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ABSTRACT 
 

Bethany Lynne Walton: The Contribution of Fibrinogen and Red Blood Cells to  
Arterial Thrombosis 

(Under the direction of Alisa S. Wolberg) 
 
 

Cardiovascular disease is the leading cause of death and disability worldwide.  This 

dissertation explores the role of the clotting factor fibrinogen and red blood cells (RBCs) to 

arterial thrombosis. 

Elevated plasma fibrinogen is associated with arterial thrombosis in humans and 

directly promotes thrombosis in mice, but the contribution of the γA/γ′ fibrinogen isoform to 

thrombosis is controversial.  To determine if γA/γ′ is prothrombotic, we separated γA/γA and 

γA/γ′ from human plasma and determined the effects on in vitro clot formation and on in vivo 

thrombus formation.  Both γA/γA and γA/γ′ were cleaved by murine and human thrombin 

and were incorporated into murine and human clots.  When γA/γA or γA/γ′ was spiked into 

plasma, γA/γA increased the fibrin formation rate to a greater extent than γA/γ′.  In mice, 

compared to controls, γA/γA infusion shortened the time to carotid artery occlusion, whereas 

γA/γ′ infusion did not.  Additionally, γA/γ′ infusion led to lower levels of plasma thrombin–

antithrombin complexes following arterial injury, whereas γA/γA infusion did not.  These 

data suggest that γA/γ′ binds thrombin in vivo and decreases prothrombotic activity. Together, 

these findings indicate that elevated levels of γA/γA promote arterial thrombosis in vivo, 

whereas γA/γ′ does not.   
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RBCs are the most abundant cell type in blood and increased hematocrit is associated 

with thrombosis.  While it is known that RBCs support thrombin generation and increase 

platelet activation and aggregation, the specific mechanism by which RBCs influence 

clotting is unclear.  In reconstituted human blood ex vivo, RBCs dose-dependently increased 

thrombin generation in the absence of platelets, although effects were blunted or absent in the 

presence of platelets.  Compared to controls, mice infused with RBCs formed thrombi at a 

faster rate and had a shortened time to vessel occlusion in a carotid artery injury model.  

Interestingly, there was no difference in circulating thrombin-antithrombin complexes 

between RBCHIGH and control mice, and thrombi did not differ in size or fibrin content, 

suggesting elevated hematocrit promotes arterial thrombosis by a thrombin-independent 

mechanism.  Our data suggest that reducing hematocrit may reduce arterial thrombosis in 

humans. Future experiments will investigate how the RBC effect on platelets contributes to 

thrombosis.   
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Chapter 1: Introduction: Fibrinogen and Red Blood Cells in Hemostasis and 
Thrombosis1 

 
 
1.1 Introduction 
 

Arterial thrombosis is a leading cause of death and disability worldwide.  Arterial 

thrombosis is usually initiated following rupture of an atherosclerotic plaque.  This causes the 

formation of thrombi that may become occlusive and cause ischemic damage to the 

surrounding tissues.  Intracardiac thrombosis may also occur due to atrial fibrillation or the 

presence of a mechanical valve [1].  Arterial thrombi are usually termed “white-thrombi” due 

to their high platelet count and efforts to understand the pathogenesis of arterial thrombosis 

have mainly focused on platelets.  However growing evidence suggests that the plasma 

protein fibrin(ogen) and RBCs may also be involved in the development of arterial thrombi. 

 Venous thrombosis is initiated by endothelial dysfunction and inappropriate 

expression of plasma and cellular procoagulant activity under low blood flow/stasis (so-

called Virchow’s Triad). The epidemiology, risk factors, and treatment of venous thrombosis 

have been recently reviewed in [2].  However, the pathophysiologic mechanisms that 

contribute to thrombus formation, composition, and stability are still poorly understood. 

Clues may be found in the distinctive appearance of venous thrombi, which demonstrate 

regions of high RBC and fibrin content (so-called “red thrombi”). Notably, RBCs can be 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!This chapter is based on, and reproduced in-part with permission from: Walton BL, Byrnes 
JR, Wolberg AS. Fibrinogen, red blood cells, and factor XIII in venous thrombosis. J 
Thromb Haemost. 2015, In Press 
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found between layers of fibrin in a “brick and mortar” construction, where they lose their 

typical discoid shape and acquire a compressed morphology (so-called “polyhedrocytes”) [3]. 

These observations suggest RBCs and fibrin(ogen) interact during venous thrombosis, and 

that thrombi undergo substantial consolidation during their maturation.   

  Herein, I will review the contributions of fibrinogen and RBCs to coagulation, and 

provide evidence supporting their potential roles in both arterial and venous thrombosis.   

 

1.2 Fibrinogen 

1.2.1 Fibrinogen structure, fibrin formation, and fibrin mechanical properties.

 The fibrinogen molecule consists of 2 sets each of 3 polypeptide chains (AαBβγ)2.  

During coagulation, thrombin cleaves N-terminal peptides from the Aα- and Bβ-chains 

promoting the formation of protofibrils and subsequently, fibrin fibers.  Branching results in 

the characteristic fibrin network seen in micrographs of purified and plasma clots.  

Fibrinogen circulates at high concentrations (2-4 mg/mL) in plasma, and levels may increase 

further during inflammation.  The concentrations of thrombin and fibrinogen present during 

clot formation influence fibrin network structure and stability.  For example, clots formed in 

the presence of high thrombin or fibrinogen concentrations have increased fibrin network 

density and resistance to fibrinolysis compared to clots formed under normal conditions. 

These processes have been previously reviewed [4, 5]. 

Crosslinked fibrin is also known for its ability to stabilize clots.  This property is 

determined at both micro- and macro-scales.  Individual fibrin fibers have astounding 

viscoelasticity.  Crosslinked fibrin fibers can be stretched to 2.5-times their original length 

before rupturing, making fibrin as extensible as spider silk [6-8].  Moreover, elastic recovery 
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of fibers from elongations up to 100% can occur within milliseconds [9].  Branchpoints 

within the fibrin network are surprisingly strong.  When strained, individual fibers fail before 

branchpoints fail [10].  Thus, it is not surprising that fully-formed fibrin clots have similar 

extensibility and elasticity as individual fibers.  

 

1.2.2 Fibrinogen and arterial and venous thrombosis.  

Elevated total fibrinogen is correlated with increased arterial thrombosis [11-15] and 

increased venous thrombosis risk [16-20], and risk is concentration-dependent and present in 

both men and women.  Studies using transgenic mice and murine infusion models have 

associated elevated fibrinogen with increased prothrombotic biomarkers (e.g., D-dimer) [21] 

and a shorter time to vessel occlusion and increased thrombus fibrin content [22].  Moreover, 

compared to control mice, thrombi in fibrinogen-infused mice also show increased resistance 

to fibrinolysis [22].  These findings suggest hyperfibrinogenemia is not merely a biomarker 

of thrombosis risk, but is causative in arterial and venous thrombosis etiology.  

 

1.2.3 Abnormal fibrin structure and stability in thrombosis.  

Several studies have reported abnormal fibrin structure and/or stability in both arterial 

and venous thrombosis, even when circulating fibrinogen levels are normal.  For example, 

compared to controls, patients with a history of MI produced clots with shorter fibrin fibers 

with increased stiffness, and an increased resistance to lysis [23, 24].  Additionally, 

compared to controls, plasma clots from patients with acute ischemic and cryptogenic stroke 

also displayed reduced permeability and resistance to lysis [25, 26].  In venous thrombosis, 

plasma clots from patients with a history of idiopathic venous thrombosis show increased 



! 4 

fibrin network density, reduced permeability, and increased lysis times[27].  Interestingly, 

compared to plasma clots from patients with deep vein thrombosis, clots from patients that 

experienced pulmonary embolism are less compact and more susceptible to fibrinolysis [27, 

28].   In total, these data suggest abnormal fibrin network structure and stability contribute to 

arterial and venous thrombosis. 

 

1.2.4 Fibrinogen γ’-chain and arterial and venous thrombosis.  

The fibrinogen γ-chain can undergo alternative splicing, leading to replacement of 4 

C-terminal amino acids with a unique 20 amino acid sequence (γ’; Figure 1.1).  The γ’-chain 

is present in 8-15% of fibrinogen molecules (as γA/γ’) in healthy individuals.  The genes 

encoding the fibrinogen chains are co-regulated to maintain the level of fibrinogen in 

circulation (reviewed in [29]).  However, the levels of the γA- and γ’-chains are mediated by 

independent mechanisms that differentially regulate their expression.  Expression of γ’-

containing fibrinogen is disproportionally increased by interleukin-6-dependent 

inflammatory responses [30], suggesting an independent relationship between the γ’-chain, 

inflammation, and thrombosis.  Accordingly, although total fibrinogen levels are positively 

correlated with thrombosis risk, the fraction of circulating γ’-fibrinogen (γ’/total fibrinogen 

ratio) modulates risk independently of the total fibrinogen level.  Notably, an elevated γ’-to-

total fibrinogen ratio is associated with increased risk of arterial thrombosis in numerous 

epidemiological studies [31-36], suggesting γ’ may be driving arterial thrombosis.  

Interestingly, a reduced γ’-to-total fibrinogen ratio is associated with increased risk of venous 

thrombosis, suggesting γ’ fibrinogen is protective in venous thrombosis [37, 38].  These 

studies suggest the fibrinogen γ’-chain plays different roles in different vascular beds.  
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Determining the operant mechanisms has been difficult because γA/γ’ fibrinogen has 

both procoagulant and antithrombotic properties (reviewed in [39]).  Briefly, compared to 

γA/γA clots, clots that contain γ’ fibrinogen have a denser network of thin fibrin fibers, 

reduced permeability, reduced plasminogen binding, and increased resistance to fibrinolysis. 

The γ’-chain can also bind and sequester thrombin, protecting it from inactivation by 

antithrombin.  These properties are consistent with prothrombotic functions.  However, γ’ 

fibrinogen also exhibits impaired polymerization.  Recent studies have shown that a γ’ 

carboxyl-terminal peptide reduces plasma thrombin generation even in the presence of anti-

factor VIII antibody, suggesting γ’/thrombin interactions reduce factor V activation [40].  By 

reducing thrombin generation, this peptide also increases the sensitivity of coagulation to 

activated protein C, thus augmenting endogenous anticoagulant mechanisms [41].  

 Studies to determine the contribution of the γ’-chain to thrombosis in vivo have 

consistently demonstrated antithrombotic effects.  Transgenic expression of the human γ’-

chain reduces venous thrombus volume in mice that are heterozygous for the factor V Leiden 

mutation [42].  A peptide mimicking the γ’-chain C-terminus inhibits fibrin-rich thrombus 

formation in a baboon model of thrombosis [43].  We recently infused mice with identical 

levels of either γA/γA or γA/γ’ fibrinogen isolated from human plasma [44].  Compared to 

controls, γA/γA infusion shortens the time to carotid artery occlusion, whereas γA/γ’ infusion 

does not.  Additionally, γA/γ’ infusion reduces levels of circulating thrombin-antithrombin 

complexes.  These data are consistent with the premise that the γ’-chain reduces thrombin 

activity.  By extension, these data implicate the γA-chain as the prothrombotic mediator in 

hyperfibrinogenemia-related thrombosis.  These experiments are discussed in detail in 
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Chapter 2 of this dissertation. Together, these findings illustrate pleotropic contributions of 

fibrinogen to arterial and venous thrombosis.   
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Figure 1.1: The fibrinogen γ chain undergoes alternative processing to form the γA and 
γ’ isoforms.  The fibrinogen γ-chain mRNA transcript may undergo splicing at two main 
polyadenylation sites.  The γA-chain forms when polyadenylation (pA) occurs downstream 
of exon 10 (pA2), leading to translation of exon 10 and the formation of a γ-chain with 10 
exons, 9 introns, and 411 amino acids (ending in AGDV).  The γ’-chain forms when 
polyadenylation occurs upstream of exon 10 (pA1), forming a γ-chain which includes intron 
9.  This results in the translation of an extra 20 amino from intron 9 
(VRPEHPAETRYDSLYPEDDL), forming a γ-chain with 427 amino acids.  

EXON%9% EXON%10%INTRON%9%

pA2$

EXON%9% EXON%10%
AGDV$

pA1$

Fibrinogen$Gamma$Chain$Gene$

γA$Fibrinogen$

pA2$
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EXON%9% INTRON%9%

pA1$

γ’$Fibrinogen$
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1.2.5 Fibrin(ogen) interactions with cells and blood proteins.  

 Most studies of fibrin(ogen) function have used purified systems or plasmas. These 

studies have identified binding sites on fibrin(ogen) for soluble proteins involved in clot 

formation, stabilization, and fibrinolysis, including thrombin, FXIII, fibronectin, tissue-type 

plasminogen activator (tPA), plasminogen, and plasmin [45-49].  Notably, however, 

fibrin(ogen) also interacts with cells and these interactions may contribute to the 

incorporation of cells into venous thrombi. For example, fibrin(ogen) contains recognition 

sequences for integrins including αMβ2, αIIbβ3, αVβ3, which mediate fibrin(ogen) 

interactions with leukocytes, platelets, and endothelial cells, respectively [50]. These 

interactions modulate leukocyte function, platelet aggregation and clot retraction, and may 

anchor thrombi to the endothelium.  Fibrin(ogen) also binds to RBCs, which influences both 

the erythrocyte sedimentation rate and blood viscosity (discussed below) [51-53]. 

 
1.3 Red Blood Cells 

1.3.1 RBCs in circulation.  

RBCs are anucleate cells derived from bone marrow and are the largest cellular 

component of blood.  RBCs have a characteristic biconcave and flexible shape that allows 

them to traverse the microvasculature and fulfill their primary function of hemoglobin-

mediated oxygen transport throughout the body.  RBCs circulate at ~4.2-6.1x109/mL, 

although levels are slightly higher in men than women.  Clinical observations suggest RBC 

levels contribute to hemostasis and thrombosis.  Bleeding times shorten as hematocrit rises 

[54-57], and elevated levels of RBCs are associated with increased risk of thrombosis [58-61]. 
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1.3.2 Causes of high hematocrit.  

The normal range of RBCs in blood (hematocrit) is 41-46% in men and 36-44% in 

women, and can be influenced by a number of physiologic and pathologic situations.  In high 

altitude, the bone marrow increases RBC production to compensate for decreased oxygen 

saturation [62].  RBC levels may also increase in disease states such as polycythemia vera 

(PV) [63] and as a result of increased erythropoietin, either through exogenous erythropoietin 

use or abnormal erythropoietin production by certain types of tumors [64].  Conditions 

associated with hypoxia, such as smoking, lung disease, and heart disease, are also associated 

with increased RBC production [64]. 

 

1.3.3 Hematocrit in arterial and venous thrombosis.   

Thrombosis is a common complication in patients with PV, with arterial thrombosis 

including MI and cerebrovascular events making up the majority of all thrombotic events in 

these patients [65].  The Cytoreductive Therapy in Polycythemia Vera (CYTO-PV), a large-

scale, multicenter, prospective, randomized clinical trial compared maintaining hematocrit 

<45% or between 45-50% in patients with PV [66].  Compared to maintaining a hematocrit 

<45%, maintaining hematocrit in the higher range was associated with four times the rate of 

death from CVD and major thrombosis suggesting hematocrit is a cause for thrombosis in PV.  

However, this study did not control for patients taking hydroxyurea which complicates the 

interpretation of these results. 

Numerous longitudinal, prospective studies have suggested elevated hematocrit is 

associated with both arterial and venous thrombosis in patients with an elevated hematocrit 

not caused by PV.  However these studies are more conflicted in their results.  Some studies 
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suggest hematocrit is not independently associated with thrombosis [67, 68] while other 

studies find an association [15, 58, 60, 69].  Similar conflicted findings are seen in studies on 

elevated hematocrit and venous thrombosis [70-72]. These studies are summarized in Tables 

1.1 and 1.2.  Thus it is hard to reconcile the role of elevated hematocrit in thrombosis.  
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Table 1.1 Epidemiological studies are conflicted on the association between hematocrit 
and arterial thrombosis 

Study N Methods Results 
Sorlie (1981) 
Puerto Rico 
Health 
Program [58] 

-2555 
Rural/6151 urban 
men (45-64 years 
old) 
 

-Subjects examined 3 
times in 8 year follow-
up 

-High HCT (>49%) 
associated with an increased 
risk of MI, coronary 
insufficiency, and CHD 
death compared to low HCT 
(<42%).   
-Risk more than double in 
high HCT group 

Carter (1983) 
[68] 

-8006 Japanese 
men 
 

-Subjects completed 
questionnaires & 
underwent interviews & 
medical screening 
-10 year follow-up   

-HCT correlated with 
predictors or CHD risk, 
related to non-fatal MI, CHD 
death, and total CHD 
-When adjusted for other 
variables, HCT not 
independent risk factor 

Gagnon 
(1994) 
Framingham 
Study [60] 

-5209 men & 
women (30-62 
years old) 
-1073 deaths 
 

-Subjects received 
biannual examinations 
-34 year follow-up 

-Men and women in the 
highest HCT quintile had 
increased risk of CVD death 
(men ≥49%; women ≥46%) 
-Correlation strongest in 
younger men 

Brown (2001) 
Second 
National 
Health & 
Nutrition 
Examination 
Survey 
(NHANES II) 
Mortality 
Study [67] 

-8896 men & 
women (30-75 
years old) 

-HCT categorized by 
sex-specific tertiles 
-16.8 year follow-up 

-Women in the upper tertile 
were 1.3 times more likely 
to die from CHD than 
women with HCT in lowest 
tertile after multivariate 
adjustment  
-Risk was stronger in 
women <65 years old  
-HCT not associated with 
CVD or death in men after 
multivariate adjustment 

Kunnas 
(2009) 
TAMRISK 
Study [69] 

-670 Finnish 
Men (55 years 
old) 
-188 deaths from 
CVD 
 

-Health survey data 
taken on 670 men in 
1980  
-28 year follow-up  
-Divided into two 
groups-HCT ≥50 or <50 

-Men with HCT >50% were 
2.4 more likes to die from 
CHD than men with HCT 
<50%  
-After adjusting for CHD 
risk factors, risk was 1.8 fold  

Toss (2013)  
[61] 

-417,099 
Swedish men 
(18-19 years old) 
-9322 1st MI 

-Baseline health tests 
and measures during 
conscription 
-36 year follow-up 
 

-HCT ≥49% had a 1.4 fold 
increased risk of MI 
compared to men with HCT 
≤44%.  
-Dose dependent 
relationship and remained 
constant through follow-up 
period. 
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Table 1.2 Epidemiological studies are conflicted on the association between hematocrit 
and venous thrombosis 

 

 

  

Study N Methods Results 
Tsai (2002) 
The Longitudinal 
Investigation of 
Thromboembolism 
Etiology [70] 
 

19292 
men & 
women 

-Combines data from, 
the Atherosclerosis 
Risk In Communities 
(ARIC) study and 
Cardiovascular Heath 
Study (CHS) 
-8 year follow-up 

-No relation between 
HCT and VTE 
-Limitation: Low 
HCT cut-off at 43.5%  
 

Vaya (2002) [71] -109 1st 
time 
VTE 
patients 
-121 
controls 

 -Subjects had no 
inherited or acquired 
risk factors for DVT 
-DVT documented 
with ultrasonography 
or venography and 
PE with ventilation 
perfusion scanning or 
pulmonary 
angiography 
-Blood collected from 
patients 6-36 months 
after the VTE episode 
(85% collected within 
the first year) 

-No relation between 
HCT, RBC 
aggregation, plasma 
viscosity and DVT 

Braekkan (2010) 
Tromsø Study [72] 

-26108 
men & 
women 
 

- 12.5 year follow-up -Multivariate hazard 
ratios per 5% increase 
in HCT were 1.25 for 
total VTE and 1.37 for 
unprovoked VTE.  
-Men with HCT in 
upper 20th percentile 
had a 1.5-fold 
increased risk for total 
VTE and 2.4-fold risk 
for unprovoked VTE 
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1.3.4 RBCs mediate blood rheology.   

Hemorheology is the study of how flowing blood influences hemostasis.  RBCs are 

the major determinant of blood rheology because of their prevalence, size, deformability, and 

ability to undergo reversible aggregation.  Under high shear in the arterial circulation, 

(typically 500-1500 s-1), RBCs promote platelet flux toward the vessel wall (so-called 

platelet margination), which increases the frequency of platelet-endothelial cell interactions, 

and platelet-platelet interactions which promotes platelet adhesion, activation, and 

aggregation (Figure 1.2) [73].  However, under low shear in the venous circulation (typically 

10-100 s-1), RBCs increase blood viscosity via their tendency to aggregate (rouleaux 

formation).  Increased blood viscosity is a risk factor for arterial and venous thrombosis [74-

76].  Notably, RBC aggregation is mediated by plasma proteins including fibrinogen [51-53].  

Consequently, inflammatory processes that increase fibrinogen levels also increase blood 

viscosity.  These effects have been implicated in the association between elevated hematocrit 

and hyperfibrinogenemia with thrombosis.  However, it remains unclear whether this 

relationship is correlative or causative.  
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Figure 1.2: RBCs marginate platelets toward the vessel wall under arterial shear. RBCs 
dominate the rheology of blood due to their high number, large size, and deformability.  
Under the high shear rates present in arteries, RBCs move toward the center of the blood 
vessel.  This marginates platelets towards the arterial walls, which promotes increased 
platelet-platelet interactions and platelet-endothelial interactions.  
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1.3.5 RBCs interact with fibrin(ogen).  

RBCs interact specifically with fibrin(ogen) and the fibrinogen motif that mediates 

RBC interactions involve fibrinogen Aα-chain residues 207-303 [51].  Two potential RBC 

receptors have been implicated in this interaction.  Fibrinogen-RBC interactions can be 

inhibited by the integrin-blocking molecule eptifibatide and are not supported by RBCs 

lacking β3 isolated from patients with Glanzmann thrombasthenia [77], implicating β3 or a 

β3-like molecule on the RBC surface. However, that study did not rule out the possibility that 

RBC-bound platelets mediate this interaction [77].  Fibrinogen-RBC interactions can also be 

blocked with an antibody against the integrin-associated protein CD47 [78]. Since CD47 was 

originally identified for its interaction with αvβ3, αIIbβ3, and α2β1 integrins, it is possible 

that the RBC binding site comprises a complex with both of these molecules.   It is 

interesting to speculate that that blocked fibrin(ogen)-RBC interactions may reduce whole 

blood viscosity and thus thrombosis risk. 

 

1.3.6 RBCs interact with cells.   

RBCs can interact with leukocytes, platelets, and endothelial cells.  For example, 

RBC ICAM-4 can bind leukocyte β1 and β2 integrins [79, 80] and platelet αIIbβ3 [81].  RBC 

ICAM-4 also interacts with integrin αv [82].  RBCs are the first cells to adhere to ferric 

chloride (FeCl3)-treated, intact arterial endothelium, prior to the arrival of platelets [83].  This 

interaction is not dependent on von Willebrand factor or GPIbα.  However, the molecular 

receptors on RBCs and the endothelium that mediate this interaction have not been identified 

[83].  Interestingly, RBCs exhibit temporal changes in gene expression during erythropoiesis 
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[84], suggesting stage-specific receptors may decorate RBCs during differentiation and 

further refine these interactions.  

 

1.3.7 RBCs influence platelet reactivity.   

RBCs have been shown to alter the biochemical responsiveness and functional 

responsiveness of activated platelets [85].  Silvain et al. [86] showed that RBCs increase 

ADP-induced platelet activation and aggregation in vitro in blood from healthy volunteers.  

The same group went on to show that patients who received RBC transfusions displayed 

increased ADP-induced platelet reactivity [87].  Moreover, it was specifically shown that 

RBCs amplify platelet activation and degranulation by increasing platelet serotonin release, 

increasing enzymatic ADP removal, and inhibiting proteases [85].  The increase in platelet 

reactivity by RBCs could not be decreased by aspirin, suggesting that RBC level influences 

therapeutic effect of aspirin.  RBCs have also been shown to enhance the activation of αIIbβ3 

and P-selectin on platelets, suggesting RBCs increase platelet activation and aggregation [88].  

In sum, these studies suggest that RBCs contribute to thrombus formation by increasing 

platelet reactivity. 

 

1.3.8 RBCs support thrombin generation.  

A small percentage (~0.5%) of RBCs circulate with exposed phosphotidylserine (PS) 

on their outer membranes [89], suggesting RBCs can assemble prothrombinase complexes 

and support thrombin generation (Figure 1.3).  Interestingly, although levels of both PS-

positive RBCs and platelets are elevated in patients with sickle cell disease (SCD) genotypes, 

only PS-positive RBCs correlate with circulating biomarkers of coagulation activation, 
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including F1.2 and D-dimer [89].  This finding suggests PS-positive RBCs are the primary 

cell responsible for thrombophilia in SCD.  In vitro studies support this premise; when added 

to platelet-poor plasma, RBCs shorten the lag time and increase the peak of thrombin 

generation similar to that seen with platelets [90, 91], although in contrast to platelets, 

thrombin generation on RBCs occurs through the meizothrombin pathway [92].  RBCs can 

also produce microvesicles that activate procoagulant and complement pathways in vitro [93-

95]. 
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Figure 1.3: A portion of RBCs express PS on their cell membrane.  A small percentage 
(0.5%) of RBCs express PS exposure on their cell surface.  This surface allows for 
prothrombinase complex assembly, prothrombin conversion to thrombin, and fibrin 
formation.  Fibrin can then be crosslinked by the transglutaminase factor XIII, to form the 
structural support for a clot.   
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1.3.9 RBCs alter fibrin structure and stability.  

RBCs alter fibrin network structure [96, 97] and reduce fibrin network permeability 

[98]. RBCs also suppress plasmin generation and reduce clot dissolution [97].  In the 

presence of the substantial contractile forces induced by platelets during clot retraction [99, 

100], RBCs are dramatically compressed, which further reduces clot permeability and 

restricts access of fibrinolytic enzymes to the clot [3, 101].  Importantly, this phenomenon 

was noted in thrombi harvested from the arterial vasculature [3] but is also likely to have a 

significant impact on venous thrombosis, since these thrombi contain platelets and large 

numbers of RBCs.  These data suggest reducing RBC content in thrombi may increase clot 

dissolution, thus reducing thrombosis. 

 

1.4 Conclusions 

Both fibrinogen and RBCs are essential components of blood and major players in 

coagulation.  Continued studies are needed to delineate the pathophysiologic mechanisms 

that mediate the roles of both fibrinogen and RBCs in thrombosis.  Specifically, identifying 

the specific fibrinogen isoform that promotes thrombosis and knowledge of the role of 

elevated hematocrit in thrombosis will provide new insight into mechanisms that drive 

abnormal clot formation.  Additionally, identification of the RBC-receptor that binds 

fibrinogen may provide new therapeutic targets to prevent thrombosis. 

 

1.5 Focus of this dissertation 

Growing evidence suggests fibrinogen and RBCs play an important role in arterial 

thrombosis.  Previous work on the role of fibrinogen in arterial thrombosis has focused on 
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total fibrinogen (combined γA/γA and γA/γ’) and previous work on RBCs in arterial 

thrombosis has been performed in murine models with co-morbidities.  Therefore, this 

dissertation will specifically focus on i) the effect of the γA/γA and γA/γ’ individually to 

arterial thrombosis, and ii) the influence of elevated hematocrit to arterial thrombosis in a 

RBCs transfusion model of elevated hematocrit.  Knowledge on how fibrinogen isoforms and 

RBCs contribute to thrombosis may help elucidate mechanisms involved in the formation of 

arterial thrombi, reveal biomarkers to predict thrombosis, and provide clues into the best 

strategies to prevent thrombosis. 
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Chapter 2: The fibrinogen γA/γ’ isoform does not promote acute arterial 

thrombosis in mice2 
 

2.1 Introduction 

Fibrinogen is a 340 kDa glycoprotein that circulates in plasma at 2-4 mg/mL, but 

during acute inflammation can exceed 7 mg/mL.  Fibrinogen is composed of two sets of three 

polypeptide chains: Aα, Bβ, and γ.  Alternative splicing of the main γA chain leads to the γ’ 

chain.  Molecules containing the γ’ chain circulate as a heterodimer with the γA chain (2Aα, 

2Bβ, and γA/ γ’) and comprise 8-15% of total fibrinogen in healthy individuals [1, 2].  

Elevated fibrinogen levels are associated with increased risk of arterial thrombosis [3-5], and 

we previously showed that when mice are infused with unfractionated human fibrinogen 

(~90% γA/γA and 10% γA/γ’) and subjected to FeCl3-mediated carotid artery injury, elevated 

plasma fibrinogen shortens the time to vessel occlusion [6].  These findings suggest elevated 

fibrinogen is a causative, etiologic agent in arterial thrombosis.  However, the specific 

contributions of γA/γA and γA/γ’ fibrinogen isoforms to thrombosis in vivo are unknown.   

In vitro studies to define the biochemical role of the γ’ chain have shown that clots 

made with purified γA/γ’ fibrinogen polymerize at a slower rate than clots made with 

purified γA/γA fibrinogen [7].  Additionally, the γ’ chain supports high affinity binding to 

thrombin exosite II [8, 9], and studies have shown that thrombin binding to the γ’ chain 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2!This chapter is based on and reproduced in part with permission from: 
Walton BL, Getz TM, Bergmeier W, Lin FC, Uitte de Willige S, Wolberg AS.  
The fibrinogen γA/γ’ isoform does not promote acute arterial thrombosis in mice. J Thromb 
Haemost. 2014, 12:680-689 
!
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competitively inhibits thrombin-mediated platelet activation [10] and reduces thrombin-

mediated FpB cleavage [7], and factor VIII [11] and V [12] activation.  These properties 

suggest γA/γ’ fibrinogen has anticoagulant activity in vitro.  Conversely, the γ’ chain does 

not inhibit thrombin-mediated cleavage of FpA [7, 13], and has been reported to support 

higher affinity binding of FXIII than the γA chain [14], although more recent studies suggest 

only slightly tighter [14], or even similar [15], binding of FXIII to the γA/γ’ isoform 

compared to the γA/γA isoform.  Additional studies in purified systems report contradictory 

effects of the γ’ chain on clot structure and mechanical properties, demonstrating that the γ’ 

chain induces the formation of alternately smaller [7, 13, 16] or larger [17] pores, and stiffer 

[18] or less stiff [17] clots.  These conflicting observations make it difficult to predict the role 

of γA/γ’ fibrinogen under physiologic conditions in thrombosis in vivo. 

The role of the human γ’ chain in thrombosis has previously been tested in two in 

vivo studies.  Since the murine γ’ chain does not contain the thrombin-binding sequence 

found on the human γ’ chain, Mossesson et al. developed a transgenic mouse that replaced 

the murine γ’ chain with the human γ’ chain [19].  Following electrolytic injury to the 

femoral vein, there was no difference in thrombus volume between mice containing the 

human γ’ chain and wild type (WT) controls, although the presence of the human γ’ chain 

reduced thrombus volume in mice that were also heterozygous for the factor V Leiden 

mutation [19].  However, interpretation of these findings is complicated by the higher total 

fibrinogen in WT mice compared to mice expressing the human γ’ chain.  In a baboon model 

in which an arteriovenous shunt was placed between the femoral artery and vein, an 18 

amino acid peptide mimicking the γ’ chain C-terminus (γ’ 410-427) inhibited fibrin-rich 
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thrombus formation [11].  These studies suggest the γ’ chain reduces fibrin accumulation and 

is antithrombotic during venous thrombosis. 

 Given these findings, it is interesting that retrospective epidemiological studies have 

correlated elevated γA/γ’ fibrinogen levels with increased incidence of coronary artery 

disease [20], myocardial infarction [21], and stroke [22-24].  In particular, the finding that 

some patients have an increased γ’-to-total fibrinogen ratio [22-25] indicates γA/γ’ 

fibrinogen is not merely a biomarker of increased total fibrinogen, and suggests a specific 

role for γA/γ’ in arterial thrombosis.  However, these studies do not and cannot demonstrate 

causality of γ’ chain-containing fibrinogen in thrombosis.  The objective of our study was to 

determine the contribution of γA/γA and γA/γ’ fibrinogen to arterial thrombosis. 

 

2.2 Materials and Methods 
 
2.2.1 Proteins and Materials.   

Polyclonal rabbit anti-human fibrinogen antibody was from DAKOCytomation 

(Carpinteria, CA).  Monoclonal anti-fibrin(ogen) antibody (59D8) was a generous gift of Drs. 

Marschall Runge (University of North Carolina), Charles Esmon (Oklahoma College of 

Medicine), and Rodney Camire (University of Pennsylvania).  Mouse anti-human γ’ chain-

specific antibody (2.G2.H9) was from Millipore (Temecula, CA).  Biotinylated secondary 

antibodies were from Vector Laboratories (Burlingame, CA).  The AlexaFluor-488 protein 

labeling kit and 10% pre-cast Tris-glycine gels were from Invitrogen (Carlsbad, CA).  

Human α-thrombin and murine thrombin were from Enzyme Research Laboratories (South 

Bend, IN).  Lipidated tissue factor (TF, Innovin) was from Siemens (Newark, DE).  

Phospholipid vesicles (phosphatidylserine/phosphatidylcholine/phosphatidylethanolamine) 
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were prepared as described [26].  Bovine serum albumin was from Sigma-Aldrich (St. Louis, 

MO).  Peroxidase substrate was from KPL (Gaithersburg, MD).  

 

2.2.2 Plasma preparation.   

Contact-inhibited human normal pooled plasma (hNPP) was prepared from 40 

healthy subjects (50% female, 68% nonwhite) as described [27], in a protocol approved by 

the UNC Institutional Review Board.  γA/γ’ fibrinogen levels in hNPP were measured by 

ELISA, as described [28].  Murine normal pooled plasma (mNPP) was prepared by 

collecting blood from 49 female C57Bl/6 mice by inferior vena cava (IVC) venipuncture into 

3.2% sodium citrate (1:9 ratio sodium citrate:blood).  Pooled whole blood was centrifuged 

(4000xg, 20 minutes), and platelet-poor plasma was aliquoted and frozen at -80oC. 

 

2.2.3 Isolation of γA/γA and γA/γ’ fibrinogen.   

The γA/γA and γA/γ’ fibrinogen variants were separated from human plasminogen-, 

von Willebrand Factor-, and fibronectin-depleted human fibrinogen (Enzyme Research 

Laboratories Ltd., Swansea, UK), based on the method described previously [7].  After 

purification, variants were concentrated using Vivaspin 20 MWCO 100,000 columns (GE 

Healthcare, Uppsala, Sweden) and dialyzed into 20 mM N-2-hydroxyethylpiperazine-N′-2-

ethanesulfonic acid (pH 7.4) containing 150 mM NaCl (HBS).  Fibrinogen concentration was 

determined by absorbance at 280 nm using an extinction coefficient of 1.51 mL/(mg/cm).  

Both variants were functionally active (>95%) in a standard clotability assay. 
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2.2.4 SDS-PAGE and western blotting.   

Fibrinogen preparations were assessed by 10% SDS-PAGE and Coomassie Brilliant 

Blue staining or western blotting for total fibrinogen or fibrinogen γ’ chain.  For western 

blots, membranes were blocked with Tris-buffered saline with 1% Tween containing 5% 

milk, washed, and probed sequentially with mouse-anti human γ’-specific primary antibody 

and AlexaFluor-488 conjugated anti-mouse secondary antibody.  Fluorescent signal was 

detected on a Typhoon 900 FLA fluorescent scanner.  

 

2.2.5 Clot formation with purified fibrin(ogen).   

Purified fibrinogen, thrombin, and CaCl2 (0.5 mg/mL, 5 nM, and 10 mM, final, 

respectively) were combined in 96-half-well plates and polymerization was monitored by 

turbidity at 405 nm using SpectraMax Plus340 plate reader (Molecular Devices, Sunnyvale, 

CA).  

 

2.2.6 Clot formation in plasma.   

hNPP or mNPP was spiked with HBS (Control), or γA/γA or γA/γ’ fibrinogen, and 

clotting was initiated with TF (1:30,000 dilution of Innovin, final), 10 mM CaCl2, and 4 µM 

phospholipid vesicles in 96-well plates.  Clot formation was monitored by turbidity at 405 

nm. 

 

2.2.7 Intravital microscopy.   

Procedures were approved by the UNC Institutional Animal Care and Use Committee.  

Laser-induced thrombosis to cremaster muscle venules was performed as described [29].  
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Briefly, 6-8 week old male C57Bl/6 mice (Charles River Laboratories, Wilmington, MA) 

were anesthetized and laser injuries were induced with an Ablate! photoablation system 

equipped with an attenuatable 532 nm pulse laser (Intelligent Imaging Innovations, Denver, 

CO).  Five minutes before injury, mice were injected via the retro-orbital plexus with 

AlexaFluor 595-labeled anti-glycoprotein IX antibody (0.3 mg/g body weight; Emfret, 

Eibelstadt, Germany), and AlexaFluor 647-labeled murine anti-fibrin antibody (0.2 mg/g 

body weight), and trace amounts (5% of total fibrinogen) of AlexaFluor 488-labeled γA/γA 

or γA/γ’ fibrinogen.  Five venules maximum were studied per mouse.  

 

2.2.8 FeCl3 thrombosis model.   

FeCl3 injury to carotid arteries was performed as described [6].  Briefly, 6-8 week old 

male C57Bl/6 mice were anesthetized, and human fibrinogen or vehicle (HBS) was 

administered through the left saphenous vein cannula on a per-weight basis 5 minutes before 

injury.  The right common carotid artery was exposed, dried and treated with FeCl3 (10% on 

0.5×1.0-mm filter paper) for 2 minutes.  We specifically titrated the conditions to perform 

these experiments at a threshold at which some mice do not form thrombi, to allow for 

sensitivity to both increased and decreased procoagulant activity.  Blood flow was monitored 

by Doppler ultrasonic flow probe, and the time to occlusion (TTO) was defined as the time 

between FeCl3 administration and lack of flow for 60 consecutive seconds, as previously 

described [6]. 
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2.2.9 Measurement of circulating TAT complexes.   

TAT levels were measured by ELISA (Enzygnost TAT micro ELISA, Siemens) using 

plasma prepared from IVC blood draws from mice subject to FeCl3 carotid artery thrombosis 

(blood was drawn ~5 minutes following vessel occlusion).  Samples showing hemolysis were 

excluded.  

 

2.2.10 Statistical Methods.   

Descriptive statistics (mean, median, standard deviation [SD], standard error of the 

mean [SEM]) were calculated.  Groups were compared using Student’s t-tests (normally-

distributed data determined by Lilliefors test for normality) or Wilcoxon-Mann-Whitney 

Rank Sum Tests (non-normally distributed data) in Kaleidagraph v4.1.3.  Correlations were 

performed using SAS 9.2 (SAS Inc., Cary, NC).  P<0.05 was considered statistically 

significant. 

 

2.3 Results 
 
2.3.1 γA/γA fibrinogen increases the fibrin polymerization rate to a greater extent than 

γA/γ’ fibrinogen.   

Purified γA/γA fibrinogen contained all three fibrinogen chains (Aα, Bβ, and γ) at 

expected molecular weights (Figures 2.1A-B).  No γ’ chain was detected in γA/γA fibrinogen 

(Figure 2.1C), whereas purified γA/γ’ fibrinogen showed equal intensities of γA and γ’ bands 

(Figures 2.1A-B).  We first clotted purified fibrinogens with purified human thrombin and 

followed clotting by turbidity.  Although fibrinogen γA/γA and γA/γ’ isoforms were not 

explicitly depleted of FXIII, Allen et al. previously showed that the presence or absence of 
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FXIII does not affect differences in polymerization between γA/γA and γA/γ’ fibrinogen [17].  

Indeed, consistent with previous reports [7, 13, 17], purified γA/γA exhibited a faster 

polymerization rate (2.7-fold, P<0.05) and higher final turbidity (1.5-fold, P<0.05) than 

purified γA/γ’ (Figure 2.1D, Table 2.1).  Findings were similar when murine thrombin was 

used (Figure 2.1D, Table 2.1), showing murine thrombin can convert human fibrinogen to 

fibrin. 
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Figure 2.1.  Purified fibrinogen contains all three chains (Aα, Bβ, and γA and/or γ’) at 
the expected molecular weights and is equally cleaved by human and mouse thrombin.  
Unfractionated (UF), or purified γA/γA, or γA/γ’ fibrinogen were reduced and separated by 
10% SDS-PAGE and detected by:  A) Coomassie Brilliant Blue staining, B) polyclonal anti-
fibrin(ogen) antibody, or C) 2.G2.H9 antibody against the γ’ chain.  D) Purified human 
γA/γA (squares) or γA/γ’ (diamonds) fibrinogen was clotted in the presence of CaCl2 and 
human (closed symbols) or murine (open symbols) thrombin.   Data show mean±SD, for 
experiments with human (n=3) and mouse (n=2) thrombin.   
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Table 2.1.  Polymerization of purified fibrinogen isoforms by human and murine 
thrombin 

 Human Thrombin Murine Thrombin 

 Lagtime 
(seconds) 

Change in 
Turbidity 
(OD) 

Vmax 
(mOD/min) 

Lagtime 
(seconds) 

Change in 
Turbidity 
(OD) 

Vmax 
(mOD/min) 

γA/γA 14.2±4.7 0.222±0.022 179.6±16.5 8.25±4.9 0.214±0.024 208.7±38.4 
γA/γ’ 13.7±5.0 0.149±0.016# 66.3±6.5# 6.25±6.2 0.164±0.012# 61.1±14.7# 

 Mean±SD, #P<0.05 versus γA/γA 
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To determine the effect of elevated γA/γA and γA/γ’ fibrinogen on plasma clot 

formation during in situ thrombin generation, we spiked purified γA/γA, γA/γ’, or HBS 

(control) into hNPP.  The concentration of fibrinogen in hNPP was 3.1±0.1 mg/mL (100%) 

and baseline concentration of γA/γ’ fibrinogen in hNPP was 0.42 mg/mL (13.5% of total 

fibrinogen).  We increased the total fibrinogen concentration to 3.5 (114%), 3.9 (127%), or 

4.4 (143%) mg/mL by spiking in purified γA/γA or γA/γ’, so that the γA/γ’-to-total 

fibrinogen ratios ranged from 9.6-40.1% (Table 2.2).  These levels span the range of γA/γ’ 

levels measured in healthy individuals and patients with thrombosis [23-25, 30, 31].  

Elevating either γA/γA or γA/γ’ fibrinogen increased final clot turbidity compared to plasma 

spiked with HBS (Figure 2.2B, Table 2.2).  When total fibrinogen was raised to 114%, 

neither γA/γA nor γA/γ’ fibrinogen increased the clot formation rate.  However, elevating 

total fibrinogen to 127% or 143% with γA/γA or γA/γ’ significantly and dose-dependently 

increased the clot formation rate versus baseline (HBS).  Notably, at each concentration, 

elevating total fibrinogen with γA/γA increased the clot formation rate to a significantly 

greater extent than elevating total fibrinogen with γA/γ’ (Figure 2.2C, Table 2.2).  Linear 

regression analysis showed that the clot formation rate correlated positively with elevated 

total fibrinogen (r=0.667, P<0.001) and negatively with the γ’-to-total fibrinogen ratio (r=-

0.0245, P=0.17), although the relationship between γ’-to-total and clot formation rate did not 

reach significance.  Moreover, the level of γA/γA isoform correlated strongly with the clot 

formation rate (r=0.795, P<0.001) whereas the level of γA/γ’ did not. 

Spiking purified human γA/γA, γA/γ’, or HBS (Control) into mNPP produced similar 

results.  For these experiments, the fibrinogen concentration in mNPP was 2.4±0.2 mg/mL 

(100%), and we spiked mNPP to 3.2 (135%) and 4.1 mg/mL (170%) with γA/γA or γA/γ’, 
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yielding human γ’-to total fibrinogen ratios ranging from 0-41.2%.  Consistent with previous 

observations [6], the final turbidity of murine plasma clots was lower than that of human 

plasma clots, likely reflecting increased fibrin density of murine fibrin networks versus 

human networks (unpublished observation).  As in human plasma, both γA/γA and γA/γ' 

increased the clot formation rate, but γA/γA increased the rate to a greater extent than γA/γ' 

at each concentration tested (P<0.02, Figure 2.2F, Table 2.3).  These findings suggest that 

during in situ thrombin generation, both elevated γA/γA and γA/γ’ fibrinogen promote clot 

formation, but γA/γA does so to a greater extent.  
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Figure 2.2.  Both γA/γA and γA/γ’ fibrinogen accelerate clotting in human and mouse 
plasma.  A-C) hNPP was spiked with γA/γA or γA/γ’ to increase total fibrinogen to 114%, 
127%, or 143% of normal (symbols appear in figure legend), and clot formation was 
triggered by addition of TF and CaCl2.  D-F) mNPP was spiked with human γA/γA or γA/γ’ 
to increase total fibrinogen to 135% or 170% of normal (symbols appear in figure legend) 
and clot formation was triggered by addition of TF and CaCl2.  A, D) Polymerization was 
monitored by turbidity; for clarity, only a subset of points is shown.  B, C, E, F) The 
contribution of increasing total fibrinogen with γA/γA (solid bars) or γA/γ’ (striped bars) on 
final turbidity (B, E) and fibrin formation rate (C, F) in human (B, C) and mouse (E, F) 
plasma.  Dashed lines represent final turbidity and clot formation rate of HBS controls.  Data 
show means, n=3.  *p<0.05 versus HBS; #p<0.05 versus γA/γA. 
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Table 2.2. Effect of fibrinogen isoforms on human plasma clotting 
Total 

Fibrin-
ogen 

(mg/mL 
[% ]) 

Fibrin-
ogen/ 
Buffer 
Infused 

Human 
γA/γ’ 
Final 

(mg/mL) 

Human 
γ’-to-
Total 
Ratio 
(%) 

Lagtime 
(minutes) 

Change in 
Turbidity 

(OD) 

Vmax 
(mOD/min) 

3.1 
(100%) 

HBS 0.4 13.5 9.7±3.0 0.587±0.034 54.8±9.3 

3.5 
(114%) 

γA/γA 0.4 11.9 9.7±1.5 0.715±0.007* 62.5±5.7 

3.5 
(114%) 

γA/γ’ 0.8 23.9 8.7±0.6 0.690±0.016* 54.3±5.8 

3.9 
(127%) 

γA/γA 0.4 10.7 8.7±1.9 0.789±0.032* 171.7±67.1* 

3.9 
(127%) 

γA/γ’ 1.3 32.0 10.0±3.4 0.755±0.043* 98.2±19.9*,# 

4.4 
(143%) 

γA/γA 0.4 9.6 8.5±1.1 0.844±0.022* 263.9±56.6* 

4.4 
(143%) 

γA/γ’ 1.8 40.1 10.1±13.5 0.784±0.016*,# 100.4±13.5*,# 

Mean±SD, *P<0.05 versus HBS; #P<0.04 versus γA/γA (at same total fibrinogen) 
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Table 2.3. Effect of fibrinogen isoforms on mouse plasma clotting 
Total 

Fibrin-
ogen 

(mg/mL 
[%]) 

Fibrinogen/ 
Buffer 
Infused 

Human 
γA/γ’ 
Final 

(mg/mL) 

Human 
γ’-to-
Total 
Ratio 
(%) 

Lagtime 
(minutes) 

Change in 
Turbidity 

(OD) 

Vmax 
(mOD/min) 

2.4 
(100%) 

HBS 0 0 4.0±0.3 0.111±0.003 28.0±2.5 

3.2 
(135%) 

γA/γA 0 0 3.5±0.3 0.222±0.016* 73.3±8.9* 

3.2 
(135%) 

γA/γ’ 0.8 25.9 4.0±0.4 0.184±0.023* 47.4±5.0*,# 

4.1 
(170%) 

γA/γA 0 0 4.0±0.3 0.350±0.015* 126.7±4.6* 

4.1 
(170%) 

γA/γ’ 1.7 41.2 4.1±0.2 0.265±0.012*,# 66.2±5.2*,# 

 Mean±SD, *P<0.03 versus HBS; #P<0.02 versus γA/γA (at same total fibrinogen) 
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2.3.2 Both γA/γA and γA/γ’ fibrinogen are incorporated into murine thrombi in vivo.   

Drouet et al. previously suggested that an increased γ’-to-total fibrinogen ratio is 

detected in patient plasmas because γA/γA is incorporated into platelet thrombi, whereas 

γA/γ’ is not [25].  Therefore, we determined whether γA/γ’ was incorporated into thrombi in 

vivo.  We infused mice with AlexaFluor 594-labeled anti-platelet (anti-GPIX) antibody, 

AlexaFluor 647-labeled antibody against fibrin(ogen) (59D8), and trace amounts (5% of total 

fibrinogen) of fluorescently-labeled γA/γA or γA/γ’ fibrinogen.  We then triggered vascular 

injury to the cremaster vessels and detected γA/γA or γA/γ’ fibrinogen within thrombi using 

intravital microscopy.  We initially performed this experiment with arterioles, but observed 

substantial vessel constriction in response to the injury.  However, the venule provided a 

reasonable alternative that enabled us to avoid the issue of vasoconstriction while observing 

platelet and fibrin(ogen) accumulation at the injury site in vivo.  Figure 2.3 shows that both 

γA/γA and γA/γ’ isoforms were incorporated into murine thrombi in vivo. 
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Figure 2.3.  Intravital microscopy shows both γA/γA and γA/γ’ isoforms are 
incorporated into murine thrombi.  Venules were visualized in the cremaster muscle of 
mice infused with HBS (control) or AlexaFluor 594-labeled anti-platelet (anti-GPIX) 
antibody, AlexaFluor 647-labeled anti-fibrin antibody, and purified γA/γA or γA/γ’ directly 
labeled with AlexaFluor 488.  Thrombosis was triggered via laser injury.  Flow is indicated 
by white arrows.  Colors are:  platelets (red), fibrin(ogen) (green), and fibrin (blue).  In the 
merged image, colors are:  platelets plus fibrin(ogen) (pink), platelets plus fibrin (purple), 
and fibrin(ogen) plus fibrin (teal).  Images show representative thrombi from 3-4 mice with 
14-20 injuries total.  
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2.3.3 Following FeCl3 injury, γA/γA, but not γA/γ’, fibrinogen shortens the time to 

artery occlusion.   

To determine the effect of elevated circulating γA/γA and γA/γ’ fibrinogen on arterial 

thrombosis, we infused mice with HBS or purified human γA/γA, γA/γ’, or unfractionated 

fibrinogen and induced thrombosis via FeCl3 application to the carotid artery.  Both human 

and mouse fibrinogen can be cleaved by human and murine thrombin, cross-linked by factor 

XIIIa, and digested by plasmin [32].  Additionally, human fibrinogen circulates in mouse 

plasma, and is incorporated into murine thrombi (Figure 2.3, [6, 33-35]).  For these 

experiments, we obtained total fibrinogen levels of 135% and 170% of normal levels, with 

human-γ’-to-total fibrinogen ratios of 0%, 25.9%, and 41.2%, consistent with ratios found in 

normal and pathological conditions [23-25, 30, 31, 36]. 

Consistent with previous findings, following FeCl3 injury, there was no significant 

difference in TTO between control mice or mice infused to 135% mg/mL total fibrinogen 

with either γA/γA or γA/γ’ (data not shown) [6].  When total fibrinogen was raised to 170% 

with γA/γA fibrinogen, the median TTO was faster than that of mice infused with HBS 

(5.48±0.50 versus 7.25±3.03 minutes [median±SEM], P<0.05, Figure 2.4A), similar to that 

seen in mice infused with unfractionated fibrinogen.  However, raising the level of fibrinogen 

to 170% with γA/γ’ fibrinogen did not shorten the median TTO compared to controls (Figure 

2.4A).  Moreover, 7.25 minutes after FeCl3 injury, 100% and 86% of mice infused with 

unfractionated or γA/γA fibrinogen, respectively, had an occluded vessel, whereas only 50% 

of mice infused with γA/γ’ fibrinogen developed vessel occlusion (Figure 2.4B).  Together, 

these data indicate that elevated γA/γA fibrinogen promotes arterial thrombosis, whereas 

elevated γA/γ’ does not.  
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Figure 2.4.  γA/ γA fibrinogen shortens the time to vessel occlusion after arterial injury, 
but γA/γ’ does not.  Mice were infused with HBS, unfractionated (UF), γA/γA, or γA/γ’ 
fibrinogen to 170%, total fibrinogen.  Thrombosis was induced by FeCl3 application to the 
carotid artery and TTO was determined by Doppler flow probe.  In vessels that did not 
occlude, the TTO was recorded as 40 minutes.  A) Each point represents a separate mouse.  
Lines indicate median values, *p<0.05 versus HBS.  B) Percent of mice occluded at 7.25 
minutes (the median TTO of HBS-infused mice), using the data from (A); 100%, 86%, and 
50% of UF-, γA/γA-, and γA/γ’-infused mice, respectively, had occluded vessels at this time.   
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2.3.4 Following FeCl3 injury, mice infused with γA/γ’ fibrinogen have lower circulating 

TAT complexes than mice infused with γA/γA fibrinogen.   

The γ’ chain supports high affinity binding to thrombin exosite II [8, 9], and prior 

studies have shown that γA/γ’ fibrinogen has anticoagulant properties (antithrombin I 

activity) in vitro [10-12].  To determine the effect of γA/γ’ on procoagulant activity in vivo, 

we measured TAT complexes in murine plasma following FeCl3 injury and stable vessel 

occlusion.  Whereas mice infused with unfractionated or γA/γA fibrinogen had similar 

circulating TAT complexes as HBS-infused mice, mice infused with γA/γ’ had significantly 

lower circulating TAT complexes (6.2±8.4 versus 18.9±10.9 ng/mL [median±SEM] for γA/γ’ 

and HBS-infused mice, respectively, P<0.01, Figure 2.5), consistent with the concept that 

thrombin binding to γA/γ’ fibrinogen sequesters thrombin [10-12, 37] and protects it from 

inhibition by antithrombin.  These findings suggest γA/γ’ fibrinogen binds and sequesters 

thrombin in vivo and limits thrombin activity following vascular injury. 
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Figure 2.5.  Following arterial injury, mice infused with γA/γ’ fibrinogen have reduced 
circulating TAT complexes.  TAT levels were measured in plasmas collected from mice 
subjected to the FeCl3 carotid artery thrombosis.  Box plots indicate medians and upper and 
lower quartiles, *p<0.05 versus HBS. 
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2.4 Discussion 

Although epidemiologic studies have associated elevated plasma fibrinogen with 

arterial thrombosis [3-5], the operant pathogenic mechanisms have been controversial.  We 

previously showed that increased total plasma fibrinogen directly promotes arterial 

thrombosis in mice [6].  Herein, we separately tested the role of γA/γA and γA/γ’ fibrinogen 

and show that both elevated γA/γA and γA/γ’ increased the plasma clot formation rate, but 

that γA/γA increased the rate to a greater extent than γA/γ’.  Although both γA/γA and γA/γ’ 

fibrinogen were incorporated into murine clots, γA/γA fibrinogen shortened the TTO, 

whereas γA/γ’ did not.  Interestingly, compared to controls, mice infused with γA/γ’ 

fibrinogen had lower levels of circulating plasma TAT complexes following arterial injury, 

whereas mice infused with γA/γA did not, suggesting that γA/γ’ fibrinogen binds and 

sequesters thrombin in vivo.  Together, our data indicate that γA/γ’ fibrinogen is not 

prothrombotic in vivo and may even have a protective role in preventing elevated total 

fibrinogen levels from promoting thrombosis. 

Our data support the premise that γA/γ’ fibrinogen has both procoagulant and 

anticoagulant properties and exhibits both of these activities during thrombosis in vivo.  

Similar to γA/γA fibrinogen, γA/γ’ increased the fibrin formation rate and final turbidity, 

though to a lesser extent than γA/γA.  Consequently, increased total fibrinogen levels, via 

either increased γA/γA or γA/γ’, would be expected to promote fibrin formation.  However, 

unlike γA/γA, γA/γ’ fibrinogen exhibits antithrombin I activity in vitro [10-12, 37] and in 

vivo (Figure 2.5).  Thus, our finding that elevated γA/γA fibrinogen shortened the TTO, but 

elevated γA/γ’ did not, suggests that the net effect of γA/γ’ fibrinogen’s opposing 

procoagulant and anticoagulant activities yielded no change in the TTO (Figure 2.6).  These 



! 54 

data suggest that a peptide representing the C-terminus of the γ’ chain would have strong 

anticoagulant effects in vivo, since the procoagulant properties of the full length fibrinogen 

molecule would not be present, whereas the thrombin binding properties of the γ’ chain 

would decrease circulating thrombin.  Indeed, this effect was previously demonstrated during 

in vivo thrombosis, in which Lovely et al. saw decreased platelet and fibrin accumulation in 

the presence of γ’ chain peptide [11].   
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Figure 2.6. γA/γ’ fibrinogen binds thrombin, resulting in lower thrombin-antithrombin 
levels and similar TTO as controls. When mice were infused with γA/γA fibrinogen, 
fibrinogen was converted to fibrin by thrombin to eventually cause a shortened TTO.  In 
these mice, thrombin was inhibited by antithrombin (left).  When mice were infused with 
γA/γ’ fibrinogen, the γ’ binds to thrombin, preventing its activity from shortening the TTO, 
resulting in less thrombin bound to antithrombin (right). 
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Although previous studies have compared isolated γA/γA and γA/γ’ fibrinogens in 

purified systems, only one has done so during in situ thrombin generation in plasma.  Using 

plasmas from apparently healthy Black South Africans, Pieters et al. correlated total 

fibrinogen levels, γA/γ’ fibrinogen levels, and the γ’-to-total fibrinogen ratio with the plasma 

clot formation rate and turbidity change [38].  Their data suggest that the clot formation rate 

increases with total fibrinogen, but decreases with elevated γ’-to-total fibrinogen ratio.  Our 

data extend these findings in a system that enabled us to precisely control fibrinogen isoform 

levels and avoid variability between donor plasmas.  Consistent with Pieters et al., we found 

the clot formation rate correlated positively with elevated total fibrinogen.  Importantly, the 

level of γA/γA isoform correlated strongly with the clot formation rate, whereas the level of 

γA/γ’ did not, suggesting the increase in clot formation rate caused by elevated total 

fibrinogen is due to γA/γA fibrinogen. 

Two prior studies evaluated the effect of the γ’ chain on thrombosis in vivo.  Those 

studies were limited by differences in the total fibrinogen level expressed by WT and human 

γ’-expressing mice [19] and use of isolated γ’ peptide rather than full length γA/γ’ fibrinogen 

[11].  Moreover, Mosesson et al. [19] evaluated γA/γ’ fibrinogen in a venous thrombosis 

model, and although the arteriovenous shunt model used by Lovely et al. [11] included 

aspects of arterial thrombosis, it did not recapitulate endothelial denudation and 

subendothelial exposure associated with plaque rupture and arterial thrombus formation.  

Consequently, our study supports and extends the prior findings in several important ways.  

First, our infusion strategy enabled us to tightly-control the level of circulating γA/γA and 

γA/γ’ fibrinogen, allowing us to specifically attribute effects to the levels of isoform and total 

fibrinogen.  Second, our study demonstrated the antithrombin I properties of the full-length 
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form of the γ’ chain.  Third, our findings extend previous data from venous thrombosis to 

arterial pathology.  This extension is important since the role of γA/γ’ in arterial thrombosis 

has been controversial.  Our findings provide important evidence that γA/γA fibrinogen is 

causative in the etiology of arterial thrombosis, whereas γA/γ’ fibrinogen is not. 

Given our findings showing that γA/γ’ fibrinogen does not promote arterial 

thrombosis, it remains unclear why epidemiological studies find a positive association 

between elevated γA/γ’ fibrinogen and arterial thrombosis.  Previous studies have suggested 

that clots formed from γA/γ’ fibrinogen are more resistant to lysis, and conflicting studies 

report abnormal structure and mechanical stability in γ’-chain containing clots [7, 17, 18].  

Thus, γA/γ’ fibrinogen may produce clots with increased stability that are detected because 

they persist longer than clots that contain γA/γA.  Interestingly, hypofibrinolysis is correlated 

with increased risk of arterial thrombosis in young (<~50) [39, 40], but not older (>~50) 

individuals [41, 42], suggesting abnormal clot stability explains some, but not all, of the 

mechanisms leading to arterial thrombosis.  Future studies are warranted to determine the 

effect of the γA/γ’ isoform on arterial clot stability.   

Interestingly, Rein-Smith et al. recently showed interleukin-6 preferentially up-

regulates hepatocyte production of γA/γ’ fibrinogen compared to γA/γA [43].  These data 

suggest γA/γ’ (“antithrombin I”) expression is upregulated to limit endogenous procoagulant 

activity triggered by inflammation.  Indeed, C-reactive protein is elevated in patients with a 

history of arterial thrombosis [23], reflecting the proinflammatory pathology.  Increased γA/γ’ 

levels detected in patients after arterial thrombosis are likely a consequence of disease rather 

than cause, and reflect an innate, antithrombotic response to inflammation.  Although our 

fibrinogen infusion/acute thrombosis model enabled us to isolate and investigate the 
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immediate, direct effects of elevated γA/γA and γA/γ’ on thrombus formation, it did not 

recapitulate the inflammatory process associated with atherosclerosis.  Consequently, long-

term exposure to circulating γA/γ’ fibrinogen may have additional effects on plaque 

formation and/or stability.  Notably, however, Mosesson et al. did not report evidence of 

chronic inflammation or atherosclerosis in their model of chronically-elevated fibrinogen γ’ 

levels [19] suggesting even chronic exposure to elevated γA/γ’ fibrinogen levels does not 

cause thrombosis. 

In summary, our results show that both γA/γA and γA/γ’ fibrinogen increased the 

fibrin formation rate in plasma, but γA/γA fibrinogen accelerated the rate to a greater extent 

than γA/γ’ fibrinogen.  After arterial injury, γA/γA fibrinogen promoted thrombosis, whereas 

γA/γ’ did not.  Mice infused with γA/γ’ had lower levels of circulating TAT complexes, 

suggesting that following vascular injury, γA/γ’ fibrinogen binds thrombin in vivo and limits 

thrombin activity.  Our data establish independent roles of fibrinogen γA/γA and γA/γ’ in 

arterial thrombosis, and suggest γA/γA fibrinogen promotes thrombosis, whereas γA/γ’ 

sequesters thrombin and protects against procoagulant processes induced by inflammation. 
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Chapter 3: Elevated Hematocrit Promotes Arterial Thrombosis Independent of 
Thrombin Generation 

 
3.1 Introduction 

 Red blood cells (RBCs) are the most abundant cell type in blood.  Normal RBC levels 

range from ~ 4.2 to 6.1×109/mL in humans, with numbers being slightly higher in males than 

in females.  RBCs develop in the bone marrow, and circulate for ~120 days.  RBCs are 

primarily known for their role in oxygen transport via their hemoglobin-rich cytoplasm.       

 Despite being a major component of thrombi, RBCs have been thought to be passive 

participants in hemostatic and thrombotic processes.  However, growing evidence suggests 

RBCs directly contribute to coagulation.  Longitudinal, prospective studies have implicated 

elevated hematocrit as an independent risk factor for cardiovascular disease (CVD) and 

CVD-related deaths.  In a cohort of 2555 rural and 6151 urban men, incidence of myocardial 

infarction (MI), coronary insufficiency, or coronary heart disease (CHD) deaths were more 

than double in the high hematocrit group (hematocrit greater than 49%) compared to the low 

group (hematocrit less than 42%) [1].  Additionally, in a cohort of 2014 healthy men that 

were followed over a 16-year period, a high hematocrit was associated with increased risk of 

dying from CVD [2].  Moreover, health data were examined from 5209 men and women (age 

range 30-62) participating in the Framingham study and in a 34-year follow-up, it was 

determined that men and women in the highest hematocrit quintile (men ≥49%; women 

≥46%) had an increased risk of death from CVD [3].  More recently, Toss et al. [4] found 

that younger men (18-19 years old) with an elevated hematocrit (≥49%) had a 1.4-fold 
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increased risk of MI compared to men with lower hematocrit (≤44%) over the 36-year 

follow-up.  This relationship was linear and remained constant throughout the follow-up 

period.  

 RBC transfusion can alleviate bleeding in anemic patients [5], but is also associated with 

thrombosis in cancer patients [6], following surgery [7], and after subarachnoid hemorrhage 

[8].  In the latter study, thrombotic risk was dose-dependent with number of RBC units 

transfused and independent of unit storage time.  Moreover, a recent, large meta-analysis of 

blood transfusion following MI found that transfusion was associated with higher risk of 

mortality and subsequent MI compared to non-transfused controls [9].  These studies 

strongly associate elevated hematocrit with thrombosis.  However, it remains unclear 

whether an elevated hematocrit is directly causal in arterial thrombus formation.   

 Recent studies have documented specific properties of RBCs that may contribute to 

thrombosis.  First, RBCs express phosphotidylserine (PS) on their cell membranes [10] and 

these PS-positive surfaces support prothrombinase assembly and thrombin generation [11-

13].  Patients with prothrombotic disorders such as polycythemia vera (PV), β-thalassemia, 

and sickle cell disease (SCD), have increased numbers of circulating PS-positive RBCs [14-

16], and in patients with SCD, the number of circulating PS-positive RBCs correlates with 

prothrombin fragment 1.2, a measure of ongoing thrombin generation [17].  These data 

suggest RBC procoagulant activity supports thrombin generation in vivo.  Second, RBCs 

increase platelet reactivity.  ADP released by RBCs has been shown to activate platelets and 

this activation has been shown to be resistant to aspirin [18, 19].  These data suggest 

hematocrit may influence the therapeutic effect of aspirin.  Third, RBCs are the principle 

determinants of blood viscosity and therefore blood flow.  Blood viscosity increases 



! 66 

exponentially with a rise in the hematocrit; thus, a relatively small increase in hematocrit 

produces a logarithmic increase in viscosity [20].  For example, a rise in hematocrit from 

40% to 60% may increase blood viscosity 2.5-fold at high shear and 3.0-fold at low shear 

[20].  Increased blood viscosity reduces blood flow and is associated with increased risk of 

thrombosis [21].  Finally, hematocrit mediates the rate of platelet flux toward the vessel walls 

[22]; in the high shears of the arterial circulation, elevated hematocrit causes increased 

margination of platelets toward the vessel wall, promoting increased platelet-endothelial, 

platelet-platelet interactions and platelet activation [23].  However, it is unclear if these RBC 

properties contribute to thrombosis in vivo. 

 Herein, we determined in vitro that RBCs dose-dependently increased thrombin 

generation in the absence of platelets, but this effect is lost when platelet concentration is 

increased.  We also developed a novel in vivo model of elevated hematocrit in mice.  

Following RBC infusion, RBCHIGH mice maintained normal WBC and platelet numbers but 

had an elevated hematocrit.  When challenged with an arterial injury, RBCHIGH mice had a 

faster time to occlusion (TTO) compared to controls.  However, there was no difference in 

plasma thrombin-antithrombin (TAT) levels and thrombus fibrin content suggesting RBCs 

cause thrombosis independent of their procoagulant activity.  

 

3.2 Materials and Methods 

3.2.1 Proteins and Materials.   

 Monoclonal anti-fibrin(ogen) antibody (59D8) was a generous gift of Drs. Marschall 

Runge (University of North Carolina [UNC]), Charles Esmon (Oklahoma Medical Research 

Foundation).  Lipidated tissue factor (TF, Innovin) was from Siemens (Newark, DE).  P2Rho 
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thrombin-specific substrate was a generous gift from Dr. Bas de Laat (Synapse, Maastricht, 

Netherlands).  Calcium ionophore (A23187) is from Sigma (St. Louis, MO).  Anti-TER119 

antibody was purchased from Thermo Scientific (Waltham, MA) and anti-annexin V 

antibody was purchased from BD Pharmingen (San Jose, CA), Prostacyclin I2 (PGI2) was 

purchased from Cayman Chemical (Ann Arbor, MI).  Mineral Oil was purchased from Sigma 

(St. Louis, MO). 

 

3.2.2 Phlebotomy.  

 Phlebotomy was conducted from healthy, consenting human donors in accordance with 

the Declaration of Helsinki and the Institutional Review Board at the University of North 

Carolina.  Donors had not taken aspirin for 5 days prior to phlebotomy. Blood was collected 

via antecubital venipuncture into 0.105 M sodium citrate, pH 5.5 (10% v/v, final 

concentration).  

 

3.2.3 Reconstituted whole blood model.   

 Whole blood was centrifuged at 150xg for 20 minutes to separate the platelet-rich plasma 

(PRP), buffy coat, and the RBC fraction.  The PRP was then separated into two fractions.  

For fraction 1, PGI2 was added to PRP which was then centrifuged to produce a platelet 

pellet in platelet-poor plasma (PPP).  This PPP (containing PGI2) was discarded.  For fraction 

2, PRP was centrifuged to make PPP (without PGI2).  The PPP from fraction 2 was used to 

resuspend the platelet pellet.  The RBC fraction was further centrifuged to produce packed 

RBCs (pRBCs).  Cell counts were obtained on a Sysmex pocH-100i™  Automated 
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Hematology Analyzer (Lincolnshire, IL).  pRBCs, platelets, and PPP were combined to the 

hematocrit and platelet concentrations indicated.  

 

3.2.4 Thrombin generation in whole blood.   

 Thrombin generation was measured in whole blood as described [24].  Briefly, 30 µL of 

reconstituted blood was mixed with 10 µL thrombin specific substrate (P2Rho; 1.8 mM).  

Clotting was activated with 20 µL of tissue factor and CaCl2 (1.5 pM and 50 mM, 

respectively).  A 5 µL aliquot of the clotting reactions was immediately transferred to a 96-

well plate containing Whatman 589/1 filter paper (St. Louis, MO) and covered with 40 µL of 

mineral oil.  Calibration wells were run for each hematocrit using 20 µL of α2M-thrombin.  

Fluorescence was recorded every 5 seconds with a Fluoroskan Ascent microplate fluorometer 

with λex = 485 nm and λem = 538 nm.  Reactions were performed at 37 oC. 

 

3.2.5 Mouse model of elevated hematocrit.   

 Procedures were approved by the UNC Institutional Animal Care and Use Committee.  

RBCs were harvested from healthy, 6- to 8-week old male and female C57Bl/6 mice.  Briefly, 

mice were anesthetized and blood was drawn from the inferior vena cava (IVC) into 3.2% 

sodium citrate (10% v/v, final concentration).  Blood was centrifuged at 150xg for 10 

minutes to separate RBCs from PRP.  RBCs were suspended in sterile 1.29 mM sodium 

citrate  (pH 7.2), 3.33 mM glucose, 124 mM NaCl (CGS) and centrifuged at 250xg for 5 

minutes 3 times to wash RBCs.  Washed RBCs were suspended in sterile 20 mM N-2-

hydroxyethylpiperazine-N’-2-ethane-sulfonic acid (pH 7.4) containing 150 mM NaCl (HBS) 

and centrifuged at 400xg for 10 minutes to “pack” RBCs.  RBCs were counted on a 
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HV950FS Hemavet cell counter (Drew Scientific, Dallas, TX) and the hematocrit was 

adjusted to 70%.  For RBC transfusions, male, 6- to 8-week old C57Bl/6 mice anesthetized 

and injected with pRBCs via the retro-orbital plexus.  After 24 hours, blood was drawn from 

the IVC or animals were subjected to thrombosis models. 

 

3.2.6 Blood smears.   

Differential staining was performed by fixing smears in methanol, and then incubating in 

Eosin Y and Azure B for one minute each (Diff-stain kit, IMEB, San Marcos, CA).  Stained 

smears were imaged using an Olympus BX61 microscope (Waltham, MA). 

 

3.2.7 Flow cytometry.  

 Whole blood and washed RBCs were diluted 1:500 and 1:1000, respectively, in RBC 

wash buffer (21 mM Tris-base, 140 mM NaCl, 11.1 mM dextrose, 4.7 mM KCl, 1.2 mM 

MgSO4, and 0.1% PEG 8000 at pH 7.4 in the absence and presence of 2.5 mM CaCl2).  

Diluted samples (100 µL) were stained in the dark at room temperature for 30 minutes with 

10 µL FITC-Annexin V for PS detection and 5 µL PE-TER119 for RBC detection.  After 

staining, samples were further diluted with 1000 µL RBC wash buffer and analyzed on a 

Stratedigm S1000Ex flow cytometer (San Jose, CA) using appropriate compensation controls.  

Samples stained in the absence of calcium were used as negative controls.  RBCs treated with 

10 mM N-ethylmaleimide plus 4 µM calcium ionophore A23187 for 30 minutes prior to 

staining were used as positive controls.  PS-positive RBCs were determined by dual positive 

staining for TER119 and Annexin V.  Percent PS-positive RBCs was calculated by dividing 

the number of dual positive events by the total number of TER119 events in each sample. 
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3.2.8 Blood viscosity measurements.  

 Whole blood viscosity was measured using a stress-controlled cone-and-plate rheometer 

(AR-G2, TA Instruments, New Castle, DE), where the cone had a 60 mm diameter and a 1/2º 

cone angle and with the operating temperature set at 37ºC. Startup effects were reduced by 

subjecting samples to a 30 s-1 preshear before beginning the sweep.  The viscosity recorded at 

each shear-rate was the result of the rheometer reaching steady state, where three consecutive 

viscosity measurements integrated over 10 seconds were required to vary from one another 

by less than 5%.  To ensure the history of high shear rates did not affect the overall rheology 

of the blood in repeated measurements, we first ran the shear rate sweep with increasing 

shear rates (from 30 to 2300 s-1) and then repeated the measurement in the opposite direction 

(from 2300 to 30 s-1). 

 

3.2.9 FeCl3 model of arterial thrombosis.   

 FeCl3 injury to carotid arteries was performed as described [25-27].  Briefly, 6- to 8- 

week old male C57Bl/6 mice were anesthetized, and the right common carotid artery was 

exposed, dried, and treated with FeCl3 (10% on 0.5 X 0.5-mm filter paper) for 2 minutes.  

Blood flow was monitored by Doppler ultrasonic flow probe, and the time to vessel 

occlusion was defined as the time between FeCl3 administration and lack of flow for 60 

seconds.  Vessels were excised and fixed in 10% formalin for 24 hours and then transferred 

to 70% ethanol. 
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3.2.10 Measurement of circulating thrombin-antithrombin (TAT) complexes.   

 TAT complexes were measured with plasma prepared from IVC blood draws at baseline 

and after FeCl3/carotid artery thrombosis (in separate mice) by ELISA (Enzygnost TAT 

micro ELISA, Siemens, Munich, Germany).  

 

3.2.11 Histology.   

 Fixed tissues were dehydrated and paraffin-embedded, and consecutive, 5-µm sections 

cut and mounted with vectamount (UNC Lineberger Comprehensive Cancer Center Animal 

Histopathology Core).  Slides were stained with hematoxylin and eosin (H&E), and imaged 

using an Aperio scanner (Leica Biosystems Inc, Buffalo Grove, IL).  Immunohistochemistry 

was performed as described [25].  Briefly, antigen retrieval was performed in a 95°C water 

bath using Target Retrieval Solution (DakoCytomation, Capinteria, CA).  Slides were 

blocked with mouse IgG blocking reagent (Vector Laboratories, Burlingame, CA) and 

stained with anti-fibrin antibody (59D8) for 1 hour in a humidity-controlled chamber.  Slides 

were developed using an avidin-biotin complex (DakoCytomation, Capinteria, CA).  

Simultaneously, negative controls were stained in the absence of primary antibody.  Staining 

intensity of thrombi was performed blindly by six individuals on a scale of 0-3.   

 

3.2.12 Measurement of circulating platelet factor 4 (PF4) levels.  

 PF4 complexes were measured with plasma prepared from IVC blood draws at baseline 

and after FeCl3/ carotid artery thrombosis (in separate mice) by ELISA (Mouse CXCL4/PF4 

Quantikine ELISA, R&D Systems, Minneapolis, MN) 
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3.2.13 Statistical methods.  

 Descriptive statistics (mean, median, standard deviation [SD], and standard error of the 

mean [SEM]) were calculated.  Groups were compared using Student’s t-tests (normally 

distributed data determined by Lilliefors test for normality) or Wilcoxon-Mann–Whitney 

rank sum tests (non-normally distributed data) in Kaleidagraph version 4.1.3 (Synergy 

Software, Reading, PA).  For the viscosity experiments, we logarithmically transformed both 

viscosity and shear rate and used a linear model to describe the relationship between the 

variables.  

 

3.3 Results 

3.3.1 The RBC increase in thrombin generation in whole blood is dependent on platelet 

concentration.  

 Previous studies have shown that RBCs express PS on their cell membrane and that these 

surfaces can support thrombin generation [10-13].  These prior experiments were limited in 

that either only one hematocrit was studied, platelets were absent, or only one platelet 

concentration was tested. Therefore, we separated whole blood from healthy human donors 

into plasma, concentrated PRP, and pRBCs and reconstituted these components to reach 

hematocrits of 0, 20, and 45% in the presence or absence of platelets (200x103/µL or 

450x103/µL platelets, final concentration).  As expected, in the absence of platelets, 

increasing hematocrit strongly increased thrombin generation (P<0.005, Figure 3.1).  When 

platelet concentration was raised to 200x103/µL, increasing hematocrit still increased 

thrombin generation but to a lesser extent (P<0.05) than in the absence of platelets (Figure 

3.1).  Interestingly, when platelet concentration was raised to 450x103/µL, increasing 
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hematocrit did not increase thrombin generation (Figure 3.1).  These data suggest the effect 

of hematocrit on thrombin generation is dependent on platelet concentration.  
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Figure 3.1: The RBC effect on thrombin generation is dependent on platelet 
concentration.  Platelet-poor plasma was reconstituted with 0, 200, or 450 K/µl platelets, 
and 0, 20, or 45% hematocrit, final.  Thrombin generation was measured by calibrated 
automated thrombography. Data are shown as mean±SEM. N=3-6. **P<0.005, *P<0.05. 
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3.3.2 RBC infusion raises hematocrit in mice without altering RBC morphology or PS-

exposure.  

 To determine the effects of elevated hematocrit in vivo, we developed a mouse model in 

which we infused healthy mice with washed pRBCs from healthy donor mice.  Complete 

blood counts showed RBCHIGH mice had elevated hematocrit compared to control mice 

(46.6±0.69 versus 39.32±0.74%, P<0.0001, mean ± SE, Figure 3.2A).  Levels of neutrophils 

and monocytes were the same in controls and RBCHIGH mice (1.05±0.28 versus 1.71±0.35 

K/µL, P=0.15, and 0.28±0.06 versus 0.18±0.04 K/µL, P=0.16 respectively, mean ± SE, 

Figure 3.2B,C).  Platelet levels were slightly lower in RBCHIGH mice compared to controls 

(699.0±33.3 versus 802.2±33.7 K/µL, P=0.04, mean ± SE, Figure 3.2D), likely due to 

expanded blood volume following RBC infusion.  Importantly, platelet counts in both 

controls and RBCHIGH remained within the normal range.  Blood smears demonstrated 

normal RBC morphology in pRBCs before infusion (Figure 3.2E, left), and whole blood 

drawn from control mice (Figure 3.2E, middle), and RBCHIGH mice (Figure 3.2E, right).  

Consistent with previous reports [10, 11, 28, 29], only ~0.5% of pRBCs or circulating RBCs 

in control and RBCHIGH mice expressed PS (Figure 3.2F).  Compared to control mice, blood 

from RBCHIGH mice displayed increased blood viscosity over a range of venous and arterial 

shear rates (30-2300 s-1) (Figure 3.2G).  Together, these data show pRBCs can be infused in 

mice without increasing other cell types, changing RBC morphology, or increasing RBC-PS 

exposure, and establish the murine infusion model as a novel way to increase hematocrit in 

mice. 
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Figure 3.2. RBC transfusion raises hematocrit in recipient mice.  RBCs from “donor” 
mice were transfused into “recipient” mice (RBCHIGH).  Blood was drawn from control and 
RBCHIGH mice after 24 hours.  Complete cell count indicates A) elevated hematocrit, but 
normal B) neutrophil, C) monocyte, and D) platelet numbers.  Blood smears on whole blood 
from control and RBCHIGH mice indicate normal RBC morphology (E) and PS exposure (F).  
G) Viscosity measurements show RBCHIGH mice (closed circles) have increased viscosity at 
low and high sheer compared to control mice (open circles). In A-D each dot is a separate 
mouse, lines indicate median values, and boxes represent the normal range.  Error bars 
represent standard deviation.   
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3.3.3 Compared to controls, RBCHIGH mice have a faster time to arterial occlusion.  

 To determine the effect of elevated hematocrit on thrombus formation, we then subjected 

control and RBCHIGH mice to the FeCl3/carotid artery injury model.  Compared to control 

mice, RBCHIGH mice had a significantly shorter time to occlusion (TTO,12.8±2.2 minutes 

versus 5.3±0.4, respectively [mean ± SEM], P<0.001) Figure 3.3A).  Infusion of RBC wash 

supernatant into mice did not shorten the time to occlusion (Figure 3.3A) indicating the HBS 

wash the RBCs were packed in did not cause thrombosis.  Moreover, 7.7 minutes after FeCl3 

injury, 100% of RBCHIGH mice had an occluded vessel, whereas only 50% and 40% of 

control and HBS-infused mice, respectively, developed vessel occlusion (Figure 3.3B).  

Inspection of the Doppler curves indicated that compared to control mice, RBCHIGH mice 

exhibited an earlier onset (3.0±0.5 versus 1.6±0.4 minutes, respectively, P=0.06) and faster 

rate (0.016±0.002 versus 0.009±0.001 Hz/min, respectively, P<0.009) of thrombus formation 

(Figure 3.3C,D). 
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Figure 3.3.  RBCHIGH mice have a shortened time to vessel occlusion following FeCl3 
injury to the carotid artery.  Control and RBCHIGH mice were subjected to FeCl3 injury to 
the carotid artery.  A) Time to vessel occlusion was recorded via Doppler flow probe.  In 
vessels that did not occlude, TTO was recorded as 20 minutes.  B) Percent of mice occluded 
in 7.7 minutes (the median TTO of control mice).  C) Normalized Doppler curves from 
control (open circles) and RBCHIGH (closed circles) mice indicate the loss of blood flow 
during thrombus formation.  D) Rate of thrombus formation in control and RBCHIGH mice 
was determined by fitting a line to the Doppler curves once blood flow decreased.  
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3.3.4 In vivo thrombin generation does not differ between control and RBCHIGH mice.   

 Figure 3.1 shows that RBCs dose-dependently increase thrombin generation in a static in 

vitro system but not when platelets are present at 450x103/µL.  To determine if RBCs 

increase thrombin generation in vivo, we drew blood from mice following FeCl3-triggered 

thrombus formation and measured plasma TAT complexes.  We found there was no 

difference in plasma TAT levels between RBCHIGH and control mice (7.35±1.09 versus 

5.78±0.65 ng/mL, respectively, P=0.25, mean±SE, Figure 3.4A).  Furthermore, there was 

also no correlation between hematocrit and TATs (Figure 3.4B) and platelet concentration 

and TATs (Figure 3.4C).  These data suggest RBCs do not shorten the TTO by increasing 

thrombin generation. 
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Figure 3.4. Thrombin-antithrombin complexes are similar in control and RBCHIGH mice 
following FeCl3 injury.  A) Plasma TAT complexes were measured by ELISA in control 
and RBCHIGH mice at baseline and after FeCl3 injury. B) Correlation between hematocrit and 
TATs. C) Correlation between platelet concentration and TATs.  
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3.3.5 Thrombi from control and RBCHIGH mice do not differ in size or fibrin content.  
 
 To determine the mechanism of faster TTO in RBCHIGH mice, we excised the occluded 

carotid arteries from mice and stained thrombi with H&E and antibodies against fibrin.  

Thrombi in control and RBCHIGH mice were occlusive and similar in size (Figure 3.5C), and 

H&E staining showed thrombi were primarily composed of protein with small islands of 

RBCs (Figure 3.5A).  Thrombi from control and RBCHIGH mice also did not differ in fibrin 

content (Figure 3.5B).  No fibrin staining was detected in the absence of primary antibody, 

confirming the secondary antibody did not bind to mouse tissue nonspecifically.  These data 

indicate that increasing RBCs produces thrombi of similar size and content, and does not 

increase fibrin deposition in thrombi. 
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Figure 3.5. Thrombi from control and RBCHIGH mice have similar morphology and 
fibrin content. Thrombi were excised, fixed, and analyzed by A) H&E staining and 
immunohistochemistry for B) fibrin (antibody 59D8).  C) Thrombus size was determined by 
measuring pixel area of the thrombus within the vessel.  Scale bar represents 500 µm. 
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3.3.6 PF4 levels did not differ between control and RBCHIGH mice. 

 To determine if platelet activation was increased in RBCHIGH mice, we used PF4 as a 

marker of platelet activation in plasma following FeCl3 arterial injury (Figure 3.6).  However, 

arterial thrombus formation did not increase plasma levels of PF4 despite the formation of 

platelet-rich thrombi in mice (Figure 3.5) suggesting PF4 is a poor marker of platelet 

activation in murine plasma.  Alternatively, since little PF4 was measured in plasmas 

following platelet-rich thrombus formation, it could be possible that platelets are aggregating, 

without degranulating, and thus platelet PF4 is maintained in the α-granuoles without being 

released into the plasma.  
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Figure 3.6. PF4 levels did not differ between control and RBCHIGH mice.  PF4 was 
measured by ELISA in plasma from control and RBCHIGH mice at baseline and following 
FeCl3 injury and clot formation.  Uninjured murine whole blood spun to plasma served as a 
negative control.  Murine whole blood activated with thrombin, then centrifuged to PPP 
served as a positive control.     
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3.4 Discussion 
 
 Although epidemiological studies have associated RBC transfusion and high hematocrit 

with arterial thrombosis, the causal role of RBCs in thrombosis has been controversial.  

Additionally, the mechanism by which RBCs promote thrombus formation is unclear.  

Herein, we measured thrombin generation in vitro in reconstituted blood with increasing 

RBCs and platelets.  We found that RBCs increased thrombin generation in the absence of 

platelets, although effects were blunted and eventually absent as platelet count increased.  To 

determine if RBCs cause arterial thrombosis in vivo, we infused RBCs into mice and showed 

that RBCHIGH mice have a faster TTO than controls.  TAT measurements from plasma 

following arterial injury showed no difference between RBCHIGH and controls.  These data 

suggest thrombosis was not accelerated by RBC-driven thrombin generation. 

 Similar to previous studies, we found that RBCs increased thrombin generation in vitro, 

but extended these findings by showing that the RBC influence on thrombin generation was 

dependent on the concentration of another PS-positive surface (platelets).  In our in vivo 

model, control and RBCHIGH mice had an average platelet count of 802.2±33.7 and 

699.0±33.3 K/µL, respectively.  This high platelet count may be a reason why RBC-

supported thrombin generation did not drive thrombosis in vivo.  However, RBC-supported 

thrombin generation may play a greater role in vivo role under thrombocytopenic conditions. 

Since in our in vivo model, RBCs accelerated thrombosis independent of thrombin generation, 

and our model was performed in an arterial bed in which thrombi are platelet-rich, it is likely 

that RBCs cause thrombosis via their influence on platelets.  Experiments to test this 

hypothesis and preliminary data are described in Chapter 4.    
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 Since our study shows elevated hematocrit did not accelerate thrombosis via increasing 

thrombin generation, we suggest that use of anticoagulants would be ineffective in 

preventing thrombosis in patients with an elevated hematocrit.  In fact, a retrospective 

analysis of patients with PV receiving secondary prophylaxis with oral anticoagulants 

showed 20% of patients displayed recurrent arterial thrombosis, and 20% of patients 

developed bleeding [30].  Even though this study was performed in patients with a backdrop 

of PV, RBCs from patients with PV have been shown to have increased PS-exposure [14] 

which would suggest RBC-supported thrombin generation may play a greater role in 

thrombosis in this population compared to a population with elevated RBCs with normal PS 

exposure.  These data further support the idea that RBCs cause thrombosis independent of 

thrombin generation and that anticoagulation may even cause more harm then good in 

patients with an elevated hematocrit. 

 Since RBCs did not accelerate thrombosis via increasing thrombin generation, we 

hypothesized that RBCs promoted thrombosis via a platelet-mediated mechanism.     

Antiplatelet therapy has been shown to be successful in preventing thrombosis in patients 

with elevated hematocrit caused by PV.  The efficacy of low-dose aspirin was tested by the 

European Collaboration on Low-Dose Aspirin in Polycythemia Vera Project (ECLAP) in a 

double-blind, placebo controlled, randomized clinical trial [31].  Aspirin significantly 

lowered the risk of cardiovascular death, non-fatal MI, and non-fatal stroke compared to 

placebo control without causing significant bleeding.  These data show platelet inhibition 

helps prevent thrombosis with patients with PV and suggest elevated RBCs may cause 

arterial thrombosis via a platelet-mediated mechanism. 
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 Previous studies have used animal models to study the effects of elevated hematocrit on 

bleeding, thrombosis, and blood flow.  These models induced RBC production through 

overproduction of erythropoietin or by JAK 2V617F-induced PV.  In erythropoietin-induced 

erythrocytosis, studies have found a range of phenotypes.  Zebrafish with increased 

expression of erythropoietin (via mRNA injection) show increased blood viscosity, reduced 

blood flow, localized vascular stasis, and had a high mortality rate, however thrombosis 

models were not utilized in this study [32].  Interestingly, mice overexpressing human 

erythropoietin that reached a hematocrit of 80-85% demonstrated a bleeding phenotype [33].  

The authors conclude bleeding is due to reduced coagulation activity due to a lack of plasma 

volume.  However, this hematocrit is not physiologic, making it difficult to translate these 

results to high hematocrits seen in patients.  Hematocrit has also been raised in mice via 

treatment with human recombinant erythropoietin but no difference in thrombosis was found 

compared to controls [34].  However, erythropoietin has been implicated in a wide range of 

activities on different cell types and organ systems including immune cells, endothelial cells, 

bone marrow stromal cells, and cells of the heart, reproductive system, gastrointestinal tract, 

muscle, kidney, pancreas, and nervous system [35-40].  Thus, it is hard to draw conclusions 

about RBCs and thrombosis in models using erythropoietin.   

 Lamrani et al studied thrombosis in mice that developed JAK 2V617F-induced PV [34].   

Interestingly, mice with PV had increased bleeding in a tail bleed model but had a 

prothrombotic phenotype following FeCl3 injury to mesenteric vessels.  However, PV mice 

also had a platelet GPVI deficiency, and a reduced number of plasma von Willebrand factor 

multimers [34].  Therefore, studying the effect of high hematocrit in the backdrop of PV 

makes defining the role of RBC in thrombosis difficult to interpret. 
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 Our novel model of elevated hematocrit using RBC infusion represents a means of 

studying the effects of RBCs in mice.  Although mice had a slight decrease in platelet count 

this model allowed for elevation of just RBCs without substantially affecting other cell types.  

This model also showed consistent elevation of RBCs to levels that resembled pathologically 

high levels in humans.  Finally, this model lends itself to further manipulation of RBCs ex 

vivo (i.e. storage or gluteraldehyde treatment to increase stiffness) or use of RBCs from mice 

strains with RBC abnormalities such as SCD or PV so different RBC properties can be 

studied.    

 FeCl3 is a commonly used method to induce thrombosis in animal models.  A previous 

study suggested RBCs play a role in thrombosis following FeCl3-induced vascular injury by 

being the first cells to adhere to FeCl3-treated endothelial surfaces [41].  This RBC adhesion 

could serve as a limitation of interpreting our data since in this model increasing hematocrit 

may increase the number of RBCs binding to the endothelium following FeCl3 injury.  

Therefore, future experiments will test the role of RBCs in other models of hemostasis and 

thrombosis.  

 In summary, our results show that RBCs increased thrombin generation in vitro in the 

absence of platelets, but platelet concentration mediates the RBC effect on thrombin 

generation.  Moreover, we developed a novel model of elevated hematocrit in mice and 

found elevated hematocrit is causative in arterial thrombus formation in vivo.  However, 

thrombosis was not due to increased thrombin generation or fibrin formation.  Future studies 

(discussed in Chapter 4) are warranted to determine the mechanism by which elevated 

hematocrit causes thrombosis including RBC influences on blood rheology and biochemical 
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effects on platelet activation and aggregation.  Knowledge of the mechanism by which RBCs 

cause thrombosis will help guide in therapeutic strategies in patients with elevated hematocrit.  
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Chapter 4: Summary and Future Directions 
 

4.1 Summary 
  

Arterial thrombosis is a leading cause of death and disability worldwide, but the 

specific mechanisms leading to thrombus formation are not well-defined.  Numerous 

epidemiological studies have made associations between blood hypercoaguability and risk of 

arterial thrombosis.  These associations have primarily been studied in in vitro systems where 

purified components of blood are studied in isolation or in the presence of a limited number 

of additional blood components.  Therefore, this dissertation utilized plasma-based in vitro 

systems and novel in vivo murine models to study how a form of plasma hypercoaguability 

(elevated γ’-fibrinogen) and cellular hypercoagabulity (elevated RBCs) influence arterial 

thrombus formation.  The goal of this research was to determine if elevated levels of γ’-

fibrinogen and/or RBCs are directly causative in arterial thrombosis or just biomarkers of a 

different pathology. 

 

4.2 Future Directions 
 

We have shown using a murine model that γA/γA, not γA/γ’, is the fibrinogen 

isoform responsible for causing arterial thrombosis [1].  This was an interesting finding since 

epidemiological studies have associated elevated γA/γ’ fibrinogen with arterial thrombosis 

[2-7]. To date, studies measuring γA/γ’ fibrinogen levels in patient plasma have sampled 

blood following arterial thrombosis.  We hypothesize that the elevated γA/γ’ fibrinogen 

levels measured in these plasmas is due to an inflammatory response following thrombus 
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formation.  Data to support this hypothesis came from a study on the effects of the 

proinflammatory cytokines (e.g. IL-6) on fibrinogen expression by HEPG2 cells [8].  Using 

an in vitro system of cultured cells, the authors found that IL-6 upregulates γ’ production to a 

greater extent than γA production [8].  Therefore we propose γ’ may be increased in response 

to the thrombus and not causative in the development of the thrombus as was previously 

thought.  Prospective studies are needed to determine if γA/γ’ levels are actually elevated 

prior to thrombus formation.  This will give further insight into the role of γA/γ fibrinogen in 

arterial thrombosis in humans.  Even though our model showed γA/γ’ is not causative in 

arterial thrombosis, it may serve as a good biomarker of an ongoing inflammatory process. 

There are several mechanisms by which RBCs can promote thrombosis including 

increasing platelet margination toward the vessel wall, increasing platelet aggregation and 

activation, and increasing plasma thrombin generation.  These mechanisms present several 

different therapeutic strategies to prevent thrombus formation including phlebotomy, platelet 

antagonism, and anticoagulation (Figure 4.1).  However, our data suggest RBCs do not 

increase thrombus fibrin content or thrombin generation in a mouse model of arterial 

thrombosis suggesting anticoagulation would not be an appropriate therapeutic strategy in 

patients with high hematocrit.  
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Figure 4.1.!Conceptual model showing influence of RBCs on thrombus formation and 
therapeutic targets. RBCs increase viscosity, promote platelet interactions with the vessel 
wall, and increase thrombin generation. Phlebotomy, platelet antagonism, and anticoagulants 
are candidates for reducing thrombotic risk with elevated hematocrit.  Our data suggest 
anticoagulants would not be a good therapeutic strategy since elevated hematocrit promotes 
thrombosis independent of thrombin generation and fibrin formation.!
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Future experiments on RBCs should focus on determining the mechanism by which 

RBCs promote thrombosis in vivo.  To test the hypothesis that RBCs accelerate thrombosis 

via a platelet dependent mechanism, we will use ex vivo microfluidic chambers to test the 

effect of elevated hematocrit on the rate and total amount of platelet and fibrin accumulation 

on collagen.  We have an active collaboration with Drs. Keith Neeves and Adam Wufsus at 

Colorado School of Mines; they are currently performing these experiments and have 

preliminarily found increasing hematocrit dose-dependently increases platelet accumulation 

on collagen (Figure 4.2A).  However, increasing hematocrit did not increase fibrin(ogen) 

accumulation between 45% and 60% hematocrit with only a slight increase from 30%-45%.  

(Figure 4.2B).   These data are consistent with our murine model described in Chapter 3 in 

that RBCs do not increase fibrin deposition in clots.  Furthermore, this data suggest RBCs 

contribute to thrombosis via a platelet-mediated mechanism. 
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Figure 4.2. Platelet and fibrin(ogen) fluorescent intensity. A) Integrated fluorescent 
intensity of Pacific-Blue anti-CD41 labeled platelets and B) Alexa Fluor-488 labeled 
fibrinogen as a function of time for the 30 (blue), 45 (red), and 60 (black) hematocrit blood 
clots. Lines are the mean and the shaded region is the standard deviation of 6-10 collagen 
spots from three separate assays.  Experiments performed in collaboration with, and printed 
with permission from Drs. Keith Neeves and Adam Wufsus at the Colorado School of Mines.   
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Next, we plan to add a platelet antagonist to the reconstituted blood used in the 

microfluidic model to determine if RBCs promote thrombosis via a platelet mediated 

mechanism.  Moreover, we will utilize a murine model where RBCHIGH  and control mice are 

treated with a platelet antagonist and subjected to FeCl3 injury to the carotid artery.  We 

expect inhibiting platelets will eliminate the effect of elevated hematocrit on thrombosis by 

reducing RBC-induced platelet activation and aggregation.  In sum, these experiments will 

determine if RBCs promote thrombosis via increasing platelet activation and aggregation in 

response to a procoagulant stimulus.   

 Our novel mouse model of elevated hematocrit may be useful for studying other 

RBC-related pathologies.  For example, in transfusion medicine it is controversial whether 

RBC storage increases the procoagulant nature of RBCs [9, 10].  Similarly, sickled RBCs 

have been shown to have abnormal PS expression, stiffness, and adhesive properties but it is 

unclear if these properties contribute to thrombus formation [11].  It would be interesting to 

combine the RBC infusion model using RBCs that have been stored, treated with 

gluteraldehyde, or that have been isolated from mice with sickle cell disease to determine if 

RBCs are specifically responsible for thrombosis in these pathologies.  Additionally, it would 

be interesting to perform an RBC transfusion and subject mice to models of venous 

thrombosis to determine how RBCs influence clot formation under different vascular 

conditions.  Knowledge of the influence of both normal and abnormal RBCs to arterial and 

venous thrombosis may help provide insight in the mechanisms by which RBCs cause 

thrombosis, and thus prevent thrombosis in patients with elevated hematocrit, and patients 

with RBC abnormalities.  Additionally, knowledge of the mechanism by which RBCs cause 
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thrombosis may also guide therapeutic strategies in patients with elevated hematocrit and 

RBC disorders. 
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