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ABSTRACT 

Lindsay Reine Walton: Developing Methodologies to Explore Neurovascular Coupling on a 

Micron Scale  

(Under the direction of R. Mark Wightman) 

 

During brain activity, local oxygen and glucose is consumed and cerebral blood flow 

(CBF) increases in a process known as functional hyperemia or neurovascular coupling. 

Neurotransmission releases molecules that respond through post-synaptic neurons, astrocytes, 

and cerebral blood vessels to stringently regulate CBF supply according to local demand. If 

coupling between metabolic supply and demand is not met, energy deficits can lead to toxin 

accumulation, pathology, and even cell death. Functional magnetic resonance imaging (fMRI) is 

a popular method used to monitor neurovascular regulation and study brain functionality. 

However, recent studies show that the neurovascular heterogeneity can produce decoupled 

hyperemia at high spatial resolutions in healthy subjects, making interpreting fMRI data less 

certain and necessitating a better understanding of the underlying mechanisms behind 

neurovascular coupling.  

Here, we developed additional tools with which to probe neurovascular coupling at highly 

localized environments. We adapted an existing CBF measuring technique to a microfabricated 

format and proved its functionality through mathematical modeling and in vitro verification. Next, 

we adapted a multimodal sensor to detect oxygen changes and neuronal activity resultant of 

local, chemically selective glutamate stimulation using iontophoresis. Comparing glutamate 

iontophoresis to electrically stimulated glutamate release revealed key differences between the 

local cerebrovascular responses to stimuli of different specificities and intensities. We extended 

the multimodal sensor to modulate local glutamatergic receptor pharmacology and discovered 
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that glutamate exerts influence on neurovascular coupling differentially between the 

somatosensory cortex and the nucleus accumbens.  

These tools provide alternative ways to measure multiple physiological metrics related to 

neurovascular coupling simultaneously. Our multimodal sensors offer chemical and spatial 

selectivity, and can assess neurovascular changes throughout the brain with minimal 

invasiveness. Together, our work demonstrates the importance of considering brain 

heterogeneity at the local level in the interpretation of more broad brain functionality studies.  
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CHAPTER 1: MUCH ADO ABOUT NEUROVASCULAR COUPLING 
 

Introduction 

Neurons are cells in the brain that communicate both electrically and chemically with 

other neurons, blood vessels, and a host of additional cell types. These signals propagate 

throughout the brain and periphery to accomplish tasks that range from recalling memories to 

kicking a ball. Neurotransmission and the upkeep of neuronal processes requires an astonishing 

amount of effort, consuming 20% of the body’s total resting energy (Rolfe and Brown, 1997). 

This energy predominantly derives from oxygen and glucose, but these metabolic substrates 

are not stored within the brain for access during times of increased activity. This is essential for 

the continued ability to maintain healthy cognitive function. If neurons are deprived of metabolic 

fuel, they will be unable to maintain ionic gradients. This leads to extensive cellular 

depolarization, excitotoxic buildup of glutamate, and eventual cell death.  

In 1890, scientists Roy and Sherrington published their seminal hypothesis that cerebral 

blood flow (CBF) renewed energy supplies to local brain regions with increased neuronal activity 

(Roy and Sherrington, 1890). This process was called functional hyperemia, also known also as 

neurovascular or cerebrovascular coupling. Since then, several breakthroughs in neurovascular 

coupling research have been made. Originally, CBF was proposed to respond to local 

decreases in oxygen or glucose in a negative feedback loop, until vasoactive species released 

from neurotransmission or downstream processes were found to communicate these needs 

(Attwell et al., 2010). Decades passed before astrocytic glial cells were found to influence 

vascular regulation, even forming a physical bridge between neurons and blood vessels to 

collectively form a “neurovascular unit” (Iadecola and Nedergaard, 2007). Astrocytic processes 

were found in close contact with presynaptic and postsynaptic neurons, together forming a hub 
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of neurovascular communication now known as the tripartite synapse (Araque et al., 1999). 

Even more recently, the spatial extent of neuronal activation was found to depend on stimulus 

intensity and revealed new insights into neurovascular decoupling at the local, cellular level 

(Thompson et al., 2004, O’Herron et al., 2016). However, many underlying factors of 

neurovascular coupling are still poorly understood.  

Studying neurovascular coupling encompasses the study of neuronal and astrocytic 

activity, CBF, oxygen dynamics, and the rates of oxygen and glucose metabolism. Each aspect 

can be monitored using multiple techniques, and the spatiotemporal resolutions between 

techniques differ. This is important because different neurovascular environments that dictate 

responses at the local level can invalidate the assumption that coupling is uniform across 

different brain regions. In addition to differences in detection, the stimulus used to elicit a 

cerebrovascular response can vary from visual (e.g., viewing a moving checkerboard pattern), 

to tactile (e.g., tail pinch), or electrical (e.g., deep brain stimulation). Together, coalescing the 

disparities between the data collection techniques and stimuli used, as well as the brain 

region(s) explored makes it difficult to interpret the specifics of neurovascular studies. 

Regardless of these inherent difficulties, it is imperative that neurovascular coupling research 

continue to be studied so as to better understand the underlying factors behind implicated 

pathologies and hone in on prospective therapeutic targets. 

This introduction serves to establish the importance of studying neurovascular coupling 

and to explain the techniques used to study this concept. First, we describe differences between 

healthy and pathological states of cerebrovascular decoupling. Next, we explore the main 

methods used to measure neurovascular coupling components at a large scale, and then their 

localized, spatially specific counterparts. Finally, we summarize what combinations have been 

performed between the differentially scaled technologies. 
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Neurovascular Decoupling and Pathology 

For nearly a century after Roy and Sherrington first discussed functional hyperemia, it 

generally was accepted that healthy brains tightly coupled CBF and metabolism to neuronal 

activity. If this process decoupled, it was seen as an indication of pathology. These pathological 

neurovascular dysfunctions range in severity from a complete CBF occlusion via ischemic 

stroke to the far subtler cortical spreading depression indicated in migraine (Lauritzen et al., 

2011). Indeed, numerous pathologies do exhibit signs of blood flow dysregulation or altered 

levels of metabolism. These include Alzheimer’s disease and dementia, among others (Girouard 

and Iadecola, 2006, Attwell et al., 2010, Zlokovic, 2011).  

Neurodegenerative diseases especially exhibit dysfunction in the form of impaired CBF 

delivery or glucose utilization, such that normal brain activity begins to run an energy deficit and 

accumulate harmful levels of carbon dioxide, reactive oxygen species, and other toxins 

(Zlokovic, 2011). Usually, vessels are protected by the blood brain barrier (BBB), a selectively 

permeable membrane of endothelial cells and pericytes that encompass and protect cerebral 

blood vessels from potentially harmful species. In addition to protecting these blood vessels, 

pericytes also modulate capillary diameters based on neuronal input (Peppiatt et al., 2006). 

Normally, these cells form tight junctions around the circumference of blood vessels that only 

allow passage of oxygen, carbon dioxide, and small, lipid soluble proteins into the brain 

parenchyma (Zlokovic, 2011). When this barrier is compromised, infectious agents may freely 

flow into the cerebral vasculature (Nelson et al., 2016). It is still unknown whether BBB injury is 

the starting point for neurodegenerative pathologies or a symptom resulting from changes 

elsewhere. 

In addition to the importance of neurovascular regulation within the brain, it is crucial to 

maintain healthy vascular regulation across the entire body. Diabetes, hypertension (Iadecola 

and Davisson, 2008), drug use, and many other conditions have been linked to an increased 

risk of neurodegenerative disease, along with age and genetic factors (Zlokovic, 2011, 
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Daulatzai, 2016). Comorbidity between these factors brings greater risk of dysfunctional 

neurovascular regulation, especially late in life. However, the relationship between systemic 

blood regulation and cognitive functionality can be advantageous. As many drugs do not readily 

pass through the BBB to locally access cerebral vasculature, indirect treatments such as anti-

hypertensive drugs (Hajjar et al., 2012) and even exercise (DeFina et al., 2013) have found 

success in ameliorating risk factors that contribute to neurodegenerative disease. The relation 

between systemic and cerebral circulation requires further study, necessitating the use of 

technology that can monitor blood flow dysregulation at both global and local resolutions. 

 

Dichotomy between Coupled and Decoupled States in Healthy Subjects  

Healthy human subjects were long assumed to couple CBF and metabolism increases 

with brain activity in support of the functional hyperemia dogma (Roy and Sherrington, 1890). In 

many cases, this is valid (Hoge et al., 1999, Uludağ et al., 2004), but technical challenges 

prevented anyone from proving otherwise until the advent of positron emission tomography 

(PET) imaging in the 1980s. Once PET paradigms were established, then CBF, cerebral blood 

volume (CBV) and oxygen extraction fractions (metrics comparing oxyhemoglobin conversion to 

deoxyhemoglobin) could be quantified using a series of three 15O tracers (Mintun et al., 1984). 

This led to the seminal 1986 publication first describing an uncoupled neurovascular response 

in healthy human subjects, turning the world of functional neuroimaging on its head (Fox and 

Raichle, 1986). Specifically, finger pad stimulation was found to elicit regional CBF increases 

that far surpassed what would have been expected from the simultaneous increase in 

metabolism. Ever since then, researchers have been attempting to establish the rhyme and 

reason behind neurovascular decoupling to distinguish the neurotypical from the 

neuropathological.  
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Knowing the difference between normal and detrimental neurovascular decoupling is 

critical knowledge when interpreting brain functionality studies (Logothetis, 2003, Uğurbil et al., 

2003). The most prolific technique used for these studies is functional magnetic resonance 

imaging (fMRI), which relies on the assumption that neurovascular coupling is conserved when 

attributing changes in blood flow or oxygen to brain activity. Without directly monitoring neuronal 

activity, this assumption may not be valid across brain regions with different metabolic behavior 

(Sloan et al., 2010). As detailed later in this chapter, to truly study functional hyperemia 

dynamics necessitates the use of several techniques in concert, each measuring a different 

change. Experimental design requires careful consideration not only of the techniques to be 

used, but the protocol to elicit a functional response. Advancements in technology have led to 

highly specific means of both stimulating and recording functional hyperemia, and we are only 

beginning to understand the differences behind localized and larger scale cerebral responses. 

  

Population-Level Detection 

To study neurovascular coupling is to study a simultaneous cascade of events that 

operate on different timescales and produce downstream effects. Unfortunately, many ways to 

detect the relevant metrics related to neurovascular coupling are also invasive. Thus, to ethically 

study neurovascular coupling in humans requires non-invasive methods. While these 

techniques are unable to determine specific underlying processes, they are able to collect 

measurements without compromising the brain tissue. Here, we briefly describe the most 

common techniques used to study neurovascular coupling at a large spatial scale. 

 

Cellular Activity 

 Electroencephalography - Neurons fire when their ionic gradients sufficiently perturb 

membrane potentials towards a threshold value, past which the cell depolarizes and fires an 
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action potential. At a small scale, this excitatory firing temporarily establishes a charged dipole 

along the neuron. Electroencephalography (EEG) positions multiple electrodes across the scalp 

to monitor this electrical activity. Individually, these signals are too weak to detect through dura, 

skull, and skin. These physical barriers serve as insulation between the electrode charges and 

the charges accumulated through synaptic firing; effectively, this system acts as a capacitor 

(Jackson and Bolger, 2014). Eventually, these charges propagate through to the electrodes. 

EEG typically is used to diagnose pathologies that disrupt the natural oscillations of brain 

activity, such as epilepsy. Its spatial resolution is poor and it can neither detect subcortical brain 

activity nor target the source of the cortical signals that it does detect. Despite these 

disadvantages, the low cost, ready use with other techniques, and millisecond time resolution 

ensure that the technique is still widely used in both preclinical and clinical studies.   

 Magnetoencephalography - Magnetoencephalography (MEG) is a technique similar to 

EEG, but that takes advantage of the magnetic field generated from neuronal activity rather than 

the buildup of charge. The collective neuronal electrical currents from activity induce a weak 

magnetic field in accordance with Maxwell’s equations. To detect these magnetic fields, which 

are ~10-9 gauss in comparison to the ~0.5 gauss exerted by the earth’s magnetic field (Cohen, 

1972), requires sensitive superconducting quantum interference devices to transduce magnetic 

signals into voltage. These sensors must be kept at 4.2 K temperatures and operate in a heavily 

shielded room to avoid environmental noise (Pizzella et al., 2014). Like EEG, its uses are mostly 

related to observing the oscillatory dynamics of brain activity at a millisecond scale to diagnose 

pathologies, but MEG boasts superior spatial resolution that can aid in the location of brain 

tumors prior to surgery (Pizzella et al., 2014). 
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Oxygen  

BOLD fMRI – The gold standard of detecting global oxygen usage throughout the entire 

brain is blood oxygenation level dependent (BOLD) fMRI. This technique capitalizes on the 

different magnetic properties of diamagnetic oxyhemoglobin versus the paramagnetic 

deoxyhemoglobin to map hemodynamic responses (Ogawa et al., 1990). During a BOLD scan, 

radiofrequency (RF) pulses uniformly align the magnetic poles of 1H nuclei (Plewes and 

Kucharczyk, 2012), which then relax in a predictable manner. As neuronal activity consumes 

energy, oxyhemoglobin becomes deoxyhemoglobin and thereby distorts these local magnetic 

fields (Harris et al., 2011). Greater neuronal activity presumably consumes more oxygen, 

resulting in a greater disturbance in the magnetic field and thus increased BOLD signals.  

This technique is completely non-invasive, images the whole brain at once, and can be 

used to obtain as many scans per experiment as the subject allows. The spatial resolution 

typically is a 1-3 millimeter pixel cube, known as a voxel, and the temporal resolution is on the 

order of seconds (Harris et al., 2011). Studies range from monitoring the severity of a traumatic 

brain injury (Belanger et al., 2007) to tracking the effects of a psychotic stimulant (Carhart-Harris 

et al., 2012). The popularity of BOLD has ensured that its shortcomings are equally well known 

and accounted for regarding data interpretation (Ekstrom, 2010). Combining BOLD with other 

techniques will continue to provide additional physiological context to data interpretation as it 

relates to neurovascular coupling. 

 

Metabolism  

PET – As neurons fire, they consume glucose and oxygen to produce carbon dioxide 

and water. PET is the gold standard technique for measuring the cerebral metabolic rates of 

glucose (CMRglc). A glucose analog labeled with a positron emitting radioisotope 

([18F]fluorodeoxyglucose, FDG) is intravenously administered. FDG is transported into brain 
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tissue through glucose transporters at the BBB, and is phosphorylated by hexokinase without 

being further metabolized to pyruvate. Thus, the radiolabel accumulates in areas of high 

glucose metabolism. Ultimately, the resulting gamma rays produced from positron and electron 

annihilation from the radiolabeled FDG are detected to quantify metabolic activity from 

glycolysis (Mosconi, 2013). Metabolism can be monitored anywhere in the body using this 

technique. The spatial resolution of PET is ~2-7 mm (Mosconi, 2013), and the scan times are 

slower than fMRI BOLD scans. As with fMRI, PET scanners and their upkeep are also costly. 

Nevertheless, the customization possible with PET makes it valuable for many purposes that 

range from detecting tumors to assessing neurotransmitter receptor activity (Volkow et al., 

1996).  

 

Blood Flow  

ASL fMRI – Arterial spin labeling (ASL) fMRI is a truer CBF measurement than BOLD 

fMRI, and can be acquired simultaneously with BOLD to offer complementary information (Liu 

and Brown, 2007). Using RF pulses to magnetically label water within arterial blood, ASL 

detects the perfusion of labeled water from capillary blood into tissue. Subtracting data collected 

in absence of magnetic labeling from a labeled scan quantifies CBF changes. It localizes 

capillary blood flow without convoluting results from oxygen metabolism or blood volume 

changes, which makes it ideal to quantify CBF changes resulting from neuronal activity (Liu and 

Brown, 2007). Although ASL has lower signal-to-noise ratio and poorer temporal resolution than 

BOLD, there is lower inter-experimental and inter-subject variability with ASL use (Golay et al., 

2004). Although combining BOLD and ASL fMRI provides information about oxygenation and 

CBF changes, it cannot discern the underlying causes (Bandettini, 2012). 
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Narrowing the Field of Detection 

The global techniques described have provided invaluable data regarding neurovascular 

data between pathological and healthy human subjects. However, studies must be performed at 

a local level to understand the neurovascular influence of specific cell types, receptors, and 

neurotransmitters in a given brain region. Low spatial resolution also averages out the natural 

heterogeneity of the brain, where differences in neuronal architecture may have a profound 

impact on hemodynamic responses. Additionally, the preclinical animal models used to study 

neurovascular coupling require high resolution techniques, as areas of interest could be far less 

than 1 mm2. Common methods capable of resolving neurometabolic components at high 

resolution, some even at the single cell level, are described below. 

 

Cellular Activity  

Electrophysiology – Microelectrodes detect extracellular neuronal activity at millisecond 

time resolutions through electrophysiological techniques: single-unit recording, multi-unit 

recording, and local field potentials (LFPs). These electrodes are placed within the brain and 

record action potentials as voltage changes, which are amplified and filtered. LFPs are 

analogous to spatially restrictive EEG recordings, but are acquired from electrodes placed within 

the brain that are not limited to the cortex. As with EEG, LPFs primarily monitor post-synaptic 

potential activity at 1-200 Hz frequencies and provide a more global view of brain waves. 

Filtering signals from 300-3,000 Hz instead isolates discrete action potentials or spikes from a 

single neuron, also known as single-unit activity (Reed et al., 2015). Single-unit recording 

requires high impedance (>2 MΩ) electrodes with low surface areas and precise positioning 

near a single neuron, whereas multi-unit recording electrodes are larger (often in array format), 

lower impedance, and collect information from multiple neurons (Coleman and Burger, 2015). 

As such, single-unit recordings are the ultimate high precision tool for monitoring neuronal 
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activity, but multi-unit recordings and LFPs sum multiple cells across hundreds of microns to 

address broader patterns of neuronal activity (Reed et al., 2015).  

 

Oxygen 

Amperometry – Oxygen electrochemically reduces at approximately -1.3 V (versus 

Ag/AgCl), a more cathodic potential than most other biologically-relevant molecules. Thus, 

microelectrodes can be inserted into the brain to selectively sense oxygen with minimal tissue 

damage. Constant potential amperometry holds an electrode at a sufficiently cathodic potential 

and measures the oxygen reduction current with millisecond time resolution. Absolute oxygen 

concentrations are quantified using a calibration plot. The common electrodes used are either 

platinum, Clark-type electrodes or carbon paste electrodes. Bare platinum fouls in vivo, and 

requires a membrane barrier between the tissue and the electrode surface. Meanwhile, carbon 

surfaces are resilient against biofouling and do not require any coatings. Carbon paste 

electrodes are >200 µm in diameter (Bolger et al., 2011) and platinum sensors are as small as 

3-5 µm in diameter (Offenhauser et al., 2005), making amperometry a viable option for both 

locally averaged tissue oxygen and oxygen at spatial scales sufficient to resolve individual 

capillaries, respectively.  

Fast-Scan Cyclic Voltammetry – Fast-scan cyclic voltammetry (FSCV) applies a 

waveform to a ~5-7 µm diameter carbon fiber. These waveforms scan across a voltage range at 

high scan rates (>100 V/s). Charging background current at the electrode scales with increasing 

scan rates, but its stability permits this nonfaradaic background current to be subtracted out to 

isolate the signal of interest.  The most common oxygen sensing waveform begins at 0 V, scans 

anodically to +0.8 V, cathodically to -1.4 V, and finally returns to 0 V (Zimmerman and 

Wightman, 1991). Anodic limits as high as +1.45 V are used to detect adenosine also (Wang 

and Venton, 2016). As with amperometry, absolute oxygen concentrations can be calculated.  
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The unique advantage of FSCV over amperometry is the ability to simultaneously detect 

oxygen and other electrochemically active biological analytes. When FSCV currents are plotted 

against potential, the resulting cyclic voltammogram shape can confirm the identity of an 

analyte. Among them, adenosine (Phillis, 1988), norepinephrine (Bucher et al., 2014), and 

serotonin (Cohen et al., 1996) are known to exert vasomodulatory effects. Principle component 

regression analysis can separate current contributions from multiple co-presenting analytes, 

making it possible to accurately quantify concurrent changes between oxygen and vasoactive 

neuromodulators with high spatial resolution. 

 

Metabolism  

 Two-Photon Fluorescence Microscopy – Nicotinamide adenine dinucleotide (NADH) 

serves as an electron carrier in glycolysis and oxidative metabolism processes, and 

nicotinamide adenine dinucleotide phosphate (NADPH) is a coenzyme regulated by glucose 

availability. These coenzymes are weakly autofluorescent, but the oxidized forms NAD+ and 

NAD+P are not. Utilizing the ~360 nm absorbance and ~460 nm emission wavelengths, 

metabolic changes at the cellular level are assessed through fluorescence measurements. Most 

often, two-photon fluorescence microscopy is used to avoid the harmful ultraviolet excitation 

wavelengths and instead excite NADH and NADPH with two infrared photons at ~720 nm 

(Piston and Knobel 1999). As local glucose concentrations rise, so too does the local 

fluorescence. This technique is used for acquiring immediate metabolic information at 

subcellular levels (Piston and Knobel, 1999, Kasischke et al., 2004), given the sub-micron 

spatial resolution and femtosecond laser excitation pulses (Murphy, 2013). Most importantly, 

two-photon fluorescence microscopy observes metabolism in fully intact tissue safely, even for 

minutes at a time without disrupting cell viability (Piston and Knobel, 1999).   
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Blood Flow   

 Laser Doppler Flowmetry – Laser Doppler flowmetry (LDF), also known as laser Doppler 

velocimetry, is the most common optical method used to monitor CBF changes. This method 

has commercially available tools (PeriFlux, Perimed AB, Sweden) that consist of two optical 

fibers: one fiber to direct a low powered laser beam at blood vessels, and the other to detect the 

reflected light. The motion of red blood cells flowing scatters the applied light such that the 

recorded light shifts in frequency according to the Doppler effect. The frequency shift is 

proportional to the CBF velocity. As such, this technique offers continuous, non-invasive CBF 

measurements. LDF cannot directly quantify CBF changes, but the relative changes measured 

correlate well with quantitative techniques (Hendel et al., 1983, Kvietys et al., 1985, Dirnagl et 

al., 1989). The depths assessed are on the order of millimeters (Nilsson et al., 1980), which 

permits superficial measurements only. The non-invasive, continuous flow measurements make 

this technique popular not only for cortical CBF measurements, but also cutaneous (Kastrup et 

al., 1989) and optical (Petrig et al., 1999) blood flow. 

Hydrogen Clearance – Gas clearance is an inexpensive alternative to optical methods, 

and is used to assess subcortical CBF or CBF in freely behaving animals (Lowry et al., 1997).  

Hydrogen is an inert gas that otherwise does not exist endogenously, and that oxidizes to 2 H+ 

(Young, 1980). Hydrogen gas is introduced into a subject through either an intravenous injection 

of hydrogen saturated saline, an extended hydrogen gas inhalation period, or in situ generation 

(Keller and Lübbers, 1972, Stosseck et al., 1974, Fellows and Boutelle, 1993). Once the tissue 

of interest is saturated, a platinum microelectrode held at +0.2 V (versus Ag/AgCl) detects 

amperometrically the exponential clearance of hydrogen from the tissue as a function of both 

CBF and diffusion. Flow is calculated by taking the ratio of a measurement without flow to a 

measurement with flow to eliminate the contribution of diffusion. The electrode size determines 

how local the measurements are, and range from 1-250 microns in diameter (Young, 1980). 
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Quantitative CBF changes are obtained, but these measurements are on the order of minutes 

apart (Young, 1980). 

 

Multiplexed Detection of Neurovascular Coupling 

With functional hyperemia involving so many biological domains, the ideal way to study it 

is by multiplexing techniques that measure different metrics to run concurrently. Unfortunately, a 

balance between electrical noise, strong magnetic fields, and physical equipment placement 

cannot always be achieved. Thus, many techniques run the same experimental paradigm twice 

using different techniques, which can have subtle or major flaws in reproducibility (Chen et al., 

2008). Researchers continue to develop simultaneous detection with some success, as with 

PET/fMRI (Pichler et al., 2010), hydrogen clearance and amperometry (Lowry et al., 1997), 

ASL/BOLD fMRI (Liu and Brown, 2007), and even electrophysiology combined with 

simultaneous LDF and amperometric oxygen detection (Offenhauser et al., 2005), among many 

other combinations. These exemplify instances where techniques of similar spatial and/or 

temporal resolution are used together; however, combinations such as amperometry and BOLD 

fMRI can assess both global and localized oxygen changes to elucidate differences and 

similarities between the two (Lowry et al., 2010).  

There are additional adaptations used to better understand neurovascular coupling 

mechanisms, but more is still needed. In lieu of observing neuronal activity, fMRI in particular 

has started to use optogenetic stimulations (Lee et al., 2010) to selectively activate known 

cellular populations as opposed to using less specific electrical or peripheral stimulations. Drugs 

are applied locally through iontophoresis to avoid systemic drug effects that could affect basal 

oxygen metabolism or vascular tone (Bucher et al., 2014). There are still gaps between 

technologies, such as the lack of a highly-resolved subcortical CBF measuring instrument and 

affordable, chemically selective neuronal excitation. To truly assess local versus global 
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neurovascular coupling and how it differs between specific and nonspecific stimuli, we address 

these gaps in this dissertation.  

 

Overview of Dissertation 

Understanding the underlying factors controlling neurovascular coupling is crucial with 

regards to interpreting a growing body of functional brain imaging studies. Technology has 

advanced both the number of techniques able to probe aspects of neurovascular coupling and 

the accuracy with which it can be done. While studies in humans normally are limited to non-

invasive methods with more global scopes of detection, animal models have been studied to 

narrow in on neurovascular interactions as far down as the cellular level. The first two aims of 

this dissertation address the need for a subcortical CBF sensor with a miniaturized adaptation of 

electrolytic hydrogen clearance sensors. The third aim establishes the importance of evoked 

responses from different stimulation types by comparing electrical stimulation to chemically and 

spatially selective excitation with glutamate. The fourth aim takes local stimulation a step further 

to investigate a method of studying both local stimulation and local pharmacological 

manipulation in discrete microenvironments. As the spatial and temporal resolution brain 

functionality techniques used in man continue to improve, natural neurovascular heterogeneity 

must be characterized before pathologies can be interpreted correctly from brain functionality 

data. 
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CHAPTER 2: DESIGN AND CHARACTERIZATION OF A MICROFABRICATED HYDROGEN 

CLEARANCE BLOOD FLOW SENSOR1 

 

Introduction 

Cerebral blood flow (CBF) increases in activated brain regions to deliver energy in the 

forms of glucose and O2 – a phenomenon known as functional hyperemia (Iadecola, 2004, 

Haydon and Carmignoto, 2006, Attwell et al., 2010). This increase also serves to maintain non-

cytotoxic levels of metabolic products and conserve physiological pH following neuronal activity. 

Disease states such as ischemia can dysregulate hyperemia and generate or perpetuate brain 

damage, as neurons become both deprived of energy substrates and exposed to toxic levels of 

neurotransmitters and metabolic products (Hossmann, 1994, Iadecola, 2004, Haydon and 

Carmignoto, 2006). Beneath the cerebral cortex, densely packed capillaries fine-tune CBF 

activity to maintain homeostasis (Iadecola, 2004, Attwell et al., 2010). A broad literature exists 

studying cortical CBF (Harper and Glass, 1965, Dirnagl et al., 1989, Takano et al., 2006), but 

studying microvasculature control in the deep brain can provide new insight into pathologies 

hallmarked by CBF dysregulation, as well as flow activity in the behaving brain.  

Numerous techniques have been used to measure CBF, including optical methods and 

tracer clearance approaches (Kety, 1951, Ter-Pogossian et al., 1970, Prinzen and 

Bassingthwaighte, 2000, Boas and Dunn, 2010, Shih et al., 2012). Laser Doppler flowmetry and 

laser speckle imaging are the most popular optical techniques, but the size of commercially 

                                                           
1 This chapter previously appeared as an article in the Journal of Neuroscience Methods. The 
original citation is as follows:  Walton LR, Edwards MA, McCarty GS, Wightman RM (2016) 
Design and characterization of a microfabricated hydrogen clearance blood flow sensor. J 
Neurosci Methods 267:132-140. 
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available probes (500 µm or greater in diameter) risks extensive tissue damage to areas below 

the cortical surface (Dirnagl et al., 1989, Dunn et al., 2001, Shih et al., 2012). Clearance 

techniques, which rely on detecting the transport of an inert tracer to quantify flow, can measure 

CBF throughout the brain.  However, these methods are costly (e.g. magnetic resonance 

imaging) and/or have a finite number of measurements per animal dictated by the number of 

unique labels available (e.g. fluorescent tags for microspheres) (Prinzen and Bassingthwaighte, 

2000, Edvinsson and Krause, 2002). Sensitivity to motion artifacts further excludes the most 

commonly used techniques, optical and magnetic resonance imaging, from CBF measurements 

in behaving subjects. As an increasing number of common anesthetics (e.g. isofluorane) are 

known to have vasoactive effects (Ueki et al., 1992, Lindauer et al., 1993, Matta et al., 1999), 

development of a technique capable of exploring deep within the brain during conscious activity 

is highly desired. 

Inert gases are attractive clearance tracers in biological subjects, as gas clearance can 

make an unlimited number of measurements per subject, detect CBF below the cortex, and 

perform in both anesthetized and freely-moving animals, all while quantifying CBF in ways that 

correlate highly with values obtained from competing techniques (Kety, 1951, Aukland et al., 

1964, DiResta et al., 1987, Fellows and Boutelle, 1993, Machens et al., 1995, Lowry et al., 

1997, Pell et al., 2003). The most affordable clearance gas is H2, introduced through inhalation, 

injection of H2-saturated saline, or electrolytic generation (Aukland et al., 1964, Stosseck et al., 

1974, Young, 1980). The lattermost, electrolytic H2 clearance (EHC), generates H2 in situ and 

monitors its clearance to measure blood flow. Using a collector-generator electrode array, inert 

H2 is generated galvanostatically from endogenous water and reoxidized at a potentiostatic 

collector electrode. Common biological interferents oxidize at higher potentials than H2, so a low 

collector potential ensures specificity for in vivo use (Young, 1980). Inhalation and injection H2 

clearance methods have poor temporal resolution, as gas takes minutes to permeate through 

tissues and saturate the brain for a single measurement (Meyer et al., 1972, Lowry et al., 1997), 
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whereas EHC generates gas locally and reduces saturation time to seconds (Stosseck et al., 

1974, Koshu et al., 1982). However, existing EHC electrodes are a millimeter or larger in 

diameter, too large for anything other than superficial CBF measurements (Stosseck et al., 

1974, Koshu et al., 1982, DiResta et al., 1987). Despite its superior temporal resolution, EHC 

has not been used for CBF detection in subcortical, freely-moving experiments due to the 

technical limitations of probe size. 

In this paper we use photolithography to fabricate a platinum electrode array capable of 

EHC that is an order of magnitude smaller than previous sensors (Stosseck et al., 1974, Koshu 

et al., 1982). Micron-scale dimensions improve spatial resolution and allow for sub-surface CBF 

measuring with minimal tissue damage. Microfabricated EHC fulfills the need for a tool capable 

of measuring CBF in the deep brain on a more physiological timescale than existing gas 

clearance methods, with the crucial benefit of applicability during freely-behaving experiments. 

Here, we characterize our EHC array, assess its suitability as a blood flow sensor, and present 

a theoretical framework for analyzing the data it produces.  

 

Experimental  

Chemicals and Solutions 

Chemicals were received from Sigma Aldrich (St. Louis, MO) unless otherwise noted.  

Phosphate buffered saline (PBS, 140 mM NaCl, 3 mM KCl, 10 mM NaH2PO4) was diluted from 

a 10x stock and adjusted to pH = 7.4 with 5 M NaOH on the day of use. Hexaamineruthenium 

(III) trichloride (RuHex) was dissolved in 0.1 M KCl. McIlvaine buffers were made on the day of 

use from 0.1 M citric acid and 0.2 M K2HPO4, according to the pH value desired. DL-

Noradrenaline hydrochloride (norepinephrine, NE) was added to buffer immediately prior to 

collecting rate data. All solutions were at 25 °C. 
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Platinum Electrode Array Fabrication 

Platinum EHC arrays (Figure 2.1A) were fabricated using instruments at both the North 

Carolina State University Nanofabrication Facility (NNF) and the Chapel Hill Analytical and 

Nanofabrication Laboratory (CHANL) at UNC Chapel Hill. The process used was similar to 

arrays that we previously reported (Dengler and McCarty, 2013). Silicon wafers (University 

Wafer, Inc., Boston MA) were insulated with silicon nitride (3000 Å) using low-pressure chemical 

vapor deposition (LPCVD). Photolithography was performed using a negative tone photoresist 

(NFR 016 D2, JSR Corp., Tokyo, Japan) following dynamic application of hexamethyldisilazane 

(HMDS) as an adhesion promoter to obtain a thickness of approximately 3.7 µm. After exposure 

and development of the photoresist, the nitride was dry-etched using reactive ion etching (RIE) 

to pattern trenches of approximately 600 Å. Titanium metal was evaporated over the entire 

wafer (200 Å) to aid adhesion between the LPCVD nitride and subsequently evaporated 

platinum (400 Å). Lift-off was achieved with acetone, followed by a standard RCA-1 clean.  

The arrays were insulated with silicon nitride (3000 Å) using plasma-enhanced chemical 

vapor deposition (PECVD). Photolithography using HMDS followed by S1813 positive tone 

photoresist (Shipley, Marlborough, MA) isolated areas of electrical exposure. The PECVD 

nitride was dry-etched through to the LPCVD nitride. A thick (>10 µm), protective layer of 

positive photoresist (AZ 4620, Shipley) was spun atop the wafer. Each wafer totaled 81 

individual devices with different array dimensions, 26 of which were the geometry described in 

this paper. Devices were ultimately isolated using a dicing saw. Electrical connections to contact 

pads were made manually under a microscope using stainless steel wire and silver epoxy (MG 

Chemicals, Canada). Platinum devices were cleaned via voltammetric cycling in 0.5 M H2SO4 

and were excluded from the study if the steady state current measured by slow-scan 

voltammetry in quiescent RuHex solution was not in agreement with that predicted by theory 

(finite element simulations). Platinum black coatings were applied to 3 devices, as previously 

described (Shin et al., 2008), to increase electrochemically active surface area. Carbon arrays 
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used for cyclization experiments were previously fabricated in the laboratory and had the same 

dimensions as the platinum devices used in this paper (Dengler and McCarty, 2013). 

 

Data Acquisition 

Custom hardware was assembled (UNC Chemistry Electronics Shop, Chapel Hill, NC) 

for galvanostatic control of the generator electrode.  Voltammetry data was collected with a 

Chem-Clamp potentiostat (Dagan Corporation, Minneapolis, MN) and filtered at 100 Hz. Carbon 

disk measurements were made using an EI-400 potentiostat (Ensman Instruments, 

Bloomington, IN). All data were acquired using custom, locally written LabVIEW (National 

Instruments, Austin, TX) programs with 60 Hz collection frequency. A Ag/AgCl wire reference 

was used and potentials reported herein are relative to this electrode. Galvanostatic generation 

was used to ensure consistent H2 production regardless of electrode fouling or surface changes 

that could affect the voltage response. Generator currents were -100 nA unless otherwise 

noted. The collector potential was held at +0.25 V. Between each galvanostatic pulse, the 

collector electrode was cycled briefly (2-4 s, 20 V s-1, from -0.5 V to +1.0 V) to maintain platinum 

surface integrity and collector current reproducibility. 

  

Norepinephrine Cyclization Experiments 

The rate of the cyclization of NE-orthoquinone (the oxidation product of NE) to leuco-

noradrenochrome was used to assess the suitability of the devices for detecting flow rates, 

using an experimental paradigm akin to that used in clearance data. Electrode arrays of 

identical geometry to the platinum electrode array, but with carbon electrodes, were used. The 

collector was held at 0.0 V, and the generator used 10 s, +100 nA pulses to oxidize NE to NE-

orthoquinone. Data were acquired in McIlvaine buffers of varying pH (7.40 - 8.05) before and 

after the addition of 100 µM NE. 
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The rate of cyclization in solutions of the same pH range was independently measured 

using potential step chronoamperometry at a glassy carbon disk (r = 1.5 mm) collected at 60 

Hz. The electrode was polished for 30 s with a 0.05 µm alumina slurry, rinsed with methanol and 

deionized H2O, and sonicated for 1 minute between each data collection to maintain 

consistency (Hu et al., 1985). Rates of cyclization for each pH were calculated as previously 

described (Hawley et al., 1967). 

 

Modeling 

Finite element modeling was used to calculate the spatially varying H2 concentration 

over time. At time T=0 the current at the generator was stepped from zero, i.e., no 

electrochemical reaction occurring, to a cathodic current, igen (taken to be negative in the 

following discussion), achieving the reduction reaction in Equation 1. The current returns to zero 

at time T*.  

 2 𝐻+ + 2 𝑒−  →  𝐻2 (1) 

The initial concentration of H2 was taken to be to be zero throughout the simulation 

domain. Mass transport was described by the time-dependent version of the reaction-diffusion 

Equation 2, which is solved in the three dimensions; X, Y and Z. 

 
𝜕𝐶

𝜕𝑇
= 𝐷∇2𝐶 − 𝜅𝐶 (2) 

C represents the concentration of H2, D = 5x10-5 cm2s-1 its diffusion coefficient (Macpherson and 

Unwin, 1997), T the time (s), and 𝜅 (s-1) the first order rate constant H2 clearance, as proposed 

by Stosseck et al. (Stosseck et al., 1974, Young, 1980). 

The boundary condition for the generator electrode is 

 𝐷∇𝐶 ∙ 𝑛 =  
𝑖𝑔𝑒𝑛(𝑇)

2𝐴𝐹
 (3) 

where 

 𝑖𝑔𝑒𝑛(𝑇) =  |
𝑖𝑔𝑒𝑛

0   
  ∀ 0≤ 𝑇 ≤ 𝑇∗

 ∀ 𝑇<0 𝑎𝑛𝑑 𝑇 > 𝑇∗ (4) 
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In these equations, ṉ is the inward pointing unit normal, F is Faraday’s constant and A is the 

generator electrode area. The factor of 2 arises from Equation 1 stoichiometry. Uniform surface 

flux is assumed, as the reaction is kinetically limited within the current range investigated. 

Implicit in this description is the assumption that all of the current is consumed by the evolution 

of H2 (Equation 1) and that generated H2 adsorption to the surface is negligible (Macpherson 

and Unwin, 1997). 

The insulating parts of the array are described by 

 ∇𝐶 ∙ 𝑛 = 0 (5) 

and the exterior of the domain is taken to have zero concentration of H2, that is 

 𝐶 = 0 (6) 

The collector electrode potential is set such that the reverse reaction of Equation 1 

occurs at a diffusion-limited rate and is also described by Equation 6. The current at the 

collector, icoll, is an integral of the flux computed over the surface of the electrode, 

 𝑖𝑐𝑜𝑙𝑙 = 2𝐷 ∫ ∇𝐶 ∙ 𝑛 (7) 

where the 2 comes from the stoichiometry in Equation 1. 

To reduce the number of degrees of freedom we normalized the equations in time, 

length and concentration by making the following substitutions 

 𝑡 =
𝑇

𝜏
     where   𝜏 =  

𝑎2

𝐷
 (8) 

 𝑥 =  
𝑋

𝑎
; 𝑦 =  

𝑌

𝑎
; 𝑧 =  

𝑍

𝑎
 (9) 

 𝑐 = 𝐶/𝜒     where    𝜒 = −𝑖𝑔𝑒𝑛
𝑎

2𝐴𝐹𝐷
 (10) 

Where a is a characteristic length from the geometry, which in our case was taken to be the 

width of the collector electrode. This leads to the normalized version of Equation 2: 

 
𝜕𝑐

𝜕𝑡
= ∇2𝑐 − 𝑘𝑐 (11) 

with the normalized rate constant k defined as 
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 𝑘 = 𝜅𝜏 (12) 

and a modified set of boundary conditions 

    
∇𝑐∙𝑛= −1
∇𝑐∙𝑛= 0   

     ∀ 0 ≤𝑡 ≤ 𝑡∗

   ∀ 𝑡<0 𝑎𝑛𝑑 𝑡 > 𝑡∗ (13) 

 ∇𝑐 ∙ 𝑛 = 0 (14) 

 𝑐 = 0 (15) 

that are the normalized equivalents of Equations 3, 5, and 6 respectively, applying to the same 

boundaries in the transformed geometry, and t* = T*/τ . Note, ṉ is used here to represent the 

inward pointing unit normal in the transformed coordinates. 

The icoll in non-normalized coordinates is related to the normalized form, ĩcoll, by 

   
𝑖𝑐𝑜𝑙𝑙(𝑇) = 𝐷𝑎𝜒𝑖̃𝑐𝑜𝑙𝑙(𝑡)

𝑖̃𝑐𝑜𝑙𝑙(𝑡)= ∫ ∇𝑐(𝑡)∙𝑛
 (16) 

where the integration is taken over the electrode in the normalized coordinates.  

We made the useful observation that Equation 11 displays linearity; that is, if both c1(t) 

and c2(t) are linear then c3(t)= d1c1(t)+ d2c2(t) will also be linear for any values d1 and d2. This 

property arises from the first order clearance rate description and is not true for general 

clearance expressions. We also observe that Equation 11 is time invariant, meaning that 

another solution for any value of t0 is c4(t) = c1(t + t0). 

If we define c∞(t) as the solution for an infinitely long current pulse, initiated at t = 0, then 

we can derive the solution for a pulse of duration t*, also initiated at t = 0, is described by 

 𝑐𝑡∗(𝑡) =  𝑐∞(𝑡) −  𝑐∞(𝑡 − 𝑡∗) (17) 

Equation 11 is satisfied by the linearity relation (d1 = 1, d2 = -1) and time invariance (t0 = t*). 

Boundary conditions 14 and 15 are trivially satisfied and 13 is satisfied by the summation of the 

fluxes, which cancel out for t > t*.  The current is similarly given by 

 𝑖𝑐̃𝑜𝑙𝑙,𝑡∗(𝑡) = 𝑖𝑐̃𝑜𝑙𝑙,∞(𝑡) − 𝑖𝑐̃𝑜𝑙𝑙,∞(𝑡 − 𝑡∗)  (18) 

Where ĩcoll,t and ĩcoll,∞ represent the normalized collector current for a current pulse of duration t* 

and infinite length, respectively. Thus we can restrict ourselves to solving these equations for an 
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infinite pulse length, in practice until a (quasi) steady-state behavior is reached, for a range of 

geometries in the normalized space. 

 

Computational Details 

The solution to the equations was calculated using the commercial finite element 

modeling package COMSOL Multiphysics 4.3a (COMSOL AB) and was performed on the 

Biomedical Analysis and Simulation Supercomputer (BASS) at UNC Chapel Hill. The equations 

were discretized using a mesh which was chosen to be finest around the edge of the electrodes 

where flux is greatest. The mesh was determined to be sufficiently fine when further refinements 

did not perturb the solution. Similarly, the extent of the domain was made sufficiently large such 

that it did not affect the derived solution. 

 

Simulated Flow Rate Analysis 

Noise (0.02 – 0.4 nA) was added to simulated data at all flow rates, including 0 s-1, in the 

form of normally distributed, random numbers with a zero mean. This process was repeated 5 

times for each noise amplitude to determine the variation of the observed response. When 

performing analysis, data from 0 – 8 s was disregarded to exclude the generating pulse time 

and the first second of clearance and analyzed according to Stosseck et al (vide infra) 

(Stosseck et al., 1974). Statistical work was performed in GraphPad Prism 6 (GraphPad 

Software, San Diego, CA, USA). Student’s t-tests were used to determine significance, defined 

as P < 0.05. 

 

Results 

EHC arrays consisting of two individually addressable platinum electrodes were 

microfabricated (Figure 2.1A). The platinum is electrically insulated beneath silicon nitride, with 
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the exception of two pads at the top that connect to either the potentiostat or galvanostat, and a 

window at the tapered tip that exposes band electrodes where EHC is performed (Figure 2.1A, 

inset). The total probe width at the active electrode window is 100 µm, an order of magnitude 

smaller than existing EHC probes and more similar to existing microfabricated arrays used in 

vivo (Stosseck et al., 1974, Chen et al., 2009). The electrically insulated region between each 

electrode is approximately 5 µm wide. We used the two outer bands, each 100 x 20 µm, as the 

generator and the center electrode, 100 x 10 µm, as the collector. While exchanging the choice 

of the generator and collector would result in a higher overall collection efficiency (CE), defined 

as the percentage of the generator current measured at the collector electrode, the smaller 

generator area decreases the maximum current that could be applied and offers no signal 

enhancement. Higher current densities risk limiting the electrode lifespan or generating H2 

bubbles (Stosseck et al., 1974, Fernández et al., 2014). Of the isolated, diced devices from two 

separately processed wafers, 42 / 52 (80.8%) were functional, 6 / 52 (11.5%) were excluded 

(criteria for exclusion vide supra), and 4 / 52 (7.7%) could not have functionality assessed due 

to human error.  

 

Characterizing Platinum Arrays 

The one-electron reduction of RuHex (III) to RuHex (II) is an outer-sphere redox system 

with fast electron transfer kinetics that is ideal for characterizing microelectrodes. To validate 

that the electrodes had been correctly produced, cyclic voltammetry was performed at 5 mV s-1 

in degassed 2.5 mM RuHex (III) solutions to obtain steady state currents (iss). Background 

subtracted voltammogram currents show excellent agreement with simulation-calculated iss 

values (D = 9x10-6 cm2s-1, Figure 2.1B, dashed lines) (Macpherson et al., 1997). 

RuHex (III) reduction at the generator served as a model system to compare 

experimental clearance curves to those calculated. A current pulse (igen = -100 nA) reduced 

RuHex (III) to RuHex (II). This current is within the kinetically controlled current regime of a  
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Figure 2.1. Microfabricated platinum arrays are characterized by voltammetry and 
amperometry. (A) Model (to scale) of the full device shows two separately addressed, 100 μm 
long electrodes (inset: micrograph) selectively exposed at the tip. Inset color key: Purple is 
exposed silicon, green is silicon nitride, grey is insulated platinum beneath the nitride and white 
is bare platinum. (B) Cyclic voltammogram (5 mV s-1) in degassed solution containing 2.5 mM 
RuHex and 0.1 M KCl. Theoretical steady state currents, indicated as dashed lines, were used 
to confirm active electrode surface areas. (C) Clearance curves obtained from generating 
RuHex (II) (35 mM) in the period indicated by the grey bar, and collecting RuHex (III). Outer 
electrodes used -100 nA pulses to reduce RuHex (III). The inner electrode, held at +0.25 V, 
detects RuHex (II) oxidation as faradaic current. Experimental RuHex clearance shows 
excellent agreement with simulations of the same system. (D) The collection efficiencies, taken 
at the plateau current, significantly increases when all electrodes are electroplated in platinum 
black (Student's t-test: t(2,6) = 4.804, P = 0.003). 
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35 mM solution (iss = -578.5 nA at the generator) to eliminate the possibility of reducing other 

species (e.g. O2). The current at the collector, held at +0.25 V to re-oxidize Ru(II), shows  

excellent agreement with the response calculated from simulations matching the experimental 

conditions (Figure 2.1C).  

The theoretical response was calculated with varying pulse durations. Simulations 

determined that a 10 s generator current pulse was sufficient to reach locally saturated current 

with an expected 41.3% CE. Experimental results were in good agreement with CEs of 

37.4 ± 5.9% (t(2,4) = 1.478, P >0.05, Figure 2.1D). If greater CE were required, coating all 

electrodes with platinum black was shown to increase electroactive surface area significantly as 

compared to bare platinum, enhancing experimental CE to 54.8 ± 2.2% (t(2,6) = 4.804, P = 0.003) 

(Shin et al., 2008). 

 

Hydrogen Generation and Clearance 

EHC at bare platinum electrodes was first tested in an acidic solution, 0.5 M H2SO4, both 

because of its ability to clean platinum surfaces and for its availability of free protons. The 

electrodes were initially cycled between -0.5 and +1.0 V at 20 mV s-1 and verified as clean when 

the cyclic voltammograms at 20 V s-1 produced the classic peaks indicative of H2 and O2 

adsorption and desorption (Figure 2.2A). The pulse time necessary to achieve steady-state CE 

could be decreased to 7 s (Figure 2.2B), as H2 has a larger diffusion coefficient than RuHex.  

Table 2.1 summarizes CE values obtained from EHC experiments in various solutions. 

Solutions left open to air had 25.2 ± 3.0% CE (n = 5 devices, dashed line, Figure 2.2B), 

significantly poorer than theoretical predictions of 43.6% CE (t(2,4) = 13.71, P = 0.0001, n = 5). 

When the solution was degassed, the decrease in O2 was seen in the steady-state cyclic 

voltammograms as increased area beneath the H2 adsorption-desorption peaks and diminished 

area beneath those of O2 (Figure 2.2A). This is consistent with the idea that degassed solutions 

have less O2 capable of adsorbing to, and thus partially passivating, the active area of a bare 
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platinum surface (Bard et al., 1980). The clearance response in degassed acid closely matched 

that predicted by simulation (black line vs. gray line, Figure 2.2B) and achieved 34.6 ± 5.9% CE 

(t(2,3) = 3.05, P > 0.05, n = 4). Similarly, in solutions of aerated PBS, no collection current was 

obtained using igen = -100 nA, and igen = -700 nA pulse yielded only 0.49 ± 0.18% CE 

(t(2,3) = 479.0, P < 0.0001, n = 4). Once degassed, 30.4 ± 7.4% CE could be achieved in PBS 

using igen = -100 nA (t(2,2) = 3.09, P > 0.05, n = 3 devices). 

The decrease in CE is due to an O2-dependent competing reduction that consumes a 

large fraction of the generator current and produces one or more species that are undetectable 

amperometrically at +0.25 V. While this is problematic for in vitro studies in air-saturated 

solutions, O2 concentrations in the deep brain are approximately 5 times lower (~50 µM vs. 

~250 µM at pH 7.4, 25 °C (Robinson and Cooper, 1970)), thus it is expected that a majority of 

the current would go into producing H2 in vivo (Feng et al., 1988, Ndubuizu and LaManna, 

2007). It is important to note that the +0.25 V holding potential is sufficiently higher than the 

reduction potential of O2 itself, in addition to being lower than the oxidation potentials of common 

biological interferents (e.g. H2O2, ascorbic acid), ensuring that in vivo measurements will be 

insensitive to fluctuations in these analytes and specific for H2 (Aukland et al., 1964, Young, 

1980). 

Another operational problem in vitro was a decrease in CE with consecutive pulses 

(Figure 2.2C). Cycling the collector between pulses (20 V s-1, 2-4 s, -0.5 to +1.0 V) regained 

optimal CE and maintained reproducibility. We attribute this passivation to oxygen atom 

adsorption to the positively-polarized collector surface, which strips off with cycling (Sugawara 

et al., 2012). 

 

Modeled Flow 

Localized flow, termed microflow, can be determined from clearance curves following the 

procedures of Stosseck et al. (Stosseck et al., 1974). After reaching saturated values of H2 as  
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Table 2.1. EHC collection efficiencies measured at bare platinum microarrays. The center 
electrode served as the collector and two outer bands as generators. Collection efficiency 
reported at the end of a 7 s generation of H2. 

Solution Pulse Amplitude (nA) Collection Efficiency (%)a 

Modeled Prediction -100 43.6 

Aerated H2SO4 -100 25.2 ± 3.0*** 

Degassed H2SO4 -100 34.6 ± 5.9 

Aerated PBS 

-100 n/ab 

-700 0.49 ± 0.18**** 

Degassed PBS -100 30.4 ± 7.4 

aPresented as averages ± SD. Significance calculated using Student’s t-test and Welch’s 
correction against theoretical values: ***P < 0.001, ****P < 0.0001. 
bGenerating current used was insufficient to produce a collector response above baseline. 
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Figure 2.2. O2 reduction reactions compete with EHC in 0.5 M H2SO4 at bare Pt electrodes. (A) 
Steady-state cyclic voltammograms (inner electrode shown, 20 V s-1) indicate augmented H2-
adsorption peaks at a platinum surface in degassed acid versus air-saturated acid. In degassed 
solution, the decreased area beneath the O2 adsorption-desorption peaks also presents with a 
potential shift of the cathodic peak, indicative of fewer oxides present at the surface. (B) EHC 
curves in 0.5 M H2SO4 indicate that CE decreases in air-saturated solutions, but can be restored 
to theoretical levels after N2 bubbling. (C) Even EHC in degassed H2SO4 is subject to CE 
deterioration between subsequent pulses. Cycling the collector between pulses recovers CE 
(clearance curve indicated by dotted arrow) and ensures a maximized, consistent response. 
Generator pulses used were -100 nA. Collector potentials were held at +0.25 V. 
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assessed by a stable collection current plateau, galvanostatic generation ceases and H2 

clearance through diffusion and microflow begins. Note that, as total electroactive array area is  

100 µm x 60 µm and the average spacing between blood vessels is ~50 μm, clearance from a 

H2-saturated tissue volume will incorporate flow from multiple blood vessels (Klein et al., 1986).  

Previous works have shown that the clearance curve, the monoexponential current 

decay following the cessation of the generator pulse, provides a more reliable prediction of 

microflow than absolute current values achieved at saturation (Fellows and Boutelle, 1993). 

Current during clearance is expected to obey the following relation from Stosseck et al. 

 ln (
𝑖0

𝑖𝐹
) = 𝜅𝑇 + 𝑏  (19) 

where i0 (nA) and iF (nA) represent clearance currents in the absence and presence of flow, 

respectively, κ (s-1) is the microflow included in our model as a first-order rate (Equation 2), and 

b a constant deviation function (Stosseck et al., 1974). For convenience, we take T = 0 in 

Equation 19 to be the time when the generator pulse ends. Note, inhalation clearance 

experiments using millimeter-scale electrodes have reported polyexponential clearance rates 

because diffusion between grey and white matters differ, but our probe is small enough that we 

expect to avoid this issue (Fieschi et al., 1965).  

Modeled clearance data were analyzed according to Equation 19 and plotted as  

ln(i0/iF) vs. t (Figure 2.3A). The first second of clearance data was disregarded as the current 

ratio was constant, ~1, and contains no microflow information. The linear regressions were fit to 

the data from t  = 1-8 s (Figure 2.3A) to obtain κ values as slopes, making the time of one full 

CBF measurement total ~15 s and vastly improving temporal resolution compared to the 

multiple minutes per measurement seen in inhalation H2 clearance (Fellows and Boutelle, 1993, 

Lowry et al., 1997). Ideally, these slope values would match the microflow rates input into the 

simulations, but fitting the data during this time range overestimates the input rates by ~15%, 

seen as a deviation from unity of the slope comparing the input microflow rates to those 
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obtained from the slope fit (Figure 2.3B). This deviation highlights the importance of theoretical 

validation and indicates that the assumptions within Equation 19 are not strictly true, especially 

for shorter times (Stosseck et al., 1974). We conjecture that this deviation arises due to the 

strong concentration gradients between the two electrodes, which are an order of magnitude 

closer than those originally used (Stosseck et al., 1974). Fitting clearance data to longer time 

lengths decreases the magnitude of microflow overestimation, however it lowers temporal 

resolution. Since the relationship between the theoretically predicted and actual flows is linear, 

actual microflow can be calculated using a conversion factor obtained from simulations that 

match experimental parameters. This clearance protocol and analysis outline was optimized to 

establish balance between temporal resolution and flow rate accuracy for our specific geometry. 

Different protocols can be used with similar analysis to achieve desired metrics.  

As the ln ratio used in this simple EHC data analysis exaggerates current differences, 

one must also consider the magnitude of these differences and the impact of noise on their 

calculation. Randomly generated Gaussian noise was added to the simulated currents and the 

data were reanalyzed according to Equation 19 (Figure 2.3C). Simulations were calculated at 

~60 Hz to match experimental protocol. As expected, data analyzed with greater noise gave 

less reliable microflow values (Figure 2.3D). However, with experimentally achievable low noise 

levels (<0.05 nA in this case), calculated microflows show close agreement with expected 

values. The exact noise amplitude that ensures accuracy is a function of the array geometry and 

acquisition protocol (data not shown). In conclusion, finite element modeling faithfully 

reproduces the experimental phenomena and can be used to optimize and assess the suitability 

of novel geometries, quantify the robustness to noise, and calculate calibration factors.  

 

Detecting “Flow” with Microarrays 

A first-order chemical reaction was used as an in vitro model amenable to use with our 

arrays, as clearance currents exhibit first-order exponential decay (Stosseck et al., 1974). The 
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conversion of NE-orthoquinone, the oxidized product of NE, to its cyclized form, leuco-

noradrenochrome, was chosen, as the products are voltammetrically distinguishable and the 

reaction rate has been characterized. The rate of 0.98 ± 0.52 s-1 at pH 7.40 (Ciolkowski et al., 

1992) can be slowed by increasing the pH, necessary to better mimic the microflow rates 

expected for in vivo EHC (i.e. 0.005-0.030 s-1) (Sakurada et al., 1978).  

We initially assessed the cyclization rate at a range of pH values by stepping the 

potential at a polished glassy carbon electrode from -0.4 V to +0.5 V. The current-time response 

for each pH value was analyzed according to the time-dependent equation for an ECE process 

(Hawley and Feldberg, 1966).  The cyclization rates obtained were plotted against their 

corresponding pH values to verify the expected linear relationship (Figure 2.4A, R2 = 0.79). 

Calculated rates were between 0.37 s-1 at pH 8.13 and 0.70 s-1 at pH 7.40.  

Carbon pyrolyzed photoresist film (PPF) collector-generator arrays were used to monitor 

the cyclization rate because their surfaces can be stripped of the cyclized product, known to foul 

electrodes, by scanning to high voltages (Takmakov et al., 2010). Electrodes were assessed 

using cyclic voltammetry in solutions of 100 µM NE (Figure 2.4B). With 50 mV s-1 scan rates, NE 

is oxidized and reaches a diffusion-limited plateau at ~0.1 V. No reduction peak is observed on 

the reverse scan as there is sufficient time for the NE-orthoquinone to diffuse away. At 500 mV 

s-1, two reduction peaks are observed relating to NE-orthoquinone (Peak 1) and its cyclized form 

(leuco-noradrenochrome, Peak 2) (Hawley et al., 1967). 

For clearance measurements, generator electrodes oxidized NE (igen = +100 nA, 10 s) 

while the collector held 0.0 V; a potential sufficient to detect NE, but not the cyclized product 

(Figure 2.4B). In buffer, the collector current changes were negligible (-0.04 ± 0.02 nA), which 

confirmed collection currents as being solely NE-orthoquinone. The 50 mV s-1 voltammogram iss 

shows that the complete oxidation of NE to NE-orthoquinone will consume 2-3 nA, thus we are 

confident that the same diffusion-limited quantity is generated in all experiments. Voltage at the 

generator exceeded that required to completely oxidize NE in our solutions (Figure 2.4C). 
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Figure 2.3. Computer modeling predicted experimental inaccuracies in flow rate calculations 
from EHC data. (A) Simulated clearance curves for a range of physiologically expected flow 
rates were calculated and plotted following analysis with Equation 19. Time = 0 indicates the 
cessation of the generating pulse. The first second of clearance (shaded box) is excluded from 
the linear regression fit. (B) The linear fit slopes from plot A were compared to the actual rates 
used in the model. The calculated fits overestimated the true rate, but in a highly predictable 
manner amenable to correction. (C) The data from A with added Gaussian noise (0.02 nA). (D) 
Linear fits from C data with greater noise amplitudes can be less accurate at predicting the true 
microflow values. N = 4 replicates per noise value, per flow. Error bars ± SD. 
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In solutions within the pH range studied, a non-zero iss was achieved within 5 s (-0.54 ± 

0.05 nA, -0.74 ± 0.08 nA, -1.00 ± 0.13 nA, for pH 7.62, 7.83, 8.05, respectively), indicating that a 

portion of the oxidized product was not cyclized (Figure 2.4D). Higher collector currents at 

higher pH values are consistent with cyclization rates slowing under increasingly basic 

conditions. It is impossible to slow the reaction rate to zero to perform a ln(i0/iF) analysis, 

however, the current variability indicates that the array can sense reduced NE-orthoquinone 

before an intracyclization process that occurs at rates between 0.37 - 0.70 s-1. This experimental 

demonstration coupled with the previous theoretical results demonstrate the feasibility of 

measuring a wide range of microflow rates, including those expected for CBF. 

An important observation from these data is that the noise in the current collector is 0.02 

± 0.009 nA, below the 0.05 nA maximum noise for accurate determination of CBF (vide supra). 

This justifies the previously made assertion that we may use these devices to measure CBF. 

We conclude that our chosen geometry is capable of discerning microflow for rates at least as 

low as 0.005 s-1 and as high as 0.70 s-1, which is well above what is to be expected in vivo. 

 

Conclusions 

We report microfabricated EHC electrodes that are capable of detecting and reliably 

quantifying changes in CBF expected in vivo. Finite element modeling accurately reproduces 

the experimental current and allows us to calculate calibration factors, quantify the effect of 

noise, and choose optimized geometries and protocols. Microfabrication, which allows batch 

fabrication of implantable sensors in reproducible yields of >80%, enables EHC arrays to be a 

more affordable alternative to existing CBF detection techniques. These devices have high 

temporal and spatial resolution, and implanting an electrode ensures its insensitivity to subject 

motion. These advantages over both traditional EHC sensors and other CBF measuring 

techniques importantly present opportunities for future experiments where in vivo CBF 

quantification can take place in freely-moving subjects beneath the cortex. 
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Figure 2.4. The intracyclization rate of NE-orthoquinone modeled a first order reaction decay in 
lieu of perfusion flow experiments. (A) The rate of the reaction was determined in solutions of 
varying pH using potential-step amperometry at a glassy carbon disk electrode (n = 4 
replicates). (B) Cyclic voltammetry performed in 100 μM NE solutions was used to select a 
collector potential, VCollector = 0.0 V, to detect Peak 1, NE, and exclude faradaic currents from 
Peak 2, leuco-noradrenochrome. (C) Representative voltage vs. time traces at the generator 
electrode producing a 10 s, +100 nA pulse. NE oxidation significantly raised the voltages 
necessary to produce a generating pulse against buffer alone (1.59 ± 0.002 from 1.45 ± 0.01 V, 
t(2,4) = 9.262, P = 0.0008). (D) Representative current vs. time plots with the collector held at 0.0 
V during a 10 s, +100 nA pulse. In solutions with NE, the collector was capable of detecting 
Peak 1 from B across all pH values tested (n = 11 replicates). Grey bars indicate pulse time. 
Error bars indicate ± SD. 



42 
 

REFERENCES 

Attwell D, Buchan AM, Charpak S, Lauritzen M, MacVicar BA, Newman EA (2010) Glial and 
neuronal control of brain blood flow. Nature 468:232-243. 

 

Aukland K, Bower BF, Berliner RW (1964) Measurement of local blood flow with hydrogen gas. 
Circul Res 14:164-187. 

 

Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical Methods: Fundamentals and 
Applications: Wiley New York. 

 

Boas DA, Dunn AK (2010) Laser speckle contrast imaging in biomedical optics. J Biomed Opt 
15:011109-011109-011112. 

 

Chen Y-Y, Lai H-Y, Lin S-H, Cho C-W, Chao W-H, Liao C-H, Tsang S, Chen Y-F, Lin S-Y 
(2009) Design and fabrication of a polyimide-based microelectrode array: application in 
neural recording and repeatable electrolytic lesion in rat brain. J Neurosci Methods 
182:6-16. 

 

Ciolkowski EL, Cooper BR, Jankowski JA, Jorgenson JW, Wightman RM (1992) Direct 
observation of epinephrine and norepinephrine cosecretion from individual adrenal 
medullary chromaffin cells. J Am Chem Soc 114:2815-2821. 

 

Dengler AK, McCarty GS (2013) Microfabricated microelectrode sensor for measuring 
background and slowly changing dopamine concentrations. J Electroanal Chem 693:28-
33. 

 

DiResta G, Kiel J, Riedel G, Kaplan P, Shepherd A (1987) Hybrid blood flow probe for 
simultaneous H2 clearance and laser-Doppler velocimetry. Am J Physiol Gastrointest 
Liver Physiol 253:G573-G581. 

 

Dirnagl U, Kaplan B, Jacewicz M, Pulsinelli W (1989) Continuous measurement of cerebral 
cortical blood flow by laser-Doppler flowmetry in a rat stroke model. J Cereb Blood Flow 
Metab 9:589-596. 

 

Dunn AK, Bolay H, Moskowitz MA, Boas DA (2001) Dynamic imaging of cerebral blood flow 
using laser speckle. J Cereb Blood Flow Metab 21:195-201. 

 

Edvinsson L, Krause DN (2002) Cerebral Blood Flow and Metabolism: Lippincott Williams & 
Wilkins. 



43 
 

Fellows LK, Boutelle MG (1993) Rapid changes in extracellular glucose levels and blood flow in 
the striatum of the freely moving rat. Brain Res 604:225-231. 

 

Feng Z-C, Roberts EL, Sick TJ, Rosenthal M (1988) Depth profile of local oxygen tension and 
blood flow in rat cerebral cortex, white matter and hippocampus. Brain Res 445:280-288. 

 

Fernández D, Maurer P, Martine M, Coey J, Möbius ME (2014) Bubble formation at a gas-
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CHAPTER 3: OPTIMIZING THE DESIGN AND FABRICATION OF MICROFABRICATED 
HYDROGEN CLEARANCE SENSOR FOR IN VIVO USE 

 

Introduction 

Cerebral blood flow (CBF) is a tightly regulated physiological process that replenishes 

glucose and oxygen (O2) concentrations to brain tissue following neuronal activity. Glucose and 

O2 are the key metabolic substrates consumed to maintain ion gradients in the brain, and when 

CBF becomes dysregulated, the collapse of these gradients can lead to cell death (Dirnagl et 

al., 1999, Zauner et al., 2002, Harris et al., 2012). To date, most CBF studies have been 

conducted in cortical locations, where optical techniques, such as laser Doppler flowmetry 

(Dirnagl et al., 1989) and two-photon microscopy (Helmchen et al., 2001), can obtain accurate 

and precise CBF measurements. However, both neuronal and vascular differences exist 

between the cortex and deeper brain regions (Iadecola and Nedergaard, 2007).  To investigate 

CBF in subcortical regions, researchers have turned to either expensive magnetic resonance 

imaging (Calamante et al., 1999) or clearance techniques (Lacombe et al., 1980). Existing 

clearance methods are limited in that they either rely on highly-invasive electrodes, or are 

dependent upon a finite availability of unique fluorophores or radiolabels (Lacombe et al., 1980, 

Prinzen and Bassingthwaighte, 2000). To address these technical challenges and permit further 

subcortical CBF studies, we have sought to improve upon an existing clearance technique.  

Hydrogen clearance is a well-established gas clearance method used to quantify CBF 

that correlates well with other accepted CBF-measuring techniques (Aukland et al., 1964, 

Young, 1980, Larsen et al., 2008). This method introduces inert H2 into a biological system until 

it reaches a saturated level in the area of interest. The supply of H2 is then ceased, and 

subsequent clearance of the gas is then measured through amperometric H2 oxidation at a 
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polarized electrode.   The current generated by H2 oxidation decays exponentially as H2 clears 

the tissue via diffusion and blood flow, and can be used to calculate CBF (Aukland et al., 1964). 

In situ electrolytic H2 clearance (EHC) is the fastest of the H2 clearance methods, and requires a 

platinum electrode array (Aukland et al., 1964, Stosseck et al., 1974, Young, 1980, Larsen et 

al., 2008). In EHC, a galvanostatic pulse from a generator electrode produces H2, which is 

sensed at the second collector electrode (Stosseck et al., 1974). This electrochemical time-of-

flight technique has been used in both animals and human studies, but the electrode sizes have 

historically limited brain applications (Koshu et al., 1982, Shima et al., 1985, DiResta et al., 

1987, Kawasuji et al., 1988), as existing EHC sensors exceed a millimeter in diameter 

(Stosseck et al., 1974, DiResta et al., 1987). To limit tissue damage, smaller arrays are needed 

to perform EHC measurements in subcortical regions. 

Recently, we miniaturized EHC arrays to a micron-scale using microlithography to both 

minimize tissue damage and improve spatial and temporal resolution for sub-cortical blood flow 

measurements (Walton et al., 2016). However, the accuracy of our previous approach relied on 

noise levels ≤50 pA. Though our in vitro measurements routinely had background noise of 

~20 pA, greater noise levels are expected in vivo.  Here, we take further advantage of 

computational modeling to optimize device geometries for both improving collection efficiencies 

(CEs), defined as the percent of generated H2 that is oxidized and thereby sensed at the 

collector(s), and expanding the range of experimental background noises under which the 

devices can operate. Following the improved design of our arrays, we modified the 

microfabrication process to yield devices sufficiently thin to be used in vivo, as opposed to the 

thicker, diced prototype devices of our previous work (Walton et al., 2016). Together, these 

improvements will better serve the intended use of measuring localized CBF changes in 

subcortical brain regions.  
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Experimental 

Chemicals and Solutions 

 KOH was obtained from Fisher Scientific (Pittsburgh, PA) and its solutions were made 

fresh immediately prior to wet etches. AZ1518 positive tone photoresist was obtained from AZ 

Electric Materials (Branchburg, NJ) and NFR 016 D2 negative tone photoresist was from JSR 

Corp. (Tokyo, Japan). All other photolithographic chemicals were purchased from Shipley 

(Marlborough, MA) unless otherwise noted. 

 

Platinum Electrode Array Fabrication 

Platinum EHC arrays were fabricated, in a process similar to previously-reported arrays 

(Walton et al., 2016), using instruments at both the North Carolina State University 

Nanofabrication Facility (NNF) and the Chapel Hill Analytical and Nanofabrication Laboratory 

(CHANL) at UNC Chapel Hill. All uses of photoresist were preceded by a dynamic 

acetone-methanol-isopropyl alcohol clean followed by dynamic application of 

hexamethyldisilazane (HMDS) as an adhesion promoter.  

Backside. Silicon wafers (University Wafer, Inc., Boston MA), 200 µm thick, were 

insulated with silicon nitride (3400 Å) using low-pressure chemical vapor deposition (LPCVD). 

Photolithography began on the backside of the wafer. First, AZ1518 positive photoresist was 

spun on the wafer at 2750 rpm for 60 s and soft-baked at 95 °C for 60 s. The wafers were 

exposed to ultraviolet (UV) light for 4.8 s at a mask aligner (Karl Suss MA6), developed in 

MF319, and then hard-baked at 115 °C for 5 min. Reactive ion etching (RIE) was used to etch 

the backside nitride through to the silicon.  

Level 1. The front of the wafer was spun with a negative photoresist (NFR 016 D2) at 

3000 rpm for 40 s, followed by a 60 s soft-bake at 95 °C. After the Level 1 mask was aligned to 

the backside etches, the patterns were exposed to UV light for 3.5 s and baked at 95 °C for an 
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additional 90 s. After the wafers were developed, the nitride was dry-etched with RIE to pattern 

trenches of approximately 600 Å. Titanium metal was evaporated over the entire wafer (200 Å) 

to aid adhesion between the LPCVD nitride and subsequently evaporated platinum (400 Å). Lift-

off was achieved with acetone, followed by a standard RCA-1 clean. Level 1 geometries were 

insulated with silicon nitride (15 kÅ) using plasma-enhanced chemical vapor deposition 

(PECVD). 

Level 2. Photolithography using HMDS followed by S1813 positive photoresist isolated 

areas of electrical exposure on the front side of the wafer. Approximately half (6.5 kÅ) of the 

PECVD nitride was dry-etched through, leaving the other half to protect the front devices. 

Approximately 160 µm of silicon was wet-etched from the backside of the wafer in a solution of 

30% KOH by weight, heated to 70-80 °C. 

Level 3. S1813 positive resist was spun on the front side of the etched wafer at 

2000 rpm for 60 s, soft-baked at 115 °C for 60 s, aligned to the Level 3 mask, UV-exposed for 

12 s, developed in MF319, and finally hard-baked at 115 °C for an additional 5 min. The 

remainder of the PECVD and LPCVD nitrides was RIE etched through using the Level 3 pattern, 

the residual photoresist of which was plasma cleaned off prior to the releasing KOH step. 

Release. The remaining 40 µm of silicon were wet-etched in hot KOH from both 

front- and backsides of the wafer until the silicon surrounding the devices was fully etched away, 

leaving devices to be removed manually from patterned “bridges” with a scalpel and tweezers 

(Figure 3.1A-B). Each wafer totaled 72 individual devices with one of the following four array 

dimensions described in Table 3.1: 20 of Device B, 21 of Device D, 14 of Device E, and 17 of 

Device F.  

 

Modeling 

EHC operates on the basis of applying a cathodic current igen, sufficient to reduce 

endogenous H+, at a generator electrode to produce a discrete bolus of H2 (Equation 1).   
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Table 3.1. Modeled geometries for platinum EHC microarrays. Inter-electrode spacing refers to 
the space between the central generator and each of the two collector electrodes. 

Device 
Generator 

Length (µm) 

Generator 

Width (µm) 

Collector 

Length (µm) 

Collector 

Width (µm) 

Inter-Electrode 

Spacing (µm) 

A 
100 

20 
100 

30 10 

B 20 30 25 

C 

200 

20 

200 

30 25 

D 20 30 35 

E 30 30 25 

F 50 25 25 
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Elsewise, the generator is held at 0 V to neither produce additional H2, consume H+, nor 

electrochemically affect other biological analytes (Young, 1980). The collector is held at +0.25 V 

throughout the duration of the experiments to amperometrically oxidize the H2 delivered by 

diffusion and flow. 

 2 𝐻+ + 2 𝑒−  →  𝐻2 (1) 

We used finite element modeling to calculate the H2 concentrations as they varied 

spatially over time, as previously reported (Walton et al., 2016). Briefly, mass transport was 

modeled using a three-dimensional solution of the reaction-diffusion Equation 2, where C is the 

H2 concentration,  D = 5x10-5 cm2s-1 its diffusion coefficient (Macpherson and Unwin, 1997), T 

the time (s), and κ (s-1) the first order rate constant for H2 clearance, as proposed by Stosseck et 

al. (Stosseck et al., 1974, Young, 1980). 

 
𝜕𝐶

𝜕𝑇
= 𝐷∇2𝐶 − 𝜅𝐶 (2) 

The generator electrode is bound by the following initial condition 

 𝐷∇𝐶 ∙ 𝑛 =  
𝑖𝑔𝑒𝑛(𝑇)

2𝐴𝐹
 (3) 

where 

 𝑖𝑔𝑒𝑛(𝑇) =  |
𝑖𝑔𝑒𝑛

0   
  ∀ 0≤ 𝑇 ≤ 𝑇∗

 ∀ 𝑇<0 𝑎𝑛𝑑 𝑇 > 𝑇∗ (4) 

In these equations, ṉ is the inward pointing unit normal, F is Faraday’s constant, A is the 

generator electrode area, and 2 is from Equation 1 stoichiometry. Meanwhile, the concentration 

of H2 at the collector is set to zero, as we assume that the reduction of H2 at the applied 

potential is diffusion limited. This current, icoll, is obtained by integrating the flux normal to the 

electrode surface as follows, taking into account the 2 from Equation 1 stoichiometry. 

 𝑖𝑐𝑜𝑙𝑙 = 2𝐷 ∫ ∇𝐶 ∙ 𝑛 (5) 

All data were normalized, and discrete pulses were modeled utilizing linear algebraic 

relationships shown in Equation 6, where ĩcoll,t and ĩcoll,∞ represent the normalized collector 

current for a current pulse of duration T* and infinite length, respectively. We used T* = 8 s. 
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 𝑖𝑐̃𝑜𝑙𝑙,𝑡∗(𝑡) = 𝑖𝑐̃𝑜𝑙𝑙,∞(𝑡) − 𝑖𝑐̃𝑜𝑙𝑙,∞(𝑡 − 𝑡∗)  (6) 

 

Computational Details 

The solution to the equations was calculated using the commercial finite element 

modeling package COMSOL Multiphysics 4.3a (COMSOL AB) and was performed on the 

Biomedical Analysis and Simulation Supercomputer (BASS) at UNC Chapel Hill. The domain 

over which calculations took place extended an order of magnitude past expected diffusion 

limits, such that it did not affect solutions at the electrode surfaces. A mesh was used to 

discretize solutions, and was made finest at the electrode edges where flux was greatest. 

Elsewhere, meshes were coarser to minimize simulation times while maintaining accuracy. 

Meshes were optimized to the point where further refinements did not alter solutions.  

 

Calculating Noise Tolerance for Accurate Flow Analysis 

Flow rates were calculated as described in detail previously (Walton et al., 2016), 

according to the following relation 

 ln (
𝑖0

𝑖𝐹
) = 𝜅𝑇 + 𝑏  (7) 

where i0 (nA) and iF (nA) represent clearance currents in the absence and presence of flow, 

respectively, κ (s-1) is the microflow, and b is a constant deviation function (Stosseck et al., 

1974). Briefly, modeled clearance data were plotted as ln(i0/iF) vs. T, excluding the first second 

of clearance data. With T=0 in Equation 7 defined as the end of the generator pulse current, 

post-pulse data T = 1-8 s were fit with linear regressions to obtain slope values, κ, that 

overestimated flow in a calculable, correctable manner dependent upon the array geometry. 

Fitting clearance data to longer time lengths decreased the magnitude of this microflow 

overestimation, but at the expense of temporal resolution. 
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Noise (0.02 – 0.4 nA) was added to simulated data at all flow rates, including 0 s-1, in the 

form of normally distributed, random numbers with a zero mean. This process was repeated 5 

times for each noise amplitude to simulate a variety of random environmental noise. The flow 

rates used in the modeling and the slopes obtained from the analyzed data were plotted on the 

abscissa and ordinate, respectively, and fit to a linear regression. The stronger the linear fit, the 

more reliable the accuracy of a CBF measurement under different experimental noise 

amplitudes.  

 

Results and Discussion 

We fabricated released devices in four different geometries (Figure 3.1A-B), each 

approximately 10 mm in length. The three EHC electrodes forming our array were located at the 

probe tip and exposed through a window in electrically-insulating silicon nitride. The dimensions 

of these geometries were chosen based on computer modeling where the central electrode was 

designated as the generator and the two adjacent electrodes to either side, being electrically 

connected, served as a single collector (Figure 3.1C). The average spacing between blood 

vessels is approximately 50 μm, and the electroactive array areas used here range from 

20 x 100 µm to 50 x 200 µm, ensuring that the tissue affected by EHC will average flow values 

obtained from multiple blood vessels (Klein et al., 1986). The average thickness of these 

devices was 210 ± 24 µm at the base (n=6) and 15 ± 6 µm at the tip (n=4), compared to the 

uniform 450 ± 36 µm (n=9) of the diced devices published previously (Walton et al., 2016). We 

know from previous work (Walton et al., 2016) that utilizing a three-electrode array geometry 

maximizes collection efficiency when the central electrode is used as the generator and the 

adjacent electrodes serve as collectors. Data were modeled using this convention.  

Optimizing our sensor geometry focused on mostly maximizing both the tolerated noise 

level and collection currents, while limiting the overall size of the electrode areas to 

physiologically reasonable dimensions. Tolerated noise refers to the amount of random 
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Figure 3.1. Platinum hydrogen clearance arrays were microfabricated in a modified workflow to 
produce devices thin enough for in vivo use with optimized dimensions. (A) A photograph of a 
wafer fragment shows how individual probes anchor to the wafer scaffold throughout the 
fabrication process through silicon “bridges” at their base (left). Bridges were broken to release 
the probes (right). (B) Optical image of a fully-released probe compared to a United States 
dime. Both the thickness and width tapered to a fine tip. (C) Expanded representations, to scale, 
of the four different array geometries fabricated in this work. The central platinum electrode was 
modeled as the generator, while the two electrodes to either side jointly served as a collector 
electrode. Letters in italics correspond to the devices in Table 3.1. Green represents PECVD 
silicon nitride, purple is exposed LPCVD silicon nitride, and white is bare platinum. 
  



55 
 

environmental noise that the sensor can be subjected to and still linearly correlate to actual CBF 

values used to model collector current, as described previously in detail (Walton et al., 2016). 

Briefly, clearance data were plotted according to Equation 7 for multiple, physiologically-relevant 

flow rates (0.005-0.03 s-1). Flow rates were obtained from fitting these data to linear regressions, 

then plotted against the modeled ideal flow rates. Each geometry slightly overestimates the true 

flow value used to calculate clearance data, necessitating that this be done first in the absence 

of any environmental noise to obtain the device’s flow correction factor (Walton et al., 2016). We 

artificially introduced random noise to the theoretical data and performed the analysis again to 

gauge the accuracy of the linear fits for a given noise amplitude. For the purposes of this study, 

we defined maximum tolerated noise to be the highest artificially-added noise amplitude that, 

when fit to a linear regression against true flow values, results in an R2≥0.99.  

We modeled a variety of electrode geometries, summarized in Table 3.1. The collection 

efficiencies between the modeled devices were within 20% of one another (Figure 3.2A), though 

the fabricated devices (Devices B, D-F, Table 3.1) were within 10% of one another. The 

maximum tolerated noise thresholds for the devices varied from 23 – 180 pA (Figure 3.2B). 

Overall, the best balance struck between CE, total electrode width, and ability to more 

accurately quantify CBF came from modeling Device E. 

We modeled Device A to resemble our previous device (Walton et al., 2016), using small 

electrode surface areas and narrow inter-electrode spacing, that is, the spacing between the 

generator and each collector electrode (Table 3.1).  Models of this geometry had 72.0% CE and 

a 23 pA noise limit (Figure 3.2). The latter metric led us to omit this geometry from fabrication, 

as it approached the 20 pA background noise levels of our instrumentation. To investigate the 

effect of inter-electrode spacing, we increased this variable from 10 to 25 µm (Device B, Table 

3.1). This decreased CE but roughly doubled the maximum tolerated noise limit (56.2% and 

42 pA, respectively, Figure 3.2). To see if further increasing inter-electrode spacing would 

improve the tolerated noise limit more, we modeled a device with 35 µm inter-electrode spacing 
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Figure 3.2. Optimizing device geometries affected both the collection efficiency and the 
tolerated electrical noise of hydrogen clearance microarrays. (A) Collection efficiency is defined 
as the combined, maximum collection efficiency from both collector electrodes during an 8 s 
modeled H2 pulse (i.e., not fully steady-state) under conditions of no additional flow. The values 
with physiologically-relevant flow rates present (up to 0.030 s-1) were still within 1% of these 
maximum values for all geometries. (B) Maximum tolerated noise is defined as the highest 
amplitude of background noise where a linear fit of experimentally-modeled data to true flow 
values is in agreement such that R2≥0.99, to provide confidence in the accuracy of obtained 
measurements. 
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(Device D, Table 3.1). This substantially improved noise limitations as predicted, with a modest 

decrease in CE (150 pA and 57.8%, respectively, Figure 3.2). Thus, inter-electrode spacing 

greatly impacted the maximum tolerated noise limit of our EHC arrays.  

Collection current can be simplified from Equation 5 as being the product of flux (𝐽), 

Faraday’s constant (𝐹), and the number of electrons involved (e- = 2 for H2 oxidation). As the 

latter two are constants, it became advantageous to maximize the flux integrated across the 

collectors, most easily achieved through increasing the electrode surface area. We investigated 

whether CE improved with greater surface areas. Devices B-C kept the same generator-to-

collector surface area ratio (1:3), but the total surface area of Device B electrodes was half that 

of Device C electrodes. As such, the CE of Device B (56.2%, Figure 3.2A) was inferior to that of 

Device C (64.6%, Figure 3.2A) and the tolerated noise threshold rose slightly (42 to 38 pA from 

Device B and C, respectively, Figure 3.2B). Interestingly, Devices A-D had 1:3 ratios of 

generator-to-collector surface area ratios, but CEs for these devices ranged from 56.2 to 72.0% 

(Figure 3.2A) and tolerated noise from 23 to 150 pA (Figure 3.2B). Thus, both the absolute and 

relative electrode dimensions contribute to CE and maximum tolerated noise.  

To change the surface area ratios while keeping the inter-electrode spacing consistent 

between models had detrimental effects on both explored metrics. The respective generator-to-

collector surface area ratios for Device E and Device F were 1:2 and 1:1, with the same inter-

electrode spacing, but Device E both had superior CE and tolerated more noise than Device F 

(61.6% versus 54.6% and 180 versus 63 pA, respectively, Table 3.1). With spacing kept 

constant, this contradicted the idea that larger generators would improve CE and suggested that 

the ratio of electrode surface areas has influence on both CE and tolerated noise. 

Using the central electrode as a generator instead of the larger combined surface area 

of the two outer electrodes, as was done in our previous work (Walton et al., 2016), runs the risk 

of generating potentially-disruptive H2 microbubbles with sufficient current densities applied 

(Fernández et al., 2014). We increased the surface areas of the central generator electrode to 
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provide more of a buffer against this risk. Device D was therefore compared to a device model 

that duplicated its dimensions with the exception of having a wider generator (Device E, Table 

3.1). Both the CE and the maximum tolerated noise improved (57.8% to 61.6% and 150 to 180 

pA from Device D to E, Table 3.1, Figure 3.2) with a wider generator dimension, though the 

inter-electrode spacing was decreased to compensate for the additional width and may have 

contributed to these effects. Device F further increased the generator width (and decreased the 

collector widths to compensate), yet this had detrimental effects on both CE and noise 

limitations (61.6% to 54.6% and 180 to 63 pA from Device E to F, Table 3.1, Figure 3.2). We 

concluded that, while a larger generator may reduce the risk of generating microbubbles, the 

relative size of the collectors and the spacing between the electrodes must adjust accordingly to 

maintain optimal CE and noise tolerance. 

The maximum tolerated noise was greatly affected by both changing the inter-electrode 

spacing and modifying electrode surface areas between two sets of otherwise identical devices. 

Devices C and D had matching electrode surface areas, but the 10 µm wider inter-electrode 

spacing of Device D produced a nearly 4-fold difference between their maximum tolerated noise 

thresholds (180 versus 63 pA for Device C and D, respectively, Table 3.1). Meanwhile, Devices 

C and E were identical save for a 10 µm difference in generator widths. Device E, with the 

greater generator surface area, had nearly a 5-fold improvement in the maximum tolerated 

noise as compared to Device C (180 versus 38 pA, respectively, Table 3.1) with negligible 

effects on CE (61.6% versus 64.6%, respectively, Table 3.1). Future work is needed to fully 

investigate these relationships at a quantitative level.  

 

Future Directions 

 Through a series of progressive geometry manipulations, we were able to customize 

electrode arrays using computational modeling to improve desirable qualities such as greater 
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CE or confidence in measurements taken in electrically-noisy environments. Further modeling 

could be used to explore more deeply the relationships between these metrics and device 

dimensions, or to tailor a device to cover larger tissue areas. The devices have been fabricated 

and released successfully, but require further testing to determine whether the electrodes are 

functional and agree with theoretical modeling as closely as previous devices (Walton et al., 

2016). 

Ultimately, these devices will be used to explore CBF changes in vivo. To reliably 

position these devices perpendicular to the brain’s surface will require mounting the devices to a 

circuit board, as performed previously (Zachek et al., 2010). The 10 mm length of the device 

enables exploration throughout the entirety of the rat brain. The tapered thickness, which starts 

from approximately 15 µm at the tip to over 200 µm at the base where the electrical connections 

are made, will generate minimal tissue damage compared to existing EHC devices (Stosseck et 

al., 1974, DiResta et al., 1987). To confirm the utility of these devices in monitoring CBF, future 

work should investigate scenarios where CBF changes are reliably provoked, such as 

measurements in the cortex following whisker stimulation or cortical spreading depression 

(Dunn et al., 2001, Wang et al., 2003). 
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CHAPTER 4: CHEMICALLY SELECTIVE, LOCAL GLUTAMATE STIMULATION USING 
IONTOPHORESIS 

 

Introduction 

Despite accounting for a small portion of total body mass, the brain uses a 

disproportionately large percentage of the body’s resting energy. This discrepancy arises from 

the energetically expensive demands of neuronal communication and the maintenance of ionic 

gradients (Sokoloff, 1989).  Metabolic substrates in the form of glucose and O2 are replenished 

after neuronal activity via increased regional cerebral blood flow (CBF), where they are 

consumed to generate adenosine triphosphate (ATP) and reestablish ion gradients. To maintain 

energetic homeostasis, neuronal activity is typically coupled with increased CBF in a process 

termed functional hyperemia (Roy and Sherrington, 1890). However, when neuronal activity and 

CBF decouple, blood flow cannot replenish the energy consumed during neurotransmission. 

Energy deficits result in the collapse of ionic gradients, and often lead to neuronal death (Drake 

and Iadecola, 2007). CBF increases are not exclusively controlled by metabolic deficiencies 

however, as CBF changes in response to a task are unaltered by induced hypoglycemia and 

hypoxia (Powers et al., 1996, Mintun et al., 2000).  Further, although CBF delivers excess O2 to 

overcompensate for energy loss, the concentrations delivered vary depending on stimulus type 

and intensity (Nielsen and Lauritzen, 2001, Thompson et al., 2003, Offenhauser et al., 2005). 

Together, these suggest that neuronal activity and metabolic deficits play complex roles in the 

regulation of energy throughout the brain.  

CBF is often measured by monitoring extracellular O2 concentrations, where increases in 

O2 can be attributed to increases in blood flow. This is the basis for blood oxygenation level-

dependent (BOLD) functional magnetic resonance imaging (fMRI) (Ogawa et al., 1990); 
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however, positive BOLD fMRI signals (i.e., increases in oxygenated blood) only infer the 

presence of increased neural activity (Hillman, 2014). Fast-scan cyclic voltammetry (FSCV) is 

also used to measure O2 concentration changes at high spatial resolution (Zimmerman and 

Wightman, 1991, Bucher et al., 2014), but electrochemical measurements offer no information 

about neuronal activity. Previously, we used a multimodal sensor to perform simultaneous 

voltammetric and single-unit electrophysiology measurements (Takmakov et al., 2011). Here, 

we expand the capabilities of our sensor to study both O2 dynamics in conjunction with cell 

firing.  This approach uses a single, minimally invasive carbon fiber microelectrode, and enables 

simultaneous detection of both neuronal activity and oxygen consumption in localized 

environments.  Further, we coupled iontophoresis, a local drug delivery method, to FSCV and 

electrophysiology to form a comprehensive suite of techniques to study functional hyperemia. 

Through iontophoresis, we locally stimulated neurons by ejecting glutamate, an excitatory 

neurotransmitter (Krnjević and Phillis, 1963, Lamour et al., 1988, Nicola et al., 2000). Together, 

this multimodal method allowed us to investigate the link between glutamate-elicited neuronal 

excitation and coupled O2 responses in localized microdomains. 

In this study, we compared the effects of electrically stimulated glutamate versus local 

glutamate iontophoresis on O2 dynamics between the dorsal striatum and somatosensory 

cortex. We first elicited endogenous glutamate release via electrically stimulating the prefrontal 

cortex (PFC), and found that striatal O2 concentrations both increased and decreased in a 

manner dependent on stimulation intensity and the availability of ionotropic glutamate receptors 

(iGluRs).  In contrast, glutamate iontophoresis in the striatum either responded with O2 

decreases or were unresponsive to glutamate. Finally, we compared the effects of 

locally-ejected glutamate on O2 concentrations and cell firing between cortical and striatal 

locations. The majority of recording locations responded to glutamate iontophoresis with 

increased cell firing and subsequent O2 decreases. Together, these data show that O2 responds 

differently to electrically evoked glutamate release than to targeted, chemically-specific 
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glutamatergic excitation, and that neuronal firing does not always couple to O2 throughout the 

cortex and striatum. 

 

Experimental 

Animal Care 

All animal protocols were approved by the Institutional Animal Care and Use Committee 

of the University of North Carolina at Chapel Hill (UNC). Male Sprague-Dawley rats (300-450 g, 

Charles River, Wilmington, MA, USA) were pair-housed at UNC animal facilities, given food and 

water ad libitum, and kept on a 12 hour light/dark cycle. Care was taken to reduce the number 

of animals used and minimize their suffering. A total of 6 animals were used for stimulation 

experiments, and data were pooled and analyzed from 70 animals originally used for other 

protocols. 

 

Surgery 

Animals were anesthetized with urethane (1.5 g/kg i.p.) and placed in a stereotaxic 

frame (Kopf, Tujunga, CA, USA). Holes were drilled in the dorsal striatum (+0.7 or +2.0 mm A-P, 

+3.2 mm M-L, -2.5 to -3.5 mm D-V) for the carbon-fiber electrode, and the PFC (+3.0 mm A-P, 

+0.8 mm  M-L, -3.0 mm D-V) for the stimulating electrode. Coordinates are relative to bregma 

from the Paxinos and Watson (2007) atlas. Depths were from dura mater. A Ag/AgCl reference 

electrode wire was placed in the contralateral hemisphere and served as an iontophoresis 

ground. Holes were drilled for glutamate iontophoresis studies in the striatum (+2.2 mm A-P, 

+1.7 mm M-L, -6.4 to -7.8 mm D-V) and somatosensory cortex (+0.6 mm A-P, +2.8 mm M-L and 

+2.0 mm A-P, +2.6 mm M-L, -0.9 to -2.0 mm D-V for each). 
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Drugs and Solutions 

DL-2-amino-5-phosphonopentanoic acid sodium salt (AP5, NMDA receptor antagonist), 

and 1,2,3,4-Tetrahydro-7-nitro-2,3-dioxoquinoxaline-6-carbonitrile disodium salt (CNQX, AMPA 

receptor/kainate antagonist) were obtained from Abcam (Cambridge, MA, USA). All other 

chemicals were obtained from Sigma Aldrich (St. Louis, MO, USA). Drugs were dissolved in 

5 mM NaCl and ejected iontophoretically using cathodic currents (-25 to -400 nA).  

 

Voltammetric O2 Measurements and Iontophoresis 

Mutimodal sensors were fabricated as described previously from four-barrelled glass 

capillaries (Belle et al., 2013). Briefly, a ~5 µm diameter carbon fiber, pulled into a glass 

capillary, was inserted into a 4-barrel capillary and cut under a light microscope to an exposed 

length between 80 - 120 µm. The remaining barrels were filled with drug solutions. 

Fast-scan cyclic voltammetry (FSCV) measurements were obtained and analyzed with a 

High-Definition Cyclic Voltammetry (HDCV) computer program (Bucher et al., 2014). The cyclic 

voltammetric waveform was 11 ms in duration, first scanned from a holding potential of 0.0 V to 

+0.8 V, then to -1.4 V, and finally back to the holding potential (vs. Ag/AgCl reference electrode) 

at a scan rate of 400 V s-1. Carbon-fiber surfaces were conditioned in the brain by scanning the 

waveform at 60 Hz, followed by 10 Hz, each for 15 minutes. A repetition rate of 5 Hz was used 

for simultaneous electrochemical and elecrophysiological measurements as described 

previously (Takmakov et al., 2011). Locally-designed instrumentation controlled the connection 

of the carbon fiber alternately to a current transducer (for cyclic voltammetry) and a voltage 

follower (electrophysiology measurements) (Takmakov et al., 2011). 

Iontophoretic ejections were performed by applying constant current (NeuroPhore BH-2 

System, Harvard Apparatus, Holliston, MA, USA). Ejection timing was controlled by HDCV. 
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Iontophoretic barrels were primed at least 400 µm dorsal to the measurement region to ensure 

reproducible ejections.  

 

Single-Unit Activity Electrophysiology 

Single-unit activity was measured for 179 ms between each cyclic voltammetric scan.  

The data were amplified (x5,000), fed through a bandpass filter (300 – 3,000 Hz, Krohn-Hite 

Corp., Brockton, MA), and digitized using commercially-available software (Digitizer, Plexon, 

Dallas, TX, USA). 

 

Electrically-Stimulated, Endogenous Glutamate Release 

Two optically-isolated stimulators (NL, 800 A, Neurolog, Digitimer, Hertfordshire, UK) 

were used to generate electrical stimulations at a bipolar stainless steel electrode (Plastics One, 

West Lafayette, IN, USA) in the PFC glutamatergic cell bodies. A multimodal sensor was placed 

in the ipsilateral dorsal striatum. One drug barrel contained glutamate (200 mM) (Lamour et al., 

1988), while another contained an AP5 (50 mM) and CNQX (10 mM) cocktail to antagonize 

iGluRs. Recordings were taken at locations where cells were present, defined as locations 

where single-unit activity accompanied a 2 s glutamate ejection using currents <-100 nA. The 

electrode depth was optimized for the strongest biphasic response while maintaining sensitivity 

to iontophoresed glutamate. One location was used per animal. 

First, baseline files were collected without stimulation. Then, stimulations were optimized 

for biphasic O2 responses while maintaining physiologically-relevant stimulus lengths. 

Stimulation frequencies from 5 to 60 Hz; all stimulations were comprised of 120 biphasic pulses 

of 0.2 ms width and 300 µA amplitude. To measure the effect of stimulation duration, we held 

stimulation frequency and current amplitude constant (20 Hz and 300 µA, respectively) and 

varied pulse numbers from 10-100.  
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Pharmacological studies investigated the role of local iGluRs on O2 events in the 

striatum following PFC stimulation. A drug cocktail (50 mM AP5 and 10 mM CNQX) to 

antagonize NMDA, AMPA, and kainate receptors iontophoretically ejected into the dorsal 

striatum recording location for 60 s using cathodic current. After drug ejections ended, 10-30 s 

elapsed before PFC stimulation (20 Hz, 80 pulses) to measure O2 changes under local iGluR 

antagonism.  

 

Probing Local Glutamatergic Mechanisms with Iontophoresis 

A multimodal sensor was placed in either the cortex or the striatum, with one barrel 

containing glutamate. Each probe was used for multiple locations, if background currents 

remained stable, both to avoid damaging tissue and minimize the number of rats. Recording 

locations were at least 300 µm apart (Belle et al., 2013). 

Glutamate was ejected (2 s) while lowering the sensor. Locations were designated as 

cell locations if they produced reproducible single-unit firing that was time-locked to the 

glutamate ejection. We optimized the depth of cell recording locations to maximize single-unit 

activity in response to glutamate. Data sets were also taken at locations that were insensitive to 

glutamate. Each recording location data set consisted of 3-6 replicates each of baseline O2 

activity (nothing ejected) and 2 s glutamate ejections. Time between subsequent glutamate 

ejections was 120 s. 

 

Histology 

Following data collection, the probe location was lesioned by cyclically applying a ramp 

of 0 – 10 V DC potential manually three times over 20 s. Animals were sacrificed with urethane 

cardiac puncture. Brains were removed and fixed in 10% formalin for >7 days. Brains were then 

cryoprotected in 30% sucrose for >48 hrs, before coronal sections (50 µm) were taken with a 
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freezing microtome (Leica, Germany).  Slices were mounted on microscope slides and viewed 

under a light microscope to confirm electrode placements. 

 

Statistical Analyses 

Statistical analysis was performed using GraphPad Prism 6 (GraphPad Software, San 

Diego, CA, USA). Repeated measures one-way analysis of variance (ANOVA) with post-hoc 

Bonferroni’s test was used to evaluate significance. A Student’s t-test was used to determine 

significance between pre- and post-drug O2 events elicited by electrical stimulation. Differences 

were significant when *P<0.05 and **P<0.01. 

 

Results 

Electrical Stimulations at Glutamate Cell Bodies Evoke O2 Response at Striatal Terminals 

Glutamatergic neurons project from the PFC to medium spiny neurons (MSNs) in the 

striatum (Murase et al., 1993, Parent and Hazrati, 1995). We recorded O2 changes at locations 

where glutamate iontophoresis elicited single-unit activity, that is, at glutamate-sensitive cells. 

Unit activity was evoked during the glutamate ejection and ceased upon stimulation termination. 

These cells were classified as MSNs, the most common neuron type in the striatum (Zhou et al., 

2002), due to their high prevalence within the striatum and based on their waveform shapes. 

Next, we electrically stimulated the PFC to evoke glutamate release in the striatum, and 

recorded subsequent O2 changes. Electrical stimulations interfered with electrophysiology, so 

we were unable to record cellular activity during PFC stimulations. We observed robust, 

reproducible O2 responses that consisted of two distinct phases: the first, Event 1, was a 

decrease in O2, followed by an overcompensating O2 increase to above baseline, termed 

Event 2 (examples in Figure 4.1A-B). These biphasic responses were consistent with 

post-stimulus O2 changes observed locally using amperometry at microelectrodes (Ances et al., 
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Figure 4.1. Electrically-stimulated glutamatergic cell bodies in the PFC elicit biphasic O2 
changes in the striatum. (A) Color plot representation of cyclic voltammetry data recorded 
around a 100 pulse, 20 Hz, 300 µA electrical stimulation as indicated by the grey bar. Abscissa: 
applied voltage; ordinate: acquisition time of the cyclic voltammograms. Background-subtracted 
currents are color coded. (B) Current taken at the reduction potential of O2 (-1.3 V, horizontal 
dotted line) from A was used to determine the time course of [O2] changes. O2 decreases (Event 
1) during the stimulation and subsequently increases above baseline (Event 2) followed 
electrical stimulation. Cyclic voltammograms from each event (insets) confirmed the identity of 
O2, with background subtraction taken at the black dashed line in A. Slight hysteresis was 
attributed to concomitant endogenous ion fluctuations. (C) PFC glutamatergic cell bodies were 
electrically stimulated after a cocktail of AP5 (50 mM) and CNQX (10 mM) was applied at striatal 
terminals for 60 s. Event 1 was significantly attenuated (P=0.001, Student’s t-test) under iGluR 
blockade. (D) Recording locations in the dorsal striatum were verified histologically (n = 6). 
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2001, Offenhauser et al., 2005) and globally with BOLD fMRI (Ances et al., 2001, Offenhauser 

et al., 2005, Hillman, 2014). 

To confirm that glutamate was responsible for the biphasic O2 response, we next 

iontophoresed iGluR antagonists to saturate the recording area prior to electrical stimulations.   

We chose a constant stimulation parameter of 80 pulses delivered at 20 Hz (Figure 4.2). After 

collecting a pre-drug stimulation response, we delivered both the NMDA receptor antagonist 

AP5 (50 mM) and the AMPA receptor antagonist CNQX (10 mM) for 60 s from a single 

iontophoresis barrel attached to the carbon-fiber electrode. After drug delivery, we stimulated 

the PFC again and compared the striatal O2 changes before and after iGluR antagonism. In all 

cases, the post-stimulus O2 decrease (Event 1) significantly diminished under local iGluR 

blockade (t(2,8)=5.0, P=0.001, n=5) to 44.8 ± 11.1% of pre-drug values, while Event 2 was 

unaffected (Figure 4.1C). This confirmed that endogenous glutamate release evoked by PFC 

stimulation in the striatum resulted in post-stimulation O2 decreases that were partially due to 

iGluR activation. 

  

Biphasic O2 Responses Depend on Electrical Stimulation Parameters  

We next investigated the dependence of the observed O2 events on the stimulation 

parameters to explore what stimulus was sufficient to elicit a biphasic response. First, we kept 

stimulation frequencies and amplitudes constant at 20 Hz and 300 µA, respectively, and 

changed the number of stimulation pulses from 10 – 100 pulses (Figure 4.2A). The number of 

locations that responded with biphasic O2 changes increased with the number of stimulus 

pulses (Figure 4.2B). Furthermore, the relationship was linear between both biphasic event 

amplitudes and the corresponding number of stimulation pulses (Event 1: R2=0.990; Event 2: 

R2=0.975, Figure 4.2C). All O2 responses from 10 pulse stimulations were monophasic, so we 

omitted these data from the linear fit. This both confirmed that both mono- and biphasic O2 
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Figure 4.2. PFC electrical stimulations controlled the biphasic O2 response in the striatum 
through the number of applied stimulation pulses. (A) Current traces taken at the O2 reduction 
potential were averaged (n=6). The number of electrical stimulation pulses (p) used are 
indicated to the right of the traces. Stimulation frequency and amplitude were held constant at 
20 Hz, and 300 µA, respectively. Grey bars indicate stimulation durations. Dotted lines indicate 
± SEM. (B) The relative occurrence of biphasic O2 responses to electrical stim increased with 
the number of stimulus pulses. (C) Post-stimulus minima (Event 1) and maxima (Event 2) 
increased linearly (Event 1: R2=0.990; Event 2: R2=0.975) with the number of stimulus pulses. 
Monophasic data (i.e., decreased O2 responses that did not return to baseline within 60 s) were 
excluded from plotted Event 2 points. Error bars indicate ± SEM. 
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Figure 4.3. PFC stimulation frequencies affected the time to reach minimal O2 decreases (i.e., 
Event 1) and subsequent maximal O2 increases (i.e., Event 2) in the dorsal striatum. (A) Current 
traces taken at the O2 reduction potential were averaged (n = 6), with their respective 
stimulation frequencies indicated to the right. The number of biphasic pulses applied and their 
amplitudes were kept constant (80 pulses and 300 µA, respectively). Grey bars indicate 
stimulation durations. Dotted lines indicate ± SEM. (B) Stimulus frequency did not affect whether 
or not the responses were biphasic. (C) The stimulus frequency affected the time to reach 
maximum Event 1 O2 decreases and the subsequent Event 2 O2 increases. Monophasic O2 
responses were excluded from Event 2 statistics. Error bars indicate ± SEM. Significance was 
determined with repeated measures one-way ANOVA and Bonferroni’s post-hoc test. *P<0.05, 
**P<0.01 
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responses can be elicited at the same location, identified that the response type depends on a 

pulse-dependent stimulus threshold, and showed a strong linear relationship between the 

number of stimulation pulses and the resulting O2 event amplitudes. 

To ensure that the pulse-dependent stimulus effects were not caused by an increase in 

total stimulation length, we kept pulse numbers and amplitude constant (120 pulses and 

300 µA, respectively) and tested 5 – 60 Hz frequencies. These frequencies did not affect either 

Event 1 or Event 2 (when applicable) amplitudes (repeated measures one-way ANOVA, 

Bonferroni’s post-hoc, P>0.05), or influence whether responses were mono- or biphasic (Figure 

4.3A-B). However, longer stimulation times significantly increased the time differences between 

stimulation and maximum O2 changes for each event, relative to faster stimulations (one-way 

ANOVA, Event 1: F(6,53)=6.26, P=0.0002; Event 2: F(6,35)=5.47, P=0.003; Figure 4.3C). 

Bonferroni post-hoc analysis revealed significant differences in Event 1 minima times between 

both 5 Hz and 10 Hz stimulations as compared to higher stimulation frequencies (5 Hz: 13.6 ± 

2.5 s; 10 Hz: 13.1 ± 1.0 s; 30 Hz: 6.5 ± 0.5 s; 40 Hz: 6.4 ± 0.8 s; and 60 Hz: 6.2 ± 0.5 s;  5 Hz 

versus 30, 40 and 60 Hz: P<0.01 each, n=6 each; 10 Hz versus 30 and 40 Hz: P<0.05 each; 10 

Hz versus 60 Hz: P<0.01, n=6 each, Figure 4.3C). Time differences between stimulation and 

Event 2 maxima (when present) also increased from 5 Hz and 10 Hz stimulation frequencies to 

60 Hz (5 Hz: 33.1 ± 7.5 s, n=2; 10 Hz: 30.8 ± 2.8 s, n=4; 60 Hz: 18.6 ± 0.5 s; 5 Hz and 10 Hz 

versus 60 Hz:  P<0.05 each, Figure 4.3C). These findings indicated that longer stimulus 

frequencies increased the timespan between electrical stimulus and both Event 1 minima and 

Event 2 maxima, without affecting event magnitudes.  

 

Glutamate Iontophoresis Provokes Local Single-Cell Firing and O2 Consumption 

To exclude the confounding effects of non-specific neurotransmitters released from 

electrical stimulation, we next delivered glutamate directly to the recording locations.  
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Experiments started in the somatosensory cortex as proof of principle, then extended deeper 

within the brain through the striatum. We ejected glutamate from an iontophoresis barrel in 2 s 

pulses as the electrode lowered, until electrophysiology could resolve single-unit firing from 

background noise at the carbon fiber (Figure 4.4A and 4.4C). Cortical cells required >100 nA 

cathodic current to respond, and were most often found at or below 0.9 mm D-V, corresponding 

to the most densely populated layers IV – VIb. These observations were consistent with 

published observations (Krnjević and Phillis, 1963, Dykes and Lamour, 1988, Lamour et al., 

1988), which validated our approach to locally excite cells with iontophoresed glutamate. 

Next, we advanced our experiments into the striatum to investigate differences between 

the role of glutamate between superficial and deep brain environments. Striatal cells were 

denser in the ventral striatum as compared to the dorsal striatum (Meitzen et al., 2011) and 

responded using <80 nA ejection currents, less than the ejection currents required for cortical 

cells (Krnjević and Phillis, 1963) and consistent with previous reports (Kiyatkin and Rebec, 

1996).  Cells required different glutamate ejection currents between and within both brain 

regions, either due to differences in barrel characteristics, distance of the cell to the drug barrel, 

cell sensitivity to glutamate, or the available excitatory receptor populations (Lamour et al., 

1988). However, the consistent difference between the ejection currents required to elicit cell 

firing established that glutamate sensitivities differed between the cortex and striatum. 

We used FSCV to record O2 changes during glutamate iontophoresis and simultaneous 

single-unit activity recording. In contrast to electrical stimulations, we observed one of two 

effects in recorded environments following glutamate iontophoresis: either an exclusive 

monophasic O2 decrease (i.e., Event 1 not followed by Event 2) or negligible O2 changes 

(Figure 4.4). The monophasic O2 decreases returned to baseline within 20 s (Figure 4.4A-B). 

This contradicted a previous study that found a robust O2 increase following local glutamate 

pressure ejection (Lourenço et al., 2014), despite that they delivered 0.5 nmol over 1 s versus
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Figure 4.4. Carbon fiber electrodes detected a variety of microenvironments that respond differently to glutamatergic excitation. (A-
D) Recording locations fell into one of two broad categories: those that responded to glutamate with excitatory single-unit activity (A, 
C) and those that did not (B, D). Within each group, glutamate ejections were either succeeded by an O2 decrease (A, B) or 
experienced no change in O2 relative to baseline (C, D).  Black tics indicate action potentials for each of the four collected trials 
shown. Grey boxes indicate the glutamate ejection duration. O2 traces were taken at the O2 reduction potential. B, C, and D share the 
same scale bar. (E) Differences existed between overlapping spontaneous O2 events, neuronal sensitivity to glutamate, and 
provoked O2 changes in the cortex, striatum (excluding interneurons), and interneuron locations.
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an estimated value on the order of picomoles delivered via iontophoresis ejection over 2 s at our 

chosen ejection currents (Kirkpatrick et al., 2014). Overall, our sensor recorded one of four 

responses to glutamate at any given location, either with or without cell firing and succeeded by 

either O2 consumption or no O2 changes (Figure 4.4), depending on natural heterogeneity.  

 

Glutamate Inhibits Interneuron Activity 

While characterizing glutamate responsive neurons in the striatum, we serendipitously 

observed interneurons in ventral locations, offering us the unique opportunity to study them in 

vivo. These cells represent only 1-3% of striatal neurons (Zhou et al., 2002), and were 

confirmed as interneurons by their high spontaneous firing rate and single-unit waveform. Our 

carbon-fiber microelectrodes recorded 1-3 interneurons per recording location (Figure 4.5A-B), 

consistent with clusters observed by others (Alcantara et al., 2003). They spontaneously fired 

between 10-25 Hz in deeply anesthetized subjects, higher than in previously reported studies 

(Zhou et al., 2002, Witten et al., 2010). Locally ejecting glutamate significantly inhibited, rather 

than augmented, single-unit firing rates (35.8 ± 5.5% of baseline single-unit activity, t(2,24)=11.5, 

P<0.0001, Figure 4.5B-C), and fully extinguished firing with extended ejection times 

(Figure 4.5B). Basal firing rates recovered after glutamate ejections ceased (Figure 4.5B). To 

our knowledge, we are the first to show this explicit chemical relationship between interneurons 

and glutamate in vivo. 

 

Transient O2 Events 

Finally, while characterizing glutamate responses in both cortical and striatal 

environments, we also observed spontaneous, discrete O2 changes throughout both regions 

(Figure 4.6). These transient O2 events occurred without concurrent cell activity, presented 

during baseline recordings in absence of glutamate, and persisted throughout data collections  
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Figure 4.5. Interneurons observed in the ventral striatum. (A) A 2D waveform density plot 
distinguished a cluster of three interneurons firing at a single carbon fiber in one location, each 
resolved from the background. Typical interneuron firing rates (>10 Hz) produced large, dense 
clusters. Color-coded average action potential waveforms, with outliers >4 σ removed, are 
shown above their respective cluster. (B) Firing rate histograms for two interneurons (α and β as 
blue and purple, respectively), recorded at a different location than shown in A. The firing rate of 
both cells attenuated during glutamate ejections and recovered after the ejections ended. The 
dashed lines from left to right represent the start of ejection, end of the 2 s ejection, and end of 
the 10 s ejection. (C) A 2 s glutamate ejection, normalized to the spontaneous firing exhibited by 
these cells, had a powerful inhibitory effect on interneurons in the ventral striatum (Student’s t-
test: t(2,12) = 11.51, P < 0.0001). 
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Figure 4.6. Recording locations exhibited spontaneous O2 transients. (A) A layer Vb cortical 
cell. (B) An MSN in the striatum. (C) An interneuron in the ventral striatum. Each black hash 
(top) indicates a single recorded action potential. Discrete O2 events presented alone, devoid of 
other electrochemical signals (color plots, middle). Current traces (bottom) were obtained by 
setting the background current such that all events were O2 consumption / positive current 
deflection events for consistency. Both cortical and striatal recording locations presented with 
either short, punctuated transients (i.e., A), large, extended transients (i.e., C), or a mixture of 
both (i.e., B).  

 

  



 

80 
 

unaffected by glutamate ejections. The overlapping relationships between these transients and 

glutamate-stimulated O2 decreases and single-unit activity between cortical and striatal 

environments are summarized in Figure 4.4E. Interestingly, 90.0% of all recorded locations with 

glutamate-sensitive cells presented with spontaneous O2 transients. These transients appeared 

in 93.7% of striatal, glutamate-sensitive recording locations (excluding interneurons) and 88.6% 

of locations insensitive to glutamate (Figure 4.4E). Spontaneous O2 transients presented at 

80.8% of glutamate-sensitive cortical cell locations, but only 54.8% of glutamate-insensitive 

locations (Figure 4.4E). These data revealed a high probability of observing spontaneous O2 

fluctuations in close proximity to glutamate-sensitive neurons, especially in subcortical brain 

matter, but further studies are needed to determine their significance. 

 

Discussion 

In this study, we extended the use of an existing multimodal sensor to investigate the 

relationship between neuronal activity and O2 consumption in highly-localized environments. We 

assessed the differences between stimulated (non-specific) and iontophoresed (specific) 

glutamate responses. Endogenous glutamate release via electrical PFC stimulation elicited a 

biphasic O2 pattern in the striatum, first decreasing and then increasing above baseline levels, 

consistent with the idea that O2 is first locally consumed (Event 1) following neurotransmission 

before being replenished via CBF increases (Event 2) (Ances et al., 2001, Offenhauser et al., 

2005, Hillman, 2014). Interestingly, we did not observe dopamine release at the sensor, though 

this has been reported in the ventral striatum (Murase et al., 1993). Activation of striatal iGluRs 

was responsible for the magnitude of O2 consumption, but did not affect O2 compensation (i.e., 

CBF). Local O2 responses to glutamate iontophoresis resembled those from weak electrical 

stimulations, monophasic O2 decreases that were insufficient to provoke CBF-driven increases 

in O2. Taken together, it is clear that our improved multimodal sensor provides a chemically and 
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spatially selective method of studying glutamatergic influence on single-unit activity and local O2 

coupling throughout the brain in vivo. 

Here, we stimulated glutamatergic cell bodies in the PFC to measure O2 changes at 

terminals in the dorsal striatum. Typical electrical stimulation paradigms use biphasic pulses and 

optimize stimulation parameters through tuning curves (Mathiesen et al., 1998, Nielsen and 

Lauritzen, 2001, Offenhauser et al., 2005, Hoffmeyer et al., 2007). Studies have reported that 

below a threshold stimulation “strength,” both O2 decreases and cell firing occurred without 

evoking CBF changes (Nielsen and Lauritzen, 2001, Offenhauser et al., 2005). We reproduced 

this phenomenon using glutamatergic PFC projections to the striatum and identified “strength” 

related to the number of stimulating pulses. The event amplitudes grew linearly with the number 

of stimulation pulses, as did the likelihood of the location responding with a biphasic O2 pattern 

(i.e., first consuming O2, then receiving O2 increases above baseline). Together, these results 

support current functional hyperemia dogma that increasing neuronal activity leads to increases 

in energy consumption and subsequent CBF increases to deliver overcompensating amounts of 

O2.Thus, we verified that a stimulation threshold must be exceeded to elicit hyperemic O2 

responses, and identified that the threshold directly depends upon the number of stimulus 

pulses.  

In contrast to previous studies that show both CBF and neuronal activity as dependent 

upon stimulation frequency (Mathiesen et al., 1998, Nielsen and Lauritzen, 2001, Offenhauser 

et al., 2005, Hoffmeyer et al., 2007), we found no relationship between faster stimulation 

frequencies and whether or not the locations expressed biphasic behavior. It is important to note 

that each of these studies kept the stimulation duration constant while modulating the 

frequency, which would confound the effects of frequency with that of the pulse numbers per 

stimulus. Further, we found no relationship between the event amplitudes and frequency, which 

we attribute to using the same number of pulses. Slowing the stimulation frequency only 

lengthened the amount of time between the stimulation and the maximal O2 event responses, 
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which again supported our conclusion that it is the number of pulses that ultimately controls the 

magnitude of O2 responses. Thus, we conclude that frequency has no influence over hyperemia 

as it relates to PFC stimulations recorded in the striatum. 

Event 2 was insensitive to localized iGluR blockade at the cell terminals (Figure 4.1C), 

consistent with studies that related neurovascular coupling to postsynaptic receptor activity 

(Nielsen and Lauritzen, 2001, Iordanova et al., 2015). This suggests that O2 overcompensation 

(i.e., CBF) at striatal terminals stems from activity-dependent, PFC neurotransmission. As a 

sufficient quantity of stimulation pulses was necessary to provoke Event 2, the species 

responsible either required robust, accumulative stimulations to activate or recruited a larger 

population of excited cells. However, the lack of specificity offered by electrical stimulation 

precluded any conclusions about whether this hyperemic relationship depended more on 

neuronal consumption of energy or the release of specific neurotransmitters. 

It is well known that electrical stimulations excite spatially-extensive cell populations, so 

we adapted an existing multimodal sensor to excite local neuronal populations, record action 

potentials, and observe subsequent O2 changes. Delivering glutamate through iontophoresis at 

a carbon-fiber microelectrode evoked single-unit activity in highly-localized cell populations, in 

agreement with previous studies (Krnjević and Phillis, 1963, Lamour et al., 1988). Nearly all 

recorded locations (100+) showed either no O2 changes following a brief (2 s) glutamate 

ejection or a monophasic O2 decrease that returned to baseline (Figure 4.4). The exclusive 

presence of Event 1 following local excitation mirrored a “weak” electrical stimulus, but could not 

elicit biphasic responses even with ejection currents >500 nA (data not shown). Previous work 

in our lab established how to both quantify the amount of ejected drug and track its spatial 

diffusion (Kirkpatrick et al., 2014, Kirkpatrick and Wightman, 2016), which we used to confirm 

that a 2 s ejection released glutamate on the order of pmol despite the 200 mM barrel 

concentration. This quantity is unlikely to be excitotoxic (Choi, 1988), which establishes 

glutamate iontophoresis as a safe method of investigating local stimulation dynamics. However, 
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this concentration is likely too low to diffuse to a sufficient number of neurons to match the 

stimulation strength necessary to elicit a biphasic response, especially with the efficiency of 

glutamate uptake through neuronal and astrocytic transporters (Rothstein et al., 1996). 

Cell firing is normally inhibited in deeply anaesthetized animals; however, we observed 

highly-active interneurons in the ventral striatum. We could not characterize whether these 

interneurons were cholinergic or GABAergic based on electrophysiological recordings alone 

(Kawaguchi, 1993). Through iontophoresis, we discovered that glutamate significantly and 

reversibly inhibited, rather than excited, interneuron firing rates. Other studies have shown 

contrary relationships between MSN and cholinergic interneuron activity in vivo (Zhou et al., 

2002, Witten et al., 2010). The specific glutamatergic inhibition of these interneurons adds to the 

growing body of literature investigating the complex interactivity between glutamate, dopamine, 

and acetylcholine through striatal MSNs and interneurons (Gras et al., 2002, Alcantara et al., 

2003, Surmeier et al., 2007).  

Spontaneous O2 events, found here in both the cortex and striatum, were observed in 

vivo as early as 1957 (Davies and Bronk, 1957). One study reported that adenosine, a 

vasoactive neurotransmitter, synchronized with a percentage of O2 transients in the dorsal 

striatum (Wang and Venton, 2016). Studies attributed these spontaneous events to factors 

ranging from the type of anesthetic used (Hudetz et al., 1998) to spontaneous astrocytic 

excitation (Volterra and Meldolesi, 2005, Khakh and Sofroniew, 2015), among other 

possibilities. Studies detecting O2 using amperometry showed baseline current fluctuations, 

(Lowry et al., 2010) and other works by Lowry et al., but the unique cyclic voltammogram shape 

allowed us to confirm what may be mistaken for noise as O2 (examples shown in Figure 4.1B). 

Though some transients were large (>20 µM), the short (<60 s) durations, continued sensitivity 

to glutamate excitation, and lack of concomitant ionic signals precluded these from representing 

spreading depolarization events (Ayata and Lauritzen, 2015). The larger percentage of 

transients observed in deeper brain regions indicated an environmental factor to their presence, 
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though we did not investigate any underlying chemical or physical source(s). When glutamate 

was ejected during a transient event, we observed augmented O2 decreases that relaxed on the 

same time scale as those not confounded by transients, indicating that the spontaneous events 

throughout the brain are unlikely to be competing with glutamate-receptor-dependent O2 

consumption. Our measurements indicated that spontaneous O2 events did not correspond with 

single-unit firing, but the large overlap between the presence of transients and glutamate 

sensitive neurons could make multi-unit cellular recording a future topic of exploration. 

 

Conclusions 

As technology progresses to stimulate the brain more selectively and specifically, 

increasing evidence suggests that disconnects between cerebrovascular coupling relationships 

exist in healthy subjects. Here, we elicited a hyperemic response from electrically stimulated 

glutamate release in the striatum, but targeted exogenous glutamate excitation produced only 

decreases in recorded O2. Modifying an existing multimodal sensor that pairs iontophoresis with 

electrophysiology and FSCV permitted the simultaneous detection of highly localized O2 and cell 

firing responses to selective glutamatergic stimuli in an intact animal. This technique serves as a 

starting point for investigating spatially-targeted cerebrovascular coupling as it relates to 

glutamate-elicited neuronal spiking and O2 consumption.  
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CHAPTER 5: GLUTAMATE RECEPTOR ROLES IN LOCALIZED COUPLED AND 
DECOUPLED SINGLE-UNIT FIRING AND O2 RELATIONSHIPS BETWEEN THE CORTEX 

AND NUCLEUS ACCUMBENS 
 

Introduction 

Regional increases in cerebral blood flow (CBF) maintain energetic homeostasis during 

neuronal activity in a process known as neurovascular coupling (Attwell et al., 2010). Glutamate 

is ubiquitous throughout the brain and is the primary excitatory neurotransmitter responsible for 

synaptic neurotransmission. Glutamate receptors are present on glial cells and both pre- and 

post-synaptic neurons, providing multiple pathways through which glutamate can influence 

neurovascular coupling. Dysregulated glutamatergic receptor function has been implicated in 

numerous pathologies including Huntington’s (Cowan and Raymond, 2006), schizophrenia 

(Olney and Farber, 1995), and many others (Meldrum, 2000, Niswender and Conn, 2010, 

Paoletti et al., 2013). Interestingly, these same disease states are associated with dysregulated 

CBF (Zlokovic, 2011). Although glutamate is known to contribute to neurovascular coupling 

through its different receptors (Attwell et al., 2010), the precise mechanisms of this influence are 

poorly understood. 

A growing number of brain functionality studies use blood oxygen level dependent 

(BOLD) functional magnetic resonance imaging (fMRI), which measures shifts in oxygenated 

and deoxygenated blood that depend on CBF changes (Ogawa et al., 1990). However, data 

interpretation is the subject of much debate since fMRI infers neuronal activity based on 

hemodynamic signals. Although this is valid when neurovascular coupling is conserved, it may 

not apply to comparisons between brain regions where coupling is modulated differently (Ances 

et al., 2008, Sloan et al., 2010). Additionally, the poor spatial resolution (~1-2 mm) homogenizes 
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signals within brain regions that differ locally. Glutamate receptors express differentially 

throughout the brain at a local level (Petralia et al., 1996), and signal averaging at this scale 

may not be appropriate for studying the influence of these receptors in neurovascular coupling. 

Finally, these studies are “functional” studies by definition, meaning that they differentiate brain 

activity during task performance, or following peripheral or electrical stimulations. These stimuli 

are not selective, and off-target effects may confound data interpretation. Therefore, to study 

glutamatergic influence on neurovascular coupling requires a technique that can eliminate the 

off-target effects of nonselective stimuli as well as address the differential distribution of receptor 

types within and between brain regions. 

Herein we expound upon previous work using a multimodal sensor to reveal definitively 

that glutamate, acting through specific receptors, affects coupling between single-unit activity 

and O2 consumption in the somatosensory cortex and the nucleus accumbens (NAc). First, we 

antagonized ionotropic glutamate receptors (iGluRs) and found that in both regions, α-amino-3-

hydroxy-5-methylisoxazole-4-propionic acid and kainate receptor (AMPARs collectively) 

antagonism decoupled neuronal activity and O2, whereas N-methyl-D-aspartic acid receptor 

(NMDAR) antagonism maintained this relationship. Next, we assessed the impact of 

metabotropic glutamate receptors (mGluRs), comparing the use of iGluR antagonists and an 

mGluR agonist. Both the cortex and NAc had coupled and decoupled responses between these 

two treatments. Furthermore, we inhibited nitric oxide synthase (NOS), which diminished 

responses and maintained coupling in the cortex but showed nNOS-specific decoupled 

responses in the NAc. Taken together, our data show that activated glutamate receptors exert 

differential effects on single-unit activity and O2 changes between and within different brain 

regions at high spatial resolutions, which is an important consideration in the interpretation of 

fMRI data.  
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Experimental 

Animal Care 

All animal protocols were approved by the Institutional Animal Care and Use Committee 

of the University of North Carolina at Chapel Hill (UNC). Sprague-Dawley rats (adult males, 300 

– 450 g, Charles River, Wilmington, MA, USA) were pair-housed in UNC animal facilities on a 

12 hour light/dark cycle and given food and water ad libitum. Care was taken to reduce the 

number of animals used and minimize their suffering. A total of 50 animals were used (35 for 

cortical measurements overlapping with 28 for NAc), with each animal providing 1-6 location 

data sets. 

 

Surgery 

Animals were anesthetized with urethane (1.5 g/kg i.p.) and placed in a stereotaxic 

frame (Kopf, Tujunga, CA, USA). Holes were drilled for recording electrodes in the NAc (+2.2 

mm A-P, +1.7 mm M-L, -6.4 to -7.8 mm D-V) or somatosensory cortex (+0.6 mm A-P, +2.8 mm 

M-L; +2.0 mm A-P, +2.6 mm M-L, -0.9 to -2.0 mm D-V for each) (Hall and Lindholm, 1974, 

Hoffmeyer et al., 2007). Coordinates are referenced from bregma according to the atlas of 

Paxinos and Watson (2007). A Ag/AgCl wire placed in the contralateral hemisphere served as 

an iontophoresis ground and reference electrode.  

 

Drugs and Solutions 

NMDA, AMPA, 1,2,3,4-tetrahydro-7-nitro-2,3-dioxoquinoxaline-6-carbonitrile disodium 

salt (CNQX, AMPAR antagonist), DL-2-amino-5-phosphonopentanoic acid sodium salt (AP5, 

NMDAR antagonist), Nω-propyl-L-arginine hydrochloride (L-ARG, neuronal nitric oxide synthase 

[nNOS] inhibitor), 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine hydrochloride (MTEP, mGluR5 

antagonist), and dihydrokainic acid (DHK, GLT-1 glutamate transporter blocker) were purchased 
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from Abcam (Cambridge, MA, USA). NG-Nitro-L-arginine methyl ester hydrochloride (L-NAME, 

nitric oxide synthase [NOS] inhibitor) and (±)-1-aminocyclopenate-trans-1,3-dicarboxylic acid 

(ACPD, group I/II mGluR agonist) were acquired from Tocris Bioscience (Ellisville, MO, USA). 

All other chemicals were purchased from Sigma Aldrich (St. Louis, MO, USA).  

All drugs were dissolved in 5 mM NaCl. All solutions except L-NAME, L-ARG, and MTEP 

incorporated 0.5 mM uric acid as an inert, electroactive tracer and were ejected with cathodic 

currents (-25 to -400 nA). Drugs ejected with anodic current (+30 to +150 nA; L-NAME, L-ARG, 

and MTEP) were adjusted to pH 6-7 using 0.1 M NaOH and used 4-methylcatechol as an inert 

tracer with concentrations matching that of the drug (Bucher et al., 2014). 

 

Voltammetric O2 Measurements and Iontophoresis 

Mutimodal sensors were fabricated as described previously (Belle et al., 2013). A 5 µm 

diameter carbon fiber, pulled into a glass capillary, was inserted into a 4-barrel capillary and cut 

under a light microscope to an exposed length between 80 - 120 µm. The three remaining 

barrels were filled with drug solutions. 

Fast-scan cyclic voltammetry (FSCV) measurements were controlled using High-

Definition Cyclic Voltammetry (HDCV) software (Bucher et al., 2013). The cyclic voltammetry 

waveform scanned from a holding potential of 0.0 V to +0.8 V, then to -1.4 V, and finally back to 

the holding potential (all vs. Ag/AgCl reference electrode) over an 11 ms time span. The 

voltammetric scan rate was 400 V s-1.  Carbon-fiber surfaces were conditioned in the brain by 

cycling the waveform at 60 Hz, then 10 Hz, for 15 minutes each. Data were collected at 5 Hz 

during simultaneous electrochemical and electrophysiological measurements as described 

previously (Takmakov et al., 2011). Custom instrumentation controlled the connection of the 

carbon fiber alternately between a current transducer (for cyclic voltammetry) and a voltage 

follower (single-unit activity measurements) (Takmakov et al., 2011). 
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Iontophoretic ejections were performed by applying constant current (NeuroPhore BH-2 

System, Harvard Apparatus, Holliston, MA, USA). A data acquisition program controlled ejection 

timing (HDCV, UNC Chapel Hill, Chapel Hill, NC). Iontophoresis barrels were primed at least 

400 µm dorsal to the measurement region (-0.5 mm D-V cortex, -5 to -6 mm D-V NAc) to ensure 

reproducible ejections. Baseline experiments collected voltammetry data in absence of chemical 

or electrical stimulation. 

 

Single-Unit Activity Electrophysiology 

Single-unit activity was measured for 179 ms between each cyclic voltammetric scan.  

The data were amplified (x5,000), fed through a bandpass filter (300 – 3,000 Hz, Krohn-Hite 

Corp., Brockton, MA), and digitized using commercially available software (Digitizer, Plexon, 

Dallas, TX, USA). 

 

Data Analysis 

Cyclic voltammetry data were background subtracted and filtered using a 4th order low 

pass Bessel filter with a 2 kHz cutoff frequency. Data are summarized in color plots that show 

current magnitude in false color, voltages from the waveform along the ordinate, and time along 

the abscissa. A calibration factor of -0.35 nA µM-1 for O2 was obtained from a calibration curve 

as shown previously (Bucher et al., 2014). Concentration data were normalized to the glutamate 

response in absence of drug (“control”) prior to statistical analysis. Principal component 

regression (PCR) was utilized to confirm that faradaic currents resulted only from O2 or drug 

(Rodeberg et al., 2015). O2 PCR training sets for every electrode were built from naturally 

occurring transients (Walton et al., 2016). Glutamate PCR training sets were built from 

ejections, and drug PCR training sets were built from drug only ejections during times when O2 

transients were not present as determined by background subtraction.  



 

94 

Single units were analyzed using Offline Sorter, which uses principle component 

analysis to sort different events (Plexon, Dallas, TX, USA). Firing rate statistics from perievent 

event histograms were exported from NeuroExplorer (NexTechologies, Madison, AL).  

 

Probing Local Glutamatergic Mechanisms with a Multimodal Sensor 

A multimodal sensor, described in previous work (Walton et al., 2016), was placed in 

either the cortex or the NAc. One barrel contained glutamate (200 mM) and one or both of the 

remaining two barrels contained drugs of interest. Each electrode was used for 1-6 locations if 

background currents remained stable, both to avoid damaging tissue and minimize the number 

of rats. Recording locations were acquired at least 300 µm apart (Belle et al., 2013). 

We ejected glutamate (2 s) while lowering the multimodal sensor to locate cells. Only 

locations exhibiting reproducible single-unit activity time-locked to glutamate ejections were 

defined as cells. A full data set included 3-6 replicates each of the following: 1.) A 2 s glutamate 

ejection (control); 2.) A 120 s drug ejection; 3.) A 120 s drug ejection with co-ejection of 

glutamate from 60-62 s; and 4.) A recovery set of 2 s glutamate ejections taken 10 minutes after 

the last drug ejection file (Figure 5.1A). The order of 2 and 3 was randomized. Time between 

glutamate ejections was 120 s in control and recovery files. Time between drug files was 200-

300 s to allow for drug clearance.  

 

Glutamate Receptor Pharmacology in the Somatosensory Cortex 

NMDARs were antagonized using AP5 (50 mM). AMPARs were antagonized with CNQX 

(10 mM). Whenever the third iontophoresis barrel was available, either agonist NMDA (100 µM) 

or AMPA (200 µM) were used to qualitatively confirm excitatory effects.  

To raise endogenous extracellular glutamate and investigate the effect of tonic mGluR 

activation, we iontophoresed an iGluR antagonist cocktail of AP5 (35 mM) and CNQX (18 mM), 



 

95 

with a glutamate transporter GLT-1 blocker (DHK, 10 mM). In a parallel experiment, we 

agonized group I and II mGluRs with ACPD (6 mM). To examine the influence of downstream 

nitric oxide (NO) synthesis on glutamate-induced O2 consumption, we inhibited NOS activity 

with L-NAME (5 mM).   

 

Glutamate Receptor Pharmacology in the Nucleus Accumbens 

We used similar pharmacological manipulations in the NAc as in the cortex. In addition, 

we investigated the neuronal contributions to NO production using L-ARG (5 mM) to inhibit 

nNOS over endothelial and inducible NOS (eNOS and iNOS, respectively). We then used 

MTEP (10 mM) to antagonize mGluR5, as it is most prevalent mGluR in the NAc (D'Ascenzo et 

al., 2007). 

 

Histology 

Following data collection, the last electrode location was marked by cyclically applying a 

ramp of 0 – 10 V DC potential manually three times over 20 s to generate a lesion. Animals 

were sacrificed with urethane cardiac puncture. Brains were removed and fixed in 10% formalin 

for >7 days. Brains were then cryoprotected in 30% sucrose for >48 hr, before coronal sections 

(50 µm) were taken with a freezing microtome (Leica, Germany). Slices were mounted on 

microscope slides and viewed under a light microscope to confirm lesion locations. 

 

Statistical Analyses 

Statistical analysis was performed using GraphPad Prism 6 (GraphPad Software, San 

Diego, CA, USA). The average single-unit activity during 2 s glutamate ejections served as the 

100% cell firing control. The apex of O2 consumption within 15 s of the glutamate ejection 

served as the 100% O2 control. Significance between glutamate excitation before, during, and 
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after drug application was evaluated using a repeated measures one-way analysis of variance 

(ANOVA) with a Geisser-Greenhouse (G-G) correction and a post-hoc Dunnett’s multiple 

comparisons test versus control (100%). Data are presented as the mean ± SEM and n values 

representing the number of unique recording locations.  Any locations that lacked O2 responses 

were excluded from O2 analysis, though the single-unit activity data was included if present. A 

Student’s t-test was used to evaluate significance between split cell populations. P values <0.05 

were considered significant. 

 

Results 

Glutamate Iontophoresis Evokes Changes in Single-Unit Activity and O2 Consumption 

First, we chose to validate our previous approach for assessing concomitant single-unit 

activity and O2 concentration changes using a multimodal sensor (Walton et al., 2016). We 

measured single-unit activity and O2 concentration changes evoked by local glutamate ejection 

(example in Figure 5.1B-C). As before, we confirmed that glutamate ejections were not 

excitotoxic (Figure 5.2). Using the same ejection current, we recorded three sequential trials 

each of 5, 10, and 20 s glutamate ejections (200 mM) and spaced the ejections 120 s apart 

(Figure 5.2). These stimuli elicited single-unit firing, but did not injure or desensitize cells, even 

during the longest (20 s) ejection time (Figure 5.2C), consistent with previous studies that used 

near-saturated glutamate concentrations (Krnjević and Phillis, 1963). We used PCR training 

sets to separate O2 currents from glutamate ejection currents (Figure 5.2, top). Though these 

traces appeared noisy due to natural, spontaneous O2 transients (Walton et al., 2016), residual 

plots (Figure 5.2, bottom) confirmed that the current due to noise was below a training set 

specific predicted threshold value (Qα) and thus validated the PCR analysis (Rodeberg et al., 

2015). We found that, regardless of ejection duration, locations continued to respond with O2 

decreases (Figure 5.2). These observations were consistent with our previous report, and 
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Figure 5.1. Experimental paradigm to assess the differences between single-unit activity and O2 
responses to glutamate excitation with and without pharmacological manipulation. (A) Protocol 
schematic. (B) (i) A single-unit waveform recorded in the NAc. (ii). PCR extracted neuronal 
activity from background noise, visualized in 2-D waveform density plots. The central black 
cluster represents noise waveforms, while the cluster outlined in red represents the single unit 
from (i) resolved from background. (C) Glutamate ejections evoked single-unit firing and O2 
decreases. (Top) The cell in A, exposed to a 2 s glutamate ejection. (Bottom) The same cell as 
above exposed to the drug and glutamate paradigm. The drug example shown is ACPD (mGluR 
agonist). Black tics indicate single-unit action potentials. Below them are PCR extracted O2 
traces from cyclic voltammetry currents. Dashed lines indicate baseline current. The grey box 
indicates glutamate ejection time, and the red box indicates drug ejection time. 
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confirmed that glutamate iontophoresis at our chosen barrel concentration would evoke reliable 

single-unit activity and O2 changes without excitotoxic effects. 

 

Single-Unit Activity and O2 Consumption Couple and Scale with Glutamate Ejection Currents 
across Sensors 
 

Previous work established that drug quantities ejected using the same ejection currents 

are inconsistent between iontophoresis barrels (Herr et al., 2008). To ensure that we could 

average data collected across many of our multimodal sensors, we next ejected glutamate 

using 5-300 nA currents at multiple (n=6) electrodes in both cortex and NAc locations. When we 

normalized single-unit activity and O2 concentrations to the maximum ejection current, we found 

a linear relationship between ejection current and single-unit activity (R2=0.71, Figure 5.3), and 

between ejection current and O2 consumption (R2=0.75, Figure 5.3) across multiple electrodes. 

Additionally, the O2 consumed and single-unit responses correlated (Pearson’s correlation, 

P<0.0001). Therefore, normalizing cell firing and O2 data provided a meaningful way to compare 

data between these multimodal sensors.  

 

Neuronal Activity and O2 Remain Coupled in the Somatosensory Cortex During NMDAR, but 
Not AMPAR, Antagonism 
 

We determined in a previous study that iGluRs influenced glutamate-induced O2 

consumption, which couples to single-unit activity (Walton et al., 2016). To investigate the 

individual contributions of iGluRs to coupled single-unit activity and O2 concentration changes, 

we used our multimodal sensor to eject antagonists and compare pre-drug responses to 

glutamate excitation against responses during drug delivery (example in Figure 5.1C). We used 

AP5 to antagonize NMDARs and CNQX to antagonize AMPARs. Both AP5 and CNQX 

significantly reduced glutamate-elicited cell firing in the cortex, (AP5: F=4.4, P=0.053; 45.0 ±  
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 Figure 5.2. Extended glutamate iontophoresis (200 mM) was not excitotoxic. (Top) PCR 
extracted O2 current traces for 5 s (A), 10 s (B), and 20 s (C) glutamate ejection times, each 
represented by grey boxes. Black tics represent single-unit action potentials. Dashed lines 
indicate baseline current. (Bottom) Corresponding PCR residual currents are below the 
anticipated noise threshold, and do not contain signals that indicate the presence of other 
analytes. The data shown are from a NAc location. 
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Figure 5.3. Single-unit activity and local O2 consumption responded linearly with increasing 
ejection currents. All data are normalized to the values obtained at the highest ejection current 
used with each sensor. Each point represents an average of three repeated trials using the 
same current (n=6 locations). Error bars are omitted for clarity. 
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9.6%, n=10, Dunnett’s post-hoc P<0.001; CNQX: F=20.1, P<0.0001; 53.0 ± 6.7%, n=9, 

Dunnett’s post-hoc P<0.001; Figure 5.4A); however, cells exposed to CNQX did not recover to 

pre-drug firing rates (69.7 ± 7.4% of control, n=9, Dunnett’s post-hoc P<0.01; Figure 5.5A).  

Surprisingly, NMDAR and AMPAR antagonism exerted differential effects on glutamate-

elicited O2 consumption. NMDAR antagonism with AP5 significantly reduced both the magnitude 

of O2 consumption in the cortex (F=14.6, P=0.0007; 48.5 ± 6.6%, n=10, Dunnett’s post-hoc 

P<0.0001; Figure 5.4A), and the time to reach maximum O2 consumption (9.8 ± 0.96 s before 

drug vs. 6.7 ± 0.77 s during drug; t(2,20)=2.5, P=0.022; Figure 5.6). In contrast, O2 consumption 

during AMPAR antagonism with CNQX did not decrease (Dunnett’s post-hoc P>0.05, Figure 

5.4A), despite reduced single-unit activity. These data indicated that glutamatergic excitation 

conserved neuronal activity and O2 consumption coupling in the cortex and NAc with 

antagonized NMDARs, whereas glutamate unilaterally diminished neuronal firing without 

altering O2 responses in the case of AMPAR antagonism. 

 

Single-Unit Activity and O2 Consumption in the Somatosensory Cortex Decrease During iGluR 
and GLT-1 Blockade, but Decouple with Exclusive mGluR Agonism 
 

Because mGluRs are known to exert influence over vasculature through astrocytes 

(Zonta et al., 2003, Petzold et al., 2008, Carmignoto and Gómez-Gonzalo, 2010), we 

investigated whether agonizing these receptors would affect O2 responses. First, we ejected a 

cocktail consisting of AP5, CNQX, and the glutamate transporter inhibitor DHK to raise 

endogenous glutamate concentrations while blocking iGluR activation. During ejection of this 

cocktail, glutamate-induced firing significantly decreased (F=20.9, P=0.002; 7.3 ± 4.0%, n=7, 

Dunnett’s post-hoc P<0.0001; Figure 5.4B), as did O2 consumption (F=17.2, P=0.019; 

41.2 ± 4.3%, n=4, Dunnett’s post-hoc P<0.01; Figure 5.4B). We applied the group I/II mGluR 

agonist, ACPD, to isolate mGluR agonism without the confounding factor of the iGluR blockade. 

The result was a significant decrease in firing (F=3.1, P=0.12; 43.7 ± 10.0% of control, n=8,   
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Figure 5.4. Single-unit activity and O2 coupling in the cortex was conserved through 
pharmacological manipulations. (A) iGluR antagonism. (B) Direct and indirect mGluR agonism. 
(C) NOS inhibition. Values are percentages of the corresponding control values, defined as the 
single-unit activity firing and O2 consumption following a 2 s ejection of glutamate (200 mM). 
Values in each bar indicate the number of locations. Error bars indicate SEM. Dotted line 
represents 100% control values. Drug targets are as follows: AP5, NMDAR antagonist; CNQX, 
AMPAR antagonist; DHK, GLT-1 transporter blocker; ACPD, group I/II mGluR agonist; L-NAME, 
NOS inhibitor. Significance was established using a one-way, repeated measures ANOVA. 
Dunnett’s post-hoc significance versus control: *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 
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Figure 5.5. With the single exception of single-unit activity under AMPAR antagonism, all 
cortical cells recovered to control (i.e., pre-drug glutamate) levels following a drug washout 
period. (A) iGluR antagonism. (B) Direct and indirect mGluR agonism. (C) NOS inhibition. 
Values are percentages of the corresponding control values, defined as the single-unit activity 
firing and O2 consumption following a 2 s ejection of glutamate (200 mM). Error bars indicate ± 
SEM. Dotted line represents 100% control values. Drug targets are as follows: AP5, NMDAR 
antagonist; CNQX, AMPAR antagonist; DHK, GLT-1 transporter blocker; ACPD, group I/II 
mGluR agonist; L-NAME, NOS inhibitor. Significance was established using a one-way, 
repeated measures ANOVA. Dunnett’s post-hoc significance versus control: **P<0.01 
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Figure 5.6. NMDAR antagonism using AP5 significantly reduced the amplitude of O2 
consumption and the time to maximum O2 consumption via glutamate stimulation (t(2,20)=2.5, 
P=0.022). Solid lines indicate current traces from cyclic voltammetry data taken from the O2 
reduction potential. Dotted lines represent SEM. Grey box indicates time of glutamate 
iontophoresis. 
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Dunnett’s post-hoc P<0.01; Figure 5.4B) without significant changes to O2 consumption 

(Dunnett’s post-hoc P>0.05, Figure 5.4B). Together, these data indicated that blocking 

glutamatergic influence through iGluRs produced coupled decreases in evoked single-unit firing 

and O2 consumption, but that extended periods of mGluR activation attenuated cell firing without 

affecting O2 changes. 

 

NOS Inhibition in the Somatosensory Cortex Diminishes Single-Unit Activity and O2 Responses 

Activation of NMDARs results in the downstream synthesis of the vasodilative 

neurotransmitter NO (Faraci and Brian, 1994). To test if the synthesis of this vasoactive 

molecule affected O2 consumption, we locally inhibited nitric oxide synthase (NOS) using L-

NAME. Surprisingly, NOS inhibition significantly attenuated cell firing (F=4.7, P=0.063; 

35 ± 7.7%, n=8, Dunnett’s post-hoc P<0.001; Figure 5.4C) and decreased the magnitude of O2 

consumption (F=3.8, P=0.065; 73.1 ± 8.8%, n=7, Dunnett’s post-hoc P<0.05; Figure 5.4C). This 

indicated that NOS inhibition reduces the amount of O2 consumed following glutamatergic 

excitation, however this effect might be attributed to NOS suppression of local single-unit firing. 

  

iGluR Antagonism Exerts Similar Control over Single-Unit Activity in Both the Cortex and NAc 

The NAc is a subcortical region with basal glutamate concentrations similar to the 

somatosensory cortex (Baker et al., 2003, Homola et al., 2006), although it differs in its neuronal 

architecture. This similarity prompted us to study whether glutamate exerted the same 

neurovascular influence in the NAc as compared to the cortex. First, we antagonized iGluRs to 

see whether local NAc environments would respond the same way as in the cortex. Both 

antagonizing NMDARs with AP5 and AMPARs with CNQX significantly attenuated single-unit 

firing (AP5: F=9.7, P=0.006; 38.7 ± 9.5%, n=8, Dunnett’s post-hoc P<0.001; CNQX: F=5.9, 

P=0.019; 56.2 ± 11.4%, n=9, Dunnett’s post-hoc P<0.01; Figure 5.7A). Glutamate stimulations  
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Figure 5.7. Single-unit activity and O2 coupling in the NAc was not always conserved during 
pharmacological manipulations of iGluRs, mGluRs, and NOS. (A) Overall results of iGluR 
antagonism. (B) Correlation plot relating single-unit activity and O2 consumption for AP5 results. 
(C) Overall direct and indirect mGluR agonism responses. (D) Correlation plot relating single-
unit activity and O2 consumption for ACPD results. (E) Overall NOS inhibition responses. (F) 
Correlation plot relating single-unit activity and O2 consumption responses to specific nNOS 
inhibition (L-ARG) and non-specific NOS inhibition (L-NAME). Values are percentages of the 
corresponding control values, defined as the single-unit activity firing and O2 consumption 
following a 2 s ejection of glutamate (200 mM). Error bars indicate SEM. Dotted lines represent 
100% control values. Drug targets are as follows: AP5, NMDAR antagonist; CNQX, AMPAR 
antagonist; DHK, GLT-1 transporter blocker; ACPD, group I/II mGluR agonist; MTEP, mGluR5 
antagonist; L-NAME, NOS inhibitor, L-ARG, nNOS inhibitor. Significance between control and 
drug effects was established using a one-way, repeated measures ANOVA and Dunnett’s post-
hoc versus control: *P <0.05, **P < 0.01, and ***P < 0.001. Significant differences between 
multiple responses to a drug were established using an unpaired, 2-tailed t-test: †P <0.05. 
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Figure 5.8. Cells in the NAc recovered from iGluR antagonists and nNOS inhibition, but other 
drugs continued to diminish single-unit activity after a drug washout period. (A) Overall results of 
iGluR antagonism recovery. (B) Overall direct and indirect mGluR agonism recovery responses. 
(C) Correlation plot relating single-unit activity and O2 consumption for partial ACPD recovery. 
(D) Overall NOS inhibition responses. (E) Correlation plot relating single-unit activity and O2 
consumption recovery responses from specific nNOS inhibition (L-ARG) and non-specific NOS 
inhibition (L-NAME). Values are percentages of the corresponding control values, defined as the 
single-unit activity firing and O2 consumption following a 2 s ejection of glutamate (200 mM). 
Error bars indicate SEM. Dotted line represents 100% control values. Drug targets are as 
follows: AP5, NMDAR antagonist; CNQX, AMPAR antagonist; DHK, GLT-1 transporter blocker; 
ACPD, group I/II mGluR agonist; MTEP, mGluR5 antagonist; L-NAME, NOS inhibitor, L-ARG, 
nNOS inhibitor. Significance was established using a one-way, repeated measures ANOVA. 
Dunnett’s post-hoc significance versus control: *P<0.05. Significant differences between 
multiple responses to a drug were established using an unpaired, 2-tailed t-test: †P <0.05. 
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under both NMDAR and AMPAR antagonism showed no O2 changes relative to control 

(Dunnett’s post-hoc P>0.05, Figure 5.7A). However, NMDAR antagonism with AP5 reduced 

both cell firing and O2 consumption in the majority of locations with two distinct O2 consumption 

outliers, which may indicate either partial decoupling as a result of this drug, or two discrete 

neuron populations that respond differently (Figure 5.7B). There was no significant correlation 

between single-unit activity and O2 consumption (Pearson’s P>0.05, Figure 5.7B). Each location 

fully recovered from both drugs (Figure 5.8A). With few exceptions, glutamate acting through 

iGluRs exhibited similar control over single-unit firing and O2 consumption changes in the NAc 

as in the somatosensory cortex. 

 

Neuronal Activity and O2 Consumption in the NAc Decouple During iGluR and GLT-1 Blockade, 
but Partially Decouple During mGluR Agonism 
 

Due to the similarities in iGluR regulation of single-unit firing and O2 consumption 

between the cortex and NAc, we next asked if mGluR agonism was similar between the two 

brain regions. First, a cocktail of AP5, CNQX, and DHK blocked extracellular glutamate uptake 

and antagonized iGluRs, resulting in significant attenuation of single-unit activity (F=23.1, 

P=0.0014; 21.3 ± 7.3%, n=6, Dunnett’s post-hoc P<0.001; Figure 5.7C). Surprisingly, this did 

not affect O2 consumption (Dunnett’s post-hoc P>0.05, Figure 5.7C). We then ejected ACPD to 

agonize mGluR groups I/II without the iGluR blockade. The results differed from both the 

cocktail in the NAc and the effects of ACPD in the cortex, with a slight decrease in cell firing 

(F=5.7, P=0.03; 60.2 ± 16.6%, n=8, Dunnett’s post-hoc P=0.08; Figure 5.7C) and no decrease 

in O2 consumption (F=1.8, P=2.1; 66.9 ± 12.6%, n=8, Dunnett’s post-hoc P>0.05; Figure 5.7C). 

Interestingly, mGluR group I/II agonism with ACPD also produced disparate responses in NAc 

locations: five locations showed decreased cell firing and three locations remained unaffected in 

terms of cell firing, with a difference in variance between subjects in addition to drug treatment 

(F=3.2, P=0.03; Figure 5.7D). It is worth noting that both responses were found in the same 
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subject with the same probe in two different subjects, and thus experimental error is not likely a 

source of these dissimilarities. Further, these data showed a significant correlation (Pearson’s 

R2 = 0.64, P=0.02; Figure 5.7D), indicating that ACPD either partially decouples single-unit firing 

and O2, or that the drug effects differed depending on the location within the NAc. Finally, the 

locations treated with ACPD that did show slight decreases in cell firing and O2 consumption did 

not recover to pre-drug metrics and no longer correlated after the recovery epoch (Pearson’s 

P>0.05; Figure 5.8C). These responses indicated that mGluR agonism affected O2 consumption 

differently between the NAc and the cortex in the presence of an iGluR blockade. Additionally, 

the responses in the NAc showed partial decoupling of cell firing and O2 consumption in 

response to mGluR agonism that corresponded with whether or not these metrics recovered 

after drug washout. 

 

mGluR5 Antagonism Affects Neuronal Firing in the NAc in Two Different Ways 

The majority of NAc mGluRs are located pre-synaptically (mGluR3), post-synaptically 

(mGluR1), or both perisynaptically and on astrocytes (mGluR5) (D'Ascenzo et al., 2007, Mitrano 

et al., 2010). To investigate the split results of extended mGluR activation with ACPD, we used 

an mGluR5-specific antagonist, MTEP, to see whether modulating the activities of this specific 

mGluR also produced a split population of cell responses. Though all cells collectively 

responded with decreased single-unit activity under mGluR5 antagonism, we made the 

interesting observation that MTEP increased basal firing rates at some locations (Figure 5.9). 

We separated locations where cells responded to the drug itself from those that did not change 

baseline firing, and found a significant split between the cell firing values (t(2,8)=2.6,P=0.029; 

Figure 5.7C). These populations further differed in their ability to recover sensitivity to glutamate 

after drug washout. Cells excited by MTEP showed significantly diminished single-unit activity 

responses to glutamate ejections during MTEP (F=16.8, P=0.0051; 42.0 ± 7.6% n=5, Dunnett’s  
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Figure 5.9. MTEP (mGluR5 antagonist) ejections in the NAc affected single-unit activity in one 
of two ways. Shown is a raster plot where tic marks indicate action potentials. (Left) Baseline 
firing activity in absence of drug or glutamate. (Right) Firing activity during MTEP ejection (0-120 
s) and glutamate (60-62 s). Cell 1 represents the cell type that did not increase baseline firing 
with MTEP. Cell 2 is an example of a cell that increased baseline firing during MTEP ejection. 
Grey box indicates the duration of MTEP ejection. Blue triangles indicate time=0 s, and are 
included to clarify the multiple single-unit files taken for baseline. 
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post-hoc P<0.01; Figure 5.7C) that lasted through the recovery period (36.2 ± 14.2%, n=5, 

Dunnett’s post-hoc P<0.05; Figure 5.8B). In contrast, single-unit firing in the other population 

significantly decreased (69.0 ± 6.8%, n=5, Dunnett’s post-hoc P<0.05; Figure 5.7C), but 

recovered (Dunnett’s post-hoc P>0.05, Figure 5.8B). The two populations also split based on 

their response to glutamate recovery ejections (t(2,8)=2.6, P=0.032; Figure 5.8B). PCR could not 

isolate reliable O2 signals during the ejection of this drug, so the effect on O2 consumption was 

not addressed. Together, these data indicated mGluR modulation does not uniformly alter 

neuronal sensitivity to glutamate throughout the NAc; what differentiates these cell responses 

requires further investigation. 

 

Dissimilarities between NOS Control over Neuronal Activity and O2 Consumption in the NAc and 
Cortex Partially Depend on nNOS Specific Pathways 
 

Since NOS inhibition produced a coupled decrease in single-unit firing and O2 

consumption in the cortex, we next ascertained the influence of NO synthesis on coupled 

responses in the NAc. We inhibited NOS using L-NAME and, as observed previously, the rate  

of single-unit firing did not change from pre-drug to drug treatment (Dunnett’s post-hoc P>0.05; 

Figure 5.7E), though significant variance differences existed between subjects (F=3.4, n=7, 

P=0.03; Figure 5.7E). This reflected as an apparent split between NAc locations either 

diminishing or sustaining cell firing responses as a result of L-NAME NOS inhibition, but without 

a correlation (Pearson’s P>0.05; Figure 5.7F). Both a diminished and sustained response 

occurred in one subject at two different locations, suggesting that the differences were not due 

to experimental error. Overall, no O2 consumption changes occurred, though two locations 

showed decreases below 50% of pre-drug values (Dunnett’s post-hoc P>0.05, Figure 5.7E-F). 

Following L-NAME washout, four of the seven locations failed to recover to pre-drug neuronal 

activity, corresponding to those locations with diminished firing during drug, again without any 

correlation between firing and O2 consumption (Pearson’s P>0.05; Figure 5.8E). This indicated 
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that NOS inhibition in the NAc affects neuronal sensitivity to glutamate, but not uniformly across 

all locations.  

The microvascular environment could account for the different responses to L-NAME, a 

non-specific NOS inhibitor, which could act differently depending on the relative availabilities of 

eNOS and nNOS. Thus, we used L-ARG to selectively inhibit nNOS and remove the 

contribution of NO synthesized from NMDAR activation. As with L-NAME NOS inhibition, L-ARG 

NOS inhibition showed no significant changes to cell firing overall (Dunnett’s post-hoc P>0.05, 

n=8; Figure 5.7E), though several locations showed modest decreases without any O2 

consumption correlation (Pearson’s P>0.05; Figure 5.7F). As observed with L-NAME, two 

locations showed modest decreases in O2 consumption with no significant decreases overall 

(Dunnett’s post-hoc P>0.05; Figure 5.7E). However, contrary to the L-NAME responses, all 

locations fully recovered to baseline firing after L-ARG cleared (Dunnett’s post-hoc P>0.05; 

Figure 5.8D-E). The continued split between neuronal sensitivity to glutamate during L-NAME 

and L-ARG indicated that NOS inhibition has varied effects at different locations within the NAc. 

Additionally, the ability of neurons to recover to pre-drug levels of glutamatergic excitation is 

related to the specific inhibition of nNOS. 

 

Discussion 

In this study, we compared how local glutamate receptor antagonism and NOS inhibition 

affect neurovascular coupling between the cortex and the NAc. We used iontophoresis to limit 

glutamatergic excitation and drug effects to highly localized environments. In both the cortex 

and NAc, we found that iGluRs subtypes exerted different control over neurovascular coupling. 

Single-unit activity and O2 remained coupled during NMDAR, but not AMPAR antagonism. 

However, mGluR manipulations and NOS inhibition affected local coupling differently between 

the cortex and NAc. Additionally, mGluR and NOS pharmacological manipulations identified 
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multiple cell populations within the NAc with dissimilar responses to a given drug. Taken 

together, we concluded that glutamatergic mechanisms affect coupling between single-unit 

activity and O2 consumption at a local level in ways that differ across different brain regions. 

Here, we ejected both glutamate and pharmacological agents with iontophoresis to 

stimulate discrete environments and study local receptor modulation of neurovascular coupling. 

Importantly, glutamate iontophoresis is a selective stimulation that excludes the contributions of 

vasoactive agents released from either electrical or peripheral stimuli. Further, local drug 

ejections are advantageous over systemic drug administration in that they circumvent off target 

effects (e.g., changes in blood pressure), allow the use of drugs that cannot pass through the 

blood brain barrier (Herr et al., 2008, Belle et al., 2013, Kirkpatrick and Wightman, 2016), and 

exhibit different effects depending on whether they were administered locally or systemically 

(Bucher et al., 2014). Additionally, microenvironments in the brain are dissimilar. This technique 

can probe the heterogeneity both within and between diverse brain regions by providing a highly 

localized, chemically selective method of activating local neuronal environments with glutamate. 

Glutamate exerts the majority of its synaptic transmission influence through iGluRs 

(Traynelis et al., 2010). We confirmed that iGluR antagonism led to cell firing decreases in the 

cortex and NAc; however, glutamate evoked O2 consumption did not diminish with AMPAR 

blockade in either location. Attenuated neuronal activity during AMPAR blockade with CNQX 

agrees with electrical stimulation studies (Mathiesen et al., 1998, Nielsen and Lauritzen, 2001, 

Offenhauser et al., 2005, Hoffmeyer et al., 2007). These studies showed that CNQX inhibited 

CBF (Mathiesen et al., 1998, Nielsen and Lauritzen, 2001, Offenhauser et al., 2005, Hoffmeyer 

et al., 2007) and O2 consumption (Offenhauser et al., 2005). CBF increases O2 by delivering 

oxygenated blood, thus opposing O2 consumption. Therefore, if neuronal activity is attenuated, 

O2 consumption can appear disproportionately great for the decreased energetic demand when 

CBF is also impeded. This interpretation agrees with the O2 data obtained with CNQX in both 

brain regions and the reported studies; however, our data did not agree with the study that 
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observed decreased O2 consumption. This may reflect differences in glutamatergic versus 

electrical stimulations. Further, NMDAR antagonist effects diverged between studies. NMDAR 

antagonist MK-801 decreased CBF and neuronal activity (local field potentials) in one study 

(Nielsen and Lauritzen, 2001), but only attenuated CBF in another (Hoffmeyer et al., 2007).  

Neither MK-801 nor 2-amino-5-phosphoheptanoic acid (APH) affected CBF in third study 

(Mathiesen et al., 1998). Our data show that NMDAR antagonism decreases neuronal activity in 

both brain regions, but that the interplay of CBF and O2 differed. Without simultaneously 

measuring CBF, we cannot discern whether O2 consumption attenuated from decreased 

energetic demands or decreased energy demands coincident with unimpeded CBF, as both are 

reported possibilities. 

A number of studies report vascular responses without postsynaptic iGluR activation that 

result from enhanced astrocytic mGluR activity (Chaigneau et al., 2007, Petzold et al., 2008, 

Scott and Murphy, 2012). Multiple mGluR subtypes are located perisynaptically and activated 

only during intense activity from synaptic glutamate spillover (Cartmell and Schoepp, 2000). To 

investigate mGluR agonism under these conditions, we antagonized iGluRs to exclude their 

contribution to coupling and blocked the primary astrocytic glutamate transporter, GLT-1, to 

increase extracellular glutamate concentrations. Single-unit activity diminished further than from 

NMDAR or AMPAR antagonism alone, in agreement with other studies (Pettit et al., 1997, Frick 

et al., 2001, Nielsen and Lauritzen, 2001, Hoffmeyer et al., 2007). The difference in O2 usage 

following local glutamate stimulations between the NAc and cortex during drug delivery (i.e., 

decoupling from single-unit activity and remaining coupled, respectively) may indicate a 

difference in how the NAc neuronal architecture responds to increased extracellular glutamate. 

Indeed, the greater average density of astrocytes in the neostriatum as compared to the cortex 

would provide additional GLT-1 transporters to clear excess glutamate (Savchenko et al., 2000).  

Neurovascular effects from downstream mGluR activation usually are studied using 

specific ligand agonism. Group I/II mGluR agonist ACPD causes vasodilation (Fergus and Lee, 
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1997, Zonta et al., 2003, Stobart et al., 2013), which may be responsible for the steady O2 

decrease that accompanied ACPD ejections (example shown in Figure 5.1C). It is worth noting 

that the evoked O2 consumption in the NAc attenuated only slightly with ACPD relative to control 

despite the steady vasodilative O2 decline (Dunnett’s post-hoc: P=0.059, Figure 5.7B), but these 

data were pooled between cell populations exhibiting different levels of firing attenuation and, by 

extension, energetic demands (Figure 5.7D). Additionally, mGluR activation can lead to a host 

of responses through astrocytes that lead to either vasoconstriction or vasodilation depending 

on the predominating downstream process (Attwell et al., 2010). Ultimately, our results indicated 

that in the cortex, and a subset of NAc cells, mGluR agonism led to decoupled responses 

between single-unit activity and local O2 consumption. 

Several physical differences between the cortex and NAc can account for the dissimilar 

responses to mGluR agonism. ACPD has agonistic effects at all three mGluR groups (Cartmell 

and Schoepp, 2000), though most strongly at groups I and II, and therefore differential effects 

could result from the relative quantities of these mGluR types in the discrete recording areas. 

This is especially important to consider with high resolution techniques, as mGluR subtypes 

express in different relative ratios throughout the brain and across subcellular structures (e.g., 

axon, terminals) (Testa et al., 1994, Petralia et al., 1996, Mitrano and Smith, 2007). Of particular 

interest is mGluR2, which has been shown to depress synaptic transmission via presynaptic 

inhibition in both cortex and NAc (Burke and Hablitz, 1994, Xi et al., 2002). This is consistent 

with our results in the cortex, where this mGluR is more prevalent (Testa et al., 1994). Thus, the 

high spatial resolution of our multimodal sensor is likely detecting physically heterogeneous 

environments where neurovascular coupling is modulated differentially through mGluRs.  

An important difference between the somatosensory cortex and the NAc is the existence 

of dopaminergic terminals in the latter brain region. The influence of mGluRs extends to 

mediating dopaminergic function in the NAc (Verma and Moghaddam, 1998, Bruton et al., 

1999). Specifically, mGluR agonism raises basal striatal dopamine levels, which can augment or 
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diminish neuronal excitability (Surmeier et al., 2007, Cachope and Cheer, 2014). We observed 

extended (>30 s) catechol-like signals concomitant with ACPD ejections in some NAc locations 

but no cortical locations (data not shown). We were unable to definitively identify whether the 

signal was dopamine through our protocol. Though our multimodal sensor is capable of probing 

the relationship between mGluRs, dopamine, and O2, it was outside the scope of this work. 

We also considered whether the different cell responses with ACPD were from use of 

different ejection currents and thus inconsistent absolute concentrations of drug delivery. 

Studies have reported concentration-dependent effects from ACPD use (Lovinger, 1991, Taber 

and Fibiger, 1995, Verma and Moghaddam, 1998), but these effects compared µM – mM 

concentration ranges, which far exceeds concentrations delivered through iontophoresis 

(Kirkpatrick et al., 2014). Therefore, we do not believe that ejecting ACPD at different currents is 

responsible for the dissimilar responses observed in neuronal activity and O2 consumption. 

To address the disparate NAc responses with mGluR agonism, we investigated the most 

highly expressed mGluR in this region, mGluR5 (Testa et al., 1994, Romano et al., 1995). 

Antagonized mGluR5 attenuated neuronal firing, which supports the suppression of glial 

mGluR5-mediated NMDAR activation (D'Ascenzo et al., 2007). Cell firing attenuated regardless 

of whether or not MTEP elicited an increase in spontaneous basal firing rates (Figure 5.9). In 

both mGluR agonist and mGluR5 antagonist cohorts, we observed recording locations that did 

not recover from attenuated single-unit activity, contrasting with studies indicating that mGluR5 

activation is required for long-term depression (Huber et al., 2001, Brebner et al., 2005); 

however, these studies evoked activity through electrical afferent stimulations as opposed to our 

localized approach. A more thorough investigation of local mGluR pharmacology in the NAc 

would elucidate whether the observed differences are due to heterogeneous recording 

environments or drug specificity. 

We did not expect NOS to affect neuronal firing, as electrical stimulation studies showed 

that NOS inhibition does not alter synaptic activity (Offenhauser et al., 2005, Hoffmeyer et al., 
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2007). This agreed with data in the NAc during both nonspecific NOS and specific nNOS 

inhibition, but not in all locations (Figure 5.7F). However, a study using L-NAME iontophoresis 

observed both excitatory and inhibitory effects on cell firing within the subthalamic nucleus 

(Sardo et al., 2006), which may indicate that observed single-unit activity suppression in both 

the cortex and NAc may result from local environmental factors. Interestingly, neuronal activity 

suppression persisted through a recovery epoch with nonspecific NOS inhibition and recovered 

with nNOS inhibition, indicating that eNOS may assist recovery from NO-based neuronal 

inhibition in the NAc. Taken together, these results indicate that local NOS inhibition likely 

affects neuronal sensitivity to glutamate differently depending on the surrounding environment. 

In our previous work, L-NAME iontophoresis exclusively diminished events of local O2 

increases attributed to blood flow (Bucher et al., 2014). In the NAc, where NOS inhibition did not 

significantly alter neuronal firing or O2 consumption, these data agreed. In the cortex, however, 

O2 consumption decreased. This may result from either the attenuated cell firing in combination 

with attenuated CBF, as observed with CNQX, or because of the known modulatory role of NO 

in the somatosensory cortex (Lindauer et al., 1999). Briefly, increases in NO promotes 

quantified increases in vasodilation when NO acts as a modulator rather than requiring a 

threshold NO concentration to elicit vasoactivity. Therefore, inhibiting NO synthesis in the cortex 

leads to diminished O2 consumption as blood vessels become constricted.  

The capability to selectively excite and pharmacologically manipulate local neuronal 

populations enables the study of neurovascular coupling without off-target effects. However, it is 

important to recognize the weaknesses of this methodology. Local glutamate stimulation is less 

powerful than electrical stimulation, thus evoked O2 changes are modest and can be obscured 

by natural O2 transients (Figure 5.2, top)(Walton et al., 2016). Combined with the high spatial 

resolution and natural heterogeneity of neurovascular environments, these measurements can 

suffer in statistical power. G-G corrections in our ANOVA analysis indicated populations that 

reached significance in post-hoc testing without achieving significant variance between 
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treatments (e.g., cortical NOS inhibition effects). Therefore, our sensors require more recording 

locations to achieve statistical confidence. 

The pharmacological agents introduce further complexities. Not all drugs dissolve in inert 

solvents at appropriate concentrations or eject with low ionic strength (Herr et al., 2008, 

Kirkpatrick and Wightman, 2016). Unique to our coupling of iontophoresis to FSCV, some drug 

ejection profiles obscure color plot data beyond that which PCR can extract (MTEP, vide supra). 

An alternative is to using higher solubility drugs, which may be inferior with respect to potency or 

specificity. 

Despite these disadvantages, we used iontophoresis to study differences in glutamate 

evoked neurovascular coupling by exciting local neuronal populations and locally administering 

pharmacological agents. Glutamate exerts similar effects through iGluRs between the cortex 

and NAc, but we identified disparate mechanisms of action between these two areas with 

respect to manipulating mGluRs and NOS. These data provide evidence that compromising the 

functionality of glutamate receptors can disrupt the coupling between neuronal activity and O2. 

Further, they illustrate location dependent heterogeneity in these responses that techniques like 

fMRI might overlook during interpretations of neurovascular coupling. 
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