
INTERACTING WITH NETWORKED DEVICES

Olufisayo Omojokun

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill

in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the

Department of Computer Science.

Chapel Hill

2006

Approved by

Advisor: Prasun Dewan

Reader: Charles Isbell

Reader: Ketan Mayer-Patel

Reader: Maria Papadopouli

Reader: Amin Vahdat

Reader: David Stotts

Reader: Richard Han

 ii

© 2006

Olufisayo Omojokun

ALL RIGHTS RESERVED

 iii

ABSTRACT

OLUFISAYO OMOJOKUN: Interacting with Networked Devices

(Under the direction of Prasun Dewan)

 Networking technology has become applicable in domains beyond the conventional

computer. One such domain currently receiving a significant amount of research

attention is networking arbitrary devices such as TVs, refrigerators, and sensors. In this

dissertation, we focus on the following question: how does an infrastructure deploy a

user-interface for a single device or a composition of several ones?

 We identify and evaluate several deployment approaches. The evaluation shows the

approach of automatically generating device user-interfaces ‘on the fly’ as particularly

promising since it offers low programming/maintenance costs and high reliability. The

approach, however, has the important limitation of taking a long time to create a user-

interface. It is our thesis that it is possible to overcome this limitation and build graphical

and speech user-interface generators with deployment times that are as low as the

inherently fastest approach of locally loading predefined code. Our approach is based on

user-interface retargeting and history-based generation. User-interface retargeting

involves dynamically mapping a previously generated user-interface of one device to

another (target) device that can share the user-interface. History-based generation

predicts and presents just the content a user needs in a device’s user-interface based on

the user’s past behavior. By filtering out unneeded content from a screen, it our thesis

that history-based generation can also be used to address the issue of limited screen space

on mobile computers.

 The above ideas apply to both single and multiple device user-interfaces. The multi-

device case also raises the additional issue of how devices are composed. Current

infrastructures for composing devices are unsuccessful in simultaneously providing high-

 iv

level and flexible support of all existing composition semantics. It is our thesis that it is

possible to build an infrastructure that: (1) includes the semantics of existing high-level

infrastructures and (2) provides higher-level support than all other infrastructures that can

support all of these semantics. Such an infrastructure requires a composition framework

that is both data and operation oriented. Our approach is based on the idea of pattern-

based composition, which uses programming patterns to extract data and operation

information from device objects. This idea is used to implement several abstract

algorithms covering the specific semantics of existing systems.

 v

ACKNOWLEDGEMENTS

I am deeply grateful to several people who have helped me throughout my years as a

graduate student. First is my advisor, Professor Prasun Dewan, whose guidance, support,

and encouragement allowed me to complete my thesis. I also want to thank the other

members of my thesis committee, Professor Charles Isbell, Professor Maria Papadopouli,

Professor Ketan Mayer-Patel, Professor David Stotts, Professor Richard Han, and

Professor Amin Vahdat for their valuable comments and suggestions.

 I would like to thank my parents for their loving support during all my years in and

before graduate school. I additionally recognize my two brothers and two sisters for their

emotional support during stressful times.

 Finally, I gratefully acknowledge Microsoft and the National Science Foundation for

the financial support provided by the following grants: ANI 0229998, EIA 03-03590 and

IIS 0312328.

 vi

TABLE OF CONTENTS
Page

Chapter 1: Introduction ..1

Benefits of Deploying Software-based User-Interfaces ..3

1.2 Deploying Single Device User-Interfaces ...8

1.3 Deploying Multi-Device User-Interfaces ..11

1.4 Thesis ...14

1.5 Summary ..14

Chapter 2: Related Work ...16

2.1 Deploying Single Device User-Interfaces ...16

2.1.1 Palm/Pocket-PC IR Control Programs ..18

2.1.2 Jini (Service UI Approach) ..19

2.1.3 MOCA...20

2.1.4 Cooltown...20

2.1.5 Universal Plug and Play (UPnP)...20

2.1.6 ObjectEditor..21

2.1.7 Hodes’ System ..22

2.1.8 Personal Universal Controller (PUC)..23

2.1.9 ICrafter...24

2.2 Deploying Multi-Device User-Interfaces ..25

2.2.1 Cougar and TinyDB..26

2.2.2 Hodes’ System ..27

2.2.3 Palm/Pocket-PC IR Programs..28

 vii

2.2.4 WebSplitter ...29

2.2.6 Speakeasy..34

Chapter 3: Analysis of Various Approaches..36

3.1 Overview of Metrics and Setup ...36

3.2 User-Interface Flexibility...39

3.3 Programming Costs..46

3.4 Maintenance Costs ...49

3.4.1 Predefined vs. Generation...49

3.4.2 Client-Factory and Third-Party Factories vs. Other Approaches49

3.5 Efficiency...50

3.5.1 Space Costs ...51

3.5.2 Deployment Time Costs ...52

3.5.3 Operation Invocation Time Costs ...63

3.6 Device Binding Time...64

3.7 Deployment Reliability..64

3.8 Conclusion ...65

Chapter 4: User-Interface Retargeting ...69

4.1 Overview...70

4.2 GUI Retargeting...74

4.3 SUI Retargeting ...91

4.4 Evaluation ...92

4.4.1 Source User-interface Selection Performance ..95

4.4.2 Approach Selection Performance ..97

4.4.3 Retargeting Performance ..98

4.5 Conclusion ...110

 viii

Chapter 5: History-based Generation...113

5.1 Approach...114

5.2 Evaluation ..117

5.2.1 Generation Time Efficiency..118

5.2.2 Screen Space Efficiency ...123

5.3 Conclusion ...124

Chapter 6: Pattern-based Composition ..125

6.1 Overview..126

6.2 Algorithms and Evaluation ..136

6.2.1 ‘GUI Stack’ Composer ...137

6.2.2 ‘GUI Merge’ Composer..138

6.2.3 ‘Do Sequence’ Composer ...140

6.2.4 ‘Do All’ Composer ..142

6.2.5 Query Composer..144

6.2.6 ‘Data Transfer’ Composer...146

6.2.6 ‘Conditional Connect’ Composer ...149

6.3 Conclusion ...152

Chapter 7: User-Based Composition ...153

7.1 ML Approach..155

7.2 Experiments ...156

7.3 Evaluation ..158

7.3.1 Completeness ..159

7.3.2 Task-based Grouping ..160

7.3.3 ‘Do Sequence’ Discovery ...162

7.4 Conclusion ...163

 ix

Chapter 8: Conclusions and Future Work...164

Appendix A: Snapshots of Predefined and Generated GUIs ...169

References..180

 x

LIST OF TABLES

Table 1. An example composer registry...31

Table 2. An example composer registry...31

Table 3. Number of lines of user-interface code used for each device48

Table 4. Amount of space consumed by the code of each device’ handcrafted user-
interface...52

Table 5. Retargeting flexibility – Hodes’ System vs. Our Goals.74

Table 6. A summary of our 11 participants..94

Table 7. An evaluation of Tret‘s ability to predict the fastest command-only user-
interface to retarget. {* The DVD player also serves as a music CD player}97

Table 8. An evaluation of Tret‘s ability to predict the fastest command-and-state based
user-interface to retarget. {* The DVD player also serves as a music CD player} ..97

Table 9. For command-only UI deployment, a comparison of the approach predicted to
be the fastest to the approach that actually measures to be the fastest........................98

Table 10. For command-and-state based UI deployment, a comparison of the approach
predicted to be the fastest to the approach that actually measures to be the fastest....98

Table 11. Number of screens consumed by each device’s command-only GUI.114

Table 12. A summary of command filtering amounts for each device.120

Table 13. Number of commands required in each participant’s set of history-based user-
interfaces. ..122

Table 14. The number of Ipaq screens required for full and history-based GUI.123

Table 15. A classification of existing systems ...130

Table 16. A count of each participants missed buttons..159

Table 17. A count of user-interface switches required for participants’ common tasks.161

 xi

LIST OF FIGURES

Figure 1. (a) The author controlling a TV, VCR, and projector; (b) An adhoc security-
system composition consisting of a motion sensor and stereo..................................... 3

Figure 2. (a) Left, a VCR’s on-board controls; (b) Right, a Traditional IR Remote. 4

The mobile computer approach, illustrated above, offers several additional benefits: 4

Figure 3. Two possible approaches to UI deployment: (a) deploying a UI from pre-
installed code and (b) generating a UI. .. 9

Figure 4. A generated receiver user-interface on an Ipaq. .. 10

Figure 5. A depiction of cell phone (Motorola i710) and Pocket PC (Compaq Ipaq)
screen size differences. The cell phone’s screen is less than half of the Ipaq’s......... 11

Figure 6. A conceptual view of how a pattern-based composer could query several
sensors. ... 13

Figure 7. The general architecture abstracts existing infrastructures for deploying for
single device UIs .. 16

Figure 8. Current UI deployment approaches... 17

Figure 9. The IR port on the front end of the Ipaq for transferring data and controlling
IR devices... 18

Figure 10. A TV user-interface created using OmniRemote[2]...................................... 19

Figure 11. A CD player HTML-based user-interface inside a Netscape Browser. 20

Figure 12. A depiction of how ObjectEditor works.. 22

Figure 13. A lamp UI generated by Hodes’ System [15, 16].. 23

Figure 14. A portion of a stereo system user-interface generated by PUC [27]. Notice
the cassette navigation buttons are specifically grouped together. 24

Figure 15. (left) the HTML generated for setting a projector input; (right) the rendered
web page[28]. ... 25

Figure 16. Two possible ways to organize composers.. 26

Figure 17. A compound UI for a set of lights. .. 28

Figure 18. A Websplitter presentation in which audio is sent to a stereo and frames are
shown in display devices [13]. ... 29

 xii

Figure 19. A lights composition.. 30

Figure 20. An example composer registry. ... 31

Figure 21. (left) a Celadon PIC Link IR module (right) an X10 FireCracker CM17A
module.. 37

Figure 22. Sample programming interfaces (for the receiver and lamp). 38

Figure 23. Command-only receiver GUIs written using Java Swing: (a) a predefined
GUI that mimics the device’s remote control and (b) a GUI generated fully
automatically by ObjectEditor. .. 40

Figure 24. Command and state-based receiver GUIs: (a) predefined GUI and (b)
generated by ObjectEditor fully automatically. ... 42

Figure 25. A depiction of our experimental SUI generator. ... 45

Figure 26. UI generation vs. the predefined approach... 47

Figure 27. The downloaded components of the factory and generation approaches...... 54

Figure 28. Command-only GUI deployment times for all six devices (using the laptop,
ObjectEditor preloaded in memory, and a wired LAN connection). 56

Figure 29. Command-and-state based GUI deployment times for all six devices (using
the laptop, ObjectEditor preloaded in memory, and a wired LAN connection). 57

Figure 30. Command-and-state based GUI deployment times for the projector, lamp,
and receiver (using the Ipaq and a wired LAN connection). 58

Figure 31. A visual display of the significant differences between Ipaq and laptop GUI
deployment ... 59

Figure 32. Command and state based receiver GUI deployment times using the laptop
and different network speeds. .. 60

Figure 33. Command-only SUI deployment times for the projector, lamp, and receiver
(using the Laptop and a wired LAN connection)... 62

Figure 34. A graphical representation of the unique benefit(s) of each approach. 68

Figure 35. Retargeting a UI between two lights on different floors. 69

Figure 36. Retargeting between two lights in different rooms under Hodes’ System. 70

Figure 37. Levels of source UI flexibility... 71

 xiii

Figure 38. User-interfaces requiring different levels of source user-interface flexibility.
.. 71

Figure 39. Devices with identical programming interfaces share identical user-
interfaces. ... 72

Figure 40. Retargeting between a dimmable and non-dimmable lamp. 73

Figure 41. Two different VCR programming interfaces that can share the same UI. 73

Figure 42. The maximum N value for Tadd_btn comes from retargeting a light UI to a
receiver. .. 81

Figure 43. A depiction of part of our profiling experiments: (a) finding the time it takes
to add 4 buttons to an empty UI, (b) finding the time it takes to remove 4 buttons
from a UI, and (c) finding the time it takes to remap 4 buttons on a UI. 82

Figure 44. The time it takes to add new buttons to an empty GUI (slow vs. fast laptop).
.. 83

Figure 45. The time it takes to add new property widgets to an empty GUI (slow vs. fast
laptop) The dashed lines correspond to the slow laptop and the bold lines correspond
to the fast laptop. .. 83

Figure 46. The time it takes to remove pre-existing property widgets on a GUI (slow vs.
fast laptop).. 84

Figure 47. The time it takes to remap pre-existing property widgets on a UI (slow vs. fast
laptop) .. 84

Figure 48. A graph illustrating time differences between the three clients. It also shows
that widgets representing different types can yield different operation times—
particularly on the Ipaq. ... 85

Figure 49. The differences between adding, removing, and remapping a property widget.
.. 86

Figure 50. Our tool for automatically recording device interactions at a person’s home.
.. 92

Figure 51. A close up of the IRman serial port device. .. 93

Figure 52. The conference room we used. .. 95

Figure 53. Homogeneous retargeting of command-and-state GUIs using the fast laptop
and wired LAN connection. ... 100

 xiv

Figure 54. Homogeneous retargeting of command-only SUIs using the fast laptop and
wired LAN connection. .. 101

Figure 55. A graph comparing the homogeneous retargeting times the to the
corresponding times of competing approaches (using the Ipaq and a 100Mbps
connection). .. 102

Figure 56. Heterogeneous retargeting of command-only GUIs vs. competing approaches
(using the fast laptop and a wired LAN connection). .. 104

Figure 57. Retargeting times of command-and-state based GUIs vs. the corresponding
times of competing approaches (using the fast laptop and a wired LAN connection).
.. 104

Figure 58. Retargeting times of command-and-state based GUIs vs. the corresponding
times of competing approaches (using the Ipaq and a wired LAN connection). 105

Figure 59. Retargeting times of the receiver command-and-state based GUI vs. the
corresponding times of competing approaches (using the fast laptop and dialup
connection). .. 106

Figure 60. Cache-based retargeting times of the command-only GUIs vs. the
corresponding times of competing approaches (using the fast laptop and wired LAN).
.. 107

Figure 61. Cache-based retargeting times of the command-and-state based GUIs vs. the
corresponding times of competing approaches (using the fast laptop and wired LAN).
.. 108

Figure 62. Cache-based retargeting times of the command-and-state based GUIs vs. the
corresponding times of competing approaches (using the Ipaq and wired LAN).... 108

Figure 63. Cache-based retargeting times of the receiver command-and-state based GUI
vs. the corresponding times of competing approaches (using the fast laptop and
dialup connection). ... 110

Figure 64. An entire receiver GUI (left) vs. a receiver GUI containing all of the
commands the owner (author) typically needs (right). .. 113

Figure 65. Number of usage days required for the participants to complete their common
tasks on their respective devices. ... 116

Figure 66. History-based GUI generation performance using the laptop and wired LAN
connection. ... 119

Figure 67. History-based GUI generation performance using the Ipaq and wired LAN
connection. ... 119

 xv

Figure 68. History-based SUI generation performance using the laptop and wired LAN
connection. ... 121

Figure 69. The receiver’s history-based GUI on a single Ipaq screen. With the available
space from filtering buttons, the remaining buttons can be stretched to fill the screen.
.. 124

Figure 70. Extracting the state and operations from a lamp’s programming interface.. 136

Figure 71. A stacked GUI for watching movies—based on the author’s TV, DVD
player, and receiver. ... 138

Figure 72. A GUI for selecting desired buttons for a target task. 140

Figure 73. A GUI for creating a ‘watch a DVD’ button. .. 142

Figure 74. A ‘do all’ GUI for a set of lamps... 143

Figure 75. An example GUI for querying rainfall sensors with several attributes. 145

Figure 76. A data transfer GUI for cameras and display devices. 149

 Figure 77. A ’conditional connect’ GUI for creating the adhoc lamps and motion
detector security system. .. 151

Figure 78. Our setup containing the participants’ remote, several blank sheets (screens),
and button squares.. 157

Figure 79. The three user-interfaces that P5 created... 158

Figure 80. A projection of P6’s clusters ... 161

Figure 81. A projection of P2’s clusters ... 168

Chapter 1: Introduction
Networking technology has become applicable in domains beyond the conventional

computer. One such domain currently receiving a significant amount of research

attention is networking arbitrary devices such as TVs, refrigerators, and sensors. There

are a number of compelling reasons that make this idea desirable.

 One reason is that with a network connection, a device can enhance some general

functionality that it already provides. To illustrate, today’s DVD players are capable of

showing extra feature content about a movie. Such content is ‘burned’ on a DVD when it

is released. With a network connection, a DVD player could possibly connect to a movie

producer’s server and download additional content that consists of interesting information

that develops after a DVD is released. This ability could be particularly useful in the case

of documentaries, which contain facts and data that may become outdated.

 Another related reason for networking a device is to allow it to offer totally new

functionality that would otherwise be impossible. Consider the following example that

has captured the imagination of many: a refrigerator with built-in sensors that could allow

it to discover when certain important food items are nearly finished or expired. With a

network connection, the refrigerator could notify its owner, who is away from home, to

purchase new food. Even more complex, it could connect to the server of the nearest

grocery store and order new food. The owner could simply pick the order up and avoid

actual shopping [23].

 Yet another reason for networking devices is to remotely log the interactions that users

have with them. Researchers at the University of Arizona are building a framework in

which device manufacturers can make use such a facility [35]. In this framework,

devices execute software agents that record and send certain user-initiated events to

servers owned by their manufacturers. Which such information, manufacturers can gain

a clear understanding of how consumers use their devices—thus leading to possible

 2

design improvements. The networked refrigerator from earlier could, for example, notify

its manufacturer of the number of times its doors are opened. Its manufacturer could use

this information when designing durable door hinges for future refrigerators. Other

parties beyond device manufacturers might find it useful to access logs of user-device

interaction. For example, advertisers may want to use logs from remotely loggable TV

sets to learn the typical program watching habits of a population of people. Given such

information, they can predict the most opportunistic times to place ads and later find an

approximate number of likely viewers.

 Networking devices can also allow for new and different ways for users to

interact/control them. For example, it can allow users to interact with devices using

software-based user-interfaces deployed on mobile computers. Figure 1a demonstrates

such a case by showing the author using an HP680 Jornada handheld computer to interact

with a networked TV, VCR, and projector in a classroom.

 It is possible to create software-based user-interfaces for single devices and for

combinations of them. A single-device user-interface allows users to control and

possibly view the state of a single networked device. For example, it could allow a

person driving home on a hot day to use a cell phone to set the thermostat level of the

house’s air-conditioning system so that the temperature is cool before getting there. It

could also allow the driver to set a TiVo box at home to record an upcoming TV show if

there is heavy traffic on the road.

 A multi-device user-interface, on the other hand, allows users to dynamically compose

the services offered by multiple networked devices. For example, it could allow a

security guard to compose a group of lights in an office building’s hallway so that they

can be automatically powered on and off by using a single control (e.g. an ‘all lights

power’ button). In addition, electronic locks on the possibly many exit doors in the

building could be composed together so that the security guard could automatically

activate and deactivate them by issuing a single command. This feature would be highly

desirable in the event of a building fire. These examples demonstrate one of the reasons

for composing a group of devices together: to provide a more efficient means to

 3

completing a given task involving the devices than what is provided by using their

individual controls. Another reason is to form a composite unit that provides

functionality that the individual devices cannot achieve separately. A stereo and several

motion detectors in a house, for example, could be composed together to form an ad hoc

security system (Figure 1b). When a detector senses motion, it triggers the stereo to blast

music. The same motion detectors could coordinate with various cameras around the

house so that any sensed motion triggers the nearest camera to snap pictures of a possible

intruder. As the person moves around, other cameras are triggered.

Figure 1. (a) The author controlling a TV, VCR, and projector; (b) An adhoc security-
system composition consisting of a motion sensor and stereo.

 In this dissertation, we are particularly interested in the ability to interact with

individual devices and their compositions by using software-based user-interfaces

deployed on mobile computers. This ability, itself, has many benefits.

Benefits of Deploying Software-based User-Interfaces

Today, it is possible to interact with devices by using hardware-based user-interfaces.

Examples of such user-interfaces are on-board and traditional remote controls. On-board

controls require users to be within arms reach of the devices they wish to control (Figure

2a). However, it may not always be possible to reach a device. For instance, a presenter

motion detected!

)))
)))

stereo blasts!motion detected!

)))
)))

stereo blasts!motion detected!

)))
)))

stereo blasts!

(a)

(b)

motion detected!

)))
)))

stereo blasts!motion detected!

)))
)))

stereo blasts!motion detected!

)))
)))

stereo blasts!

(a)

(b)

 4

may not be able to reach a projector mounted on a high ceiling. Traditional infrared (IR)

and X10 remote controls address this limitation by allowing users to control devices from

afar (Figure 2b).

Figure 2. (a) Left, a VCR’s on-board controls; (b) Right, a Traditional IR Remote.

The mobile computer approach, illustrated above, offers several additional benefits:

• More universal: Some traditional remote controls can interact with multiple

devices such as TVs, VCRs, cable set-top boxes, and CD players. They are in fact

called ‘universal’ remote controls. A mobile computer would be a more universal

control than a traditional remote control, for several reasons:

o Arbitrary number of device instances: A traditional universal control can

interact with a fixed number of device instances. The amount of physical

buttons and other controls on the remote determines this number. Mobile

computers, on the other hand, do not incur such restrictions. Therefore, they

can control arbitrary numbers of device instances. For example, mobile

computers could allow security guards to control the lights in all current and

future buildings in which they work. This approach could also allow them to

use a user-interface that composes lights in one building to control light

compositions in other buildings.

o Control of dissimilar device types: A traditional universal control must provide

buttons for the union of the operations among device types it can control,

which can clutter it if the devices types share few operations. Therefore,

universal controls typically support similar types of devices, that is, devices

such as CD players, DVD players, and VCRs that share a large number of

operations. Dissimilar devices such as fans and robotic vacuum cleaners

require separate controls. A survey shows that 44% of households in USA

 5

have up to six remote controls [3]. A mobile computer can serve as a single

control for arbitrarily different kinds of devices.

o Automatic late binding to devices: Traditional remote controls (e.g., those that

are not universal) support early binding. As result, they are bound to specific

device instances when they are built. Late binding allows a remote control to

bind to different device instances after it is built. Universal remote controls

support late binding. However, they require users to manually enter

appropriate codes for the device instances they wish to use. For instance,

universal remotes for controlling home entertainment devices require users to

look up the manufacturer codes of their devices (TVs, VCRs, etc) and enter

these codes on the remote. This design does not create a serious problem when

the number of devices is small, but it would have a significant drawback in a

world with ubiquitous computing. Since mobile computers are intelligent, they

can automatically bind themselves to arbitrary device instances through a

discovery process [4, 8, 12, 20, 36].

• More remote: Since IR signals cannot pass through walls, some traditional remote

controls only allow users to control devices in the vicinity of a user. X10 remote

controls are based on radio signals, so they limited by walls. However, these

signals can only travel a few feet. A mobile computer can interact with a

networked device over the Internet. Thus, it can be used to control a device from

an arbitrary location. For example, a mobile computer can allow a person on

vacation to deactivate a security system at home so that a neighbor can freely

enter the house feed fish in an aquarium. If the security system ever needs

troubleshooting, a technician at the manufacturer’s site could use a mobile

computer to possibly fix the device without having to visit the owner’s home.

• More control: Perhaps a more intriguing reason for using mobile computers to

interact with networked devices is that it is possible to create software user-

interfaces for them that are more sophisticated than the physical user-interfaces

 6

offered by traditional controls [27]. For example, mobile computers can offer the

following kinds of enhancements:

o View device output: Unlike a conventional remote control, a mobile computer

is an output device. It can thus display application output such as car

diagnostic readings and water sprinkler settings. The ability to display output

on a remote control may not seem important if the output can also be displayed

on a device connected to it, such as a VCR displaying output on a connected

TV. However, there are at least two situations under which this feature is

useful. First, the output device may be used to display other information of

interest. For example, a TV may be showing an interesting program while

VCR settings are being entered and displayed on the mobile computer. This

approach avoids consuming the TV screen so that a viewer can watch

programs. Second, and more important, the device data sometimes needs to be

viewed when the mobile computer is no longer within sight or connected to he

output device. For example, TV data may be viewed when parents are at work

and no longer at home to check what their kids are watching.

o Offline editing and synchronization: Device data can also be edited in the

offline mode, and later synchronized. For example, a person can edit a TiVo’s

program record settings in the offline mode and then later synchronize them.

This facility has been found to be useful in some traditional computer-based

applications such as address books and, as the example shows, it can also be

useful for device interaction.

o Personalization: Mobile computers can create device user-interfaces that are

tailored to a specific user’s habits and information needs. For example, they

can create user-interfaces that automatically feed user-specific data to shared

devices such as favorite channels and volume levels to TVs, PINs to ATM

machines, credit card numbers to a coke machines, preferred car-seat tilt angle

to cars, and files to printers. A mobile computer could record data such as

 7

PINs and credit card numbers during a user’s first interaction with a device. It

could then automatically enter such data in later interactions.

The above benefits apply to using software-based user-interfaces to interact with both

single devices and their compositions. Using a software-based approach to compose

devices has certain additional benefits:

• The hardware-based composition approach requires hardwiring devices together.

This is not easy since it requires special experience in electronics. A software-

based approach can offer high-level user-interfaces for easily composing devices.

• Because it requires wiring for every combination of devices that the system can

compose, the hardware approach does not scale over distance. In the hardware-

based approach, providing the ability to turn off all hallway lights in a building

requires manually wiring them to a master switch. This task could require

extensive wiring if the building has many floors and there are several master

switches. The software-based approach scales better over distance because it can

use the Internet. Also, the lights could take advantage of a wireless network

available in the building—thus offering a ‘plug and play’ like functionality.

• For proprietary and warranty reasons, device manufacturers may not even allow

end-users to examine and change the hardware makeup of their devices. This

limits the composition flexibility of the hardware-based approach. To allow

flexibility and keep the hardware designs of their devices private, device

manufacturers can provide a means to compose their devices using software.

 The reasons above are only proposed benefits of using mobile computers to interact

with devices. Determining which of these reasons are actually useful requires building

infrastructures and experimenting with users. Today, several such infrastructures have

been built, which include: Palm/Pocket-PC IR programs [1, 2], HP’s Cooltown [14],

IBM’s Moca and Websplitter [13], Microsoft’s Universal Plug and Play (UPnP) [20],

Sun’s Jini [36], CMU’s Personal Universal Controller (PUC) [26, 27], Hodes’ System [15,

16], Cornell’s Cougar [5], Berkeley’s TinyDB [22], Stanford’s ICrafter [28], and

 8

PARC/Georgia Tech’s Speakeasy (also called Obje)[9]. Building these infrastructures

entails addressing several complex and diverse issues. An example issue is how a mobile

computer discovers the available devices within a network or physical space. Another

issue is security, which is how an infrastructure prevents non-privileged users from

invoking commands on the devices it contains. In this dissertation, we focus on the user-

interface deployment issue: how does an infrastructure deploy a user-interface for a

single device or a composition of several ones? In particular, we address several

limitations of current approaches to this issue in the single-device and multi-device cases.

1.2 Deploying Single Device User-Interfaces

Existing infrastructures for deploying single device user-interfaces demonstrate diverse

approaches to addressing this issue. These approaches have striking differences. One

approach involves executing preinstalled (device specific) user-interface code on a

client’s local storage (Figure 3a). Imagine if the vacationer mentioned earlier used this

approach. Sometime before leaving home, this person would preinstall a user-interface

program for specifically controlling the security system on the mobile computer. The

security system’s manufacturer could have provided this program to its customers.

Another approach involves a client dynamically creating a user-interface based on the

functional description of a target device (Figure 3b). With this approach, the vacationer

does not need to pre-install any user-interface code that is specific to the security system

or any other device that will later be of interest. The mobile computer simply needs be

able to access a possibly local user-interface generator. On the other hand, intuitively, it

should offer relatively long deployment times because it involves creating a user-

interface ‘on the fly’—especially when compared to directly loading handcrafted code

from disk. Later, we will show that this intuition is valid. In fact, generation times are

actually much longer (by multiples) than the corresponding deployment times of all other

approaches.

 The above mentions just two of the several existing approaches that we will describe in

this dissertation. Still, it is enough to imply that an approach can have certain significant

advantages over another. Understanding such advantages and disadvantages is important

when building an infrastructure for interacting with networked devices. However,

 9

current approaches have not been previously compared in a systematic manner.

Therefore, their specific strengths and weaknesses are not well known. Based on the

notion that striking differences exist among them, it is our first hypothesis that each

approach offers a set of unique benefits. The benefits of an approach would therefore

provide a reason for why it exists.

Figure 3. Two possible approaches to UI deployment: (a) deploying a UI from pre-
installed code and (b) generating a UI.

 Given a reason for using each approach, attempting to address the limitations of each is

thus worthwhile. Most approaches, however, do not offer a means to feasibly address

their limitations. Consider the approach of locally loading pre-installed user-interface

code. If a user wishes to interact with a device for which there is no pre-installed user-

interface code, the approach fails. Such failures cannot be avoided in ad hoc and

unforeseen interactions. The generation approach, on the other hand, can support such

interactions. However, recall that this approach has the limitation of long deployment

time. It is our second hypothesis that it is possible for GUI and SUI generators to have

deployment times that are often as good as or noticeably better than the inherently fastest

approach of locally loading device-specific user-interface code. One idea for achieving

such competitive generation times is user-interface retargeting. It involves dynamically

mapping a previously generated user-interface of a (source) device to another (target)

device that can share the user-interface. By recycling parts of a previously generated

user-interface of a device that a user is not using, we show that a generator can

significantly speed up the creation of a user-interface.

Security
System

Security System
Functional
Description

InputInput

Security
System UI

Output

Security
System UI

Output

Client

Ipaq UI
Generator

(a) (b)

Security
System

Security
System UI
(from pre-installed
code)

Client

 10

 Another idea for supporting time-efficient generation is lazy generation, which

involves opportunistically generating user-interfaces that consist of subsets (rather than

all) of the functionally provided by their corresponding devices. It supports the principle

that the less content a user-interface will contain, the less time it should take to generate

the user-interface. Within the scope of lazy generation, we focus on generating history-

based user-interfaces. Such user-interfaces are generated to present only the commands a

user typically uses (or needs) from a device, based on the user’s past behavior with the

device. Hence, the assumption is that the content a user needs is generally less than the

content needed in presenting the device’s entire capabilities.

 This assumption implies that history-based generation could also be used to address the

problem of limited screen space offered by mobile computers when displaying GUIs. To

illustrate this problem, consider an A/V receiver user-interface created by a user-interface

generator built here at UNC. It only consumes one screen on a laptop. However, it

spans three screens on the Ipaq (Figure 4). Imagine the user-interface for cell phones,

which generally have screen sizes that are fractions of the size of Ipaq’s (Figure 5).

Figure 4. A generated receiver user-interface on an Ipaq.

 11

 In general, this problem forces users to tediously search within user-interfaces by

scrolling and tabbing through several screens in order to control a device. It is our third

hypothesis that history-based user-interfaces can consume significantly fewer screens

than their corresponding full device user-interfaces.

Figure 5. A depiction of cell phone (Motorola i710) and Pocket PC (Compaq Ipaq)
screen size differences. The cell phone’s screen is less than half of the Ipaq’s.

1.3 Deploying Multi-Device User-Interfaces

As mentioned earlier, we also address existing limitations of infrastructures for deploying

software-based multi-device user-interfaces. Such infrastructures must additionally offer

users with a means to composing devices. Existing examples demonstrate different

approaches to supporting such functionality.

 Some infrastructures provide users with already programmed mechanisms for

achieving desired compositions. For example, Cougar and TinyDB are two

infrastructures that provide mechanisms for querying a network of sensors. They can

support scenarios such as a person querying presence sensors in the rooms of an office

building to find a free place to work. This person executes a single command to find

rooms with no human presence rather than requesting the information individually from

each of a possibly large set of sensors. The two infrastructures are relatively high-level

because they: (a) provide a query language for users and (b) automatically perform

queries and return results. However, they do not flexibly support composition. Neither

of them supports any of the non-query-based kinds of composition semantics illustrated

thus far. For example, neither provides mechanisms for composing a sensor with a stereo

3.8”

1.6”

3.8”

1.6”

 12

to form the ad hoc security system we mentioned earlier. Our summary of existing

systems (Chapter 2) will show that, in fact, all existing high-level infrastructures share

this general problem of limited composition flexibility. In particular, each high-level

infrastructure supports composition semantics that no other high-level infrastructure

supports.

 Infrastructures have been built for generically supporting composition. These

infrastructures, however, are low-level since they place much of the programming burden

on users or end-programmers of these infrastructures. Our later discussion of existing

systems will also show that this burden is not small largely due to the combinatorics

involved in flexibly supporting composition. Just the few examples in this chapter imply

that there are many different ways that a device can be dynamically composed with many

other devices of arbitrary kinds. Also, these devices can be composed based on their

possibly many operations (to simultaneously invoke shared operations, for example)

and/or data entities (to perform queries, for example).

 Based on the above discussion, it seems that existing approaches to composing devices

must tradeoff high level support for composition flexibility. Specifically:

1) each existing high-level infrastructure supports composition semantics that no

other high-level infrastructure supports

2) each low-level infrastructure can flexibly support each of the existing composition

semantics but has the programming cost of writing composer mechanisms.

It is our fourth hypothesis that a new infrastructure can be built to address this problem

by meeting the two conditions below:

1) supports the composition semantics of existing high-level infrastructures.

2) provides higher-level support than all other infrastructures that can support all of

these semantics.

 Our approach is based on the use of programming patterns [29] when coding device

objects. Programming patterns are rules for defining the names, parameter types, and

 13

return types of an object’s public methods for the purposes of exposing the object’s

structure and semantics to external software tools. The Java Beans framework

demonstrates this idea by allowing a programmer to describe the state properties of an

object in the object’s programming interface. To export a property named <Property

Name> of type <Property Type>, programmers must implement methods with the

following constraints:

1) public <Property Type> get<Property Name>()

2) public void set<Property Name>(<Property Type>)

Sensor programmers could, for example, implement the following methods to export a

state property named ‘motion detected’ that is a boolean type:

1) public boolean getMotionDetected()

2) public void setMotionDetected(boolean)

A sensor’s getMotionDetected() method returns true if motion is detected. It returns

false if no motion is detected. Intuitively, a query-based composer could be built that

extracts the ‘motion detected’ status from sensors offering this method to discover, for

example, whether there is a free place for someone to do work (Figure 6).

Figure 6. A conceptual view of how a pattern-based composer could query several
sensors.

We specifically hypothesize that programming patterns can be used to allow us to write

high-level composer mechanisms that automatically extract the necessary information

from device objects for supporting all existing composition semantics.

getMotionSensed()getMotionSensed()

 14

1.4 Thesis

It is our thesis that is possible to overcome the several limitations presented in this

chapter. In particular, our thesis verifies the following hypothesis:

I. Uniqueness Hypothesis: Each existing user-interface deployment approach

offers a unique benefit, thus providing a reason why each exists.

II. Time-Efficient Generation Hypothesis: It is possible for SUI and GUI

generators to use retargeting and history-based generation to offer deployment

times that are often as good as or noticeably better than the inherently fastest

approach of locally loading device-specific user-interface code.

III. Screen-Space-Efficient Generation Hypothesis: History-based generation can

also be used to create user-interfaces that consume significantly fewer screens

than their corresponding full device user-interfaces

IV. High-level and Flexible Composition Hypothesis: It is possible to build a

composition infrastructure, based on programming patterns, that is

simultaneously more high-level and flexible that the state of the art.

1.5 Summary

In this chapter, we introduced several reasons for networking devices. One reason, which

is our primary focus, is to allow users to interact with single devices and their

compositions by using software-based user-interfaces deployed on mobile computers.

We discussed several benefits and limitations of the state of the art in this area. In

addition, we presented several hypotheses for overcoming the described limitations. It is

our thesis that all of our stated hypotheses are true. We will develop this thesis in the

following chapters, which are organized as follows. Chapter 2 describes current

approaches to deploying software-based user-interfaces and the existing systems that use

them. This chapter will also present the earlier mentioned tradeoff between high-level

support and composition flexibility as exhibited by existing multi-device based systems.

In Chapter 3, we qualitatively and quantitatively evaluate various deployment approaches

mentioned in Chapter 2. This evaluation subsequently leads to a proof of the Uniqueness

 15

Hypothesis. Chapters 4-7 address the three latter hypotheses by respectively focusing on

our three main ideas—retargeting, history-based generation, and pattern-based

composition. Each chapter presents: (1) the design issues of its corresponding idea and

our approaches to addressing them, (2) our implementation of the idea, and (3) an

evaluation of how well the idea achieves is associated goal(s). Finally, Chapter 8 presents

our conclusions and future work.

Chapter 2: Related Work
Our research is related to existing infrastructures for deploying software-based user-

interfaces for single and multiple devices.

2.1 Deploying Single Device User-Interfaces

Figure 7. The general architecture abstracts existing infrastructures for deploying for
single device UIs

 Figure 7 shows a general architecture that abstracts existing infrastructures for

deploying single device user-interfaces. The architecture consists of several components:

mobile computers, devices, device objects, device advertisers, device references, device

discoverers, user-interface deployers, composers, and user-interfaces. Device objects

encapsulate the functionality of actual physical devices. They contain methods for

invoking commands on devices and viewing device state. Device advertisers publish

information about devices and references to them within a given network or physical

space. They are accessed by device discoverers on mobile computers. Device advertisers

Mobile Computer
(Client)

Interacts with
Deploys Deploys

Device
Discoverer

UI Deployer

UI

Device

Device Object

Device

Device Object

Device Advertiser

Device
Reference

Device
Reference

 17

may run on the same host as that of the device objects or on a separate machine. User-

interface deployers on mobile computers, using device references, deploy the actual user-

interfaces for interacting with device objects.

 Given this general architecture, in the single-device case, we are concerned with the

following question: how does a user-interface deployer produce an appropriate user-

interface that can interact with the object of a user’s target device? We separate current

forms (Figure 8) of user-interface deployment into two high-level approaches: user-

interface generation and the predefined approach. The predefined approach places pre-

existing user-interface code at well-known servers for user-interface deployers to find

and execute. Since these servers behave as factories [11] supplying user-interface code,

they are called user-interface factories. Based on whether the location of the factory is

the client or some other location, an approach is respectively classified as client-factory

or remote-factory. A previous scenario from Section 1.2 illustrates the client-factory

approach, in which the vacationer pre-installs the security system’s user-interface on a

mobile computer before leaving home. A remote-factory may be on a device or some

third-party server. Under the device factory approach, the vacationer would download

the user-interface code directly from the security system. Using the third-party factory

approach, the vacationer could download code from a server at home or from the security

system manufacturer’s website.

Figure 8. Current UI deployment approaches

UI Deployment

UI Generation Predefined (UI)

Client Client
Factory

Remote
Factory

Device
Factory

3rd Party
Factory

Remote

 18

 Recall that the converse of the predefined approach is the user-interface generation

approach because it does not require devices to be loaded with pre-defined user-interface

code. Again, a user-interface generator dynamically creates an appropriate user-interface

by using information extracted from a device’s functional description. The generator can

reside on the client device or on remote machine.

 To show how all approaches could work, we will now summarize several commercial

and research infrastructures that demonstrate them: Palm/Pocket-PC IR Control

Programs, Jini, Moca, CoolTown, UPnP, ObjectEditor, Hodes’ System, Personal

Universal Controller, and ICrafter.

2.1.1 Palm/Pocket-PC IR Control Programs

Figure 9. The IR port on the front end of the Ipaq for transferring data and controlling
IR devices.

 Many of today’s palmtop computers offer IR ports (Figure 9) that are typically used to

transmit data between one another. Programs, such as OmniRemote[2] and Nevo[1] ,

have been written for using these IR-ports to also control devices. In general, these

programs provide users with user-interface building ‘wizards’ for creating and arranging

buttons of a given device. During this process, users must also teach the system what IR-

signals to emit for each button. Users can achieve this task in a manner that is similar to

traditional remote controls. That is, they can enter predefined codes that are associated

with specific devices. To allow users to create user-interfaces for devices that have no

predefined codes, these programs also offer an IR recording feature. With this feature,

users can push the buttons on the traditional remote controls of their unknown devices

and record the signals emitted. They must then match the recorded signals to the

corresponding buttons on the user-interfaces they created. After creating user-interfaces

Ipaq’s IR portIpaq’s IR port

 19

(Figure 10), users can then save them on their palmtops for future use. Thus,

Palm/Pocket-PC IR control programs support the client-factory approach.

 A problem with IR control programs is that they require users to be in the vicinity of

the devices they wish to control. Recall from earlier that this limitation is inherent of any

IR-based method of device interaction. The infrastructures we discuss below avoid this

limitation by supporting device interaction over the Internet.

Figure 10. A TV user-interface created using OmniRemote[2]

2.1.2 Jini (Service UI Approach)

Sun Microsystems created Jini[36] as a general infrastructure for building Java-based

distributed systems. This infrastructure can also be used to network actual devices. It

provides a framework that allows: (a) devices to join a network, (b) clients to discover

devices, (c) and clients to access references (stubs) of remote devices to directly interact

with a device (e.g. make remote procedure calls).

 To deploy user-interfaces in Jini, Sun proposes the Service UI framework[39], which

adopts the third-party factory approach. In this framework, a client accesses a factory on

a machine with a well-known network location. It provides the factory with: (1) a

description of the target device and (2) a description of itself. The remote-factory uses

this information to ensure that it can provide code that presents a compatible user-

interface for interacting with the target device. For instance, it could use a description of

the client’s screen size to ensure that it can provide code that presents a user-interface

that fits properly. If such code is available, the client simply downloads and executes it.

 20

A limitation of the Service UI framework is that it is based on Java. As a result, clients

that cannot run a JVM are unable to interact with Jini-based devices.

2.1.3 MOCA

Similar to Jini, IBM’s MOCA[4] is a Java-based infrastructure for building distributed

systems, possibly containing networked devices. However, MOCA separates its user-

interface deployment from its Java dependency. Devices can execute Java servlets that

provide HTML-based user-interfaces to their clients (Figure 11). Thus, MOCA supports

the device factory approach. Clients that support the HTML web standard can interact

with a MOCA device.

Figure 11. A CD player HTML-based user-interface inside a Netscape Browser.

2.1.4 Cooltown

HP’s Cooltown[19] is another infrastructure that supports a web-based device factory

approach. However, unlike MOCA, it does not require devices to be implemented using

a specific language. It simply expects devices to execute webservers that provide HTML-

based webpages that present user-interfaces.

2.1.5 Universal Plug and Play (UPnP)

Like Cooltown, Microsoft’s UPnP[7] is designed to be fully language-neutral. UPnP

devices also execute web-servers that provide HTML-based user-interfaces for clients to

 21

download. The two infrastructures, however, significantly differ in how they address

other areas such as discovery and security. To illustrate, UPnP supports the AutoIP

protocol[38], which allows devices to dynamically join a network by assigning

themselves an IP address. Cooltown devices, on the other hand, require an administrator

to manually register them to a network. Further, Cooltown offers specific mechanisms to

address security while UPnP currently does not.

2.1.6 ObjectEditor

ObjectEditor, developed here at UNC, is an example of the client-side generation

approach. It is fairly complex system and has been used in the computer science

department to generate user-interfaces for various research projects and also teaching.

Here, we describe those aspects of it that specifically apply to generating device user-

interfaces.

 ObjectEditor can generate a GUI displaying the state properties and operations of a

device coded as a Java object. It assumes that these components are described using

programming patterns. In particular, state properties are described by signatures adhering

to the Java Beans conventions mentioned earlier in Section 1.3. ObjectEditor supports

additional kinds of conventions for describing state properties. However, these

conventions are beyond our scope of device user-interface generation. Signatures that are

not used to export state properties describe operations. To illustrate, the method

signature ‘public void power()’ describes the ‘power’ operation for turning the TV on

and off.

 ObjectEditor creates a button and/or a menu item for each operation. It organizes these

buttons and menu items in alphanumeric order on the user-interface. For each (possibly

structured) property, the generator maps it to a (possibly structured) widget for displaying

its value. The generator then initializes each widget with the result of the associated

property’s getter method. In the sensor example in Section 1.3, the sensors ‘motion

detected’ property could map to a checkbox for displaying its boolean values. If the

sensor detects motion (i.e. getMotionDetected() returns true), the checkbox is

checked, otherwise, it is unchecked.

 22

 To control a device, a user can select the menu items and push buttons on the user-

interface or edit the values displayed by property widgets. Activating a button or menu

item results in ObjectEditor invoking the associated method. If the method has

parameters, the generator creates a dialog box consisting of widgets for entering desired

parameter values. Suppose that a TV offers a sleep(int) method that accepts the

number of minutes to wait before it automatically shuts off. If a user pushes the

method’s button, ObjectEditor would generate a dialog box providing a textbox for

entering the sleep time.

 When a user edits the value in a property widget, the generator invokes the setter

method of the associated property, passing the new value as a parameter. For example,

when a user types in a new TV channel in the channel property’s textbox, ObjectEditor

would invoke setChannel() with the new channel as a parameter. Figure 12 illustrates

this entire process.

Figure 12. A depiction of how ObjectEditor works.

2.1.7 Hodes’ System

ObjectEditor is language-dependent because it requires devices to be coded in their native

language, Java. This limits the kinds of devices for which it can generate user-interfaces.

TV Interface (Java)
public interface Television {

public void power();
public void mute();
public void vol_Up();
public void vol_Down();
public void ch_Up();
public void ch_Down();
public int getBrightness();
public void setBrightness(int b);
public int getChannel();
public void setChannel(int c);
…

TV Interface (Java)
public interface Television {

public void power();
public void mute();
public void vol_Up();
public void vol_Down();
public void ch_Up();
public void ch_Down();
public int getBrightness();
public void setBrightness(int b);
public int getChannel();
public void setChannel(int c);
…

ObjectEditor

generates

Property views initialized with ‘getter’ result
Property values updated with ‘setter’ calls

command
buttons

property
views

Property views initialized with ‘getter’ result
Property values updated with ‘setter’ calls

command
buttons

property
views

command
buttons

property
views

operations

state properties

(Java beans)

Java Reflection

operations

state properties

(Java beans)

Java Reflection

 23

Hodes’ System, a client-side generator, overcomes this limitation by offering a language-

neutral generator. It generates user-interfaces from XML-based functional descriptions

of devices (called services), such as the lamp description below:

<service name='lamp'>
 <label>lamp</label>
 <addrspec>sn140.cs.unc.edu/0001</addrspec>
 <method name='power'>
 <param lextype="enum:on,off,dim"> state </param>
 </method>
</service>

 These descriptions consist of several tags for specifying values for the name, methods,

method parameter types, and address of a service. Hodes’ System generates a GUI that

consists of a button for each method and an appropriate set of widgets for entering

parameter values. The description above would be used to generate a user-interface that

resembles the one shown in Figure 13. In the user-interface, the ‘power’ method

parameter, called ‘state’, maps to an option box containing choices for each possible

value. Once a user pushes a method’s button, the generator performs a remote procedure

call—sending the method’s name and parameter values to the service’s network address

specified by the <addrspec> tags.

Figure 13. A lamp UI generated by Hodes’ System [15, 16].

 Although Hodes’ System offers the flexibility of a language-neutral approach, it

requires programmers to take the time to write descriptions in a separate language from

the one in which their devices are coded.

2.1.8 Personal Universal Controller (PUC)

CMU’s PUC system[27] also supports client-side generation of user-interfaces from

XML-based device descriptions. PUC’s device descriptions, however, are more complex

than those of Hodes’ System. In particular, the system allows programmers to embed

user-interface customization rules in device descriptions. For example, it would allow a

 24

programmer to embed a rule that a generator should keep the cassette navigation buttons

of a stereo together and in a particular order (Figure 14). The generator would adhere to

such rules when generating user-interfaces. Since these customization rules (or

declarations) must be manually written, the PUC system supports semi-automatic

generation.

Figure 14. A portion of a stereo system user-interface generated by PUC [27]. Notice
the cassette navigation buttons are specifically grouped together.

2.1.9 ICrafter

Like PUC and Hodes’ System, Stanford’s ICrafter[28] also supports the generation

approach. However, it generates user-interfaces remotely from a client. In ICrafter, the

generator runs on a machine that has a well-known location in a network of connected

devices. To deploy a user-interface, clients access this generator and provide it with two

important pieces of information: (1) a set of attributes that describe the client, which

must at least include a list of UI languages it can support (e.g. HTML and Java Swing)

and (2) a reference to the functional description of the target device. Given this

information, the generator uses a declarative language to create a file that describes the

user-interface for the client and target device pair. Clients download this file and then

render the user-interface that it describes. In the HTML case, it is clear how this

approach could work since HTML itself is a declarative language. The client simply uses

a web-browser to render a web page that is the user-interface (Figure 15). However, the

Java Swing toolkit is not inherently declarative. The builders of ICrafter thus built the

Swing User-Interface Markup Language (SUIML), which is a declarative language for

describing how Swing user-interfaces should look. Besides deploying single device user-

 25

interfaces, ICrafter be used to also compose multiple devices. In the next section, we will

describe how this is possible.

Figure 15. (left) the HTML generated for setting a projector input; (right) the rendered
web page[28].

2.2 Deploying Multi-Device User-Interfaces

We extend the earlier general architecture to describe user-interface deployment in the

multi-device case (Figure 16). In this case, the architecture includes composers, which

use references from multiple devices to appropriately support some given set of

composition semantics. These composers use user-interface deployers to deploy multi-

device user-interfaces for the devices they compose. There are two current ways to

organize composers within an infrastructure.

 In one approach (Figure 16a), a composer uses the references of a set of devices to

create a virtual device. This virtual device is represented in software as an integration of

attributes and operations of multiple devices. In the ‘turn off all lights’ scenario, all the

hallway lights in the building could be composed into a virtual device called an ‘all-

hallway-lights-device’. This virtual device provides operations for simultaneously

turning all the individual lights on and off. After the composer creates the virtual device,

a user-interface deployer deploys a user-interface for it. A single-device user-interface

deployer can be used in this case. It can be composition unaware since a virtual device,

though representing multiple devices, simulates a single one.

 26

Figure 16. Two possible ways to organize composers.

 In the other approach (Figure 16b), there is no notion of virtual devices. Instead,

aggregation and user-interface deployment are tightly integrated. Meaning, a composer

directly interacts with a user-interface deployer that is: (1) aware of the composer’s

supported semantics and (2) capable of deploying user-interfaces for achieving those

semantics. To support the lights scenario under this approach, a composer and user-

interface deployer would cohesively work together to deploy the user-interface for

turning off all the lights.

 To show how these two high-level approaches can actually work, we will describe how

specific infrastructures apply them. This discussion will fully illustrate the tradeoff

between high-level support and composition flexibility mentioned in the previous

chapter, thus motivating our High-Level and Flexible Composition Hypothesis.

2.2.1 Cougar and TinyDB

Cougar[5] and TinyDB[22] are two systems that were built to support queries for data

over sensor networks. An example Cougar query is: get the ‘current rainfall’ value of

each sensor in Tompkin County. Both Cougar and TinyDB implement mechanisms for

performing such queries automatically and efficiently. They both work by requiring that

devices advertise their attributes in distributed database relations and provide a relational

UI Deployer
UI

UI Deployer
UI

Virtual
Device

Virtual
Device
Virtual
Device

Virtual
Device
Virtual
Device

Virtual
Device

Composer

Reference

ComposerComposer

Reference

UI Deployer

UI

ReferencesReferencesReferences

UI Deployer

UI

UI Deployer

UI UI

(a) (b)

ComposerComposer

References

Like a single
device UI Deployer

UI
UI Deployer

UI

Virtual
Device

Virtual
Device
Virtual
Device

Virtual
Device
Virtual
Device

Virtual
Device
Virtual
Device

Virtual
Device

ComposerComposer

ReferenceReference

ComposerComposer

Reference

UI Deployer

UI

UI Deployer

UI UI

ReferencesReferencesReferencesReferences

UI Deployer

UI UI

UI Deployer

UI UI

(a) (b)

ComposerComposer

References

Like a single
device

 27

language to query these attributes. Device programmers, however, must write code that

transfers state from device objects to database relations. This database-oriented

framework of Cougar and Tiny follows the non-integrative composition approach

described above. In essence, the two systems compose a group of distributed devices into

single database—thus allowing a single user-interface program to be written for

accepting arbitrary queries and returning results.

 Both systems have limited flexibility in the composition semantics that they can

support. They only compose devices using queries and do not provide frameworks for

supporting other semantics described later.

2.2.2 Hodes’ System

Hodes’ System allows a user to interact with a set of devices through a single compound

user-interface rather than their individual user-interfaces. For example, it can allow all the

lamps in a conference room to share a single user-interface containing the commands for

controlling them. Like Cougar and TinyDB, it also follows the non-integrative

composition approach. To deploy compound user-interfaces, it generates user-interfaces

from manually generated XML-based descriptions of compound (virtual) devices that

encapsulate descriptions of multiple devices. The ‘conference room lights’ virtual device

could be described as the following:

<service name = ‘Conference Room Lights’>
 <label>Conference Room</label>
 <addrspec>sn011.unc.edu/0001</addrspec>
 <service name = ‘lamp1’>
 <label>Lamp 1</label>
 <addrspec>sn011.unc.edu/0001</addrspec>
 <method name = ‘on’></method>
 <method name = ‘off’></method>
 <method name = ‘dim’></method>
 <method name = ‘brighten’></method>
 </service>
 <service name = ‘lamp2’>
 <label>Lamp 2</label>
 <addrspec>sn011.unc.edu/0002</addrspec>
 <method name = ‘on’></method>
 <method name = ‘off’></method>
 <method name = ‘dim’></method>
 <method name = ‘brighten’></method>
 </service> . . .
</service>

 28

 A generated user-interface for the ‘conference room lights’ device would resemble the

one shown in Figure 17, which vertically places the individual user-interface of each

lamp on top of one another.

 Hodes’ System supports a limited set of composition semantics. It does not support

device queries as Cougar and TinyDB do. Further, it does not support other semantics

demonstrated by the other systems below.

Figure 17. A compound UI for a set of lights.

2.2.3 Palm/Pocket-PC IR Programs

Beyond the ability to create single device user-interfaces, these programs allow a person

to build compound user-interfaces as supported by Hodes’ system. They provide wizards

for users to merge the single device user-interfaces they design (as described in 2.1.1) to

form compound user-interfaces. In addition, they typically allow users to create macro

buttons that automatically invoke specific sequences of commands from multiple devices.

For example, they could allow a person to create a ‘watch DVD button’. When pushed,

the button invokes six different operations that prepare a TV, DVD, and receiver for

watching a movie:

1) Turn on the TV
2) Set TV to DVD video input channel
3) Turn on the receiver
4) Set the receiver to DVD audio input
5) Turn on the DVD player
6) Open the DVD player’s disc tray

 29

2.2.4 WebSplitter

WebSplitter[13] can compose devices together to present different types of content

contained in a set of web pages. For instance, it can compose an audio system, projector,

and other display devices to present a multimedia web presentation consisting of visual

frames (images and text) and audio content. The display devices show the content slides,

navigation buttons, and notes of the presentation while the audio player plays the audio

(Figure 18).

Figure 18. A Websplitter presentation in which audio is sent to a stereo and frames are
shown in display devices [13].

 As a speaker navigates through this web presentation, WebSplitter automatically

delivers the URLs of content in each page to the appropriate devices.

 In order to properly map or ‘split’ the content of a web page to their associated

devices, it requires users to write XML-based policy files. These files specify mappings

between the content of each page and the kinds of devices that should receive them. The

policy file for our example presentation could contain syntax such as the following:

<cmdb:device name = “projector”>
 <cmdb:taglist>

presentation, head, title, nav_bar, slides, picture
</cmdb:taglist>

</cmdb:device>

Lecturer

Lecturer

 30

<cmdb:device name = “sound system”>
 <cmdb:taglist>

 audio
</cmdb:taglist>

</cmdb:device>

<cmdb:device name = “cellphone”>
 <cmdb:taglist>

nav_bar,
</cmdb:taglist>

</cmdb:device>

It specifies that: (1) the projector should receive all content except the speaker’s private

presentation notes, (2) the audio system should receive all presentation audio, and (3) the

speaker’s cell phone should receive the navigation bar for controlling the presentation’s

pace. For each page in the presentation that the speaker visits, WebSplitter refers to the

defined mappings in the policy file to correctly direct the page’s content. WebSplitter’s

set of supported composition semantics is limited. It cannot achieve any of the semantics

facilitated by the other systems described above and some below.

2.2.5 ICrafter

ICrafter provides a general framework for actually writing multiple composers supporting

different composition semantics. It is unlike the systems described above which offer

preprogrammed composers that support a fixed and limited set of semantics. To provide

a general framework for composition, ICrafter’s composers work in terms of the

programming interfaces of devices rather than their classes. Since programming

interfaces are more general than classes, this approach provides a way for single

composers to compose families of heterogeneous devices.

Figure 19. A lights composition.

 To illustrate, consider a system with lights shown in Figure 19. Suppose that the two

lights implement a PowerSwitch interface that declares a power() method for turning the

lights on and off. A programmer can write a PowerSwitchAll composer for this

Pow
erSw

itch

Pow
erSw

itch

Pow
erSw

itch
Pow

erSw
itch

Pow
erSw

itch
Pow

erSw
itch

 31

programming interface that provides the ability to simultaneously turn these lights on and

off. This composer provides the system with a regular expression describing that it

composes devices implementing the PowerSwitch interface (Table 1). In turn, the

system matches the composer with the two lamps and presents the match to a user. A

user’s selection of this match results in the PowerSwitchAll composer generating a user-

interface consisting of a ‘power all lights’ button. When the button is pushed, the

composer invokes the well-known power() method of each lamp. This example shows

that ICrafter follows the integrative composition approach mentioned earlier. Composers

offer their own generators for dynamically creating user-interfaces that are specific to

their supported semantics and users’ target devices.

Regular Expression Composer

{PowerSwitch*} PowerSwitchAll

Table 1. An example composer registry.

 Figure 20 depicts a different composition scenario, which involves transferring images

in a camera to a display device for viewing. Let us assume that the camera and display

device implement a DataProducer and DataConsumer interface respectively. The

DataProducer interface declares a produce() operation, which returns a value to

transfer, and the DataConsumer interface declares a consume() operation, which accepts

the value. A programmer can now write a DataPipe composer that allows the camera

and display device to exchange data. This composer provides the system with a regular

expression describing that it composes devices implementing the DataProducer and

DataConsumer interfaces (Table 1).

Figure 20. An example composer registry.

Regular Expression Composer
{DataProducer, DataConsumer} DataPipe

Table 2. An example composer registry.

D
ataProducer

D
ataC

onsum
er

D
ataProducer

D
ataC

onsum
er

 32

 The system would match the camera and display device programming interfaces with

the DataPipe composer and present the match to a user. A user’s selection of this match

results in the DataPipe composer generating a user-interface for invoking the transfer

operation. Once the user invokes the operation on the user-interface, the composer calls

the well-known methods of its associated programming interfaces to achieve the image

transfer. That is, it makes a call that passes the value returned from camera.produce()

as an argument to display.consume().

 An issue with performing data transfers is how DataProducer and DataConsumer

interfaces declare the data they exchange. Two options are to declare data as: (a) a

generic object or (b) a programmer-defined type. In Java, the class Object demonstrates

this notion of a generic data type. All classes in Java are subclasses of Object and can

therefore be typecasted to it. Using generic objects, the two programming interfaces

would be:

public interface DataProducer {
public Object produce();

}
public interface DataConsumer {

public void consume(Object x);
}

 Here, the producer returns a value of type Object and the consumer accepts a value of

that same type. An example of using programmer-defined types is below, in which the

consumer and producer specifically exchange a Picture object:

public interface PictureProducer {
public Picture produce();

}
public interface PictureConsumer {

public void consume(Picture x);
}

These two options raise a subtle tradeoff a programmer must make between type

flexibility and programming cost.

 The benefit of the generic approach is that it would require implementing only one

composer, a truly generic DataPipe composer, to accomplish data transfers. One

drawback is that all consumers are able to arbitrarily match with all producers because

 33

they all produce and consume the same generic type. When interacting with many

devices, this approach could result in lists of many false-positives—that is, matches

between devices that cannot exchange data. An example of a false positive is a match

between a camera that only produces picture objects and an alarm clock that consumes

time objects. Another drawback of using generic objects is that a device can only

consume or produce one kind of data because forcing the generic type does not allow

overloading of the consume() and produce() methods in the programming interface

declarations. Therefore, the camera could not independently produce URLs to both

pictures and recorded video.

 Supporting programmer-defined types in programming interfaces reduces the

production of false positives because it allows consumers and produces to be matched by

the types they exchange. It also allows overloading of the consume() and produce()

methods so that devices can exchange more than one data type. However, it incurs the

costs of writing many composers that are specific to the data types that devices can

exchange. To illustrate, it requires writing separate PicturePipe and VideoPipe

composers so that the camera can transfer two different kinds of data types.

 The PowerSwitchAll composer raises another tradeoff the programmer must make in

writing composable programming interfaces. Which programming interfaces should a

device implement? Two extreme options are a programming interface for all operations

of a device or a programming interface for each operation. The first piece of code below

is an example of the former approach while the second demonstrates the latter:

1) public interface Light {
public void power();
public void dim();
public void brighten();

}

2) public interface PowerSwitch {
 public void power();
}
public interface DimSwitch {
 public void dim();
}
public interface BrightenSwitch {
 public void brighten();
}

 34

 In the first case, it is not possible to write a generic composer for devices implementing

different programming interfaces even if they have common operations. For example, it

is not possible to write a composer for simultaneously invoking the power operations of a

TV and a light, since they provide different sets of operations. The latter approach

overcomes the limitations of the earlier. However, it leads to a proliferation of

programming interfaces and associated composers. Supporting the ‘Power All’, ‘Dim

All’, and ‘Brighten All’ operations on the lights requires three separate programming

interfaces and composers. An intermediate approach that defines programming interfaces

for subsets of operations offers intermediate degrees of composition flexibility and

programming cost of these two extreme approaches.

2.2.6 Speakeasy

Speakeasy (also called Obje) [9] is another system that provides a generic composition

framework. It also uses a programming interface based approach. However, it avoids

two of the problems of ICrafter—proliferation of programming interfaces and false

positives.

 To avoid this interface proliferation problem, Speakeasy adopts the notion of generic

programming interfaces. To illustrate, devices that consume or produce data would

implement a generic ‘data transfer’ programming interface. This programming interface

does not contain information about the specific data type the devices can exchange and

whether they consume or produce the value of that type. As our discussion of ICrafter

shows, generic programming interfaces can result in false positives when composing

devices of matching programming interfaces. However, this problem is associated with

systems that support automatic matching of producers and consumers. Speakeasy, on the

other hand, takes a manual matching approach. It provides a user-interface in which

users, themselves, select and appropriately connect the devices of matching programming

interfaces. Thus, it relies on users to not make false positives. To assist users, devices

must implement operations that return objects that indicate the values (including type

descriptions) they can exchange. For example, a digital camera would implement an

operation that returns an object indicating that it stores images as JPEGs. Also, a display

 35

device would implement an operation returning an object indicating that the device only

displays GIF images. A user would discover that these two devices are incompatible for

data transfer by comparing their supported picture formats.

 The builders of Speakeasy performed user-studies to measure the burden of the manual

connection approach on users. These studies show that for typical device users, this

approach can be too low-level and difficult. To address this problem, the builders intend

to offer a mechanism that allows technically savvy users within a site (e.g. office

building) to store and publicly distribute templates of the compositions they make to

others. Non-savvy users could simply load these templates onto their clients and avoid

connecting devices themselves. For example, a non-savvy presenter could retrieve a

template for giving presentations in a particular conference room. This template

automatically composes the lights, audio equipment, and projector in ways that prior

presenters have found useful when giving a presentation. With the template, the

presenter could simply provide the name of the file that contains of the presentation

slides. All other configuration processes are automated.

 Large sites, such as office buildings and college campuses, will likely have ‘gurus’

(e.g. system administrators and facilities managers) that are capable of making such

templates that compose their publicly accessible devices. However, this assumption

cannot be made for a small site, such as a family home, which is more likely to have non-

technically savvy users. Further, since the arrangement and use of devices can vary from

home to home, it is not clear if and how much households can share templates.

Chapter 3: Analysis of Various Approaches
As discussed in the previous chapter, there are various approaches to deploying software-

based user-interfaces for devices. At the highest level are the predefined and generation

approaches. The predefined approach involves using a factory to supply pre-existing

user-interface code. This factory can be located at a user’s client machine, the target

device, or some third-party machine. The generation approach is the converse of the

predefined approach because it does not require devices to be loaded with pre-defined

user-interface code. Instead, a user-interface generator, residing on the client or a remote

machine, dynamically creates an appropriate user-interface by using information

extracted from a device’s functional description. The generator can support a semi-

automatic and/or fully automatic approach to creating user-interfaces. Under the semi-

automatic approach, the generator accepts manually written declarations consisting of

rules to follow when creating a user-interface. In the fully automatic case, the generator

directly creates a user-interface without the use of such declarations.

 In this chapter, we fill an existing void in this area by systematically evaluating these

existing approaches. Our work offers several contributions: (1) an identification of

several metrics for comparing the approaches, (2) a qualitative analysis of the approaches

based on the identified metrics, (3) a quantitative analysis that verifies our qualitative

arguments and quantifies the differences between the approaches. These contributions

subsequently lead to a proof of the Uniqueness Hypothesis: each existing approach offers

a set of unique benefits, thus providing a reason for why it exists.

3.1 Overview of Metrics and Setup

Below are five useful evaluation metrics we have identified:

1) User-Interface Flexibility – range of user-interfaces an approach can support

2) Programming Costs – amount of code required to deploy a user-interface

 37

3) Maintenance Costs - programming time and resources required to support and

update user-interface code

4) Efficiency – time and storage space costs of an approach

5) Device Binding Time – time a client must learn about (or bind to) a device in

order to deploy a user-interface for it.

6) Deployment Reliability – the level of guarantee an approach offers in deploying a

user-interface

 As just mentioned above, these metrics allow us to make a mix of qualitative and

quantitative comparisons of the various approaches. Some of the quantitative

comparisons require performing experiments with real networked devices. Thus, we

networked six actual devices of different types: a Phillips TV, JVC VCR, Sony A/V

Receiver, Panasonic DVD Player, Hitachi Projector, and lamp. The author owns all of

the devices except the projector, which is found in one of the conference rooms in our

department’s building.

Figure 21. (left) a Celadon PIC Link IR module (right) an X10 FireCracker CM17A
module

 For each device, we created a Java RMI (proxy) object representing its functionality on

a desktop PC {Windows XP, 1.68GHz Pentium, 512MB, wired LAN (100Mbps)

connection}. Each object has a programming interface that consists of a method for each

command (or button) found on its associated device’s traditional remote control (Figure

22). When invoked, a method executes code that sends a signal to its corresponding

(actual) device to perform the associated command. The desktop PC has an IR and X10

radio module connected to its serial ports for sending these signals (Figure 21). The IR

IR
In/Out

IR
In/Out

 38

module has a record/playback facility, which we used to store the signals of all of the

commands found on the TV, VCR, receiver, DVD player, and projector remote controls.

Each method invocation, simply replays the recorded signal of its associated command.

As a result, the methods do not return any values or require any parameters. To illustrate

this command-to-method relationship, consider a power() method invocation on the

receiver’s proxy object. The method triggers the IR module to emit the signal previously

recorded from us pushing the power button on the actual receiver remote. The receiver

would treats this signal as if it came from a compatible traditional remote.

Figure 22. Sample programming interfaces (for the receiver and lamp).

public interface Lamp {
//commands

public void on();
public void off();
public void dim();
public void brighten();

//state
public intgetBrightness();
public booleangetPowered();
public voidsetPowered(boolean _powered);

}

public interface Receiver{
//commands

public void power();
public void sleep() ;
public void video1();
public void video2();
public void video3();
public void dvdORld();
public void tvORsat();
public void aux();
public void mdORtape();
public void cd();
public void tuner();
public void phono();
public void _51CH_();
public void AFD();
public void _2CH_();
public void mode();
public void analogDirect();
public void cinemaStudio();
public void bassBoost();
public void mute() ;
public void volumeUp();
public void volumeDown();
public void ChORPresetUp();
public void ChORPresetDown();
public void EqORTone();
public void testTone();
public void rearUp();
public void rearDown();
public void centerUp();
public void centerDown();
public void _0_() ;
public void _1_() ;
public void _2_() ;
public void _3_() ;
public void _4_() ;
public void _5_() ;
public void _6_() ;
public void _7_() ;
public void _8_() ;
public void _9_() ;
public void shift10() ;
public void enter() ;

//state
public boolean getPowered() ;
public void setPowered(boolean _powered) ;
public int getBass() ;
public void setBass(int _bass) ;
public int getTreble() ;
public void setTreble(int _treble) ;
public int getRfBalance() ;
public void setRfBalance(int _rfBalance) ;
public int getLfBalance() ;
public void setLfBalance(int _lfBalance) ;
public int getCBalance() ;
public void setCBalance(int _cBalance) ;
public int getRrBalance() ;
public void setRrBalance(int _rrBalance) ;
public int getLrBalance() ;
public void setLrBalance(int _lrBalance) ;
public int getSubBalance() ;
public void setSubBalance(int _subBalance) ;
public int getRfVolume() ;
public void setRfVolume(int _rfVolume) ;
public int getLfVolume() ;
public void setLfVolume(int _lfVolume) ;
public int getCVolume() ;
public void setCVolume(int _cVolume) ;
public int getRrVolume() ;
public void setRrVolume(int _rrVolume) ;
public int getLrVolume() ;
public void setLrVolume(int _lrVolume) ;
public int getSubVolume() ;
public void setSubVolume(int _subVolume) ;
public int getVolume() ;
public void setVolume(int _volume) ;
public double getChannel() ;
public void setChannel(double _channel) ;
public String getInput() ;
public void setInput(String _input) ;
public boolean getTone() ;
public void setTone(boolean _tone) ;
public boolean getBassBoost() ;
public void setBassBoost(boolean _bassBoost) ;
public String getMode() ;
public void setMode(String _mode) ;
public boolean getMuted() ;
public void setMuted(boolean _muted)

;
}

public interface Lamp {
//commands

public void on();
public void off();
public void dim();
public void brighten();

//state
public intgetBrightness();
public booleangetPowered();
public voidsetPowered(boolean _powered);

}

public interface Receiver{
//commands

public void power();
public void sleep() ;
public void video1();
public void video2();
public void video3();
public void dvdORld();
public void tvORsat();
public void aux();
public void mdORtape();
public void cd();
public void tuner();
public void phono();
public void _51CH_();
public void AFD();
public void _2CH_();
public void mode();
public void analogDirect();
public void cinemaStudio();
public void bassBoost();
public void mute() ;
public void volumeUp();
public void volumeDown();
public void ChORPresetUp();
public void ChORPresetDown();
public void EqORTone();
public void testTone();
public void rearUp();
public void rearDown();
public void centerUp();
public void centerDown();
public void _0_() ;
public void _1_() ;
public void _2_() ;
public void _3_() ;
public void _4_() ;
public void _5_() ;
public void _6_() ;
public void _7_() ;
public void _8_() ;
public void _9_() ;
public void shift10() ;
public void enter() ;

//state
public boolean getPowered() ;
public void setPowered(boolean _powered) ;
public int getBass() ;
public void setBass(int _bass) ;
public int getTreble() ;
public void setTreble(int _treble) ;
public int getRfBalance() ;
public void setRfBalance(int _rfBalance) ;
public int getLfBalance() ;
public void setLfBalance(int _lfBalance) ;
public int getCBalance() ;
public void setCBalance(int _cBalance) ;
public int getRrBalance() ;
public void setRrBalance(int _rrBalance) ;
public int getLrBalance() ;
public void setLrBalance(int _lrBalance) ;
public int getSubBalance() ;
public void setSubBalance(int _subBalance) ;
public int getRfVolume() ;
public void setRfVolume(int _rfVolume) ;
public int getLfVolume() ;
public void setLfVolume(int _lfVolume) ;
public int getCVolume() ;
public void setCVolume(int _cVolume) ;
public int getRrVolume() ;
public void setRrVolume(int _rrVolume) ;
public int getLrVolume() ;
public void setLrVolume(int _lrVolume) ;
public int getSubVolume() ;
public void setSubVolume(int _subVolume) ;
public int getVolume() ;
public void setVolume(int _volume) ;
public double getChannel() ;
public void setChannel(double _channel) ;
public String getInput() ;
public void setInput(String _input) ;
public boolean getTone() ;
public void setTone(boolean _tone) ;
public boolean getBassBoost() ;
public void setBassBoost(boolean _bassBoost) ;
public String getMode() ;
public void setMode(String _mode) ;
public boolean getMuted() ;
public void setMuted(boolean _muted)

;
}

 39

 The lamp is the only device that we networked using the X10 protocol. This protocol

has fixed and generic signals for powering and dimming arbitrary lamps. Thus, we did

not need to perform any signal recording.

 Beyond representing our devices’ commands in the proxy objects, we also incorporate

their state. Including state allows the proxy objects to more closely emulate networked

versions of the actual devices. Moreover, it allows us to consider the differences between

deploying command-only and command-and-state-based user-interfaces in our

evaluation. To represent device state in the proxy objects, we searched the on-board

panels and menus of each device for status information to represent as Java Bean

properties. This representation of state allowed us to use ObjectEditor to generate GUIs

displaying the state of each device. Figure 22 illustrates our use of this state

representation by showing the programming interfaces for the projector and lamp proxy

objects. Since today’s devices are generally unable to send output messages, even using

IR, they are incapable of notifying external agents of their state changes. As a result, we

included code in the proxy objects that keeps the property values consistent with the

actual state of their associated devices. If a user turns on the lamp, for example, the

powered property would be set to true before the Lamp.on() method terminates.

Invoking getPowered() immediately after Lamp.on() would therefore return true.

Vice versa, if the user turns the lamp off, then getPowererd() would return false.

3.2 User-Interface Flexibility

Under the predefined approach, programmers are able to handcraft arbitrary kinds of

user-interfaces. A user-interface generator, on the other hand, is limited to creating the

kinds of user-interfaces it was programmed to deploy. Thus, in theory, this approach has

lower user-interface flexibility than the predefined approach. In practice, however, the

flexibility of the generation approach depends on the domain being considered.

 We first consider a domain of user-interfaces based on the design of traditional remote

controls, which have been a principal means for interacting with devices for many years.

A class of user-interfaces that logically belong in this domain consists of GUIs that are

built to directly mimic traditional remote controls. Using ObjectEditor, we evaluated the

 40

ability to fully automatically generate such user-interfaces for the six devices we

networked.

Figure 23. Command-only receiver GUIs written using Java Swing: (a) a predefined
GUI that mimics the device’s remote control and (b) a GUI generated fully automatically
by ObjectEditor.

 Figure 23 shows the handcrafted remote-control-mimicking GUI that we built for the

receiver and the GUI fully automatically generated by ObjectEditor. There are major

differences between the two GUIs. The handcrafted GUI follows conventions actual

found in the receiver’s remote control. For example, it arranges its buttons in a ‘number

pad’. It also groups commands that perform related functions together. For instance, it

places the mute button near the volume buttons. ObjectEditor, which has no inherent

notion of how to generate a GUI that mimics receiver’s remote control, simply places

(a)

(b)

(a)

(b)

 41

buttons in alphabetical and then numerical order. This type arrangement is not consistent

with the remote control. For some cases, though, this ordering places related buttons next

to one another if they share prefixes (e.g. Volume Down with Volume Up, Rear Down

with Rear Up). It also places the number buttons together, though not in a ‘number pad’

arrangement. Appendix A contains snapshots of the handcrafted and fully automatically

generated GUIs for the other devices that we networked. Basically, all fully

automatically genereated GUIs exhibit limitations that are similar to those of the receiver

case.

 It is possible to overcome some of this flexibility limitation of fully automatic

generation by supporting a semi-automatic approach. As Figure 23 illustrates,

ObjectEditor and the handcrafted remote-control-mimicking GUIs follow a grid-based

layout for arranging buttons. ObjectEditor can accept manually written declarations that

describe the absolute position and label of each button on a grid. Such declarations thus

allow the generator to create user-interfaces whose buttons follow the same ordering as

the handcrafted ones.

 A problem, though, arises from trying to support button labels that are identical to the

handcrafted GUIs. In the handcrafted receiver GUI (Figure 23a), notice that the

‘CH/PRESET’ up and down button are respectively labeled using a ‘+’ and ‘-‘.

However, in the generated user-interface, they are labeled as 'CH/PRESET UP’ and

'CH/PRESET DOWN’. These could respectively be replaced with a ‘+’ and ‘-‘ by giving

appropriate user-defined declarations. This facility raises a new problem in that with

such replacements, the CH/PRESET buttons would no longer indicate their functionality

to users. In other words, there is no information that users would see to know what the

‘+’ and ‘-‘ buttons perform. In the handcrafted GUI, their purpose is clear because there

is a ‘CH/PRESET’ label above the two buttons that indicates their purpose. This label

differentiates the CH/PRESET up and down buttons from those for VOLUME. It is not

possible to arbitrarily insert such labels, or any new user-interface component, in an

ObjectEditor-generated user-interface using declarations. This ability is low-level and

requires manually changing the generator’s code. Thus, it demonstrates the flexibility

 42

limitation of the semi-automatic (or declaration-based) generation in the domain of

remote-control-mimicking GUIs.

Figure 24. Command and state-based receiver GUIs: (a) predefined GUI and (b)
generated by ObjectEditor fully automatically.

(a)

(b)

(a)

(b)

 43

 Let us now consider remote-control-mimicking GUIs that also incorporate device state.

In particular, we consider GUIs that display primitive typed state since all of the state

property types of all of our devices are primitive. Since traditional remote controls do not

display state, there are no clear-cut examples to directly mimic. However, we can make a

logical derivation of such GUIs by simply extending the standard grid-based layout of

buttons to state display. Figure 24a illustrates this design by displaying the receiver’s

handcrafted remote-control-mimicking GUI with state. This GUI displays the device’s

properties using widgets that can appropriately display their values. The values of

boolean properties are displayed using checkboxes while the values of strings and

numeric types are displayed using textboxes. To illustrate, the receiver’s ‘powered’

property value is displayed by a checkbox. An unchecked box means that the receiver is

off, otherwise, it is on.

 As shown in Figure 24a, the state widgets of the GUIs are all placed in their bottom

panel using a grid layout. The entire state panel of the receiver’s GUI, for example, is

based on a 4 by 5 grid. Next to this handcrafted GUI (Figure 24b) is the corresponding

GUI that ObjectEditor generated fully automatically. Recall from our description of

ObjectEditor, that the generator can also create GUIs displaying device state. For each

property in a device object, the generator maps it to a widget for displaying its value.

Figure 24 shows that the generator can automatically create state representations that are

similar to those of the handcrafted GUIs. Further, the generator also places the widgets

on a panel at the bottom of the GUI using a grid-based layout. However, there are some

clear differences between the two state panels. First, as before, the two GUIs order

widgets differently. For example, the ‘muted’ and ‘volume’ property widgets are next to

one another in the handcrafted GUI and not in the generated one. Second, in the

handcrafted GUI, the labels displaying the names of each property are placed in to the left

of the value display. In the generated GUI, they are on top of the values. Third, the

sizes of the textboxes displaying numerical and string based properties differ between the

two GUIs. Notice that the textboxes of the generated GUIs are wider. Finally, five, the

dimensions of the state grid differ. ObjectEditor places the receiver GUI’s state widgets

in 5 by 5 grid. In Appendix A, we present snapshots of the handcrafted and fully

automatically generated GUIs (with state) for the other devices that we networked.

 44

Basically, all fully automatically genereated GUI exhibt similar limiations as just

described for the receiver case.

 To present the state widgets in the same manner as the handcrafted GUI, ObjectEditor

can accept manually provided declarations describing their absolute position on a grid.

Moreover, the generator can accept: (a) a single declaration stating how to position the

labels of all widgets or (b) a declaration for each widget that describes its individual label

position. Furthermore, the generator can also accept: (a) a single declaration stating how

size all of the textboxes or (b) a declaration for each textbox that describes its individual

size. As a result, in displaying primitive typed state, the generation and predefined

approaches share the same flexibility for the devices we considered. It is unclear whether

semi-automatic generation can equally support other kinds of state-based representations.

In particular, we are uncertain about its ability to support structured-type state, which we

do not consider here. The concern is based on the fact that structured-types can require

complex representations in a user-interface.

 Now, let us consider the ability to generate remote-control-based SUIs. For our six

devices, we handcrafted the SUIs using the Java Speech API and the IBM ViaVoice 9

speech recognition/synthesis engine. The SUIs were built to allow a user to invoke

methods on a device’s proxy object by simply speaking their names. Recall that these

methods correspond to commands displayed as buttons on the traditional remote control.

Hence, there is a direct mapping between the SUIs and their corresponding traditional

remote controls.

 Once loaded, each SUI notifies the user to ‘start talking’. The user can then either say:

(1) “get commands” to hear the names of possible commands to invoke on the target

device or (2) directly say the name of the command to invoke (e.g. “mute”). Basically,

the grammar (or set of acceptable words) of the dialogue consists of the names of each

device command and the phrase “get commands”. Our devices’ proxy objects all have

parameterless methods. As a result, we did not have to support the ability to enter

parameter values in the dialogues.

 45

 To test the ability to fully automatically generate the handcrafted GUIs described

above, we built an experimental SUI generator for Java objects. Like the handcrafted

SUIs, we coded the SUI generator using the Java Speech API and IBM ViaVoice 9. We

were able to build the generator to follow the same dialogue structure as the handcrafted

SUIs. To create this structure, it extracts a device object’s method names using Java

Reflection and then adds them to the input grammar (set of acceptable words) of the

recognizer. To invoke

Figure 25. A depiction of our experimental SUI generator.

a method on a device, users simply say its corresponding name. By default, the generator

also adds the phrase ‘get commands’ to the grammar. Users can say this phrase to hear a

list of commands extracted from the target device. Similar to the handcrafted SUIs, users

cannot begin speaking any phrases until generator notifies them to ‘start talking’—i.e. the

generation algorithm is done. Figure 25 depicts this algorithm illustratively, and below,

we describe it using pseudocode:

t = a reference to the target device object
G = an initially empty grammar
RECOGNIZER = the recognizer
SYNTHESIZER = the synthesizer

generateSUI(t, G, RECOGNIZER, SYNTHESIZER) {
 M = getMethodNames(t)
 for each method name (x) in M
 G.insert(x)

TV Interface (Java)

speech
recognizer

grammar
power
mute
sleep
volume up
volume down
channel up
channel down

…

grammar
power
mute
sleep
volume up
volume down
channel up
channel down

…

speech
synthesizer

public interface Television {
public void power();
public void mute();
public void sleep();
public void volume_Up();
public void volume_Down();
public void channel_Up();
public void channel_Down();
…

System

get commands

operations

invoke

Speak
commands

 46

 G.insert(“get commands”);
 RECOGNIZER.start();
 SYNTHESIZER.speakText(“start talking”);
}

Once a user speaks a phrase (p), the system executes the following:

processPhrase(p,G,t) {
 if G.contains(p) {
 if p.equals(“get commands”) {
 M = a set consisting of t’s method names
 for each method name (x) in M
 SYNTHESIZER.speakText(x);
 }
 else {
 method = actual method with name p
 t.invoke(method)
 }
 }
}

The above shows that it is possible to generate the remote-control-based SUIs fully

automatically. That is, our generator does not require the support of manually written

declarations to create the SUIs. As we did with GUIs, we will not continue on to

evaluate the ability to generate remote-control-based SUIs that present state. The reason

is that, unlike for the GUIs, there is no clear way for deriving a way to present state in

SUIs.

 There are unlimited kinds of other SUIs and GUIs that we could further consider in our

flexibility evaluation. As discussed in the Introduction, such user-interfaces could be ‘far

beyond remote-control-based’. They could include advanced features such as

record/replay, concurrency, failures, and disconnected interaction/synchronization. It is

not clear how well such user-interfaces can be generated, even with the aid of manually

provided declarations. Thus, it is in this space where the tradeoff between the automation

and user-interface flexibility of generation mainly exists. The next section expands on

this tradeoff by evaluating the programming costs involved in the different approaches.

3.3 Programming Costs
User-interface programming can be a cumbersome task. Surveys show that

implementing a user-interface of a conventional application requires more code than

implementing its functionality [25, 37]. The user-interface of a network device may be

 47

even more difficult to implement, for two reasons. First, it is remote to the device, and it

must address network issues. Despite the desire for transparent remote access, no

practical system offers it. In fact, it is believed by some that no practical system can,

because of the need to address latency, partial failure, concurrency, and a different

memory model [40]. Second, as suggested earlier, the user-interface might offer several

new and potentially useful kinds of features that are missing in traditional remote controls

such as record/replay and disconnected interaction/synchronization. These features are

very difficult to implement, as evidenced by the fact that several commercial applications

such as spreadsheets and drawing tools do not offer them, even though their usefulness

goes beyond our domain (in particular, they are useful in collaborative or mobile access

to data [6, 24]).

 In the user-interface generation approach, programming costs are paid in writing

generator code for each kind of user-interface toolkit (e.g. Java Swing, Java Speech API)

supporting one or more devices. Once a generator is built, there is no cost in creating

user-interfaces fully automatically. With the predefined approach, device programmers

must manually implement user-interfaces for each kind of device and toolkit (Figure 26).

Figure 26. UI generation vs. the predefined approach.

 We counted the number of lines of code required to manually implement the remote-

control-based user-interfaces mentioned in the previous section (Table 3). Table 3 shows

the results and compares them with the number of lines of declarations needed for semi-

automatic generation. Recall that ObjectEditor cannot generate the exact remote-control-

mimicking GUI semi-automatically. Thus, for the programming costs of semi-automatic

l
a
m
p

code

TV
code

UI Toolkit

. . .

Predefined Approach

UI Toolkit

UI

Generator

...

Semi - Automatic
Generation

Per - device
declarations

UI Toolkit

UI

Generator

...

Fully Automatic
Generation

l
a
m
p

code

TV
code

UI Toolkit

. . .

Predefined Approach

UI Toolkit

UI

Generator

...

Semi - Automatic
Generation

Per - device
declarations

UI Toolkit

UI

Generator

...

Fully Automatic
Generation

 48

GUI generation, the values represent the number of lines required to produce GUIs that

are as close to the handcrafted ones as possible. To appropriately position a button and

state-widget, ObjectEditor simply requires a one-line declaration. For each state widget,

the generator also requires a line for specifying the placement of the accompanying

property label. It additionally needs a line that for each string and numeric based

property of a device to indicate the size of the corresponding textbox. The reason is that

the textboxes in a device’s handcrafted GUI may not all the same size. The ‘input’

property’s textbox in the receiver’s user-interface, for example, is larger than that of the

volume property (Figure 24a). If the textboxes all shared the same size, the generator

would only need a single declaration indicating the size for all textboxes.

Number of lines of UI code

GUIs SUIs

Remote-Control-like GUI Remote-Control-like
 GUI with State

Device

Semi-
automatic
generation

Predefined
Semi-

automatic
generation

Predefined

Semi-
automatic
generation

Predefined

Receiver 42 287 66 428 0 176

DVD
Player 38 316 54 414 0 168

Lamp 4 94 8 110 0 102

Projector 23 254 31 283 0 138

TV 25 321 36 385 0 142

VCR 40 247 47 288 0 172

Table 3. Number of lines of user-interface code used for each device

 Unlike ObjectEditor, the SUI generator did not require any lines of manually provided

declarations in order to generate its target remote-control-based user-interfaces. This

zero line-cost of fully automatic generation is a significant benefit because of the

following point. Although manually implementing a user-interface can have a relatively

small (non-zero) line-cost, a programmer must actually spend the time doing it.

Consequently, the predefined approach does not always guarantee a user-interface for any

given device. The zero-line cost of fully automatic generation inherently guarantees a

user-interface.

 49

3.4 Maintenance Costs

A deployment approach should be able to respond to a rapidly changing set of devices,

mobile clients, and user-interface paradigms. Therefore, programmers must continuously

write new code and organize components of a deployment infrastructure in order to

support change. In general, an approach that offers low programming costs also makes it

easy to support change.

3.4.1 Predefined vs. Generation

Research shows that user-interface code tends to be the least portable part of all

application code [10]. Consequently, the code for generators and predefined user-

interfaces may not be compatible with future toolkits. Given a new toolkit, the

predefined approach could require coding new user-interfaces for each device. On the

other hand, the generation approach could require coding a new generator, which creates

user-interfaces for an arbitrary number of devices. Because the number of devices

needing new user-interfaces can be high, qualitatively, the maintenance cost of the

predefined approach is greater than that of the generation approach.

 User-interface generation has the added advantage of being able to easily support

forms of interactions that were not initially intended for a device. To illustrate, we could

incrementally add foreign language support to ObjectEditor generator. The generator

could access a translator program to convert a method name in one language to its

corresponding name in another language. The predefined approach also allows additional

user-interface paradigms, but it requires changing the code of many existing user-

interfaces or implementing new ones.

3.4.2 Client-Factory and Third-Party Factories vs. Other Approaches

In the predefined approaches, the removal of a device should also result in the removal of

its user-interface code. It is difficult to perform this task in the client-factory and third-

party-factory approaches because this code is separated from devices. Therefore, the

approaches require additional maintenance to track the locations of user-interface code in

order to completely remove it. In the device-factory approach, the user-interface code is

inherently removed with the device. Hence, the maintenance cost is lower. The fully

 50

automatic generation approach does not face this problem because there is no per-device

user-interface code. Semi-automatic generation, however, has per-device user-interface

code. It is no better, in this respect, than the client and third-party-factory approaches.

3.5 Efficiency

Below are four efficiency factors to be considered in deploying user-interfaces:

• Space Costs:

o Device Space: Storage used at the device.

o Client Space: Storage used at the client.

• Time costs:

o Deployment Time: Time required to deploy a user-interface.

o Operation Invocation Time: Time required to invoke an operation on a device.

That is, the time from when a user requests the operation to the time when the

device’s object starts the operation.

The space used at the third-party machine is not an issue since we believe that the

machine would be at least as powerful as modern desktops and would be connected to

disks. However, the space used at the device and client is important because most

devices and mobile computers are typically required to be small and/or inexpensive. Cell

phones and networked lights, for example, are bound to have little storage. A document

on UPnP estimating the power of networked devices states that: “typically, they are based

on a low-cost micro controller, ASICs and some 200-1000 k bytes of RAM and Flash

memory” [33]. Similarly, the time costs are important because: (a) devices and mobile

clients have low processing power, (b) the alternative, traditional remote controls, have

no deployment cost, and transmit user’s intentions to the device at infrared speed, and (c)

users get frustrated with high system response times [34].

 51

3.5.1 Space Costs

The device-factory approach consumes the most device space because, unlike the other

approaches, user-interface code is actually stored on devices. On the other hand, the

generation, client-factory, and third-party-factory approaches consume the least amount

of device space since they require no user-interface code on the machine hosting device

objects. We ignore the insignificant space taken by customization code required by semi-

automatic generation.

 The remote-factory and remote generation approaches consume the least client space

because they do not require clients to store any user-interface code. In comparing the

client-factory and the client-side generation approaches, the client space cost depends on

the number of devices with which a user will interact. This number can be high enough

such that the space consumed by the required handcrafted user-interfaces is greater than

the space consumed by a single generator. Conversely, it can be low enough such that

the generator consumes more space than a small set of handcrafted user-interfaces.

 To provide a quantitative dimension to this evaluation, we measured the space

consumed by some user-interface generators and the code of the device user-interfaces

we handcrafted. ObjectEditor consumes over 898,000 bytes, which is much higher than

the total space consumed by the code of all the handcrafted GUIs (Table 4). However,

recall the generator’s complexity. It can create user-interfaces for applications beyond

the domain that we have considered for devices. This additional functionally consumes a

significant part of the total space of the application. Thus, a direct comparison of

ObjectEditor’s space and with the space needed to store predefined user-interface code of

just a few devices is unfair.

 To determine the relationship between the functionality and space cost of a generator,

we implemented a much simpler GUI generator for Java objects. It extracts the methods

of a Java object and creates a frame consisting of a button for each method in

alphanumeric order. It does not support customization, state presentation, menus, and

many other features in ObjectEditor. The generator consumes 9621 bytes, which is even

less than the space consumed by the code of the receiver’s command-only GUI.

 52

Space Consumed (bytes)
GUIs Device

Remote-Control-like Remote-Control-
like with State

SUIs
(predefined)

Receiver 9,728 11,737 5945

DVD Player 9,216 11,086 5723
Lamp 2970 3,516 3827
Projector 6753 6,958 5375
TV 8,704 9,377 5442
VCR 9028 10,064 5845

Table 4. Amount of space consumed by the code of each device’ handcrafted user-
interface.

 The SUI generator also portrays a different picture of generation costs. It consumes

20506 bytes, which is less than the space needed for the six devices’ handcrafted SUIs.

In general, the generation approach should represent a point between the two extremes of

the client-factory and remote-factory approaches. It requires clients to have enough space

to store a user-interface generator, but this space should be much less than the space

needed to store user-interface code for all devices a user might ever want to use.

3.5.2 Deployment Time Costs

Qualitatively, the client-factory approach should have a lower user-interface deployment

time than the remote-factory approach. The reason is that there is generally less delay in

retrieving and executing user-interface code from local storage than from a remote

source. The approach should also have a lower deployment time than the generation

approach because it avoids downloading a device’s description and then creating a new

user-interface at interaction time.

 We cannot make such qualitative arguments about the generation and remote-factory

approaches. The reason is based on two ideas:

1) For generation, the times are highly dependent on processor speeds since the

process requires executing a complex algorithm.

2) For factory downloading, the times are highly dependent on network speeds since

the process requires retrieving all user-interface code from a remote machine.

 53

As a result, we performed experiments to gather quantitative data. In particular, we

measured the times for: (1) locally generating user-interfaces and (2) downloading and

executing user-interface code from our department’s web-server. To quantify the time

benefits of the client-factory, we also measured the time it takes for clients to locally load

and execute code.

 To deploy the user-interfaces of the six networked devices, we used two different kinds

of clients: (1) a laptop {Windows 2000 OS, 733 MHz Pentium, 128MB} and (2) an Ipaq

pocket PC {Savaje Java-based operating system [31], 206MHz StrongArm, 32MB}. We

chose a pocket PC and a laptop as our experimental clients because they are mobile

computers with a significant difference in processing power. This difference allowed us

to investigate how a client’s processing power can effect deployment time. Another

factor that can effect deployment time comes from the fact that all of our generators and

handcrafted were written in Java. Since the laptop, unlike the Ipaq, is not inherently

Java-based, it must first start a Java Virtual Machine (JVM) before executing any

deployment code. This process could increase total deployment times. To measure the

possible increase, we also compared the times of deploying user-interfaces with and

without a preloaded JVM. We preloaded JVMs by launching our user-interface

deployment code from already running Java programs. These programs do not perform

any computation that can effect deployment time. They simply launch our user-interface

deployment code.

 As implied above, network speeds can effect deployment time. Our evaluation thus

includes a comparison of deployment times using different network speeds. We

particularly consider the speeds of dialup, wireless, and wired LAN network connections.

 Yet another factor that could effect deployment time is the type of user-interface

deployed. Thus, we compared the times of generating GUIs and SUI using the generators

mentioned above. We also compared the times of deploying user-interfaces with and

without state. Incorporating state can effect deployment time since it requires executing

code to render state widget (or views). It also requires downloading current property

values in order to initialize state widgets (Figure 27).

 54

Figure 27. The downloaded components of the factory and generation approaches.

 Finally, by measuring the times for deploying user-interfaces for our six devices, we

can evaluate the effect of device complexity on deployment time. Consider the two

extremes of device complexity—the lamp and the receiver. The lamp only has four

commands and two state properties while the receiver has forty-two commands and

twenty-two properties. Logically, the receiver should have a longer deployment time

than the lamp.

3.5.2.1 Deployment Times on Laptop

Using a wired LAN connection on the laptop, we performed ten trails of collecting

deployment times with and without a preloaded JVM. Under no-preloaded-JVM

deployment, all the approaches yield significantly high times. Consider the task of

deploying a command-and-state based GUI for the receiver. It takes approximately 8 and

9 seconds to deploy the handcrafted GUI (Figure 24a) using the client and remote-factory

approaches respectively. There is a very small proportional difference (1.12) between the

client and remote-factory approach. Such a small number is likely due to the fast

network we used, which provided fetch times that were comparable to the laptop’s own

disk access time. Generating the user-interface takes over 17 seconds, which is

approximately twice the times of the factory approaches (Figure 24b).

UI
Code

Generation
(Descript

ion)

(state values
 if any)

??

Remote
Factory

(state values if any)

factoryfactory(UI Code)

(state values if any)

Client
Factory

DEVICE

UI
Code
UI
Code

Generation
(Descript

ion)

(state values
 if any)

??

Remote
Factory

(state values if any)

factoryfactory(UI Code)

(state values if any)

Client
Factory

DEVICE

 55

 In general, the times are much lower under preloaded-JVM deployment. The client

and remote-factory times drop down to approximately 396 and 401 milliseconds (ms)

respectively—under half a second. Again, there is also a small proportional difference

(1.01) between the two approaches. Generating the receiver GUI reduces to

approximately 7.5 seconds. This time is considerably lower than the generation times

under no-preloaded-JVM deployment. However, it is still very high when compared to

the preloaded-JVM factory times. We hypothesized that a considerable part of it is due to

the process of starting up the generator and loading it into memory. Thus, we explored

the idea of running the generator ‘in the background’, which means that the client keeps

the generator always loaded and ready in memory. This general idea of running

applications ‘in the background’ to avoid long startup times is not new. It has even been

used by popular applications such as Netscape’s web-browser. Given our Java-based

implementation, a generator loaded in memory assumes that a JVM is also running. It

does not make sense to consider the case of always keeping predefined user-interface

programs in memory since they are not universal applications. That is, functionality (or

code) from one predefined user-interface cannot be used to help deploy another. A

generator, on the other hand, is universal because all user-interfaces share the same

generation algorithm.

 Our results show that applying the idea significantly lowers generation time. The

receiver GUI generation time actually drops down to approximately 882 ms. This time,

however, is still over twice the times of the factory approaches under preloaded-JVM

deployment. Figures 28 and 29 respectively present times for deploying command-only

and command-and-state based GUIs for all six devices using the same laptop and 100

Mbps network connection.

 56

 Figure 28. Command-only GUI deployment times for all six devices (using the laptop,
ObjectEditor preloaded in memory, and a wired LAN connection).

 The graphs show that the trend described above is not specific to just the receiver. In

fact, for all of the devices we networked and the two kinds of GUIs, there is a

considerable proportional difference between the deployment times of the generation and

factory approaches. Generating the DVD player’s command-only user-interface is just

under twice as long as locally loading code. Generating its command-and-state based

GUI is over 2.5 times longer than locally loading code. Thus, including state apparently

creates a wider gap between the two approaches. When moving from command-only to

command-and-state based GUIs, deployment time increases at a greater rate in the case of

the generation approach. The DVD player’s command-and-state based GUI takes nearly

1.5 times longer to generate than the command-only GUI. Under the client-factory

approach, however, there is only a 1.08 difference in deploying the two kinds of use-

interfaces. This greater increase in the generation approach quantifies the additional

burden of creating state-based property displays ‘on the fly’ versus creating them from

predefined code. Recall that ObjectEditor generates a device’s state display panel by first

using reflection to extract state property information. It then dynamically maps the

Laptop UI Deployment Times
(Command-only UIs)

C
lie

nt
 F

ac
.-V

C
R

25
5.

50

R
em

ot
e

Fa
c.

-V
C

R
27

6.
00 G

en
er

at
io

n-
VC

R
37

5.
71

C
lie

nt
 F

ac
.-R

C
VR

29
0.

57

R
em

ot
e

Fa
c.

-R
C

VR
29

7.
33

C
lie

nt
 F

ac
.-T

V
25

7.
17

R
em

ot
e

Fa
c.

-T
V

26
0.

00

G
en

er
at

io
n-

TV
42

0.
00

C
lie

nt
 F

ac
.-D

VD
25

0.
67

R
em

ot
e

Fa
c.

-D
VD

26
1.

50

C
lie

nt
 F

ac
.-L

A
M

P
12

3.
88

R
em

ot
e

Fa
c.

-L
A

M
P

13
3.

33

G
en

er
at

io
n-

LA
M

P
31

2.
40

C
lie

nt
 F

ac
.-P

R
O

J
21

9.
33

R
em

ot
e

Fa
c.

-P
R

O
J

24
4.

57

G
en

er
at

io
n-

PR
O

J
35

9.
22

Generation-
RCVR
505.50

Generation-
DVD

471.88

0.00

100.00

200.00

300.00

400.00

500.00

600.00

1

tim
e(

m
s)

VCR UI Receiver UI TV UI DVD UI Lamp UI Projector UI

 57

properties to appropriate widgets for displaying their values. The code for the predefined

GUIs, however, avoids the need to perform reflection and dynamic mapping during

interaction time. The GUIs are device-specific, and thus we could ‘hardwire’ the

mappings between properties and widgets in their code.

Figure 29. Command-and-state based GUI deployment times for all six devices (using
the laptop, ObjectEditor preloaded in memory, and a wired LAN connection).

 The graphs also show that deployment time can significantly increase with device

complexity. Recall the two complexity extremes, the lamp and receiver. For all three

approaches (generation, remote-factory, and client-factory), the receiver’s command-and-

state based GUI takes over twice the time to deploy than that of the lamp. With the

command-only receiver GUI, the generation time is 1.6 times greater than that of the

lamp. The client and remote factory times for the receiver’s command-only GUI are over

twice that of the lamps. Considering devices of more comparable complexity, like the

TV (25 commands and 9 properties) and projector (23 command and 4 properties), the

deployment times have smaller differences. The TV’s command-and-state based GUI

deployment times under the three approaches are under 1.2 times longer than those of the

projector.

Laptop UI Deployment Times
(Command and State UIs)

C
lie

nt
 F

ac
.-V

C
R

29
7.

13

R
em

ot
e

Fa
c.

-V
C

R
32

0.
56

G
en

er
at

io
n-

VC
R

55
3.

25

C
lie

nt
 F

ac
.-R

C
VR

39
6.

43

R
em

ot
e

Fa
c.

-R
C

VR
40

1.
00 G

en
er

at
io

n-
R

C
VR

88
2.

44

C
lie

nt
 F

ac
.-T

V
27

8.
67

R
em

ot
e

Fa
c.

-T
V

29
6.

11

G
en

er
at

io
n-

TV
54

9.
75

C
lie

nt
 F

ac
.-D

VD
27

0.
50

R
em

ot
e

Fa
c.

-D
VD

28
3.

67

G
en

er
at

io
n-

D
VD

70
2.

33

C
lie

nt
 F

ac
.-L

am
p

15
1.

83

R
em

ot
e

Fa
c.

-L
am

p
16

0.
22

G
en

er
at

io
n-

La
m

p
34

1.
56

C
lie

nt
 F

ac
.-P

R
O

J
23

2.
88

R
em

ot
e

Fa
c.

-P
R

O
J

24
8.

88

G
en

er
at

io
n-

PR
O

J
49

9.
33

0

100

200

300

400

500

600

700

800

900

1000

1

tim
e(

m
s)

VCR UI Receiver UI TV UI DVD UI Lamp UI Projector UI

 58

 For the rest of this dissertation, we assume that (a) the all deployment times are from a

preloaded-JVM deployment and (b) the generation times are gathered from a preloaded

generator. Further, all the deployment time values we present are averages of ten trials.

3.5.2.2 Deployment Times on Ipaq

Given that the Ipaq has a much slower processor than the laptop, it should offer

considerably longer deployment times. We collected GUI deployment times for three

devices (the lamp, projector, and receiver) on the Ipaq using a wired LAN network

connection. The times (Figure 30) have a trend that is similar to the laptop results. The

client-factory approach is the fastest. It is followed by the remote-factory approach,

which is 1.44 times slower than the local factory. Generation is the slowest approach—

taking approximately 2.8 and 1.9 times longer than the client and remote-factory

approaches respectively.

Figure 30. Command-and-state based GUI deployment times for the projector, lamp,
and receiver (using the Ipaq and a wired LAN connection).

Ipaq UI Deployment Times
(ObjectEditor Preloaded in Memory)

C
lie

nt
 F

ac
.-P

R
O

J
48

9.
44

R
em

ot
e

Fa
c.

-P
ro

je
ct

or
61

1.
11

G
en

er
at

io
n-

Pr
oj

ec
to

r
12

92
.3

31

C
lie

nt
 F

ac
.-L

am
p

21
1.

22

R
em

ot
e

Fa
c.

-L
am

p
31

3.
78

G
en

er
at

io
n-

La
m

p
57

5.
78 C

lie
nt

 F
ac

.-R
C

VR
11

21
.1

1 R
em

ot
e

Fa
c.

-R
C

VR
17

60
.4

3

Generation-RCVR
3339.00

0

500

1000

1500

2000

2500

3000

3500

4000

1

tim
e(

m
s)

Projector UI Lamp UI Receiver UI

 59

 These Ipaq results quantitatively show a direct relationship between computation

power and deployment time. The Ipaq, which is much less powerful than the laptop,

yields significantly higher deployment times under the same scenarios (Figure 31).

Consider the task of deploying a command-and-state based receiver GUI. The client-

factory approach takes 1121.11 ms on the Ipaq versus 396 ms on the laptop. On the Ipaq,

the remote-factory approach takes 1760.43 ms, but it takes 401 ms on the laptop. Finally,

generation takes 3339 ms on the Ipaq as opposed to 882 ms on the laptop. The

generation, remote-factory, and client-factory approaches respectively take 3.78, 4.4, and

2.8 times longer on the Ipaq than on the laptop. It even takes less time to generate the

GUI on the laptop than to deploy one on Ipaq using a local factory.

Figure 31. A visual display of the significant differences between Ipaq and laptop GUI
deployment

Ipaq vs. Laptop
 Receiver UI (ObjectEditor Preloaded in Memory)

(Laptop)
396.43

(Ipaq)
1121.11

(Laptop)
401.00

(Ipaq)
1760.43

(Laptop)
882.44

(Ipaq)
3339.00

0

500

1000

1500

2000

2500

3000

3500

4000

1

tim
e(

m
s)

Client Factory Remote Factory Generation

3.8x slow
er4.4x slow

er

2.8x slow
er

 60

3.5.2.3 Deployment Times Using Different Network Speeds

As Figure 27 shows, the factory and generation approaches have different levels of

network dependency. For example, the client-factory approach is less network dependent

than the remote-factory approach because it involves loading local user-interface code,

instead of downloading. To discover the effects of different network speeds, we

deployed the command-and-state based receiver GUIs on the laptop using a dialup

(50Kbps) and wireless (1Mbps) network connection. The computer science department

provides a dialup and wireless network for students and faculty, thus we were able to also

run these experiments inside the building. The wireless card that we used in the

experiments is capable of speeds up to 11Mbps. However, actual tests showed that our

wireless network’s bandwidth is actually much below its peak. In the following

discussion, we assume that customization code for the generator is located locally on the

client and is thus not downloaded.

Figure 32. Command and state based receiver GUI deployment times using the laptop
and different network speeds.

 Our results show that as network speeds decrease, deployment time increases for all

approaches (Figure 32). Using the client-factory approach, the wireless and dialup

connections respectively take 1.21 and 16.19 times longer than the wired LAN

Wired vs. Wireless vs. Dialup
Laptop UI Deployment Times (for Receiver)

(w
ire

d)
, 3

96
.4

3

(w
ire

le
ss

),
48

0.
56

(d
ia

lu
p)

, 6
41

8.
00

(w
ire

d)
, 4

01
.0

0

(w
ire

le
ss

),
66

7.
78

(d
ia

lu
p)

11

62
7.

89

(w
ire

d)
, 8

82
.4

4

(w
ire

le
ss

),
16

84
.3

3

(dialup)
16100.00

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1

tim
e(

m
s)

Client Factory Remote Factory Generation

 61

connection. The client-factory approach requires downloading from a network only

when initializing the property values in a user-interface displaying device state. Since the

above client-factory results are from deploying such user-interfaces, they show how the

cost of filling in state widgets with current property values thus grows as speeds decline.

 The proportional differences are even greater under the remote-factory approach

because it is more network-dependent. Under the approach, a client must additionally

download code for an entire user-interface—not just property values. Specifically, the

wireless and dialup connections respectively take 1.67 and 30 times longer than the wired

LAN connection. The generation approach is also more network-dependent than the

client-factory approach. Before downloading property values, a generator must first

download device descriptions from which it creates user-interfaces. In our

implementation, descriptions are the programming interface class of a device. Using

generation, the wireless connection is 1.9 times slower than the wired LAN times. In

essence, this result implies that just going from a wired to wireless connection can double

generation time. Finally, generating with the dialup connection takes 18.24 times longer

than with the 100 Mbps connection.

 The results also indicate that decreasing the network speed creates a greater gap

between the deployment times of the two factory approaches. Recall that with the wired

LAN connection, deploying the command-and-state based receiver user-interface under

the client-factory approach was only 1.01 times faster than the remote-factory approach.

With the wireless connection, the remote-factory approach takes 1.39 times longer than

the client-factory approach. The gap is even greater when using the dialup connection.

Here, the remote-factory approach takes 1.81 times longer than the client-factory

approach. A logical explanation for these greater proportional differences, as implied by

the above discussion, is based on the fact that the remote-factory approach is more

network-dependent. Therefore, as network speeds drop, the deployment time of the

remote-factory approach increases at a faster rate than when using a local factory.

 62

3.5.2.4 SUI Deployment Times

Using the laptop and a wired LAN connection, we collected SUI deployment times for

the lamp, TV, and receiver. The results (Figure 33) indicate that SUI deployment follows

the same trend as GUI deployment. That is, the client-factory approach is fastest,

followed by remote factory, and then generation. Also, as device complexity increases,

the deployment time of each approach increases.

 In the SUI case, however, the differences between the three approaches were not as

significant as they were with GUIs. The remote-factory approach is only 1.03 times

slower than the client-factory approach and 1.14 times faster than generation. Moreover,

generation is only 1.18 times slower than the client-factory approach.

Figure 33. Command-only SUI deployment times for the projector, lamp, and receiver
(using the Laptop and a wired LAN connection).

 Our results also show that speech user-interface deployment takes much longer than

GUI deployment no matter the approach—implying that SUI deployment is a more

Speech UI Deployment Times
(on Laptop)

C
lie

nt
 F

ac
. -

 L
am

p
27

91
.9

9

R
em

ot
e

Fa
c.

 -
La

m
p

28
99

.8
9

G
en

er
at

io
n

- L
am

p
34

01
.6

7

C
lie

nt
 F

ac
. -

 T
V

34
16

.5
0

R
em

ot
e

Fa
c.

 -
TV

34
95

.1
7

G
en

er
at

e
- T

V
40

05
.6

7

C
lie

nt
 F

ac
. -

 R
C

VR
42

90
.4

4

R
em

ot
e

Fa
c.

 -
R

C
VR

44
56

.2
5

Generation - RCVR
4935.89

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

1

tim
e

(m
s)

Lamp UI TV UI Receiver UI

Speech UI Deployment Times
(on Laptop)

C
lie

nt
 F

ac
. -

 L
am

p
27

91
.9

9

R
em

ot
e

Fa
c.

 -
La

m
p

28
99

.8
9

G
en

er
at

io
n

- L
am

p
34

01
.6

7

C
lie

nt
 F

ac
. -

 T
V

34
16

.5
0

R
em

ot
e

Fa
c.

 -
TV

34
95

.1
7

G
en

er
at

e
- T

V
40

05
.6

7

C
lie

nt
 F

ac
. -

 R
C

VR
42

90
.4

4

R
em

ot
e

Fa
c.

 -
R

C
VR

44
56

.2
5

Generation - RCVR
4935.89

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

1

tim
e

(m
s)

Lamp UI TV UI Receiver UI

 63

resource intensive process than GUI deployment. Deploying a client-factory lamp

(command-only) SUI (2791.99 ms) takes over twice as long as generating a receiver

(command-only) GUI (505.50 ms) when using the wired LAN connection. Further,

generating the receiver SUI using the same network connection actually takes over four

seconds.

3.5.3 Operation Invocation Time Costs

The indirection in creating a user-interface ‘on the fly’ implies that the generation

approach should yield longer operation invocation times than the predefined approach.

We can illustrate this indirection by comparing ObjectEditor’s approach to handling

button push events to that of the predefined GUIs. Recall that regardless of the GUI’s

source, a button push should lead to invoking the device object’s method that shares the

button’s name.

 After a push event, ObjectEditor executes a method described by following

pseudocode:

HandleButtonPush(Object t, String button_name)
 Method m = findMethodFromButtonName(button_name, t);
 t.invoke(m);
}

Given the name of the pushed button and a reference to a target device object,

handlebuttonpush() first dynamically finds the Method object that is associated with

the button name. It then uses reflection to request the device to invoke the actual method

encapsulated this Method object. As the code shows, handlebuttonpush() is generic.

That is, it was written to process push events on any button generated for any device.

This generality is a requirement since ObjectEditor creates GUIs for arbitrary devices. A

consequence of this generality is that handlebuttonpush() cannot directly reference

methods of a specific device—hence the need for a dynamic search (i.e. execute

findMethodFromButtonName()). The predefined approach, however, allows us to write

user-interface programs for specific devices. We could thus directly reference the

devices’ methods in code and avoid the need for dynamic searches and reflection-based

method invocation.

 64

 Even with this indirection, the mean operation invocation times of the six generated

user-interfaces are insignificantly higher than that of the handcrafted predefined user-

interfaces. On average, there was just a 0.5% difference. The predefined approaches

(client and remote-factory) deployed the same user-interface, just from different sources.

As a result, they have the same operation invocation times.

3.6 Device Binding Time

There are two times a client can learn about (or bind to) a device so that it can deploy a

user-interface for it. In early binding, users must manually install the user-interface code

for devices they expect to use in the future on their clients. Consequently, they will not

be able to interact with a device if its user-interface code is not already stored on their

clients. In late binding, no pre-installation is necessary. Instead, the user-interface for a

device is automatically deployed at interaction time and thus requires no user

anticipation. Therefore, users can interact with arbitrary devices. The client-factory

approach inherently supports early binding, and the remote-factory and generation

approaches support late binding.

3.7 Deployment Reliability

Outside of binding time issues, there may be other cases in which an approach is unable

to deploy a user-interface for a given device—even for a properly functioning client.

This notion is particularly true for the remote factory and remote generation approaches,

which involve using mechanisms executing outside of a client in order to deploy a user-

interface. Both approaches require accessing a factory or generator on a machine that

could be overwhelmed with requests from multiple clients. A device, for example, could

be so busy processing remote commands from users that it is unable to handle user-

interface requests.

 In the third-party-factory and remote generation approaches, a client must explicitly

make a network connection to a machine that is not the target device. This dependency

on an additional network connection makes the two approaches more vulnerable to

network problems than other approaches. The client-factory and client-side generation

are capable of deploying user-interfaces without the need of an external machine thus

 65

they offer more reliability than the other approaches. We leave a quantitative evaluation

of deployment reliability as future work.

3.8 Conclusion

In this chapter, we identified several dimensions along which existing user-interface

deployment approaches can be compared. Using these dimensions, we qualitatively and

quantitatively evaluated the various approaches. The evaluation presents several

important results.

 Within the domain of remote-control-based user-interfaces, it shows how the user-

interface flexibility of the predefined approach is a little greater than that of the

generation approach. The SUI generator can fully automatically create SUIs that are

identical to the remote-control-based ones we handcrafted. However, even with the

support of declarations, ObjectEditor is unable to semi-automatically generate one aspect

of the remote-control-based GUIs—placement of new labels.

 The evaluation also compares the programming costs involved in these different

approaches. Fully automatic generation has a one-time programming cost of writing a

generator. With the predefined approach, however, programmers must manually write

user-interfaces for each kind of device and toolkit. Our data shows that the amount of

code needed to handcraft user-interfaces can be relatively small. However, the process

requires a programmer to actually spend time doing it. As a result, the predefined

approach does not always guarantee a user-interface for any given device. Fully

automatic generation, on the other hand, has a zero declaration cost and thus guarantees

user-interfaces.

 Our maintenance costs evaluation shows further benefits of the generation approach.

The approach is the easiest to change to support new user-interface toolkits—it only

requires writing a new generator. On the other hand, the predefined approach requires

writing new user-interfaces code for a possibly unlimited number of devices. Another

aspect of maintenance costs is the amount of work involved in updating a deployment

infrastructure as devices removed from a network. The client-factory and third-party-

 66

factory approaches require tracking and removing user-interface code because it is

separated from devices. The fully automatic generation approach has the advantage of

allowing the removal of devices without the need to remove any user-interface code.

Semi-automatic generation, however, requires per-device user-interface code. It is no

better, in this respect, than the client and third-party-factory approaches.

 In our efficiency evaluation, we compared the approaches using several costs: device

space, client space, deployment time, and operation invocation time. The generation,

client-factory, and third-party-factory approaches consume the least amount of device

space since they require no user-interface code on the device. The device-factory

approach consumes the most device space. As mentioned earlier, this disadvantage is

important due to the expectation that some networked devices will offer little storage. An

advantage of storing user-interface code on devices, though, is low client space costs.

The remote-factory and remote generation approaches also share low client space costs

since the respective user-interface and generation code are on separate machines. In

comparing the client-factory and client-side generation approaches, the client space costs

depend on the number of devices with which a user will interact and the complexity of

the generator used. For our six devices, the space costs of the handcrafted GUIs were

extremely lower than ObjectEditor due to the generator’s complexity. The SUI

generator, on the other hand, consumes less space than the six handcrafted SUIs.

 Our deployment time evaluation presents numerous results. Under all experiments, the

client-factory approach is the fastest. The remote-factory approach and then generation

follow it. The generation times are particularly important because they are generally

multiple times longer than those of the factory approaches. There are some qualities

shared by all three approaches. Namely, deployment time significantly increases under

several practical cases: (a) a JVM is not preloaded, (b) reduced client computation power,

(c) deploying a command-and-state-based user-interface instead of a command-only one,

(d) dropping network speeds, (e) increasing device complexity, and (f) deploying SUIs

instead of GUIs.

 67

 Unlike deployment time, the operation invocation time metric has no impact in

dividing the approaches. The last two metrics we discussed in this chapter (device

binding time and deployment reliability) do yield important conclusions. One is that the

client-factory approach supports early binding. Thus, it requires users to anticipate each

device they will want to use and pre-install the appropriate user-interface code. This

burden is high for users who wish to arbitrarily interact with any device. The generation

and other factory approaches support late binding and thus avoid this particular problem.

However, we show that the remote-generation, third-party-factory, and device-factory

approaches are still susceptible to issues that can make them unreliable.

 From our evaluation we found that each approach has a unique benefit—thus proving

our Uniqueness Hypothesis. The predefined approaches (client and remote factory) all

share the highest user-interface flexibility benefit of all the approaches. The client-

factory separates itself by offering the lowest deployment time and highest reliability. On

the other hand, the remote factory differentiates itself by offering the latest binding time

and lowest client storage. Within the remote factory approach, the device-factory

deployment has the lowest maintenance while third-party-factory deployment has the

lowest device storage costs. For all generation approaches, the benefits are lowest

programming costs and latest binding time. Client-side generation has a higher

reliability than remote generation. However, it requires more client storage. Finally,

fully automatic generation has lower maintenance costs than the semi-automatic

approach, but its user-interface flexibility is not as good.

 68

Figure 34. A graphical representation of the unique benefit(s) of each approach.

 Figure 34 graphically depicts these unique benefits. To discover the unique benefit of

an approach, simply perform a logical AND operation on the labeled benefit of each circle

enclosing it.

UI Deployment

UI Generation Predefined (UI)

Client
Client
Factory

Remote
Factory

Device
Factory

3rd Party
Factory

Lowest Programming Cost and
Latest Binding Time

Highest UI
Flexibility

Latest Binding Time and
Lowest Client Storage

Lowest
Maintenance

Lowest
Device
Storage

Lowest
Deployment

Time and Highest
Reliability

Remote

Lowest
Client Storage

Highest Reliability

Fully
Automatic

Lowest
Maintenance

Highest UI
Flexibility

Semi-
Automatic

Fully
Automatic

Lowest
Maintenance

Highest UI
Flexibility

Semi-
Automatic

UI Deployment

UI Generation Predefined (UI)

Client
Client
Factory

Remote
Factory

Device
Factory

3rd Party
Factory

Lowest Programming Cost and
Latest Binding Time

Highest UI
Flexibility

Latest Binding Time and
Lowest Client Storage

Lowest
Maintenance

Lowest
Device
Storage

Lowest
Deployment

Time and Highest
Reliability

Remote

Lowest
Client Storage

Highest Reliability

Fully
Automatic

Lowest
Maintenance

Highest UI
Flexibility

Semi-
Automatic

Fully
Automatic

Lowest
Maintenance

Highest UI
Flexibility

Semi-
Automatic

Chapter 4: User-Interface Retargeting
Our evaluation in the previous chapter presents several limitations of existing deployment

approaches. One important limitation is that it generally takes a long time to generate a

user-interface. In particular, our GUI and SUI generators often take multiple times

longer to deploy a user-interface than the client factory approach. These differences are

drastically greater than the 100 ms long period of human noticeable delay [34]. From

corresponding with the builders of the CMU GUI generator, we found that their system

also has a significantly long generation time. They stated that on a PocketPC with a

similar computation power as the Ipaq, it takes nearly 20 to 30 seconds to generate a GUI

for an automobile (a GMC Yukon-Denali). The latency of their system affirms that the

problem of long deployment times is a general characteristic of the generation approach.

Figure 35. Retargeting a UI between two lights on different floors.

 In this chapter, we address this issue of long generation times. Specifically, we prove

the Time-Efficient Generator Hypothesis: it is possible for SUI and GUI generators to

have deployment times that are often as good as or noticeably better than the inherently

fastest approach of locally loading device-specific user-interface code. Our approach is

based on the idea of user-interface retargeting, which involves dynamically mapping a

previously generated user-interface of a (source) device to another (target) device that can

share the user-interface. It could allow, for example, a security guard patrolling through

a building to use the same generated user-interface for a hallway light to control other

lights on different floors (Figure 35). The goal of retargeting is to recycle widgets. By

Sensor
UI

Light
UI

1 (source)

2 (target)
Sensor

UI
Light
UI

1 (source)

2 (target)2 (target)

 70

recycling parts of a previously generated user-interface of a device that a user is not

using, a generator can significantly speed up the creation of a user-interface.

 In the next section, we provide a more detailed overview of the idea and present the

important limitations that currently exist in supporting it. We then describe the

implementations of new retargeting mechanisms we built to overcome these limitations.

Using the mechanisms, we evaluate how well retargeting allows us to prove the Time-

Efficient Generator Hypothesis. Finally, we present our conclusions.

4.1 Overview

Figure 36. Retargeting between two lights in different rooms under Hodes’ System.

The basic idea of device user-interface retargeting was previously identified and

implemented in Hodes’ System. The system retargets the user-interface of a source

device to a target device when the XML descriptions of the two devices differ only in the

device addresses (Figure 36). To retarget, the system simply changes the source user-

interface’s RPC address from the source device’s address to the target device’s address.

In the example of Figure 36, the RPC address changes from sn346.cs.unc.edu/0001 to

sn140.cs.unc.edu/0001. The buttons and state widgets of the source user-interface

stay the same throughout this process. However, the command invocations and state

updates become associated with the target device. Hodes’ System has source user-

interface and programming interface flexibility limitations, some of which we overcome.

<service name='lamp'>

 <label>lamp</label>

 <addrspec>sn346.cs.unc.edu/0001</addrspec>

 <method name='power'>

 <param lextype="enum:on,off,dim"> state </param>

 </method>

</service>

1 (source)

2 (target)

UI
Light
UIUI

Light
UI

<service name='lamp'>

 <label>lamp</label>

 <addrspec>sn140.cs.unc.edu/0001</addrspec>

 <method name='power'>

 <param lextype="enum:on,off,dim"> state </param>

 </method>

</service>

 71

 Source user-interface flexibility determines the kinds of user-interfaces a system can

retarget. There are various levels of source user-interface flexibility a system can offer

(Figure 37). A system could retarget user-interfaces containing operations possibly with

arguments of primitive and/or structured types (Figure 38a). In addition, it could retarget

user-interfaces possibly displaying primitive and/or structured typed properties (Figure

38(b and c)). Hodes’ System can retarget command and state-based user-interfaces. It

only supports primitive-typed command arguments and state.

Figure 37. Levels of source UI flexibility.

Figure 38. User-interfaces requiring different levels of source user-interface flexibility.

 Programming interface flexibility determines how different the programming

interfaces of a source and target device can be in order to support retargeting. As

Source UI Flexibility

StateCommands

ArgumentsNo
Arguments

Primitive
Types

Arbitrary
Types

Primitive
Types

Arbitrary
Types

Source UI Flexibility

StateCommands

ArgumentsNo
Arguments

Primitive
Types

Arbitrary
Types

Primitive
Types

Arbitrary
Types

Command-only
int - Primitive

Vector - Structured

(a)
(b)

(c)

Command-only
int - Primitive

Vector - Structured

(a)
(b)

(c)

 72

supported by Hodes’ System, a generator could retarget only if the two devices share the

same programming interface. By sharing the same programming interface, they

inherently share identical commands and state properties. Thus, when retargeting, no

time must be spent changing the appearance of the source user-interface to fit a target

device (Figure 39). Time must only be spent changing the code associated with the

components to direct method invocations to the target device and reflect the device’s

state changes.

Figure 39. Devices with identical programming interfaces share identical user-
interfaces.

 There is an important limitation with this level of retargeting. It can only be used if a

user has recently interacted with a device of the same programming interface as the target

device. Otherwise, the generator must spend the time creating a whole new user-

interface. In this case, rather than create a new user-interface, a generator could change

the source device’s user-interface to fit the target device, recycling parts of the user-

interface that the two devices share. For example, a generator could change the user-

interface of a non-dimmable lamp to fit a dimmable lamp (Figure 40). Conversely, the

generator could retarget the dimmable lamp’s user-interface to the non-dimmable lamp.

This task would involve removing dim-related components from the user-interface.

public interface DimmableLamp {
//commands

public void on();
public void off();
public void dim();
public void brighten();

//state
public int getBrightness ();
public boolean getPowered();
public void setPowered (boolean _powered);

}

public interface DimmableLamp {
//commands

public void on();
public void off();
public void dim();
public void brighten();

//state
public int getBrightness ();
public boolean getPowered();
public void setPowered (boolean _powered);

}

TARGETSOURCE

UI appearance stays the same

 73

Figure 40. Retargeting between a dimmable and non-dimmable lamp.

 Retargeting when the source and target devices have different programming interfaces

does not always require changing the source user-interface. Figure 41 shows an example

of this case. The ‘Current Channel’ properties of two different VCRs, though represented

by different types (String and int), map to the same views. This is also true for the

‘Record Settings’ properties. The ‘Current Channel’ maps to a textbox for entering

integers or strings and the ‘Record Settings’ maps to a special widget for displaying the

elements of vectors or arrays.

 Figure 41. Two different VCR programming interfaces that can share the same UI.

 Beyond its flexibility limitations, Hodes’ work does not provide any quantitative

evaluations showing the deployment time benefits of retargeting. It also supports

public interface VCR1{
//commands

public void power();
public void stop();
public void play();
public void ff();
public void rwd();
…

//state
public String getChannel();
public void setChannel(String c);
public Vector getRecordSettings();
public void setRecordSettings(Vector c);

public interface VCR2{
//commands

public void power();
public void stop();
public void play();
public void ff();
public void rwd();
…

//state
public int getChannel();
public void setChannel(int c);
public RecordSettings[] getRecordSettings();
public void setRecordSettings(RecordSettings[] c);

Share same UI

public interface VCR1{
//commands

public void power();
public void stop();
public void play();
public void ff();
public void rwd();
…

//state
public String getChannel();
public void setChannel(String c);
public Vector getRecordSettings();
public void setRecordSettings(Vector c);

public interface VCR2{
//commands

public void power();
public void stop();
public void play();
public void ff();
public void rwd();
…

//state
public int getChannel();
public void setChannel(int c);
public RecordSettings[] getRecordSettings();
public void setRecordSettings(RecordSettings[] c);

Share same UI

public interface Lamp {
//commands

public void on();
public void off();

//state
public boolean getPowered();
public void setPowered(boolean _powered);

}

public interface DimmableLamp {
//commands

public void on();
public void off();
public void dim();
public void brighten();

//state
public int getBrightness();
public boolean getPowered();
public void setPowered(boolean _powered);

}

TARGETSOURCE
public interface Lamp {
//commands

public void on();
public void off();

//state
public boolean getPowered();
public void setPowered(boolean _powered);

}

public interface DimmableLamp {
//commands

public void on();
public void off();
public void dim();
public void brighten();

//state
public int getBrightness();
public boolean getPowered();
public void setPowered(boolean _powered);

}

TARGETSOURCE

 74

retargeting only in the domain of GUIs. As Table 5 shows, our goal was to offer more

GUI retargeting flexibility and additionally support SUIs. We also wanted to provide a

quantitative evaluation of retargeting.

 We based our GUI retargeting support on the ObjectEditor framework. The generator

provides mechanisms, unsupported by our SUI generator, which allowed us to achieve

higher flexibility goals. For example, it can create state-based user-interfaces, thus

allowing us to retarget such user-interfaces. The SUI generator, however, does not

support state. We did implement a basic level of retargeting for this generator to quantify

any possible benefits of retargeting SUIs.

Hodes
Retargeting

SUI
Gen.

Retargeting

Object
Editor

Retargeting

Primitive Types Y N Y
Arguments Structured

Types N N Y Command UIs

No Arguments Y Y Y

Primitive Types Y N Y

Source U
I

Flexibility

State UIs
Structured Types N N N

Identical UIs N N Y Different
Programming
Interfaces Non-Identical UIs N N Y

Program
m

ing
Interface
Flexibility

Same Programming Interfaces Y Y Y

Table 5. Retargeting flexibility – Hodes’ System vs. Our Goals.

4.2 GUI Retargeting

To retarget a GUI, ObjectEditor uses the source and target devices’ programming

interfaces to find the names of:

(a) Target-Only Commands (TOC): the target device commands that the source
device does not share

(b) Source-Only Commands (SOC): the source device commands that the target
device does not share

(c) Shared Commands (SC): the commands that the two devices share

(d) Target-Only Properties (TOP): the target device properties that the source
device does not share

 75

(e) Source-Only Properties (SOP): the source device properties that the target
device does not share

(f) Shared Properties (SP): properties that the two devices share.

Using this information, it retargets the user-interface using the algorithm described

below:

Let TOC, SOC, SC, TOP, SOP, SP = lists corresponding to (a)-(f) above
 {We will expand on how these lists are computed later.}

Let T = the target device
Let U = the source user-interface object

retarget (T,U, TOC, SOC, SC, TOP, SOP, SP) {
 U.disable()
 for each command_name (a) in TOC {

 x = new Button(c);
 setButtonTarget(x,T);
 U.add(x);
}

 for each command_name (b) in SOC {
 x = U.getButton(b)
 U.remove(x);
}

 for each command_name (c) in SC {
 x = U.getButton(c)
 setButtonTarget(x,T);
}

 for each property_name (d) in TOP {
 t = getType(T,d);
 x = getMatchingWidget(t);
 setLabelandOtherAttributes(x);
 setWidgetTarget(x,T);
 U.add(x)
 updateWidget(x);
}

 for each property_name (e) in SOP {
 x = U.getWidget(e)
 U.remove(x);
}

 for each property_name (f) in SP {
x = U.getWidget(f)
setWidgetTarget(T,x);
updateWidget(x);

}
U.enable()

}

 76

Given a reference to a source user-interface object, target device, and the retargeting lists

(TOC, SOC, SC, TOP, SOP, and SP) the method creates a new appropriately labeled

button for each target device command that the source device doesn’t share. It maps the

each button to the target device method of the same name (using setButtonTarget())

so that pushing the button invokes the corresponding method. Next, it adds each new

button to the user-interface. The algorithm then removes the button of each source

device command that the target device does not share. Then, it remaps the button of each

command shared by the two devices to the target device method of the same name.

 The algorithm follows a similar process for handling properties as it does with

commands. For each target device property that the source device does not share, the

algorithm creates a new appropriately labeled widget that can display values of its type.

Recall from our discussion of ObjectEditor that the generator can automatically return

such a widget given a property type. Our algorithm simply calls this code (i.e.

getMatchingWidget()). It then calls setWidgetTarget() to associate each widget with

its matching property’s getter and setter method. This process ensures that ObjectEditor

calls the appropriate getter method when retrieving values to display in the widget. It

also guarantees that the generator calls the appropriate setter method to update the target

device property when value changes are made on the corresponding widget. After this

process, the algorithm adds the widget to the user-interface and initializes it with the

current value of its associated property. Next, it removes the widget of each source

device property that the target device does not share. Then, it associates the widget of

each property that the two devices share to the target device’s getter and setter method of

the property. Each widget gets updated so that it shows the target device’s value of the

property.

 To illustrate the algorithm, consider the scenario of retargeting a non-dimmable lamp

GUI to a dimmable lamp (Figure 40). List A contains the names ‘brighten’ and ‘dim’.

The algorithm creates two new buttons labeled with these names and then maps them to

the target device’s dim() and brighten() methods, respectively. It then adds the two

buttons onto the GUI. List B is empty since the target (dimmable) lamp’s list of

command names is a superset of the source (non-dimmable) lamp’s corresponding list.

 77

Consequently, the algorithm moves on to process list C, which contains the names ‘on’

and ‘off’. It maps the on and off buttons to the target lamp. List D contains the single

name ‘brightness’. This is the name of the only property that the two lamps do not share.

The algorithm creates a textbox labeled ‘brightness’ for displaying the integer-based

value of the property. It associates the textbox to the target lamp’s getBrightness()

and setBrightness() methods. Then, it adds the textbox to the source user-interface

and initializes it with the integer value returned by getBrightness(). The algorithm

skips the next step since list E is an empty—the target device offers the source device’s

only property called ‘powered’. As a result, the ‘powered’ widget remains on the user-

interface. However, it changes this widget’s associated getter and setter method

respectively to the target lamp’s getPowered() and setPowered() methods.

 The retargeting algorithm together with ObjectEditor’s inherent functionality, allows

us to meet our GUI retargeting goals (Table 5). As the first half of the algorithm shows,

our implementation retargets command-based user-interfaces by supporting the addition,

removal, and remapping of buttons. Recall from our initial description of ObjectEditor

(in 2.1.6) that if a command requires arguments of primitive or structured types, the

generator creates a dialog box for entering desired parameter values. This feature

automatically allows ObjectEditor to retarget user-interfaces with command arguments of

primitive and structured types. The generator simply treats button pushes on retargeted

user-interfaces in the same manner as fully generated ones. As Table 6 shows, this

ability to support commands with structured typed arguments, when retargeting, allows

our mechanism to offer more source user-interface flexibility than Hodes’ System.

 The second half of the algorithm shows that our implementation also retargets state-

based user-interfaces by supporting the addition, removal, and remapping of property

widgets. It particularly supports primitive typed properties, which make up of all of the

state of our experimental networked devices. It can expand and/or contract a source user-

interface to fit a target device with different commands and properties than the source

device. This ability raises two related and important issues we addressed in our

implementation:

 78

(1) Fastest User-Interface Selection: For a target device, let us assume that a

generator has two or more potential source user-interfaces loaded in memory

and none of them was created for a device that is the same type as the target.

How should the generator select a source user-interface that can be changed to

fit the target device in the least amount of time? To illustrate this issue, imagine

a person at work with a client that has the user-interfaces of some frequently

used home devices still running. If this person wants to use a conference room

projector and such a device does not exist at home, which source user-interface

should the generator pick so that it spends the least time retargeting?

(2) Approach Selection: How should a generator decide whether it is faster to

retarget the ‘fastest’ user-interface or generate a new one for the target device?

We address both issues using the novel idea of regression-based source-device

prediction. A generator selects the fastest user-interface to retarget by using a function

that estimates the retargeting time of each potential source user-interface. This function

accepts the amount of work required in changing a user-interface and returns a

retargeting time estimate. Given an estimate for each potential source user-interface, the

generator then selects the one with the lowest value. Similarly, to predict the faster of the

two approaches (generate or retarget), a generator uses a function that estimates the time

to create a new user-interface for the target device. This function accepts the amount of

work required in creating a whole new user-interface and returns a generation time

estimate. Given this generation time estimate and the retargeting time estimate for the

fastest source user-interface, the generator selects the approach with the lowest value.

 We derived an outline of the two estimation functions by first identifying the high-

level steps (or sub-operations) involved in algorithms of the respective approaches. As

our algorithm shows retargeting involves: (a) adding buttons for the target device

commands that are not shared by the source device, (b) removing buttons of the source

device commands that the target device does not offer, (c) remapping buttons of

commands shared by the source and target devices to the target device, (d) adding

widgets for the target device properties that are not shared by the source device, (e)

removing widgets of the source device properties that the target device does not offer,

 79

and (c) remapping widgets of properties shared by the source and target devices to the

target device. Generation, on the other hand, involves: (a) creating an empty frame for

the user interface, (b) adding buttons for invoking the target device’s commands, and (c)

adding widgets for displaying the target device’s property values. As we will show later,

the time it takes to remap, remove, and add a property widget depends on the type of

widget. For example, the time it takes to create and add a string widget to a user-

interface is more than the time it takes to perform the same operation on a boolean

widget. We found three kinds of widgets with significant sub-operation time differences:

number (int, float, double, and long), string, and boolean widgets. Thus appropriately,

each approach’s estimation function is the following sums:

1) Tret(BA, BD, BR, NWA ,BWA, SWA, NWD, BWD, SWD, NWR, BWR, SWR)=
Tadd_btn(BA) + Trmv_btn (BD) + Trmp_btn (BD) +
Tadd_num_wdgt(NWA) + Trmv_ num_wdgt(NWD) + Trmp_ num_wdgt(NWR) +
Tadd_bool_wdgt(BWA) + Trmv_ bool_wdgt(BWD) + Trmp_ bool_wdgt(BWR) +
Tadd_str_wdgt(SWA) + Trmv_ str_wdgt(SWD) + Trmp_ str_wdgt(SWR)

{BA=# buttons to add; NWA=# num widgets to add; BWA=# bool widgets to add; SWA=# string widgets to
add;

NWD=# num widgets to delete; BWD=# bool widgets to delete; SWD=# string widgets to delete;
NWR=#num widgets to remap; BWR=# bool widgets to remap; SWR=# string widgets to remap}

2) Tgen(BG, NWG,BWG,SWG)=Tgen_frm+ Tgen_btn(BG)+Tnum_pwdgt (NWG) +Tbool_pwdgt (BWG) +
 Tstr_pwdgt (SWG)
{BG=# buttons to generate; NWG=# num widgets to generate; BWG=# bool widgets to generate;
SWG=# string widgets to generate}

Tret estimates retargeting time by summing the results of functions that estimate the

completion times of the retargeting sub-operations based on given workload values:

• Tadd_btn(BA)estimates the cost for adding BA buttons
• Trmv_btn(BD) estimates the cost for removing BD buttons
• Trmp_btn(BR) estimates the cost for remapping BR buttons
• Tadd_num_wdgt(NWA) estimates the cost for adding NWA number widgets
• Trmv_num_wdgt(NWD) estimates the cost for removing NWD number widgets
• Trmp_num_wdgt(NWR) estimates the cost for remapping NWR number widgets
• Tadd_bool_wdgt(BWA) estimates the cost for adding BWA boolean widgets
• Trmv_bool_wdgt(BWD) estimates the cost for removing BWD boolean widgets
• Trmp_bool_wdgt(BWR) estimates the cost for remapping BWR boolean widgets

 80

Similarly, Tgen estimates generation time by summing the results of functions that

estimate the completion times of the generation sub-operations based on given workload

values:

• Tgen_frm estimates the cost for generating the (empty) enclosing frame on which
the buttons and property widgets will be placed

• Tgen_btn(BG) estimates the cost for generating BG buttons
• Tgen_num_wdgt(NWG)estimates the cost for generating NWG number widgets
• Tgen_bool_wdgt(BWG) estimates the cost for generating BWG boolean widgets
• Tgen_str_wdgt(SWG) estimates the cost for generating SWG string widgets

Sub-operation Tgen_frm, in Tgen, has no parameters because generating an empty frame is a

static operation—it should therefore have a constant value.

 Given the outlines for the two time estimation functions, our next step was to define

the actual calculations involved within the sub-operation functions. We achieved this

goal by using regression, which is a method for deriving an empirical function from a set

of experimental data. To gather the necessary empirical data, we used timestamps to

measure actual times for performing the retargeting and generation sub-operations over a

range of workloads. More formally, we profiled the generator to measure the actual

times represented by the series below:

• Tadd_btn(1), Tadd_btn(2), … Tadd_btn(N), N=42
• Trmv_btn (1), Trmv_btn(2), … Trmv_btn(N), N=42
• Trmp_btn(1), Trmp_btn(2), … Trmp_btn(N,) N=42
• Tadd_num_wdgt(1), Tadd_num_wdgt(2), … Tadd_num_wdgt(N), N=16
• Trmv_num_wdgt(1), Trmv_num_wdgt(2), … Trmv_num_wdgt(N), N=16
• Trmp_num_wdgt(1), Trmp_num_wdgt(2), … Trmp_num_wdgt(N), N=16
• Tadd_bool_wdgt(1), Tadd_bool_wdgt(2), … Tadd_bool_wdgt(N), N=16
• Trmv_bool_wdgt(1), Trmv_bool_wdgt(2), … Trmv_bool_wdgt(N), N=16
• Trmp_bool_wdgt(1), Trmp_bool_wdgt(2), … Trmp_bool_wdgt(N), N=16
• Tadd_str_wdgt(1), Tadd_str_wdgt(2), … Tadd_str_wdgt(N), N=16
• Trmv_str_wdgt(1), Trmv_str_wdgt(2), … Trmv_str_wdgt(N), N=16
• Trmp_str_wdgt(1), Trmp_str_wdgt(2), … Trmp_str_wdgt(N), N=16
• Tgen_frm
• Tgen_btn(1), Tgen_btn(2), … Tgen_btn(N), N=42
• Tgen_num_wdgt(1), Tgen_num_wdgt(2), … Tgen_num_wdgt(N), N=16
• Tgen_bool_wdgt(1), Tgen_bool_wdgt(2), … Tgen_bool_wdgt(N), N=16
• Tgen_str_wdgt(1), Tgen_str_wdgt(2), … Tgen_str_wdgt(N), N=16

 81

For each sub-operation, N represents an integer that is at least the maximum input value

to which the generator will be exposed during interaction. We looked at all cases of

retargeting and generating user-interfaces of our six networked devices to pick the N

values.

Figure 42. The maximum N value for Tadd_btn comes from retargeting a light UI to a
receiver.

 To illustrate this profiling process, consider the task of gathering the data for Tadd_btn

from one to N. The maximum N value is forty-two, which is the count for the number of

buttons to add when retargeting the lamp user-interface to the receiver (Figure 42). This

process represents the case in which the most buttons are added to a source user-interface

to fit a target device. Thus, our measurements included the individual times for adding a

set of one to forty-two buttons to an empty GUI (Figure 43a). Adding, remapping, and

removing zero widgets inherently has no time cost. Similarly, the maximum N value for

Trmv_btn is forty-two, which is the count for the number of buttons to remove when

retargeting the receiver user-interface to the lamp. This process represents the case in

which the most buttons are removed from a source user-interface to fit a target device.

Tadd_btn(42)

N for add buttons
must be at least 42

Tadd_btn(42)

N for add buttons
must be at least 42

Tadd_btn(42)

N for add buttons
must be at least 42

 82

Therefore, we collected the times for removing a set of one to forty-two buttons from a

user-interface (Figure 43b). Trmp_btn’s maximum N value is also forty-two, which is the

number of buttons to remap when retargeting a receiver’s user-interface to a another

receiver with an identical set of commands. This process represents the case in which

the most buttons on a source user-interface are remapped to target device. Hence, we

gathered the times for retargeting a set of 1 to forty-two pre-existing buttons on a user-

interface (Figure 43c). To measure the times for adding, removing, and remapping sets

of property widgets, we followed a similar process as just described for buttons. It is

important to mention that for each profiling experiment, we chose its respective N value

to be at or just above the maximum value possible given the six devices. To generically

support devices, a very large N value would be chosen.

Figure 43. A depiction of part of our profiling experiments: (a) finding the time it takes
to add 4 buttons to an empty UI, (b) finding the time it takes to remove 4 buttons from a
UI, and (c) finding the time it takes to remap 4 buttons on a UI.

 We performed all the profiling experiments mentioned above on the same laptop that

we used to gather most of the deployment time data presented in the previous chapter

{733 MHz Pentium – 128MB}. As our experiments in the previous chapter show, a

client’s computation power directly affects it generation time. To evaluate how much a

client’s computation power can affect its profiling times, we also collected some data on

a slower laptop {400Mhz Celeron - 64MB} (Figures 44-47). The fast laptop yields

times that are significantly lower than the slow laptop. For instance, the slow laptop

x x

1Tadd_btn (4) 2

3 4

Empty UI

x
Trmv_btn (4)

x

1 2

3 4

Empty UI

x

1 2

3 4

x

1 2

3 4

Trmp_btn (4)

(a) (b)

(c)

x x

1Tadd_btn (4) 2

3 4

Empty UI

xx
Trmv_btn (4)

x

1 2

3 4

x

1 2

3 4

Empty UI

x

1 2

3 4

x

1 2

3 4

Trmp_btn (4)

(a) (b)

(c)

 83

takes approximately seven times longer than the fast laptop to add forty-two buttons to an

empty user-interface.

Figure 44. The time it takes to add new buttons to an empty GUI (slow vs. fast laptop).

Figure 45. The time it takes to add new property widgets to an empty GUI (slow vs. fast
laptop) The dashed lines correspond to the slow laptop and the bold lines correspond to
the fast laptop.

slow laptop

fast laptop

Adding Property Widgets

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16

number of widgets

tim
e

(m
s)

num-fast
bool-fast
str-fast
num-slow
bool-slow
str-slow

Adding Buttons
(1-44)

0

5

10

15

20

25

30

35

40

45

50

0 4 8 12 16 20 24 28 32 36 40 44

number of buttons

tim
e

(m
s)

fast laptop
slow laptop

slow laptop

fast laptop

Adding Buttons
(1-44)

0

5

10

15

20

25

30

35

40

45

50

0 4 8 12 16 20 24 28 32 36 40 44

number of buttons

tim
e

(m
s)

fast laptop
slow laptop

slow laptop

fast laptop

 84

Figure 46. The time it takes to remove pre-existing property widgets on a GUI (slow vs.
fast laptop)

Figure 47. The time it takes to remap pre-existing property widgets on a UI (slow vs. fast
laptop)

Removing Property Widgets
(1-16)

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14 16

number of widgets

tim
e(

m
s)

bool-fast
num-fast
str-fast
bool-slow
num-slow
str-slow

slow laptop

fast laptop

Remapping Property Widgets

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16
number of widgets

tim
es

 (m
s)

str-fast
num-fast
bool-fast
str-slow
num-slow
bool-slow

slow laptop

fast laptop

 85

 We also collected some times on same Ipaq mentioned in the previous chapter. They

were much longer than their corresponding fast and slow laptop times. For example, it

can take nearly five times longer to remap a property widget on the Ipaq than on the slow

laptop (Figure 48). Compared to the fast laptop, the Ipaq can take over twenty times

longer than the fast laptop. The time differences between the three clients imply that

generation and retargeting estimation functions must be device specific.

Figure 48. A graph illustrating time differences between the three clients. It also shows
that widgets representing different types can yield different operation times—particularly
on the Ipaq.

 Yet another important conclusion of the data is the weight the retargeting sub-

operations have on execution time. On the fast laptop, the button removal and remapping

operations have no time costs up to their respective N values. Adding new buttons,

however, has a significant time cost. Also, it takes more time to add a new property

widget to a user-interface than remap an already existing one of the same kind (Figure

49). These results support our general argument of saving time by retargeting parts of a

user-interface instead of generating new ones.

Remapping Property Widgets
Laptops vs. Ipaq

0

20

40

60

80

100

120

140

160

180

10 12 14 16
number of widgets

tim
es

 (m
s)

str-fast
num-fast
bool-fast
str-slow
num-slow
bool-slow
str-ipaq
num-ipaq
bool-ipaq

slow laptop

fast laptop

ipaq

Remapping Property Widgets
Laptops vs. Ipaq

0

20

40

60

80

100

120

140

160

180

10 12 14 16
number of widgets

tim
es

 (m
s)

str-fast
num-fast
bool-fast
str-slow
num-slow
bool-slow
str-ipaq
num-ipaq
bool-ipaq

slow laptop

fast laptop

ipaq

 86

Figure 49. The differences between adding, removing, and remapping a property widget.

 Using the collected data, we performed the actual regression operations to derive the

estimation functions for the fast laptop. We applied MATLAB’s polynomial fitting

command (called polyfit) on each sub-operation’s data set to find its empirical time-cost

function. This command takes in a domain and range of data and returns a polynomial

function of a given degree that estimates the data. In our case, the domain of each sub-

operation’s function is the set of workload values we used to get actual execution times.

The range is the corresponding set of execution times. Given the linear behavior of the

data, we chose a degree of one for each function. Below are the two functions (Tret and

Tgen) for the fast laptop that we derived using the sub-operation functions returned from

polyfit and simplifying:

1) Tret (BA, NWA ,BWA, SWA, NWD, BWD, SWD, NWR, BWR, SWR) =
0.16BA + 6.17NWA + 3.63BWA + 5.67SWA + 3.37NWD + 2.94BWD +
3.28SWD + 0.31NWR+ 0.36BWR + 0.50SWR - 35.22

2) Tgen(BG, NWG, BWG, SWG)= 2.70BG + 6.17NWG + 3.63BWG + 5.67SWG + 22.24

Handling Property Widgets

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16

number of widgets

tim
e

(m
s)

num ADD -fast
bool ADD -fast
str ADD -fast
str RMP -fast
num RMP -fast
bool RMP -fast
str RMV -fast
num RMV -fast
bool RMV-fast

 87

 The entire process that led to the two functions could be automated by the notion of a

self-profiling generator. Such a generator would run a bootstrap program that

automatically performs all the necessary profiling operations and measures its own

performance on a given client. The program would then run regression code, as

implemented by MATLAB’s polyfit operation, to return a Tret and Tgen function

specifically for the client.

 As implied by the ten parameters required by the above Tret function, a problem of

regression-based source-device prediction is long search times. In order to predict the

fastest (source) user-interface to retarget, a generator must search through the commands

and properties of the source and target devices to determine parameter values for Tret. If

the target and source devices are complex or there are many potential source user-

interfaces available, searching can become an expensive process. For this reason, we

support the idea of cache-based retargeting.

 A generator caches the Tret value it calculates for each source and target device type

pair it ever evaluates. If a pair with a cached Tret value occurs again in the system, the

generator avoids recalculating Tret(), which involves searching the programming

interfaces of its respective types to find values the functions ten parameters. Instead, it

simply retrieves the stored value. Notice the similarity between the parameter values

required by Tret() and the retarget lists TOC, SOC, SC, TOP, SOP, and SP for

retarget(). Tret requires the amount of buttons and state widgets that must be added,

removed, and remapped to change a source user-interface to fit the target device. The

retarget() method requires lists are the names of commands and properties that

correlate to these same buttons and state widgets that must be added, removed, and

remapped. In determining Tret’s parameter values, the algorithm inherently builds a list

containing these names. That is, the lists are a byproduct of gathering Tret()’s parameters.

These lists are thus cached so that they can be accessed and passed to retarget() if the

generator decides to retarget.

 On occasions where there are multipe potential source user-interfaces to retarget to a

target device, the generator also caches the corresponding source device type of user-

 88

interface that it predicts to be the fastest. If a user wants to use a device of the target’s

type later and the same set of source user-interfaces is available, the generator directly

picks the user-interface associated with the cached device type. Thus, it avoids all the

operations involved in finding the fastest user-interface. The generator also caches Tgen

values for each target device type to avoid repeating the process of gathering the

function’s parameters.

 Given this overview of cache-based retargeting, we can now show the algorithm for

the method retargetORgenerate() which uses possibly cached information to: (1) select

the fastest source user-interface to retarget, (2) decide whether to retarget or generate,

and (3) retrieve retargeting lists TOC, SOC, SC, TOP, SOP, and SP needed by

retarget(), defined earlier, if it predicts generation to be slower. In presenting

retargetORgenerate() we also show two ‘helper methods’ it invokes if retargeting is

found optimal—retargetHomogeneous() and retargetHeterogeneous().

Let C1 = a cache. For a given set of source device types (S) and target device type (t), C1
caches: (1) the decided source device type (sfastest) in S with the lowest Tret value
(Tmin

ret) and (2) the actual Tmin
ret value. Imagine C1 as a hash table: C1.put([S,t],

[sfastest , Tmin
ret]) inserts the elements in the cache and C1.get([S,t]) returns the cached

collection [sfastest , Tmin
ret]

Let C2 = a cache. For a given source device type (s) and target device type (t), C2 stores

the results from calculating Tret and ‘retargeting lists’ {TOC, SOC, SC, TOP, SOP, SP}.
Imagine C2 as a hash table: C2.put([s,t], [Tret , TOC, SOC, SC, TOP, SOP, SP]) inserts
the elements in the cache and C2.get([s,t]) returns the cached collection [Tret , TOC,
SOC, SC, TOP, SOP, SP]

Let C3 = a cache. For a given target device type (t), C3 stores the type’s Tgen value.

Imagine C3 as a hash table: C3.put(t, Tgen) inserts the elements in the cache and
C3.get(t) returns Tgen.

Let S = the set of device types of the currently available source UIs

Let U = the set of source user-interface objects

Let target = the target device

boolean retargetHomogeneous(U,t) {
 match = getMatchingSourceUIforType(U,t);

 if (match != null) {
 retarget(target, match, null, null, getCommandNames(t), null, null,

 89

 getPropertyNames(t))
 return true

 }
 else
 return false

}

boolean retargetHeterogeneous(C1, C2, C3, S, U, t) {
 [sfastest , Tmin

ret] = C1.get([S,t])
if ([sfastest , Tmin

ret] == null) {
 for each source device type (s) in S {
 [Tret , TOC, SOC, SC, TOP, SOP, SP] = C2.get([s,t])
 if ([Tret , TOC, SOC, SC, TOP, SOP, SP] == null) {
 [Tret , TOC, SOC, SC, TOP, SOP, SP] = computeTret(s,t)
 C2.put([s,t], [Tret , TOC, SOC, SC, TOP, SOP, SP])
 }
 [sfastest , Tmin

ret] = min (sfastest , Tmin
ret,, s, Tret)

 }
 C1.put([S, t], [sfastest , Tmin

ret])
 }
 Tgen = C3.get(t)
 if (Tgen == null) {
 Tgen = computeTgen(t);
 C3.put(t , Tgen)
 }
 if (Tmin

ret <= Tgen) {
 [TOC, SOC, SC, TOP, SOP, SP] = extractRetargetingLists(C2.get([sfastest ,t]))
 retarget(target, getMatchingSourceUIforType(U, sfastest) TOC, SOC, SC, TOP,

 SOP, SP)
 return true
 }
 else
 return false

}

retargetORgenerate(C1, C2, C3, S, U, target) {
 t = getType(target)
 if (retargetHomogeneous(U,t))
 return
 else {

 if retargetHeterogeneous(C1, C2,C3, S, U, t)
 return
 else

 generateUI(target)
 }

}

 The retargetORgenerate() accepts the references to: cache C1, cache C2, the set of

source device types (S), the set of source user-interface objects (U), and the target device

(target). It assumes that the fastest user-interface to retarget is always the one created

from a source device that is the same type as the target device (t). Thus, it first checks

 90

for such a user-interface by first calling retargetHomogeneous(). Further, this method

assumes that retargeting this user-interface is always faster than generating a new one

because retargeting would only involve remapping user-interface components.

 Given t, retargetHomogeneous()calls getMatchingSourceUIforType(U,t), which

searches the set of source user-interface objects to see whether one has already been

created for a source device of type t. If such a user-interface object exists,

retargetHomogeneous() calls retarget() to actually retarget the object. It then

returns true, notifying retargetORgenerate() that it performed the retargeting. Notice

the null values passed into retarget() for TOC, SOC, TOP, and SOP. The reason for

them is that when retargeting a user-interface between two devices of the same type there

are no buttons and property widgets to add and remove. All components are shared.

 If getMatchingSourceUIforType(U,t) does not return a matching user-interface,

then retargetHomogeneous() returns false. The result of retargetHomogeneous()

decides the next step in retargetORgenerate(). With a true result,

retargetORgenerate() terminates since retargetHomogeneous() completed the actual

retargeting. Otherwise, it must decide whether to: (1) retarget the fastest source user-

interface created for a device of a different type than the target or (2) generate a new one.

 To decide on which approach to take, retargetORgenerate() calls

retargetHeterogeneous(), which accepts C1, C2, S, U, and t. The first step of

retargetHeterogeneous() is to check the cache C1 to see if the specific set S and type

t have been previously evaluated to find the source device type (sfastest) that yields the

lowest Tret value (Tmin
ret). If so, it stores the sfastest and Tmin

ret value from the cache in a

variable. Otherwise, the method begins searching for sfastest and Tmin
ret. This involves

getting the Tret value for each source and target device type pair (s,t) produced by S and t.

The pair with the lowest Tret value (Tmin
ret) contains sfastest. It finds these values by first

checking the cache C2 to see if a given pair has been previously evaluated to find its Tret

value and the corresponding retargeting lists TOC, SOC, SC, TOP, SOP, and SP. If so,

then it stores this collection in a variable. Otherwise, it must call computeTret() to

determine these values. Given s and t this method searches their programming interfaces

 91

to determine the parameter values needed for Tret() and then calculates the function’s

value. Recall that the retargeting lists for the pair is a byproduct of this process and is

thus returned with Tret. Thus, computeTret() returns a collection consisting of Tret and

the retargeting lists. This returned collection is inserted into cache C2. As

retargetHeterogeneous() evalutes each pair (s,t), it uses min() to keep track of the

sfastest it is has seen so far with the the lowest Tret value (Tmin
ret). After it is done evaluating

each pair (i.e. the loop), the final sfastest and Tmin
ret are appropriated defined for (S,t). It

inserts this information in the cache C1.

 With sfastest and the corresponding Tret value decided for (S,t),

retargetHeterogeneous() moves on to decide whether to retarget or generate. It

checks cache C3 to see whether Tgen for the target device’s type (t) has ever been

calculated. If so, then it stores this value. Otherwise, it must search the programming

interface of type t to get Tgen()’s needed parameter values. It then calculates the

function’s value. At this point, the method knows sfastest, Tret, and Tgen. If Tret is lower or

equal to Tgen, it executes retarget(), passing in the reference to the target device,

source user-interface generated for sfastest, and retargeting lists. It then returns true,

notifying retargetORgenerate() that it performed the retargeting. Otherwise, it

generates a new user-interface from the target device’s reference.

4.3 SUI Retargeting

Our SUI generator retargeting implementation is much more basic than ObjectEditor’s.

Like Hodes’ GUI generator, it can only retarget when there is a source device that is of

the same type as the target device. The algorithm it follows is simple:

Let target = the target device
Let current = the source device type

retarget(current, target) {
if (current == getType(target)) {

RECOGNIZER.suspend();
setRPCreference(target)
RECOGNIZER.resume();
SYNTHESIZER.speakText(“start talking”);

}
}

 92

 The generator can only support one SUI at a time. Thus, there is always just one

potential source user-interface. The method retarget() accepts the source device’s type

(current) and a reference to the target device (target). It checks to see if the target

device and source device are of the same type. If so, it suspends the recognizer for a

moment so that it can switch the RPC reference of the user-interface to the target device.

It then resumes the recognizer and notifies the user to ‘start talking’.

4.4 Evaluation

We evaluated our retargeting approach using the ObjectEditor and SUI generator

implementations described above. This evaluation focuses on three important

performance criteria:

1) Source User-Interface Selection Performance - In scenarios where multiple

source user-interfaces are available for retargeting, is the one with the lowest Tret

value actually the fastest?

2) Approach Selection Performance - Does picking the lower value between Tret and

Tgen accurately decide the faster approach—retarget or generate?

3) Retargeting Performance - Can retargeting actually offer deployment times that

are comparable to the client-factory approach?

Figure 50. Our tool for automatically recording device interactions at a person’s home.

Remotes

IR
Recorder

Connected
Laptop

 93

To answer these questions, we wanted to use real world sequences of device accesses.

Thus, we collected interaction data from different users performing their device-related

tasks. We gathered the data in two kinds of environments where people frequently use

devices—at their respective homes and a conference room in our building. To gather

such data, we built a tool that records the IR-based interactions offered by traditional

remote controls. This tool consists of an Evation IRMan device connected to a laptop’s

serial port (Figure 50 and 51). An IRMan captures an infrared signal from a remote

control and outputs an ASCII string code representing the signal. A programming

running on the laptop reads the code and maps it to a string representing the associated

device and command (e.g. ‘VCR.play’). It then stores the string, along with the time and

date of the invocation, on the laptop’s disk. This tool avoids relying on people to self-

monitor themselves, which is cumbersome and can introduce human-error. Also, it is

unobtrusive and mobile, which allows for easy setup. Its limitation is that it only records

interactions within a single room at a time because IR signals cannot pass through walls.

Figure 51. A close up of the IRman serial port device.

 Given this limitation, we used the tool to record interactions within the entertainment

centers of our participants. Entertainment centers typically contain several devices that

people often use at home. Table 6 describes the users we recruited and the specific

devices they own. We logged each of them for a period varying from one to two weeks,

producing a total of well over 30,000 recorded commands. As other chapters of this

dissertation will show, this data is valuable beyond its use in evaluating our retargeting

approach.

IR receiverIR receiver

 94

Summary
User

Gender IR Devices Age Education/Employment

P1 Male
TV, VCR, DVD player

25
Final semester masters student in computer science. Full-

time computer programmer.

P2 Male
TV, DVD changer,

Receiver
30 High-school graduate. Food server in a restaurant.

P3 Female
TV/VCR combo, cable

box
23 Second year Ph.D student in sociology.

P4 Male TV, DVD player 25 Second year medical student.

P5 Female
TV, DVD player, stereo

system
23

College graduate in journalism. Works full-time in

advertising.

P6 Female TV, VCR/DVD combo 27 Second year Ph.D student in biostatistics.

P7 Male
TV, VCR, DVD player,

Receiver, XBOX
27

Masters degree in computer science. Full-time

programmer.

P8 Female
TV/VCR combo, DVD

player
26 Second year law student.

P9 Male
TV,DVD player, stereo

system
24 College graduate in marketing. Full-time mortgage analyst.

P10 Male
TV, cable box w/ built-

in TIVO
24 College graduate in marketing. Unemployed.

P11
(the

author)
Male

TV, VCR, DVD player,

Receiver
26 Senior Ph.D student in computer science.

Table 6. A summary of our 11 participants.

 The conference room, on the other hand, is a static environment and consists of

consisted of a projector and three lamp arrays (Figure 52). Each lamp array is basically a

set of two or more individual lamps that are controlled by one unifying switch. We were

especially interested in the task of ‘setting up for a presentation’, which involves a series

of deterministic device accesses. Thus, we did not need to use our IR recording

mechanism in this room. Essentially, the task involves turning on the lamps in the room,

setting up the projector, and then dimming (or turning off) the lamps.

 95

Figure 52. The conference room we used.

4.4.1 Source User-interface Selection Performance
In scenarios where multiple source user-interfaces are available for retargeting, is the
one with the lowest Tret value actually the fastest to retarget?

Our first step in evaluating Tret’s prediction performance was to identify a benchmark set

of scenarios. We were able to use our participants’ logs to produce this set. From these

logs, we could determine when a participant goes from one task directly to another.

Assuming the participants had client computers that could perform retargeting, the user-

interfaces from the previous task could immediately be available as sources for the next.

To illustrate, imagine a person who watches cable TV for a while and then watches a

DVD. The TV and cable box user-interfaces would serve as possible sources to retarget

to the DVD player; i.e., the mapping: (TV UI, cable box UI DVD player). A question

that arises from this example is: how does the client have both the TV and cable box

user-interface available and not just the (retargeted) user-interface of the last accessed

device? Ideally, during a task, all device user-interfaces that are associated with the task

should be active in memory so that a user can directly switch back and forth between

them. We imagine a generator accepting a list of devices involved in a user’s desired

task. For each device in the list, the generator would create a new user-interface if all

existing user-interfaces are already associated with other devices on the list.

Projector

3 lamp arrays

 96

 In order to discover our participants’ specific task transitions, we interviewed them and

examined their logs for the set of tasks they performed and the device-commands

invoked in each task. Using this information, we searched the logs for task transitions.

We only considered the logs of users who owned the types of IR devices that we

networked (TV, lamps, DVD player, VCR, and A/V receiver). The reason is that

evaluating Tret’s performance requires actual networked devices, and there would be too

much overhead in individually networking the devices of all of our participants. Thus,

we had to use our networked devices to simulate those of the participants with matching

types.

 We found three unique transitions within the logs, with many of the participants

producing the same cases. Using the presentation room example, we supplemented these

examples with two more. In particular, we imagined a user who enters a conference

room and has the user-interfaces of four commonly used home devices (a TV, VCR,

Receiver, and lamp) still running on a client. The four user-interfaces are thus available

for retargeting to the projector and lamp arrays in the room. One can imagine a user

having these user-interfaces loaded because he or she just came from home or was

monitoring how children at home use the devices.

 For each of the five total transitions, Table 7 compares the command-only user-

interface with the lowest Tret value to the command-only user-interface we actually

measured to be the fastest to retarget. Table 8 makes a similar comparison for deploying

command-and-state based user-interfaces. The two tables show that prediction using Tret

correctly picks the fastest user-interface for all five cases regardless of the kind of user-

interface being deployed.

 For each task transition, Tables 7 and 8 also show the difference (actual and

percentage) between the retargeting time of the actual fastest source user-interface and

each of the other available ones. These differences represent the benefits in selecting the

actual fastest source user-interface. To illustrate, for the ‘turning on conference room

lights’ task transition of Table 7, there is a 95% (or 116.73 ms) increase in retargeting

time when choosing the receiver’s user-interface over the lamp’s. Given that such large

 97

differences can occur, it is important to select the source user-interface that is actually the

fastest. The small differences, on the other hand, show the precision of regression-based

source-device prediction. As Tables 7 and 8 respectively show, this approach is

successful even when there is only a two and one percent difference between the

retargeting times of two potential source user-interfaces.

Table 7. An evaluation of Tret‘s ability to predict the fastest command-only user-
interface to retarget. {* The DVD player also serves as a music CD player}

Table 8. An evaluation of Tret‘s ability to predict the fastest command-and-state based
user-interface to retarget. {* The DVD player also serves as a music CD player}

4.4.2 Approach Selection Performance
Does picking the lower value between Tret and Tgen accurately decide the faster
approach—retarget or generate?

Task
Transition

Mapping
(source UIs
target device)

Prediction
(lowest Tret)

Actual
(fastest

measured)

Percentage
Difference

(Slow-Fast)/Slow

Actual
Difference(ms)

Fast-Slow
Watch TV after
DVD movie TV,DVD,RCVR −−> VCR DVD UI−−>VCR DVD UI−−>VCR (TV -DVD)=19%,

 (RCVR – DVD)=23%
 TV-DVD= 18.50;
 RCVR-DVD= 23.22

Watch DVD movie
or listen to music
after watching TV*

TV, RCVR −−> DVD TV UI−−>DVD TV UI−−>DVD (RCVR – TV)=24% RCVR-TV=19.72

Watch DVD movie
or listen to music
after watching TV*

TV,VCR,RCVR −−> DVD VCR UI−−>DVD VCR UI−−>DVD (RCVR - VCR)=40%,
 (TV - VCR)=20%%

 RCVR-VCR=32.50,
 TV-VCR= 12.78

Turn lights on in
presentation room TV,VCR,RCVR,LAMP−−>

 LAMP
LAMP UI−−>

LAMP
LAMP UI−−>

LAMP

 (RCVR - LAMP)=95%,
 (VCVR - LAMP)=88%,
 (TV - LAMP)=91%

 RCVR-LAMP=116.73,
 VCR-LAMP=21.79,
 TV-LAMP=57.73

Setup projector in
presentation room TV,VCR,RCVR,LAMP−−>

 PROJ TV UI−−>PROJ TV UI−−>PROJ
 (LAMP -TV)=39%,
 (VCR - TV)=2%,
 (RCVR - TV)=35%

 LAMP-TV= 32.34,
 VCR-TV= 1.28,
 RCVR-TV= 27.53

Task
Transition

Mapping
(source UIs
 target device)

Prediction
(lowest Tret)

Actual
(fastest measured)

Percentage
Difference

(Slow-Fast)/Slow

Actual
Difference(ms)

Fast-Slow
Watch TV after
DVD movie TV,DVD,RCVR −−> VCR TV UI−−>VCR TV UI−−>VCR (DVD -TV)=24%,

 (RCVR - TV)=42%
 DVD-TV=48.78;
 RCVR-TV= 105.78

Watch DVD movie
or listen to music
after watching TV*

TV, RCVR −−> DVD TV UI−−>DVD TV UI−−>DVD (RCVR - TV)=13% RCVR-TV=38.84

Watch DVD movie
or listen to music
after watching TV*

TV,VCR,RCVR −−> DVD VCR UI−−>DVD VCR UI−−>DVD (RCVR - VCR)=15%,
 (TV - VCR)=11%%

 RCVR-VCR=42.49,
 TV-VCR=3.75

Turn lights on in
presentation room

TV,VCR,RCVR,LAMP−−>
 LAMP

LAMP UI−−>
LAMP

LAMP UI−−>
LAMP

 (RCVR - LAMP)=93%,
 (VCVR - LAMP)=83%,
 (TV - LAMP)=86%

 RCVR-
LAMP=129.89,
 VCR-LAMP=76.81,
 TV-LAMP=69.11

Setup projector in
presentation room

TV,VCR,RCVR,LAMP−−>
 PROJ LAMP UI−−>PROJ LAMP UI−−>PROJ

 (TV - LAMP)=10%,
 (VCR - LAMP)=18%,
 (RCVR - LAMP)=31%

 TV-LAMP=12.23,
 VCR-LAMP = 24.45,
 RCVR-LAMP=49.89

 98

Tables 9 and 10 respectively evaluate this selection method for command-only and

command-and-state based user-interface deployment. For each of the five identified

transitions, the tables show the approach predicted to be the fastest and the approach that

is actually the fastest. The results show that selection using the lower value of Tret and

Tgen correctly picks the fastest approach for all cases. In fact, as the percentage

differences on the two tables show, retargeting is always at least twice as fast.

Table 9. For command-only UI deployment, a comparison of the approach predicted to
be the fastest to the approach that actually measures to be the fastest.

Table 10. For command-and-state based UI deployment, a comparison of the approach
predicted to be the fastest to the approach that actually measures to be the fastest.

4.4.3 Retargeting Performance

Can retargeting actually offer times that are at least as low as client-factory times?

Task
Transition

Mapping
(source UIs target device)

Prediction

Actual

Percentage
Difference
(Gen-Ret)/Gen

Actual
Difference(ms)

Gen-Ret

Watch TV after
DVD movie TV,DVD,RCVR −−> VCR Retarget:

DVD UI−−>VCR
Retarget:

DVD UI−−>VCR 79% 296.71

Watch DVD movie
or listen to music
after watching TV*

TV, RCVR −−> DVD Retarget:
TV UI−−>DVD

Retarget:
TV UI−−>DVD 87% 410.22

Watch DVD movie
or listen to music
after watching TV*

TV,VCR,RCVR −−> DVD Retarget:
VCR UI−−>DVD

Retarget:
VCR UI−−>DVD 90% 423.00

Turn lights on in a
presentation room

TV,VCR,RCVR,LAMP−−>
 LAMP

Retarget:
LAMP UI−−>LAMP

Retarget:
LAMP UI−−>LAMP 98% 306.69

Setup projector in
presentation room

TV,VCR,RCVR,LAMP−−>
 PROJ

Retarget:
TV UI−−>PROJ

Retarget:
TV UI−−>PROJ 86% 308.00

Task
Transition

Mapping
(source UIs target device)

Prediction

Actual

Percentage
Difference
(Gen-Ret)/Gen

Actual
Difference (ms)

Gen-Ret
Watch TV after
DVD movie TV,DVD,RCVR −−> VCR Retarget:

TV UI−−>VCR
Retarget:

TV UI−−>VCR 72% 397.47

Watch DVD movie
or listen to music
after watching TV*

TV, RCVR −−> DVD Retarget:
TV UI−−>DVD

Retarget:
TV UI−−>DVD 64% 451.95

Watch DVD movie
or listen to music
after watching TV*

TV,VCR,RCVR −−> DVD Retarget:
VCR UI−−>DVD

Retarget:
VCR UI−−>DVD 65% 455.7

Turn lights on in a
presentation room

TV,VCR,RCVR,LAMP−−>
 LAMP

Retarget:
LAMP UI−−>LAMP

Retarget:
LAMP UI−−>LAMP 97% 330.45

Setup projector in
presentation room

TV,VCR,RCVR,LAMP−−>
 PROJ

Retarget:
LAMP UI−−>PROJ

Retarget:
LAMP UI−−>PROJ 78% 388

 99

Using our real world scenarios, we evaluate how close two important levels of retargeting

can achieve client-factory-like times—homogeneous and heterogeneous retargeting. In

homogeneous retargeting we assume that a source device that is the same type as the

target device is always available. In other words, it expects that (in memory) there is a

source user-interface object previously made for a device that is of the target device’s

exact type. Heterogeneous retargeting avoids this assumption by supporting different

types (or programming interfaces).

 We also consider the effects of different levels of client processing power on

retargeting time. The differences between the Ipaq and fast laptop deployment times for

all approaches (client-factory, remote-factory, and generation), presented in the previous

chapter, motivate this analysis. We use the same Ipaq and laptop. Using these same

devices also allows us to appropriately compare their retargeting times with their client-

factory times.

 Another factor that we found to effect deployment time is the kind of user-interface

being deployed. As a result, we consider retargeting times for: (a) command-only user-

interfaces, (b) command-and-state based user-interfaces, (c) SUIs, and (d) GUIs

(included in (a) and (b)). Yet another factor shown to effect deployment time is the

network speed available to the client. Like in previous experiments, we compare

retargeting times using a wired LAN and dialup connection.

4.4.3.1 Homogeneous Retargeting

Homogeneous retargeting implies low deployment times. As described earlier,

retargeting a user-interface built for the target device’s type only requires remapping its

components. No new components need to be created. Figures 52-54 respectively

compare the homogeneous retargeting times for our device’s command-only GUIs,

command-and-state based GUI, and command-only SUIs to the times of alternate

approaches. We collected all the times on the laptop using a wired LAN connection.

 100

Figure 52. Homogeneous retargeting of command-only GUIs using the fast laptop and
wired LAN connection.

Figure 53. Homogeneous retargeting of command-and-state GUIs using the fast laptop
and wired LAN connection.

Homogeneous Retargeting Performance
(Command-only GUIs on Fast Laptop and Wired LAN)

C
lie

nt
 F

ac
.-V

C
R

, 2
55

.5
0

R
em

ot
e

Fa
c.

-V
C

R
, 2

76
.0

0

G
en

er
at

io
n-

VC
R

, 3
75

.7
1

VC
R

 U
I--

>
VC

R
, 6

.2
5

R
C

VR
 U

I--
>R

C
VR

, 1
0.

00

R
em

ot
e

Fa
c.

-T
V,

 2
60

.0
0

TV
 U

I--
>T

V,
 1

0.
00

C
lie

nt
 F

ac
.-D

VD
, 2

50
.6

7

R
em

ot
e

Fa
c.

-D
VD

, 2
61

.5
0

D
VD

 U
I--

>D
VD

, 1
0.

00

C
lie

nt
 F

ac
.-L

A
M

P,
 1

23
.8

8

R
em

ot
e

Fa
c.

-L
A

M
P,

 1
33

.3
3

G
en

er
at

io
n-

LA
M

P,
 3

12
.4

0

LA
M

P
U

I--
>L

A
M

P,
 5

.7
1

C
lie

nt
 F

ac
.-P

R
O

J,
 2

19
.0

0

R
em

ot
e

Fa
c.

-P
R

O
J,

 2
44

.5
7

PR
O

J
U

I--
>P

R
O

J,
 1

0.
00

C
lie

nt
 F

ac
.-R

C
VR

, 2
90

.5
7

R
em

ot
e

Fa
c.

-R
C

VR
,

 2
97

.3
3

Generation-
RCVR, 505.50

C
lie

nt
 F

ac
.-T

V,
 2

57
.1

7

G
en

er
at

io
n-

TV
,

 4
20

.0
0

G
en

er
at

io
n-

D
VD

, 4
71

.8
8

G
en

er
at

io
n-

PR
O

J,
 3

59
.2

2

0.00

100.00

200.00

300.00

400.00

500.00

600.00

1

tim
e

(m
s)

VCR UI Receiver UI TV UI DVD UI Lamp UI Projector UI

Homogeneous Retargeting Performance
(Command-and-State Based GUIs on Fast Laptop and Wired LAN)

C
lie

nt
 F

ac
.-V

C
R

, 2
97

.1
3

R
em

ot
e

Fa
c.

-V
C

R
, 3

20
.5

6

G
en

er
at

io
n-

VC
R

, 5
53

.2
5

VC
R

 U
I--

>V
C

R
, 2

4.
44

C
lie

nt
 F

ac
.-R

C
VR

, 3
96

.4
3

R
em

ot
e

Fa
c.

-R
C

VR
, 4

01
.0

0

Generation-
RCVR,
882.44

R
C

VR
 U

I--
>

R
C

VR
, 6

2.
56

C
lie

nt
 F

ac
.-T

V,
 2

78
.6

7

R
em

ot
e

Fa
c.

-T
V,

 2
96

.1
1

G
en

er
at

io
n-

TV
, 5

49
.7

5

TV
 U

I--
>T

V,
 2

8.
89

C
lie

nt
 F

ac
.-D

VD
, 2

70
.5

0

R
em

ot
e

Fa
c.

-D
VD

, 2
83

.6
7

Generation-
DVD,

 702.33

D
VD

 U
I -

->
 D

VD
, 4

0

C
lie

nt
 F

ac
.-L

A
M

P,
 1

51
.8

3

R
em

ot
e

Fa
c.

-L
A

M
P,

 1
60

.2
2

G
en

er
at

io
n-

LA
M

P,
 3

41
.5

6

LA
M

P
U

I--
>L

A
M

P,
 1

1.
11

C
lie

nt
 F

ac
.-P

R
O

J,
 2

32
.8

8

R
em

ot
e

Fa
c.

-P
R

O
J,

 2
48

.8
8

G
en

er
at

io
n-

PR
O

J,
 4

99
.3

3

PR
O

J
U

I--
>P

R
O

J,
 1

9

0

100

200

300

400

500

600

700

800

900

1000

1

tim
e

(m
s)

VCR UI Receiver UI TV UI DVD UI Lamp UI Projector UI

 101

Figure 54. Homogeneous retargeting of command-only SUIs using the fast laptop and
wired LAN connection.

 In all cases, homogeneous retargeting is by far the fastest approach. Consider the task

of deploying a receiver command-only GUI. Homogeneous retargeting is nearly thirty

times faster than the client-factory approach. Deploying the command-and-state based

GUI using homogeneous retargeting is over six times faster than the client-factory

approach.

 Notice that the speech-based retargeting times are over one second long, whereas, the

GUI based times are only fractions of a second. It appears that even with retargeting, the

SUI deployment times are still significantly greater than the GUI based times. Part of

this continued difference is due to the fact that we consider deployment to be complete

only when the system provides a user with the ‘start talking’ notification. We stop

counting time only when a user can begin to use the SUI—i.e. speak commands.

Homogeneous Retargeting Performance
(Command-only SUIs on Fast Laptop and Wired LAN)

C
lie

nt
 F

ac
. -

 L
am

p
27

91
.9

9

R
em

ot
e

Fa
c.

 -
La

m
p

28
99

.8
9

G
en

er
at

io
n

- L
am

p
34

01
.6

7

LA
M

P-
->

LA
M

P
14

12

C
lie

nt
 F

ac
. -

 T
V

34
16

.5
0

R
em

ot
e

Fa
c.

 -
TV

34
95

.1
7

G
en

er
at

e
- T

V
40

05
.6

7

TV
-->

TV
14

13
.1

1

C
lie

nt
 F

ac
. -

 R
C

VR
42

90
.4

4

R
C

VR
-->

R
C

VR
14

21

R
em

ot
e

Fa
c.

 -
R

C
VR

44
56

.2
5

Generation - RCVR
4935.89

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

1

tim
e

(m
s)

Lamp UI TV UI Receiver UI

 102

Figure 55. A graph comparing the homogeneous retargeting times the to the
corresponding times of competing approaches (using the Ipaq and a 100Mbps
connection).

 Figure 55 shows the homogeneous retargeting times for the Ipaq using the wired LAN

connection. Here, the retargeting times were not as dramatically greater than the client-

factory approach as seen with the laptop. As implied by this result and also Figure 48,

remapping buttons and widgets is more demanding on Ipaq than the laptop. These Ipaq’s

times, however, are still multiple times faster than the client-factory based times.

Retargeting the receiver user-interface, for example, is nearly 3.5 times faster than client-

factory based times.

 Though the above results show that homogeneous retargeting is very fast, it still has

the earlier mentioned limitation of not supporting different source and target device

programming interfaces. As a result, it can only support one of the five identified task

transitions. In particular, it supports the ‘turn on lights in a presentation room’ transition

by supporting LAMP UI LAMP. The other four involve retargeting a user-interface of

one device to a device of another type—that is, the types of the target and source devices

Homogeneous Retargeting Performance
(Command-and-State GUIs on Ipaq and Wired LAN)

C
lie

nt
 F

ac
. -

PR
O

J,
 4

89
.4

4

R
em

ot
e

Fa
c.

- P
R

O
J,

 6
11

.1
1

G
en

er
at

io
n

- P
R

O
J,

 1
29

2.
33

PR
O

J
U

I -
->

PR
O

J,
 5

7.
56

C
lie

nt
 F

ac
.-L

am
p,

 2
11

.2
2

R
em

ot
e

Fa
c.

-L
am

p,
 3

13
.7

8

G
en

er
at

io
n-

La
m

p,
 5

75
.7

8

LA
M

P
U

I--
>L

A
M

P,
 3

8.
22

C
lie

nt
 F

ac
.-R

C
VR

, 1
12

1.
11

R
em

ot
e

Fa
c.

-R
C

VR
, 1

76
0.

43

Generation-RCVR,
 3339.00

R
C

VR
 U

I--
>R

C
VR

, 3
24

.4
4

0

500

1000

1500

2000

2500

3000

3500

4000

1

tim
e(

m
s)

Projector UI Lamp UI Receiver UI

 103

are not homogeneous. Homogeneous retargeting cannot, for example, support ‘setting

up the projector in a presentation room’ since it cannot retarget a TV, VCR, lamp, or

receiver user-interface to a projector. It is thus important to support heterogeneous

retargeting.

4.4.3.2 Heterogeneous Retargeting

Using ObjectEditor (our mechanism) we considered several cases of heterogeneous

retargeting. We produced such cases from the logs by extracting each instance where a

user changes from one device to another. These device transitions appropriately provide

the needed cases since each instance offers a source user-interface (from the previous

device) and a new target device. As in the above evaluations, we only looked at the logs

of users who owned the types of devices that we networked.

 Using the imaginary presenter, we produced an additional set of device transitions.

Recall that we assume that the presenter’s client has a set of source user-interfaces of

some home devices available. Thus, we gathered all combinations of transitions from a

home device to a conference room device. Overall, we produced a total of nineteen

heterogeneous retargeting cases.

 Figures 56 and 57 compare the non-caching based retargeting times to the times of the

alternate approaches using the fast laptop with a wired LAN connection. Figure 58

makes a similar comparison for command-and-state based user-interface using the Ipaq.

 104

Figure 56. Heterogeneous retargeting of command-only GUIs vs. competing approaches
(using the fast laptop and a wired LAN connection).

Figure 57. Retargeting times of command-and-state based GUIs vs. the corresponding
times of competing approaches (using the fast laptop and a wired LAN connection).

Heterogeneous Retargeting Performance
(Command-and-State Based GUIs on Fast Laptop and Wired LAN)

C
lie

nt
 F

ac
.-V

C
R

, 2
97

.1
3

R
em

ot
e

Fa
c.

-V
C

R
, 3

20
.5

6
G

en
er

at
io

n-
VC

R
, 5

53
.2

5
D

VD
 U

I--
>V

C
R

, 4
46

.3
3

R
C

VR
 U

I--
>V

C
R

, 3
73

.1
3

TV
 U

I--
>V

C
R

, 2
80

.6
7

C
lie

nt
 F

ac
.-R

C
VR

, 3
96

.4
3

R
em

ot
e

Fa
c.

-R
C

VR
, 4

01
.0

0

Generation-
RCVR,
 882.44

VC
R

 U
I--

>R
C

VR
, 5

19
.0

0
TV

 U
I--

>R
C

VR
, 5

72
.4

3
D

VD
 U

I--
>R

C
VR

, 6
12

.1
1

LA
M

P
U

I--
>R

C
VR

, 4
76

.3
3

C
lie

nt
 F

ac
.-T

V,
 2

78
.6

7
R

em
ot

e
Fa

c.
-T

V,
 2

96
.1

1
G

en
er

at
io

n-
TV

, 5
49

.7
5

VC
R

 U
I--

>T
V,

 3
51

.7
5

R
C

VR
 U

I--
>T

V,
 3

90
.3

8
C

lie
nt

 F
ac

.-D
VD

, 2
70

.5
0

R
em

ot
e

Fa
c.

-D
VD

, 2
83

.6
7

G
en

er
at

io
n-

D
VD

,
 7

02
.3

3
VC

R
 U

I--
>D

VD
, 3

96
.0

0
TV

 U
I--

>D
VD

, 4
09

.4
4

R
C

VR
 U

I--
>D

VD
, 4

94
.1

1
C

lie
nt

 F
ac

.-L
A

M
P,

 1
51

.8
3

R
em

ot
e

Fa
c.

-L
A

M
P,

 1
60

.2
2

G
en

er
at

io
n-

LA
M

P,
 3

41
.5

6
LA

M
P

U
I--

>L
A

M
P,

 1
1.

11
R

C
VR

 U
I--

>L
A

M
P,

 2
40

.4
4

TV
 U

I--
>L

A
M

P,
 1

95
.7

8
VC

R
 U

I--
>L

A
M

P,
 2

11
.8

9
C

lie
nt

 F
ac

.-P
R

O
J,

 2
32

.8
8

R
em

ot
e

Fa
c.

-P
R

O
J,

 2
48

.8
8

G
en

er
at

io
n-

PR
O

J,
 4

99
.3

3
TV

 U
I--

>P
R

O
J,

 2
92

.8
9

VC
R

 U
I--

>P
R

O
J,

 2
73

.1
4

R
C

VR
 U

I--
>P

R
O

J,
 2

72
.6

7
LA

M
P

U
I--

>P
R

O
J,

 2
60

.4
4

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

tim
e(

m
s)

VCR UI Receiver UI TV UI DVD UI Lamp UI Projector UI

Heterogeneous Retargeting Performance
(Command-only GUIs on Fast Laptop and Wired LAN)

C
lie

nt
 F

ac
.-V

C
R

, 2
55

.5
0

R
em

ot
e

Fa
c.

-V
C

R
, 2

76
.0

0
G

en
er

at
io

n-
VC

R
, 3

75
.7

1
TV

 U
I--

>V
C

R
, 2

41
.4

2
R

C
VR

 U
I--

>V
C

R
, 2

70
.2

9
D

VD
 U

I--
>V

C
R

, 2
34

.5
7

C
lie

nt
 F

ac
.-R

C
VR

, 2
90

.5
7

R
em

ot
e

Fa
c.

-R
C

VR
, 2

97
.3

3

VC
R

 U
I--

>R
C

VR
, 2

70
.2

9
TV

 U
I--

>R
C

VR
, 2

56
.2

9

D
VD

 U
I--

>R
C

VR
, 2

87
.1

7
C

lie
nt

 F
ac

.-T
V,

 2
57

.1
7

R
em

ot
e

Fa
c.

-T
V,

 2
60

.0
0

VC
R

 U
I--

>T
V,

 1
93

.0
0

R
C

VR
 U

I--
>T

V,
 2

05
.7

1
C

lie
nt

 F
ac

.-D
VD

, 2
50

.6
7

R
em

ot
e

Fa
c.

-D
VD

, 2
61

.5
0

VC
R

 U
I--

>D
VD

, 2
00

.0
0

TV
 U

I--
>D

VD
, 2

77
.5

0
R

C
VR

 U
I--

>D
VD

, 2
55

.8
3

C
lie

nt
 F

ac
.-L

A
M

P,
 1

23
.8

75
R

em
ot

e
Fa

c.
-L

A
M

P,
 1

33
.3

3
G

en
er

at
io

n-
LA

M
P,

 3
12

.4
LA

M
P

U
I--

>L
A

M
P,

 5
.7

1
R

C
VR

 U
I--

>L
A

M
P,

 2
35

.8
9

TV
 U

I--
>L

A
M

P,
 2

16
.1

1
VC

R
 U

I--
>L

A
M

P,
 2

21
.7

1
C

lie
nt

 F
ac

.-P
R

O
J,

 2
19

R
em

ot
e

Fa
c.

-P
R

O
J,

 2
44

.5
7

G
en

er
at

io
n-

PR
O

J,
 3

59
.2

2
LA

M
P

U
I--

>P
R

O
J,

 1
97

.8
8

R
C

VR
 U

I--
>P

R
O

J,
 2

00
.5

7
VC

R
 U

I--
>P

R
O

J,
 1

86
.8

3
TV

 U
I--

>P
R

O
J,

 2
04

G
en

er
at

io
n-

R
C

VR
, 5

05
.5

0

LA
M

P
U

I--
>R

C
VR

,
 4

26
.1

1

G
en

er
at

io
n-

TV
,

42
0.

00

G
en

er
at

io
n-

D
VD

,
 4

71
.8

8

0.00

100.00

200.00

300.00

400.00

500.00

600.00

1

tim
e(

m
s)

VCR UI Receiver UI TV UI DVD UI Lamp UI Projector UI

 105

Figure 58. Retargeting times of command-and-state based GUIs vs. the corresponding
times of competing approaches (using the Ipaq and a wired LAN connection).

 The data shows some interesting results. For the case of retargeting command-only

user-interfaces on the laptop (Figure 56), twelve of the nineteen cases yield times that are

below the corresponding client-factory based times. Several of the other cases yield

times that were relatively close to the client-factory based times. The retargeting times

for the command-and-state based user-interfaces were not as promising. On the laptop,

only one of the nineteen cases (TV UI VCR) yields a retargeting time that is lower than

its corresponding client-factory based time. The TV and VCR are our two most similar

devices in terms of the commands and properties that they offer—hence this exception.

On the Ipaq, none of the eleven heterogeneous retargeting cases that we considered yield

times that are below the corresponding client-factory based times.

Heterogeneous Retargeting Performance
(Command-and-State Based GUIs on Ipaq and Wired LAN)

C
lie

nt
 F

ac
. -

PR
O

J,
 4

89
.4

4

R
em

ot
e

Fa
c.

- P
R

O
J,

 6
11

.1
1

G
en

er
at

io
n

- P
R

O
J,

 1
29

2.
33

PR
O

J
U

I -
->

PR
O

J,
 5

7.
56

LA
M

P
U

I -
->

PR
O

J,
 8

63
.3

3

VC
R

 U
I -

->
PR

O
J,

 1
01

8.
78

TV
 U

I -
->

PR
O

J,
 1

03
5.

00

R
C

VR
 U

I -
->

PR
O

J,
 1

59
5.

22

C
lie

nt
 F

ac
.-L

am
p,

 2
11

.2
2

R
em

ot
e

Fa
c.

-L
am

p,
 3

13
.7

8

G
en

er
at

io
n-

La
m

p,
 5

75
.7

8

LA
M

P
U

I--
>L

A
M

P,
 3

8.
22

TV
 U

I -
->

LA
M

P,
 5

51
.7

8

VC
R

 U
I--

>L
A

M
P,

 5
66

.2
2

R
C

VR
 U

I--
>L

A
M

P,
 8

95
.0

0

C
lie

nt
 F

ac
.-R

C
VR

, 1
12

1.
11

R
em

ot
e

Fa
c.

-R
C

VR
, 1

76
0.

43

G
en

er
at

io
n-

R
C

VR
, 3

33
9.

00

R
C

VR
 U

I--
>R

C
VR

, 3
24

.4
4

LA
M

P
U

I--
>R

C
VR

, 3
05

3.
75

VC
R

 U
I--

>R
C

VR
, 3

22
1.

43

TV
 U

I--
>R

C
VR

,
 4

25
8.

17

D
VD

 U
I--

>R
C

VR
,

 4
76

3.
70

0

1000

2000

3000

4000

5000

6000

1

tim
e(

m
s)

Projector UI Lamp UI Receiver UI

 106

 A likely reason for the low performance when including state is based on the

processing involved in dealing with properties. As implied by our retargeting algorithm,

supporting state (without caching) involves dynamically performing time consuming

processes like searching getter and setter method signatures for a device’s property names

and type checking. Retargeting command-only user-interfaces does not involve such

processes, hence the shown benefits.

Figure 59. Retargeting times of the receiver command-and-state based GUI vs. the
corresponding times of competing approaches (using the fast laptop and dialup
connection).

 To see the effects of a slower network on retargeting times, we also tested a subset of

the retargeting on the laptop using the dialup connection (Figure 59). For this subset, we

selected the cases in which the receiver is the target device. Recall from Figure 32 that

we used the receiver to measure command-and-state based GUI deployment times of the

three competing approaches under the dialup connection.

 The results show that moving from wired LAN down to dialup speeds increases

retargeting time by an approximate factor of twenty. One particularly interesting result is

that the retargeting times of the heterogeneous retargeting cases plateau regardless of the

chosen source device’s complexity. Given that the corresponding wired LAN times did

Heterogeneous Retargeting Performance
(Command-and-State Based Receiver GUI on Fast Laptop and Dialup Connection)

C
lie

nt
 F

ac
.,

64
18

.0
0

R
em

ot
e

Fa
c.

, 1
16

27
.8

9 Generation,
16100.00

R
C

VR
 U

I--
>R

C
VR

, 5
34

6.
44

VC
R

 U
I -

->
R

C
VR

,
10

99
8.

11

TV
 U

I -
->

R
C

VR
,

 1
11

69
.3

3

LA
M

P
U

I -
->

R
C

VR
,

 1
10

32
.3

3

D
VD

 U
I--

>R
C

VR
,

 1
10

62
.6

7

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1

tim
e(

m
s)

 107

not plateau (Figure 57), the occurrence here implies that the latency of a slower network

can drown out some of the time benefits of retargeting.

 Given the limitations of the non-caching based approach, particularly when deploying

state-based user-interface, we measured the corresponding cache-based retargeting times.

Recall that caching avoids repeating the kinds of time consuming processes mentioned

above. Figures 60 and 61 compare the cache-based retargeting times to the times of the

alternate approaches using the fast laptop with a wired LAN connection. Figure 62

makes a similar comparison for command-and-state based user-interface using the Ipaq.

Figure 60. Cache-based retargeting times of the command-only GUIs vs. the
corresponding times of competing approaches (using the fast laptop and wired LAN).

Cache-based Retargeting Performance
(Command-only UIs on Fast Laptop and 100Mbps Wired Connection)

C
lie

nt
 F

ac
.-V

C
R

, 2
55

.5
0

R
em

ot
e

Fa
c.

-V
C

R
, 2

76
.0

0
G

en
er

at
io

n-
VC

R
, 3

75
.7

1
TV

 U
I--

>V
C

R
, 9

7.
50

R
C

VR
 U

I--
>V

C
R

, 1
02

.2
2

D
VD

 U
I--

>V
C

R
, 7

9.
00

C
lie

nt
 F

ac
.-R

C
VR

, 2
90

.5
7

R
em

ot
e

Fa
c.

-R
C

VR
, 2

97
.3

3

VC
R

 U
I--

>R
C

VR
, 9

2.
63

TV
 U

I--
>R

C
VR

, 7
0.

11 LA
M

P
U

I--
>R

C
VR

, 2
16

.0
0

D
VD

 U
I--

>R
C

VR
, 7

6.
63

C
lie

nt
 F

ac
.-T

V,
 2

57
.1

7
R

em
ot

e
Fa

c.
-T

V,
 2

60
.0

0

VC
R

 U
I--

>T
V,

 4
1.

22
R

C
VR

 U
I--

>T
V,

 5
3.

33
C

lie
nt

 F
ac

.-D
VD

, 2
50

.6
7

R
em

ot
e

Fa
c.

-D
VD

, 2
61

.5
0

VC
R

 U
I--

>D
VD

, 4
8.

88
TV

 U
I--

>D
VD

, 6
1.

66
R

C
VR

 U
I--

>D
VD

, 8
1.

38
C

lie
nt

 F
ac

.-L
A

M
P,

 1
23

.8
8

R
em

ot
e

Fa
c.

-L
A

M
P,

 1
33

.3
3

G
en

er
at

io
n-

LA
M

P,
 3

12
.4

0
LA

M
P

U
I--

>L
A

M
P,

 5
.7

1
R

C
VR

 U
I--

>L
A

M
P,

 1
22

.4
4

TV
 U

I--
>L

A
M

P,
 6

3.
44

VC
R

 U
I--

>L
A

M
P,

 4
7.

50

R
em

ot
e

Fa
c.

-P
R

O
J,

 2
44

.5
7

G
en

er
at

io
n-

PR
O

J,
 3

59
.2

2
LA

M
P

U
I--

>P
R

O
J,

 8
3.

56
R

C
VR

 U
I--

>P
R

O
J,

 7
8.

75
VC

R
 U

I--
>P

R
O

J,
 5

2.
50

TV
 U

I--
>P

R
O

J,
 5

1.
22

Generation-
RCVR, 505.50

G
en

er
at

io
n-

TV
,

 4
20

.0
0

G
en

er
at

io
n-

D
VD

,
 4

71
.8

8

C
lie

nt
 F

ac
.-P

R
O

J,
 2

19
.0

0

0.00

100.00

200.00

300.00

400.00

500.00

600.00

1

tim
e(

m
s)

VCR UI Receiver UI TV UI DVD UI Lamp UI Projector UI

Cache-based Retargeting Performance
(Command-only GUIs on Fast Laptop and Wired LAN)

Cache-based Retargeting Performance
(Command-only UIs on Fast Laptop and 100Mbps Wired Connection)

C
lie

nt
 F

ac
.-V

C
R

, 2
55

.5
0

R
em

ot
e

Fa
c.

-V
C

R
, 2

76
.0

0
G

en
er

at
io

n-
VC

R
, 3

75
.7

1
TV

 U
I--

>V
C

R
, 9

7.
50

R
C

VR
 U

I--
>V

C
R

, 1
02

.2
2

D
VD

 U
I--

>V
C

R
, 7

9.
00

C
lie

nt
 F

ac
.-R

C
VR

, 2
90

.5
7

R
em

ot
e

Fa
c.

-R
C

VR
, 2

97
.3

3

VC
R

 U
I--

>R
C

VR
, 9

2.
63

TV
 U

I--
>R

C
VR

, 7
0.

11 LA
M

P
U

I--
>R

C
VR

, 2
16

.0
0

D
VD

 U
I--

>R
C

VR
, 7

6.
63

C
lie

nt
 F

ac
.-T

V,
 2

57
.1

7
R

em
ot

e
Fa

c.
-T

V,
 2

60
.0

0

VC
R

 U
I--

>T
V,

 4
1.

22
R

C
VR

 U
I--

>T
V,

 5
3.

33
C

lie
nt

 F
ac

.-D
VD

, 2
50

.6
7

R
em

ot
e

Fa
c.

-D
VD

, 2
61

.5
0

VC
R

 U
I--

>D
VD

, 4
8.

88
TV

 U
I--

>D
VD

, 6
1.

66
R

C
VR

 U
I--

>D
VD

, 8
1.

38
C

lie
nt

 F
ac

.-L
A

M
P,

 1
23

.8
8

R
em

ot
e

Fa
c.

-L
A

M
P,

 1
33

.3
3

G
en

er
at

io
n-

LA
M

P,
 3

12
.4

0
LA

M
P

U
I--

>L
A

M
P,

 5
.7

1
R

C
VR

 U
I--

>L
A

M
P,

 1
22

.4
4

TV
 U

I--
>L

A
M

P,
 6

3.
44

VC
R

 U
I--

>L
A

M
P,

 4
7.

50

R
em

ot
e

Fa
c.

-P
R

O
J,

 2
44

.5
7

G
en

er
at

io
n-

PR
O

J,
 3

59
.2

2
LA

M
P

U
I--

>P
R

O
J,

 8
3.

56
R

C
VR

 U
I--

>P
R

O
J,

 7
8.

75
VC

R
 U

I--
>P

R
O

J,
 5

2.
50

TV
 U

I--
>P

R
O

J,
 5

1.
22

Generation-
RCVR, 505.50

G
en

er
at

io
n-

TV
,

 4
20

.0
0

G
en

er
at

io
n-

D
VD

,
 4

71
.8

8

C
lie

nt
 F

ac
.-P

R
O

J,
 2

19
.0

0

0.00

100.00

200.00

300.00

400.00

500.00

600.00

1

tim
e(

m
s)

VCR UI Receiver UI TV UI DVD UI Lamp UI Projector UI

Cache-based Retargeting Performance
(Command-only GUIs on Fast Laptop and Wired LAN)

 108

Figure 61. Cache-based retargeting times of the command-and-state based GUIs vs. the
corresponding times of competing approaches (using the fast laptop and wired LAN).

Figure 62. Cache-based retargeting times of the command-and-state based GUIs vs. the
corresponding times of competing approaches (using the Ipaq and wired LAN).

Cache-based Retargeting Performance
(Fast Laptop and 100Mbps Wired Connection)

C
lie

nt
 F

ac
.-V

C
R

, 2
97

.1
3

R
em

ot
e

Fa
c.

-V
C

R
, 3

20
.5

6
G

en
er

at
io

n-
VC

R
, 5

53
.2

5
TV

 U
I--

>V
C

R
, 1

55
.7

8
R

C
VR

 U
I--

>V
C

R
, 2

61
.5

6
D

VD
 U

I--
>V

C
R

, 2
04

.5
6

C
lie

nt
 F

ac
.-R

C
VR

, 3
96

.4
3

R
em

ot
e

Fa
c.

-R
C

VR
, 4

01
.0

0

Generation-
RCVR, 882.44

VC
R

 U
I--

>R
C

VR
, 3

91
.3

3
TV

 U
I--

>R
C

VR
, 3

52
.7

5
LA

M
P

U
I--

>R
C

VR
, 3

60
.5

6
D

VD
 U

I--
>R

C
VR

, 4
76

.1
1

C
lie

nt
 F

ac
.-T

V,
 2

78
.6

7
R

em
ot

e
Fa

c.
-T

V,
 2

96
.1

1 G
en

er
at

io
n-

TV
, 5

49
.7

5
VC

R
 U

I--
>T

V,
 1

66
.8

9
R

C
VR

 U
I--

>T
V,

 2
51

.5
6

C
lie

nt
 F

ac
.-D

VD
, 2

70
.5

0
R

em
ot

e
Fa

c.
-D

VD
, 2

83
.6

7
G

en
er

at
io

n-
D

VD
, 7

02
.3

3
VC

R
 U

I--
>D

VD
, 2

66
.0

0
TV

 U
I--

>D
VD

, 2
77

.1
1

R
C

VR
 U

I--
>D

VD
, 2

89
.2

2
C

lie
nt

 F
ac

.-L
A

M
P,

 1
51

.8
3

R
em

ot
e

Fa
c.

-L
A

M
P,

 1
60

.2
2

G
en

er
at

io
n-

LA
M

P,
 3

41
.5

6
VC

R
 U

I--
>L

A
M

P,
 8

7.
89

TV
 U

I--
>L

A
M

P,
 8

0.
22

R
C

VR
 U

I--
>L

A
M

P,
 1

39
.0

0
LA

M
P

U
I--

>L
A

M
P,

 1
1.

11
C

lie
nt

 F
ac

.-P
R

O
J,

 2
32

.8
8

R
em

ot
e

Fa
c.

-P
R

O
J,

 2
48

.8
8

G
en

er
at

io
n-

PR
O

J,
 4

99
.3

3
VC

R
 U

I--
>P

R
O

J,
 1

35
.7

8
TV

 U
I--

>P
R

O
J,

 1
23

.5
6

R
C

VR
 U

I--
>P

R
O

J,
 1

61
.2

2
LA

M
P

U
I--

>P
R

O
J,

 1
11

.3
3

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00
tim

e(
m

s)

VCR UI Receiver UI TV UI DVD UI Lamp Projector UI

Cache-based Retargeting Performance
(Command-and-State Based GUIs on Fast Laptop and Wired LAN)
Cache-based Retargeting Performance

(Fast Laptop and 100Mbps Wired Connection)

C
lie

nt
 F

ac
.-V

C
R

, 2
97

.1
3

R
em

ot
e

Fa
c.

-V
C

R
, 3

20
.5

6
G

en
er

at
io

n-
VC

R
, 5

53
.2

5
TV

 U
I--

>V
C

R
, 1

55
.7

8
R

C
VR

 U
I--

>V
C

R
, 2

61
.5

6
D

VD
 U

I--
>V

C
R

, 2
04

.5
6

C
lie

nt
 F

ac
.-R

C
VR

, 3
96

.4
3

R
em

ot
e

Fa
c.

-R
C

VR
, 4

01
.0

0

Generation-
RCVR, 882.44

VC
R

 U
I--

>R
C

VR
, 3

91
.3

3
TV

 U
I--

>R
C

VR
, 3

52
.7

5
LA

M
P

U
I--

>R
C

VR
, 3

60
.5

6
D

VD
 U

I--
>R

C
VR

, 4
76

.1
1

C
lie

nt
 F

ac
.-T

V,
 2

78
.6

7
R

em
ot

e
Fa

c.
-T

V,
 2

96
.1

1 G
en

er
at

io
n-

TV
, 5

49
.7

5
VC

R
 U

I--
>T

V,
 1

66
.8

9
R

C
VR

 U
I--

>T
V,

 2
51

.5
6

C
lie

nt
 F

ac
.-D

VD
, 2

70
.5

0
R

em
ot

e
Fa

c.
-D

VD
, 2

83
.6

7
G

en
er

at
io

n-
D

VD
, 7

02
.3

3
VC

R
 U

I--
>D

VD
, 2

66
.0

0
TV

 U
I--

>D
VD

, 2
77

.1
1

R
C

VR
 U

I--
>D

VD
, 2

89
.2

2
C

lie
nt

 F
ac

.-L
A

M
P,

 1
51

.8
3

R
em

ot
e

Fa
c.

-L
A

M
P,

 1
60

.2
2

G
en

er
at

io
n-

LA
M

P,
 3

41
.5

6
VC

R
 U

I--
>L

A
M

P,
 8

7.
89

TV
 U

I--
>L

A
M

P,
 8

0.
22

R
C

VR
 U

I--
>L

A
M

P,
 1

39
.0

0
LA

M
P

U
I--

>L
A

M
P,

 1
1.

11
C

lie
nt

 F
ac

.-P
R

O
J,

 2
32

.8
8

R
em

ot
e

Fa
c.

-P
R

O
J,

 2
48

.8
8

G
en

er
at

io
n-

PR
O

J,
 4

99
.3

3
VC

R
 U

I--
>P

R
O

J,
 1

35
.7

8
TV

 U
I--

>P
R

O
J,

 1
23

.5
6

R
C

VR
 U

I--
>P

R
O

J,
 1

61
.2

2
LA

M
P

U
I--

>P
R

O
J,

 1
11

.3
3

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00
tim

e(
m

s)

VCR UI Receiver UI TV UI DVD UI Lamp Projector UI

Cache-based Retargeting Performance
(Command-and-State Based GUIs on Fast Laptop and Wired LAN)

Cache-based Retargeting Performance
(Command-and-State Based GUIs on Ipaq and Wired LAN)

C
lie

nt
 F

ac
. -

 P
R

O
J,

 4
89

.4
4

R
em

ot
e

Fa
c.

 -
PR

O
J,

 6
11

.1
1

G
en

er
at

io
n

- P
R

O
J,

 1
29

2.
33

PR
O

J
U

I--
>P

R
O

J,
 5

7.
56

LA
M

P
U

I -
->

PR
O

J,
 3

96
.8

9

VC
R

 U
I -

->
PR

O
J,

 5
46

.3
3

TV
 U

I -
->

PR
O

J,
 4

59
.4

4

R
C

VR
 U

I -
->

PR
O

J,
 6

97
.8

6

C
lie

nt
 F

ac
.-L

am
p,

 2
11

.2
2

R
em

ot
e

Fa
c.

-L
am

p,
 3

13
.7

8

G
en

er
at

io
n-

La
m

p,
 5

75
.7

8

LA
M

P
U

I--
>L

A
M

P,
 3

8.
22

TV
 U

I--
>L

A
M

P,
 3

03
.2

2

VC
R

 U
I--

>L
A

M
P,

 3
27

.7
8

R
C

VR
 U

I--
>L

A
M

P,
 4

00
.0

0

C
lie

nt
 F

ac
.-R

C
VR

, 1
12

1.
11

R
em

ot
e

Fa
c.

-R
C

VR
, 1

76
0.

43

Generation-RCVR,
 3339.00

R
C

VR
 U

I--
>R

C
VR

, 3
24

.4
4

LA
M

P
U

I--
>R

C
VR

, 1
59

7.
67

VC
R

 U
I--

>R
C

VR
, 1

70
5.

00

TV
 U

I--
>R

C
VR

, 1
69

6.
11

D
VD

 U
I -

->
R

C
VR

, 1
83

5.
00

0

500

1000

1500

2000

2500

3000

3500

4000

1

tim
e(

m
s)

Projector UI Lamp UI Receiver UI

 109

 The results show that caching offers major benefits. For the case of retargeting

command-only user-interfaces on the laptop (Figure 60), all of the nineteen

heterogeneous retargeting cases of Figure 56 yield times that are now below the

corresponding client-factory based times. For command-and-state based user-interfaces

recall that the non-caching case only offers one promising case. Caching improves this

number to sixteen. Two of the three other cases, (TV UI DVD) and (RCVR UI

DVD), have retargeting times that are respectively only two and three percent longer than

their corresponding client-factory times. However, the other case, (DVD UI RCVR),

is seventeen percent longer than its competing client-factory time. The DVD player and

receiver are our two most complex and dissimlar devices.

 In general, the benefits of cache-based retargeting on the Ipaq are not as significant as

on the laptop. Only two of the eleven heterogeneous retargeting cases we tested yield

times that are lower than their respective client-factory based times. Seven of the eleven

cases, though, are faster than using the remote-factory approach—a major improvement

over generation times.

 As done with non-caching based retargeting, we tested a subset of the cases on the

laptop using the dialup connection and caching support. We used the same subset of

receiver-based cases from the earlier measurements so that we could make appropriate

comparisons. Figure 63 shows the measured times from the experiments. Unlike the

non-caching based results, all the cache-based retargeting times are lower than the

corresponding client-factory based times. This result is even true for the (DVD

UI RCVR) tranisition, which we found to be much slower than client-factory

deployment when using the wired LAN. It is currently not clear why this benefit occurs

in the dialup case and not the wired LAN case.

 110

Figure 63. Cache-based retargeting times of the receiver command-and-state based GUI
vs. the corresponding times of competing approaches (using the fast laptop and dialup
connection).

4.5 Conclusion

The chapter presents the idea of user-interface retargeting. We identified several levels

of retargeting a system can support and implemented some of them into a SUI and GUI

generator. The GUI generator (ObjectEditor) supports the particularly important ability

to retarget between devices of different types whose user-interfaces consist of buttons and

primitive type based widgets. This ability is not currently supported by any existing

generator. To efficiently support it, our implementation addresses the fastest user-

interface selection and approach selection issues raised by such retargeting. We address

them both using regression-based source-device prediction. As described earlier, this

approach has a problem of long search times since it involves traversing the

programming interfaces of possibly many source devices to gather information needed to

make predictions. To optimize this process, the generator additionally supports cache-

based retargeting.

Dialup (50Kbps) Cache-based Retargeting
Fast Laptop UI Deployment Times (for Receiver)

C
lie

nt
 F

ac
.,

64
18

.0
0

R
em

ot
e

Fa
c,

 1
16

27
.8

9

Generation, 16100.00

R
C

VR
 U

I--
>R

C
VR

, 5
34

6.
44

VC
R

 U
I -

->
R

C
VR

, 5
70

9.
11

TV
 U

I -
->

R
C

VR
, 5

21
5.

33

LA
M

P
U

I--
>R

C
VR

, 5
68

0.
44

D
VD

 U
I--

>R
C

VR
, 5

53
2.

67

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1

tim
e(

m
s)

Cache-based Retargeting Performance
(Command-and-State Based Receiver GUI on Fast Laptop and Dialup Connection)

 111

 Using our retargeting mechanisms, we prove the Time-Efficient Generator Hypothesis:

it is possible for SUI and GUI generators to have deployment times that are often as good

as or noticeably better than the inherently fastest approach of locally loading device-

specific user-interface code. Based on our experiments we have found situations where

retargeting times are better and worse than client-factory based times. More specifically,

our experimental results show the following:

• Regression-based source-device prediction successfully addresses the fastest

user-interface selection issue. In the experiments we ran, the generator always

predicts the absolute fastest GUI even when the difference between the times two

potential source user-interfaces offer is only one percent.

• Regression-based source-device prediction is also successful in deciding whether

to generate or retarget. The experiments imply that retargeting is always faster

than generation given that none of the many retargeting cases that we considered

yield times that are greater than their corresponding generation time.

• Regardless of the kind of user-interface deployed (SUI vs. GUI) or the client’s

processing power (laptop vs. Ipaq), homogeneous retargeting times are an order

of magnitude lower than their corresponding client-factory times.

• For heterogeneous retargeting, the times depend on whether: (a) the source user-

interface is state-based and (b) caching is turned on.

• With no caching and command–only user-interfaces, most of the retargeting cases

offer times that are lower than the client-factory based times.

• For command-and-state based user-interfaces, however, nearly all of the non-

caching based retargeting times are significantly above their corresponding client-

factory based times.

• Turning on caching, drastically improves retargeting time. On the laptop, almost

all of the retargeting cases we considered have times that become lower than the

client-factory based times after activating caching.

 112

• In the Ipaq’s case, the cache-based retargeting times are closer to the remote-

factory based times than those of the client-factory. These times, however, are

still a drastic improvement over generation times.

Chapter 5: History-based Generation
In the previous chapter, we prove the Time-Efficient Generation Hypothesis using the

idea of user-interface retargeting. Here, we present history-based generation, which is

another approach for addressing this hypothesis. Unlike user-interface retargeting,

history-based generation avoids generating user-interfaces that support an entire device’s

functionality. Instead, it presents just the content a user needs in a user-interface, based

on the user’s past behavior. It supports the principle that the less content a user-interface

will contain, the less time it should take to generate the user-interface. Hence, the

assumption is that the content a user needs for a device’s user-interface is generally less

than the content needed in presenting the device’s entire capabilities. Figure 64

illustrates a scenario where this content assumption is true. The generated GUI in the left

contains all of the 42 buttons found on our networked receiver’s remote control. The one

on the right just contains the 10 buttons that the owner (the author) typically needs.

Other commands beyond the ten shown have actually been invoked on the receiver

during its history and are thus required in theory. However, these commands were only

used during the initial setup of the receiver after it was purchased. Most of these

commands, which include ‘test tone’, ‘center down’, and ‘center up’, were used to

calibrate the speaker volume settings for the living room containing the receiver.

Figure 64. An entire receiver GUI (left) vs. a receiver GUI containing all of the
commands the owner (author) typically needs (right).

 114

 The content assumption implies that history-based generation could also be used to

address the problem of limited screen space offered by mobile computers when

displaying GUIs. To illustrate this problem, consider the ObjectEditor-generated

command-only GUIs for our six networked devices (Appendix A). They only require

one screen on the laptop’s 14 inch display. On the Ipaq pocket PC, which has a 3.8 inch

display, the lamp GUI is the only case that requires a single screen. The GUIs for five

other devices span at least two screens (Table 11). Consequently, they will force users to

tediously scroll and tab through multiple screens to find buttons. When moving from

pocket PCs to cell phones, which generally have even smaller sized screens (Figure 6),

the tediousness of this scrolling increases. It is thus our Space-Efficient Generation

Hypothesis that history-based user-interfaces can consume significantly fewer screens

than their corresponding full device user-interfaces.

Device # of Ipaq Screens
for Full GUI

Receiver 3
DVD Player 3
TV 2
VCR 3
Projector 2
Lamp 1

Table 11. Number of screens consumed by each device’s command-only GUI.

 In the next section, we describe our history-based generation mechanisms in detail.

Using these mechanisms, we evaluate how well we can prove the Time-Efficient

Generation and Space-Efficient Generation hypotheses. Finally, we present our

conclusions.

5.1 Approach

In forming our specific history-based generation approach, we focused on two important

requirements:

1) Automation: The number of devices that a user periodically interacts with can be

large. Thus, an approach should not be manual, requiring users to explicitly teach

a generator which commands to filter out from the full user-interface of each

device they use. It should offer automation by monitoring a user’s interactions

with each device over a period of time and then predicting needed commands.

 115

2) Fast Activation: A user should not have to interact with a device for a long period

of time before an approach can actually begin supporting the user’s tasks with the

device. When given a history-based user-interface for the device, the user should

not have to constantly revert to the device’s full user-interface due to missing

commands. Further, the history-based user-interface should not contain many

extra commands that are unneeded by the users.

 In theory, it appears that a tradeoff exists between the two requirements. The manual

approach implies fast activation since it can support a user’s tasks with a device without

observing the user actually use the device. Basically, a generator can begin deploying

history-based user-interfaces directly after the teaching process. This teaching process,

however, conflicts with the automation requirement. Automation, on the other hand,

incurs a training period.

 From analyzing the interaction logs mentioned in the previous chapter, we found that

in practice, the two requirements can be easily met. The logs show that it can take a short

period of usage time with a device for a user to invoke all of the commands needed in

his/her common tasks involving the device. Figure 65 shows this observation using data

from logging study participants. For a large collection of different kinds of devices, it

shows for each device, the number of usage days required by its owner to invoke all of

the commands he/she needs in common tasks involving the device—we call these

commands common-tasks-commands. To gather these values, we individually asked the

participants to provide us with a list of tasks they commonly perform with their devices

(e.g. watching TV and listening to music). We then asked them to look at each of their

remote controls and list the commands needed for each of their associated tasks. The

combination of commands of a particular device, across all lists of commands provided

by a participant, defines that participant’s common-tasks-commands for the device.

Given a device’s common-tasks-commands, we searched its owner’s log to find the

number of usage days required to invoke them. When searching the logs, we found that

some participants forgot to list some remote control commands they actually use during

their tasks. We simply added these command names to the command list of the

appropriate task.

 116

Figure 65. Number of usage days required for the participants to complete their common
tasks on their respective devices.

 To summarize, the data shows that the participants required less than a week of normal

usage with most of their respective devices in order to invoke all of their common task

based commands. In fact, for most cases (17of 26 total devices), only one or two days of

usage were required. Figure 65 omits the usage data for some of the participants’ devices

that were actually used during their week of logging. For example, it leaves out

participant-5’s (P5) stereo system and DVD player data. The reason is that a week of

logging was not enough to capture all of her common-tasks-commands of these devices.

To illustrate, P5 listed the CD1, CD2, and C3 commands of her stereo system as being

needed in her ‘listening to music’ task. These commands play the CD in a given slot (1-

3) in the stereo system. During logging, she only played the CD in slot 1 by pushing

CD1, thus, the logging mechanism did not capture the CD2 and CD3 buttons. P5 did

mention that all CD slots in the stereo contained a CD throughout the week, but she had

only been interested in listening to the CD in slot 1. In fact, she further stated that: (a)

Number of Usage Days Required to Complete Common Tasks

2

3

1

2

1

3 3 3

2

3 3

1 1 1

4

3

1

2

1 1

2

5

1

2

1 1

0

1

2

3

4

5

6

7

8
TV

VC
R TV

D
VD

 C
H

A
N

G
ER

R
EC

EI
VE

R

C
A

B
LE

 B
O

X

TV
/V

C
R

 C
O

M
B

O TV TV TV

VC
R

/D
VD

 C
O

M
B

O TV

XB
O

X

R
EC

EI
VE

R

TI
VO

TV
/V

C
R

 C
O

M
B

O

D
VD

 P
LA

YE
R TV

D
VD

 P
LA

YE
R

ST
ER

EO
 S

YS
TE

M TV

C
A

B
LE

+T
IV

O
 B

O
X TV

VC
R

D
VD

 P
LA

YE
R

R
EC

EI
VE

R

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

PARTICIPANTS/DEVICE(S)

U
SA

G
E

D
A

YS

one week

 117

she had not listened to the CDs in slots 2 and 3 “for a long time” and (b) whenever she

needed to insert a new CD of interest in the system, she would replace the CD in slot 1.

Thus, technically, her week of logging did capture the commands she would need for a

substantial amount of time.

 Given the device usage data presented above, an approach that allows us to meet our

two requirements is for a generator to automatically: (a) record the commands the user

invokes on a device over a short period and then (b) create a user-interface consisting of

just those recorded commands. In fact, the data suggests that for a variety of devices and

users, a generator can begin deploying history-based user-interfaces after a week of

logging. We imagine that there could be some cases in which one week is not enough.

Therefore, the generator should have a fallback mechanism for efficiently reverting to a

device’s full user-interface if a history-based one is incomplete. Since a device’s full

user-interface contains all of the commands of any of its history-based ones, this fallback

can use the retargeting techniques we developed to quickly perform the switch. That is, it

can covert the history-based user-interface (source) into a full one (target) by simply

adding the unrepresented device commands.

5.2 Evaluation

We extended our SUI and GUI generators with the necessary functionality to evaluate the

generation time and screen space efficiency of our approach. In full generation, a

generator dynamically extracts a device’s commands at interaction time and represents all

of them in a user-interface. Under history-based generation, the generator still extracts

device commands. However, it presents a user-interface consisting of only the

commands found the log.

 Ideally, we could perform our evaluation by using each of our study participant’s log

to generate actual history-based user-interfaces and then take deployment time and screen

space measurements. This process, however, requires networking over twenty devices of

the participants in the manner followed in our earlier performance experiments (Section

3.1). The reason is that the participants’ devices were of varying brands and generally

 118

offered unique sets of commands. None of the participants, for example, had TV remote

controls with the same set of buttons.

 Even beyond having to network all devices, such uniqueness in device commands also

requires handcrafting the GUIs and SUIs needed to make comparisons to the predefined

approach. Due to lack of time and the overhead involved, we were unable to implement

the described setup. To still make a general quantitative evaluation, we deployed history-

based user-interfaces using the author’s logs and used the collected measurements to

make estimations for the other participants’ cases. Recall that it is the author’s TV, VCR,

receiver, and DVD player that we networked for the performance experiments described

in the previous chapters. It is his interactions with these four devices that we logged in

our study.

5.2.1 Generation Time Efficiency

For the four devices, Figures 66 and 67 compare their history-based GUI generation

times to their matching client-factory, remote-factory, and full-generation based times.

Respectively, the two figures make these comparisons on the laptop and Ipaq using a

wired LAN connection.

 119

Figure 66. History-based GUI generation performance using the laptop and wired LAN
connection.

Figure 67. History-based GUI generation performance using the Ipaq and wired LAN
connection.

History-based Generation Performance
 (Command-only GUIs on Ipaq and Wired LAN)

C
lie

nt
 F

ac
.-V

C
R

, 5
60

.4
4

R
em

ot
e

Fa
c.

-V
C

R
, 8

67
.2

3

H
B

G
en

 -
VC

R
 (2

0:
41

),
12

74
.0

0

G
en

er
at

io
n-

VC
R

, 1
48

7.
00

C
lie

nt
 F

ac
.-R

C
VR

, 5
81

.8
9

R
em

ot
e

Fa
c.

-R
C

VR
, 9

40
.8

4

H
B

G
en

 -
R

C
VR

 (1
0:

42
),

17
77

.0
0

C
lie

nt
 F

ac
.-T

V,
 5

50
.6

1

R
em

ot
e

Fa
c.

-T
V,

 7
87

.7
8

H
B

G
en

 -
TV

 (8
:2

9)
, 9

87
.6

7

G
en

er
at

io
n-

TV
, 1

50
0.

56

C
lie

nt
 F

ac
.-D

VD
, 5

77
.4

3

R
em

ot
e

Fa
c.

-D
VD

, 9
00

.2
0

H
B

G
en

 -
D

VD
 (1

2:
38

),
12

19
.3

3

G
en

er
at

io
n-

D
VD

, 2
14

0.
75

G
en

er
at

io
n-

R
C

VR
,

 2
94

8.
29

0

500

1000

1500

2000

2500

3000

3500

tim
e

(m
s)

VCR UI Receiver UI TV UI DVD UI

History-based Generation Performance
(Command-only GUIs on Laptop and Wired LAN)

C
lie

nt
 F

ac
.-V

C
R

 ,
25

5.
50

H
B

G
en

 -
VC

R
 (2

0:
41

),
33

0.
53

G
en

er
at

io
n-

VC
R

 ,
37

5.
71

C
lie

nt
 F

ac
.-R

C
VR

 ,
29

0.
57

H
B

G
en

 -
R

C
VR

 (1
0:

42
),

34
2

C
lie

nt
 F

ac
.-T

V
, 2

57
.1

7

H
B

G
en

 -
TV

 (8
:2

9)
, 3

14
.5

7

C
lie

nt
 F

ac
.-D

VD
 ,

25
0.

67

R
em

ot
e

Fa
c.

-D
VD

 ,
26

1.
50

H
B

G
en

 -
D

VD
 (1

2:
38

),
32

5

R
em

ot
e

Fa
c.

-V
C

R
 ,

27
6.

00

R
em

ot
e

Fa
c.

-R
C

VR
 ,

29
7.

33

Generation-
RCVR,
 505.50

R
em

ot
e

Fa
c.

-T
V

, 2
60

.0
0

G
en

er
at

io
n-

TV
 ,

42
0.

00

G
en

er
at

io
n-

D
VD

,
 4

71
.8

8

0

100

200

300

400

500

600

1

tim
e(

m
s)

VCR UI Receiver UI TV UI DVD UI

 120

 The results show that even with more than half of each device’s commands being

filtered from its history-based GUI (Table 12), none of the GUIs have generation times

that are lower than factory deployment times. Most cases, however, have significantly

lower times than their corresponding full-generation times. Generating the receiver’s

history-based GUI, for example, eliminates 32% and 40% of full generation time on the

laptop and Ipaq respectively.

Device Ratio: # buttons
displayed to total

Percentage of
Commands Omitted

Receiver 10:42 76%
DVD Player 12:38 68%

TV 8:29 74%
VCR 20:41 51%

Table 12. A summary of command filtering amounts for each device.

 We also evaluated history-based SUI generation performance on the laptop. Figure 68

compares the history-based generation times of the four devices’ SUIs to the

corresponding times of other approaches. The results for SUIs show a smaller percentage

difference between the history-based and full generation times than in the GUI case.

History-based SUI generation for the receiver, for example, is only 20% faster than full

generation. Unlike the GUI case, however, all the history-based generated SUIs have

deployment times that are lower than their competing client-factory times. This is even

true for the VCR’s history-based SUI which contains the most number of commands.

This success is likely due to the fact that there is a smaller difference between client-

factory and generation based deployment times for SUIs than GUIs. Hence, the client-

factory times are easier to reach.

 121

Figure 68. History-based SUI generation performance using the laptop and wired LAN
connection.

 Using the author’s results presented above and a projection of the number of

commands each history-based user-interface of the other participants would contain, we

can make a more general evaluation about the performance of our approach. Without

having to actually deploy each user-interface, we can discover its command total by

counting the number of unique commands found in the log of its associated participant-

device pair (Table 13). Given all user-interfaces, we found this number to span 1 to 32

commands. P7’s history-based TV user-interface, for example, would only require a

power button. Also, P2’s history-based receiver user-interface would just require volume

up and down buttons. Most of the participants’ history-based user-interfaces, however,

would not have such low command totals. In fact, 17 out of the 22 total history-based

user-interfaces would contain at least 10 commands. Recall that the author’s history-

based TV GUI contains only 8 commands, yet its generation time still does not meet its

corresponding client-factory based times. It is thus very likely that most of the other

participants history-based generated GUIs will not have deployment times that are better

than their corresponding client-factory based times. These GUIs, however, will certainly

have deployment times that are better than their corresponding full generation times. The

History-based Generation Performance
(Command only SUIs on Laptop and Wired LAN)

C
lie

nt
 F

ac
.-V

C
R

34
99

.8

R
em

ot
e

Fa
c.

-V
C

R
36

48

H
B

G
en

 -
VC

R
 (2

0:
41

)
34

00
.8

G
en

er
at

io
n-

VC
R

41
20

C
lie

nt
 F

ac
.-R

C
VR

42
90

.4
4

H
B

G
en

 -
R

C
VR

 (1
0:

42
)

39
50

.3
2

C
lie

nt
 F

ac
.-T

V
34

16
.5

R
em

ot
e

Fa
c.

-T
V

34
95

.1
7

H
B

G
en

 -
TV

 (8
:2

9)
33

01 G
en

er
at

io
n-

TV
40

05
.6

7

C
lie

nt
 F

ac
.-D

VD
42

01
.4

5

R
em

ot
e

Fa
c.

-D
VD

44
19

.3
4

H
B

G
en

 -
D

VD
 (1

2:
38

)
40

30
.1

R
em

ot
e

Fa
c.

-R
C

VR
44

56
.2

5

G
en

er
at

io
n-

R
C

VR
49

35
.8

9

Generation-DVD
4902

0

1000

2000

3000

4000

5000

6000

tim
e

(m
s)

VCR UI Receiver UI TV UI DVD UI

 122

reason is that they all require fewer commands than their corresponding full GUIs—there

are no cases in which a participant requires all of a device’s available set of commands in

performing his/her common tasks.

Participant Device # of UI
commands

TV 17 P1
VCR 26
TV 18
DVD CHANGER 17 P2
RECEIVER 2
CABLE BOX 24 P3
TV/VCR COMBO 10

P4 TV 20
P5 TV 17

TV 23 P6
VCR/DVD COMBO 23
TV 1
XBOX 11
RECEIVER 5

P7

TIVO 32
TV/VCR COMBO 26 P8
DVD PLAYER 6
TV 10
DVD PLAYER 16 P9
STEREO SYSTEM 3
TV 3 P10
CABLE+TIVO BOX 27

Table 13. Number of commands required in each participant’s set of history-based user-
interfaces.

 For a more quantitatively-based prediction of history-based generation time savings,

we can use the generation-time estimation function presented in the previous chapter

(Section 4.2). This comparison involves calculating the function for both the history-

based and full GUI of each participant-device pair. As inputs to the function, one

calculation uses the number of common-tasks-commands a user requires on a given

device while another uses the number of commands on the device’s remote control.

These inputs correspond to the number of buttons on the history-based and full GUI for

the participant-device pair, respectively. Unfortunately, we did not count the number of

buttons found on our participants’ remote controls during the time of our logging study

since the values were not needed for our original reasons for performing the study. Thus,

we are currently unable to offer any quantitatively-based predictions of history-based

generation time savings over full generation using our participants’ data.

 123

 For SUIs, we expect a similar success as found with the author’s data. Recall that even

the author’s history-based VCR SUI, which contains 20 commands, had a generation

time that was lower than the matching client-factory based time. Most of the other

participants’ history-based user-interfaces (15 out of 22) would contain 20 or fewer

commands and would thus yield similar results.

5.2.2 Screen Space Efficiency

We are only concerned with the screen space efficiency of our approach on the Ipaq since

a single laptop screen can display GUIs containing very high numbers of buttons. For the

author’s four history-based GUIs, we counted the number of Ipaq screens required to

display them (Table 14). Three of the four GUIs require only one screen, compared to all

four requiring at least two for the full GUIs. Figure 69 portrays this benefit by showing

the history-based receiver GUI on a single Ipaq screen.

of Screens Consumed Device
Full UI His.-Based UI

Receiver 3
(See Figure 5) 1

DVD Player 3 1
TV 3 1
VCR 2 2

Table 14. The number of Ipaq screens required for full and history-based GUI.

 Most of other participants’ history-based GUIs would also offer similar benefits as

those of the author. The reason is that our generator fills an Ipaq screen with a maximum

of 18 buttons, and most of the participants history-based GUIs require 18 or fewer

buttons. Specifically, 14 of the 22 total cases would only require a single screen on the

Ipaq. As mentioned earlier, we did not count the number of buttons found on the remote

controls of each of the other participants’ devices. However, by simply considering the

complexity of their devices, we can say that all of the associated full GUIs would require

more than one screen.

 124

Figure 69. The receiver’s history-based GUI on a single Ipaq screen. With the available
space from filtering buttons, the remaining buttons can be stretched to fill the screen.

5.3 Conclusion

This chapter presents the idea of history-based user-interface generation. Our specific

approach is based the observation that it can take a short period of usage time with a

device before a user invokes all of the commands needed in his/her common tasks

involving the device. A generator can thus: (a) record the commands a user invokes on a

device likely over a short period of time and then (b) create user-interfaces consisting of

just those recorded commands.

 We extended our SUI and GUI generators with the needed mechanisms to evaluate

whether this approach can be used to prove our Time-Efficient Generation and Space-

Efficient Generation hypotheses. Using the logged interaction data of several users and

their different devices, we prove the former hypothesis within the scope of history-based

SUI generation. History-based GUI generation, though significantly faster than full GUI

generation, does not allow us to meet this hypothesis. It does allow us, however, to prove

the Space-Efficient Generation hypothesis—i.e. most history-based generated GUIs

require only one screen compared to two or more for full generation.

Chapter 6: Pattern-based Composition
The ideas presented thus far in this dissertation apply to both single and multiple device

user-interfaces. The multi-device case also raises the additional issue of how devices are

composed. As our discussion of related work shows (Section 2.2), current examples

demonstrate different approaches to supporting such functionality.

 Some infrastructures provide users with already programmed mechanisms for

achieving desired compositions. Cougar and TinyDB, for example, are two high-level

infrastructures that provide composers for performing multi-sensor queries. The two

infrastructures, however, are limited to only supporting queries. Infrastructures have

been built for generically supporting composition. ICrafter and Speakeasy are the two

examples that exist today. Both of them, however, are low-level since they place much

of the composition effort on their users and programmers. In our description of these two

systems (Sections 2.2.5 and 2.2.6), we show that this burden is not small largely due to

the combinatorics involved in flexibly supporting composition.

 In summary, current infrastructures force us to choose between high-level support and

composition flexibility. Specifically:

1) each existing high-level infrastructure supports composition semantics that no

other high-level infrastructure supports.

2) each low-level infrastructure can flexibly support each of the existing composition

semantics but requires a costly amount of effort from its users and programmers.

It thus our High-level and Flexible Composition Hypothesis that a new infrastructure can

be built to overcome this existing tradeoff by meeting the two conditions below:

3) supports the composition semantics of existing high-level infrastructures.

 126

4) provides higher-level support than all other infrastructures that can support all of

these semantics.

In the next section, we present an overview of our approach to meeting the hypothesis.

We then evaluate this approach by describing an implementation that we built to meet the

two above conditions. Finally, we present our conclusions.

6.1 Overview

Our process for achieving a high-level and flexible composition framework involved

three steps. The first step was to gather the specific composition examples supported by

current infrastructures and abstract them into a set of operations. With a range of

operations defining our target flexibility, our next step was to find out why existing

systems cannot properly support them at a high-level. Given these reasons, we then

derived a framework that would allow us to design and implement the necessary

algorithms for supporting each operation.

We identified seven different abstract operations. Below, we motivate and describe

them:

• ‘GUI Stack’ Operation – Earlier, we described how Hodes’ System could

vertically and horizontally stack the individually generated GUIs of a set of room

lamps to form a single compound user-interface. This compound GUI allows a

person to set the room’s lighting without tediously switching between individual

lamps user-interfaces. Hodes’ System thus performs what we refer to as the ‘GUI

Stacking’ operation, which stacks the individual user-interfaces of a set of devices

into one. A movie watcher, for example, might perform the ‘GUI Stacking’

operation on a TV, DVD player, and receiver to avoid switching between their

individual GUI while watching a movie.

• ‘GUI Merge’ Operation – Recall that the individual GUIs of the author’s

networked TV, DVD player, and receiver, each consume three Ipaq screens

(Section 5.5.2). On a mobile device with a small screen, the movie watching

stacked GUI mentioned above could present a scrolling problem that is similar to

 127

tediously switching individual TV, DVD player, and receiver user-interfaces.

Basically, this GUI could require the movie watcher to scroll back and forth over

a significant amount of screen real-estate in order to access individual device

buttons. More generally, the scrolling cost of stacked GUI can be quite high in

compositions involving complex and/or numerous devices, such as the movie

watching case.

 To reduce scrolling, a ‘GUI stacking’ composer could support our history-

based generation approach. That is, for each device’s panel, it could display the

device’s common-tasks-commands—i.e. the commands a user typically invokes

during common tasks involving the device. Based on our history-based

generation evaluation (Section 5.2.2.), this approach should be quite successful in

reducing the number of buttons to display. Using the author’s usage data, the

movie watching stacked GUI would reduce from 109 to 30 buttons (spanning TV,

DVD player, and receiver commands). Though significantly smaller than the full

GUI, the one showing only common-tasks-commands of the three devices is still

not optimal since the author only requires 19 commands when watching DVDs.

Ideally, a compound GUI for watching a DVD should only display these 19

commands in order to minimize scrolling on small screens. We thus introduce the

GUI merge operation, which creates such a compound GUI. This operation

merges the operations of a set of devices to create task-specific compound GUIs.

A user, for example, might want a ‘music listening’ merged GUI for a CD player

and receiver. This GUI would omit space consuming commands such as those for

burning a CD and setting the receiver to different radio channels.

• ‘Do All’ Operation - Earlier, we described how an ICrafter composer could allow

a user to turn several lamps on and off with a single action (e.g. button click).

This functionality allows the user to avoid performing many actions on many

individual lamp user-interfaces. We appropriately refer to this kind of

functionality as the ‘do all’ operation, which invokes a command on each member

of a set of devices that causes the devices to perform a similar action. Besides

 128

lamps, a user could invoke a ‘do all’ operation on several clocks to add/decrease

an hour during daylight savings time.

• ‘Do Sequence’ Operation– Macros are very useful in many of today’s

conventional computer applications. It can also be useful to invoke macro

operations on a set of devices. Palm/Pocket PC IR programs, for example, can

allow a person create a macro that automatically prepares a TV, DVD player, and

Receiver for watching a movie. This macro could perform the following actions:

1) Turn on the TV
2) Set TV to DVD video input channel
3) Turn on the receiver
4) Set the receiver to DVD audio input
5) Turn on the DVD player
6) Open the DVD player’s disc tray

In spirit of the ‘do all’ operation, we refer to the functionally provided by a

composer invoking such a macro as the ‘do sequence’ operation. A ‘do sequence’

operation could be applied on the same DVD and receiver to preparing them for

music listening:

1) Turn on the receiver
2) Set the receiver to DVD audio input
3) Turn on the DVD player
4) Open the DVD player’s disc tray

• Query Operation - As Cougar and TinyDB show, it can be useful to perform

queries on networked sensors that are distributed over an environment. Cougar,

for example, allows a person to query various sensors at a specific location for

their average rainfall measurements. It thus supports the query operation—i.e. the

ability to search a set of devices to find those with attributes (e.g. location) of a

specific value. We imagine several cases in which the general ability to query a

set of devices can be useful. For instance, before going on vacation, users could

query their homes for all the devices that are on. Using the references of those

devices that meet the query, users can decide the appropriate action to save

electricity—e.g. turn all the non-essential ones off.

 129

• ‘Data Transfer’ Operation- Another way to compose devices using their data

values is to allow them to exchange these values over a network. Our earlier

discussion of ICrafter and Speakeasy describes an example in which a composer

provides the ability to transfer pictures in cameras to display devices for viewing.

Similarly, Websplitter provides the ability to transfer webpage content (e.g. audio

files) to presentation devices (e.g. sound systems). These systems thus support

what we refer to as the data transfer operation, which allows information from a

data producer to be transferred to a data consumer. This operation could be used

to achieve many other useful compositions. For instance, it could allow the

transfer of an atomic clock’s time value to several other clocks after a power

outage. It could also allow the transfer of the clock’s time value to the internal

clocks of newly purchased VCRs, TVs, and microwaves.

• ‘Conditional Connect’ Operation – We identified a set of new kinds of examples

that are very different from those currently demonstrated. Consider the ability to

create an adhoc security system using a motion detector outside the front door of a

house and various lights near the interior entrance. The devices are composed

together so that when the motion detector senses motion, all of the lights, if off,

are automatically turned on. Similarly, a DVD player could be composed to a

telephone so that when the phone rings while a movie is playing, the movie is

automatically paused. These examples rely on a general functionality provided by

what we refer to as the ‘conditional connect’ operation. This operation

automatically invokes one or more operations on a set of devices based on the

state conditions of another set of devices.

In general, these operations represent a variety of ways to compose devices by their

possibly many operations and/or data entities. Below, we describe the specific

orientation required by a given operation:

• ‘GUI Stack’ and ‘GUI Merge’ Operations – A data-oriented approach can

provide a GUI consisting of only the state information of a group of devices. An

 130

operation-oriented approach can only present their operations in a GUI. An

infrastructure that supports both can present both state and operation information.

• ‘Do All’ Operation – Operation-oriented by requiring access to the shared

operations of a set of devices.

• ‘Do Sequence’ Operation – Operation-oriented by requiring access to all

operations of a set of devices.

• Query Operation – Data-oriented by requiring access to device attribute values.

• Data Transfer Operation – Data-oriented by requiring access to device data

values.

• Conditional Connect Operation – Requires an infrastructure that supports both

orientations since state and operations are required for conditions and matching

events, respectively.

 Supporting all operations at a high-level requires a data and operation oriented

framework. A data-oriented framework views devices as collections of readable and/or

writeable attribute values while an operation-oriented one views them as sets of

operations. Table 15 classifies existing systems in terms of their orientation.

System Orientation
Cougar Data
TinyDB Data
Hodes’ System Operation
Websplitter Data
ICrafter Operation & Data
Speakeasy Operation & Data
Palm/Pocket-PC IR Programs Operation

Table 15. A classification of existing systems

It shows that Cougar, TinyDB, Hodes’ System, Websplitter, and Palm/Pocket PC

programs are limited by their support of only one of the two orientations. ICrafter and

Speakeasy, on the other hand, support both. Recall from our survey of the two systems

that they support a programming interface based approach to composition (Sections 2.2.5

 131

and 2.2.6). Devices must implement well-known programming interfaces that expose the

ways in which they can be composed. These interfaces declare operations that devices

must support in order to achieve the interfaces’ associated semantics. Composers can

then be programmed to support the semantics tied to specific interfaces, invoking the

necessary interface-based operations on devices in order to meet their goals. Inherently,

the interface-based approach is operation-oriented. Now given that interfaces only

declare operations, how can the approach also support data-based operations? The

insight provided by ICrafter and Speakeasy is that interfaces representing data-oriented

semantics must declare standard operations that composers can invoke to access needed

data. An interface for describing a device’s data transfer composability would, for

example, declare well-known operations for accessing the device’s exchangeable data.

 Although the interface-based approach supports both orientations, it still exhibits the

important high-level support and flexibility tradeoff. This limitation arises in addressing

the following question: How specific should interfaces be in exposing the composability

of devices implementing them? In other words, how much detail should interfaces

provide in describing the ways in which devices can be composed? Should a device, for

example, implement a generic interface simply exposing its ability to exchange data, or

should it implement a set of more specific interfaces describing the different ways it can

exchange data with another device. As specificity increases, the kinds of semantics that

can be supported within an infrastructure become more well-defined and thus more

programmable (or automatable) using composers. In essence, the less ambiguity that

programmers have in understanding the semantics supported by an infrastructure, the

more tailored their composers can be in achieving those semantics. Infrastructures with

high flexibility and interface specificity, however, require many interfaces since more

interfaces are needed to separate the differences between many semantics. To illustrate,

the more ways an infrastructure that is based on specific interfaces allows devices to

exchange data, the more interfaces are needed to differentiate the different ways of data

exchange. Given that greater automation requires more specific interfaces, supporting

high flexibility and automation leads to a proliferation of interfaces and significant

programming costs in writing associated composers. To composer programmers, a

 132

tradeoff thus exists between flexibility and ease of use under the interface-based

approach.

 Keeping the level of specificity of interfaces low avoids this tradeoff since it allows for

fewer (more generic) interfaces which leads to fewer composers to write. However, it

provides less information to programmers in understanding the semantics supported by

an infrastructure. The composers they write are therefore less automatic, relying more on

users to make sense of the connections between devices in order to achieve their

associated semantics. A generic interface that simply exposes a device’s ability to

exchange data, for example, does not provide programmers with specific information

about the types and values of the exchangeable data and the kinds of devices with which

the device can exchange data. A composer written for this interface must therefore rely

on users making correct matches between devices. Thus, even with generic interfaces, a

tradeoff still exists between ease of use and flexibility—the effort has simply been

pushed to users. Below, we expand on these limitations using specific examples from

ICrafter and Speakeasy.

 Consider a composition of several lamps in a room under ICrafter’s approach.

Suppose that the lamps implement a PowerSwitch interface that declares a power()

method for turning them on and off. A programmer can write a PowerSwitchAll

composer for this programming interface that provides the ability to simultaneously turn

the lamps on and off. Given the references to the lamps, this composer generates a user-

interface for invoking the corresponding (power-all-lights) ‘do all’ operation. When the

operation is invoked, the composer calls the well-known power() method of each lamp.

 The PowerSwitchAll composer raises an important tradeoff that the programmer must

make in writing composable programming interfaces. Which programming interfaces

should a device implement? Two extreme options are a programming interface for all

operations of a device or a programming interface for each operation. The first piece of

code below is an example of the former approach while the second demonstrates the

latter:

 133

1)
public interface Light {

public void power();
public void dim();
public void brighten();

}
2)

public interface PowerSwitch {
 public void power();
}
public interface DimSwitch {
 public void dim();
}
public interface BrightenSwitch {
 public void brighten();
}

 In the first case, it is not possible to write a generic composer for devices implementing

different programming interfaces even if they have common operations. For example, it

is not possible to write a composer for simultaneously invoking the power operations of a

TV and a light, since they provide different sets of operations. The latter approach

overcomes the limitations of the earlier. However, it leads to a proliferation of

programming interfaces and associated composers. Supporting the ‘Power All’, ‘Dim

All’, and ‘Brighten All’ operations on the lights requires three separate programming

interfaces and composers. An intermediate approach that defines programming interfaces

for subsets of operations offers intermediate degrees of composition flexibility and

programming cost of these two extreme approaches. As we will show later, our work

does not force programmers to make this tradeoff between composition flexibility and

automation.

 Let us consider a different composition scenario, which involves a transfer of images

in a camera to a display device for viewing. Assume that the camera and display device

implement a DataProducer and DataConsumer interface respectively. The

DataProducer interface declares a produce() operation that returns a value to transfer,

and the DataConsumer interface declares a consume() operation that accepts the value. A

programmer can now write a DataPipe composer that allows the camera and display

device to exchange data. Given the references to the camera and display device, this

composer generates a user-interface for invoking the corresponding (image) data transfer

operation. Once the user invokes the operation, the composer calls the well-known

 134

methods of its associated programming interfaces to achieve the image transfer. That is,

it makes a call that passes the value returned from camera.produce() as an argument to

display.consume().

 An issue with performing data transfers is how DataProducer and DataConsumer

interfaces declare the data they exchange. Two options are to declare data as: (a) a

generic object or (b) a programmer-defined type. In Java, the class Object demonstrates

this notion of a generic data type. All classes in Java are subclasses of Object and can

therefore be typecasted to it. Using generic objects, the two programming interfaces

would be:

public interface DataProducer {
public Object produce();

}
public interface DataConsumer {

public void consume(Object x);
}

Here, the producer returns a value of type Object and the consumer accepts a value of

that same type. Below is an example of using programmer-defined types in which the

consumer and producer specifically exchange a Picture object:

public interface PictureProducer {
public Picture produce();

}
public interface PictureConsumer {

public void consume(Picture x);
}

 These two options raise a subtle tradeoff a programmer must make between type

flexibility and programming cost. The benefit of the generic approach is that it would

require implementing only one composer, a truly generic DataPipe composer, to

accomplish data transfers. One drawback is that all consumers are able to arbitrarily

match with all producers because they all produce and consume the same generic type.

When interacting with many devices, this approach could result in lists of many false-

positives—that is, matches between devices that cannot exchange data. An example of a

false positive is a match between a camera that only produces picture objects and an

alarm clock that consumes time objects. Another drawback of using generic objects is

that a device can only consume or produce one kind of data because forcing the generic

 135

type does not allow overloading of the consume() and produce() methods in the

programming interface declarations. Therefore, the camera could not independently

produce URLs to both pictures and recorded video.

 Supporting programmer-defined types in programming interfaces reduces the

production of false positives because it allows consumers and produces to be matched by

the types they exchange. It also allows overloading of the consume() and produce()

methods so that devices can exchange more than one data type. However, it incurs the

costs of writing many composers that are specific to the data types that devices can

exchange. To illustrate, it requires writing separate PicturePipe and VideoPipe

composers so that the camera can transfer two different kinds of data types. As we will

show later, our approach allows the writing of a single data transfer composer that

supports type matching.

 Speakeasy, which specifically adopts the notion of generic programming interfaces,

shows that it is possible to avoid the interface proliferation problem. This problem is

associated with systems, such as ICrafter, that support automatic matching of producers

and consumers. Speakeasy, on the other hand, takes a manual matching approach. It

provides a user-interface in which users, themselves, select and appropriately connect the

devices of matching programming interfaces. Thus, it relies on users to not make false

positives. To assist users in a data transfer, devices must implement operations that

return objects that indicate the values (including type descriptions) they can exchange.

For example, a digital camera would implement an operation that returns an object

indicating that it stores images as JPEGs. Also, a display device would implement an

operation returning an object indicating that the device only displays GIF images. A user

would discover that these two devices are incompatible for data transfer by comparing

their supported picture formats.

 The builders of Speakeasy performed user-studies to measure the burden of the manual

connection approach on users. These studies show that for typical device users, this

approach can be too low-level and difficult. Deferring the configuration task to ‘tech-

savvy’ users is not always possible—especially during impromptu types of interactions.

 136

 In summary, ICrafter and Speakeasy offer the operation and data oriented frameworks

necessary to meet our hypothesis. However, in order to offer high flexibility, they

require a significant amount of effort from programmers or users. Our approach

overcomes this problem by using programming patterns. Instead of requiring

programmers to implement specific interfaces, it requires them to follow genera device-

independent patterns. Like the interface based approach of ICrafter and Speakeasy,

programming patterns can be used to achieve an operation and data oriented framework.

Our earlier description of how ObjectEditor generates command and state based GUIs

from a single device’s programming interface illustrates this ability (Section 2.1.6).

Recall that under the ObjectEditor framework, method signatures following Java Bean

conventions can be used to describe the state properties of an object. Non-bean patterns

are also supported by ObjectEditor, however, they are not used in our work in

composition. Signatures that are not used to export bean properties, therefore, describe

operations. Figure 70 illustrates this process using a lamp’s programming interface. In

the next section, we describe how our infrastructure applies Bean and other patterns to

overcome the various limitations just described and thus meet our hypothesis that it is

possible to provide high-level and flexible composition support.

Figure 70. Extracting the state and operations from a lamp’s programming interface.

6.2 Algorithms and Evaluation

We implemented prototype GUI-based composers based on the operations we identified.

The prototypes were all written in Java and have been demonstrated to compose actual

devices that were networked in the manner described in Section 3.1. Below, we describe

public interface Lamp{
public void on();
public void off();
public void dim();
public void brighten();
public int getBrightness();
public void setBrightness(int _brightness);
public boolean getPowered();
public void setPowered(boolean _powered);

}

Java Beans
Conventions+

= STATE – brightness and powered

OPERATIONS – on, off, dim, and brighten
= STATE – brightness and powered

OPERATIONS – on, off, dim, and brighten

 137

the algorithms supported by these composers using pseudocode. These descriptions

include the programming patterns on which our composers rely.

6.2.1 ‘GUI Stack’ Composer

This composer supports the ‘GUI stack’ operation, which stacks the individual user-

interfaces of a set of devices into one. It implements the pseudocode below:

S = a set of device references
guiStack(S) {
 frame = createFrame();

for each device reference (x) in S {
 p = ObjectEditor.generateCommandAndStatePanel(x);

 frame.add(p);
 }
}

Our algorithm creates a GUI that displays the operations and state properties of a set of

devices. Given the references to these devices in set S, it first creates an empty frame that

will enclose the GUI. Then, for each device, it calls on ObjectEditor to create a panel

displaying the operation and state of the device. This call,

ObjectEditor.generateCommandAndStatePanel(), returns an appropriately filled

panel, which the algorithm adds to the enclosing frame . Like Hodes’ System, our system

can stack panels horizontally or vertically. To support both, we actually implemented

two composers based on the algorithm just described. The only difference between the

two is that one composer implements a horizontal-based panel alignment while the other

implements a vertical-based one. Figure 71 shows a movie watching GUI for a TV,

DVD player, and receiver that is based on vertical stacking. All user actions on a

device’s panel, e.g. pushing a TV button, are handled by ObjectEditor as if they were

performed on a single device GUI.

 138

Figure 71. A stacked GUI for watching movies—based on the author’s TV, DVD
player, and receiver.

6.2.2 ‘GUI Merge’ Composer

This composer supports the ‘GUI merge’ operation, which merges the operations of a set

of devices to create a task-specific GUI. It implements the pseudocode below:

 139

S = a set of device references
guiMerge(S) {
 selectionFrame = createFrame();
 for each device reference (x) in S {
 p = generateOperationSelectionPanel(x);
 selectionFrame.add(p);
 }
 d = generateDoneButton();
 selectionFrame.add(d)
}

donePushed(selectionFrame, S) {
 mergedGUI = createFrame();
 for each device reference (x) in S {
 C = getChosenCommands(selectionFrame,x)
 f = generateFilteredPanel(x,C)
 mergedGUI.add(f);
 }
}

Given the references to several devices in set S, the composer first generates a GUI that

allows a user to select the device operations that make up a target task (Figure 72). This

process involves initially creating an empty frame. For each device, the composer calls

generateOperationSelectionPanel() to generate a panel displaying the

device’scommand names with a checkbox next to each name. It adds each panel into the

frame. After adding all panels, the composer adds a done button to the bottom of the

frame. At this point, a user can click the checkbox of each command that is desired in a

target task. When finished, the user must simply click the done button. In return, the

composer executes donePushed(), which extracts the selected commands and generates

a merged GUI displaying them. The layout method of merged GUIs follows that of

stacked GUIs—merged GUIs simply omit non-task specific buttons.

 140

Figure 72. A GUI for selecting desired buttons for a target task.

6.2.3 ‘Do Sequence’ Composer

This composer supports the ‘do sequence’ operation, which invokes a macro spanning

several devices. It implements the pseudocode below:

S = a set of device references

doSequence(S) {
 frame = createFrame();
 for each device reference (x) in S {
 p = generateOperationSelectionPanel(x);
 frame.add(p);
 }
 v = generateVerifyAndDonePanel();
 frame.add(v)
 trackSelectionOrder();
}

donePushed() {
 l = getButtonLabel();
 b = new Button(l);
 C = getDeviceandOperationSelectionOrder();
 mapButtonToDeviceAndOperationOrder(b,C)
}

 141

pushed = a reference to the pushed button

doSequencePushed(pushed) {
 C = getDeviceAndOperationSelectionOrder(pushed);
 for each device reference and operation name pair (d,p) in C
{
 [d,m] = getDeviceandActualMethod(d,p);
 invoke(d,m);
 }
}

Given the references to several devices in set S, the composer first generates a GUI that

allows a user to select the device operations that make up the desired ‘do sequence’. This

process involves initially creating an empty frame. For each device, the composer then

calls generateOperationSelectionPanel() to build a panel that lists all of the

device’s operation names. Each panel also contains a checkbox next to each operation

name. A user clicks these checkboxes to define the operations that make up a desired ‘do

sequence’. The checkbox clicking order defines the order the composer invokes the

associated operations. After all panels, the composer creates a user verification panel by

invoking generateVerifyAndDonePanel(). This panel, which is added to the bottom of

the frame, to contains two textboxes and a ‘done’ button. One textbox displays the order

of the sequence defined by the user, and the other allows the user to enter a string for

labeling the resulting ‘do sequence’ button. The user can finalize a configuration by

clicking the ‘done’. After building this GUI, the composer begins to track the order of

device-operation pairs the user clicks using checkbox event listeners.

 Figure 73 shows an example GUI for defining the ‘watch a DVD’ button mentioned

earlier. Once a user clicks the ‘done’ button, the composer invokes donePushed(). This

method builds the actual ‘do sequence’ button using the information provided by the user.

Specifically, it creates the button b labeled after the user provided string and maps b to an

ordered list, called C, consisting of the tracked sequence of device reference and

operation name pairs. This mapping ensures that that the appropriate invocations are

made once the user pushes the button. The method doSequencePushed() handles such

an event. It accepts a reference to the pushed button and retrieves the sequence of device

reference and operation name pairs to which the button is mapped. For each pair in the

 142

sequence, it invokes getDeviceandActualMethod() to extract the corresponding device

reference and associated method object. It then invokes the method on the device.

Figure 73. A GUI for creating a ‘watch a DVD’ button.

6.2.4 ‘Do All’ Composer

This composer supports the ‘do all’ operation, which invokes a command on each

member of a set of devices that causes the devices to perform a similar action. It

implements the pseudocode below:

S = a set of device references

doAll(S) {
 [O,D] = getSharedSignaturesAndDevices(S);
 frame = createFrame();
 for each operation signature (x) in O {
 b = generateButton(x);
 T = D.get(x);
 setButtonTargets(b,T);
 frame.add(b);
 }
}

b = a reference to a pushed button

 143

doAllPushed(b) {
 T = getButtonTargets(b)
 for each device reference d in T

 m = getMethodFromButtonName(b.getLabel(), d);
 invoke(d,m);
 }
}

 Given the references to several devices in set S, our ‘do all’ composer searches the

devices’ programming interfaces to find the operation signatures that two or more of

them share. This search, performed in getSharedSignaturesAndDevices(), returns

two values: (1) the list O consisting of these shared signatures and (2) the hashtable D,

which maps each signature to a list of references to devices offering the associated

operation. For the set of room lamps in the earlier example,

getSharedOpertionsAndDevices() would return the signatures for the power, dim,

brighten operations in O and the references to all the lamps in the room in D since the

lamps share the same signatures. This composer and all others that we describe below

extract their needed operation and state information from a device’s programming

interface in the manner just described for ObjectEditor.

 Given O and D, the composer then generates a GUI that displays all the ‘do all’

possibilities of the initial set of devices. It achieves this process by first creating an

initially empty GUI frame. Then, for each signature in O, it creates an appropriately

labeled button, maps the button to all the matching devices in D, and adds the button to

the frame. Figure 74 shows the GUI it creates for a set of room lamps. Once a user

pushes a ‘do all’ button (e.g. ‘dim All’), the composer invokes buttonPushed(). This

method retrieves the references of devices that implement the associated operation (e.g.

‘dim()’) and invokes the operation on each device.

 Figure 74. A ‘do all’ GUI for a set of lamps.

 Our composer relies on device programmers to declare operations that perform similar

actions with the same signatures. This convention allows the composer to automatically

discover ‘do all’ operations for a set of devices, regardless of the interfaces implemented

 144

by the devices. We believe that this approach is reasonable, specifically in the scope of

devices, since many different brands and types of devices already follow conventions in

the naming of their operations. This notion is illustrated by device control panels,

remotes, and manuals.

6.2.5 Query Composer

This composer supports the query operation, which provides the ability to search a set of

devices to find those with attributes of certain user-defined values. It implements the

pseudocode below:

Pseudocode:

S = a set of device references

query(S) {
 frame = createFrame();
 P = getAllPropertyNames(S);
 for each name (x) in P {
 q = generateQueryEntryPanel(x);
 frame.add(q);
 }
 r = generateRunQueryButton();
 frame.add(r)
}
runQueryPushed(S) {
 F = getFilledQueryEntries();
 for each property name and expression pair [n,e] in F {
 S = S ∩ getMatches(S,[n,e]);
 return S
}

Given the references to several devices in set S, the query composer supports queries by

using the devices’ properties as query attributes. The use of properties is appropriate

because they represent a device’s observable state and subsequently the fields that users

can consider in a query. The composer first creates an empty frame. It then calls

getAllPropertyNames() to build the set P containing the names of all properties of the

available devices. Assuming that the composer is given the references to a set rainfall

sensors with the programming interface below, this method would return

AverageRainFall, CurrentRainFall, and Location.

public interface RainfallSensor{
 public void power();
 public void sleep(int x);

 145

public double getAverageRainFall();
public double getCurrentRainFall();
public String getLocation();

}

Recall from Section 2.2.1 that one of the problems of Cougar and TinyDB is that they

require manually exporting device attributes to database relations in order to perform

searches. By using Java Bean patterns, our composer is able to automatically extract

these attributes.

 For each property name in P, the composer invokes generateQueryEntryPanel() to

generate a query entry panel and adds it to the frame. Each panel contains a textbox,

labeled after a property name, that allows a user to enter a boolean expression describing

a desired range of values for that property. After generating and adding the panels for all

properties, the composer adds a ‘run query’ button. At this point, a user can begin

defining a query by entering boolean expressions for the displayed properties. Figure 75

shows an example of our composer supporting a Cougar-like query of retrieving the

references to all rainfall sensors in Tompkin County.

Figure 75. An example GUI for querying rainfall sensors with several attributes.

 Once all entries are made in the query GUI, the user must click the ‘run query’ button.

The composer then executes runQueryPushed(). This method invokes

getFilledQueryEntries() to retrieve the list F, which contains of all the filled query

entries from the GUI. Each element in F contains a pair ([n,e]) consisting of a property

name and a boolean expression that the user entered for the associated property. In our

current example, F would only contain the pair [‘Location’, ’=Tompkin County’]. To

complete the query, the composer performs a loop that intersects the matching devices of

each expression to the set of all devices. A device is a match of a given expression if the

values returned by the getter methods of all properties that are referenced in the

expression meet their corresponding queried values. After making all comparisons, the

 146

composer then returns the references of remaining set of devices. For the rainfall sensor

query, the composer would return the references of all sensors whose getLocation()

method returns ‘Tompkin County’. To further interact with the matching sensors (e.g.

view their average rainfall), the user can pass their references to any of the composers

described above and others below (e.g. the UI merge composer).

6.2.6 ‘Data Transfer’ Composer

This composer supports the ‘data transfer’ operation, which allows information from a

data producer to be transferred to a data consumer.

Pseudocode:

S = a set of device references

dataTransfer(S) {
 frame = createFrame();
 [ReadablePropertiesToProducers,ConsumersAndWriteableProperti
es]

= searchForConsumersAndProducers(S);
 for each pair [c,W] in ConsumersAndWriteableProperties {
 consumerPanel = emptyConsumerPanel(c);
 for each property name and type pair (p,t) in W {

transPanel = newTransferPanel(p,
ReadablePropertiesToProducers.get((p,t));

 consumerPanel.add(transPanel);
 }
 }
 frame.add(consumerPanel);
}

producer = a reference to the selected producer
consumer = a reference to the selected consumer
property = the name of the property involved in the exchange

transferPushed(producer,consumer,property) {
 gm = getGetterMethod(producer,property);
 sm = getSetterMethod(consumer,property);
 value = invoke(producer,gm);
 invoke(consumer,sm,value);
}

Given the references to several devices in set S, our composer supports the data transfer

operation by allowing devices to exchange property values. First, it generates an empty

frame that will display the necessary components for achieving such transfers. It then

executes the searchForConsumersAndProducers() method, which performs several

 147

functions and returns multiple values. In particular, the method searches the

programming interfaces of the devices to find all of the properties that one or more

devices produce. A producer of a property implements a public operation for reading the

property’s value while a consumer implements a public operation for writing the value.

Our implementation uses the Java Bean convention of describing readable and writeable

properties. A property is readable if it has a public ‘getter’ operation, and it is writeable

if it has a public ‘setter’ operation. As the below camera and display programming

interfaces show, the camera and display device are PictureURL producers since they

implement getPictureURL().

public interface Camera{
public void power();
public void snap();
public URL getPictureURL();

}
public interface Display{

public void power();
public void display();
public void setPictureURL(URL x);
public URL getPictureURL();

}

The display is a consumer since it implements setPictureURL(). The following alarm

clock is a Time consumer and producer since it implements setTime() and getTime(),

respectively.

public interface AlarmClock{
public void power();
public void snooze();
public void alarmOff();
public void setTime(Time x);
public Time getTime();
public void setAlarmTime(Time x);
public Time getAlarmTime();

}

The atomic clock, given below, is also a Time producer since it implements getTime().

It independently sets its own time by accessing atomic clock radio signals—hence it does

not offer a public setTime() operation.

public interface AtomicClock{
public void power();
public Time getTime();

}

 148

 The method searchForConsumersAndProducers() creates and returns a hashtable

called ReadablePropertiesToProducers that maps each readable property’s name and

type pair, from the entire set of devices, to its corresponding list of producers. In

addition, the method creates and returns a list of pairs called

ConsumersAndWriteableProperties, with each pair containing: (1) a device reference

and (2) a list of each writeable property name and type pair of the device. The composer

performs all of these tasks within this single method in order to avoid repeating device

programming interface searches. The method would, for example, return the following

values if given a set of references to two cameras and two display devices with the

programming interfaces defined above:

Mappings of ReadablePropertiesToProducers:
[(PictureURL, URL) (Camera1Ref, Camera2Ref, Display1Ref,
Display2Ref)]

Elements of ConsumersAndWriteableProperties:
1. (Display1Ref, [(PictureURL, URL)])
2. (Display2Ref, [(PictureURL, URL)])

 After completing the method, the composer begins adding to the empty frame. For

each pair in ConsumersAndWriteableProperties, the composer creates a new panel

(consumerPanel) and fills it with the necessary components to display the data transfer

possibilities for the pair. This process involves invoking newTransferPanel() to create

a panel (transPanel) for each writeable property name and type pair of the given

consumer. Each panel contains a drop-down-box that allows a user to select the producer

device from which to transfer values onto the panel’s associated writeable property. The

method retrieves this list of producers from ReadablePropertiesToProducers by

hashing a given writeable property name and type pair. Our composer, thus, relies on

device programmers to name properties of similar semantics and types with the same

name. Following this convention insures type correct connections between arbitrary

consumers and producers within our composer. Further, it allows the composer to

maximize the number of meaningful connections and minimize the problem of false

positives connections.

 To allow users to activate a selected configuration, each transPanel contains a

‘Transfer’ button. The composer adds each transPanel created for a given consumer to

 149

the consumer’s corresponding consumerPanel. Figure 76 shows the data transfer GUI

created for our example set of cameras and display devices.

Figure 76. A data transfer GUI for cameras and display devices.

 Once a user clicks a ‘Transfer’ button, the composer invokes transferPushed().

This method accepts the name of the property involved in the transfer and references to

the selected producer and consumer. It gets the producer’s getter method for the property

and then invokes the method. This call returns the producer’s value of the property. The

composer then passes this value to the consumer by invoking its setter method.

6.2.6 ‘Conditional Connect’ Composer

This composer supports the ‘conditional connect’ operation, which automatically invokes

one or more operations on a set of devices based on the state conditions of another set of

devices. It implements the pseudocode below:

S = a set of device references

conditionalConnect(S) {
 frame = createFrame();
 conditionsPanel = newConditionsPanel();
 eventsPanel = newEventsPanel();
 for each device reference (x) in S {
 statePanel = generateStateEntryPanel(x);
 conditionsPanel.add(statePanel)
 operationPanel = generateOperationCheckPanel(x);
 eventsPanel.add(operationPanel);
 }
 addConnectButton();
}
connectPushed(conditionsPanel, eventsPanel) {
 E = getEnteredEvents(eventsPanel);
 C = getEnteredConditions(conditionsPanel);
 for each device reference, property name, and expression
triple

 150

([d,p,e]) in C
monitorPropertyChanges(d);

 }

C = the list of filled conditions, where a condition is a triple containing a device
reference, property name, and expression ([d,p,e])
E = the list of filled events, where an event consists of a device reference and
operation name pair ([d,o])

propertyChanged(d,p,E,C) {
 if allConditionsMet(C)
 invokeAllEvents(E);
}

Our composer allows a user to enter conditions for the properties of a set of devices that

should trigger a set of operations (or events) on another set of devices. Given the

references to several devices in set S, it first creates an empty frame that it will build to

accept this user input. It divides this frame into two panels—one for entering conditions

and another for selecting matching events. For each available device, the composer

creates: (a) a state-based panel for entering the conditions for the device’s properties and

(b) an operation-based panel for selecting potential events. It creates these panels by

invoking generateStateEntryPanel() and generateOperationCheckPanel(),

respectively. The state-based panel lists all property names of each device and a

matching textbox for each name. Users enter their desired conditions for a given device’s

property in its corresponding textbox. The operation-based panel lists all of the operation

names of each device and a matching checkbox for each name. Users select a desired

event by clicking on the corresponding operation’s checkbox.

 After adding each device’s state and operation based panel, the composer invokes

addConnectButton() to add a ‘connect’ button for users to click to activate their

configurations. Figure 77 shows and example GUI for achieving the earlier mentioned

adhoc security system involving a motion sensor and some lamps.

 151

 Figure 77. A ’conditional connect’ GUI for creating the adhoc lamps and motion
detector security system.

 Once a user clicks the connect button, the composer invokes connectPushed(). This

method extracts all of the entered conditions and events from the GUI. It creates two

lists, C and E, which encapsulate this information. List C contains the filled conditions,

where a condition is a triple containing a device reference, property name, and user-

entered expression ([d,p,e]). List E contains the filled events, where an event consists

of a device reference and operation name pair ([d,o]). For each device in C, the

composer begins to monitor its state changes. It uses the notification mechanism

proposed by Java Beans to monitor device property changes. That is, each device

(object) informs a list of listener objects of its property change events. The ‘conditional

connect’ composer thus registers itself as a listener of all devices that make up the set of

user-specified conditions. For each change notification, the composer invokes

propertyChanged(), which accepts E, C, a reference to the corresponding device, and

the name of the changed property. This method checks to see whether the change is

sufficient enough to meet all conditions specified in C. If so, it invokes all events listed in

E.

 152

6.3 Conclusion

This chapter presents the idea of pattern-based composition. It abstracts several new and

existing composition semantics into a set of abstract operations and shows that existing

infrastructures cannot support all of them at a high-level. Through the use of

programming patterns, we were able to we build a composer for each identified

operation. As presented, each composer provides a user with a user-interface for easily

performing its corresponding operation. The implementation thus proves our High-level

and Flexible Composition Hypothesis: a new infrastructure can be built that supports the

composition semantics of existing high-level infrastructures and provides higher-level

support than all other infrastructures that can support all of these semantics.

 Being based on programming patterns, our approach relies highly on programmers to

follow certain conventions when coding devices. However, we do not consider this

reliance as a limitation since following an interface, as required by other composition

infrastructures (ICrafter and Speakeasy), is also a special kind of convention. More

important, following programming patterns allows for program understandability. In

fact, some infrastructures systems such as UPnP insist on common conventions for

device operations.

Chapter 7: User-Based Composition
As described in the previous chapter, programming patterns allow us to write

mechanisms for achieving high-level support for several composition semantics. Our ‘do

all’ composer, for example, automatically discovers all possible ‘do all’ operations of a

set of devices and creates a user-interface for invoking the operations. Similarly, our data

transfer composer automatically discovers all type-correct data transfer possibilities of a

set of devices and generates a user-interface for performing the exchanges. Even with

such mechanisms, our pattern-based framework still has some important limitations.

 Consider the ability to create ‘do sequence’ operations that invoke certain sequences of

commands on devices. The previous chapter shows an example of such an operation

invoking the following commands on a TV, DVD player, and receiver:

1) Turn on the TV
2) Set TV to DVD video input channel
3) Turn on the receiver
4) Set the receiver to DVD audio input
5) Turn on the DVD player
6) Open the DVD player’s disc tray

The operation prepares the devices for movie watching to a point that a user must simply

place the desired DVD in the disc tray and press play. After watching the DVD, the user

might wish to watch TV and thus invoke a ‘do sequence’ operation that performs the

following:

1) Set TV to cable box input channel
2) Set the receiver to cable box audio input
3) Turn on the cable box

 It is likely that people will have many kinds of multi-device tasks in which the

efficiency offered by ‘do sequence’ commands is highly desirable (e.g. listening to music

and playing video games). High-level ‘do sequence’ discovery in an infrastructure is thus

appealing. However, current discovery approaches, as supported by our ‘do sequence’

composer and Palm/Pocket PC programs, require users to manually define ‘do sequence’

 154

operations themselves. The process involves users selecting the commands and defining

the sequence order of an operation. This approach is unlike our pattern-based ‘do all’

algorithm, which automatically discovers useful ‘do all’ operations for arbitrary devices.

It can become tedious as users increasingly want ‘do sequence’ operations for efficiently

performing their device interactions. Further, it is open to human error. The user-

specific nature of ‘do sequence’ operations, however, prevents patterns from being used

to automatically discover useful ‘do sequences’ for arbitrary devices like for ‘do alls’.

Though patterns can be used to expose composability, it is not logical to define ‘do

sequence’-based patterns for every possible user’s behavior and device arrangement (e.g.

specific devices in a home theater).

 Our pattern-based framework exhibits a similar limitation in its support of the

conditional connect operation. Like the definition of ‘do sequence’ operations, the

definition of conditions and matching events is user influenced. Therefore, these

components of a ‘conditional connection’ cannot be automatically discovered using

patterns. Our conditional connect composer thus currently implements the approach of

using manually provided definitions. That is, it requires a user to fully define the

components of a conditional connection using a user-interface displaying them (Figure

77).

 Yet another related limitation of our pattern-based framework arises from the

‘GUI merge’ composer. Similar to the definition of ‘do sequence’ operations and

‘conditional connections’, the definition of task-based user-interfaces is highly user

influenced. Patterns cannot be used to expose the tasks of every possible user. The

current approach of requiring users to explicitly define the set of commands for each task

that they perform can be cumbersome and open to human-error.

 In summary, the ‘do sequence’, ‘GUI merge’, and ‘conditional connect’ operations are

highly based on the behaviors of specific users. The current approach of relying on users

to make necessary device connections to support these operations can be tedious.

Programming patterns, on the other hand, are ineffective in providing automatic

connections like in the ‘do all’ and ‘data transfer’ composers. To offer higher-level

 155

support, it becomes attractive to use machine learning (ML) to automatically discover

user influenced connections from logs of users’ interactions. The approach could, for

example, allow our ‘GUI merge’ composer to automatically discover the commands of

tasks that a specific user performs. Similarly, the ‘do sequence’ composer could

automatically discover sequences of commands a user typically invokes and then create

appropriate operations for invoking them. We found, however, that neither the manual or

fully-automatic (ML-based) approach is optimal for discovering user influenced

connections within composers. Each approach possesses certain advantages over the

other.

 In the following section, we describe our ML-based approach in more detail. We then

discuss a set of experiments we performed to compare the approach with the manual

approach. Based on these experiments, we present results that prove our hypothesis by

showing the respective benefits of the two approaches. Finally, we present our

conclusions.

7.1 ML Approach

The goal was to design an approach for automatically extracting groups of commands

that are commonly used together from a given user’s command history. Appropriately,

each group would correlate to commands needed in a task or a ‘do sequence’ operation

for that user. The approach does not currently address ML-based discovery of

‘conditional connections’, which requires the ability to access both the operations that

users invoke and state of devices over time. Recall, however, that our users’ interaction

logs only consist of invoked commands since traditional remotes do not communicate

state information.

 Our goal requires a formal definition of what it means for commands to be related or

commonly used together. In our approach, two or more commands are related if they

predict similar behavior. DVD navigation buttons (up, down, left, right, enter) are related

since each button tends to predict, for example, that another navigation button is likely to

be invoked next, but the VCR’s play button is not. A command can thus be associated

with a probability distribution (or histogram) of commands that follow it. In other

 156

words, each command associates to vector Cx. Each vector element, Cxy is a count of

how many times command x follows command y. Thus, given a user’s log of command

accesses, it is possible to create a distribution for each command found in the log and

compile these distributions into a matrix representing the whole data.

 Following standard methods in information retrieval and work modeling human-

human interactions[18, 30, 32], our approach computes the similarity of every command

pair in the matrix by computing the cosine of the angle between the pair’s associated

vectors. This process is the same as computing the inner products of the vectors. The

result is a similarity matrix that describes the similarity of a given command to every

other command. Next, to find groups of related commands in the matrix, our approach

uses the standard k-means algorithm[21]. Basically, the algorithm works by viewing the

similarity matrix as a collection of points in space and divides the points into k clusters,

where k is an integer-based input parameter. It begins by randomly selecting k centroids

in the space defined by the points. Then, it designates each point to the nearest centroid.

Next, the algorithm moves each centroid so that it is the mean of the data points assigned

to it. The algorithm then reassigns points to their nearest centroid. It repeats the process

of moving centroids and designating points until the centroids no longer change. When

the algorithm terminates, it returns a set of command clusters that are as well divided as

possible.

7.2 Experiments

In order to compare the manual and ML-based approaches, the users needed to actually

complete some form of the manual approach. We simply used participants 1-10 in our

logging study—i.e. everyone except the author. At the end of each logging period, we

asked its participant to create paper-based user-interfaces consisting of buttons that were

sufficient for his/her commonly performed tasks and desired ‘do sequence’ commands.

The paper-based survey allowed us to evaluate the quality of user-interfaces the

participants could create without requiring them to learn how to use special purpose

software.

 157

 Specifically, each participant received a stack of several 6” x 11” sheets of white

cardboard paper and a set of small squares displaying various remote control button

names and icons (Figure 78). These squares were stuck on several sheets of paper using

reusable putty, allowing users to easily move them between sheets. We asked the

participants to imagine designing a remote containing groups of buttons that they

commonly use together. We then showed them an Ipaq and told them to imagine that

such a device could display the button groups using as many screens (or user-interfaces)

as they wished. To create these user-interfaces, users simply looked over their actual

remote controls for buttons required to complete their tasks, found the equivalent square

button they wanted from the pool of squares, and stuck them on the appropriate

cardboard sheet. Figure 79 shows the user-interfaces created by participant 5.

Figure 78. Our setup containing the participants’ remote, several blank sheets (screens),
and button squares.

 158

Figure 79. The three user-interfaces that P5 created.

 After the participants created their initial user-interfaces, we told them to imagine

having new buttons that could invoke sequences of commands that they commonly

executed. Their task was to think of such sequences and create the associated buttons on

blank squares. They simply labeled the square and stuck it on the screen where they

wished to display it. We recorded the sequence of commands that users associated with

these new ‘do sequence’ buttons. After collecting all the participants’ user-interfaces, we

applied our ML-based approach on their respective logs to produce command clusters.

The process involved varying the values of k for the k-means algorithm in order to find

meaningful clusters.

7.3 Evaluation

We evaluated the performance of the ML and manual approaches using three criteria:

1) Completeness – How well does an approach produce task-based user-interfaces

that contain all commands that a user needs?

2) Task-based grouping – How much does an approach require users to switch

between tasks-based user-interfaces during a single task?

(a)

(b)

(c)

 159

3) ‘Do Sequence’ discovery – How well does an approach produce ‘do sequences’

that users actually need?

7.3.1 Completeness

Each approach has different limitations in its ability to yield complete user-interfaces.

Consider the manual approach. Seven of the ten participants produced user-interfaces

with at least one missing command. The number of omitted commands varied between

zero and twelve, with no commonly omitted commands between users (Table 16).

Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
Number of
missed
buttons

12 1 5 2 2 5 0 5 0 0

Table 16. A count of each participants missed buttons.

 To illustrate the types of commands missed, let us consider P3. This participant

missed her cable box’s page-up and page-down commands for browsing through channel

listings, even though she used these commands 164 and 259 times respectively. In

addition, she missed the TV’s channel up and down buttons and the cable box’s ‘c’

command, which she uses to set show reminders. In general, the results show that users

are prone to creating incomplete user-interfaces—they even omit frequently used buttons.

 The ML approach possesses a different kind of limitation. Because it employs a user’s

actual interaction history, it has the disadvantage that it can only include commands

found in the history. Consider P5, who designed a user-interface containing the CD1,

CD2, and C3 commands of her stereo (Figure 79a)—these buttons play the CD in a given

slot (1-3) in the stereo. During her logging period, she only played the CD in slot 1 by

pushing CD1, thus, the ML algorithm did not include the CD2 and CD3 commands. P5

did mention that all CD slots in the stereo contained a CD throughout this period, but she

only wanted to listen to the CD in slot 1.

 160

7.3.2 Task-based Grouping

As mentioned in Section 5.1, we interviewed the participants to gather the tasks that each

of them most commonly performed. The interviews show that each of them performed at

least one task involving multiple devices. However, only half of the participants created

user-interfaces consisting of commands from multiple devices. The other half created

single-device user-interfaces, even though they were specifically told to create task-based

user-interfaces. Figure 79 demonstrates this behavior: P5 created individual user-

interface for her stereo (Figure 79a), TV (Figure 79b), and DVD player (Figure 79c)

instead of creating a set of user-interfaces that spanned those devices. To quantify how

well the participants created task-based groupings, we counted the number of screen

switches for some common tasks. Table 17 compares these values with the number of

single-device remote control switches involved in the same tasks. The data shows that

only two out of ten participants created a set of user-interfaces that do not require

switching during common tasks. The other users designed user-interfaces that require

switching multiple times for a given task. P2 even created a set of user-interfaces that

requires more screen switches than remote control switches while watching a DVD.

 Under the ML approach, one and two weeks worth of logging users produces a mix of

both appropriate and inappropriate clusters. Figure 80 provides an example. It shows a

two-dimensional projection of P6’s clusters. On the left side, cluster a contains several of

the TV channel commands, which P6 uses together when watching TV. Cluster b

contains the commands for preparing the VCR to record a future TV show, and cluster c

contains the commands for watching VHS tapes on the VCR/DVD combo device. Each

cluster, however, has commands that do not belong in the tasks to which they associate.

For example, cluster a has the VCR/DVD combo’s ‘8’ command, which does not belong

in a cluster for watching TV. Also, cluster c contains the VCR/DVD ‘7’ command,

which does not belong in the cluster for watching a VHS tape. Such cases of misplaced

commands can cause users to switch between many different task-based user-interfaces

during a task just to find a command. In the experiments, there were no users whose data

yielded an entire set of clusters in which all commands within each cluster share a single

task.

 161

of switches

Participant Task
of

devices
required Single

Remotes
User-created

UI
P1 Watch a VHS tape 2 4 4
P2 Watch a DVD 3 5 3

P3
Watch cable TV (includes using the cable
box’s show listings to find a single
interesting show to watch)

2 4 5

P4 Watch a DVD 2 4 4
P5 Watch a DVD 2 4 4

Set up the VCR to record a future TV
show 2 2 2 P6
Watch a VHS tape 2 2 3
Watch cable TV (using TiVo) 2 4 1 P7
Use XBOX (to listen to MP3 music files) 3 4 1

P8 Watch a DVD 2 4 2
P9 Watch a DVD 2 4 2

P10 Watch cable TV 2 4 1

Table 17. A count of user-interface switches required for participants’ common tasks.

Figure 80. A projection of P6’s clusters

(a)
(b)

(c)

(a)
(b)

(c)

 162

 The above example also illustrates another limitation of the k-means clustering

algorithm used by our approach. It does not support multiple instances of a given

command, thus it puts the command in only the cluster it believes is best fit. To

illustrate, the algorithm places the TV power command in cluster b. However, all tasks

require the ability to power the TV. Combining the clustering algorithm with heuristics

could address this problem, as well as possibly preventing some cases of command

misplacement. One such heuristic could be to always keep a device’s number commands

(e.g. TV channel number buttons and security system keypad numbers) in the same

cluster, potentially the cluster that contains most of the number command. Alternatively,

we could explore using another kind of clustering algorithm that does not associate a

command to a single cluster.

 In summary, the clustering algorithm supported by our approach is not optimal with a

one or two week long user log. It is possible that the algorithm’s performance would

increase with more data. However, it is not likely that users would be willing to wait the

time needed to produce such data before the algorithm generates results.

7.3.3 ‘Do Sequence’ Discovery

In our experiments, all users requested at least one ‘do sequence’ operation. Most of the

operations they requested were actually sequences of device commands that they

commonly issued (as the logs show). However, two participants (P2 and P3) requested

‘do sequence’ operations that do not reflect sequences of commands they actually used.

To illustrate, P2 requested two macros for (1) turning on the DVD changer and receiver

in order to watch a movie and (2) turning on the DVD changer and receiver and then

having the DVD changer play a music CD inside one of its 5 slots. P2 performed the

particular tasks associated with the two macros several times over the week. However,

the two sequences did not occur in his entire log. In fact, there was no instance of him

ever using the receiver’s power command during his logging period. When asked why he

included the unused command, the participant admitted that he always left the receiver

on. As a result, invoking any of the two requested macros would actually sidetrack him

from performing the desired task because they would turn off the receiver.

 163

 Our ML approach, on the other hand, can only place commands in clusters based on

how much the commands are used together. Because the commands that make up a ‘do

sequence’ command are inherently part of the same task and a task can require other non-

‘do sequence’ commands, a cluster for a given task can consist of both ‘do sequence’ and

non-‘do sequence’ commands. Our ML approach cannot differentiate between the two

kinds of commands and therefore it cannot identify macros on its own.

7.4 Conclusion

This chapter shows how the ‘do sequence’, ‘GUI merge’, and ‘conditional connect’

operations are highly based on the behavior of specific users. It describes how the

current approach of relying on users to make necessary device connections, in supporting

these operations, can be tedious. Programming patterns, on the other hand, are

ineffective in providing higher-level support. Towards higher-level support, we present

an ML-based approach for automatically discovering groups of commands that are used

together. Appropriately, such groups could map to commands needed in a ‘do sequence’

operation or merged GUI.

 From evaluating the ML and manual approaches, we found that neither approach is

completely better than the other in defining ‘do sequence’ operations and tasks (for

merged GUIs). In particular, our results show that users have inaccurate models of their

own behavior, and the ML approach requires lengthy observation periods to discover

accurate models. The next chapter, which describes the thesis’ overall conclusions and

future work, describes our ideas for a better solution to defining ‘do sequence’ operations

and tasks.

Chapter 8: Conclusions and Future Work
In addressing the user-interface deployment issue, this thesis makes several contributions:

• It provides a set of reasons for interacting with devices using software-based user-

interfaces on mobile computers.

• It abstracts current forms of user-interface deployment into a set of high-level

approaches and systematically evaluates them. Using a mix of quantitative and

quantitative metrics, the evaluation shows the advantages and disadvantages of

each approach. In particular, it verifies our Uniqueness Hypothesis that each

approach offers a unique benefit, thus providing a reason why it exists.

• The thesis investigates, in depth, the promising user-interface generation approach

which has the important limitation of taking a long time to create a user-interface.

It shows that by retargeting user-interface, a generator can successfully overcome

this problem. In particular, the thesis verifies our Time-Efficient Generation

Hypothesis that it is possible for SUI and GUI generators to offer deployment

times that are often as good as or noticeably better than the inherently fastest

approach of locally loading device-specific user-interface code. It identifies

various levels of retargeting a system can support and presents a set of algorithms

that we used to achieve higher retargeting flexibility than previously supported.

These algorithm have two important ideas—regression-based prediction and

cache-based retargeting. Regression-based prediction allows a generator to use

estimation functions to predict: (a) the fastest source user-interface to retarget and

(b) whether to retarget or generate a new user-interface. Cache-based retargeting

allows a generator to avoid the time cost involved in executing the prediction

functions during an interaction time by using cached results from previous times.

 165

• To further address the Time-Efficient Generation Hypothesis, the thesis presents

the idea of history-based generation. It describes a straightforward approach to

generating history-based user-interfaces and shows that it can be used to reduce

SUI generation times down to client-factory like times. For GUIs, the approach is

not as competitive. Although history-based GUI generation times are

significantly lower than full GUI times, they are not as low as client-factory based

times.

• The thesis also verifies the Screen-Space-Efficient Generation Hypothesis that

history-based generation can additionally be used to create user-interfaces that

consume significantly fewer screens than their corresponding full device user-

interfaces. On the space constrained Ipaq Pocket PC, the full user-interfaces of

several networked devices require two to three screens while their history-based

user-interfaces only require one.

• The thesis also addresses the issue of how devices are composed. It identifies

new and existing composition semantics that apply to a wide variety of devices

and abstracts them into a set of operations. It summarizes existing composition

infrastructures and shows how they are limited in simultaneously offering high-

level and flexible support for the identified operations. The thesis verifies the

High-level and Flexible Composition Hypothesis that it is possible to overcome

the above limitation and build a new infrastructure that: (a) supports the

composition semantics of existing high-level infrastructures and (b) provides

higher-level support than all other infrastructures that can support all semantics.

The idea is programming patterns. Programming patterns address the

programming effort involved in supporting composition while ML addresses user

effort.

Future work exists in further investigating our several hypotheses:

• Uniqueness Hypothesis: As mentioned earlier, we evaluated current user-interface

deployment approaches using a mix of qualitative and quantitative metrics. Our

qualitative comparisons show whether an approach is better than other under a

 166

given metric, however, they do not show by how much. It is important to collect

more quantitative results, particularly for the currently qualitatively-based metrics

in our evaluation (e.g. maintenance costs).

• Time-Efficient Generation Hypothesis: Our current retargeting implementation

only supports primitive-typed property widgets. It would be useful to extend our

implementation to also support widgets that display structured types. This feature

would, for example, allow our generator to retarget a widget showing a VCR’s

program record list to a TiVo’s program record list and vice versa. Besides

structured types, heterogeneous SUI retargeting could also be supported to see

whether it offers any benefits as seen in the GUI case. This process requires

profiling our SUI generator in order to discover the necessary regression-based

prediction functions. The resulting profiling data could allow us to gain a better

understanding of why there is such a large difference between GUI and SUI

deployment times. It could also allow us to answer why the difference between

SUI-based client-factory and generation times are relatively close in comparison

to the difference between GUI-based client-factory and generation times.

• Future work also exists in history-based generation. It seems particularly

attractive to combine the history-based generation and retargeting approaches.

Alone, the approaches can offer generation times that are lower than client-factory

based times. It may be that retargeting history-based user-interfaces can offer

even lower times and potentially minimize the importance of certain speed

enhancements such as cache-based retargeting. Collecting more real-world data

from different users would allow for a deeper evaluation and further verification

of our current results.

• Screen-Space-Efficient Generation Hypothesis: New user data could also be used

to further verify the screen space efficiency measurements of our history-based

generator. Our current data set, however, is mainly based on users’ histories with

entertainment devices (e.g. TVs, VCRs, and receivers). It would be useful to

include new data involving interactions with a more diverse set of devices such as

 167

projectors and thermostats. Further work is also needed to evaluate the benefits of

history-based generation on cell phones, which have screens that are fractions of

the size of the Ipaq’s screen.

• High-level and Flexible Composition Hypothesis – Future interaction data could

also motivate new useful composition semantics. With such examples, it is

important to test the flexibility of our composition framework to see whether it

can support them.

Since neither manual nor ML approach is completely better than the other in

defining ‘do sequence’ operations and tasks (for merged GUIs). We believe that a

better solution is to combine both approaches to yield mixed-initiative composers

[17] that use the advantages of one approach to alleviate the disadvantages of the

other. This solution could provide better support for:

o Completeness: Since users occasionally miss buttons, our ML algorithm could

help provide completeness by validating the user-interfaces they create.

Alternately, users could help the ML approach by providing it with a list of

commands whose use it has not observed.

o Task-based grouping: One way to change the single-device-centric approach of

users is to give them an initial set of task-based clusters provided by the ML

approach. Users can then use their intuition to refine these clusters, given that

the ML approach sometimes places commands in wrong clusters.

Users can also design their own task-based user-interfaces without any

initially assistance from ML. Although it is likely that these user-interfaces will

be single-device, rather than task based, they should at least reduce the number

of displayed buttons. A ML algorithm could then migrate users toward a more

optimal solution by observing users’ interactions with their designed user-

interfaces and periodically offering suggestions for new designs when it has

observed enough data to be confident in an improvement.

 168

o ‘Do Sequence’ Discovery: A mixed-initiative solution could draw on the

clusters from the ML approach to validate user-suggested ‘do sequence’

operations. Conversely, users could define ‘do sequence’ operations from first

looking at clusters produced by the ML approach. To illustrate, recall that P2

requested a ‘do sequence’ operation that would invoke the receiver and DVD

power command before watching a movie. The ‘do sequence’ operation

implied by the cluster circled in Figure 81actually corrects P2’s initial intuition

by omitting the receiver power command. Furthermore, it adds two commands

that P2 did not consider—the TV power command and the DVD open/close

command, which would allow the user to place the desired DVD in the player.

Figure 81. A projection of P2’s clusters

 169

Appendix A: Snapshots of Predefined and Generated GUIs

1) The predefined lamp GUI:

2) The lamp GUI generated by ObjectEditor:

 170

3) The predefined TV GUI:

 171

4) The TV GUI generated by ObjectEditor:

 172

5) The predefined projector GUI:

 173

6) The projector GUI generated by ObjectEditor:

 174

7) The predefined VCR GUI:

 175

8) The VCR GUI generated by ObjectEditor:

 176

9) The predefined receiver GUI:

10) The receiver GUI generated by ObjectEditor:

 177

10) The receiver GUI generated by ObjectEditor:

 178

11) The predefined DVD player GUI:

 179

12) The DVD player GUI generated by ObjectEditor:

 180

References

1. Nevo for PDAs. http://www.mynevo.com/nevo_pda.htm

2. OmniRemote. http://www.pacificneotek.com/omnisw.htm

3. Remote Possibilities. Usa Today.
http://www.usatoday.com/snapshot/life/lsnap180.htm

4. Beck, J., Geffault, A., and Islam, N. MOCA: A Service Framework for Mobile
Computing Devices. in International Workshop on Data Engineering for Wireless
and Mobile Access.

5. Bonnet, P., Gehrke, J., Seshadri, P. Querying the Physical World. in IEEE
Personal Communications. 2000.

6. Chung, G. and P. Dewan. A Mechanism for Supporting Client Migration in a
Shared Window System. in Proceedings of the Ninth Conference on User
Interface Software and Technology. October 1996.

7. Corporation, M., Universal Plug and Play Forum.
http://www.upnp.org/download/Audio-1-2001Feb.doc.

8. Czerwinski, S., et al. An Architecture for a Secure Service Discovery Service. in
ACM MobiCom 1999.

9. Edwards, W., et al. Recombinant Computing and the Speakeasy Approach. in
Mobicom 2002. 2002.

10. Eisenstein, J.V., J. and Puerta, A. Adapting to Mobile Con-texts with User-
Interface Modeling. in Third IEEE Workshop on Mobile Computing Systems and
Applications. 2000.

11. Gamma, E., et al., Design Patterns, Elements of Object-Oriented Software,
Reading, MA.: Addison Wesley, 1995.

12. Guttman, E. Service Location Protocol: Automatic Discovery of IP Network
Services. in IEEE Internet Computing.

13. Han, R., V. Perret, and M. Naghshineh. WebSplitter: A Unified XML Framework
For Multi-Device Collaborative Web Browsing. in Proceedings of ACM
Computer Supported Cooperative Work. 2000.

14. Hewlett-Packard-Corporation. Cooltown. http://www.cooltown.hp.com

15. Hodes, T. and R. Katz, Composable Ad Hoc Location-Based Services For
Heterogeneous Mobile Clients. Wireless Networks, 1999. 5: p. 411-427.

 181

16. Hodes, T.D. and R.H. Katz. Enabling "Smart Spaces:" Entity Description and
User-Interface Generation for a Heterogeneous Component-based System. in
DARPA/NIST Smart Spaces Workshop. July 1998.

17. Horvitz, E., et al. Coordinate: Probabilistic Forecasting of Presence and
Availability. in Eighteenth Conference on Uncertainty and Artificial Intelligence.
2002.

18. Isbell, C., Shelton, C., Kearns, M., Singh, S., and Stone, P. A Social
Reinforcement Learning Agent. in Agents 2001. 2001.

19. Kindberg, T. People, Places, Things: Web Presence for the Real World. in
Submitted to WWW9: http:www.cooltown.hp.com/papers/WebPresence.htm.
2000.

20. Larsson, B.C.a.O., Universal Plug and Play Connects Smart Devices. WinHec 99
White Paper (http://www.axis.com/products/documentation/UPnP.doc).

21. MacQueen, J.B. Some methods for the classification and analysis of multivariate
observations. in The 5th Berkeley Symposium on Mathematical Statistics and
Probability. 1967.

22. Madden, S.e.a. The Design of an Acquisitional Query Processor for Sensor
Networks. in SIGMOD. 2003.

23. Moyer, S., et al., Service Portability of Networked Appliances, in IEEE
Communications. 2002. p. 116-121.

24. Munson, J. and P. Dewan, Sync: A Java Framework for Mobile Collaborative
Applications. IEEE Computer, June 1997. 30(6): p. 59-66.

25. Myers, B.A. and M.B. Rosson. Survey on User Interface Programming. in
Proceedings SIGCHI'92: Human Factors in Computing Systems. May 3-7, 1992.

26. Nichols, J. Using Handhelds as Controls for Everyday Appliances: A Paper
Prototype Study. in ACM CHI'2001 Student Posters. 2001. Seattle.

27. Nichols, J., et al. Generating Remote Control Interfaces for Complex Appliances.
in ACM Symposium on User Interface Software and Technology. 02. Paris.

28. Ponnekanti, S.R., et al. ICrafter: A Service Framework for Ubiquitous Computing
Environments. in Ubicomp 2001. 2001. Atlanta.

29. Roussev, V., P. Dewan, and V. Jain. Composable Collaboration Infrastructures
based on Programming Patterns. in Procedings of ACM Computer Supported
Cooperative Work. 2000.

 182

30. Salton, G., The SMART Retrieval System: Experiments in Automatic Document
Processing.. 1971, Prentice Hall.

31. SavaJe-Technologies. SavaJe OS: Solving the Problem of the Java Virtual
Machine on Wireless Devices.
http://www.savage.com/products/SavaJeOS_2.0_Whitepaper.pdf

32. Schiffman S., R.M., Young F., Introduction to Multidimensional Scaling: Theory,
Methods and Applications. 1981: Academic Press, New York.

33. Schlimmer, J. ChangeDisc:1 Sample Service Template For Universal Plug and
Play Version 1.0. http://www.upnp.org/download/ChangeDisc-1.doc

34. Shneiderman, B., Designing the User Interface: Strategies for Effective Human-
Computer Interaction. 4th ed. 1998: Addison-Wesley Longman.

35. Stiles, E. Professor Wants to Put Your Toaster on the Internet.
http://www.sciencedaily.com/releases/2005/09/050923155217.htm

36. Sun Microsystems, I., Jini technology architectural overview.: from
http://www.jini.org, and Jini network technology http://www.sun.com/jini/).

37. Sutton, J. and R. Sprague, A Study of Display Generation and Management in
Interactive Business Applications

Tech. Rept. RJ2392(#31804). November 1978: IBM San Jose Research Laboratory.

38. Troll, R., Automatically Choosing an IP Address in an AdHoc Ipv4 Network, in
IETF Internet Draft. 1999.

39. Venners, B. How to attach a user interface to a Jini service.
http://www.javaworld.com/jw-10-1999/jw-10-jiniology_p.html

40. Waldo, J., A Note on Distributed Computing. 1994.

