrozny, Eichler, Chen, and Zamani (2012), Ghysels (2012), and McCracken, Owyang,
and Sekhposyan (2013). An early example of related ideas appears in Friedman (1962). Foroni, Ghysels, and
Marcellino (2013) provide a survey of mixed frequency VAR models and related literature.
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more frequent rejections of non-causality than the conventional low frequency approach that

works on aggregated quarterly spread.

This paper is structured as follows. Section 3.2 derives the max test and proves its consis-

tency formally. In Section 3.3 we conduct local power analysis to compare the local asymptotic

power of the max test and the näıve Wald test. In Section 3.4 we run Monte Carlo simulations

to compare the finite sample size and power of these two tests. Section 3.5 covers the empirical

application on yield spread and GDP, while Section 3.6 concludes the paper. All tables and

figures are collected after Section 3.6. Proofs for all theorems as well as some theoretical details

are provided in Technical Appendices B.

3.2 Methodology

This paper focuses on a bivariate case where we have a high frequency variable xH and a

low frequency variable xL. A trivariate case should await future research since it involves an

extra complexity of causality chains (see Dufour and Renault (1998) and Dufour, Pelletier, and

Renault (2006)).

For each low frequency time period τL ∈ Z, we have m high frequency time periods. We

sequentially observe {xH(τL, 1), . . . , xH(τL,m), xL(τL)} in a period τL. A simple example would

be a month vs. quarter case, where m = 3 since one quarter has three months. xH(τL, 1) is

the first monthly observation of xH in quarter τL, xH(τL, 2) is the second, and xH(τL, 3) is the

third. We then observe xL(τL), the quarterly observation of xL. The assumption that xL(τL)

is observed after xH(τL,m) is just by convention.

The ratio of sampling frequencies, m, depends on τL in some applications like week vs.

month, where m is four or five. This paper postpones such a case to the future work since

time-dependent m complicates our statistical theory substantially.

Section 3.2.1 discusses high-to-low causality (i.e. causality from xH to xL), while Section

3.2.2 discusses low-to-high causality (i.e. causality from xL to xH).
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3.2.1 High-to-Low Granger Causality

Assume that xL depends on q low frequency autoregressive lags of xL as well as p high frequency

lags of xH under the true DGP:

xL(τL) =
q∑

k=1

akxL(τL − k) +
p∑

j=1

bjxH(τL − 1,m + 1 − j) + εL(τL),

εL(τL) i.i.d.∼ (0, σ2
L), σ2

L > 0.

(3.2.1)

Relaxing the i.i.d. assumption of εL to m.d.s. should be a future task. A constant term is

omitted for algebraic simplicity, but could be added without any extra complexity.

To rewrite (3.2.1) in matrix form, define XL(τL−1) = [xL(τL−1), . . . , xL(τL−q)]′, X
(p)
H (τL−

1) = [xH(τL − 1, m + 1 − 1), . . . , xH(τL − 1,m + 1 − p)]′, a = [a1, . . . , aq]′, and b = [b1, . . . , bp]′.

Then, (3.2.1) can be rewritten as

xL(τL) = XL(τL − 1)′a + X
(p)
H (τL − 1)′b + εL(τL). (3.2.2)

When p > m, we need to clarify a notation used in (3.2.1) since the second argument

of xH is no longer positive for j = m + 1, . . . , p. In such a case we take another lag in the

first argument accordingly. For instance, xH(τL − 1, 0) is understood as xH(τL − 2,m) while

xH(τL − 1,−1) is understood as xH(τL − 2,m − 1). More generally, we can interchangeably

write xH(τL − i, j) = xH(τL, j − im) for j = 1, . . . ,m and i ≥ 0. Complete details of these

notational conventions are given in Appendix B.1.

We state assumptions on xH below.

Assumption 3.2.1. Assume that {{xH(τL, j)}m
j=1}τL∈Z follows a covariance stationary pro-

cess with mean zero, variance γH
0 > 0, autocovariance γH

k = E[xH(τL, j)xH(τL, j − k)], and

autocorrelation ρH
k = γH

k /γH
0 for k ∈ Z. xH is an exogenous variable in the sense that E[xH(τL,

j)εL(τL − k)] = 0 for any j, k, τL ∈ Z.

Note that the order of the autocovariance γH
k is in terms of high frequency. Assumption

3.2.1 excludes Granger causality from xL to xH so that we can focus on causality from xH to

xL. In the future work this assumption should be relaxed since we usually do not know whether
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xL causes xH or not.

We also require the stability condition of xL.

Assumption 3.2.2. All roots of 1 −
∑q

k=1 akz
k = 0 lie outside the unit circle.

Treating non-stationary processes which violate Assumption 3.2.2 should await future re-

search. Assumptions 3.2.1 and 3.2.2 guarantee that the DGP (3.2.1) can be transformed to

an MA(∞) representation with infinite lags of xH , which will be useful for proving subsequent

theorems. In particular, {xL(τL)} turns out to be a covariance stationarity process with mean

zero, variance γL
0 > 0, and autocovariance γL

k = E[xL(τL)xL(τL − k)]. Note that the order of

the autocovariance γL
k is in terms of low frequency. {γL

k } and the cross-covariance structure

between xH and xL are characterized in terms of underlying parameters a, b, σ2
L, and {γH

k } in

Appendix B.2. These characterizations are not required for proving subsequent theorems, but

useful for understanding our methodology in general.

As in the past literature, we say xH does not Granger cause xL if and only if b = 0p×1. A

näıve approach for testing non-causality is to postulate a regression model:

Näıve Regression Model

xL(τL) =
q∑

k=1

αkxL(τL − k) +
h∑

j=1

βjxH(τL − 1,m + 1 − j) + uL(τL), τL = 1, . . . , TL. (3.2.3)

Here we are assuming that the autoregressive lag order q is known since we are primarily

interested in Granger causality from xH to xL. Consider fitting OLS to (3.2.3) and then testing

H0 : β1 = · · · = βh = 0. This test clearly has power approaching one if h ≥ p, but there will

be size distortions when TL is small and p is large (see Ghysels, Hill, and Motegi, 2013). The

size distortions may be deleted after bootstrapping, but then finite sample power may be quite

low. If in turn h < p, then there may be less size distortions but power may not approach one

in the presence of Granger causality at lags beyond h.

A main purpose of this paper is to resolve this trade-off by combining multiple parsimonious

regression models:
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Parsimonious Regression Models

xL(τL) =
q∑

k=1

αk,jxL(τL − k) + βjxH(τL − 1,m + 1 − j) + uL,j(τL) for j = 1, . . . , h. (3.2.4)

In a matrix form, model j is rewritten as

xL(τL) =
[
XL(τL − 1)′ xH(τL − 1,m + 1 − j)

]
︸ ︷︷ ︸

≡xj(τL−1)′



α1,j

...

αq,j

βj


︸ ︷︷ ︸
≡„j

+uL,j(τL). (3.2.5)

Note that model j contains q low frequency autoregressive lags of xL as well as the only j-th

high frequency lag of xH . Recall from (3.2.1) that q is in terms of low frequency and p is in

terms of high frequency. Hence p tends to be larger than q in practice, especially when m is

large. For example, when we handle a month vs. year case and thus m = 12, typical values

for q and p would be 1 year and 12 months, respectively. Each parsimonious model (3.2.4)

therefore has much fewer parameters than the näıve model (3.2.3). This feature alleviates size

distortions in small sample with large p.

We describe how to combine all h parsimonious models to get a test statistic. First, consider

fitting OLS for each model (3.2.4). In general, the resulting estimator will be biased due to

omitted regressors. We thus need to characterize the pseudo-true value of β = [β1, . . . , βh]′,

denoted by β∗ = [β∗
1 , . . . , β∗

h]′, in terms of underlying parameters a, b, σ2
L, and γH

k . Stack all

parameters θ = [θ′
1, . . . , θ

′
h]′ and let θ∗ be the pseudo-true value of θ. We construct a selection

matrix R such that β = Rθ. Specifically, R is an h×(q+1)h matrix whose (j, (q+1)j) element

is 1 for j = 1, . . . , h and all others are zeros.

Theorem 3.2.1. Let Assumptions 3.2.1 and 3.2.2 hold. Then, the pseudo-true value of β
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associated with OLS is given by

β∗ = Rθ∗, θ∗ ≡
[
θ∗′

1 , . . . , θ∗′
h

]′
,

θ∗
j ≡



α∗
1,j

...

α∗
q,j

β∗
j


=



a1

...

aq

0


+

[
E

[
xj(τL − 1)xj(τL − 1)′

]]−1︸ ︷︷ ︸
≡Γ−1

j,j

E
[
xj(τL − 1)X(p)

H (τL − 1)′
]

︸ ︷︷ ︸
≡Cj

b.
(3.2.6)

Proof 3.2.1. See Appendix B.3. Analytical expressions for E[xj(τL − 1)xj(τL − 1)′] and

E[xj(τL −1)X(p)
H (τL −1)′] are not required for the proof, but they are derived in Appendix B.2

for completeness.

As shown in Appendix B.2, [E[xj(τL − 1)xj(τL − 1)′]]−1 and E[xj(τL − 1)X(p)
H (τL − 1)′] are

highly nonlinear functions of b in general. Hence, β∗ and b are related with each other in a

complicated fashion generally. When q = 0 (i.e. the DGP has no autoregressive components),

β∗ becomes a simple linear function of b. To see this, note that R = Ih and xj(τL − 1) =

xH(τL − 1,m + 1 − j) when q = 0. Then by Assumption 3.2.1 E[xj(τL − 1)xj(τL − 1)′] = γH
0

and E[xj(τL − 1)X(p)
H (τL − 1)′] = [γH

j−1, . . . , γ
H
j−p]. Recalling the notation ρH

k = γH
k /γH

0 , we

have that 
β∗

1

...

β∗
h


︸ ︷︷ ︸
=˛∗

=


ρH
1−1 . . . ρH

1−p

...
. . .

...

ρH
h−1 . . . ρH

h−p


︸ ︷︷ ︸

≡RH
h,p


b1

...

bp


︸ ︷︷ ︸
=b

. (3.2.7)

Thus, there is a linear relationship between β∗ and b when q = 0.

While (3.2.7) immediately implies that b = 0p×1 ⇒ β∗ = 0h×1, it also gives us a useful

insight for identifying b via β∗. Since RH
h,p is of full rank under Assumption 3.2.1, we have the

following relationship.

1. If p > h, then b is not identified by β∗. In particular, b may not be a null vector even if

β∗ is.

2. If p = h, then b is exactly identified by the formula b = (RH
h,h)−1β∗. In particular, b is a
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null vector whenever β∗ is.

3. If p < h, then b is over-identified by β∗. In particular, b is a null vector whenever β∗

is. This result follows from the positive definiteness of (RH
h,p)

′RH
h,p and the condition

β∗′β∗ = 0.

Generalizing this insight to an arbitrary autoregressive lag order q, we can establish the

following theorem.

Theorem 3.2.2. Let Assumptions 3.2.1 and 3.2.2 hold. We have that b = 0p×1 ⇒ β∗ = 0h×1,

regardless of p and h. When h ≥ p, the converse is also true: β∗ = 0h×1 ⇒ b = 0p×1.

Proof 3.2.2. See Appendix B.4.

We are interested in the null hypothesis of Granger non-causality, H0 : b = 0p×1, and

the first part of Theorem 3.2.2 implies that β∗ = 0h×1 under H0. Moreover, the second part

of Theorem 3.2.2 essentially states that β∗ 6= 0h×1 under a general alternative hypothesis

H1 : b 6= 0p×1, given h ≥ p. Exploiting these properties, we construct a test statistic for H0.

For each parsimonious model (3.2.4) we get β̂j , the OLS estimator for βj . Define β̂ = [β̂1, . . . ,

β̂h]′. The basic idea of our test, inspired by Andrews and Ploberger (1994), is to look at the

maximum value among {β̂2
1 , . . . , β̂2

h} with a certain weighting scheme.

Let {wTL,j : j = 1, . . . , h} be a sequence of σ(xH(τL − 1,m + 1 − i) : i ≥ 1)-measurable

L2-bounded non-negative scalars with non-random mean-squared-error limits {wj}. As a stan-

dardization, we assume that
∑h

j=1 wTL,j = 1 without loss of generality. We write

W TL
=


wTL,1 . . . 0

...
. . .

...

0 . . . wTL,h

 and W =


w1 . . . 0
...

. . .
...

0 . . . wh

 . (3.2.8)

A trivial choice of wTL,j is wj , a non-random constant, but we can consider any other weighting

structure as well.

We propose a test statistic:

Max Test Statistic for High-to-Low Causality
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T = max
1≤j≤h

(√
TLwTL,j β̂j

)2
. (3.2.9)

We call this the max test statistic since it takes the maximum of the square of properly scaled

individual OLS estimators. Theorem 3.2.3, one of our main results, derives the asymptotic

distribution of T under H0 and proves that our test is consistent given h ≥ p.

Theorem 3.2.3. Let Assumptions 3.2.1 and 3.2.2 hold. (i) Under H0 : b = 0p×1, we have that

T d→ max1≤j≤h N 2
j as TL → ∞. N = [N1, . . . ,Nh]′ is a vector-valued random variable drawn

from N(0h×1,V ), where

V =
σ2

L

γH
0

WRH
h,hW with RH

h,h =


ρH
1−1 . . . ρH

1−h

...
. . .

...

ρH
h−1 . . . ρH

h−h

 . (3.2.10)

(ii) Given h ≥ p, T p→ ∞ under a general alternative hypothesis H1 : b 6= 0p×1.

Proof 3.2.3. See Appendix B.5.

Although a formal proof is provided in Appendix B.5, Theorem 3.2.3.(ii) is intuitively clear

in view of Theorem 3.2.2. Equation (3.2.9) indicates that T p→ ∞ if and only if β∗ 6= 0h×1.

Theorem 3.2.2 states that, as long as h ≥ p, nonzero b implies nonzero β∗. Our test is therefore

consistent.

If one happens to choose h that is smaller than p, there may be a certain form of causality

such that the power does not approach one. To see this point, we consider a very simple

example where q = 0, p = 2, and h = 1. Then (3.2.7) implies that β∗
1 = b1 + ρH

1 b2. If b1 = 1

and b2 = −1/ρH
1 for example, then β∗

1 = 0. As a result T = 0 and thus there is in fact no

power. This example may be unlikely to occur in most economic applications since it requires

|b1| = |ρH
1 b2| < |b2| (i.e. the first high frequency lag of xH should have a smaller impact on xL

than the second high frequency lag of xH does). But some applications may have such a tricky

Granger causality due to lagged information transmission or seasonal effects. It is thus advised

to take a sufficiently large h when the possibility of lagged causality cannot be ruled out.

Another important feature of Theorem 3.2.3 is that the asymptotic covariance matrix V
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does not depend on a at all. This property is essentially due to the assumption that our model

includes exactly q low frequency lags of xL.

Furthermore, V does not depend on m either. This is a natural result since we are not

aggregating xH .

Even though the test statistic T has a non-standard limit distribution under H0, a simulated

p-value is easily available via simulation from the null distribution.

Simulation from Null Distribution If an estimator V̂ that is consistent for V under H0 is

available, then we can simply draw R samples N (1), . . . , N (R) independently from N(0h×1, V̂ )

and calculate artificial test statistics Tr = max1≤i≤h

(
N (r)

i

)2
. Then we can get an asymptotic

p-value approximation

p̂ = (1/R)
R∑

r=1

I (Tr > T ) . (3.2.11)

It turns out that we can compute a consistent estimator for V under H0 although we

cannot in general. Recall (3.2.10) to see this point. First, W TL

p→ W by assumption.

Second, γH
k can be consistently estimated by the sample autocovariance of xH of order k:

γ̂H
k = (1/mTL)

∑TL
τL=1

∑m
j=1 xH(τL, j)xH(τL, j − k)

p→ γH
k . Similarly, ρ̂H

k = γ̂H
k /γ̂H

0
p→ ρH

k .

Hence, the availability of consistent V̂ depends entirely on the availability of consistent σ̂2
L.

Since the DGP (3.2.1) reduces to a pure AR(q) process under H0, σ̂2
L can be calculated by fit-

ting an AR(q) model for xL and computing the sample variance of residuals. If we do not impose

H0 then we cannot get consistent σ̂2
L due to the misspecification of each parsimonious model,

but all we need to implement our test is a consistent estimator for V under H0. Therefore, we

can implement statistical inference using the asymptotic p-value approximation in (3.2.11).

While V itself does not depend on m as explained above, V̂ does depend on it through γ̂H
k .

In fact, the precision of γ̂H
k improves as m grows since the high frequency sample size mTL gets

larger. In that sense having a large m is a favorable situation for the max test, while it is a

challenging situation for the existing mixed frequency Granger causality test (see Ghysels, Hill,

and Motegi (2013)).
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3.2.2 Low-to-High Granger Causality

Consider a high frequency variable xH and a low frequency variable xL with the ratio of sampling

frequencies m. Define the mixed frequency vector

X(τL) = [xH(τL, 1), . . . , xH(τL,m), xL(τL)]′ ∈ RK

with K = m + 1. Assume that xH and xL follow MF-VAR(q):

X(τL) =
q∑

i=1

AiX(τL − i) + ε(τL), ε(τL) i.i.d.∼ (0K×1,Ω), (3.2.12)

where

Ai =


a11,i . . . a1K,i

...
. . .

...

aK1,i . . . aKK,i

 and ε(τL) =



εH(τL, 1)
...

εH(τL,m)

εL(τL)


.

Relaxing the i.i.d. assumption of ε to m.d.s. should be a future task.

Focusing on the last row of (3.2.12), we have that

xL(τL) =
q∑

k=1

aKK,kxL(τL − k) +
q∑

k=1

m∑
l=1

aKl,kxH(τL − k, l) + εL(τL), εL(τL) i.i.d.∼ (0, σ2
L). (3.2.13)

To test Granger causality from xL to xH (i.e. low-to-high causality), we näıvely consider

Sims’ two-sided regression model.

Näıve Regression Model

xL(τL) =

q
X

k=1

αk,jxL(τL − k) +

mq
X

k=1

βk,jxH(τL − 1, m + 1 − k) +
h

X

j=1

γjxH(τL + 1, j) + uL,j(τL),

Instruments: {all q + mq + h regressors, xH(τL, 1), . . . , xH(τL, m)} .

(3.2.14)

Here we are assuming that the true MF-VAR lag order q is known. Besides all explanatory

variables, we include m contemporaneous high frequency observations of xH in the set of in-

struments in order to handle simultaneity between xL and xH . We test the significance of
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γ1, . . . , γh, the parameters on the high frequency leads of xH . Under the null hypothesis of

low-to-high non-causality, all those parameters should be equal to zero.

A potential problem of this approach is that there may be parameter proliferation as in the

näıve model for high-to-low causality. We thus propose more parsimonious models:

Parsimonious Regression Model j ∈ {1, . . . , h}

xL(τL) =

q
X

k=1

αk,jxL(τL − k) +

mq
X

k=1

βk,jxH(τL − 1, m + 1 − k) + γjxH(τL + 1, j) + uL,j(τL),

Instruments: {all q + mq + 1 regressors in model j, xH(τL, 1), . . . , xH(τL, m)} .

(3.2.15)

We are combining h parsimonious regression models, and the j-th model contains the j-th

high frequency lead of xH . As in the näıve regression model (3.2.14), we include m contempo-

raneous high frequency observations of xH as instruments.

A key insight is that the pseudo-true values of γ1, . . . , γh are all zeros under the null hy-

pothesis that xL does not Granger cause xH . Using this property, our test strategy is to get the

generalized instrumental variable estimator (GIVE) for γj and formulate the max test statistic:

T = max
1≤j≤h

(√
TLwTL,j γ̂j

)2
, (3.2.16)

where wTL
= [wTL,1, . . . , wTL,h]′ is a weighting scheme such that wTL

L2

−→ w. We will derive

the asymptotic null distribution of T under the null hypothesis of non-causality H0 : xL 9 xH .

Theorem 3.2.4. Under H0 : xL 9 xH , it follows that T ≡ max1≤j≤h (
√

TLwTL,j γ̂j)2
d→

max1≤j≤h N 2
j , where N = [N1, . . . ,Nh]′ ∼ N(0h×1, U).

Proof 3.2.4. See Appendix B.6. The covariance matrix U is derived there.

A consistent estimator for the covariance matrix U can be constructed from sample moments

in an analogous fashion with high-to-low causality, so the testing procedure is not described in

detail here.
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3.3 Local Asymptotic Power Analysis

Using a local asymptotic power framework, this section examines the asymptotic performance

of the high-to-low max test.2 Our analysis has three goals. First, we compare the local power of

the max test and the local power of the Wald test based on the näıve regression model (3.2.3).

It will turn out that the max test has clearly higher power than the Wald test. The difference

between these two can be as large as 15-20% for some parametrizations.

Second, we investigate how the the local power of the max test evolves over the true lag

order p and the number of lags considered, h. We will find that local power is maximized when

h is close to p.

Third, we compare the power of the mixed frequency max test and its low frequency coun-

terpart which works on an aggregated xH instead of the original high frequency series. It will

turn out that the mixed frequency approach can capture finer causal patterns appearing within

each low frequency period.

We keep imposing Assumptions 3.2.1 and 3.2.2, and consider the same DGP (3.2.1) again.

Our null hypothesis is the same as before (i.e. H0 : b = 0p×1), but here we consider a local

alternative hypothesis H l
1 : b = (1/

√
TL)ν. In the literature ν = [ν1, . . . , νp]′ is often called the

Pitman drift. Under H l
1, the DGP is written as

xL(τL) =
q∑

k=1

akxL(τL − k) +
p∑

j=1

νj√
TL

xH(τL − 1,m + 1 − j) + εL(τL)

= XL(τL − 1)′a + X
(p)
H (τL − 1)′

(
1√
TL

ν

)
+ εL(τL), εL(τL) i.i.d.∼ (0, σ2

L).

(3.3.1)

We combine h parsimonious regression models (3.2.4) to formulate the test statistic T in

(3.2.9). The asymptotic distribution under H0 is already derived in Theorem 3.2.3. Here we

derive the asymptotic distribution under H l
1.

Theorem 3.3.1. Let Assumptions 3.2.1 and 3.2.2 hold. Then, we have that T d→ max1≤i≤h M2
i

as TL → ∞ under H l
1 : b = (1/

√
TL)ν. M = [M1, . . . ,Mh]′ is a vector-valued random variable

2 The low-to-high case remains as a future task.
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drawn from N(µ, V ), where V is defined in (3.2.10) and

µ = WRH
h,pν with RH

h,p =


ρH
1−1 . . . ρH

1−p

...
. . .

...

ρH
h−1 . . . ρH

h−p

 . (3.3.2)

Proof 3.3.1. See Appendix B.7.

In Theorem 3.2.3 we have shown that the asymptotic covariance matrix V does not depend

on a. In (3.3.2) we see that the noncentrality parameter µ does not depend on a either. Thus,

the autoregressive component of xL does not affect local asymptotic power at all. This result

comes from the assumption that the autoregressive lag order q is known and therefore each

parsimonious model contains exactly q lags of xL.

In addition, neither µ nor V depends on m. This is an intuitive result since we are not

aggregating xH .

In the local power analysis we know all of underlying parameters, so V and µ can be

calculated easily from (3.2.10) and (3.3.2). Then Theorems 3.2.3 and 3.3.1 allow us to compute

local asymptotic power for any desired (h, p) numerically. The procedure is as follows.

Step 1 Draw R1 samples N (1), . . . , N (R1) independently from the limit distribution under H0,

N(0h×1, V ), and calculate a set of test statistics Tr = max1≤i≤h

(
N (r)

i

)2
.

Step 2 Sort the test statistics T(1) ≤ · · · ≤ T(R1) and take the 100(1−α)% quantile, which is a

numerical approximation of the critical value associated with a nominal size α. Call that

quantile d∗.

Step 3 Draw R2 samples M(1), . . . , M(R2) independently from the limit distribution under

H l
1, N(µ, V ), and calculate another set of test statistics T̃r = max1≤i≤h

(
M(r)

i

)2
. Local

asymptotic power P is given by P = (1/R2)
∑R2

r=1 I(T̃r > d∗).
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Näıve Regression Model It is of interest to compare the local power of the max test and

the local power of the Wald test based on the naive regression model (3.2.3):

xL(τL) =
q∑

k=1

αkxL(τL − k) +
h∑

j=1

βjxH(τL − 1,m + 1 − j) + uL(τL).

Under H0 : b = 0p×1, this model always includes the DGP as a special case. Under H l
1 :

b = (1/
√

TL)ν, it does not include the DGP when h < p. Based on the standard statistical

argument, it is straightforward to derive the asymptotic distribution of the Wald statistic W

with respect to H0.

Theorem 3.3.2. Let Assumptions 3.2.1 and 3.2.2 hold. Let W be the Wald statistic with

respect to H0 : b = 0p×1. Then, the asymptotic distribution of W is χ2
h under H0 and χ2

h(κ)

under H l
1. χ2

h(κ) is the noncentral chi-squared distribution with degrees of freedom h and

noncentrality κ = (γH
0 /σ2

L)ν ′R′
h,pR

−1
h,hRh,pν.

Proof 3.3.2. This theorem can be proven by the classic argument of the Wald test and local

asymptotic power literature.

As seen in Theorem 3.3.2, W has a convenient asymptotic distribution both under H0 and

H l
1. Hence local power can be calculated by definition: P = 1 − F1[F−1

0 (1 − α)], where F0 is

the asymptotic distribution under H0 (i.e. χ2
h) and F1 is the asymptotic distribution under H l

1

(i.e. χ2
h(κ)).

Note that the autoregressive parameters a1, . . . , aq are not playing any role in Theorem

3.3.2. This result stems from out assumption of known q. The ratio of sampling frequency m

does not play any role either.

Low Frequency Counterpart Another interesting exercise is to compare the mixed fre-

quency max test and a conventional low frequency max test in terms of local power. The former

works on the original high frequency series {{xH(τL, j)}}, while the latter works on its aggre-

gated version {xH(τL)}. We consider linear aggregation scheme xH(τL) =
∑m

j=1 δjxH(τL, j)

with δj ≥ 0 for all j = 1, . . . ,m and
∑m

j=1 δj = 1. The linear aggregation scheme is sufficiently
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general for most economic applications since it includes flow sampling (i.e. δj = 1/m for j = 1,

. . . ,m) and stock sampling (i.e. δj = I(j = m) for j = 1, . . . ,m) as special cases. Note that δj

is not a parameter to estimate; it is fixed by the researcher.

Given Assumption 3.2.1, we can show that {xH(τL)} is a covariance stationary process with

mean zero and autocovariance

γH,LF
k ≡ E[xH(τL)xH(τL − k)] = E

(
m∑

i=1

δixH(τL, i)

) m∑
j=1

δjxH(τL − k, j)


=

m∑
i=1

m∑
j=1

δiδjE[xH(τL, j)xH(τL − k, j)] =
m∑

i=1

m∑
j=1

δiδjγ
H
j−i−km, for k ∈ Z.

(3.3.3)

See Appendix B.2 for a more formal derivation.

Keeping our DGP the same, we combine the following h parsimonious models as a conven-

tional low frequency approach:

xL(τL) =
q∑

k=1

αLF
k,j xL(τL − k) + βLF

j xH(τL − j) + uLF
L,j(τL), j = 1, . . . , h (3.3.4)

or in a matrix form

xL(τL) = xLF
j (τL − 1)′θLF

j + uLF
L,j(τL)

with xLF
j (τL − 1) = [XL(τL − 1)′, xH(τL − j)]′ and θLF

j = [αLF
1,j , . . . , αLF

q,j , βLF
j ]′. We can use

different h’s between the mixed frequency test and the low frequency test, but the same notation

is used here for brevity. The only difference between the mixed frequency model (3.2.4) and

the low frequency model (3.3.4) is whether we include the j-th lag of the original xH or the

j-th lag of the aggregated xH . As a result, the former involves h high frequency lags in terms of

xH while the latter involves h low frequency lags. This suggests that the former would perform

better than the latter when there is a certain form of causality within a low frequency time

period. One specific example would be a month vs. year case where the only one-month lag of

xH has a nonzero coefficient b1 6= 0.

For illustration, we present model (3.3.4) under stock sampling:

xL(τL) =
q∑

k=1

αLF
k,j xL(τL − k) + βLF

j xH(τL − j,m) + uLF
L,j(τL) (3.3.5)
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and under flow sampling:

xL(τL) =
q∑

k=1

αLF
k,j xL(τL − k) + βLF

j

(
1
m

m∑
i=1

xH(τL − j, i)

)
+ uLF

L,j(τL).

We run OLS for (3.3.4) to get β̂LF
j and then formulate a test statistic:

TLF = max
1≤j≤h

(√
TLwTL,j β̂

LF
j

)2
.

We can use different weighting schemes between the mixed frequency test and the low frequency

test, but the same notation is used here for brevity.

The following theorem derives the limit distributions of TLF under H0 and H l
1.

Theorem 3.3.3. Let Assumptions 3.2.1 and 3.2.2 hold. Then, (i) we have that TLF
d→

max1≤j≤h (NLF
j )2 as TL → ∞ under H0 : b = 0p×1. N LF = [NLF

1 , . . . ,NLF
h ]′ is a vector-

valued random variable following N(0h×1, V
LF ), where

V LF =
σ2

L

γH,LF
0

WRH,LF W with RH,LF =
1

γH,LF
0


γH,LF
1−1 . . . γH,LF

1−h

...
. . .

...

γH,LF
h−1 . . . γH,LF

h−h

 . (3.3.6)

(ii) We have that TLF
d→ max1≤j≤h(MLF

j )2 under H l
1 : b = (1/

√
TL)ν. MLF = [MLF

1 , . . . ,

MLF
h ]′ is a vector-valued random variable following N(µLF ,V LF ), where

—LF = W ∆� with ∆ =
1

γH,LF
0

2

6

6

6

6

4

Pm
i=1 δiγ

H
m+1−1−i+(1−1)m . . .

Pm
i=1 δiγ

H
m+1−p−i+(1−1)m

...
. . .

...
Pm

i=1 δiγ
H
m+1−1−i+(h−1)m . . .

Pm
i=1 δiγ

H
m+1−p−i+(h−1)m

3

7

7

7

7

5

. (3.3.7)

Proof 3.3.3. See Appendix B.8.

The two key quantities determining the local asymptotic power of the low frequency test,

µLF and V LF , do not depend on a. This is essentially because we are assuming that the true

autoregressive lag order q is known.

Recall from (3.3.3) that γH,LF
k depends on m, so both µLF and V LF depend on m. This
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result comes from the temporal aggregation of xH .

Local asymptotic power based on the low frequency test can be computed in the same

manner as the mixed frequency test. Follow Steps 1-3 right after Theorem 3.3.1.

Numerical Examples Here we evaluate the local asymptotic power of each test described

above under some realistic parameterizations. For the true DGP (3.3.1), we try each of high

frequency lag length p ∈ {1, . . . , 5} and consider two causality patterns:

1. Decaying Causality: νj = 0.8 − 0.1(j − 1) for j = 1, . . . , p. This is a commonly observed

causal pattern where the coefficients decay gradually. For example, ν = [0.8, 0.7, 0.6, 0.5,

0.4]′ when p = 5.

2. Lagged Causality: νj = 2×I(j = p) for j = 1, . . . , p. Only νp is 2 and all other coefficients

are zeros. This case corresponds to seasonality or lagged response of xL to xH .

We assume that xH follows a covariance stationary AR(1) process:

xH(τL, j) = φxH(τL, j − 1) + εH(τL, j), εH(τL, j) i.i.d.∼ (0, 1),

in which case γH
k = φ|k|/(1 − φ2) and hence ρH

k = φ|k| for k ∈ Z. We try φ ∈ {0.2, 0.8}.

We do not have to specify the autoregressive lag order q or those coefficients a1, . . . , aq since

they will not affect the local asymptotic power of any tests discussed previously.

For the mixed frequency max test we try h ∈ {1, . . . , 5} and use equal weights: wj = 1/h for

j = 1, . . . , h. Given p, we expect that the local power increases as h approaches p from below.

For the Wald test based on the näıve model (3.2.3), we again try h ∈ {1, . . . , 5}. It is of

interest to see which of the mixed frequency max test and Wald test gets higher power for given

{p, h}.

For the low frequency max test we assume m = 12, which can be thought of as a month

vs. year case or approximately a week vs. quarter case. We try both stock sampling and flow

sampling. The number of models combined is picked from h ∈ {1, . . . , 3}. We are explicitly

distinguishing h and h since each lag in the mixed frequency models (3.2.4) is in terms of high

frequency while each lag in the low frequency models (3.3.4) is in terms of low frequency. We

use equal weights: wj = 1/h for j = 1, . . . , h.
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Other quantities are set as follows. The error variance in the DGP is σ2
L = 1. The nominal

size is α = 0.05. For the max tests, the number of draws from the limit distributions is

R0 = R1 = 100, 000.

Table 3.1 compares the local asymptotic power of the mixed frequency max test and the

Wald test. Panel A considers Decaying Causality, while Panel B considers Lagged Causality.

Panels A.1 and B.1 consider φ = 0.2, a relatively transitory xH . Panels A.2 and B.2 consider

φ = 0.8, a relatively persistent xH .

Since we have two causality patterns, two values for φ, five values for h, and five values for

p, there are 2 × 2 × 5 × 5 = 100 ways to compare the max test and the Wald test in total.

Remarkably, the max test has higher power than the Wald test in 92 out of the 100 slots. The

difference increases in h since the Wald test gets more parameters to estimate at once. For

example, the power of the max test is 57.4% while that of the Wald test is 40.7% in Panel A.2

with (h, p) = (5, 2).

The two tests have the same power in six slots. The max test has lower power than the Wald

test in only two slots, and the difference is as small as 0.1%; see Panel A.1 with (h, p) = (4, 5)

and Panel B.2 with (h, p) = (1, 2).

Thus, we can conclude that the mixed frequency max test almost always gets higher power

than the Wald test due to its parsimonious model specification. The difference in power increases

can be as large as 15-20% when h is large, since the näıve regression model starts suffering from

parameter proliferation.

We now investigate how the power of the mixed frequency max test evolves over h and p.

We also compare the mixed frequency max test and its low frequency counterpart. See Table

3.2 for the results. Panel A is on the mixed frequency test, Panel B is on the low frequency

test with stock sampling, and Panel C is on the low frequency test with flow sampling. Panel

A.1 considers Decaying Causality, while Panel A.2 considers Lagged Causality. For each type

of causality we try transitory xH (φ = 0.2) and persistent xH (φ = 0.8). The same structure

applies for Panels B and C.

We first focus on Panel A, the mixed frequency case. The choice of h does not seem so

important for Decaying Causality. For example, fixing φ = 0.2 and p = 3, the local power is
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16.9%, 20.1%, 19.7%, 17.5%, and 16.2% as h goes from 1 to 5. While these five values suggest

that choosing too small h or too large h decreases local power, the difference does not look

substantial.

The choice of h does look crucial for Lagged Causality, however. Fixing φ = 0.2 and p = 3

again, the local power is 5.2%, 6.4%, 39.4%, 36.2%, and 33.7% as h goes from 1 to 5. These

values indicate that h needs to be at least as large as p in order to achieve high power. Since xH

has small autocorrelation when φ = 0.2, just including the first through (p − 1)-th lags of xH

does not approximate the p-th, significant lag. When φ = 0.8, the negative effect of including

too few lags gets less severe; the local power is 57.3%, 72.5%, 88.0%, 87.3%, and 86.1% as seen

in the middle column of Panel A.2.2. This is because the first through (p − 1)-th lags of xH

approximate the p-th, significant lag fairly well. Thus, our conclusion from Panel A is that we

should pick a sufficiently large h ≥ p when xH has small autocorrelation and there is likely to

be a lagged causality.

We now focus on Panels B and C, the low frequency cases. Recall that m = 12 and p ≤ 5

in this experiment. This means that the causal effect from xH to xL exists only within one low

frequency time period. Since the number of models combined h is in terms of low frequency, a

reasonable conjecture is that letting h ≥ 2 should not improve local power. As seen in Panels

B and C, this conjecture is in fact true regardless of φ, p, and the type of causality. We thus

focus on h = 1 here.

As far as Decaying Causality is concerned, the low frequency test does not perform much

worse than the mixed frequency test. Let φ = 0.2 and p = 5 for example. The mixed frequency

test achieves power 21.1% when h = 3, while the low frequency test with stock sampling achieves

16.7% and the low frequency test with flow sampling achieves 18.0%. While the mixed frequency

test has the highest power, the difference is not too large. The same pattern is observed when

φ = 0.8.

In the presence of Lagged Causality, the low frequency test often suffers from much lower

power than the mixed frequency test. When φ = 0.2, recall from the lower-triangular part of

Panel A.2.1 that the mixed frequency test gets power between 33.5% and 53.7% by choosing

h ≥ p. The local power based on the low frequency test is all lower than 18.1% except for the

first column of Panel B.2.1, which covers stock sampling with p = 1 and Lagged Causality. The
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local power there is as high as 53.0%. To explain this outlier, recall that the only nonzero term

under the local DGP (3.3.1) is xH(τL − 1,m) when p = 1. Since xH(τL − 1) = xH(τL − 1,m)

under stock sampling, this term is exactly included in the low frequency model with stock

sampling (see (3.3.5)). Except for this coincidence, local power based on the low frequency test

is much lower than local power based on the mixed frequency test.

The superiority of the mixed frequency test is preserved when we focus on φ = 0.8 with

Lagged Causality. Let p = 5, then we see from Panel A.2.2 that the mixed frequency test has

power 84.7%. In contrast, the low frequency test with stock sampling has 27.6% while the

low frequency test with flow sampling has 73.1%. The flow-sampling model performs much

better than the stock-sampling model since the former has the simple sum of xH(τL −1, 1), . . . ,

xH(τL −1, 12) as a regressor, while the latter has only xH(τL −1, 12). Since p = 5 and m = 12,

the only nonzero term under the local DGP is xH(τL−1, 8) and hence the flow-sampling model

has a relatively relevant regressor.

We summarize the main implications from Table 3.2. First, choosing a sufficiently large

h ≥ p is important when the mixed frequency approach is taken. This is especially true when

xH has low persistence and Lagged Causality is likely to exist. Second, the mixed frequency

test with sufficiently large h ≥ p achieves higher power than the low frequency test in the

presence of Lagged Causality. For Decaying Causality their performance is not so different, but

the mixed frequency test never performs worse than the low frequency test at least.

3.4 Monte Carlo Simulations

In this section we run Monte Carlo simulations to examine the finite sample performance of the

max test. Section 3.4.1 is concerned with high-to-low causality, while Section 3.4.2 is concerned

with low-to-high causality.

3.4.1 High-to-Low Causality

We compare the finite sample performance of the mixed frequency high-to-low max test and

the Wald test based on the näıve regression model (3.2.3).
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The DGP is set as follows:

xL(τL) = 0.2xL(τL − 1) +
12∑

j=1

bjxH(τL − 1,m + 1 − j) + εL(τL), εL(τL) i.i.d.∼ N(0, 1),

xH(τL, j) = φxH(τL, j − 1) + εH(τL, j), εH(τL, j) i.i.d.∼ N(0, 1).

(3.4.1)

For the key coefficient b, we try three cases below.

1. Non-causality: b = 012×1. In this case we can check the empirical size of our tests.

2. Decaying Causality: bj = 0.1/j for j = 1, . . . , 12. This is a commonly observed causal

pattern where the coefficients decay gradually.

3. Lagged Causality: bj = 0.25 × I(j = 12) for j = 1, . . . , 12. Only b12 is 0.25 and all other

coefficients are zeros. This case corresponds to seasonality or lagged response of xL to

xH .

For the AR(1) coefficient of xH , we try φ ∈ {0.2, 0.8}. The ratio of sampling frequencies

we try is m ∈ {3, 12}. m = 3 can be thought of as a month vs. quarter case, while m = 12

can be thought of as a week vs. quarter case approximately. The sample size in terms of low

frequency is taken from TL ∈ {40, 80, 120}. These values can be thought of as 40 quarters (i.e.

10 years) through 120 quarters (i.e. 30 years).

For the max test, we combine h parsimonious models (3.2.4) with h ∈ {4, 8, 12}. We use

the equal weighting scheme, and the test statistic is computed based on 1,000 draws from the

asymptotic null distribution.

For the Wald test, we postulate the näıve regression model (3.2.3) with h ∈ {4, 8, 12}. We

use the parametric bootstrap with 499 replications and the normality assumption. Since the

error εL is indeed normally distributed here, the parametric bootstrap controls the empirical

size of the Wald test well. We also tried the Lagrange multiplier test and likelihood ratio test,

but they turned out to be too conservative in small sample (i.e., their empirical size is way

below the nominal size 5%). Hence we report the results of the Wald test only.

The number of Monte Carlo replications is 10,000 for the max test and 2,000 for the boot-

strapped Wald test.
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See Table 3.3 for the rejection frequencies of the mixed frequency max test and the Wald

test based on the näıve regression model. Panel A focuses on m = 3, while Panel B focuses on

m = 12.

We first focus on Non-causality to check the empirical size of our tests. The Wald test has

a well-controlled size for each case due to the parametric bootstrap. The max test is also fine

except for a challenging case with small TL, small m, and large φ. For example, the worst

empirical size of 24.3% appears when TL = 40, m = 3, φ = 0.8, and h = 12; see Panel A.1.2.

This size distortion stems from a poor approximation of the covariance matrix V in (3.2.10).

Recall that V̂ , a consistent estimator for V , is constructed from the sample moments of the

high frequency process xH . Hence, the precision of V̂ decreases when the high frequency sample

size mTL is small or xH has a strong persistence. Apart from such severe combinations, the

max test has a reasonable empirical size:

1. When φ = 0.2, the empirical size is less than 9.7% even if TL = 40 and m = 3 (cfr. Panel

A.1.1).

2. When TL = 120, the empirical size is less than 7.7% even if φ = 0.8 and m = 3 (cfr. Panel

A.1.2).

3. When m = 12, the empirical size is less than 8.3% even if φ = 0.8 and TL = 40 (cfr. Panel

B.1.2).

We now compare the empirical power of the two tests. We first consider Decaying Causality.

The max test has higher power than the Wald test for all slots in Panels A.2 and B.2. The

difference is particularly large when m = 12, φ = 0.8, TL = 80, and h = 12 (cfr. Panel B.2.2).

The power of the max test is 80.0% while the power of the Wald test is 50.1% there. Note that

this difference is not due to size distortions since m and TL are large (cfr. Panel B.1.2).

The exactly same goes for Lagged Causality. The max test has higher power than the Wald

test for all slots in Panels A.3 and B.3. The difference is particularly large when m = 12,

φ = 0.8, TL = 80, and h = 12 (cfr. Panel B.3.2). The power of the max test is 82.5% while the

power of the Wald test is 57.0% there, and this difference is not due to size distortions.

In summary, the mixed frequency max test has higher power than the Wald test based

on the näıve regression model under any plausible parameterizations. The former gets size
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distortions only when TL is small, m is small, and φ is large. If at least one of the three

quantities is favorable, then the max test does not suffer from serious size distortions. Hence,

our conclusions are twofold. First, take the Wald approach when TL is small, m is small, and

φ is large. Second, use the max test otherwise in order to achieve higher power than the Wald

test. The improvement of power can be as large as 30% in some cases.

Finally, we discuss how the power of the max test evolves as h grows. For Decaying Causality,

the power decreases gradually as h approaches the true lag order 12. See Panel B.2.1 with

TL = 120 for example. The power there is 19.5%, 15.3%, and 12.9% when h is 4, 8, and 12.

This suggests that, under Decaying Causality, incorporating many lags is penalized even if they

are relevant lags. An intuitive reason for this fact is that the first lag has the largest coefficient

and hence the marginal benefit of including more lags is diminishing.

For Lagged Causality, the power of the max test jumps at h = 12. See Panel B.3.1 with

TL = 120 for instance. The power there is 5.7%, 5.8%, and 47.4% when h is 4, 8, and 12.

This suggests that, under Lagged Causality, incorporating sufficiently many lags is crucial for

getting high power.

3.4.2 Low-to-High Causality

We now consider Granger causality from xL to xH . Assume that the true DGP is a bivariate

structural MF-VAR(1) with the ratio of sampling frequencies m = 12:
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with η(τL) i.i.d.∼ N(013×1, I13). There is decaying Granger causality from xH to xL in the sense

that xL(τL) depends on
∑12

j=1(0.2/j)xH(τL−1,m+1−j). The low frequency AR(1) coefficient

of xL is 0.2, while the high frequency AR(1) coefficient of xH is 0.2 as well. xH is also affected

by past xL, which is our main interest here. Specifically, xH(τL, j) depends on cjxL(τL − 1) for

j = 1, . . . , 12. A key parameter vector c = [c1, . . . , c12]′ represents low-to-high causality, and

we consider the following three cases.

1. Non-causality: c = 012×1. In this case we can check the empirical size of our tests.

2. Decaying Causality: cj = 0.3/j for j = 1, . . . , 12. This is a commonly observed causal

pattern where the coefficients decay gradually.

3. Lagged Causality: cj = 0.4 × I(j = 12) for j = 1, . . . , 12. Only c12 is 0.4 and all other

coefficients are zeros. This case corresponds to seasonality or lagged response of xH to

xL.

Having m = 12 can be thought of as a week vs. quarter case approximately, so we take

TL ∈ {40, 80, 120}. These values can be thought of as 40 quarters (i.e. 10 years) through 120

quarters (i.e. 30 years).

For the mixed frequency max test, we combine h ∈ {4, 8, 12} parsimonious regression models,

and the j-th model is specified as

xL(τL) = α1,jxL(τL − 1) +
p∑

k=1

βk,jxH(τL − 1, m + 1 − k) + γjxH(τL + 1, j) + uL,j(τL),

Instruments: {all p + 2 regressors in model j, xH(τL, 1), . . . , xH(τL, m)} .

(3.4.3)

The number of high frequency lags of xH , namely p, is taken from p ∈ {4, 8, 12}.

For the purpose of comparison, we also formulate a low frequency counterpart to the model

(3.4.3). We aggregate xH using the linear aggregation scheme: xH(τL) =
∑12

j=1 δjxH(τL, j). In

particular, we focus on stock sampling δj = I(j = 12) and flow sampling δj = 1/12 in this

simulation study. Using the aggregated xH , we combine h ∈ {1, 2, 3} parsimonious regression
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models, and the j-th model is specified as

xL(τL) = αLF
1,j xL(τL − 1) +

p∑
k=1

βLF
k,j xH(τL − k) + γLF

j xH(τL + j) + uLF
L,j(τL),

Instruments:
{
all p + 2 regressors in model j, xH(τL)

}
.

(3.4.4)

The number of low frequency lags of xH , namely p, is taken from p ∈ {1, 2, 3}. We can formulate

the max test corresponding to the low frequency model (3.4.4) in a completely analogous fashion

with the mixed frequency case.

All max test statistics are computed based on the equal weighting scheme wj = 1/h. The

number of Monte Carlo replications is 5,000, while the number of draws from the asymptotic

null distribution is 1,000. The nominal size is 5%.

See Table 3.4 for the rejection frequencies. Panel A has Non-causality, Panel B has Decaying

Causality, and Panel C has Lagged Causality. For each panel we have the mixed frequency

case, low frequency case with stock sampling, and low frequency case with flow sampling. We

first focus on Panel A to check empirical size. Since the low frequency approach involves few

parameters, the empirical size is always very close to the nominal size 5% (cfr. Panels A.2 and

A.3). The mixed frequency approach involves more parameters, so there is a size distortion

issue when TL is as small as 40 (cfr. Panel A.1). The worst empirical size of 0.176 occurs when

(h, p, TL) = (12, 12, 40). The empirical size converges to the nominal size 5% quickly as TL

grows to 80, however.

We now focus on Panel B: Decaying Causality. For the mixed frequency case, the empirical

power is at most 0.375 when TL = 40, 0.629 when TL = 80, and 0.827 when TL = 120 (cfr.

Panel B.1). Fixing p, a larger h always produces lower power. This is reasonable since having

more leads of xH is not so informative given the decaying structure of low-to-high causality

while the increased number of parameters certainly lowers power. Similarly, having larger p

does not always improve power due to the decaying pattern of high-to-low causality.

Panel B.2 indicates that the low frequency test with stock sampling has absolutely no power.

In contrast, Panel B.3 indicates that the low frequency test with flow sampling is in fact more

powerful than the mixed frequency test. For example, the low frequency test with flow sampling

at (h, p, TL) = (1, 1, 40) yields the rejection frequency of 0.370, while the mixed frequency test at

81



(h, p, TL) = (4, 4, 40) yields 0.305. This result suggests that the informational loss of switching

from {{xH(τL, j)}} to {
∑12

j=1 xH(τL, j)} is relatively small when Decaying Causality is present,

and thus the low frequency approach is preferred due to fewer parameters.

We now focus on Panel C: Lagged Causality. For the mixed frequency case, having h = 4, 8

produces no power but having h = 12 produces high power, as desired (cfr. Panel C.1). Fixing

(h, p) = (12, 4), the empirical power is 0.209 when TL = 40, 0.582 when TL = 80, and 0.844

when TL = 120 These results are understandable since the twelfth lead of xH is crucial for

capturing the lagged low-to-high causality. As in Panel B, having larger p does not always

improve power due to the decaying pattern of high-to-low causality.

Panel C.3 shows that the low frequency test with flow sampling has very low power, which

implies that the lagged causality at high frequency basis cannot be captured by {
∑12

j=1 xH(τL,

j)}. In contrast, Panel C.2 indicates that the low frequency test with stock sampling is much

more powerful than the mixed frequency test. For example, the low frequency test with stock

sampling at (h, p, TL) = (1, 1, 40) yields the rejection frequency of 0.633, while the mixed

frequency test at (h, p, TL) = (12, 4, 40) yields only 0.209. This is not surprising since the the

low frequency test with stock sampling works on {xH(τL, 12)}, exactly relevant observations

for Lagged Causality.

We summarize our comparison of the mixed frequency approach and the low frequency

approach. The former always provides reasonable power by picking appropriate h, regardless

of causal patterns. The low frequency approach with flow sampling performs better than the

mixed frequency approach given Decaying Causality, but it does not work at all given Lagged

Causality. The low frequency approach with stock sampling performs much better than the

mixed frequency approach given Lagged Causality, but it does not work at all given Decaying

Causality. In reality we do not know what kind of causality exists, so taking the mixed frequency

approach is encouraged in order to avoid spurious non-causality.

3.5 Empirical Application

In this section we use the max tests to examine the relationship between a weekly yield spread

and the quarterly real GDP growth in the U.S. We are particularly interested in Granger
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causality from the spread to the GDP growth (i.e. high-to-low causality). Yield spread used

to be regarded as a strong predictor of business cycle, but more recent evidence questions its

predictability. One well-known episode is ”Greenspan’s Conundrum” around 2005, when yield

spread declined substantially due to constant long-term rates and increased short-term rates

but the U.S. macroeconomy did not run into recession at that position. Although the U.S.

economy did get a serious recession due to the subprime mortgage crisis starting December

2007, the time lag between the declined yield spread and that recession seems much larger than

it used to be in the past. Based on this motivation, we investigate how Granger causality from

yield spread to GDP growth evolved over past fifty years.

As a business cycle measure, the seasonally-adjusted quarterly real GDP growth is used. The

data can be found at Federal Reserve Economic Data (FRED). To remove potential seasonal

effects remaining after seasonal adjustment, we use percentage growth rate from previous year.

For short-term and long-term interest rates, we first download daily series of 1-year Treasury

constant maturity rate and 10-year Treasury constant maturity rate at FRED. A convenient

feature of these two series is that they share the identical time grid. The federal fund rate

or 3-month Treasury bill rate may be a more popular proxy for short-term interest rates, but

they have different time grids from the 10-year Treasury constant maturity rate. While we

could directly work on the daily interest rates and the quarterly GDP, the ratio of sampling

frequencies m seems too large to ensure reasonable size and power. We thus aggregate the daily

series into weekly by picking the last observation in each week, recalling that interest rates are

stock variables. Finally, we calculate yield spread as the difference between the weekly 10-year

rate and the weekly 1-year rate.

Figure 3.1 shows the weekly 10-year rate, weekly 1-year rate, their spread, and the quarterly

GDP growth from January 5, 1962 through December 31, 2013. This sample period covers 2,736

weeks or 208 quarters. The shaded areas represent recession periods defined by the National

Bureau of Economic Research (NBER). Until 1980, sharp decline of the spread seemed to be

immediately followed by recession. After 1980, however, we find a weaker evidence or at least

there is a larger time lag between declined spread and recession.

Table 3.5 shows sample statistics of the weekly 10-year rate, weekly 1-year rate, their spread,

and the quarterly real GDP growth. The 10-year rate is 1% point larger than the 1-year rate
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on average. The average GDP growth is 3.151%, indicating a fairly steady growth of the U.S.

economy over the past 52 years. The spread has a relatively small kurtosis of 2.750, while the

GDP growth has a kurtosis of 3.543.

When we apply the mixed frequency causality test, a slightly inconvenient aspect of our

data is that the number of weeks contained in each quarter is not constant. Specifically, (i) 13

quarters have 12 weeks each, (ii) 150 quarters have 13 weeks each, and (iii) 45 quarters have

14 weeks each. Since our asymptotic theory requires m to be constant, we assume m = 13

by making the following modification. We (i) duplicate the twelfth observation once when a

quarter contains 12 weeks, (ii) do nothing when it contains 13 weeks, and (iii) cut the last

observation when it contains 14 weeks. This gives us a manageable dataset with TL = 208,

m = 13, and thus T = mTL = 2, 704.

For high-to-low causality (i.e. causality from spread to GDP), we fit mixed frequency

parsimonious models:

xL(τL) = α0,j +
q∑

k=1

αk,jxL(τL − k) + βjxH(τL − 1,m + 1 − j) + uL,j(τL), j = 1, . . . , h,

and low frequency parsimonious models:

xL(τL) = αLF
0,j +

q∑
k=1

αLF
k,j xL(τL − k) + βLF

j xH(τL − j,m) + uLF
L,j(τL), j = 1, . . . , h,

where we are using the fact that yield spread is a stock variable.3

Since our entire sample size is as large as 52 years, we implement rolling window analysis

with the window width being 10 years or 20 years. For example, when the width is 10 years,

the first subsample is 1962:I-1971:IV, the second one is 1962:II-1972:I, and so on. The 10-year

width gives us 169 subsamples, while the 20-year width gives us 129 subsamples.

The trade-off between a small window width and a large one is that the large window is

more likely to contain a structural break but it allows us to include more leads and lags in our

model. For the 10-year case, we set h = 13, h = 1, and q = 2. This means that we include

3 Mixed frequency models and low frequency models for low-to-high causality (i.e. Granger causality from
GDP to spread) are not presented here, but their details and the empirical results are available upon request.
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13 weeks of lagged xH and 2 quarters of lagged xL in the mixed frequency models, while we

include 1 quarter of lagged xH and 2 quarters of lagged xL in the low frequency models. For the

20-year case, we set h = 26, h = 2, and q = 2. This means that we include 26 weeks of lagged

xH and 2 quarters of lagged xL in the mixed frequency models, while we include 2 quarters of

lagged xH and 2 quarters of lagged xL in the low frequency models.

Figure 3.2 plots the asymptotic p-values of the max tests with respect to the null hypothesis

of high-to-low non-causality. Panel (a) is for the 10-year window width, while Panel (b) is for

the 20-year width. ”MF” means a mixed frequency approach which works on weekly spread and

quarterly GDP, while ”LF” means a low frequency approach which works on quarterly spread

and quarterly GDP. The shaded area represents the 5% level.

The first half of our entire sample shows very strong rejection of non-causality in both MF

and LF cases, which means that yield spread used to be a valid predictor of GDP. In Panel (a),

the p-values are almost always below 5% before subsample 1982:I-1991:IV. In Panel (b), the

p-values are always below 5% before subsample 1982:I-2001:IV.

After these periods the MF-based p-values start to fluctuate between a relatively narrow

range [0, 0.5], while the LF-based p-values start to fluctuate between a wide range [0, 1]. Most

recent samples, including the period of Greenspan’s Conundrum, have insignificant causality

for both approaches. In Panel (a), the p-values are always above 5% after subsample 2001:I-

2010:IV. In Panel (b), the p-values are always above 5% after subsample 1991:I-2010:IV. This

result suggests that yield spread is a less valid predictor of GDP than it used to be, probably

due to structural changes of U.S. economy as well as Federal Reserve Board’s financial policies.

Throughout the entire sample, the MF-based p-values are always smaller than the LF-based

ones. This result is consistent with Ghysels, Hill, and Motegi’s (2013) Theorem 4.2 stating that

high-to-low non-causality given MF information set implies high-to-low non-causality given LF

information set. We can thus conclude that using weekly yield spread is more informative than

using quarterly spread in terms of GDP prediction.
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3.6 Conclusions

This paper proposes regression-based mixed frequency Granger causality tests by combining

multiple parsimonious models where the i-th model regresses a low frequency variable xL onto

the i-th high frequency lag or lead of a high frequency variable xH . Letting β̂i be an estimator

for the loading of the i-th lag or lead of xH , our test statistic basically takes the maximum

among β̂2
1 , . . . , β̂2

h. In this sense our test can be called the max test for short.

In local power analysis on high-to-low causality, we show that the max test is more powerful

than the Wald test based on a näıve regression model which contains all relevant lags at once.

The difference in power can get large up to 15-20% when h gets large.

In small sample, we show via Monte Carlo simulations that the max test produces no size

distortions under realistic parameterizations and it is more powerful than the näıve Wald test.

The difference in power can be as large as 30% in some cases.

As an empirical application, we run a rolling window analysis on weekly interest rate spread

and quarterly real GDP growth in the U.S. We get a reasonable result that the spread used

to be a valid predictor of GDP until 1980 or around, but its predictive ability declined more

recently. We also find that the mixed frequency approach has more frequent rejections of non-

causality from spread to GDP than the conventional low frequency approach, which suggests

that taking the mixed frequency approach provides more accurate prediction of GDP based on

yield spread.
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Table 3.1: Local Asymptotic Power of Max Test and Wald Test (High-to-Low Causality)
This table shows the local asymptotic power of the mixed frequency max test and the Wald test based on the näıve

regression model (3.2.3). It focuses on Granger causality from xH to xL. The max test uses an equal weighting scheme.

Panel A considers Decaying Causality, where νi = 0.8 − 0.1(i − 1) for i = 1, . . . , p. Panel B considers Lagged Causality,

where νi = 2 × I(i = p) for i = 1, . . . , p. xH is assumed to follow AR(1) with coefficient φ ∈ {0.2, 0.8}. Panels A.1 and

B.1 consider φ = 0.2, a relatively transitory xH . Panels A.2 and B.2 consider φ = 0.8, a relatively persistent xH . The

lag length in the DGP is p ∈ {1, . . . , 5}, while the number of lags included in each model is h ∈ {1, . . . , 5}. Other minor

quantities are as follows: σ2
L = 1, α = 0.05, R1 = R2 = 100, 000.

Panel A. Decaying Causality

A.1. φ = 0.2 (low persistence in xH)
p = 1 p = 2 p = 3 p = 4 p = 5

Max Wald Max Wald Max Wald Max Wald Max Wald
h = 1 0.131 0.129 0.163 0.160 0.169 0.166 0.170 0.167 0.170 0.167
h = 2 0.106 0.104 0.180 0.170 0.201 0.192 0.205 0.195 0.205 0.196
h = 3 0.093 0.092 0.151 0.146 0.197 0.192 0.209 0.206 0.211 0.209
h = 4 0.086 0.086 0.135 0.132 0.175 0.172 0.202 0.202 0.209 0.210
h = 5 0.081 0.081 0.125 0.122 0.162 0.157 0.187 0.184 0.202 0.202

A.2. φ = 0.8 (high persistence in xH)
p = 1 p = 2 p = 3 p = 4 p = 5

Max Wald Max Wald Max Wald Max Wald Max Wald
h = 1 0.268 0.266 0.624 0.621 0.829 0.828 0.916 0.915 0.950 0.950
h = 2 0.245 0.204 0.642 0.555 0.867 0.809 0.946 0.916 0.974 0.956
h = 3 0.226 0.175 0.617 0.490 0.871 0.770 0.956 0.904 0.983 0.954
h = 4 0.212 0.156 0.595 0.443 0.858 0.726 0.955 0.882 0.983 0.945
h = 5 0.199 0.143 0.574 0.407 0.845 0.688 0.949 0.856 0.982 0.932

Panel B. Lagged Causality

B.1. φ = 0.2 (low persistence in xH)
p = 1 p = 2 p = 3 p = 4 p = 5

Max Wald Max Wald Max Wald Max Wald Max Wald
h = 1 0.537 0.532 0.071 0.069 0.052 0.051 0.052 0.050 0.052 0.050
h = 2 0.443 0.431 0.443 0.431 0.064 0.063 0.052 0.051 0.051 0.050
h = 3 0.390 0.372 0.395 0.372 0.394 0.372 0.060 0.060 0.051 0.050
h = 4 0.359 0.333 0.361 0.333 0.362 0.333 0.358 0.333 0.059 0.058
h = 5 0.336 0.304 0.339 0.304 0.337 0.304 0.338 0.304 0.335 0.304

B.2. φ = 0.8 (high persistence in xH)
p = 1 p = 2 p = 3 p = 4 p = 5

Max Wald Max Wald Max Wald Max Wald Max Wald
h = 1 0.916 0.915 0.759 0.760 0.573 0.569 0.403 0.400 0.278 0.277
h = 2 0.895 0.856 0.895 0.856 0.725 0.663 0.531 0.465 0.369 0.313
h = 3 0.878 0.808 0.884 0.808 0.880 0.808 0.697 0.597 0.502 0.404
h = 4 0.862 0.767 0.872 0.767 0.873 0.767 0.863 0.767 0.673 0.548
h = 5 0.847 0.731 0.859 0.731 0.861 0.731 0.859 0.731 0.847 0.731
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Table 3.2: Local Asymptotic Power of Max Tests (High-to-Low Causality)
This table shows the local asymptotic power of the regression-based Granger causality test from xH to xL. We conduct the

mixed frequency test in Panel A, the low frequency test with stock sampling in Panel B, and the low frequency test with

flow sampling in Panel C. All of these tests use the equal weighting scheme. For each panel we consider two cases: Decaying

Causality where νi = 0.8 − 0.1(i − 1) for i = 1, . . . , p, and Lagged Causality where νi = 2 × I(i = p) for i = 1, . . . , p. xH

is assumed to follow AR(1) with coefficient φ ∈ {0.2, 0.8}. The high frequency lag length in the DGP is p ∈ {1, . . . , 5}.
The number of mixed frequency models combined is h ∈ {1, . . . , 5}, while the number of low frequency models combined

is h ∈ {1, . . . , 3}. Other quantities are as follows: m = 12, σ2
L = 1, α = 0.05, R1 = R2 = 100, 000.

Panel A. Mixed Frequency Test

A.1. Decaying Causality
A.1.1. φ = 0.2 A.1.2. φ = 0.8

p = 1 p = 2 p = 3 p = 4 p = 5 p = 1 p = 2 p = 3 p = 4 p = 5
h = 1 0.131 0.163 0.169 0.170 0.170 0.268 0.624 0.829 0.916 0.950
h = 2 0.106 0.180 0.201 0.205 0.205 0.245 0.642 0.867 0.946 0.974
h = 3 0.093 0.151 0.197 0.209 0.211 0.226 0.617 0.871 0.956 0.983
h = 4 0.086 0.135 0.175 0.202 0.209 0.212 0.595 0.858 0.955 0.983
h = 5 0.081 0.125 0.162 0.187 0.202 0.199 0.574 0.845 0.949 0.982

A.2. Lagged Causality
A.2.1 φ = 0.2 A.2.2. φ = 0.8

p = 1 p = 2 p = 3 p = 4 p = 5 p = 1 p = 2 p = 3 p = 4 p = 5
h = 1 0.537 0.071 0.052 0.052 0.052 0.916 0.759 0.573 0.403 0.278
h = 2 0.443 0.443 0.064 0.052 0.051 0.895 0.895 0.725 0.531 0.369
h = 3 0.390 0.395 0.394 0.060 0.051 0.878 0.884 0.880 0.697 0.502
h = 4 0.359 0.361 0.362 0.358 0.059 0.862 0.872 0.873 0.863 0.673
h = 5 0.336 0.339 0.337 0.338 0.335 0.847 0.859 0.861 0.859 0.847

Panel B. Low Frequency Test (Stock Sampling)

B.1. Decaying Causality
B.1.1. φ = 0.2 B.1.2. φ = 0.8

p = 1 p = 2 p = 3 p = 4 p = 5 p = 1 p = 2 p = 3 p = 4 p = 5
h = 1 0.128 0.160 0.166 0.167 0.167 0.265 0.618 0.824 0.913 0.949
h = 2 0.101 0.122 0.127 0.127 0.127 0.203 0.526 0.754 0.866 0.916
h = 3 0.090 0.108 0.112 0.112 0.112 0.174 0.471 0.707 0.833 0.893

B.2 Lagged Causality
B.2.1. φ = 0.2 B.2.2. φ = 0.8

p = 1 p = 2 p = 3 p = 4 p = 5 p = 1 p = 2 p = 3 p = 4 p = 5
h = 1 0.530 0.069 0.050 0.050 0.050 0.913 0.757 0.566 0.399 0.276
h = 2 0.436 0.062 0.050 0.049 0.049 0.865 0.674 0.477 0.325 0.230
h = 3 0.385 0.060 0.050 0.049 0.049 0.832 0.624 0.423 0.279 0.195

Panel C. Low Frequency Test (Flow Sampling)

C.1. Decaying Causality
C.1.1. φ = 0.2 C.1.2. φ = 0.8

p = 1 p = 2 p = 3 p = 4 p = 5 p = 1 p = 2 p = 3 p = 4 p = 5
h = 1 0.056 0.077 0.109 0.145 0.180 0.113 0.316 0.587 0.798 0.912
h = 2 0.054 0.067 0.088 0.112 0.137 0.091 0.245 0.493 0.722 0.864
h = 3 0.053 0.064 0.080 0.100 0.120 0.082 0.209 0.439 0.673 0.830

C.2. Lagged Causality
C.2.1. φ = 0.2 C.2.2. φ = 0.8

p = 1 p = 2 p = 3 p = 4 p = 5 p = 1 p = 2 p = 3 p = 4 p = 5
h = 1 0.093 0.109 0.112 0.113 0.113 0.452 0.564 0.645 0.699 0.731
h = 2 0.078 0.088 0.090 0.090 0.090 0.364 0.471 0.554 0.610 0.646
h = 3 0.071 0.080 0.081 0.082 0.082 0.317 0.418 0.499 0.556 0.593
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Table 3.3: Rejection Frequencies of Max Test and Wald Test (High-to-Low Causality)
This table shows the rejection frequencies of the mixed frequency max test and the Wald test based on the näıve regression

model. The max test uses the equal weighting scheme, and the test statistic is computed based on 1,000 draws from

the asymptotic null distribution. When we implement the Wald test, the parametric bootstrap with 499 replications is

employed. Panel A focuses on m = 3, which can be thought of as a month vs. quarter case. Panel B focuses on m = 12,

which can be thought of as a week vs. quarter case approximately. The sample size TL is 40, 80, or 120 quarters. For each

panel we consider three cases: Non-causality, Decaying Causality, and Lagged Causality. xH is assumed to follow AR(1)

with coefficient φ ∈ {0.2, 0.8}. The number of high frequency lags included in our models is h ∈ {4, 8, 12}. The number of

Monte Carlo replications is 10,000 for the max test and 2,000 for the bootstrapped Wald test. The nominal size is 5%.

Panel A. m = 3 (month vs. quarter)

A.1. Non-causality (b = 012×1)
A.1.1. φ = 0.2 A.1.2. φ = 0.8

TL = 40 TL = 80 TL = 120 TL = 40 TL = 80 TL = 120
Max Wald Max Wald Max Wald Max Wald Max Wald Max Wald

h = 4 0.063 0.041 0.061 0.045 0.066 0.046 0.125 0.043 0.070 0.043 0.056 0.048
h = 8 0.079 0.047 0.061 0.043 0.062 0.045 0.183 0.044 0.108 0.043 0.063 0.042
h = 12 0.096 0.042 0.064 0.050 0.058 0.046 0.243 0.044 0.125 0.053 0.076 0.045

A.2. Decaying Causality (bj = 0.1/j, j = 1, . . . , 12)
A.2.1. φ = 0.2 A.2.2. φ = 0.8

TL = 40 TL = 80 TL = 120 TL = 40 TL = 80 TL = 120
Max Wald Max Wald Max Wald Max Wald Max Wald Max Wald

h = 4 0.106 0.072 0.142 0.123 0.208 0.168 0.559 0.296 0.810 0.638 0.933 0.856
h = 8 0.106 0.056 0.120 0.086 0.162 0.129 0.563 0.198 0.820 0.517 0.920 0.762
h = 12 0.114 0.055 0.118 0.082 0.132 0.103 0.585 0.147 0.787 0.415 0.913 0.675

A.3. Lagged Causality (bj = 0.25 × I(j = 12), j = 1, . . . , 12)
A.3.1. φ = 0.2 A.3.2. φ = 0.8

TL = 40 TL = 80 TL = 120 TL = 40 TL = 80 TL = 120
Max Wald Max Wald Max Wald Max Wald Max Wald Max Wald

h = 4 0.061 0.041 0.060 0.048 0.064 0.043 0.133 0.049 0.093 0.057 0.088 0.064
h = 8 0.075 0.034 0.062 0.042 0.063 0.048 0.226 0.055 0.227 0.093 0.228 0.141
h = 12 0.177 0.088 0.300 0.193 0.462 0.331 0.577 0.178 0.824 0.520 0.951 0.784

Panel B. m = 12 (week vs. quarter, approximately)

B.1. Non-causality (b = 012×1)
B.1.1. φ = 0.2 B.1.2. φ = 0.8

TL = 40 TL = 80 TL = 120 TL = 40 TL = 80 TL = 120
Max Wald Max Wald Max Wald Max Wald Max Wald Max Wald

h = 4 0.074 0.049 0.074 0.052 0.061 0.041 0.080 0.056 0.048 0.050 0.055 0.044
h = 8 0.076 0.053 0.077 0.044 0.058 0.050 0.082 0.050 0.062 0.046 0.049 0.051
h = 12 0.071 0.045 0.071 0.046 0.055 0.043 0.075 0.049 0.050 0.049 0.051 0.041

B.2. Decaying Causality (bj = 0.1/j, j = 1, . . . , 12)
B.2.1. φ = 0.2 B.2.2. φ = 0.8

TL = 40 TL = 80 TL = 120 TL = 40 TL = 80 TL = 120
Max Wald Max Wald Max Wald Max Wald Max Wald Max Wald

h = 4 0.112 0.080 0.171 0.124 0.195 0.173 0.598 0.358 0.842 0.704 0.958 0.887
h = 8 0.102 0.069 0.143 0.099 0.153 0.140 0.556 0.271 0.854 0.605 0.949 0.818
h = 12 0.089 0.062 0.119 0.084 0.129 0.112 0.468 0.194 0.800 0.501 0.934 0.743

B.3. Lagged Causality (bj = 0.25 × I(j = 12), j = 1, . . . , 12)
B.3.1. φ = 0.2 B.3.2. φ = 0.8

TL = 40 TL = 80 TL = 120 TL = 40 TL = 80 TL = 120
Max Wald Max Wald Max Wald Max Wald Max Wald Max Wald

h = 4 0.075 0.052 0.076 0.049 0.057 0.041 0.095 0.061 0.076 0.067 0.094 0.068
h = 8 0.078 0.045 0.079 0.048 0.058 0.054 0.143 0.071 0.207 0.119 0.242 0.173
h = 12 0.144 0.091 0.321 0.220 0.474 0.350 0.453 0.217 0.825 0.570 0.959 0.815
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Table 3.4: Rejection Frequencies of Max Test for Low-to-High Causality
This table shows the rejection frequencies of the max tests for low-to-high Granger causality. Panel A assumes Non-

causality, Panel B assumes Decaying Causality, and Panel C assumes Lagged Causality. For each panel we have the

mixed frequency case, low frequency case with stock sampling, and low frequency case with flow sampling. For the mixed

frequency case we combine h ∈ {4, 8, 12} parsimonious regression models, and the number of high frequency lags of xH is

taken from p ∈ {4, 8, 12}. For the low frequency case we combine h ∈ {1, 2, 3} parsimonious regression models, and the

number of low frequency lags of xH is taken from p ∈ {1, 2, 3}. All max tests use the equal weighting scheme, and the test

statistic is computed based on 1,000 draws from the asymptotic null distribution. We fix m = 12, which can be thought

of as a week vs. quarter case approximately. The sample size TL is 40, 80, or 120 quarters. There is decaying Granger

causality from xH to xL in the sense that xL(τL) depends on
P12

j=1(0.2/j)xH(τL − 1, m + 1 − j). The high frequency

AR(1) coefficient of xH is 0.2, and the low frequency AR(1) coefficient of xL is also 0.2. The number of Monte Carlo

replications is 5,000. The nominal size is 5%.

Panel A. Non-causality (c = 012×1)

Panel A.1. Mixed Frequency
TL = 40 TL = 80 TL = 120

p = 4 p = 8 p = 12 p = 4 p = 8 p = 12 p = 4 p = 8 p = 12
h = 4 0.071 0.100 0.154 0.062 0.069 0.080 0.050 0.064 0.067
h = 8 0.070 0.106 0.163 0.051 0.068 0.093 0.051 0.058 0.073
h = 12 0.071 0.105 0.176 0.053 0.069 0.091 0.051 0.062 0.077

Panel A.2. Low Frequency (Stock Sampling)
TL = 40 TL = 80 TL = 120

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
h = 1 0.056 0.063 0.067 0.057 0.051 0.058 0.049 0.056 0.054
h = 2 0.054 0.056 0.061 0.054 0.056 0.054 0.051 0.047 0.051
h = 3 0.048 0.054 0.057 0.052 0.049 0.057 0.056 0.055 0.048

Panel A.3. Low Frequency (Flow Sampling)
TL = 40 TL = 80 TL = 120

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
h = 1 0.055 0.056 0.060 0.055 0.058 0.061 0.048 0.055 0.052
h = 2 0.051 0.051 0.060 0.049 0.048 0.054 0.049 0.055 0.056
h = 3 0.045 0.051 0.058 0.051 0.057 0.056 0.059 0.050 0.048
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Table 3.4: Rejection Frequencies of Max Test for Low-to-High Causality (Continued)

Panel B. Decaying Causality (cj = 0.3/j, j = 1, . . . , 12)

Panel B.1. Mixed Frequency
TL = 40 TL = 80 TL = 120

p = 4 p = 8 p = 12 p = 4 p = 8 p = 12 p = 4 p = 8 p = 12
h = 4 0.305 0.350 0.375 0.627 0.621 0.629 0.827 0.816 0.816
h = 8 0.224 0.270 0.342 0.503 0.520 0.538 0.735 0.740 0.744
h = 12 0.182 0.230 0.313 0.436 0.446 0.472 0.676 0.681 0.690

Panel B.2. Low Frequency (Stock Sampling)
TL = 40 TL = 80 TL = 120

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
h = 1 0.057 0.067 0.065 0.059 0.062 0.055 0.068 0.071 0.071
h = 2 0.050 0.061 0.065 0.051 0.055 0.058 0.060 0.062 0.062
h = 3 0.055 0.057 0.061 0.054 0.061 0.061 0.052 0.054 0.056

Panel B.3. Low Frequency (Flow Sampling)
TL = 40 TL = 80 TL = 120

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
h = 1 0.370 0.376 0.379 0.663 0.666 0.663 0.843 0.834 0.836
h = 2 0.290 0.288 0.285 0.564 0.548 0.563 0.766 0.764 0.762
h = 3 0.240 0.231 0.244 0.496 0.494 0.511 0.715 0.712 0.706

Panel C. Lagged Causality (cj = 0.4 × I(j = 12) , j = 1, . . . , 12)

Panel C.1. Mixed Frequency
TL = 40 TL = 80 TL = 120

p = 4 p = 8 p = 12 p = 4 p = 8 p = 12 p = 4 p = 8 p = 12
h = 4 0.065 0.099 0.142 0.055 0.072 0.083 0.055 0.069 0.074
h = 8 0.068 0.107 0.156 0.054 0.073 0.092 0.052 0.069 0.078
h = 12 0.209 0.234 0.294 0.582 0.587 0.593 0.844 0.833 0.836

Panel C.2. Low Frequency (Stock Sampling)
TL = 40 TL = 80 TL = 120

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
h = 1 0.633 0.639 0.629 0.920 0.914 0.913 0.987 0.985 0.983
h = 2 0.542 0.527 0.512 0.879 0.872 0.867 0.977 0.973 0.972
h = 3 0.457 0.443 0.444 0.833 0.829 0.822 0.959 0.960 0.959

Panel C.3. Low Frequency (Flow Sampling)
TL = 40 TL = 80 TL = 120

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
h = 1 0.087 0.096 0.102 0.133 0.126 0.134 0.184 0.189 0.177
h = 2 0.075 0.086 0.088 0.115 0.112 0.114 0.146 0.148 0.156
h = 3 0.072 0.070 0.076 0.094 0.096 0.098 0.121 0.128 0.129
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Table 3.5: Sample Statistics of U.S. Interest Rates and Real GDP Growth
Sample statistics of weekly 10-year Treasury constant maturity rate, weekly 1-year Treasury constant maturity rate, their

spread, and the quarterly real GDP growth from previous year. All these series are in terms of percentage. The sample

period covers January 5, 1962 through December 31, 2013, which has 2,736 weeks or 208 quarters.

mean median std. dev. skewness kurtosis
10-Year 6.555 6.210 2.734 0.781 3.488
1-Year 5.555 5.450 3.278 0.599 3.733
Spread 0.999 0.920 1.176 -0.120 2.750
GDP 3.151 3.250 2.349 -0.461 3.543
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Note: This figure plots weekly 10-year Treasury constant maturity rate, weekly 1-year Treasury constant maturity

rate, their spread, and the quarterly real GDP growth from previous year. The sample period covers January 5,

1962 through December 31, 2013, which has 2,736 weeks or 208 quarters. The shaded areas represent recession

periods defined by the National Bureau of Economic Research (NBER).

Figure 3.1: Time Series Plot of U.S. Interest Rates and Real GDP Growth
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(a) 10-Year Subsamples

(b) 20-Year Subsamples

Note: This figure plots asymptotic p-values with respect to the null hypothesis of high-to-low non-causality (i.e.

non-causality from yield spread to GDP). Panel (a) is for the 10-year rolling window, while Panel (b) is for the

20-year rolling window. ”MF” means a mixed frequency approach which works on weekly spread and quarterly

GDP, while ”LF” means a low frequency approach which works on quarterly spread and quarterly GDP. The

shaded area represents the 5% level.

Figure 3.2: Asymptotic p-values for High-to-Low Non-Causality
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APPENDIX A

TECHNICAL APPENDICES FOR CHAPTER 2

A.1 Asymptotic Properties of MF-VAR Parameter Estimators

In this section we derive the asymptotic distribution of the MF-VAR parameter estimators

leading to the proofs of Theorems 2.2.1 and 2.2.2. We additionally present a simple consistent

almost surely positive semi-definite estimator of the least squares asymptotic variance that we

use in the simulation study and empirical application.

A.1.1 Least Squares Estimator and Asymptotic Variance

In this subsection we present the compact model that leads to the least squares estimator B̂(h)

of the parameter set B(h) appearing in equation (2.2.6). We then characterize the matrix com-

ponents that enter into the least squares asymptotic covariance Σp(h) = (IK⊗Γ−1
p,0)Dp(h)(IK⊗

Γ−1
p,0)

′ appearing in the proof of Theorem 2.2.1 below. We save notation by writing Σp instead

of Σp(h) throughout the appendix. We then explicitly derive the covariance matrices Γp,0 and

Dp(h). Finally, we present a simple consistent HAC estimator of Σp that satisfies the require-

ments of Theorem 2.2.2. The proofs of Theorems 2.2.1 and 2.2.2 are presented in Appendix

A.1.2 where we explicitly verify the form of Σp.

Least Squares Estimator

We require a more compact notation in order to derive the least squares estimator B̂(h). Define

W h(k) = [X(h), X(1 + h), . . . , X(TL − k + h)]′ ∈ R(TL−k+1)×K

W (τL, p) =
[
X(τL)′, X(τL − 1)′, . . . , X(τL − p + 1)′

]′ ∈ RpK×1

W p(h) = [W (0, p), W (1, p), . . . , W (TL − h, p)]′ ∈ R(TL−h+1)×pK ,

(A.1.1)

and define the error

u(h)(τL) =
h−1∑
k=0

Ψkε(τL − k) (A.1.2)



stacked as follows:

U l(k) =
[
u(h)(l), u(h)(1 + l), . . . , u(h)(TL − k + l)

]′
∈ R(TL−k+1)×K . (A.1.3)

Then the (p, h)-autoregression appearing in (2.2.5) has the equivalent representation

W h(h) = W p(h)B(h) + Uh(h). (A.1.4)

The estimator B̂(h) = [W p(h)′W p(h)]−1W p(h)′W h(h) then follows.

Asymptotic Variance Components: Covariance Matrices

We now derive the components Γp,0 and Dp(h) of the asymptotic variance Σp. First, let Γp,0

denote the variance matrices for W (τL, p) in (A.1.1):

Γp,0 ≡ E
[
W (τL, p)W (τL, p)′

]
.

By Assumptions 2.2.1-2.2.2 it is easily verified that Γp,0 is positive definite. Second, by a

standard first order expansion we require the long-run variance of a vectorized W (τL, p)u(τL +

h)′, denoted

Y (τL+h, p) ≡ vec
[
W (τL, p)u(h)(τL + h)′

]
= (IK ⊗ W (τL, p))u(h)(τL+h) ∈ RpK2×1. (A.1.5)

Under Assumption 2.2.1 ε(τL) is a stationary mds with respect to FτL , where

E
[
ε(τL)ε(τL)′

]
≡ Ω is positive definite.

Trivially, therefore, ε(τL) has a continuous, bounded and positive spectral density. Hence

by stationarity Assumption 2.2.2, X(τL) has a continuous, bounded and everywhere positive

spectral density. Therefore {Y (τL +h, p)}τL is a zero mean L2-bounded stationary process with

continuous, everywhere positive spectrum, and therefore auto-covariances

∆p,s(h) ≡ E
[
Y (τL + h + s, p)Y (τL + h, p)′

]
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that satisfy

∆p,0(h) is positive definite ∀h ≥ 0

∆p,s(h) = 0pK2×pK2 ∀s ≥ h.

Analytical characterizations of Γp,0 and ∆p,s(h), and a proof that ∆p,s(h) = 0pK2×pK2 ∀s ≥ h

are presented below. The partial sum variance of Y (τL + h, p) is therefore:

Dp,T ∗
L
(h) ≡ Var

 1√
T ∗

L

T ∗
L−1∑

τL=0

Y (τL + h, p)

 (A.1.6)

= ∆p,0(h) +
h−1∑
s=1

[
1 − s

T ∗
L

]
×

[
∆p,s(h) + ∆p,s(h)′

]

= ∆p,0(1) if h = 1,

where T ∗
L = TL − h + 1. We define Dp(h) as the long-run variance of Y (τL + h, p):

Dp(h) ≡ lim
T ∗

L→∞
Dp,T ∗

L
(h) = ∆p,0(h) +

h−1∑
s=1

[
∆p,s(h) + ∆p,s(h)′

]
= ∆p,0(1) if h = 1. (A.1.7)

Observe that Dp,T ∗
L
(h) for T ∗

L sufficiently large is positive definite, hence Dp(h) is positive

definite. Simply note that by stationarity and spectral density positiveness for X(τL), it follows

a′Y (τL+h, p)a is for any conformable a 6= 0, a′a = 1, stationary and has a continuous, bounded

everywhere positive spectral density fa(λ). Therefore a′Dp,T ∗
L
(h)a = 2πfa(0) + o(1) > 0 for

T ∗
L sufficiently large (see eq. (1.7) in Ibragimov (1962)).

We now explicitly characterize the covariance matrices Γp,0 ≡ E[W (τL, p)W (τL, p)′] and

∆p,s(h) ≡ E[Y (τL + h + s, p)Y (τL + h, p)′]. Denote the auto-covariances of X(τL) as

Υs = [υij,s]
K
i,j=1 ≡ E

[
X(τL + s)X(τL)′

]
=


∑∞

k=0 Ψs+kΩΨ′
k if s ≥ 0

Υ′
−s if s < 0,

(A.1.8)

97



where Ψk is defined by the moving average representation (2.2.4). In view of |Ψk| = O(ρh) for

ρ ∈ (0, 1), and ||H(τL)||2+δ ∈ (0,∞), it follows ||Ω|| < ∞ and therefore
∑∞

s=−∞ |υij,s| < ∞ for

any i, j. The process {W (τL, p)}τL defined by (A.1.1) therefore has auto-covariances

Γp,s ≡ E
[
W (τL + s, p)W (τL, p)′

]
=



Υs Υs+1 · · · Υs+p−1

Υs−1 Υs · · · Υs+p−2

...
...

. . .
...

Υs−p+1 Υs−p+2 · · · Υs


. (A.1.9)

Further, u(h)(τL) has auto-covariances

Qs(h) ≡ E
[
u(h)(τL + s)u(h)(τL)′

]
=



∑h−s−1
k=0 Ψs+kΩΨ′

k if 0 ≤ s < h

Q−s(h)′ if −h < s < 0

0K×K if |s| ≥ h.

(A.1.10)

Using (A.1.10) and Y (τL + h, p) ≡ (IK ⊗ W (τL, p))u(h)(τL + h), the auto-covariances

∆p,s(h) of Y (τL + h, p) can now be fully characterized:

∆p,s(h) ≡ E[Y (τL + h + s, p)Y (τL + h, p)′] =


Q0(h) ⊗ Γp,0 if s = 0

∆p,−s(h)′ if −h < s < 0

0pK2×pK2 if |s| ≥ h.

(A.1.11)

Note that Y (τL + h, p) is serially uncorrelated at lag |s| ≥ h, although in general we cannot

say Y (τL + h, p) is h − 1 dependent. Evidently a convenient expression for ∆p,s(h) does not

exist when s ∈ {1, . . . , h − 1}.

We now prove ∆p,s(h) = 0pK2×pK2 for |s| ≥ h. Assume without loss of generality that

s ≥ h. Equation (A.1.5) and the definition of ∆p,s(h) imply that

∆p,s(h) = E
[
(IK ⊗ W (τL + s, p))u(h)(τL + s + h)u(h)(τL + h)′ (IK ⊗ W (τL, p)′)

]
. (A.1.12)

Let I(τL + s) = σ{ε(τ)|τ ≤ τL + s}. Note that W (τL, p), W (τL + s, p), and u(h)(τL +h) are all
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known at period τL+s, while u(h)(τL + s + h) depends only on {ε(τL+s+1), . . . , ε(τL+s+h)}

and therefore E[u(h)(τL + s + h)|I(τL + s)] =
∑h−1

k=0 ΨkE[ε(τL + s + h − k)|I(τL + s)] = 0 by

the mds Assumption 2.2.1. We can thus get the desired result by applying the law of iterated

expectations to (A.1.12). Similarly, ∆p,0(h) = Q0(h) ⊗ Γp,0 can be shown by applying the law

of iterated expectations given I(τL) to (A.1.12).

Example 5 (h = 1): It is useful to derive the least squares asymptotic variance Σp = (IK ⊗

Γ−1
p,0)Dp(h)(IK ⊗ Γ−1

p,0)
′ for the case h = 1. Use (A.1.8) and (A.1.9) to deduce Γp,0 = Υ0 =∑∞

k=0 ΨkΩΨ′
k. Next, use (A.1.7) and (A.1.11) to deduce Dp(1) = ∆p,0(1) = Q0(1)⊗Γp,0, hence

by (A.1.9) and (A.1.10) it follows Dp(1) = Ω⊗ Γp,0 = Ω⊗
∑∞

k=0 ΨkΩΨ′
k. Kronecker product

properties therefore imply Σp is identically Ω ⊗ Γ−1
p,0 = Ω ⊗ Υ−1

0 = Ω ⊗ (
∑∞

k=0 ΨkΩΨ′
k)

−1.

Consistent and Almost Surely Positive Semi-Definite HAC Estimator

We need only estimate the components of Σp = (IK ⊗ Γ−1
p,0)Dp(h)(IK ⊗ Γ−1

p,0)
′. A natural

estimator of Γp,0 is the sample conjugate:

Γ̂p,0 =
1
T ∗

L

T ∗
L−1∑

τL=0

W (τL, p)W (τL, p)′.

Under Assumptions 2.2.1-2.2.2 Γ̂p,0 is almost surely positive definite.

Turning to the long-run variance Dp(h), denote the least squares residual Ûh(h) ≡ W h(h) −

W p(h)B̂(h) for model (A.1.4) and the resulting residual û(h)(τL) ≡ X(τL) −
∑p

k=1 Â
(h)
k X(τL

− h + 1 − k) computed from (A.1.3). Now compute the sample version of Y (τL +h, p) defined

in (A.1.5),

Ŷ (τL + h, p) = vec
[
W (τL, p)û(h)(τL + h)′

]
,

and compute

∆̂p,s(h) =
1
T ∗

L

T ∗
L−1∑

τL=s

Ŷ (τL + h, p)Ŷ (τL + h − s, p)′.

If h = 1 then from (A.1.6) the estimator of Dp(h) need only be D̂p,T ∗
L
(1) = ∆̂p,0(1). Otherwise,

a näıve estimator of Dp(h) simply substitutes ∆̂p,s(h) for ∆p,s(h) in the right-hand side of

(A.1.6), but it is well-known that such an estimator may not be positive semi-definite unless
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h = 1.

We therefore exploit Newey and West’s (1987) Bartlett kernel-based HAC estimator which

ensures almost sure positive semi-definiteness for any T ∗
L ≥ 1 (see Newey and West (1987) and

Andrews (1991)):1

D̂p,T ∗
L
(h) = ∆̂p,0(h) +

nT∗
L
−1∑

s=1

(
1 − s

nT ∗
L

)
(∆̂p,s(h) + ∆̂p,s(h)′) (A.1.13)

with bandwidth nT ∗
L
: h ≤ nT ∗

L
≤ T ∗

L, nT ∗
L
→ ∞ and nT ∗

L
= o(T ∗

L). Intuitively since Y (τL, p) is

serially uncorrelated for all lags above h − 1, and ∆̂p,s(h) = 1/T ∗
L

∑T ∗
L−1

τL=s Y (τL + h, p)Y (τL

+ h − s, p)′ + op(1) is easily verified, we only need h − 1 lags, that is ∆̂p,0(h) +
∑h−1

s=1 (1 −

s/nT ∗
L
)(∆̂p,s(h) + ∆̂p,s(h)′) is a valid estimator in place of (A.1.13). But this estimator also

need not be positive semi-definite in small samples.

Our proposed estimator of Σp is therefore

Σ̂p =
(
IK ⊗ Γ̂

−1
p,0

)
× D̂p,T ∗

L
(h) ×

(
IK ⊗ Γ̂

−1
p,0

)
. (A.1.14)

Almost sure positive definiteness of Γ̂p,0 and positive semi-definiteness of D̂p,T ∗
L
(h) imply Σ̂p

is almost surely positive semi-definite. Consistency can be shown given stronger moment and

mixing conditions.

Assumption A.1.1. For some δ > 0 let ||ε(τL)||4+δ < ∞ and the mixing coefficients αh of

X(τL) satisfy αh = O(h−(4+δ)\δ).

Lemma A.1.1. Under Assumptions 2.2.1-2.2.2 and A.1.1 Σ̂p is almost surely positive semi-

definite for any T ∗
L ≥ 1, and Σ̂p

p→ Σp where Σp is positive definite.

Proof. Almost sure positive semi-definiteness of Σ̂p follows from almost sure positive

definiteness of Γ̂p,0 under Assumptions 2.2.1 - 2.2.2, and almost sure positive semi-definiteness

of D̂p,T ∗
L
(h) by Theorem 1 in Newey and West (1987). Further Γ̂p,0

p→ Γp,0 by the ergodic

theorem given stationarity, ergodicity, and square integrability under Assumptions 2.2.1-2.2.3.

1There is a large choice of valid kernels, including Parzen and Tukey-Hanning. See de Jong and Davidson
(2000).
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Since Σp = (IK ⊗Γ−1
p,0) × Dp(h) × (IK ⊗Γ−1

p,0) it therefore suffices to show D̂p,T ∗
L
(h)

p→ Dp(h).

The latter follows from Theorem 2.2 in de Jong and Davidson (2000) [JD] if we verify their

Assumptions 1-4.

First, the Bartlett kernel satisfies JD’s Assumption 1. Second, JD’s Assumptions 2 and 3

hold since nT ∗
L
→ ∞ as T ∗

L → ∞, nT ∗
L

= o(T ∗
L), and by Assumptions 2.2.1-2.2.3 and A.1.1 and

given measurability, {1/
√

T ∗
LY (τL +h, p) : 1 ≤ τL ≤ T ∗

L}T ∗
L≥1 forms an L2+δ-bounded α-mixing

triangular array with coefficients αh = O(h(4+δ)\δ).2

Finally, in order to verify JD’s Assumption 4, define the regression error function u(h)(τL,

B̃) ≡ X(τL) −
∑p

k=1 ÃkX(τL − h + 1 − k) for any conformable Ãk where B̃ ≡ [Ã1, . . . ,

Ãp]′, and Y (τL + h, p, B̃) = (IK ⊗ W (τL, p))u(h)(τL + h, B̃). Now define Z(τL + h, p, B̃) ≡

Y (τL + h, p, B̃)/
√

T ∗
L and note Ŷ (τL + h, p) = Y (τL + h, p, B̂(h)). In order to match JD’s

standardization, we work with Z(τL + h, p, B̃). Assumption 4 consists of three parts, (a)-(c),

with a scale factor κn that is simply IpK2 in our case. Part (a) applies since B̂(h) is
√

T ∗
L-

convergent by Theorem 2.2.1. Next, (b) applies since under our assumptions and by model

linearity 1/
√

T ∗
L

∑T ∗
L−1

τL=0 E[(∂/∂B̃)Z(τL + h, p, B̃)] is trivially continuous at B(h) uniformly in

T ∗
L. Finally, (c) involves a uniform LLN for DZ(τL + h, p, B̃) ≡ (∂/∂B̃)Z(τL + h, p, B̃). The

latter is not a function of B̃ in view of linearity (i.e. DZ(τL + h, p, B̃) = DZ(τL + h, p)),

hence a uniform LLN reduces to a pointwise LLN which holds by the ergodic theorem given

stationarity, ergodicity, and integrability of DZ(τL + h, p) which follows from stationarity and

square integrability of ε(τL). QED.

A.1.2 Proof of Theorems 2.2.1 and 2.2.2

Recall Dp,T ∗
L
(h) ≡ Var[1/

√
T ∗

L

∑T ∗
L−1

τL=0 Y (τL + h, p)] in (A.1.6) and Dp(h) ≡ limT ∗
L→∞ Dp,T ∗

L
(h).

The proof of Theorem 2.2.1 exploits the following central limit theorem.

Lemma A.1.2. Under Assumptions 2.2.1-2.2.3 1/
√

T ∗
L

∑T ∗
L−1

τL=0 Y (τL + h, p) d→ N(0pK2×1, Dp

(h)) where Dp(h) is positive definite.

Proof. By the Cramér-Wold theorem it is necessary and sufficient to show 1/
√

T ∗
L

∑T ∗
L−1

τL=0

2 See Chapter 17 in Davidson (1994) for verification that geometric strong mixing satisfies the Near Epoch
Dependence property in de Jong and Davidson’s (2000) Assumption 2.
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a′Y (τL + h, p) d→ N(0, a′Dp(h)a) for any conformable a, a′a = 1. By construction, measura-

bility and Assumptions 2.2.1-2.2.3 it follows {a′Y (τL + h, p)}τL is a zero mean, L2+δ-bounded

α-mixing process with coefficients that satisfy
∑∞

h=0 α2h < ∞. Further, by the discussion follow-

ing (A.1.7) both Dp,T ∗
L
(h) for sufficiently large T ∗

L and Dp(h) ≡ limT ∗
L→∞ Dp,T ∗

L
(h) are positive

definite. Therefore 1/
√

T ∗
L

∑T ∗
L−1

τL=0 a′Y (τL + h, p)/(a′Dp,T ∗
L
(h)a) d→ N(0, 1) by Theorem 2.2 in

Ibragimov (1975). Since a′Dp,T ∗
L
(h)a → a′Dp(h)a > 0 the claim now follows from Cramér’s

Theorem. QED.

We now prove Theorems 2.2.1 and 2.2.2. By the construction of B̂(h), Γ̂p,0 and Y (τL +h, p)

it follows

√
T ∗

Lvec
[
B̂(h) − B(h)

]
=

√
T ∗

Lvec
[(

W p(h)′W p(h)
)−1

W p(h)′Uh(h)
]

=

[
IK ⊗

(
1
T ∗

L

W p(h)′W p(h)
)−1

]
× vec

[
1√
T ∗

L

W p(h)′Uh(h)

]

=
[
IK ⊗ Γ̂

−1
p,0

]
× 1√

T ∗
L

T ∗
L−1∑

τL=0

Y (τL + h, p).

Note that Γ̂p,0 = 1/T ∗
L

∑T ∗
L−1

τL=0 W (τL, p)W (τL, p)′
p→ E[W (τL, p)W (τL, p)′] = Γp,0 in view of sta-

tionarity, ergodicity and square integrability of W (τL, p). Further, Dp,T ∗
L
(h) = Var[1/

√
T ∗

L

∑T ∗
L−1

τL=0

Y (τL + h, p)] → Dp(h). Now use

Σp ≡ (IK ⊗ Γ−1
p,0) × Dp(h) × (IK ⊗ Γ−1

p,0)
′,

combined with Lemma A.1.2, and Slutsky’s and Cramér’s Theorems to deduce
√

T ∗
Lvec[B̂(h)−B(h)]

d→ N(0pK2×1,Σp). Finally, Σp is positive definite given the positive definiteness of Γp,0 and

Dp(h) as discussed in Appendix A.1.1. This proves Theorem 2.2.1.

The proof of Theorem 2.2.2 follows instantly from Theorem 2.2.1, the assumption Σ̂p
p→

Σp, and the mapping theorem.
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A.2 Proof of Theorem 2.4.1

In view of Theorem 1 in Lütkepohl (1984) it suffices to show that X(τL) and X(τL) are linear

transformations of a VAR process. Lütkepohl (1984) defines a VAR process as having a vector

white noise error term, hence any subsequent VAR process need only have a second order

stationary and serially uncorrelated error. Define mK∗ × 1 vectors:

X(τL) = [X(τL, 1)′, . . . , X(τL,m)′]′ and η(τL) = [η(τL, 1)′, . . . , η(τL,m)′]′.

We first show that {X(τL)} follows a VAR(s) process with s = dp/me, the smallest integer not

smaller than p/m. We then prove the claim.

The HF-VAR(p) process in (2.4.1) satisfies:

NX(τL) =
s∑

k=1

MkX(τL − k) + η(τL), (A.2.1)

where

N =

2

6

6

6

6

6

6

6

6

4

IK∗ 0K∗×K∗ . . . 0K∗×K∗

−Φ1 IK∗
. . .

...

...
. . .

. . . 0K∗×K∗

−Φm−1 . . . −Φ1 IK∗

3

7

7

7

7

7

7

7

7

5

and Mk =

2

6

6

6

6

6

6

6

4

Φkm Φkm−1 . . . Φ(k−1)m+1

Φkm+1 Φkm . . . Φ(k−1)m+2

...
...

. . .
...

Φ(k+1)m−1 Φ(k+1)m−2 . . . Φkm

3

7

7

7

7

7

7

7

5

for k = 1, . . . , s. It is understood that Φk = 0K∗×K∗ whenever k > p. We have:

N−1 =



N1 0K∗×K∗ . . . 0K∗×K∗

N2 N1
. . .

...
...

. . . . . . 0K∗×K∗

Nm . . . N2 N1


,

where N1 = IK∗ and Nk =
∑k−1

l=1 Φk−lN l for k = 2, . . . ,m. Using this property, (A.2.1) can

be rewritten as:

A(LL)X(τL) = ε(τL),

where LL is the low frequency lag operator, A(LL) = ImK∗ −
∑s

k=1 AkLk
L, Ak = N−1Mk,
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and ε(τL) = N−1η(τL) is second order stationary and serially uncorrelated by the stationary

martingale difference property of η(τL). Hence, {X(τL)} follows a VAR(s) process.

Now consider X(τL) and X(τL). Recall the generic aggregation schemes (2.2.1) detailed

in Section 2.2 with selection vector w. Define H = [IKH
, 0KH×KL

], L = [0KL×KH
, IKL

],

F H→M = [Im ⊗ H ′, w ⊗ L′]′, and

F M→L =

w′ ⊗ IKH
0KH×KL

0KL×mKH
IKL

 .

Observe that X(τL) and X(τL) are finite order linear transformations of X(τL): X(τL) =

F H→MX(τL) and X(τL) = F H→LX(τL), where F H→L = F M→LF H→M = [w⊗H ′, w⊗L′]′.

Moreover, in view of the transformation being a finite order, if X(τL) is stationary then so are

X(τL) and X(τL).

A.3 Proof of Theorem 2.4.2

We prove only part (ii) since part (i) is similar or even simpler. Recall that the high frequency

reference information set at time t is expressed as I(t) and the mapping between single time

index t and double time indices (τL, k) is that t = m(τL − 1) + k. Also recall our notation that

x̃H(τL) = [x̃H,1(τL)′, . . . , x̃H,KH
(τL)′]′ and x̃H,i(τL) = [xH,i(τL, 1), . . . , xH,i(τL,m)]′. We have

that:

P [x̃H(τL + 1) | I(τL)] = P
[
P [x̃H(τL + 1) | I(mτL)] | I(τL)

]
= P

[
P [x̃H(τL + 1) | I(L)(mτL)] | I(τL)

]
= P

[
P [x̃H(τL + 1) | I(L)(τL)] | I(τL)

]
= P [x̃H(τL + 1) | I(L)(τL)].

The first equality follows from the law of iterated projections for orthogonal projections on a

Hilbert space; the second from the linear aggregation scheme and the assumption that xL 9

xH | I; and the third holds because I(L)(mτL) = I(L)(τL). Hence xL 9 xH | I as claimed.
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A.4 Proof of Theorem 2.4.3

We prove part (i) only since parts (ii)-(iv) are analogous. The following two cases complete

part (i):

Case 1 (low 9 low). Suppose that xL,j1 does not cause xL,j2 up to high frequency horizon

m given I (i.e., xL,j1 9(m) xL,j2 | I). Then, Φ[k]
LL,1(j2, j1) = 0 for any k ∈ {1, . . . ,m} and hence

xL,j1 does not cause xL,j2 at horizon 1 given I (i.e., xL,j1 9 xL,j2 | I) in view of (2.4.4). The

converse does not necessarily hold; a simple counter-example is that KH = 1, KL = 2, m = 2,

(j1, j2) = (1, 2), and

Φ1 =


φHH 0.3 φHL

φLH 0.2 φLL

−0.1 0.1 0.1

 ,

where φHH , φHL, φLH , and φLL are arbitrary coefficients. It is evident that ΦLL,1(2, 1) = 0.1

and Φ[2]
LL,1(2, 1) = 0. The former denies that xL,j1 9(m) xL,j2 | I, while the latter implies that

xL,j1 9 xL,j2 | I.

Suppose now that xL,j1 9 xL,j2 | I. Then, Φ[m]
LL,1(j2, j1) = 0 and hence xL,j1 9 xL,j2 | I in

view of (2.4.9). The converse is also true.

Case 2 (high 9 low). Suppose that xH,i1 9(m) xL,j1 | I. Then, Φ[k]
LH,1(j1, i1) = 0 for any

k ∈ {1, . . . ,m} and hence xH,i1 9 xL,j1 | I. The converse does not necessarily hold.

Suppose now that xH,i1 9 xL,j1 | I. Then, Φ[m]
LH,1(j1, i1) = 0 and hence xH,i1 9 xL,j1 | I.

The converse is also true.
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APPENDIX B

TECHNICAL APPENDICES FOR CHAPTER 3

B.1 Double Time Indices

Throughout this paper we consider a low frequency variable xL and a high frequency variable

xH . The low frequency variable has a single time index xL(τL) for τL ∈ Z as in the usual time

series literature. The high frequency variable, on the other hand, has two time indices xH(τL, j)

for τL ∈ Z and j ∈ {1, . . . ,m}.

When we derive time series properties of xH , it is useful to introduce a notational convention

that allows the second argument of xH to be any integer. For example, it is understood that

xH(τL, 0) = xH(τL−1,m), xH(τL,−1) = xH(τL−1, m−1), and xH(τL, m+1) = xH(τL +1, 1).

In general, we can introduce the following notation without any confusion:

High Frequency Simplification

xH(τL, j) =


xH

(
τL −

⌈
1−j
m

⌉
,m

⌈
1−j
m

⌉
+ j

)
if j ≤ 0,

xH

(
τL +

⌊
j−1
m

⌋
, j − m

⌊
j−1
m

⌋)
if j ≥ m + 1.

(B.1.1)

dxe is the smallest integer not smaller than x, while bxc is the largest integer not larger than x.

We call (B.1.1) the high frequency simplification in the sense that any integer put in the second

argument of xH can be transformed to a natural number between 1 and m by modifying the

first argument appropriately. In fact, we can verify that m
⌈

1−j
m

⌉
+ j ∈ {1, . . . ,m} when j ≤ 0,

and j − m
⌊

j−1
m

⌋
∈ {1, . . . ,m} when j ≥ m + 1.

Since the high frequency simplification allows both arguments of xH to be any integer, we

can verify the following relationship.

Low Frequency Simplification

xH(τL − i, j) = xH(τL, j − im), ∀i, j, τL ∈ Z. (B.1.2)

We call (B.1.2) the low frequency simplification in the sense that any lag or lead i put in the first



argument of xH can be deleted by modifying the second argument appropriately. As a result

the second argument may become non-positive or larger than m, but such a case is covered by

(B.1.1).

B.2 Autocovariance Structures of xL and xH

All asymptotic results shown in this paper are based on the autocovariance structures of xL

and xH as well as the cross-covariance structure between xL and xH . This section derives those

properties, exploiting the notational convention given in Appendix B.1. Section B.2.1 has some

basic results based on the DGP (3.2.1), which is replicated below for convenience. Section B.2.2

focuses on some important covariances associated with mixed frequency models, while Section

B.2.3 focuses on their low frequency counterparts. The difference between the mixed frequency

models and the low frequency models is whether we work on the original xH or an aggregated

xH .

B.2.1 Preliminaries

We assume that xL follows the DGP (3.2.1):

xL(τL) =
q∑

k=1

akxL(τL − k) +
p∑

j=1

bjxH(τL − 1,m + 1 − j) + εL(τL)

or in matrix form (3.2.2):

xL(τL) = XL(τL − 1)′a + X
(p)
H (τL − 1)′b + εL(τL)

with XL(τL − 1) = [xL(τL − 1), . . . , xL(τL − q)]′, X
(p)
H (τL − 1) = [xH(τL − 1,m + 1 − 1), . . . ,

xH(τL − 1,m + 1 − p)]′, a = [a1, . . . , aq]′, and b = [b1, . . . , bp]′. We impose Assumptions 3.2.1

and 3.2.2.

First, We use the low frequency simplification (B.1.2) to express the autocovariance of xH

in full generality:

E [xH(τL − i1, m + 1 − j1)xH(τL − i2,m + 1 − j2)] = γH
j2−j1+(i2−i1)m

, ∀i1, i2, j1, j2, τL ∈ Z. (B.2.1)
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Equation (B.2.1) can be shown by observing that there are |j2− j1 +(i2− i1)m| high frequency

time periods between xH(τL − i1,m + 1 − j1) and xH(τL − i2,m + 1 − j2).

Next we derive the autocovariance structure of xL. The first step is to transform the DGP

into MA(∞) with infinite lags of xH . Using the low frequency lag operator L, the DGP can be

rewritten as a(L)xL(τL) =
∑p

j=1 bjxH(τL−1,m+1−j)+εL(τL), where a(L) = 1−
∑q

k=1 akL
k.

The corresponding MA(∞) representation should be that

xL(τL) = ψ(L)


p∑

j=1

bjxH(τL − 1, m + 1 − j) + εL(τL)

 , (B.2.2)

where ψ(L) =
∑∞

i=0 ψiL
i. It must be the case that a(L)ψ(L) = 1 so that we can recover the

original DGP starting from (B.2.2). This condition implies that

ψk = I(k > 0)
q∑

l=1

alψk−l + I(k = 0), ∀k ∈ Z. (B.2.3)

Besides (B.2.3), there are three useful properties for deriving the autocovariance of xL.

First, (B.2.1) implies that E[ψ(L)xH(τL − 1,m + 1 − i) × ψ(L)xH(τL − 1 − k,m + 1 − j)] =∑∞
l=1

∑∞
s=1 ψl−1ψs−1γ

H
j−i+(s+k−l)m. Second, we have that E[ψ(L)εL(τL) × ψ(L)εL(τL − k)] =

σ2
L

∑∞
s=0 ψk+sψs since εL(τL) i.i.d.∼ (0, σ2

L) by assumption. Third, Assumption 3.2.1 ensures that

E[xH(τL, j)εL(τL − k)] = 0 for any j, k, τL ∈ Z. These properties and (B.2.2) imply that

{xL(τL)} is a covariance stationary process with mean zero and autocovariance

γL
k ≡ E[xL(τL)xL(τL − k)]

= σ2
L

∞∑
s=0

ψk+sψs +
p∑

i=1

p∑
j=1

∞∑
l=1

∞∑
s=1

bibjψl−1ψs−1γ
H
j−i+(s+k−l)m, ∀k ∈ Z.

(B.2.4)

B.2.2 Mixed Frequency Models

We derive some covariance terms associated with our model (3.2.4):

xL(τL) =
q∑

k=1

αk,jxL(τL − k) + βjxH(τL − 1,m + 1 − j) + uL,j(τL) for j = 1, . . . , h.
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In a matrix form, model j is rewritten as in (3.2.5):

xL(τL) =
[
XL(τL − 1)′ xH(τL − 1,m + 1 − j)

]
︸ ︷︷ ︸

≡xj(τL−1)′



α1,j

...

αq,j

βj


︸ ︷︷ ︸
≡„j

+uL,j(τL).

As suggested in Theorem 3.2.1, key quantities in the subsequent proofs will be E[xi(τL −

1)xj(τL − 1)′] and E[xj(τL − 1)X(p)
H (τL − 1)′]. The first quantity, the covariance between all

regressors in model i and all regressors in model j, is characterized as follows. Using (B.2.1),

we get that E[xH(τL−k,m+1− i)×ψ(L)xH(τL−1−s,m+1− j)] =
∑∞

l=1 ψl−1γ
H
j−i+(l+s−k)m.

This result and (B.2.2) imply that

ck,i,s ≡ E[xH(τL − k,m + 1 − i)xL(τL − s)]

=
p∑

j=1

∞∑
l=1

bjψl−1γ
H
j−i+(l+s−k)m, ∀k, i, s ∈ Z.

(B.2.5)

One trivial but useful property is that ck,i,s = ck′,i,s′ whenever s−k = s′−k′. This fact suggests

that we could drop either subscript k or subscript s from ck,i,s without loss of generality, but

we would rather keep the three subscripts since this is often easier to understand when we deal

with various lag orders of xL and xH below.

Based on (B.2.5), we have that

Γi,j ≡ E
ˆ

xi(τL − 1)xj(τL − 1)′
˜

=

2

4

E[XL(τL − 1)XL(τL − 1)′] E[XL(τL − 1)xH(τL − 1, m + 1 − j)]

E[xH(τL − 1, m + 1 − i)XL(τL − 1)′] E[xH(τL − 1, m + 1 − i)xH(τL − 1, m + 1 − j)]

3

5

=

2

6

6

6

6

6

6

6

4

γL
1−1 . . . γL

1−q c1,j,1

...
. . .

...
...

γL
q−1 . . . γL

q−q c1,j,q

c1,i,1 . . . c1,i,q γH
i−j

3

7

7

7

7

7

7

7

5

, for i, j ∈ {1, . . . , h}.

(B.2.6)

The third equality follows from (B.2.4) and (B.2.5). While Γi,j is neither symmetric nor non-

singular in general, it is a symmetric non-singular matrix when i = j. Γ−1
j,j can be obtained by
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applying the well-known formula of block matrix inversion.
The second key quantity, the covariance between all regressors in model j and p high fre-

quency lags of xH , is characterized as follows.

Cj ≡ E[xj(τL − 1)X
(p)
H (τL − 1)′]

=

2

6

6

6

6

6

6

6

4

E[xL(τL − 1)xH(τL − 1, m + 1 − 1)] . . . E[xL(τL − 1)xH(τL − 1, m + 1 − p)]

.

..
. . .

.

..

E[xL(τL − q)xH(τL − 1, m + 1 − 1)] . . . E[xL(τL − q)xH(τL − 1, m + 1 − p)]

E[xH(τL − 1, m + 1 − j)xH(τL − 1, m + 1 − 1)] . . . E[xH(τL − 1, m + 1 − j)xH(τL − 1, m + 1 − p)]

3

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

4

c1,1,1 . . . c1,p,1

.

..
. . .

.

..

c1,1,q . . . c1,p,q

γH
j−1 . . . γH

j−p

3

7

7

7

7

7

7

7

5

, for j ∈ {1, . . . , h}.

(B.2.7)

The last equality follows from (B.2.5).

B.2.3 Low Frequency Models

It is of interest to see how better the mixed frequency model performs than its low frequency

counterpart. The former works on {{xH(τL, j)}}, while the latter works on its aggregated

version {xH(τL)}. We consider linear aggregation scheme xH(τL) =
∑m

j=1 δjxH(τL, j) with

δj ≥ 0 for all j = 1, . . . ,m and
∑m

j=1 δj = 1. The linear aggregation scheme includes flow

sampling (i.e. δj = 1/m for j = 1, . . . ,m) and stock sampling (i.e. δj = I(j = m) for j = 1,

. . . ,m) as special cases.

We first deduce the autocovariance structure of {xH(τL)}. It is a covariance stationary

process with mean zero and autocovariance

γH,LF
k ≡ E[xH(τL)xH(τL − k)] = E

(
m∑

i=1

δixH(τL, i)

) m∑
j=1

δjxH(τL − k, j)


=

m∑
i=1

m∑
j=1

δiδjE[xH(τL, j)xH(τL − k, j)] =
m∑

i=1

m∑
j=1

δiδjγ
H
j−i−km, for k ∈ Z.

(B.2.8)

The last equality of (B.2.8) follows from (B.2.1).

We will also need the cross-covariance between the original xH and its aggregated version.
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Using (B.2.1) again, it is straightforward to show that

E[xH(τL − k)xH(τL − s,m + 1 − j)] =
m∑

i=1

δiγ
H
m+1−j−i+(k−s)m, ∀k, s, j ∈ Z. (B.2.9)

Next we consider the cross-covariance between the aggregated xH and xL. We have that

cLF
i,s ≡ E[xH(τL − i)xL(τL − s)]

= E

(
m∑

l=1

δlxH(τL − i, l)

) p∑
j=1

bjψ(L)xH(τL − 1 − s,m + 1 − j) + ψ(L)εL(τL − s)


=

m∑
l=1

p∑
j=1

δlbjE[xH(τL − i, l) × ψ(L)xH(τL − 1 − s,m + 1 − j)]

=
m∑

l=1

p∑
j=1

δlbjE[xH(τL − i, l) ×
∞∑

k=0

ψkxH(τL − 1 − k − s, m + 1 − j)]

=
m∑

l=1

p∑
j=1

∞∑
k=0

δlbjψkγH
j+l−1−(s+k−2−i)m, for i, s ∈ Z.

(B.2.10)

The second equality of (B.2.10) follows from (B.2.2), the third equality follows from the inde-

pendence assumption between xH and εL, and the last equality follows from (B.2.1).

We now consider the low frequency parsimonious model (3.3.4):

xL(τL) =
q∑

k=1

αLF
k,j xL(τL − k) + βLF

j xH(τL − j) + uLF
L,j(τL), j = 1, . . . , h

or in a matrix form

xL(τL) = xLF
j (τL − 1)′θLF

j + uLF
L,j(τL)

with xLF
j (τL − 1) = [XL(τL − 1)′, xH(τL − j)]′ and θLF

j = [αLF
1,j , . . . , αLF

q,j , βLF
j ]′. There are

two quantities which will play an important role in the low frequency model. The first one is

E[xLF
i (τL − 1)xLF

j (τL − 1)′], the covariance between all regressors in model i and all regressors
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in model j. It is easy to verify that

ΓLF
i,j ≡ E

h

xLF
i (τL − 1)xLF

j (τL − 1)′
i

=

2

4

E[XL(τL − 1)XL(τL − 1)′] E[XL(τL − 1)xH(τL − j)]

E[xH(τL − i)XL(τL − 1)′] E[xH(τL − i)xH(τL − j)]

3

5

=

2

6

6

6

6

6

6

6

4

γL
1−1 . . . γL

1−q cLF
j,1

...
. . .

...
...

γL
q−1 . . . γL

q−q cLF
j,q

cLF
i,1 . . . cLF

i,q γH,LF
i−j

3

7

7

7

7

7

7

7

5

, for i, j ∈ {1, . . . , h}.

(B.2.11)

The last equality of (B.2.11) is a simple implication of (B.2.4), (B.2.8), and (B.2.10). While

ΓLF
i,j is neither symmetric nor non-singular in general, it is a symmetric non-singular matrix

when i = j. The inverse matrix can be obtained by applying the well-known formula of block

matrix inversion.

The second key quantity is E[xLF
j (τL−1)X(p)

H (τL−1)′], the covariance between all regressors

in model j and p high frequency lags of xH . Using (B.2.5) and (B.2.9), it is trivial to see that

CLF
j ≡ E[xLF

j (τL − 1)X(p)
H (τL − 1)′]

=



E[xL(τL − 1)xH(τL − 1,m + 1 − 1)] . . . E[xL(τL − 1)xH(τL − 1,m + 1 − p)]
...

. . .
...

E[xL(τL − q)xH(τL − 1,m + 1 − 1)] . . . E[xL(τL − q)xH(τL − 1, m + 1 − p)]

E[xH(τL − j)xH(τL − 1,m + 1 − 1)] . . . E[xH(τL − j)xH(τL − 1, m + 1 − p)]



=



c1,1,1 . . . c1,p,1

...
. . .

...

c1,1,q . . . c1,p,q∑m
i=1 δiγ

H
m+1−1−i+(j−1)m . . .

∑m
i=1 δiγ

H
m+1−p−i+(j−1)m


, for j ∈ {1, . . . , h}.

(B.2.12)

B.3 Proof of Theorem 3.2.1

Recall that the mixed frequency model j given in (3.2.4) is written as

xL(τL) =
q∑

k=1

αk,jxL(τL − k) + βjxH(τL − 1,m + 1 − j) + uL,j(τL) for j = 1, . . . , h.
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or in matrix form

xL(τL) = xj(τL − 1)′θj + uL,j(τL).

The moment condition with respect to OLS is that E[xj(τL − 1)uL,j(τL)] = 0(q+1)×1, so the

pseudo-true value of θj , denoted by θ∗
j , is as follows:

θ∗
j =

[
E

[
xj(τL − 1)xj(τL − 1)′

]]−1
E [xj(τL − 1)xL(τL)] . (B.3.1)

Recall that the DGP in matrix form is

xL(τL) = XL(τL − 1)′a + X
(p)
H (τL − 1)′b + εL(τL).

Substituting this into (B.3.1), we get

θ∗
j = [E [xj(τL − 1)xj(τL − 1)′]]−1

E
[
xj(τL − 1)

{
XL(τL − 1)′a + X

(p)
H (τL − 1)′b + εL(τL)

}]
= [E [xj(τL − 1)xj(τL − 1)′]]−1

{
E [xj(τL − 1)XL(τL − 1)′]a + E

[
xj(τL − 1)X(p)

H (τL − 1)′
]
b
}

,

where the second equality holds from the i.i.d. assumption of εL. We have by construction

that

E
[
xj(τL − 1)XL(τL − 1)′

]
= E

[
xj(τL − 1)xj(τL − 1)′

]  Iq

01×q

 .

Using this, we obtain

θ∗
j ≡



α∗
1,j

...

α∗
q,j

β∗
j


=



a1

...

aq

0


+

[
E

[
xj(τL − 1)xj(τL − 1)′

]]−1
E

[
xj(τL − 1)X(p)

H (τL − 1)′
]
b. (B.3.2)

Recall from (B.2.6) that [E[xj(τL − 1)xj(τL − 1)′]]−1 is already quantified as Γ−1
j,j . E[xj(τL −

1)X(p)
H (τL − 1)′] is also quantified as Cj in (B.2.7). Hence, (B.3.2) provides a complete char-

acterization of θ∗
j .

Finally, it is easy to express the pseudo-true value of β = [β1, . . . , βh]′, written as β∗, by

constructing an appropriate selection matrix R such that β∗ = Rθ∗, where θ∗ = [θ∗′
1 , . . . , θ∗′

h ]′.
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B.4 Proof of Theorem 3.2.2

We first show that b = 0p×1 ⇒ β∗ = 0h×1. Assume that b = 0p×1, then (B.3.2) implies that

β∗
j = 0 for any j = 1, . . . , h. We thus have that β∗ = 0h×1.

We now show that β∗ = 0h×1 ⇒ b = 0p×1, assuming that h ≥ p. We pick the last row of

(B.3.2). As seen from (B.2.6), the lower left block of [E [xj(τL − 1)xj(τL − 1)′]]−1 is

−n−1
j E

[
xH(τL − 1,m + 1 − j)XL(τL − 1)′

] [
E

[
XL(τL − 1)XL(τL − 1)′

]]−1

while the lower right block is simply n−1
j , where

nj ≡E
ˆ

xH(τL − 1, m + 1 − j)2
˜

− E
ˆ

xH(τL − 1, m + 1 − j)XL(τL − 1)′
˜ ˆ

E
ˆ

XL(τL − 1)XL(τL − 1)′
˜˜−1

E [XL(τL − 1)xH(τL − 1, m + 1 − j)] .

Since we are assuming that β∗
j = 0, the last row of (B.3.2) is given by n−1

j d′
jb = 0, where

dj ≡E
h

X
(p)
H (τL − 1)xH(τL − 1, m + 1 − j)

i

− E
h

X
(p)
H (τL − 1)XL(τL − 1)′

i

ˆ

E
ˆ

XL(τL − 1)XL(τL − 1)′
˜˜−1

E [XL(τL − 1)xH(τL − 1, m + 1 − j)] .

(B.4.1)

Since nj is a nonzero finite scalar for any j = 1, . . . , h by the non-singularity of E[xj(τL −

1)xj(τL − 1)′], it has to be the case that d′
jb = 0. Stacking these h equations, we have that


d′

1

...

d′
h


︸ ︷︷ ︸
≡D

b = 0h×1 and hence b′D′Db = 0.

To conclude that b = 0p×1, it is sufficient to show that D′D is positive definite. Hence it

is sufficient to show that D is of full column rank p. Since we are assuming that h ≥ p, we

only have to show that Dp ≡ [d1, . . . , dp]′, the first p rows of D, is of full column rank p or

equivalently non-singular. Equation (B.4.1) implies that

Dp =E
[
X

(p)
H (τL − 1)X(p)

H (τL − 1)′
]

− E
[
X

(p)
H (τL − 1)XL(τL − 1)′

]
[E [XL(τL − 1)XL(τL − 1)′]]−1

E
[
XL(τL − 1)X(p)

H (τL − 1)′
]
.
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Now define

∆ ≡ E


 XL(τL − 1)

X
(p)
H (τL − 1)

[
XL(τL − 1)′ X

(p)
H (τL − 1)′

] ,

which is trivially non-singular since γH
0 > 0 and σ2

L > 0 by assumption. Evidently, Dp is

the Schur complement of ∆ with respect to E[XL(τL − 1)XL(τL − 1)′]. Thus, by the classic

argument of partitioned matrix inversion, Dp is non-singular as desired.

B.5 Proof of Theorem 3.2.3

Recall that the mixed frequency model j is:

xL(τL) = xj(τL − 1)′θj + uL,j(τL), j = 1, . . . , h,

where θj = [α1,j , . . . , αq,j , βj ]′. We collect all parameters across the h models as θ = [θ′
1, . . . ,

θ′
h]′.

Deriving the asymptotic distribution of our test statistic T = max1≤j≤h

(√
TLwTL,j β̂j

)2

under H0 : b = 0p×1 will turn out to be almost identical to deriving the asymptotic distribution

of
√

TLβ̂ under H0. Working on
√

TLβ̂ directly is rather cumbersome, so we work on R ×
√

TL(θ̂− θ̄0), where the selection matrix R is such that β̂ = Rθ̂ as in the last part of Appendix

B.3. Note that θ̄0, a hypothesized value for the pseudo-true value of θ, can be arbitrarily chosen

as long as Rθ̄0 = 0h×1. This condition guarantees that
√

TLβ̂ = R ×
√

TL(θ̂ − θ̄0). The most

convenient choice satisfying this condition is θ̄0 = ιh ⊗ θ0 with θ0 = [a1, . . . , aq, 0]′, where ιh is

an h× 1 vector of ones. θ0 is a hypothesized value for θj , all parameters in model j. Although

it contains unknown quantities a1, . . . , aq, it does not violate our theory since the last element

of θ0 is 0 and hence Rθ̄0 = 0h×1.

We first derive the asymptotic distribution of
√

TL(θj − θ0) under H0. By the construction

of θ0, the DGP is written as xL(τL) = xj(τL − 1)′θ0 + εL(τL) under H0. Using this, we have
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that

√
TL(„̂j − „0)

=
√

TL

2

4

TL
X

τL=1

xj(τL − 1)xj(τL − 1)′

3

5

−1
TL
X

τL=1

xj(τL − 1)xL(τL) −
√

TL„0

=
√

TL

2

4

TL
X

τL=1

xj(τL − 1)xj(τL − 1)′

3

5

−1
TL
X

τL=1

xj(τL − 1)[xj(τL − 1)′„0 + εL(τL)] −
√

TL„0

=
√

TL

2

4

TL
X

τL=1

xj(τL − 1)xj(τL − 1)′

3

5

−1
TL
X

τL=1

xj(τL − 1)εL(τL)

=
ˆ

E[xj(τL − 1)xj(τL − 1)′]
˜−1 1√

TL

TL
X

τL=1

xj(τL − 1)εL(τL) + op(1),

= Γ−1
j,j

1√
TL

TL
X

τL=1

xj(τL − 1)εL(τL) + op(1),

(B.5.1)

where the last equality follows just by definition in (B.2.6). Using (B.5.1), we now deduce the

asymptotic distribution of
√

TL(θ̂ − θ̄0). To rely on the Cramer-Wold theorem, we define a

(q + 1)h × 1 nonzero vector λ = [λ′
1, . . . , λ

′
h]′ and consider λ′ ×

√
TL(θ̂ − θ̄0). We have that

λ′ ×
√

TL(θ̂ − θ̄0) =
h∑

j=1

λ′
j ×

√
TL(θ̂j − θ0)

=
h∑

j=1

λ′
j

{
Γ−1

j,j

1√
TL

TL∑
τL=1

xj(τL − 1)εL(τL)

}
+ op(1)

=
1√
TL

TL∑
τL=1


h∑

j=1

λ′
jΓ

−1
j,j xj(τL − 1)

︸ ︷︷ ︸
≡X(τL−1,–)

εL(τL) + op(1),

(B.5.2)

where the second equality follows from (B.5.1).

Recall the definition in (B.2.6) that Γj,i = E[xj(τL − 1)xi(τL − 1)′]. Using this, we have

that

E
[
X(τL − 1, λ)2

]
=

h∑
j=1

h∑
i=1

λ′
j Γ−1

j,j Γj,iΓ−1
i,i︸ ︷︷ ︸

≡Σj,i

λi = λ′Σλ, (B.5.3)

where

Σ =


Σ1,1 . . . Σ1,h

...
. . .

...

Σh,1 . . . Σh,h

 .
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Using (B.5.3), we apply a central limit theorem to (B.5.2) in order to obtain that λ′ ×
√

TL

(θ̂ − θ̄0)
d→ N(0, λ′(σ2

LΣ) λ).

By the Cramer-Wold theorem, we get that
√

TL(θ̂ − θ̄0)
d→ N(0(q+1)h×1, σ

2
LΣ). Hence,

√
TLW TL

β̂ =
√

TLW TL
R(θ̂ − θ̄0)

d→ N(0h×1, σ
2
LWRΣR′W︸ ︷︷ ︸

≡V

). (B.5.4)

Recall that our test statistic is given by T = max1≤j≤h

(√
TLwTL,j β̂j

)2
. Hence we have

that T d→ max1≤j≤h N 2
j , where N = [N1, . . . ,Nh]′ is a vector-valued random variable drawn

from N(0h×1,V ).

Further, we can simplify V substantially by imposing H0. Under H0, xL and xH are

independent and thus Γj,i becomes block diagonal:

Γj,i =

E[XL(τL − 1)XL(τL − 1)′] 0q×1

01×q E[xH(τL − 1,m + 1 − j)xH(τL − 1,m + 1 − i)]

 . (B.5.5)

Using this, we get that

Σj,i = Γ−1
j,j Γj,iΓ−1

i,i =

[E[XL(τL − 1)XL(τL − 1)′]]−1 0q×1

01×q
E[xH(τL−1,m+1−j)xH(τL−1,m+1−i)]

E[xH(τL−1,m+1−j)2]E[xH(τL−1,m+1−j)2]


=

[E[XL(τL − 1)XL(τL − 1)′]]−1 0q×1

01×q ρH
i−j/γH

0

 .

hence, we have by the construction of R that

RΣR′ =
1

γH
0


ρH
1−1 . . . ρH

1−h

...
. . .

...

ρH
h−1 . . . ρH

h−h

 ≡ 1
γH

0

RH
h,h.

Thus, the asymptotic covariance matrix is written as

V =
σ2

L

γH
0

WRH
h,hW . (B.5.6)
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Theorem 3.2.3.(ii) is straightforward to show. By the construction of T and β̂j
p→ β∗

j , we

have that T p→ ∞ ⇔ β∗ 6= 0h×1. Given h ≥ p, Theorem 3.2.2 ensures that b 6= 0p×1 ⇒

β∗ 6= 0h×1. Therefore, the test statistic T diverges in probability under a general alternative

hypothesis H1 : b 6= 0p×1.

B.6 Proof of Theorem 3.2.4

Recall the parsimonious regression models (3.2.15):

xL(τL) =

q
X

k=1

αk,jxL(τL − k) +

mq
X

k=1

βk,jxH(τL − 1, m + 1 − k) + γjxH(τL + 1, j) + uL,j(τL),

Instruments: {all q + mq + 1 regressors in model j, xH(τL, 1), . . . , xH(τL, m)} .

To rewrite them in a matrix form, define

x̄j(τL)︸ ︷︷ ︸
n×1

=



xL(τL − 1)
...

xL(τL − q)

xH(τL − 1,m + 1 − 1)
...

xH(τL − 1,m + 1 − mq)

xH(τL + 1, j)



, θj︸︷︷︸
n×1

=



α1,j

...

αq,j

β1,j

...

βmq,j

γj



, and zj(τL)︸ ︷︷ ︸
(n+m)×1

=



x̄j(τL)

xH(τL, 1)
...

xH(τL,m)


,

where n = q + mq + 1. x̄j(τL) is a vector of all explanatory variables while θj is a vector of

all parameters in model j. zj(τL) is a vector of instruments consisting of all n explanatory

variables and m contemporaneous high frequency observations of xH .

Using these notations, model (3.2.15) can be rewritten as

xL(τL) = x̄j(τL)′θj + uL,j(τL) with instruments zj(τL), j = 1, . . . , h.
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To derive the GIVE for θj , define sample moments

Ŝj︸︷︷︸
(n+m)×n

=
1
TL

TL∑
τL=1

zj(τL)x̄j(τL)′, ŝj︸︷︷︸
(n+m)×1

=
1
TL

TL∑
τL=1

zj(τL)xL(τL),

Σ̂j︸︷︷︸
(n+m)×(n+m)

=
1
TL

TL∑
τL=1

zj(τL)zj(τL)′.

Using these matrices, the GIVE for θj is given by

θ̂j︸︷︷︸
n×1

=
(
Ŝ

′
jΣ̂

−1
j Ŝj

)−1
Ŝ

′
jΣ̂

−1
j ŝj .

To derive the limit distribution of θ̂j under H0, consider a hypothesized value:

θ0,j = [α∗
1,j , . . . , α

∗
q,j , β

∗
1,j , . . . , β

∗
mq,j , 0]′, (B.6.1)

where the asterisk signifies the pseudo-true value. We do not know the pseudo-true values of α’s

and β’s in practice, but that does not matter since we are only interested in the zero hypothesis

with respect to γj . Eq. (B.6.1) is the most convenient choice of a hypothesized value in terms

of mathematical derivation.

Under H0 : xL 9 xH , we have that

ŝj =
1
TL

TL∑
τL=1

zj(τL)
[
x̄j(τL)′θ0,j + εL(τL)

]
= Ŝjθ0,j +

1
TL

TL∑
τL=1

zj(τL)εL(τL)

and thus

√
TL(θ̂j − θ0,j) =

(
Ŝ

′
jΣ̂

−1
j Ŝj

)−1
Ŝ

′
jΣ̂

−1
j × 1√

TL

TL∑
τL=1

zj(τL)εL(τL), j = 1, . . . , h. (B.6.2)

We have that

Ŝj
p→ E[zj(τL)x̄j(τL)′] ≡ Sj and Σ̂j

p→ E[zj(τL)zj(τL)′] ≡ Σj . (B.6.3)
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Using (B.6.3), we apply the Cramér-Wold theorem to (B.6.2) in order to combine all h parsi-

monious regression models. To this end, define λ = [λ′
1, . . . , λ

′
h]′ ∈ Rnh as well as

θ̂︸︷︷︸
nh×1

=


θ̂1

...

θ̂h

 and θ0︸︷︷︸
nh×1

=


θ0,1

...

θ0,h

 .

Then we have that

λ′
√

TL(θ̂ − θ0) =
h∑

j=1

λ′
j

√
TL(θ̂j − θ0,j)

=
h∑

j=1

λ′
j

[(
Ŝ

′
jΣ̂

−1
j Ŝj

)−1
Ŝ

′
jΣ̂

−1
j × 1√

TL

TL∑
τL=1

zj(τL)εL(τL)

]

=
1√
TL

TL∑
τL=1


h∑

j=1

λ′
j

(
S′

jΣ
−1
j Sj

)−1
S′

jΣ
−1
j zj(τL)

︸ ︷︷ ︸
≡Z(τL)

εL(τL) + op(1).

(B.6.4)

Define

Σj,i︸︷︷︸
(n+m)×(n+m)

= E
[
zj(τL)zi(τL)′

]
,

then we have that

E
[
Z(τL)2

]
=

h∑
j=1

h∑
i=1

λ′
j

(
S′

jΣ
−1
j Sj

)−1
S′

jΣ
−1
j Σj,iΣ−1

i Si

(
S′

iΣ
−1
i Si

)−1︸ ︷︷ ︸
≡Ψj,i: n×n

λi

= λ′Ψλ,

(B.6.5)

where

Ψ︸︷︷︸
nh×nh

=


Ψ1,1 . . . Ψ1,h

...
. . .

...

Ψh,1 . . . Ψh,h

 .
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Applying a central limit theorem to (B.6.4) using (B.6.5), we get that λ′√TL(θ̂ − θ0)
d→ N(0,

λ′(σ2
LΨ)λ). Then by the Cramér-Wold theorem, we obtain that

√
TL(θ̂ − θ0)

d→ N(0nh×1, σ
2
LΨ). (B.6.6)

Define

γ̂︸︷︷︸
h×1

=


γ̂1

...

γ̂h

 , R︸︷︷︸
h×nh

=


01×(n−1) 1 . . . 01×(n−1) 0

...
...

. . .
...

...

01×(n−1) 0 . . . 01×(n−1) 1

 , and W︸︷︷︸
h×h

=


w1 . . . 0
...

. . .
...

0 . . . wh

 . (B.6.7)

R is a selection matrix choosing γ’s out of the entire parameter vector θ, while W is a diagonal

matrix having the L2 limit of the weighting scheme wTL
. Equations (B.6.6) and (B.6.7) imply

that √
TLWγ̂ = WR ×

√
TL(θ̂ − θ0)

d→ N(0h×1, σ
2
LWRΨR′W︸ ︷︷ ︸

≡U

)

under H0 : xL 9 xH .

B.7 Proof of Theorem 3.3.1

This proof is identical to the proof for Theorem 3.2.3 except for that we impose H l
1 : b =

(1/
√

TL)ν instead of H0 : b = 0p×1 when we derive (B.5.1). Recall (3.3.1), the DGP under H l
1:

xL(τL) =
q∑

k=1

akxL(τL − k) +
p∑

j=1

νj√
TL

xH(τL − 1,m + 1 − j) + εL(τL)

= XL(τL − 1)′a + X
(p)
H (τL − 1)′

(
1√
TL

ν

)
+ εL(τL)

= xj(τL − 1)′

 Iq

01×q

a + X
(p)
H (τL − 1)′

(
1√
TL

ν

)
+ εL(τL)

= xj(τL − 1)′θ0 + X
(p)
H (τL − 1)′

(
1√
TL

ν

)
+ εL(τL).
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Based on this equation, (B.5.1) should be modified as follows.

√
TL(„̂j − „0) =

√
TL

2

4

TL
X

τL=1

xj(τL − 1)xj(τL − 1)′

3

5

−1
TL
X

τL=1

xj(τL − 1)xL(τL) −
√

TL„0

=
√

TL

2

4

TL
X

τL=1

xj(τL − 1)xj(τL − 1)′

3

5

−1

×
TL
X

τL=1

xj(τL − 1)

»

xj(τL − 1)′„0 + X
(p)
H (τL − 1)′

„

1√
TL

�

«

+ εL(τL)

–

−
√

TL„0

=

2

4

TL
X

τL=1

xj(τL − 1)xj(τL − 1)′

3

5

−1 2

4

TL
X

τL=1

xj(τL − 1)X
(p)
H (τL − 1)′

3

5 �

+
√

TL

2

4

TL
X

τL=1

xj(τL − 1)xj(τL − 1)′

3

5

−1
TL
X

τL=1

xj(τL − 1)εL(τL)

=
ˆ

E[xj(τL − 1)xj(τL − 1)′]
˜−1

E[xj(τL − 1)X
(p)
H (τL − 1)′]�

+
ˆ

E[xj(τL − 1)xj(τL − 1)′]
˜−1 1√

TL

TL
X

τL=1

xj(τL − 1)εL(τL) + op(1),

=Γ−1
j,j Cj� + Γ−1

j,j

1√
TL

TL
X

τL=1

xj(τL − 1)εL(τL) + op(1),

(B.7.1)

where the last equality follows simply from the definitions in (B.2.6) and (B.2.7).

Repeating (B.5.2), we get

λ′ ×
√

TL(θ̂ − θ̄0) =
h∑

j=1

λ′
jΓ

−1
j,j Cjν +

1√
TL

h∑
j=1

X(τL − 1, λ)εL(τL) + op(1)

d→ N
(
λ′u, λ′(σ2

LΣ)λ
)
,

where

u ≡


Γ−1

1,1C1

...

Γ−1
h,hCh

ν.

By the Cramer-Wold theorem, we have that
√

TL(θ̂ − θ̄0)
d→ N(u, σ2

LΣ).

Now repeat (B.5.4) to get

√
TLW TL

β̂ =
√

TLW TL
R(θ̂ − θ̄0)

d→ N(WRu︸ ︷︷ ︸
≡—

, σ2
LWRΣR′W︸ ︷︷ ︸

=V

). (B.7.2)
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Recall that our test statistic is given by T = max1≤j≤h

(√
TLwTL,j β̂j

)2
. Hence we have

that T d→ max1≤j≤h M2
j , where M = [M1, . . . ,Mh]′ is a vector-valued random variable drawn

from N(µ, V ).

Furthermore, we can simplify µ and V by imposing H l
1. Under H l

1, xL and xH are asymp-

totically independent and thus Γi,j converges to the block diagonal matrix in (B.5.5).1 Hence,

the exactly same simplification as in Appendix B.5 applies for V and we get (B.5.6) here as

well. Similarly, it is asymptotically the case that

Cj ≡ E[xj(τL − 1)X(p)
H (τL − 1)′] =

0q×1 . . . 0q×1

γH
j−1 . . . γH

j−p

 and thus Γ−1
j,j Cj =

0q×1 . . . 0q×1

ρH
j−1 . . . ρH

j−p

 .

By the construction of R, we get that

Ru ≡ R


Γ−1

1,1C1

...

Γ−1
h,hCh

ν =


ρH
1−1 . . . ρH

1−p

...
. . .

...

ρH
h−1 . . . ρH

h−p


︸ ︷︷ ︸

≡RH
h,p

ν.

Thus, we can conclude that µ = WRH
h,pν.

B.8 Proof of Theorem 3.3.3

Recall that the low frequency model is given by

xL(τL) =
q∑

k=1

αLF
k,j xL(τL − k) + βLF

j xH(τL − j) + uLF
L,j(τL), j = 1, . . . , h

or in a matrix form

xL(τL) = xLF
j (τL − 1)′θLF

j + uLF
L,j(τL)

with xLF
j (τL − 1) = [XL(τL − 1)′, xH(τL − j)]′ and θLF

j = [αLF
1,j , . . . , αLF

q,j , βLF
j ]′.

We first derive the asymptotic distribution of TLF = max1≤j≤h(
√

TLwTL,j β̂
LF
j )2 under H l

1 :

b = (1/
√

TL)ν. The derivation is identical to Appendix B.7 with the only difference being that

1 If we want to verify this point algebraically, we can refer to (B.2.5) and (B.2.6) and impose bj = νj/
√

TL → 0.
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we work on xLF
j (τL −1) instead of xj(τL −1). As a result, Γi,j and Cj in Appendix B.7 should

be replaced with ΓLF
i,j ≡ E[xLF

i (τL − 1)xLF
j (τL − 1)′] and CLF

j ≡ E[xLF
j (τL − 1)X(p)

H (τL − 1)′].

Similarly, µ and V in (B.7.2) should be replaced with µLF and V LF , where

µLF = WR ×


ΓLF

1,1 CLF
1

...

ΓLF
h,hCLF

h

ν and V LF = σ2
LWRΣLF R′W (B.8.1)

with

ΣLF =


ΣLF

1,1 . . . ΣLF
1,h

...
. . .

...

ΣLF
h,1 . . . ΣLF

h,h

 , ΣLF
j,i =

(
ΓLF

j,j

)−1
ΓLF

j,i

(
ΓLF

i,i

)−1
.

Using (B.8.1), we can deduce in the same manner as before that TLF
d→ max1≤j≤h(MLF

j )2 under

H l
1. MLF = [MLF

1 , . . . ,MLF
h ]′ is a vector-valued random variable following N(µLF , V LF ).

As in Appendix B.7, we can simplify µLF and V LF by imposing H l
1. Since the aggregated

xH and xL are asymptotically independent, ΓLF
i,j converges to a block diagonal matrix:2

ΓLF
i,j →

2

4

E[XL(τL − 1)XL(τL − 1)′] 0q×1

01×q E[xH(τL − i)xH(τL − j)]

3

5 ≡

2

4

E[XL(τL − 1)XL(τL − 1)′] 0q×1

01×q γH,LF
i−j

3

5 .

Note that γH,LF
i−j is characterized by underlying parameters in (B.2.8). Similarly, by (B.2.12)

it is asymptotically the case that

CLF
j ≡ E[xLF

j (τL − 1)X(p)
H (τL − 1)′]

=

 0q×1 . . . 0q×1

E[xH(τL − j)xH(τL − 1,m + 1 − 1)] . . . E[xH(τL − j)xH(τL − 1,m + 1 − p)]


=

 0q×1 . . . 0q×1∑m
i=1 δiγ

H
m+1−1−i+(j−1)m . . .

∑m
i=1 δiγ

H
m+1−p−i+(j−1)m

 .

2 If we want to see this algebraically, we can refer to (B.2.10) and (B.2.11) and impose bj = νj/
√

TL → 0.
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Using these simplified ΓLF
i,j and CLF

j , we can conclude that

µLF = W∆ν and V LF =
σ2

L

γH,LF
0

WRH,LF W ,

where

∆ =
1

γH,LF
0


∑m

i=1 δiγ
H
m+1−1−i+(1−1)m . . .

∑m
i=1 δiγ

H
m+1−p−i+(1−1)m

...
. . .

...∑m
i=1 δiγ

H
m+1−1−i+(h−1)m . . .

∑m
i=1 δiγ

H
m+1−p−i+(h−1)m


and

RH,LF =
1

γH,LF
0


γH,LF

1−1 . . . γH,LF
1−h

...
. . .

...

γH,LF
h−1 . . . γH,LF

h−h

 .

The derivation of these formulas is analogous to Appendix B.7.

We now consider the asymptotic null distribution. Since the DGP under H0 is identical to

the DGP under H l
1 with ν = 0p×1, it is trivial to show that TLF

d→ max1≤j≤h (NLF
j )2 under

H0. N LF = [NLF
1 , . . . ,NLF

h ]′ is a vector-valued random variable following N(0h×1, V
LF ).
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