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Abstract

Previous research on risk factors for obstructive heart defects (OHDs) focused on maternal

and infant genetic variants, prenatal environmental exposures, and their potential interaction

effects. Less is known about the role of paternal genetic variants or environmental expo-

sures and risk of OHDs. We examined parent-of-origin effects in transmission of alleles in

the folate, homocysteine, or transsulfuration pathway genes on OHD occurrence in off-

spring. We used data on 569 families of liveborn infants with OHDs born between October

1997 and August 2008 from the National Birth Defects Prevention Study to conduct a fam-

ily-based case-only study. Maternal, paternal, and infant DNA were genotyped using an Illu-

mina Golden Gate custom single nucleotide polymorphism (SNP) panel. Relative risks

(RR), 95% confidence interval (CI), and likelihood ratio tests from log-linear models were

used to estimate the parent-of-origin effect of 877 SNPs in 60 candidate genes in the folate,

homocysteine, and transsulfuration pathways on the risk of OHDs. Bonferroni correction

was applied for multiple testing. We identified 3 SNPs in the transsulfuration pathway and 1
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SNP in the folate pathway that were statistically significant after Bonferroni correction.

Among infants who inherited paternally-derived copies of the G allele for rs6812588 in the

RFC1 gene, the G allele for rs1762430 in the MGMT gene, and the A allele for rs9296695

and rs4712023 in the GSTA3 gene, RRs for OHD were 0.11 (95% CI: 0.04, 0.29, P =

9.16x10-7), 0.30 (95% CI: 0.17, 0.53, P = 9.80x10-6), 0.34 (95% CI: 0.20, 0.57, P = 2.28x10-

5), and 0.34 (95% CI: 0.20, 0.58, P = 3.77x10-5), respectively, compared to infants who

inherited maternally-derived copies of the same alleles. We observed statistically significant

decreased risk of OHDs among infants who inherited paternal gene variants involved in

folate and transsulfuration pathways.

Author summary

Obstructive heart defects are birth defects that cause obstruction to the blood flow of the

developing heart. Common OHDs include coarctation of the aorta, aortic stenosis and

pulmonary stenosis. While there is a fair amount of literature indicating an association

between maternal genetic variants and OHDs, less is known about the role of paternal

genetic variants in the etiology of OHDs. We used a genotype clustering algorithm,

SNPMClust, that was developed in-house at the Arkansas Center for Birth Defects

Research and Prevention to study the role of paternal genetic variants in the folate, homo-

cysteine and transsulfuration pathways. Maternal, paternal, and infant DNA specimens

were collected from participants of the National Birth Defects Prevention Study, a large

population-based case-control study in the United States, and were genotyped using an

Illumina Golden Gate custom single nucleotide polymorphism (SNP) panel. We identi-

fied 4 SNPs in the folate and transsulfuration pathways, rs6812588, rs1762430, rs9296695,

and rs4712023, that were associated with a statistically significant decreased risk of OHDs

for infants who inherited a paternally-derived copy of the variant allele compared to

infants who inherited a maternal copy of the variant allele. In conclusion, we observed a

significantly decreased risk and less epigenetic influence of paternal genetic variants on

OHDs compared to maternally-derived variants.

Introduction

Congenital heart defects (CHDs) are the most commonly occurring group of birth defects and

affect about one percent of live births in the United States annually [1, 2]. They are also the

most common cause of infant mortality and lifelong morbidity [3, 4]. It has also been reported

that overall survival among patients with complex heart defects is decreased with increasing

age compared to healthy age-matched counterparts [3]. Although some CHDs occur in associ-

ation with certain genetic syndromes (e.g., trisomy 21, 22q11 deletion, Alagille syndrome,

Noonan syndrome) and teratogenic exposures (e.g., anticonvulsants, maternal pregestational

diabetes), approximately 80% are of unknown etiology [5–7]. Known maternal risk factors

associated with CHDs include diabetes mellitus [8], obesity [9], prenatal cigarette smoking

[10–15], low blood folate concentrations [16], hyperhomocysteinemia [17], medication use

[18] and genetic polymorphisms in metabolic pathways, including the folate, homocysteine,

and glutathione/transsulfuration pathways [8, 9, 13–33].

In contrast, the role of paternal environmental and genetic factors on the risk of CHDs is

less defined with limited literature [34]. Some studies indicate associations between young or
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advanced paternal age and increased risk of atrial septal defects, ventricular septal defects,

right ventricular outflow tract defects including pulmonary valve atresia, patent ductus arterio-

sus, and CHDs overall [35, 36]; however, other studies report no association between paternal

age and risk of CHDs. Other paternal exposures associated with increased risk of CHDs

include cigarette smoking, alcohol consumption, and occupational exposure to endocrine dis-

ruptors [11, 35–43].

Although the specific biological mechanisms are unclear, it is hypothesized that these expo-

sures (paternal age, smoking, etc.) may share a similar physiologic mechanism: germline muta-

tions and epigenetic alterations to sperm haploid DNA [10, 44–49]. Given that environmental

exposures may induce changes in paternal DNA that can result in CHDs, we postulated that

certain paternal genetic polymorphisms may also increase CHD risk. Numerous studies con-

firm that genetic polymorphisms in maternal and infant genes are directly or indirectly associ-

ated with risk of CHDs, particularly genes involved in folate, homocysteine, and

transsulfuration pathways [19, 20, 50].

To our knowledge, to date (as of March 2020), only one study has assessed the influence of

paternal genetic variants in folate, homocysteine, or transsulfuration pathways and CHD risk

in offspring [51]. This study examined conotruncal heart defects and found less epigenetic

influence on conotruncal heart defects by paternal genetic variants compared to maternal

genes. No studies have assessed other groups of CHDs, such as right-sided and left-sided

obstructive heart defects (OHDs). Among subtypes of OHDs, pulmonary stenosis and coarcta-

tion of the aorta account for 8% and 5% of all CHDs respectively [2], making OHDs an impor-

tant group of CHDs to investigate. Moreover, studies show that women who delivered infants

with OHDs were more likely to have alterations in metabolites in pathways involving folate,

homocysteine, and glutathione [25, 52, 53]. Additionally, a recent study demonstrated that

risk of OHDs was closely related to a combined effect of variations in genes in the folate,

homocysteine, or glutathione/transsulfuration pathways, maternal use of folic acid supple-

ments and pre-pregnancy obesity, although the focus was on genetic variants in maternal

genes [54]. Whether a similar pattern of gene-environment interaction effects for paternal

exposures, including alterations in pathways for paternal genes, are also responsible for caus-

ing OHDs is yet to be explored. In this study, we investigated parent-of-origin effects for

genetic variants in folate, homocysteine and transsulfuration pathway genes and the occur-

rence of OHDs in offspring.

Results

Table 1 displays the distributions of maternal and paternal characteristics of infants born with

OHDs for whom genotyping was performed. The mean maternal and paternal age at delivery

were 28.3 (6.0) and 32.0 (6.7), respectively. As for race/ethnicity, 73.2% and 67.9% of mothers

and fathers, respectively, were non-Hispanic white. Approximately 30% and 26% of mothers

and fathers, respectively, had some college education. Among mothers, 26.1% were over-

weight, and 23.0% were obese. About 58% of the mothers took folic acid supplements during

the periconceptional period (a month before conception through the end of the first trimester);

20.4% drank some quantity of alcohol during the entire pregnancy (date of conception

through date of birth) and 13.5% smoked cigarettes during the entire pregnancy period.

Among fathers, 94% were employed at the time of interview, while 18% had a birth defect or

health problem at birth.

The final analysis included 877 SNPs within 60 genes. Based on Bonferroni adjustment, the

statistical significance was set at� 5.70×10−5. We observed a statistically significant decreased
risk of OHDs for paternally-derived effects for four SNPs in three genes (Table 2): one SNP
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Table 1. Summary of maternal and paternal characteristics from chi-squared analyses for mothers of infants with

obstructive heart defects, The National Birth Defects Prevention Study, USA, October 1997 –August 2008 births

(n = 569 case families)a.

Characteristics Maternal Paternal

n (%) n (%)

Age at Delivery

Mean (SD) 28.3 (6.0) 32.0 (6.7)

<35 years 480 (84.4%) 285 (71.6%)

�35 years 89 (15.6%) 113 (28.4%)

Missing 0 171

Race/Ethnicity

Non-Hispanic white 413 (73.2) 383 (67.9)

Non-Hispanic black 61 (10.8) 69 (12.2)

Hispanic 66 (11.7) 77 (13.7)

Other 24 (4.3) 25 (4.4)

Missing 0 10

Education

< 12 years 73 (12.9) 81 (14.4)

High school diploma or equivalent 139 (24.6) 155 (27.5)

< 4 years of college education 170 (30.1) 144 (25.5)

At least 4 years of college or bachelor’s degree 182 (32.2) 171 (30.3)

Missing 0 13

Mean Household Income

< $10,000 70 (12.4) N/A

$10,000 –$29,999 163 (28.9) N/A

$30,000 –$49,999 129 (22.9) N/A

� $50,000 180 (31.9) N/A

Missing 22 N/A

Body Mass Index

Underweight (< 18.5 kg/m2) 14 (2.5) N/A

Normal weight (18.5 to < 25.0 kg/m2) 257 (45.6) N/A

Overweight (25.0 to <30.0 kg/m2) 147 (26.1) N/A

Obese (� 30.0 kg/m2) 130 (23.0) N/A

Missing 16 N/A

Periconceptional Folic Acid Supplementation

No 236 (41.8) N/A

Yes 328 (58.2) N/A

Alcohol Intakeb

No 445 (78.9) N/A

Yes 115 (20.4) N/A

Missing 4 N/A

Cigarette Smokingb

No 488 (86.5) N/A

Yes 76 (13.5) N/A

Cigarette Smoking in Home During First Trimester

No 471 (83.5) N/A

Yes 93 (16.5) N/A

Currently Employed (at Time of Interview)

No N/A 28 (5.0)

Yes N/A 532 (94.3)

(Continued)
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each in replication factor C subunit1 (RFC1) and O-6-methylguanine-DNA methyltransferase

(MGMT); and two SNPs in glutathione S-transferase alpha 3 (GSTA3). These genes are

involved in DNA replication and repair, catalyzing transfer of methyl groups, and cellular

defense.

Among infants who inherited a paternally-derived copy of the G allele for rs6812588 in the

RFC1 gene, the relative risk (RR) of an OHD was 0.11 (95% confidence interval [CI]: 0.04, 0.29,

Table 1. (Continued)

Characteristics Maternal Paternal

n (%) n (%)

Missing information N/A 4

Health Problem at Birth or a Birth Defect Diagnosed in Childhood?

No N/A 452 (80.1)

Yes N/A 100 (17.7)

Missing information N/A 12

Mother Blood Relative of Baby’s Father?

No N/A 559 (99.1)

Yes N/A 3 (0.9)

Missing information N/A 2

a. Data are from families for whom DNA samples were available

b. During pregnancy = date of conception to date of birth

N/A = Not Available

https://doi.org/10.1371/journal.pgen.1009413.t001

Table 2. Risk ratios and 95% confidence intervals (CIs) with p-values for paternally-derived effects for the top 20 single nucleotide polymorphisms (SNPs) identi-

fied from hybrid analyses compared to maternally-derived effects for common variants in genes involved in folate, homocysteine and transsulfuration pathways

and risk of obstructive heart defects, The National Birth Defects Prevention Study, USA, October 1997 –August 2008 births (n = 569 case families).

SNP Referent/Risk allele Chr Gene Pathway Relative Risk (95% CI) P-valuea

rs6812588 G/A 4 RFC1 Folate 0.11 (0.04, 0.29) 9.16×10−7

rs1762430 G/A 10 MGMT Transsulfuration 0.30 (0.17, 0.53) 9.80×10−6

rs9296695 A/G 6 GSTA3 Transsulfuration 0.34 (0.20, 0.57) 2.28×10−5

rs4712023 A/G 6 GSTA3 Transsulfuration 0.34 (0.20, 0.58) 3.77×10−5

rs9299871 A/G 10 MGMT Transsulfuration 0.22 (0.10, 0.49) 8.81×10−5

rs7541539 A/C 1 MTR Homocysteine 0.27 (0.14, 0.53) 8.81×10−5

rs7069462 A/G 10 MGMT Transsulfuration 0.20 (0.09, 0.47) 1.02×10−4

rs2273027 A/G 17 SHMT1 Folate 2.14 (1.46, 3.13) 1.27×10−4

rs12202200 A/G 6 GSTA3 Transsulfuration 0.36 (0.20, 0.64) 2.79×10−4

rs6577 C/A 6 GSTA2 Transsulfuration 0.31 (0.16, 0.60) 2.90×10−4

rs7818511 A/G 8 GSR Transsulfuration 0.38 (0.22, 0.65) 2.93×10−4

rs600473 C/A 5 BHMT Homocysteine 1.87 (1.34, 2.62) 3.19×10−4

rs9382157 A/G 6 GSTA3 Transsulfuration 0.37 (0.21, 0.65) 4.18×10−4

rs1547177 A/C 10 MGMT Transsulfuration 0.35 (0.19, 0.65) 5.67×10−4

rs2152151 C/G 10 MGMT Transsulfuration 0.34 (0.18, 0.66) 7.28×10−4

rs2062228 A/G 4 RFC1 Folate 0.24 (0.10, 0.56) 1.11×10−3

rs2424905 A/G 20 DNMT3B Homocysteine 0.55 (0.38, 0.80) 1.31×10−3

rs2363641 G/A 14 GSTZ1 Transsulfuration 1.90 (1.28, 2.80) 1.46×10−3

rs4796017 G/A 17 NOS2A Transsulfuration 1.75 (1.23, 2.50) 2.53×10−3

rs7081756 C/A 10 MAT1A Homocysteine 0.54 (0.36, 0.82) 2.54×10−3

a. “Bolded p-values are for significant SNPs with p-value� 5.70x10-5.”

https://doi.org/10.1371/journal.pgen.1009413.t002
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p = 9.16x10-7) compared to infants who inherited a maternal G allele. In the MGMT gene, for

infants who inherited a paternally-derived copy of the G allele for rs1762430, the RR was 0.30

(95% CI: 0.17, 0.53, p = 9.80x10-6) compared to infants who inherited the maternal G allele.

Among infants who inherited a paternally-derived copy of the A allele for rs9296695 or rs4712023

in GSTA3, the RRs were 0.34 (95% CI: 0.20, 0.57, p = 2.28x10-5) and 0.34 (95%CI: 0.20, 0.58,

p = 3.77x10-5), respectively, compared to infants who inherited the maternally-derived A allele.

Elevated, non-significant risks were observed for infants who inherited paternally-derived

copies of the: (i) A allele for rs2273027 in the SHMT1 gene in the folate pathway (RR 2.14,

p = 1.27×10−4); (ii) C allele for rs600473 in the BHMT gene in the homocysteine pathway (RR

1.87, p = 3.19x10-4); and (iii) G allele for rs2362641 and rs4796017 in the GSTZ1 and NOS2A
genes, respectively in the transsulfuration pathway (RR 1.90, p = 1.46x10-3 and RR 1.75,

p = 2.53x10-3, respectively), compared to infants who inherited maternally-derived copies.

Fig 1 shows the distribution of RRs, identified from hybrid analyses, for OHDs in infants

who inherited a paternally-derived risk variant compared to a maternally-derived risk variant

in genes involved in all three pathways. A Manhattan plot was also constructed (Fig 2) to dis-

play the location of specific genes involved in all three pathways for which we observed, from

hybrid analyses, a significantly decreased risk of OHDs when the risk variant was paternally-

derived compared to maternally-derived.

In summary, we observed a statistically significant decreased risk of OHDs among infants

who inherited a paternally-derived copy of one folate and three transsulfuration pathway

genes compared to maternally-derived variants.

Discussion

In this study, we determined the parent-of-origin effects for genetic variants in folate, homo-

cysteine, and transsulfuration pathway genes and occurrence of OHDs in offspring. The

majority of published studies have investigated the effects of maternal genetic variants and

environmental factors on the occurrence of CHDs in general [12, 55–57]; however, much less

Fig 1. Distribution of relative risks, identified from hybrid analyses, for obstructive heart defects in infants with

paternally-derived compared to maternally-derived risk variants in genes involved in folate, homocysteine, and

transsulfuration pathways, The National Birth Defects Prevention Study, USA, October 1997–August 2008 births.

https://doi.org/10.1371/journal.pgen.1009413.g001
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is known about the role of paternally-related genetic variants in outcomes of pregnancy,

including their roles in CHD etiology [51]. We observed no statistically significant increased

risk of OHDs for infants who inherited a paternally-derived copy of variant alleles in genes

involved in folate, homocysteine, or transsulfuration pathways compared to infants who inher-

ited a maternal copy of the variant allele. However, we did identify 4 SNPs (rs6812588,

rs1762430, rs9296695, and rs4712023) that were associated with a statistically significant

decreased risk of OHDs for infants who inherited a paternally-derived copy compared to

infants who inherited a maternal copy of the variant allele (Fig 2).

One possible explanation for our results, as suggested by earlier studies, is the parent-of-ori-

gin effect in the etiology of groups of CHDs. Parent-of-origin effects arise when the phenotypic

impact of an allele depends on whether it is inherited from the mother or father [58]. Although

several mechanisms are proposed to cause parent-of-origin effects, genomic imprinting and

trans-generational effects are the two primary mechanisms that have been widely described

[58–60]. Parent-of-origin effects are often associated with the imprinting principle in which an

allele of a specific gene is silenced through epigenetic mechanism when inherited from one

parent and expressed when inherited from the other parent [58, 60, 61]. On the other hand,

transgenerational genomic effects occur due to transmitting epigenetic information from one

generation to subsequent generations in the absence of direct exposure [58, 62]. In recent

years, a growing body of genome-wide association studies have successfully identified parent-

of-origin effects due to genomic imprinting and trans-generational inheritance in several phe-

notypes, including cleft lip with/without palate [63, 64], non-syndromic orofacial clefts [65],

autism spectrum disorder [59, 66], attention-deficit/hyperactivity disorder [67], body mass

index [68, 69], testicular germ cell tumors [70], and schizophrenia [71]. The gene expression

determined by parent-of-origin effect may result in disease. Two common examples include

Prader–Willi syndrome [72] and Angelman syndrome [72, 73] in which the maternal or pater-

nal locus in the 15q11-13 region, respectively, is either silenced or removed [60]. Only a small

Fig 2. Manhattan plot that shows the location of genes involved in folate, homocysteine, and transsulfuration

pathways for which we observed, from hybrid analyses, a significantly decreased risk of obstructive heart defects

when the risk variant was paternally-derived compared to maternally-derived, The National Birth Defects

Prevention Study, USA, October 1997–August 2008 births.

https://doi.org/10.1371/journal.pgen.1009413.g002
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number of imprinted loci encompassing a small portion of the human genome have been

identified in the literature.

MGMT is a DNA repair enzyme that is thought to be involved in the prevention of DNA

damage and oxidative stress, and the expression of MGMT is associated with antioxidant

mechanisms [74]. Potential involvement of MGMT in the development of CHDs was previ-

ously suggested by our research group [75]. Due to the tendency of imprinted genes to cluster

together, we examined regions within 500 Kb of imprinted genes to identify parent-of-origin

effects [49]. Rs1762430 in MGMT has significant paternal versus maternal effects and is close

to (<370bp) a known imprinted gene, GLRX3 [76]. GLRX3, a protein in the transsulfuration

pathway, is thought to be involved in cell growth, organ development, and other normal pro-

cesses of growth and development [77]. Therefore, findings from our study suggest that risk of

OHD associated with rs1762430 in MGMT may be linked to genomic imprinting of the nearby

gene GLRX3. However, future studies of this region using gene expression profiles of parental

trios would help confirm the role of imprinting in OHD risk.

Genetic variation may change the response of an individual to the exposure of environmen-

tal factors. When genetic susceptibility is high, even the minimum contribution from environ-

mental risk factors may trigger disease development. Notable effects of environmental factors

have been observed in infants with RFC1 polymorphisms resulting in development of CHDs

[78, 79]. RFC-1 is a protein involved in the folate pathway that is responsible for the transport

of folate molecules from the circulation to peripheral cells and regulation of the delivery of

5-methyltetrahydrofolate from the endocytotic vesicle into the cytoplasm [80]. Several poly-

morphisms in the RFC1 gene are well studied in the literature. A previous study reported that

compared to infants with A80/A80 genotype, infants with G80/G80 genotype had a non-signif-

icant increased risk of conotruncal heart defects among mothers using and not using folic

acid, indicating different effects of gene-environment interaction [79]. To date, no studies

have identified potential associations of rs6812588 in RFC1 and development of CHDs.

GSTA3 acts by mitigating oxidative stress in the transsulfuration pathway, which is subse-

quently associated with increased risk of conotruncal heart defects [53, 81]. In our study, two

SNPs (rs9296695 and rs4712023) in GSTA3 were statistically significant when comparing

paternal versus maternal inheritance and OHD risk. Being located in the downstream region

of the gene, these SNPs might have a regulatory role on the GSTA3 gene. A study in the past

has shown several maternal and fetal genotypes of SNPs in the glutathione transferase includ-

ing GSTA3 to increase the impact of risk factors such as maternal obesity and tobacco use on

the risk of CTDs [53]. Our findings suggest that GSTA3 might play a similar role in OHD risk

as that observed for conotruncal heart defects, although further studies are warranted.

While imprinted genes tend to cluster together, our study only identified imprinted genes

MGMT and GLRX3 together, and not RFC1, thus indicating a possible residual effect of RFC1
in the occurrence of OHDs. With a limited literature on comparison of maternal and paternal

genetic variants on heart defects as well as potential effects of RFC1 [78, 79], our study findings

warrant continued caution on the genomic imprinting effect of RFC1 on OHDs.

Our search of the published English language literature in PubMed, to date, produced only

one study [51] that conducted a parent-of-origin analysis for risk of CHDs as the primary aim.

In that study, Nembhard et al observed that children who inherited a paternally-derived copy

of the A allele for rs7818511 in the GSR gene, or the A allele for rs17085159 or the T allele for

rs12109442 in the GLRX gene, were found to be at decreased risk of developing conotruncal

heart defects compared to children with the maternal copy of the same allele [51]. A study by

Long et al. [82] conducted an ad hoc parent-of-origin analysis to evaluate the association

between maternal SNPs in folate regulated genes and the risk of left-sided heart defects and

conotruncal heart defects. In that study, the primary analysis indicated that MTR A2756G was
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associated with the studied cardiac defects. Although results from parent-of-origin likelihood-

ratio-test as ad hoc analysis was not statistically significant, the log-linear likelihood-ratio-test

for conotruncal heart defect case triads was statistically significant. Therefore, findings from

these studies further support the possibility of parent-of-origin effects in the etiology of CHDs.

Our study has several potential limitations. First, DNA was extracted from self-collected

buccal cell samples; therefore, there may be an unknown level of inconsistency in the quality of

the DNA samples. However, to ensure high-quality genotypes in this study, stringent quality

control measures were applied by excluding SNPs with poor clustering behavior, no-call rates

>10%, Mendelian error rates>5%, minor allele frequency (MAF) <5%, or significant devia-

tion from Hardy-Weinberg equilibrium in at least one racial group. Second, we could not vali-

date the role of imprinting on OHD due to lack of gene expression data in the case-parental

trios. Third, the cases were livebirths, so the observed decreased risks may only be representa-

tive of those cases who survived. This limits the observation of a prenatal survivor effect in this

study. Fourth, heterogeneity of OHDs and the associations observed in this study might be

affected by the broad outcome classification. However, OHDs for both right ventricular and

left ventricular groups were combined to have a sufficient sample for meaningful interpreta-

tion. This has also been done in past studies in literature to have adequate genotyped sample

for meaningful interpretations [54, 75, 83]. Fifth, our study did not include information on

paternal smoking, alcohol consumption and occupation because of limited data availability

and our major focus on genotyped information. A recent systematic review suggested

advanced paternal age, smoking, alcohol consumption and specific occupations were associ-

ated with an increased risk of CHDs [34]. While we were able to assess paternal employment

status, further studies assessing specific paternal risk factors, including smoking, alcohol con-

sumption and occupations, in association with genetic variants would help determine risk spe-

cific to OHDs. Despite these overall limitations, our study possesses several strengths. First, in

this large population-based study, our study population consisted of multiple racial/ethnic

groups. Second, all the OHD cases were confirmed by pediatric cardiologists and a standard

procedure for the OHD classification was used across participating study centers. Finally, in

addition to exploring effects of inherited genotypes, the usage of log-linear modelling allowed

us to also examine prenatal effects of maternal genotype and parent-of-origin (imprinting)

effects. Furthermore log-linear models bear an advatange over other models as they can be

extended to any number of alleles or loci, or any number of risk factors.

In conclusion, we observed that paternal genetic variants in certain folate and transsulfura-

tion pathway genes contributed to a lower risk of OHDs occurence compared to maternal vari-

ants. Future studies with larger sample size and multi-omics data are indicated to validate our

findings to gain additional confidence.

Methods and materials

Ethics statement

The Institutional Review Boards (IRB) at each of the following collaborative centers of the

National Birth Defects Prevention Study (NBDPS) provided approval: University of Arkansas

for Medical Sciences, California Birth Defects Monitoring Program, University of Iowa, Mas-

sachusetts Department of Public Health, New Jersey Department of Health, State of New York

Department of Health, University of North Carolina at Chapel Hill, Texas Department of State

Health Services, and University of Utah. All study participants (including parents of minors)

provided written or verbal informed consent. For the telephone interview, each participant

provided a verbal consent (permission) to use their answers in the study to understand the

causes of birth defects. For the DNA samples, participants also provided a signed written
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consent through a form that was provided with the collection kit through mail, that also

explained the study risks and benefits. The Centers for Disease Control and Prevention Institu-

tional Review Board (IRB), along with the IRBs for each participating center, have approved

the NBDPS [84, 85].

National Birth Defects Prevention Study

The NBDPS is one of the largest population-based case-control studies of birth defects con-

ducted in the United States. and provides a unique opportunity to examine genetic, environ-

mental, and behavior factors associated with the occurrence of major non-syndromic birth

defects. Methods of the NBDPS have been previously described [84, 85], but in brief, families

of case and control infants were identified from population-based birth defects surveillance

systems in 10 states: Arkansas, California, Georgia, Iowa, Massachusetts, New Jersey, New

York, North Carolina, Texas, and Utah [84, 85]. The study enrolled approximately 44,000

women who were non-Hispanic (NH) white, NH-black, Hispanic, and of other races with esti-

mated dates of delivery from October 1, 1997 through December 31, 2011. The case-only

study we conducted included a subset of women with estimated dates of delivery between

October 1997 and August 2008, for whom DNA specimens were available from themselves,

their infants, and the infant’s father [84, 85].

Ascertainment of obstructive heart defects

In the NBDPS, a range of non-syndromic CHD case infants were identified following diagnos-

tic procedures, including echocardiogram, surgical reports, cardiac catherization, or autopsy.

Each diagnostic procedure result was further reviewed by a pediatric cardiologist to ensure

consistent diagnoses across the study. A classification system was developed specifically for the

NBDPS and included cardiac phenotype, cardiac complexity, and extra-cardiac anomalies.

Our study included left and right-sided OHDs. These were grouped together since we had lim-

ited sample size for individual phenotypes due to the overall smaller sample of genotyped

CHDs. The left-sided OHDs were comprised of hypoplastic left heart syndrome, interrupted

aortic arch A, coarctation of the aorta, and aortic stenosis; the right-sided OHDs were com-

prised of pulmonary valve stenosis, tricuspid atresia, and Ebstein anomaly.[86]

Maternal interview

After informed consent, women completed a 1-hour computer-assisted telephone interview in

either English or Spanish from 6 weeks to 2 years after their estimated date of delivery. Overall

interview participation rate was 67% among case women and 65% among control women.

Mean number of weeks of gestation was 37.1 for cases and 38.7 for controls. Interviewers

obtained information on maternal demographic characteristics and other risk factors (e.g.,

maternal health, pregnancy, diet/substance use, home/work, family demographics, and medi-

cation use) both before and during pregnancy. Information on the father of the infant was also

collected during the interview.

DNA sample collection

Upon completing the telephone interview, families were mailed buccal cell collection kits.

These kits were used to collect specimens for maternal, infant, and paternal DNA. Details on

methods for DNA extraction, purification from buccal cell swabs and storage were described

previously [84, 87]. In this study, a customized panel, including 1536 SNPs from 62 genes that

were part of one-carbon metabolism (i.e., folate, homocysteine and glutathione/
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transsulfuration pathways), was used for genotyping on Illumina’s GoldenGate platform [53,

88]. 10–15 ng of genomic DNA was used for whole genome amplification (WGA) using Geno-

mePl WGA kit [89]. The WGA product was quantified using TaqMan RNase Reagent Kit [89].

Genotype clustering and calling was conducted using a previously developed and tested geno-

type calling algorithm, SNPMClust, that was developed in-house at the Arkansas Center for

Birth Defects Research and Prevention [90]. To ensure high-quality genotypes, we applied

stringent quality control measures and excluded SNPs with poor clustering behavior, no-call

rates >10%, greater Mendelian error rates >5%, MAF <5%, or significant deviation from

Hardy-Weinberg equilibrium in at least one racial group. Given the apparent lack of genome-

wide data, racial group was considered as a proxy for genetic ancestry. For the current study

specific to OHDs, the final dataset included 1203 individuals from 569 case families, each with

877 SNPs. Of the 569 case families, 220 (38.7%) were full trios.

Statistical methods

Summary statistics were expressed as means (standard deviation) for continuous variables,

and counts (percentage) for categorical variables. To investigate the parent-of-origin effect in

this case-only study, a log-linear model was fitted for the counts of each SNP as a function of

mating types, maternal genetic effect, and imprinting parameter [30]. Based on the log-linear

model for counts and assuming a Poisson distribution, the imprinting effect was estimated as

the relative risk of an OHD in a child who inherited a paternally-derived copy of the minor

allele compared to a child who inherits a copy of the minor allele from the mother. Bonferroni

correction was used to adjust for multiple testing. Statistical significance level was set at

p< 5.70 x 10−5 based on log likelihood statistics. Data were analyzed using statistical software

SAS 9.4 (SAS Institute Inc., Cary, NC) for computing descriptive statistics and PREMIM/

EMIM for fitting imprinting models. EMIM uses the genotype data to perform statistical anal-

ysis, while PREMIM allows the extraction of genotype data from pedigree data files. This tech-

nique allows the estimation of complex genetic effects such as parent-of-origin (imprinting)

effects [91].
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89. Ács N, Bánhidy F, Puhó EH, Czeizel AE. Possible association between acute pelvic inflammatory dis-

ease in pregnant women and congenital abnormalities in their offspring: A population-based case-con-

trol study. Birth Defects Research Part A: Clinical and Molecular Teratology. 2008; 82(8):563–70.

https://doi.org/10.1002/bdra.20480 PMID: 18553461

90. Erickson SW, Callaway JC. SNPMClust: Bivariate Gaussian Genotype Clustering and Calling for Illu-

mina Microarrays. Journal of Statistical Software. 2016;10.

91. Howey R, Cordell HJ. PREMIM and EMIM: tools for estimation of maternal, imprinting and interaction

effects using multinomial modelling. BMC Bioinformatics. 2012; 13(1):149. https://doi.org/10.1186/

1471-2105-13-149 PMID: 22738121

PLOS GENETICS Paternal genetic variants and risk of obstructive CHDs

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009413 March 8, 2021 17 / 17

https://doi.org/10.1002/bdra.20403
http://www.ncbi.nlm.nih.gov/pubmed/17729292
https://doi.org/10.1002/bdra.20829
http://www.ncbi.nlm.nih.gov/pubmed/21630425
https://doi.org/10.1038/nrg1901
http://www.ncbi.nlm.nih.gov/pubmed/16847463
https://doi.org/10.1002/bdra.20480
http://www.ncbi.nlm.nih.gov/pubmed/18553461
https://doi.org/10.1186/1471-2105-13-149
https://doi.org/10.1186/1471-2105-13-149
http://www.ncbi.nlm.nih.gov/pubmed/22738121
https://doi.org/10.1371/journal.pgen.1009413

