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Recent industry changes in swine-management practices have resulted in a growing controversy

surrounding the environmental and public health effects of modern swine production. The

numerous wastes produced by intensive swine production not only pose a significant challenge to

effective environmental management but also are associated with decreased air quality in confine-

ment houses, potentially transferable antimicrobial resistance patterns, and several infectious

agents that can be pathogenic to humans. Published studies have documented a variety of conta-
minants, microbial agents, and health effects in those occupationally exposed to swine, and these

have provided the groundwork for an increasing body of research to evaluate possible community
health effects. Nonetheless, several factors limit our ability to define and quantify the potential
role of intensive swine-rearing facilities in occupational and community health. Our incomplete

understanding and ability to detect specific exposures; the complicated nature of disease etiology,
pathogenesis, and surveillance; and the inherent difficulties associated with study design all con-

tribute to the inadequate level of knowledge that currently prevails. However, an evaluation of the

published literature, and a recognition of the elements that may be compromising these studies,

provides the foundation from which future studies may develop. Key words: air quality, air sam-
pling, CAFOs, community health, occupational health, hygiene, industrial wastes, swine produc-
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During the last several years most animal
husbandry practices in the United States
have been industrialized, resulting in an
increased number of large corporate and
contract livestock operations raising thou-
sands of animals in a single facility.
Industrialized farms achieve economies of
scale through specialization, increased size,
and close confinement that allows high ani-
mal densities on relatively small land areas
(1,2). These changes in animal production
systems, combined with changing communi-
ty demographics, have considerably nar-
rowed the farm-urban interface and have
resulted in growing public concern over the
potential occupational, environmental, and
community hazards posed by these large
concentrated animal feeding operations
(CAFOs). Numerous debates and related
legislation over this controversial topic have
brought to the public forefront several health
issues related to modern swine husbandry.

Swine CAFOs

Most modern swine operations raise thou-
sands of animals in closed confinement build-
ings. Among other things, closed confinement
facilitates climate control and automation of
some tasks such as feeding and watering.
However, the large number of animals raised
in swine CAFOs generate significant amounts

of dusts, dander, and waste materials. Within
the confinement buildings, dust particles con-
sisting of swine skin cells, feces, feed, bacteria,
and fungi become airborne and contribute to
poor indoor air quality (3). The manure and
urine produced in these buildings also gener-
ate numerous gases that may further decrease
the quality of the indoor air. Thousands of
gases, particles, and bioaerosol emissions have
been documented in swine facilities. Many
pollutants present at these facilities do not
have occupational exposure limits (OELs).
Swine CAFOs must deal with a substan-
tial amount of waste materials on-site that are
associated with significant odors and contain
antimicrobials, nutrients, organics, and path-
ogenic microbes. Raw swine manure can
contain 100 million fecal coliform bacteria
per gram (4-7). It is estimated that 100 mil-
lion tons of feces and urine are produced
annually by the 60 million hogs raised in the
United States (8). Storage and treatment of
this waste is typically in wastewater lagoons.
Lagoons became popular for the storage and
management of swine wastes as production
facilities increased in size and efficient storage
and treatment of wastes became necessary.
The majority of swine lagoons rely principal-
ly on anaerobic bacteria (bacteria that do not
use oxygen) to decompose the organic matter
because more organic matter per unit lagoon
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volume can be handled by anaerobic bacteria
than by aerobic processes (9, 10). In addition,
anaerobic lagoons can be deeper, requiring
less land area than aerobic lagoons.

Lagoon management has become a
significant environmental concern. Contam-
ination of the environment can result from
lagoon breaks and the subsequent release of
millions of gallons of animal wastes directly
into surface water at one time (/) or from
seepage losses of lagoon wastewater into the
surrounding soil and groundwater (77-13).
In addition, land application of liquefied
wastes may result in wastes leaching into
groundwater or reaching streams as a result
of overland flow (4,14). When sprayfields are
used to distribute the wastes, aerosolization
of particulates may result in contamination
over a wide geographic range (15,16).

The widespread application of antimicro-
bial agents at therapeutic and subtherapeutic
levels allows the livestock industry to increase
animal densities and feed conversion rates.
With greater opportunities for horizontal
spread of infectious agents among closely
confined animals, antimicrobials are useful to
decrease the spread of infectious disease
between animals (17,18). The broad applica-
tion of antimicrobials to farm animals can
apply selective pressure to their normal and
pathogenic microflora (17-20), resulting in
the evolution of groups of resistant organisms
that may survive in the environment or pass
their resistance properties to other human-
associated microbes.

Identification of Potential
Human Health Effects

Historically, human disease resulting from the
exposure to gases, aerosols, and infectious
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agents generated or carried by animals and
their wastes has been largely limited to those
in agricultural occupations (e.g., farmers, food
processors, and veterinarians). Consequently,
most reports of human-acquired disease
from animal husbandry practices focus on
occupational exposures. However, even in
these high-risk groups, elucidating potential
causative agents, dose—response relation-
ships, disease mechanisms, and methods of
control is problematic.

In health-effect studies of gases and par-
ticulates, it is difficult to identify the cause of
occupational illnesses in the absence of specif-
ic biomarkers. Similarly, determining which
chemicals to sample to evaluate occupational
exposures is complicated because it still is not
clear which specific contaminants or complex
mixtures are responsible for reported symp-
toms, or even whether all the potentially
harmful substances have been evaluated.

Studies of occupational exposure to
infectious agents associated with swine pro-
duction are complicated by the natural his-
tory of disease caused by agents of animal
origin (zoonoses). The majority of zoonotic
diseases that occur in people resolve without
specific medical therapy and are not trans-
mitted between people (21). Consequently,
large outbreaks or epidemics of disease do
not usually occur with zoonoses. Even dis-
eases that do require medical attention can
be difficult to diagnose because the symp-
toms are vague and nonspecific and because
traditional human and veterinary surveil-
lance systems are not equipped to detect
many of them (22). Consequently, many
diagnoses of this type are made only when
there is increased suspicion on the part of
the medical provider and when special
requests are made of the diagnostic laborato-
ry. Even when these requests are made, labo-
ratory technicians unfamiliar with animal
diseases may be unprepared for the diagnosis
of zoonotic diseases.

Detection of specific exposures and dis-
eases in the communities surrounding swine
CAFO:s is even more challenging because of
the additional complexities of environmental
dispersion of agents and human exposure
pathways. Furthermore, the susceptibility of
community members to contaminants and
pathogens may be substantially different
from that of workers.

To address some of these issues, we evalu-
ate the evidence related to the adverse expo-
sures and health effects found in occupational
studies. Although more susceptible workers
may leave their jobs because of adverse health
effects, an assessment of the occupational
exposures and associated symptoms may pro-
vide a template for the approach that studies
of potential community problems should
take. We discuss the most likely routes of
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community exposure to these hazards and
the limitations of the published research.

Identified Hazards of Swine
CAFOs

Air-Associated Contaminants

In the 1970s, researchers described respirato-
ry hazards for workers in swine confinement
operations (23,24). Since that time many
researchers from the United States, the
Netherlands, Sweden, Denmark, Yugoslavia,
and Canada have documented symptoms
and begun to identify the contaminants and
contaminant concentrations associated with
the symptoms (25-40). Industrial hygiene
studies have measured the concentration of
contaminants in the air of swine houses,
epidemiologic studies have documented
symptoms in workers and contaminant con-
centrations in air, mechanistic studies have
exposed human volunteers to swine dust,
and community studies have documented
symptoms in residents who live adjacent to
swine CAFOs.

The primary airborne contaminants in
swine operations can be grouped into three
categories: gases and vapors, nonbiologic
aerosols, and bioaerosols (24,41,42). Early
occupational health studies focused on the
gases and nonbiologic aerosols in the indoor
air because their adverse health effects gener-
ally were well documented and because there
were recommended occupational exposure
limits for these agents. However, bioaerosols,
particularly endotoxins, have emerged as
important agents in causing adverse respira-
tory health effects in swine CAFO workers.

Although the variety of adverse health
effects associated with working at a swine
CAFO is well documented, it is not clear
which agents or mixtures are responsible for
the symptoms. For example, health effects
have been positively correlated with individ-
ual contaminants such as ammonia, dust,
and endotoxins, as well as combinations of
these (38,43-45). Work practices have also
been associated with symptoms seen in
workers, such as the types and methods of

feeding the animals, the use of wood shavings
for animal bedding, and the use of disinfec-
tants (39,46,47). Holness and Nethercott
(46) found that nasal irritation, coughing,
wheezing, and dyspnea were frequently asso-
ciated with floor feeding of hogs and that
dizziness was frequently associated with
working with liquid manure. The researchers
suggested that the high dust levels in their
study were because of floor scatter feeding,
indoor feed grinding, and the use of high-
moisture corn feed.

Epidemiologic studies of workers in
swine-production facilities have documented
increases in morning phlegm, coughing,
scratchy throat, burning eyes, wheezing,
shortness of breath, and chronic bronchitis
compared to individuals who do not work in
these facilities (38,41,42,48).

Gases and vapors. The primary gases and
vapors of interest to health researchers
include ammonia, carbon monoxide, hydro-
gen sulfide, and methane. The major source
of gases and vapors detected in confinement
buildings is the manure contained in the
storage pits beneath the flooring. The con-
centrations of specific gases inside swine
houses are not usually high enough to be
toxic by themselves based on the OELs man-
dated by the Occupational Safety and
Health Administration (OSHA) and recom-
mended by the American Conference
of Governmental Industrial Hygienists
(ACGIH) and the National Institute for
Occupational Safety and Health (NIOSH)
(Table 1). However, these guidelines take
into account economic as well as health-
based considerations (49,50).

Ammonia’s effects on the respiratory sys-
tem include irritation to the eyes, skin,
mucous membranes, and upper respiratory
system. Ammonia is water-soluble and is
absorbed in the upper respiratory tract; how-
ever, if there are aerosols and high humidity
present in the air, ammonia and other gases
can adsorb onto the aerosols and be carried
deeper into the lungs. At high concentrations
hydrogen sulfide is an eye and respiratory
tract irritant. Other chemicals used in swine

Table 1. OELs for several agents that are found in swine house air and dust.

Agent 0SHA (249 ACGIH (250) NIOSH (251)
Ammonia 50 ppm TWA 25 ppm TWA 25 ppm TWA
35 ppm STEL 35 ppm STEL
Carbon monoxide 35 ppm TWA 25 ppm TWA 35 ppm TWA
200 ppm ceiling
Hydrogen sulfide 20 ppm ceiling 10 ppm TWA 10 ppm ceiling
15 ppm STEL
5 ppm TWA?
Particulates
Inhalable dust 15 mg/m3 TWA 10 mg/m® TWA —
Respirable dust 5 mg/m3 TWA 3 mg/m3 TWA —
Endotoxins : None None -

Abbreviations: STEL, short-term exposure limit; TWA, time-weighted average.

20EL proposed in 1999.
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CAFOs that have been implicated in adverse
respiratory effects and asthma include quater-
nary ammonium disinfectants and disinfec-
tants containing aldehydes (glutaraldehyde
and formaldehyde) or chloramine (47,51).

In addition to these gases and vapors,
thousands of vapors have been identified as
being responsible for the odors characteristic
of swine CAFOs. Often the odors increase as
the animal manure decomposes. Anaerobic

Table 2. Odorous chemicals detected in swine house air and dust.

Odor compound Odor characteristic Concentrations found Reference
Organic acids
3-phenyl-propionic Cinnamon Not quantified (52,228-230)
Acetic Pungent, sharp, vinegar 3.94-39.81 pg/m3 (231)
267 pg/g dust (232
189 pg/m® (233
Not quantified (62,229,230,234,235)
Butyric Sweaty, rancid, sharp, dairy, 80 pg/m3 (236)
cheese, butter, fruit nuance 0.26-11.02 pg/m3 (231)
73 pg/g dust (232)
318 pg/md (233)
Not quantified (52,229,230,234,235)
Caproic Goatlike, mild, sour, fatty 0.15-0.47 pg/m3 (231)
10 pg/m? (233)
Not quantified (229,230,235)
Isobutyric Pungent, rancid butter 47 pg/g dust (232
40 pg/m? (233)
Not quantified (229,230,235)
Isovaleric Disagreeable, rancid cheese, 62 pg/g dust (232
sour, stinky feet, sweaty 49 pg/md (233)
Not quantified (229,230,235)
Lauric acid Heavy, stale Not quantified 52,230/
Phenylacetic Sweet, floral, swine 0.22-0.45 pg/m3 (231)
Not quantified (52,228,230)
Propionic Pungent, disagreeable, rancid 0.12-13.08 pg/m3 (231)
140 pg/g dust (232)
156 pg/m?3 (233
Not quantified (229,230,234)
Valeric (pentanoic) Unpleasant, sickening, putrid, 0.21-3.06 pg/m3 (231)
fecal, sweaty, rancid 38 pg/m? (232
35 pg/m? (233
Not quantified (229,230,235,237)
Phenolics
Cresols Medicinal, sweet, tarry 7.3 pg/m® (236)
1.17-2.09 pg/m3 (231)
145 pg/q dust (232
39 yg/m? (233)
Not quantified (52,228,230,234,237,238)
Ethylphenols Sweet, burned 1.97 pg/m3 (231)
13 pg/g dust (232
Not quantified (52,229,235,237,240)
Phenol Sweet, tarry, burned 92 pg/g dust (232)
23 pg/m? (233)
Not quantified (562,229,230,234,235,237)
Nitrogen-containing compounds
Ammonia Pungent Not quantified (229,230,235)
Dimethyl amine Pungent, fishy, ammoniacal 2,000 pg/m3 (233)
Not quantified (237
Skatole (3-methyl indole)  Fecal odor, nauseating Not quantified (52,228-230,235,237)
Trimethyl amine Ammoniacal, fishy, pungent 2,000 pg/m3 (233)
Not quantified (229,230,235,240)
Trimethyl-pyrazine Nutty, musty earthy, 0.45 pg/m® (236)
powdery cocoa, roasted Not quantified (230,234)
peanut
Tetramethyl-pyrazine Sweet, musty chocolate, 0.09 pg/m3 (236
coffee, cocoa, soybean, Not quantified (230,234)
lard, burnt
Indole Strong moth ball, naphthelene, Not quantified (228-230,235)
intense fecal, nauseating
Sulfur-containing compounds
Dimethyl sulfide Decayed vegetables, putrid Not quantified (235,237)
Hydrogen sulfide Rotten eggs Not quantified (229,230,235,241)
Other compounds
Hexanal Horseradish, green, fruity, Not quantified (52)
aldehydic, fatty, sweaty 0.40-2.41 pg/m3 (231)
2-Hexenal Green plant 0.29-2.58 pg/m? (231)
Not quantified (235)
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processes can release volatile fatty acids that
may be more offensive odorants than ammo-
nia or hydrogen sulfide. Studies show that
the odorous compounds in swine CAFOs
are adsorbed onto dust particles < 10
microns in size (52). In fact, the odorous air
inside swine CAFO buildings was odorless
when a respirator equipped with a dust filter
was used. When the small dust particles are
inhaled they impinge on the moist warm
mucous membranes in the nose and the
volatile compounds are released—enabling
the perception of odor. Researchers have
proposed that the most critical factors
involved in the release of odorous volatile
organic chemicals from the dust particles are
the sizes and concentrations of the particles.
Table 2 shows characteristic odors for many
of the compounds and presents concentra-
tions that have been measured at swine
CAFOs. The quantified concentrations of
specific contaminants in air are considered
low, and it is difficult to evaluate their signif-
icance because there are few OELs and asso-
ciated health effect studies for most chemi-
cals at the level of odor detection.

Organically derived aerosols. Nonbiologic
aerosols generally consist of dust particles
generated from feed, skin cells, hair, and
dried feces. Acute exposures to high levels of
dust may result in increased phlegm produc-
tion and pulmonary inflammation 4-10 hr
after exposure; these symptoms can last up
to 24 hr. Chronic exposures may result in
bronchitis and asthma. For industrial
hygiene sampling, dust is separated into frac-
tions (total, inspirable, thoracic, and res-
pirable) based on particle size and site of
deposition in the lung. Total dust refers to
all of the dust particles in the air that can be
inhaled or captured on a filter. The
inspirable dust fraction is a newer term that
refers primarily to materials that are haz-
ardous anywhere in the respiratory tract, par-
ticularly in the head airway region. The
thoracic fraction is dust that can reach the
thoracic airways (past the larynx) or the gas
exchange region. The respirable fraction
refers only to the size fraction of aerosols
that reach deep into the lungs into the gas
exchange region—past the terminal bronchi-
oles. Current occupational exposure limits
for dust are presented in Table 1.

Pickrell et al. (53) examined the size dis-
tribution of aerosols in a swine confinement
facility and found that when a certified dust
mask was exposed to silica dust, 1% of the
dust with an aerodynamic diameter of
0.6-1.0 pm penetrated the mask. However,
when the same masks were exposed to swine
confinement aerosols, there was 3—-25% pen-
etration of the sealed masks. The authors
concluded that swine confinement aerosols
may have a considerable size distribution
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< 1.0 pm in diameter. Therefore, respirable
aerosols may be an important size fraction for
study in swine CAFOs. A cross-sectional
study on respiratory health in swine produc-
ers suggested that when workers used dust
masks to prevent illness, there was a lower
prevalence of chronic and work-related respi-
ratory symptoms (54). Workers who used
dust masks preventatively had better lung
function indices than those who did not wear
masks. However, if workers used dust masks
because they were already experiencing symp-
toms, their lung function was comparable to
workers who did not wear dust masks.

Bioaerosols. Bioaerosols are particles that
contain endotoxins, bacteria, and fungi.
Endotoxins are present in dusts as a part of a
bacterial cell wall or as fragments of whole
bacteria. Endotoxins are fragments of the
gram-negative bacterial cell wall that contain
lipopolysaccharide as well as the other natu-
rally occurring compounds in the cell wall.
In the laboratory, the control standard for
endotoxin is chemically pure lipopolysaccha-
ride. When endotoxin is inhaled it can
potentially cause chronic respiratory symp-
toms (cough, phlegm production, and
wheezing), pulmonary impairment, malaise,
and fever (55-57).

Bioaerosols from swine facilities contain
several microbial agents but humidity,
temperature, and oxygen content all affect
their viability (58,59). Gram-positive
bacteria are in the greatest concentration;
Enterococcus accounts for 68-96% of the
total bacteria (60). Total bacteria typically
include 7-53% gram-negative bacteria
(28,60,61), with only 12-40% of the
gram-negative bacteria being adsorbed to
respirable particulates (28,60). These gram-
negative bacteria are the most susceptible to
inactivation by oxygen; therefore they are
likely not viable in the environment.
Evidence suggests that viruses are more stable
on bioaerosols, and it has been proposed that
influenza transmission may be attributable,
in part, to bioaerosol deposition (58).

Waste-Associated Contaminants

Infectious agents. Swine-associated wastes
such as manure, urine, and tissues are associ-
ated with numerous microbial pathogens
that can be potentially transmissible to
humans. These wastes contain bacteria,
viruses, and protozoa capable of causing ill-
ness in humans even in the absence of physi-
cal signs of disease in the swine. Organisms
associated with the gastrointestinal tract of
swine, such as Erysipelothrix rhusiopathiae,
Yersinia enterocolitica, Salmonella species,
Streptococcus suis, and hepatitis E virus, may
be passed to humans by direct contact with
either saliva or fecal wastes or by media cont-
aminated with these materials. Alternatively,
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contact with infected urine or tissues can
result in transmission of organisms such as
Leptospira or Brucella bacteria between ani-
mals and humans. Some organisms, such as
S. suis, influenza virus, and hepatitis E virus,
have strains with varying infectivity to
human hosts—some strains are species spe-
cific and are not capable of infecting humans
whereas others do not have such a limited
host range. This complicates detection and
control of these diseases in humans.

Antimicrobial resistance. Some bacteria
are naturally resistant to certain antibiotics
and others develop resistance by mutation or
acquisition from other resistant bacteria when
subjected to the selective pressures exerted by
antimicrobials (17-19,62). Before 1950 bac-
teria were largely susceptible to antibiotics
(19) but resistance to tetracycline began to be
reported in bacterial isolates from market pigs
in the United Kingdom starting in 1956 (63).
Since then single- and multiple-resistance pat-
terns to virtually every antibiotic have been
found in bacteria, including Escherichia cols,
Salmonella, Campylobacter, Enterococcus, and
Staphylococcus (18,20,63-76).

Antimicrobial resistance patterns can be
transferred between bacteria, and disease
does not have to occur in the host to transfer
resistance (19,62). The development of resis-
tant strains of bacteria can result in increased
infectivity and virulence of pathogens and
reduced effectiveness of appropriate therapy.
An example is the recently emerged multi-
ply-resistant bacteria, Salmonella typhimuri-
um DT104. This strain of Salmonella, which
emerged in livestock in the United States and
the United Kingdom in the 1980, is resistant
to five antimicrobials and is associated with
higher morbidity and mortality than antimi-
crobial-susceptible strains of Sa. gyphimurium
(64,77,78). Direct transmission of this
organism from infected animals to their
caretakers has been documented (78).

Nutrients. Wastes also contain high
quantities of many nutrients such as nitro-
gen and phosphorous. In public health the
most notable of these nutrients is nitrogen.
Excessive nitrates in water continue to be a
cause of methemoglobinemia (blue-baby
syndrome)—an underrecognized cause of ill-
ness and death in infants (79,80). Some evi-
dence suggests that methemoglobinemia is
more likely when nitrate-containing water is
also contaminated with bacterial species (as
might be expected when groundwater is con-
taminated with fecal wastes), because the
bacteria convert the nitrate to nitrite, causing
diarrhea in infants (79). In addition, animal
studies and some human studies suggest that
reproductive health effects such as central
nervous system developmental defects and
miscarriages may occur with excessive intake
of nitrates (79,81).

Occupational Health Effect
and Exposure Studies of
Swine CAFOs

Air-Associated Contaminants
Epidemiologic studies to evaluate respiratory
and other symptoms in swine confinement
workers usually compare swine workers with
nonfarming control subjects and use ques-
tionnaires, lung function tests, and occasion-
ally sputum sample analyses of immune
cells. Bacteria and endotoxins have been the
primary contaminants measured when
symptoms are compared with exposures to
air contaminants, total and respirable dust,
carbon dioxide, ammonia, hydrogen sulfide,
and carbon monoxide. Table 3 lists the levels
of contaminants found in the studies cited in
this article. The OELs for gases and vapors
(Table 1) were rarely exceeded in the studies,
and slightly less than half of the studies
exceeded the limits for dust. Furthermore,
the nuisance dust standard may not be
appropriate to apply to swine confinement
workers because the dust in these houses is
highly biologically active (44). Donham et
al. (43) suggested that exposure guidelines
should be reduced for total dust and ammo-
nia—to 2.8 mg/m? and 7.5 ppm, respective-
ly. It is difficult to evaluate endotoxin levels
because there is no established OEL. Various
groups have calculated no-effect levels for
endotoxins in several ranges: 170-180
(43,55), 33 (82), and < 1-20 ng/m?
(83-87). These no-effect endotoxin levels
are similar to the levels observed in nonagri-
cultural and industrial buildings (88), but 12
studies in Table 3 exceeded the highest no-
effect level calculated (170180 ng/m3).

Swine confinement workers have signifi-
cantly more symptoms of chronic bronchitis
and asthma (35,38,39,89) and more missed
work days (43) than controls. Documented
symptoms include wheezing, coughing,
sinusitis, fever, chest tightness, nasal irrita-
tion, phlegm, throat irritation, and sneezing.
Some farmers also reported headaches and
joint and muscle pain (61). Lung function
indices of airflow are significantly lower
(35,38,43,44) or no different (89) than non-
farming controls. Swine workers had a sig-
nificant elevation in macrophages in sputum
samples, indicating signs of lower respiratory
tract inflammation (89).

Healthy, nonsmoking, previously unex-
posed volunteers exposed to several hours of
swine dust in a swine CAFO experience a
variety of symptoms, including cough and
nasal stuffiness (90-92), moderate chills
(90-94), headaches (90-94), muscle pain
(91,92,94,95), mental fatigue (91,95),
malaise (93,97), and nausea (93). Third-year
veterinary students who visited a swine farm
for 3 hr reported eye irritation, headache,
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tiredness, cough, nasal and throat irritation,
sinus trouble, and flulike symptoms (98).
Symptoms generally developed the same day
and disappeared within 3 days of the expo-
sure. Thorn and Rylander (99) exposed
healthy subjects to bacterial endotoxin; 24
hr after exposure the subjects reported
breathlessness, irritation in the throat, dry
cough, headache, heaviness in the head, and
unusual tiredness.

When comparing health effects to expo-
sures, most studies found a correlation
between one or more contaminants and lung
function indices and/or respiratory, irrita-
tion, and flulike symptoms (Table 4).
Endotoxin and ammonia were most often

correlated with lung function and symptoms
followed by dust.

Donham et al. (43) found that the corre-
lation between exposure and pulmonary
function decrements was highest after 6 years
of cumulative exposure, with total dust and
ammonia being the strongest predictors of
response. In a follow-up study with the same
cohort, Reynolds et al. (44) found the
strongest correlations for workers who had
0-6 years or 10-13 years of exposure. Based
on years of exposure, total and respirable
endotoxins and ammonia were strongly cor-
related with response in the 0- to 6-year
group; total dust, respirable dust, and ammo-
nia with those in the 10- to 13-year group;
and total dust with the > 13-year group. The
researchers suggested that although total dust
may be an important factor for chronic
changes in pulmonary function, endotoxins

Table 3. Levels of contaminants found in swine confinement house air.

may be most important for acute health
effects. Zejda et al. (45) found a significant
relationship among symptoms, lung func-
tion, and the number of hours worked.
When a subset of young workers (26-35
years of age) was evaluated, Zejda et al. (35)
found that chronic respiratory symptoms
were associated with the number of hours
worked each day and the number of pigs per
barn. The adverse health effects of wotking
in intensive swine operations seen in the sub-
set of workers may be because younger work-
ers spend more time in the barns than older
workers. On the other hand, older workers
who are symptomatic may have a tendency
to leave the industry. Several studies found a
positive correlation between lung function
and/or symptoms with duration of the use of

Total/ Dust Hydrogen Carbon Total Bacterial
inhalable dust fraction Ammonia sulfide monoxide Endotoxin bacteria fraction
(mg/m?) (mg/m?) (mg/m?) (ppm) (ppm) (ng/m3 or EU/m?) (105CFU/m®) (105 CFU/m3) Reference
3.08(1.76-5.17)2 — — — S 120 (40-280) ng/mda< —_ —_ (60)
16+041t088+1.72¢ — < = —_ — 1.51 to 5.44¢ 0.810 (28
— — = — — — to 2.049%f
85+15t017 7.2 — 15.5+£331t017.8+2.82 — — 7,900 + 500 to = = (90)
— —_ = = 28,000 + 10,300 ng/m329 = .
1.66 to 21.042¢ — 1.50 to 13.232 —_ —_ 15.3(1.6-28.5) ng/m3""g — (3-80)" (29
T — = = = — e (2-60)/
= = =S = = e — (0.02-0.2)/
— — 15.9t0 33.82 04410 1.42 34109.12 — — — (242
— — 5¢ Trace? 0.05¢ — — — (24)
43+20t06.8+4.5%¢ 0.34 + 0.42% 9+522 ND — 180 + 100 to 240 + 200 ng/m3"~‘7 40 + 209 — (38
— — - = — 170 + 150 to 230 + 200 ng/m?a/ = =
45308 0.23mk 5.64™ NR NR 202.35 EU/m3mg — — (43
— —_ — — — 16.59 EU/m3m/ — —
49(2.2-15.2)2¢ (0.3-1.4)¢ (10-25) — — (20-1,900) ng/m39 5.92 — (32
— - - - — (10-30) ng/m3/ — —
1.57 +2.82" —_ 8.04+272 — — 24 + 4 ng/mPa0 — — (243
4.01+1.73me 1.31 +1.84™P 6.33 + 3.55™ — — 130+ 1.52 ng/m3mv‘7 1.077 £3.37" 0.077 £ 4.48m" (67)
206+25m2 0.17 +3.74mk 92 ND ND — — — (39,46)
7.41t013.82¢ — — —_ —_ 37 to 315 ng/m329 — — (100)
13.5(5.6-24.0)2¢ —_ (2-3) 0.05 — 600 (80-1,300) ng/m329 — — (97
23.3(20.0-29.3)2" - — — — 1,300 (1,100-1,400) ng/m? — — (91)
52+121t094+1.7%8 — — — — — — — (244)
o — —_ —_ — — 9.306 (6.137-12.467)2 — (33)
1.10+£0.35t0320+0.38%¢ 0.14+0.10to — — — — — — (245)
— 0.73 + 0.1084 — — — — — —
46+2.2me — —_ —_ —_ 269 + 4.1 EU/m3m9 — — (246)
262 3% - 234230 —_ —_ 105+1.4 ng/m3’""’ — — (57)
24+1.9m0 — — — — 92 + 2.4 ng/m3° — —_ (247)
345+249t0372+249m¢ 0.23+29t0 = = — 176.12 + 3.16 to 202.67 + 4.33 EU/m3m¢ = —_ (44)
— 0.26 + 2.24mk — — — — — —
— T —_ —_ —_ 11.86 + 2.88 to 16.95 + 2.30 EU/m3™/ —_ —
2.41+0.09t03.8+0.2%¢ — 26.0 + 0.62 0.4+0.04m — 1,873 + 286.6 to 3,983.5 + 498.3 EU/m3m9 — — (103
4.00£1.6m€ 0.43 + 1.6mk — —_ — 58.8 + 2.0 ng/m3m4 — — (248
— — — 454 + 1.8 ng/m3m/ — —
27 +£1.3mn - 1.7+16m — — 111 + 1.5 ng/m3mo - — (47
224 +4.7%" 0.7 + 0.42k — — — 1,200 + 400 ng/m3@0 — — (92
21 (16-25)9n — — — — 1,200 (900-1,400) ng/m3a. — — (95)
20.5(14.6-30)2" = — = — 1,200 (800~1,400) ng/m32.0 — — (94)
23 (20-30)9" 1.0(0.7-1.2)% — — 1,100 (800~1,400) ng/m3d.0 — — (105)
293 £0922¢ 0.13 + 0.0524 11.3+4.28 — — 11,322 + 12,492 EU/m329 — — (45)

Abbreviations: ND, not detected; NR, not reported.
Arithmetic mean. PAirborne dust. °Endotoxin extracted from airborne dust. 9Median. ®Total dust. ‘Respirable bacteria. 9Endotoxin extracted from total dust. #Culturable bacteria (25°C).
iCulturable bacteria (37°C). /Culturable bacteria (55°C). ¥Respiratory dust. ‘Endotoxin extracted from respiratory dust. "Geometric mean. “Inhalable dust. °Endotoxin extracted from inhal-
able dust. PThoracic dust. 9Endotoxin extracted from thoracic dust. ‘Gram-negative bacteria.
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disinfection (47,51). These studies associated
the decline in lung function over the years
with quaternary ammonium compounds
used as disinfectants and with the use of
automated dry feeding systems.

Mechanistic studies. Although air conta-
minants have been correlated with lung
function indices, changes in traditional lung
function tests taken by swine confinement
workers are usually only modest compared
to the widespread presence of subjective
symptoms. Historically, these tests have been
used in the field and in volunteer research to
evaluate airway obstructions caused by
organic dust. However, it is possible that the
swine contaminants operate using a different
mechanism and the very modest changes in
the lung indices are caused by an inflamma-
tory response that would be uncovered using
other test methods.

Larsson et al. (00) evaluated lung func-
tion, bronchial reactivity (methacholine

challenge), and inflammatory cells in bro-
choalveolar lavage (BAL) fluid. Although the
lung function and bronchial reactivity tests
were similar between farmers and controls,
the BAL fluid of the farmers showed eleva-
tions in total cell concentrations and in the
concentration of neutrophils, granulocytes,
albumin, hyalluronoan, and fibronectin.
These changes are indicative of an inflamma-
tory reaction in the alveoli. These farmers
had signs of airway inflammation reaction
and activation of the immune system with-
out alteration in lung function or bronchial
reactivity (100).

Schwartz et al. (101) reported that swine
confinement work is associated with asthma
and bronchitis and that the work-related res-
piratory symptoms are indicative of airway
or lung disease. The authors found that
swine confinement workers had evidence of
early airway injury that may not always be
apparent using lung function tests. Although

Table 4. Association of symptoms and lung function with occupational exposures.

the lung function tests were normal, sympto-
matic swine workers tended to have enhanced
airway response to inhaled methacholine and
had a thickening of the epithelial basement
membrane of the lobar bronchi when com-
pared to asymptomatic controls (10I).
Thickening of the basement membrane is an
early and consistent feature of asthma.
Carvalheiro et al. (102) also found that
swine CAFO workers had enhanced airway
response to inhaled methacholine and had
symptoms of chronic bronchitis.
Mechanistic studies have evaluated the
upper and lower airway inflammation in
swine farmers by exposing healthy, nonsmok-
ing, previously unexposed volunteers to pure
endotoxin (lipopolysaccharide) or to several
hours of swine dust in a swine CAFO and
then assessing nasal lavage and BAL or spu-
tum analysis. The lavage fluids are analyzed
for cells involved with inflammatory respons-
es (total count, macrophages, lymphocytes,
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For multiple factors, + indicates that when the two factors are tested together the association is stronger than each factor tested individually; — indicates that when the twao factors are
tested together, the association is not stronger than either factor tested individually. Abbreviations: L, lung function; S, respiratory symptom. ;
a0f factors. POr specific tasks. “Mold spores. 9Total bacteria. ¢Total dust. Bacteria and molds. 9Respiratory dusts. /Total and respiratory microbes. ‘Subgroup.
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granulocytes, neutrophils, and eosinophils)
(89-91,93,94,97,99,100,103) and/or the
proinflammatory cytokines (tumor necrosis
factor-ot) (94), interleukins (90,91,103), and
other soluble indicators of inflammation
(94,97,100). An increase in these cells repre-
sents an influx of inflammatory cells in the
upper or lower airways. The release of
cytokines may be associated with some of the
peripheral effects in workers; for example,
headaches, malaise, fever, and fatigue. In
addition to lavages, blood can be analyzed for
inflammatory cells, cytokines, and other solu-
ble factors (90,92-95,97,99,103-106).
Methacholine challenge can be used to evalu-
ate bronchial responsiveness. Studies show
significant increases in inflammatory cells
and cytokines in the lavage fluids and blood
and increases in bronchial responsiveness.
Tables 5 and 6 show the inflammatory mark-
ers in these studies.

Infectious Agents

Published reports of occupational disease
from zoonoses are largely limited to case
series and individual case reports. Because of
the long history of known transmission of
disease between humans and their domesti-
cated animals, numerous accounts are anec-
dotal and do not appear in the published
literature outside of textbook descriptions. A
recent study estimated the risk of zoonotic
illness among farmers and found an associa-
tion between increased reported illness and
level of contact with different livestock ani-
mals (107). Assisting sows with farrowing,
for example, was associated with a relative
risk of 6.61 for developing pneumonia com-
pared to nonfarmer controls. As is typical of
studies of this kind, the report could not
confirm animal sources of infection.
Seroprevalence studies are used most com-
monly in epidemiology to document occupa-
tional exposures to zoonoses. Although some
of the studies described here have not specifi-
cally included swine farmers, the organisms
have either been isolated from swine, or swine
are considered the main reservoirs of infection.
Y. enterocolitica. Porcine and human
strains of Y. enterocolitica cannot be distin-
guished from each other (108). In swine, Y.
enterocolitica is isolated from the tonsils, oral
cavity, intestines and feces of 1-83.3% of
healthy swine (108-112). Although yersinio-
sis is primarily considered a foodborne dis-
ease associated with the consumption of pork
products (108-110,113-115), it has also
been recovered from the floors and viscera
tables in slaughterhouses and is considered by
some researchers to be an occupationally
acquired disease (111,112). A study in
Finland compared the presence of antibodies
to several serotypes of Y. enterocolitica in
swine farmers and slaughterhouse workers to

grain and berry farmers; swine farmers had
an elevated risk of positive serology compared
to the other two groups (116). Another study
of slaughterhouse workers in Finland report-
ed a higher prevalence of Y. enterocolitica
antibodies in workers compared to blood
donors from the same geographic region
(111), and also found a higher rate of enteric
disease symptoms among the occupationally
exposed compared to the blood donor con-
trols. There are no published reports of direct
transmission of Y. enterocolitica from pigs to
humans (108); however, seroepidemiologic
data suggest that transmission does occur in
the occupational setting (111,116).

Salmonella species. Salmonella has been
called the universal pathogen because it has
been isolated from all tested vertebrates
(117). Swine may represent a significant
reservoir of Salmonella infection for humans
(118). Pigs can shed Salmonella into the
environment without showing signs of dis-
ease, or they might display display signs of
moderate to severe illness (119-121). Four
of the most common Salmonella serotypes
isolated from swine are on the Centers for
Disease Control and Prevention (CDC) list
of top 10 human isolates (122).

The risk of salmonellosis in occupational
settings may be significant considering the
presence of published reports of disease after
occupational contacts (78,123,124), the
prevalence of the organism in swine wastes
(84% in some herds) (122,125-127), and
the ability of this organism to survive in lig-
uid slurry systems for months (128). Of the
estimated 4 million yearly cases of human
salmonellosis, however, roughly 1-10% are
confirmed and reported to the CDC (123).
Consequently, quantifying the risks of disease
represented by specific exposures is problem-
atic. Improved surveillance and detection in
recent years, however, has resulted in
increased success in tracing human infections
directly obtained from livestock species other
Table 5. Markers of inflammation in lavage fluids

that have been altered after exposure to swine
confinement house dust.

than swine (129-131), and it is anticipated
that recognition of this route of transmission
will increase in multiple livestock species.

The emergence of Sa. typhimurium
DT104 as a significant cause of severe diar-
theal disease in animals and humans is of
particular concern to public health agencies.
This organism has been successfully recov-
ered from several livestock species, including
swine (132,133), and there is evidence that
this strain may have a competitive advantage
over other strains of Sa. typhimurium (133).
Consequently, swine populations may
become increasingly infected.

Leptospira species. Several human dis-
eases are due to Leptospire organisms. Weil
disease (Leptospira icterohaemorrbagiae), cani-
cola fever (Leptospira canicola), dairy-worker
fever (Leptospira hardjo), and swineherds dis-
ease (Leptospira pomona) are all zoonotic dis-
eases associated with occupational exposures
(134). Of these, contact with pigs has been
most commonly associated with Weil disease
and swineherds disease, and direct transmis-
sion has been reported (134,135). It is not
unusual for detectable antibodies to multiple
serovars to be present within an individual
animal (136), and the reported prevalence of
leptospire antibodies in pigs range from 10
0 46% (135,137).

Human studies of leptospirosis include
an epidemiologic study in the United States
which found that 58% of sporadic cases
could be attributed to meat processing (138).
A similar study in Trinidad reported that
approximately 6% of human clinical cases
were people working on pig farms (137), and
several seroprevalence studies confirmed ele-
vated antibody prevalences in farmers and
slaughterhouse workers (136,139,140). In
addition, there is a positive association
between seroprevalence and the number of
years of employment as a meat inspector
(139). Farmers are considered at the highest
risk of leptospirosis (140).

E. rhusiopathiae. Disease associated
with the pathogen E. rhusiopathiae has been
recognized in swine occupations since the

Markers in lavage Reference Table 6. Markers of inflammation in blood that
Total white blood cell count (90,91,97,100,103 have been altered after exposure to swine con-
Monocytes (94 finement house dust.
Macrophages (89-91,93,97) .
Lymphocytes (90,97,93,94,97,99 Markers in blood Reference
Granulocytes (93.94) Total white blood cell count  (90,92,95,97,103-105)
Eosinophils (93,97) Monocytes (90,92,.99
Neutrophils (90,91,93,97,99,100 Lymphocytes (93,103
T-cell markers (93 Granulocytes (92,93,95)
-1 (94) Neutrophils (90,99,103,104)
IL-1B (94,103 IL-1 receptor antagonist (105)
IL-6 (94,103 IL-18 (105)
IL-8 (90,91,103) IL-6 (92,94,95,103,105,106)
Tumor necrosis factor-ou (94) Tumor necrosis factor-o. (92,105)
Albumin (94,97,100) Oroscomucoid (97)
Fibronectin (1000 C-reactive protein (97,104)
Hyaluronan (1000 Fibrinogen (106)
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19th century (141-143). There are three
human disease syndromes associated with this
pathogen: a cutaneous form (erysipeloid), an
acute or septicemic form, and a chronic form
(141,143,144). Erysipelothrix can be isolated
from the tonsils, intestines, lymph nodes, gall
bladder, joints, and bone marrow of swine
(144). This organism is stable in the environ-
ment and is associated with pig carcasses and
swine fecal slurry (142, 143).

Citing the number of reported cases of
systemic erysipelas infection in the last 15
years, a recently published case report sug-
gested that the growth of the swine industry
in the southern United States was associated
with an increase in human infections with
Erysipelothrix because this number was
already equal to the number reported in the
precee-ding 60 years (141). Studies of the
seroprevalence of Erysipelothrix antibodies in
slaughterhouse workers found rates of
16-17% (142). Because erysipeloid is the
most common form and usually heals spon-
taneously after a few weeks, this disease may
be an underrecognized occupational disease
(141,143).

Brucella suis. Brucellosis has long been
recognized as a serious occupational disease
of livestock producers, slaughterhouse work-
ers, and veterinarians. Consequently, it has
been the focus of a stringent eradication pro-
gram in U.S. swine since 1961 (145,146).
Estimates vary, but because of the vague
clinical signs of disease, the prevalence of
subclinical disease, and the difficulty associ-
ated with its diagnosis, only 4-50% of cases
in the United States are probably reported
(146-148). Swine-associated B. suis was
responsible for most human cases of brucel-
losis in the 1960s and early 1970s; surpris-
ingly, it continues to be reported as an
abbatoir-associated disease into the 1990s in
spite of its nearly successful eradication in
the United States (145,148).

S. suis. Since 1968, adult meningitis
caused by S. suis has been recognized as an
occupational disease in those working with
swine and swine carcasses (/49,150). It has
been most commonly reported in Asia and
Northern Europe, but recent case reports
have come from Canada and New Zealand
(149-153). In a study of S. suis meningitis in
Hong Kong, a crude incidence rate of 0.17
per 100,000 population was calculated, and
the majority of human cases were associated
with occupational exposures to swine or pork
(150). Although it has never been reported in
the United States, some researchers assume
this is due to the difficulty of bacteriologic
diagnosis in human cases and the lack of sur-
veillance for this disease in the United States,
because it is found in other countries with
intensive pork production and consumption

(149,150,152).
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There are 35 identified serotypes of . suis
in pigs, but not all are associated with disease
in swine or humans (149,150,152,154). Only
Group R serotype 2 has been isolated in cases
of human meningitis (/49-153). The organ-
ism can cause disease in pigs or can be found
in healthy carriers, and many serotypes may
be isolated from a single animal (154).
Consequently, the risk of infection to workers
is difficult to estimate from prevalence studies
of the organism in U.S. swine herds.

Hepatitis E virus. Historically, there
have been two or three strains of human
hepatitis E virus (HEV) in the human popu-
lation—a Mexican strain and one or two
Asian/African strains (155). Most U.S. cases
of HEV are associated with travel to coun-
tries where this virus is endemic, but epi-
demiologic studies of blood donors have
found a seroprevalence rate of 1-2% (up to
28% in some regions of the United States),
suggesting a possible unidentified reservoir
in this country (156,157). Commercial
swine have a high prevalence of HEV anti-
bodies and carry an HEV strain that is simi-
lar to the human-isolated HEV (156).
Cross-species infection with the human
strain and the swine strain of HEV has been
successful under experimental conditions
(155,156). Recently, a new human strain of
HEV has been isolated in the United States
from a man with no history of travel, and
the strain is molecularly more similar to the
swine HEV strain than to the previously
identified human strains (155,156,158,159).
Together, this new human U.S. strain and
the swine HEV are considered a molecularly
distinct genotype (155). Consequently, the
possibility of zoonotic transmission of this
infectious agent between swine and humans
is being explored.

Influenza. The most widely recognized
example of a virus passed between species is
the influenza virus. Influenza viruses are usu-
ally species specific, but mutation and reas-
sortment of genetic material can allow them
to cross species barriers and infect new hosts.
Swine are most important in the epidemiol-
ogy of influenza as the mixing vessel for sev-
eral viral strains, and simultaneous infection
of pigs with avian viruses and swine or
human viruses can result in mutation or
reassortment of viral genetic material
(160-162). Serologic studies of influenza in
pigs suggest that pigs may become infected
during outbreaks of human disease
(163,164). The famous Spanish flu pandem-
ic of 1918 was generated in pigs, and it is
anticipated that the next major human pan-
demic of influenza may again come from
swine (160,162,165).

Influenza disease in human hosts, howev-
er, is not entirely limited to the human-
derived and swine “mixed” strains of virus.

Serology in humans in contact with pigs indi-
cate exposure prevalences to the swine-adapt-
ed influenza virus, HIN1, as 8.8-10%
(166,167). Although uncommon, the swine-
specific influenza virus does cause disease in
human hosts and may be more fatal to people
than human-adapted strains (165,168-171).

Cryptosporidium parvum. C. parvum is
a coccidian enteric pathogen of mammals
that causes clinical disease in numerous
species, including swine and humans (172).
The prevalence of fecal shedding of
Cryprosporidium varies significantly among
farms, animal species, and animal ages
(173-176). Differences in prevalence on
swine farms have been related to management
practices, with higher shedding and infection
rates associated with poor hygienic practices
and incomplete waste removal from animal
pens (177). In contrast with other livestock
species, shedding of Cryprosporidium by pigs
does not seem to be predominantly restricted
to young animals. Prevalence rates in tested
swine populations have ranged from 0 to
34.4% (174,175,177). Infected individuals
can shed more than 108 oocysts daily for
extended periods of time (178,179), and the
human infective dose may be as low as 30
oocysts with some strains (/80). Direct trans-
mission to humans from animals has been
documented, but these reports have not
included swine (181-183).

Antimicrobial Resistance

The role of pigs as reservoirs of bacterial
strains with transferable antimicrobial resis-
tance patterns has been studied for many
years. A UK. study of market pigs document-
ed the evolution of antimicrobial resistance to
some common antibiotics in Es. coli isolates
between 1956 and 1979 (63). This study not
only documented increasing patterns of resis-
tance in swine isolates, but also reported that
up to 95% of some isolated strains of bacteria
contained transferable resistance patterns.
Since then, numerous studies have isolated
transferable single- and multiple-resistant pat-
terns from the bacteria of pigs, some with
ribotypes indistinguishable from those found
in human isolates (68,72-75,184,185). The
percentage of resistant isolates among swine
increases with increasing antimicrobial use on
farms (69-71,184).

Several studies have demonstrated the
potential for transfer of antimicrobial-resis-
tant properties between livestock animals
and workers. Exposure to antimicrobial-con-
taining feed and animal wastes and contami-
nated animal tissues can result in either
selective pressure on human bacterial strains
or direct transmission of genetic codes for
antimicrobial resistance from animals to
humans. In 1978 Levy (66) reported the
emergence of tetracycline-resistant bacteria
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in poultry within 36 hr of the introduction
of a tetracycline-containing feed, and within
farm personnel between 4 and 6 months
after the introduction of antimicrobial-sup-
plemented feed. In 1989 a similar study of
poultry and farm personnel (186) docu-
mented increased antimicrobial resistance in
commercially reared birds compared to free-
range village poultry. In this study, similar
resistance patterns were isolated among
poultry personnel and birds but not in vil-
lage controls (186). Nijsten et al. (187)
demonstrated the ability of fecal Es. coli iso-
lated from pigs to directly transfer their resis-
tance patterns to human fecal Es. coli strains.
In addition, Marshall et al. (/88) reported
on the stability of resistant strains of bacteria
in the environment after experimental inoc-
ulation of pigs with a resistant strain of
swine £s. coli and the subsequent isolation of
this strain from water, bedding materials,
mice, flies, and a human caretaker within the
4-month test period.

Furthermore, epidemiologic studies have
shown that farmers and abattoir workers have
higher incidences of antimicrobial-resistant
bacteria than other occupational cohorts. A
study of pig farmers, slaughterhouse workers,
and suburban residents within the same geo-
graphic region found that pig farmers have
the highest prevalences of antimicrobial resis-
tance in fecal isolates compared to the other
cohorts (67). Slaughterhouse workers and pig
breeders in Japan have higher prevalences of
antimicrobial resistance in fecal microbes
than urban controls, and the human patterns
were similar to the sampled pigs (65).
Ozanne et al. (76) reported that slaughter-
house workers had a higher prevalence ratio
of resistance (1.22—1.36) in isolated enteric
bacteria than controls when previous antimi-
crobial exposure was controlled in the study
(76). The patterns of resistance in the swine
and slaughterhouse workers also indicated
circulation of bacterial genetic material
between the animals and workers.

Potential Routes and Effects
of Community Exposure to
Swine CAFO Hazards

People residing near swine CAFOs may be
exposed to hazardous agents through a num-
ber of pathways. Airborne contaminants and
small microbe-bearing particulates can be dis-
tributed into the outdoor air by building ven-
tilation fans and spray application of slurried
wastes. In addition, soil transport of microbes
and nutrients from land-applied wastes, leak-
ing lagoons, and pit-buried carcasses, as well
as overland flow of microbes and nutrients
from land-applied wastes, can potentially con-
taminate ground- and surface water sources
and become sources of waterborne disease.
Although there is a paucity of research in this

area, there is a potential for, and some evi-
dence of, community health effects.

Environmental Dispersion of Swine
CAFO Hazards

Airborne. A limited number of studies have
evaluated gases, dusts, bioaerosols, and odors
outside swine CAFOs. Particles can be car-
ried in the air long distances from their
source (/89), and can cause health concerns
in the neighboring communities (190,191).
If endotoxins are absorbed on particles
< 1 pm in diameter, these particles can stay
airborne for long distances and periods of
time. Mixtures of volatile organic chemicals
can also be transported off-site; however, the
concentrations are usually orders of magni-
tude lower than those measured inside a
swine house. Furthermore, OELs are not
appropriate to use for the community
because they assume the exposed population
is healthy, exclude children and the elderly,
and are based on a limited exposure duration.

Recently, it has been suggested that the
unpleasant odors produced by inhalation of
volatile organic chemicals can adversely affect
the health status of people living near swine
CAFOs (191). Shiffman (192) described
how airborne emissions can affect health
through direct irritant and psychophysiologic
mechanisms. Odorous mixtures can cause
sensory irritation in the eye, nose, and throat
by activating at least five cranial nerves that
have receptors in the nasal cavity, oral cavity,
and eyes. Irritants can affect respiratory vol-
ume (793,194) and can induce inflammatory
responses (195,196). People who have pre-
existing respiratory problems may be particu-
larly vulnerable to the adverse effects of
irritants, and can experience an increase in
nasal resistance, respiration rates, and heart
rates after exposures (197,198). Odorants
positively or adversely affect mood and stress
depending on whether the odor is perceived
as pleasant or unpleasant (791, 199,200).

To determine how far bioaerosols are
transported through the air, they were mea-
sured inside and outside a swine facility, to a
maximum distance of 300 m (59). Air sam-
ples were obtained within 1 m of the ground
and most air samples contained viable bacte-
ria. At 300 m from the houses, detected bac-
teria concentrations were approximately
4-10 times lower than concentrations at a
distance of 5 m from the houses. There was
a dramatic decrease in concentrations at dis-
tances > 300 m, although there were several
limitations to the study. First, the measure-
ments were taken on a dry and sunny day
that could have resulted in low survival of
the bacteria. Second, the process of air sam-
pling bioaerosols can kill bacteria by desicca-
tion and result in underestimation of
concentrations. Third, the sampling height
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may not have been optimal for measuring the
plume centerline.

Air samples were obtained 60 m away
from four swine facilities and one control
(nonlivestock) farm at a height of 2 m. The
samples were analyzed for ammonia, hydro-
gen sulfide, total dust, and endotoxin (201).
Outdoor mean ammonia concentrations
ranged from 0.086 to 0.214 ppm at the
swine facilities compared to nondetected at
the control farm. Concentrations of ammo-
nia were always greater downwind of sources
than upwind and were significantly higher
than concentrations at the control farm.
Outdoors, in most cases, concentrations of
total dust, endotoxins, and hydrogen sulfide
were below detectable levels.

Waterborne. Lagoon breaks have result-
ed in the release of millions of gallons of ani-
mal wastes directly into surface water at one
time, resulting in eutrophication, fish kills,
and high environmental pathogen loads (7).
However, the environmental impacts of land
application of liquefied wastes, pit burial of
carcasses, and chronic lagoon leakage are less
documented. Historically, most of the con-
cern and research regarding water pollution
from CAFOs has focused on the impact of
land application of wastes (4,202). However,
a small body of research has also found seep-
age losses from waste lagoons in several states
and excessive nutrient and microbial loading
on regional ground and surface waters.

Before the land application of human
waste materials, the microbial content of the
material must not exceed federally mandated
concentrations. No similar regulations apply
to the land application of animal wastes, and
the microbial content of water runoff from
agricultural lands frequently exceeds the stan-
dards for recreational water (4,202). In a
study of land application of swine wastes on
silty clay soil with subsurface drainage, up to
3% of the microbes applied to the land were
drained from the soil (4). Periods of rainfall
can increase the microbial loading of environ-
mental waters from CAFOs (202). Several of
the previously discussed infectious organisms
are stable in the environment and can con-
tribute to the contamination of ground and
surface waters. One study attributed enterovi-
ral contamination of a major Canadian river
to swine-farming activities (203).

Studies in Towa and North Carolina
(11,14,204-206) revealed groundwater con-
tamination resulting from agricultural prac-
tices. Moderate to severe seepage losses from
lagoons and groundwater pollution with
nitrates and microbes, resulting in contami-
nation in excess of drinking water standards,
have been documented (/1,14,204-206). A
voluntary well-testing program conducted by
the North Carolina Department of Environ-
mental Health and Natural Resources
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(Raleigh, NC) found that 22% of the tested
wells in one county had nitrate levels which
exceed the no-observed-adverse-effect level

(79,207).
Community Health Effects

There have been few health effect studies to
evaluate the physical and mental health of
residents living near swine CAFOs.
Although outbreaks of E. colz, Leptospirosis,
and cryptosporidiosis have been traced to
contaminated water sources, specific sources
of contamination are rarely identified (81).
Evidence for the putative role of livestock
production in the environmental spread of
infectious agents has been limited to reports
of increased infection rates in human popula-
tions after periods of high rainfall or flooding,
and regional animal events such as calving or
lambing (139,208,209). Unfortunately, this
evidence does not implicate specific expo-
sures. HEV is a waterborne disease in coun-
tries where it is endemic, but contamination
sources are not clearly defined. Consequently,
there is no direct evidence of community out-
breaks of infectious disease resulting from
microbial contamination from swine facilities.

Antibiotic residues have been found in
wastewater specimens (205), and discrimi-
nant analysis has identified resistance patterns
in bacteria isolated from environmental
waters that are distinct from human patterns
and have been attributed to agricultural
sources (210). However, it is not known
whether exposure to antibiotics or resistant
bacteria in contaminated waters has any
health impacts on surrounding communites.

The incidence of nitrate poisoning in the
United States is not known because is not a
reportable disease. In addition, in some
areas, infant deaths due to nitrate-induced
methemoglobinemia are sometimes misdiag-
nosed as congenital heart disease or sudden
infant death syndrome (80). Long associated
with well-water usage, nitrate intoxication is
considered a disease of rural areas where live-
stock production, septic systems, and fertil-
ized fields predominate (80,211). Recently,
studies have associated excessive nitrate
ingestion with developmental abnormalities
and miscarriages, and the CDC blamed
water contaminated with nitrates from a
swine farm for several miscarriages occurring
in 1993 and 1994 (79,81).

Several epidemiologic studies have inves-
tigated differential reporting of adverse
symptoms between communities closely
associated with swine CAFOs and other
rural communities. One study evaluated the
effect of odors from swine facilities on the
mental health of people living near the facili-
ty (200). Forty-four persons living near the
facilities filled out a Profile of Mood States
questionnaire on 4 days when the hog odors
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could be smelled; an equal number of con-
trols completed the questionnaires for 2
days. Those who lived near the facility and
experienced odors had significantly more
depression, tension, anger, fatigue, and con-
fusion than controls.

In a study to evaluate both physical and
mental health, Thu et al. (212) interviewed
18 people who lived within a 2-mile radius
of a swine facility and comparable controls.
The subjects near the facility had significant-
ly higher rates of four clusters of physical
symptoms compared to controls. These
symptoms are consistent with symptoms
reported in swine CAFO workers, and
include a) respiratory effects such as inflam-
mation of the bronchi or bronchioles,
wheezing, and cough (associated with air
pollution, chronic agricultural dust inhala-
tion, endotoxins, and smoking); 4) nausea,
weakness, dizziness, and fainting (associated
with endotoxin exposure); ¢) headaches and
plugged ears (25% of swine workers have
chronic sinusitis); and 4) runny nose,
scratchy throat, and burning eyes (associated
with exposure to irritant gases such as
ammonia). There was no significant differ-
ence for anxiety or depression between the
study and control groups.

A study in North Carolina compared
reported physical symptoms and quality-of-
life perceptions among 155 individuals from
three rural communities: a rural community
with no livestock facilities within 2 miles; a
similar group of households within 2 miles
of a dairy facility; and another group within
2 miles of a swine CAFO (213). The fre-
quencies of reported symptoms in the three
groups were compared with adjustment for
sex, age, smoking status, and employment.
Those living within 2 miles of the swine
CAFO reported a significantly greater fre-
quency of headaches, runny nose, sore
throat, excessive coughing, burning eyes, and
diarrhea than the other two groups. In addi-
tion, compared to the other two groups, the
residents near the swine CAFO reported sig-
nificantly more episodes during which they
could not open their windows or enjoy the
outdoor environment.

Limitations of Current
Evidence

Occupational Studies

Exposure assessment. One of the limitations
of occupational health studies is successfully
linking exposures to symptoms and lung
function indices. Usually, the environmental
measurements are obtained on 1 day, and
these limited measurements are then used to
compare with symptoms or lung function
tests. Air contaminant concentrations vary
spatially and by shift, day, week, and season.

Therefore, isolated short-term contaminant
measurements are being compared with
health effects that may result from long-term
exposures. These short-term measurements
are probably not representative of the actual
exposures over time. Some of the studies
obtain personal measurements and some use
arca samples. Area samples may be poor esti-
mators of personal exposures. One concern
when evaluating dose response using these
dara is the poor ability of area samples to dis-
criminate between workers with lower and
higher levels of exposure.

When sampling for endotoxin in particu-
lar, the results may not reflect accurate con-
centrations in air. The conditions under
which the endotoxins are collected, extracted,
and stored can all affect the accuracy of the
analytical results (56,87,214). In a study by
Douwes et al. (215), a series of parallel air
samples was collected and different methods
of collecting and processing the samples were
compared. Investigators found a difference of
up to 17-fold in endotoxin yield using the dif-
ferent methods of processing the samples.
The types of filter and water dramatically
impacted the recovery of endotoxin. Freezing
and thawing of the samples significantly
reduced the activity of endotoxins up to 25%.
Additionally, dust samples appeared to be
more stable than extracted endotoxins (87).

There are a number of sources of varia-
tion and interferences that affect the quan-
tification of endotoxin in the widely used
Limulus amebocyte lysate assay (LAL)
(216,217). Historically, endotoxin results
from this test have been reported in
weight/volume or weight/weight units. More
recently, standard endotoxin preparations
have been developed, and by using these
standards, data can be reported in endotoxin
units (EUs). The use of EUs allows for com-
parisons between laboratories and takes into
account the variance in biologic activities
between endotoxins from different sources.
Milton et al. (216) investigated various
interferences in the LAL and found that
interferences could result in a 136-fold
underestimation to a 34-fold overestimation
of endotoxin concentration. Preventing the
underestimation of concentrations due to
endotoxin collection procedures, storage of
samples, assay conditions, or interferants
present in the sample is particularly impor-
tant when evaluating community exposures
where the levels may be very low.

In epidemiologic studies, exposure mis-
classification and confounding can reduce the
sensitivity of studies to find effects. Exposure
misclassification may result from the use of
general air rather than personal sampling,
failure to characterize specific chemicals or
dusts that are most relevant to health out-
comes, and inability to characterize temporal
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patterns of exposure. Confounding can
occur if workers with higher exposures are
more exposed to other causes of adverse out-
comes, resulting in the observance of an
exposure—outcome relationship that may not
exist. The opposite problem may also occur.
For example, smokers have poorer respirato-
ry function than nonsmokers. Higher smok-
ing among the unexposed group could dilute
differences in respiratory function between
exposed and unexposed workers. This could
happen if smokers are less tolerant of work
in confinement operations than nonsmokers.

Disease detection. Characterization of
human infectious disease depends on the
recognition of the pathogenic agents. Most
diseases of swine CAFO origin that poten-
tially affect populations at risk cannot be
distinguished from more common human-
source diseases. In addition, even relatively
common zoonoses and intoxications may be
significantly underdiagnosed. It has been
estimated that only 50% of Salmonella cases
seek medical attention, and of these only
20% are diagnosed. For parasitic diseases
such as cryptosporidiosis clinicians often
misunderstand the laboratory protocols that
do not include this organism on routine
tests, and fail to specifically request it (218).
Methemoglobinemia may be misdiagnosed
as congenital heart defects or sudden infant
death syndrome (79,80). The lack of routine
screening for Yersinia in U.S. laboratories
has been attributed to its low detection rate
in this country (174).

In addition, selection factors may
decrease disease detection in occupational
studies and limit their application to other
cohorts. Two types of selection are relevant.
First, workers tend to be a generally healthy
group compared to the general population,
in that they do not include children, the
elderly, or persons with chronic diseases who
are too ill to work. This is often referred to
as the healthy worker effect. Thus, although
workers are studied because their exposures
are higher, their lower sensitivity to exposure
must be considered when adverse health
effects are monitored. The second selection
issue of concern occurs within the workplace
and affects studies that compare exposure
levels among workers according to personal
monitoring results and/or length of employ-
ment [e.g., Reynolds et al. (45)]. In such
populations, a healthy worker survivor effect
may occur, in which workers who are more
sensitive to the adverse effects of occupational
exposures leave the workplace at a higher rate
than workers who are less sensitive. In this sit-
uation, not only is disease detection compro-
mised, but the length of employment (and
magnitude of cumulative exposure) is inverse-
ly related to health-effect sensitivity. Greater
exposure of less-susceptible individuals tends

to dampen dose-response relationships in
occupational studies (219,220).

Community-Based Studies

Study design. Community-based health stud-
ies suffer from some of the same method-
ologic problems. Exposure assessment is
often very difficult or nonexistent in commu-
nity-based studies. For example, Thu et al.
(212) did not measure exposure but assumed
that residents living near hog operations
were more exposed then residents further
away. Schiffman et al. (200) asked respon-
dents to record survey responses when they
smelled odor but there was no independent
evaluation of airborne emissions.

Although health symptoms are impor-
tant outcomes, the responses of participants
may be influenced by feelings about the
industry created by loss of home values,
quality of life, and other adverse social expe-
riences. Experiences of anger or depression
may on the one hand influence health out-
comes directly, and on the other influence
recall in response to survey items, introduc-
ing ambiguity in interpretation of results.

Furthermore, community-level disease
detection resulting from surveillance systems
is probably insufficient to detect changes in
disease rates. First, poor access to health care
in rural communities limits the ability to
detect changes in incidence observed by pas-
sive surveillance systems. Second, regional
statistics combining urban and rural popula-
tions are not sensitive to changes in disease
trends in sparse rural populations. Finally,
the index of suspicion for diseases possibly
associated with swine CAFO exposure must
be higher in the regional health care system
to detect zoonotic diseases. Consequently, in
the absence of specific population-based sur-
veillance, disease trends in rural communi-
ties are difficult to measure.

Community-based studies also suffer
from small sample sizes, small number of
facilities evaluated, and lack of comparability
of the evaluated exposures. Thu et al. (212)
and Wing and Wolf (2/3) examined rela-
tively small clusters of individuals in close
proximity to a facility of interest, and per-
sons near only one exposure unit were evalu-
ated (i.e., one swine CAFO). Health effects
may differ as a function of management sys-
tems, facility size, and local factors affecting
exposure pathways.

Environmental injustice. A dispropor-
tionate presence of polluting industries and
environmental exposures in communities of
poor and people of color has been referred to
as environmental injustice. Environmental
injustice is not only a concern with regard to
specific health effects, but also with regard to
general community health, economic devel-
opment, and disease surveillance. The
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presence of intensive swine operations may
reduce land values and limit the attractiveness
of those locations for other types of economic
and social improvements that positively
impact both individual and public health.

Environmental injustice has specifically
been considered in the North Carolina swine
industry. Two N.C. studies showed that in
recent years hog production became concen-
trated in economically distressed counties
with high proportions of African Americans
(221,222). Another study examined the dis-
tribution of intensive hog operations with
respect to the economic and racial charac-
teristics of census block groups (areas of
approximately 500 households each) and
found strong support for the contention
that intensive hog operations in North
Carolina are located disproportionately in
communities where people of color, the
poor, and houscholds that use well water are
concentrated (223).

Environmental injustice in these regions
of swine CAFO concentration further com-
plicates disease detection and public health
surveillance. The accumulation of epidemio-
logic data may be compromised by a lower
rate of physician visits by those most affect-
ed. For example, a recent study of outpatient
visit trends for infectious diseases showed
that the visit rate for white populations was
25% higher than the rate for nonwhite pop-
ulations (224). This difference cannot be
explained by differential disease rates:
Morbidity and mortality from infectious dis-
eases such as influenza, Y. enterocolitica, and
Salmonella are significantly higher in African-
American populations than in white popula-
tions (225,226). Clearly, the surveillance of
disease trends is compromised by the many
economic and social factors that prevent
opportunities for physician diagnoses in the
populations at risk from CAFOs.

The Future of Occupational
and Community Studies of

Swine CAFO Impacts

Although theory and preliminary studies tell
us that gases, vapors, aerosols, microbial
pathogens, antimicrobial residues and resis-
tance, and nutrients generated at a swine
CAFO might reach the community, expo-
sure assessment and disease surveillance are
problematic. Future studies in this area need
to focus on appropriate exposure measure-
ments, exposure pathways, and the unique
characteristics and impacts on the popula-
tions at risk.

Future community-based studies should
utilize environmental exposure assessment
methods and clinical or physiologic measures
of health outcomes to improve their sensitivi-
ty and specificity. Considering the similarity
between the symptoms observed in workers at
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swine CAFOs and in community (212,213)
studies, endotoxins and ammonia on particles
would be candidates for community-level
monitoring. One complication with evaluat-
ing endotoxins in the home is determining
the source or sources (outdoor or indoor).
Based on the literature on odors, it would be
valuable to use real-time instrumentation that
can detect multiple contaminants simultane-
ously to capture milligram-per-cubic-meter
levels of contaminants in air for the signature
compounds emanating from nearby swine
CAFO facilities.

Exposure pathways need to be identified
and contaminants traced through these path-
ways from the sources of contamination. For
microbial pathogens, molecular techniques
may prove invaluable in source tracing. The
body of literature evaluating molecular tech-
nologies that discriminate animal and
human sources of microbes is increasing,
and may be of particular relevance in envi-
ronmental epidemiology studies of this kind.

Finally, special attention must be paid to
the unique population impacted by the
swine industry. Large-scale CAFOs have
impacts on the quality of life of neighbors as
well as the larger communities in which they
are located (227). Although the impacts of
reduced quality of life on long-term mental
health could be specifically addressed by fur-
ther research, neighbors are more concerned
about immediate threats to their health and
well being. The presence of swine CAFOs,
especially in poor and underdeveloped
regions, may preclude other types of eco-
nomic development and industrialization and
may impact local land ownership, which are
critical to keeping profits in local communi-
ties. Research in North Carolina suggests that
the loss of African-American-owned land is
related to the expansion of vertically integrat-
ed swine operations in the state (221). There
are extensive opportunities for further
research into the impacts of swine CAFOs on
land values, land ownership, and the ability
of communities to attract and maintain edu-
cational, industrial, and medical facilities—
community resources that are essential to

positive public health developments (96).
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