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ABSTRACT 

Rachel Kloss Silverman: Methods for the Sequential Parallel Comparison Design 

(Under the direction of Anastasia Ivanova and Jason Fine) 

Sequential parallel comparison design (SPCD) has been proposed to increase the 

likelihood of success of clinical trials, especially trials with a possibly high placebo effect. SPCD 

is conducted with two stages, and subjects are randomized into three groups: (1) placebo in both 

periods, (2) placebo in the first period and active therapy in the second period, and (3) active 

therapy in both periods. Efficacy analysis of the study data includes all data from stage 1 and all 

placebo non-responding subjects from stage 2. Each stage is analyzed separately then the data are 

pooled to yield a single p-value. 

We first describe methods to use in a trial where we combine SPCD with the group 

sequential approach. We examine how to increase the sample size and adjust the design 

parameters during an interim analysis to increase power; these design parameters include 

allocation proportion to placebo in stage 1 of SPCD and weight of stage 1 data in the overall 

efficacy test statistic.  

Next, we develop new methods for SPCD with binary and time-to-event outcomes. These 

methods allow us to analyze SPCD stage-wise using the model of interest with adjustment for 

covariates. We show that under certain conditions the covariance between the estimated treatment 

effects in the two periods of SPCD is 0 under both null and alternative hypotheses. We also show 

that the stage-wise test statistics are uncorrelated under the null hypothesis. As a result, we can 
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omit covariance in the construction of the overall test statistic and the confidence interval for the 

weighted sum of treatment effects. 

We develop framework and implementation of SPCD using permutation tests and 

bootstrap hypothesis testing. This approach allows the flexibility to use SPCD with any outcome. 

We examine two variations of permutation tests and three variations of the bootstrap. We show 

that the overall permutation as well as the stage-wise permutation test preserve type I error.  

Additionally, the bootstrap that maintains the original stage 1 group sample sizes and the stage-

wise bootstrap also preserve type I error. The stage-wise permutation test and bootstrap make it 

easy to evaluate SPCD data with popular software. 
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CHAPTER 1: LITERATURE REVIEW  

1.1 Overview 

The sequential parallel comparison design (SPCD) was developed to combat the issue of 

large placebo response rates that can occur in traditional randomized clinical trials (Fava, Evins, 

Dorer, & Schoenfeld, 2003). High rates of placebo response in clinical trials, even of drugs 

previously approved by the FDA for a particular condition, have often failed to demonstrate a 

significant difference in the active treatment from placebo (Baer & Ivanova, 2013). This failure 

arises because large placebo response rates that can occur in traditional randomized clinical trials 

will decrease the appearance of any true effect size and increase the likelihood of concluding a 

false-negative at the trial end or an outcome that is no longer clinically meaningful. Such a 

situation makes it necessary to increase the sample size to achieve the power that is necessary to 

conclude a true result. As these are extremely costly consequences, there are various trial designs 

devoted to reducing this placebo effect. In addition to the monetary ramifications of an extensive 

placebo response rate, there are additional public health implications. Negative results and failed 

trials can delay the introduction of new therapies on the market which, in turn, raises the cost of 

development or can cause companies to abandon development of treatments that are effective.  

In fact, some companies have decided to abandon their drug development efforts in certain 

fields, such as depression because the risk of an effective treatment failing to show efficacy is so 

high (Baer & Ivanova, 2013). 

The popular placebo lead-in (“placebo run-in” or “placebo wash-out” design) is a 

common design used when researchers expect moderate to high placebo response rates. In this 
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design (Figure 1), all patients first receive placebo, and then only those non-responding placebo 

patients are randomized to the placebo versus active therapy arms for the efficacy analysis 

treatment phase (Fedorov & Lui, 2007). Ultimately, the placebo lead-in design has been shown 

to be unsuccessful (Trivedi & Rush, 1994). In fact, on average, the use of the placebo lead-in 

approach often added time and cost to trials without increasing the effect sizes (Baer & Ivanova, 

2013).  

In 2003, Fava et al. proposed SPCD where subject assignment is as in a three-sequence, 

two-stage crossover design with PP, PA, and AA sequences where “P” stands for placebo and 

“A” stands for active therapy. SPCD takes a different approach to data analysis compared to a 

crossover design in order to avoid making assumptions about equality of treatment effects in the 

two stages. SPCD analyzes data from each stage separately and then combines the two analyses 

are combined to yield a single p-value. To avoid dealing with carry-over effects, SPCD does not 

utilize stage 2 data from the AA group. Additionally, subjects who responded to placebo in stage 

1 (as determined a priori and by some clinically relevant cut point) are identified and their data 

are not included in the primary efficacy analysis. A more in-depth discussion of the trial design, 

implementation, and testing is provided later in this chapter. This design is useful in trials with 

high placebo response. SPCD might yield a higher power than a conventional single-stage design 

because (1) placebo non-responders contribute two data points to the primary efficacy analysis 

and (2) the exclusion of placebo responders in stage 2 might lead to an increased treatment effect 

in stage 2. Ivanova and Tamura (2011) extended SPCD by re-randomizing active treatment 

responders to P and A in stage 2.  

Baer and Ivanova (2013) discuss that SPCD can be advantageous in trials with pediatric 

and adolescent populations, orphan diseases, post-marketing commitment trials, and dose-
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response studies. This advantage exists because, in these cases, it is difficult to recruit for these 

trials, and there is often a desire to generate adequate power while minimizing the investment or 

exposure of young people to new compounds. Additionally, SPCD can allow a sponsor to 

compare a new treatment at several alternative doses to placebo in the population of patients in 

stage 1, and to compare some of the doses in placebo non-responders in stage 2.   

SPCD, when compared to the popular placebo lead-in trials, can be considered a more 

clinically relevant and generalizable trial (Baer & Ivanova, 2013). This is because SPCD trials 

give weight to the results of everyone enrolled in the trial. Furthermore, in clinical practice, the 

more resistant patients (placebo non-responders) seek treatment; therefore, a design that focuses 

on placebo non-responders can, in fact, address the population that new treatments seek to help. 

Thus, we can view stage 1 of SPCD as the generalizable stage and stage 2 as the more clinically 

realistic stage.  

We can attribute additional merits of SPCD to the fact that an SPCD trial is typically 

longer than a placebo lead-in or a single-stage trial, with some patients staying on placebo or 

active drug therapy for the duration of the SPCD trial. This allows the trial sponsor and the FDA 

to obtain valuable data on response over time and additional safety measurements (Baer & 

Ivanova, 2013). 

Since its introduction, a variety of tests have been proposed for SPCD. Fava et al. (2003) 

proposed a test based on linear combination of the estimated treatment effects from the two 

stages when the response is binary. Also for binary outcomes, Huang and Tamura (2010) and 

Ivanova, Qaqish, and Schoenfeld (2011) developed a score test with one and two degrees of 

freedom. We are not aware of the methods allowing adjusting for covariates while analyzing 

SPCD with binary outcomes. Currently, there is no existing methodology to construct confidence 
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intervals for the weighted combination of the stage-wise treatment effects when the outcome is 

binary for SPCD. Data analysis strategies for SPCD with continuous outcomes can be found in 

Tamura and Huang (2007), Chen et al. (2011), and Doros et al. (2013). These researchers base 

the test statistic on the linear combination of the estimated treatment effects. It is possible to 

adjust for covariates, but such methods are not applicable to binary data. Baer and Ivanova 

(2013) reviewed data analysis methods for SPCD and summarized completed trials that used 

SPCD.  

Specifically, the trial is conducted in two stages (Figure 2): randomization of all subjects 

to active therapy or placebo in stage 1 and then a re-randomization of stage 1 placebo non-

responders in stage 2. Placebo responders are usually re-randomized in stage 2 as well and 

subjects who received A in stage 1 usually continue on A in stage 2. If randomization is 

conducted by flipping a biased coin, an equivalent format would be to randomize all subjects 

once at the onset of the trial into three groups: (1) placebo in stage 1 and placebo in stage 2 (PP); 

(2) placebo in stage 1 and active therapy in stage 2 (PA); and (3) active therapy in stage 1 and 

active therapy in stage 2 (AA). In this format, the primary analysis includes all stage 1 and stage 

2 data from placebo non-responders from groups PP and PA. Irrespective of randomization 

format, all subjects are followed for the duration of both stages to maintain blinding.  

Let the total sample size in the trial be n with 1n subjects in the placebo group, 2n subjects 

in the active therapy group in stage 1, 1 2n n n  , with 1n bn  where b, 0 1b  , is the 

allocation proportion to placebo in stage 1. Note that when 1b  , the SPCD design reduces to a 

placebo lead-in study. To simplify the presentation, we assume that 1n is even and that subjects 

1,…, 1 / 2n  are randomized to PP sequence, and subjects 1 / 2 1n  ,…, 1n  are randomized to PA 

sequence. The stage 1 allocation proportion to placebo b is usually higher than 0.5 in order to 
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have enough subjects to evaluate in stage 2. Allocation proportions above 0.75 are not 

recommended because the design becomes very similar to the placebo lead-in design which has 

been shown to be ineffective in identifying placebo non-responders (Trivedi and Rush, 1994). 

Despite guidelines suggesting b between 0.50 and 0.75, b could be arbitrary. In stage 2, subjects 

are re-randomized to placebo and active therapy with 50:50 allocation. 

For binary responses, denote 1p  = Pr(active therapy response in stage 1), 1q = Pr(placebo 

response in stage 1), 2p  = Pr(active therapy response in stage 2 | placebo non-responder in stage 

1), and 2q  = Pr(placebo response in stage 2 | placebo non-responder in stage 1). Let the treatment 

effects in stage 1 and stage 2 be defined as follows: 1 1 1p q    and 2 2 2p q   . We are 

interested in testing the null hypothesis, 0 1 2: 0H     with the alternative hypothesis that at 

least one of the treatment effects is different from zero. One possible approach to test 

0 1 2: 0H     is to combine tests of 1  and 2 . This approach requires the knowledge of the 

correlation between the tests under the null hypothesis. Alternatively, one may consider the test 

statistic based on the weighted average of the estimated treatment effects as described. In 

practice, we let ( , )i iX Y  be a pair of binary responses of subject i in stage 1 and stage 2 of SPCD, 

respectively. Then the estimated treatment effects are:  

1 1

1

2

1 1

1 1

2/ /i

n n n

i

i i n

XX n n


  

     and 

1 1

1

1 1

1 /2 1

/2

2 /(1 ) / ( (1 ) / (2) / 2)
n n

i i i i

i i n

X Y n X Y n
  

      

With the SPCD test statistic, 

1 2

2 2

1 2

I

(1 )

) 1 )( (( )

w
T

w Var V

w

arw

   

   
 , 
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where weight w, 0 1w  , is chosen a priori and based on the assumed stage-wise treatment 

effects, 
1 1 1 1 2( () ) / ( )1V nar n      and 

1

2 2 12( (1) ) / (1 )
n

ii
Va Xr


       with 

1 2

1 1 21
/ ( )

n n

ii
X n n




    and 

1

2 11
(1 ) /

n

i ii
X Y n


   . 

Fava et al. (2003) proposed a similar test statistic, but derived the denominator was 

derived from the asymptotic distribution of a multinomial vector of counts in stages 1 and 2 of 

SPCD.  

For continuous outcomes, the treatment effect in stage 1 of SPCD, 1D , is measured in the 

population of “all comers,” and the treatment effect in stage 2, 2D , is measured in the population 

of placebo non-responders. The null hypothesis is 0 1 2: 0DH D   with an alternative hypothesis 

that at least one of the treatment effects is larger than zero. One approach to testing the 

intersection null hypothesis is by using the weighted average of the estimated treatment effects, 

1 2(1 )ˆ ˆwwD D  , where the weight w (0 < w < 1) is pre-specified (Chen et al., 2011).  

We assume that responses from stages 1 (represented by X) and 2 (represented by Y) 

from patients assigned to placebo in both stages (PP group) of SPCD follow bivariate normal 

distribution:  

 
2 2

1

2 2
2

, ~ , ,
P P PP P

P P

P PP P P

X Y N
   

   

   
    

      

and that responses from patients assigned to placebo in stage 1 of SPCD and active treatment in 

stage 2 (PA group) of SPCD also follow bivariate normal distribution: 

 
2

1

2
2

, ~ , .
P P PA P A

P A

A PA P A A

X Y N
    

    

   
    

      
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We further assume that responses of patients receiving active treatment in stage 1 of 

SPCD are 2

1~ ( , )A A AX N   . Treatment effect for stage 1 is 11 1A PD    . The stage 1 placebo 

group response probability is Pr( )Pr X c  , where c represents the known response cutoff. The 

treatment effect in stage 2 is 2 { | } { | }A P P PE Y X c E Y cD X    . The test statistic given by 

(Chen et al., 2011): 

 1 2

2 2

1 2

(1 )

( ) (1 ) ( )
SPCD

wD w D

w Var D w Var D
T

 

 
   (1) 

has a standard normal distribution ~ (0,1)SPCDT N
 
under the null hypothesis (Chen et al., 2011), 

and we reject the null hypothesis when 1.96SPCDT  . In some therapeutic areas that use SPCD 

(e.g., psychiatry), it is often more appropriate to examine the decline of symptoms and, as such, 

negative responses with large absolute value correspond to good treatment response. In this case, 

one would reject a one-sided null hypothesis when 1.96SPCDT  . One can apply the methods 

described here to psychiatry trials after multiplying responses by (-1).  

While the framework of SPCD with continuous and binary outcomes has been explored, 

we are not aware of published methods for the analysis of SPCD with time-to-event outcomes. 

Instead of comparing the number of occurrences between active therapy and placebo groups, one 

can evaluate the time to the first occurrence and determine if that time to the first occurrence is 

elongated or shortened on active therapy as compared to the placebo group. Alternatively, if a 

recurrent event is measured, one could estimate the mean cumulative function and answer 

questions about average number of events by some meaningful amount of time between placebo 

and active treatment groups (Lawless and Nadeau, 1995; Diao, Cook and Lee, 2015; 

Hengelbrock et al., 2016). However, time-to-event analyses might be preferred if there are likely 

to be drop-outs in the study. When the event is favorable, we hope that the active treatment will 
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shorten the time to first event compared to placebo. Addyi (flibanserin) was FDA approved for 

the treatment of hypoactive sexual desire disorder 

(https://clinicaltrials.gov/show/NCT00996164). The conducted trials compared Addyi to placebo 

by measuring the number of satisfying sexual events in the placebo and the active therapy arm. 

The baseline counts of satisfying events for the study participants were low, with 25-50% of 

participants having 0-1 events; as such, time to event could be a better endpoint to evaluate 

active treatment effect. The active-placebo comparison can be based on the average number of 

events as well as the time to the first event.  

1.2 Next Chapters 

We organize the remainder of this dissertation in the following way. For Chapter 2, our 

purpose is to evaluate various adaptive strategies in an SPCD trial with one interim analysis and 

continuous outcomes and to provide recommendations regarding their implementation in an 

SPCD trial. We consider five adaptive strategies in which we modify the following design 

parameters in period 2 with the goal of increasing the power of treatment comparison: (1) 

possibly increase sample size; (2) possibly increase sample size, update the weight and allocation 

in stage 1 of SPCD with the weight, 
*w , and allocation, b

*
, that maximize power based on period 

1 data; (3) update w and b, with w
*
 and b

*
; (4) update w, with w

*
; and (5) update b, with b

*
. 

Additionally, in each of the strategies, we determine if we can stop the trial for futility or 

efficacy at the interim analysis.  

In Chapter 3, we discuss SPCD testing with binary outcomes and with time to positive 

event outcomes. For both setups, we show that the test statistics and treatment effect estimators 

from stages 1 and 2 are asymptotically normal and uncorrelated, facilitating simple and easy-to-

implement inferences. Additionally, we address how to test the SPCD null hypothesis when 

https://clinicaltrials.gov/show/NCT00996164
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adjusting for covariates and how to construct a confidence interval for the weighted combination 

of the treatment effects. 

Finally, in Chapter 4, we develop framework and implementation of SPCD using a 

permutation test and bootstrapping. This would allow the flexibility to use SPCD with any 

outcome. We examine two variations of permutation tests and three variations of the bootstrap 

and discuss type I error preservation. Furthermore, we address how to implement these testing 

procedures for SPCD with popular statistical software such as SAS.  
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CHAPTER 2: SAMPLE SIZE RE-ESTIMATION AND OTHER MIDCOURSE 

ADJUSTMENTS WITH SEQUENTIAL PARALLEL COMPARISON DESIGN
1
 

2.1 Introduction 

For a completely known distribution of responses in stages 1 and 2 of SPCD, one can 

compute the optimal pair of the weight, w, and allocation to placebo in stage 1, b, which 

maximizes the power of the SPCD analysis. Since we cannot know the treatment effects before 

the trial (this is especially true for stage 2 treatment effects), one might consider utilizing a 

blinded interim analysis to estimate the treatment effects from both stages. Then we can compute 

the optimal pair of the weight and allocation and use that for the remainder of the trial with the 

intention to increase power. Alternatively, one can ensure adequate power for the trial by 

increasing the sample size based on the estimated effect sizes and the proportion of placebo non-

responders. Mi and Betensky (2013) considered SPCD with binary outcomes with one interim 

analysis. They performed adaptations that (1) converted SPCD to a single-stage design if the 

stage 1 placebo response rate was small, (2) converted SPCD to a single-stage design if the stage 

1 treatment effect was large, and (3) used sample size re-estimation. Their simulations showed 

that the type I error rate was inflated to as much as 0.06 when they performed each of the three 

adaptations was performed; therefore, they proposed an ad hoc adjustment of the critical value to 

preserve the type I error rate. Wang and Ivanova (2014) described a multi-arm SPCD trial with 

                                                 
1
 The contents of this chapter previously appeared as an article in the Journal of Biopharmaceutical Statistics. The 

original citation is as follows: Silverman, R.K. Ivanova, A. (2017). Sample size re-estimation and other midcourse 

adjustments with sequential parallel comparison design. Journal of Biopharmaceutical Statistics. 
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an interim analysis to possibly drop some of the arms or change the allocation proportion to the 

arms, depending on the observed responses.  

Interim analyses in an SPCD trial are conducted after a proportion (e.g., half) of the 

planned sample size has completed both stages of SPCD (Figure 3). It is desirable to conduct an 

interim look in order to check previous placebo response rates and treatment effect assumptions. 

Thus, if the previous assumptions were not correct, adaptations can be made to increase the 

power of the study. Let m be the number of subjects enrolled in the study before the interim 

analysis. We denote the study before the interim look as period 1, and the study after the interim 

look as period 2. We compute period specific test statistics for SPCD, 1T   and 2T , for periods 1 

and 2, respectively, using Equation 1 from Chapter 1. The final test statistic is (Lehmacher and 

Wassmer, 1999): 

 
1 21 vvT TT    . (2) 

Here, /v m n , where n is the originally planned sample size. This test statistic is the 

same as proposed by Cui, Hung, and Wang (1999). If we perform an interim analysis after half 

of the subjects complete their follow-up, we set v = 0.5. In psychiatry, a typical SPCD trial has 

two stages, each 4 weeks long; hence, some subjects will be randomized while subjects 1,…, m 

complete their follow-up. 1T  and 2T  are independent, since 1T  is computed based on the data from 

subjects 1,…, m, and 2T  is computed based on the data from subjects m + 1, …, n. As a result, 

 ~ (0,1)NT  and we reject the null hypothesis when 1.96T  . (Ivanova, Li, Silverman, Wiener, 

& Koch, n.d.) 

For SPCD with sample size re-estimation, the interim look is used to calculate the 

conditional power under observed treatment effects
 
from period 1 (Mi & Betensky, 2013). 

Another possibility is to evaluate conditional power under the treatment effects for which the 
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trial was originally powered (Liu and Chi, 2001) as the observed treatment effect can be rather 

variable. In SPCD, little information is usually available about the second stage treatment effect, 

which is why estimated effects are used.  There have been a number of proposals on how to set a 

new sample size(Gao, Ware, & Mehta, 2008; Jennison & Turnbull, 2015; Liu & Chi, 2001; 

Mehta & Pocock, 2010; Timmesfeld, Schäfer, & Müller, 2007; Wan, Ellenberg, & Anderson, 

2015) . The method proposed by Jennison and Turnbull (2015) maximizes an objective function: 

* *

1( , ) ( )t n nC nP   .   (3) 

Here, T1 = t1 is the test statistic observed in period 1, n
*
 is the new total sample size, CP 

is a conditional power given the trend observed in period 1, and γ is a penalty parameter. The 

penalty parameter is set by the trial sponsor to achieve a trade-off between the cost of adding 

extra subjects and a power increase. The test statistic at the end of the trial, given period 1 data, 

is   11 2 1 21 | 1vT v vTvT t t    . Given the current trend, 
*

2 1~ ( ( ) / ( ),1)T N t n m n m   

and hence *

1( , ) ( 1.96)t n P XCP   , where 
*

11~ ( 1 ( ) / ( ),1)X N t vt n m nv m   . The 

new total sample size, n
*
, is the size that maximizes 

1

* *( , ) ( )t n nC nP   . One can also set maxn , 

the pre-specified maximum allowed total sample size, and choose n
*
 such that *

maxn n n  . 

Mehta and Pocock (2010) proposed to increase the sample size when conditional power is in a 

certain range (i.e., “promising zone”) and set the new sample size n
*
 such that *

1( , ) 0.8t nCP   or 

other desired power benchmark. Although this approach increases the sample size substantially, 

it does so over a relatively narrow range of conditional power values. In contrast, the method of 

Jennison and Turnbull (2015) increases sample size by a smaller amount, but over a larger range 

of conditional power values. The Jennison and Turnbull (2015) method yields better results in 

terms of achieving the same power with a smaller expected sample size; however, it requires the 
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specification of the penalty parameter. Smaller penalty terms yield more substantial sample size 

increases and hence higher power. Since effect size is not precisely known at the interim 

analysis, one cannot guarantee a certain power at the end of the trial with any sample size re-

estimation method. 

2.2 Simulations 

In period 1, the stage 1 weight, w, and the allocation proportion to placebo, b, are set to 

be equal to the commonly used stage 1 weight of w = 0.5 and allocation proportion of b = 0.67. 

To re-evaluate the weight and/or allocation to placebo in SPCD with an interim look, we utilize 

the data collected in period 1 (from subjects who have completed both stages of SPCD) to 

estimate the weight and/or allocation that would have produced the largest power in period 2 

given the estimated treatment effects, variability of the outcome, and proportion of placebo non-

responders. Thus, we found the optimal parameters w
*
 and b

*
 by maximizing the function 

( 1.96 ( , ))SPCDT w b    with respect to w, b, or both w and b. For computational simplicity, we 

used a grid search method and searched over [0,1] for optimal weight and [0.5,1) for optimal 

allocation. We then used these optimal weights and/or allocations in period 2.  

We conducted an SPCD trial with an interim analysis with initial weight of w = 0.5 and 

the allocation to placebo in stage 1 of SPCD of b = 0.67. The total planned sample size was n = 

300. We conducted the interim look after half of the subjects, n/2 = 150, were enrolled and had 

completed both stages of SPCD. We also considered trials with an interim look after 100 patients 

with total planned sample size of n = 200. Placebo non-response probability in stage 1 of SPCD 

was set to r = 0.75 in all scenarios except the final one where it was r = 0.60. We set the 

marginal variances in bivariate normal distributions to be equal to 1 in all groups. For the null 

scenario, we set 0.5PPP D   . For non-null scenarios, we set 0.8PP   and 0.3PD   
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yielding the variances of the outcomes in stage 2, conditional variances of 0.7 in placebo group, 

and 0.96 in active treatment group. A typical SPCD trial has two stages, each 3-5 weeks long; 

hence, we randomized some subjects belonging to period 2 at a time when an updated allocation 

was not yet available. Upon the availability of the updated allocation, one can set the new 

period 2 allocation to take into account several subjects randomized with initial allocation. Since 

the optimal weight is used in the calculation of the period 2 test statistic, there is no issue with 

any delay in the interim analysis. Therefore, we considered that all period 2 subjects were 

randomized using the updated allocation. We simulated data with no dropouts. For the strategy in 

which we re-evaluated both allocation and weight, we selected the allocations to placebo in 

stage 1 from [0.5,1]. If we re-evaluated the allocation only, we examined allocations to placebo 

in stage 1 from [0.5,1), excluding 1. When an allocation to placebo was 1 in stage 1 of SPCD, it 

was equivalent to the placebo lead-in design. In that case, we based the analysis on stage 2 data 

only. Therefore, because the notion of weight no longer applied, we excluded 1 when we re-

evaluated the allocation only. In all of the adaptive strategies, we considered stopping for futility 

and efficacy. We stopped for futility at the interim when T1 < 0. To stop for efficacy, we used the 

O’Brien-Fleming boundary, performed an interim look after the first half of the trial, and stopped 

after period 1 if T1 > 2.7959. The final efficacy was established when T > 1.977 (Fleming, 

Harrington, & O’Brien, 1984). When we stopped the trial for futility or efficacy, there was no 

need to re-evaluate the allocation and weight; therefore, we excluded those simulated trials from 

the summary distribution of the estimated optimal weight and allocation reported in Tables 1-3. 

All tests performed were one-sided. All simulations were run using R version 3.1.1. 
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2.3 Simulation Results 

Table 1 displays the simulation results of SPCD with sample size re-estimation and 

sample size re-estimation with additional estimation of weight and allocation proportion to 

placebo (i.e., adaptive strategies (1) and (2) from Section 1.2). Scenario 1 is a null scenario. 

Figure 4 shows how the rules for the sample size increase at the interim analysis for several 

penalty parameters as a function of conditional power, CP. We selected the penalty term of 

0.0007 because it attains 80% power in scenarios 2-5 in our simulation study. When designing a 

study, the penalty parameter can be chosen to yield a required power for potential efficacy 

scenarios. The penalty parameter can also be viewed as guiding a cost/benefit trade-off per each 

patient added. When the originally planned sample size is 300 and the penalty parameter is 

0.0007, the sample size is increased for conditional powers of 25% to 94% (Figure 4), or, 

alternatively, for T1 values between 0.93 and 2.49 with the maximum sample size increase to the 

total sample size of 535 when conditional power is 45%. When the sample size is 300 and the 

penalty parameter is 0.00085, the sample size is increased for conditional powers of 32% to 92%, 

or, alternatively, for T1 values between 1.03 and 2.38 with the maximum sample size increase is 

to the total size of 452 when conditional power is 52%.  When the sample size is 200 and the 

penalty parameter is 0.001, the sample size is increased for conditional powers of 24% to 94%, 

or, alternatively, for T1 values between 0.91 and 2.53 with the maximum sample size increase is 

to the total sample size of 373 when conditional power is 45%. Given the placebo response 

probability and variability of the outcomes, the sample size of 300 yields power of 80% when 

both stage 1 and stage 2 treatment effects are equal to 0.27. Since treatment effects in Table 1 are 

smaller and given the originally planned total sample size of 300 (Table 1), the trials in scenarios 

2-5 are underpowered with a power of 74% (68% for scenario 6). Re-evaluating sample size after 
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the first 150 patients leads to a better-powered trial. The median total sample size after sample 

size re-estimation is 430 and 392 for a sample size of 300 and penalty terms 0.0007 and 0.00085, 

respectively. When the original sample size is 200, the median total sample size after sample size 

re-estimation with penalty parameter 0.001 is 301, yielding the power of 66% for scenarios 2-5. 

In comparison, when we used a fixed sample size of 300 is used, the power in scenarios 2-5 is 

74%.  

Re-estimation of weight and allocation together with sample size shows a further power 

increase, but not in all scenarios. For example, for scenarios 4 and 5, in which the original 

sample size is 300, after sample size re-estimation, the power is 81% and 78% for penalty 

parameters of 0.0007 and 0.00085, respectively. If we additionally re-estimate w and b, the 

power goes to 90% for scenario 4 (for both penalty parameters), 90% for scenario 5 (when the 

penalty is 0.0007), and 92% for scenario 5 (when the penalty parameter is 0.00085). In scenarios 

2, 3, and 6, re-estimation of weight and allocation together with sample size decreases the gained 

power from the sample size re-estimation. This finding is a result of the initial weight and 

allocation being close to optimal. As such, we see that re-estimating weight and allocation leads 

to selecting a sub-optimal weight and/or allocation.  

To shed light on the advantages and disadvantages of re-estimating weight and allocation 

to placebo, we simulated the adaptive strategies (3), (4), and (5) (outlined in Section 1.2), fixed 

the sample size at 300, and re-estimated the weight and/or allocation. Table 2 shows the 

asymptotic power for SPCD where we employ the theoretical optimal weight and/or allocation in 

period 2. We can view these power values as the maximum theoretical benefit one derives if we 

adjust the weight and/or allocation after period 1 based on period 1 data. Table 2 shows that the 

recommended choice of w = 0.5 and b = 0.67 is a good choice of parameters for most scenarios 
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unless the effect size in one of the stages is 0, in which case we can increase the power by using 

an optimal w or an optimal pair w and b. Interestingly, in the six scenarios we considered, there 

is no power benefit when using the optimal allocation alone while the weight remains w = 0.5; in 

fact, when we fix weight at 0.5, the optimal allocation for scenarios 1-5 is 0.70 and 0.72 for 

scenario 6. For this reason, we do not recommend this strategy or the strategy where the 

allocation to placebo is updated alone with the sample size re-estimation. In scenario 4, when we 

adjust weight, the power can increase from 74% to 84% and further to 92% when we adjust both 

weight and allocation. In scenario 5, the power increases from 74% to 91% to 93%.  

Table 3 shows the results from the corresponding simulations. For the scenarios where 

the initial weight and allocation were close to optimal (scenarios 2, 3, and 6), re-estimating the 

weight and/or allocation leads to selecting a sub-optimal weight and/or allocation and therefore 

to decreased power by 0-5%. When there is no treatment effect in one of the stages (i.e., 

scenarios 4 and 5), we can increase the power from 73% to 81% to 88% (as in scenario 4) or 

from 73% to 89% to 90% (as in scenario 5) when the weight is updated and when both the 

weight and allocation are updated.   

2.4 Discussion 

We examined several adaptive strategies implemented within an SPCD trial with one 

interim look. Regarding weight and allocation re-evaluation adaptation strategies, these 

approaches can be beneficial when the weight and allocation at the start of the SPCD trial are 

suboptimal. Such a situation occurs when placebo response is very high in stage 1 of SPCD, 

resulting in almost no treatment effect in stage 1; in this case, we observed that we could increase 

the power by 10-14% simply by updating the weight and allocation. In contrast, when treatment 

effects in both SPCD stages are similar, using optimal weight and/or allocation does not appear 



 18 

to improve power. As such, we advise using the default parameters in period 2 when treatment 

effects appear similar in both stages in period 1. We observed that changing the allocation alone 

did not lead to increased power in any of the scenarios; however, changing the weight can be 

beneficial. If the weight is changed and there is an interest in reporting the estimate of the 

weighted treatment effect wD1 + (1-w)D2 at the end of the trial, the estimate of this quantity can 

be obtained for any given weight w using the four estimated treatment effects (from the two 

stages of SPCD for each of the two periods of the trial). For example, it might be beneficial, in 

order to preserve blinding, to always assign a certain proportion of patients to active arm in the 

first stage of SPCD, that is, to limit allowable allocation proportions to placebo to [0.5,.8]. As 

previously mentioned, SPCD generally has higher power than a single-stage design because 

some patients contribute two data points. We examined this potential increase in power through 

computing the expected value of the test statistic after the trial and extracting an equivalent effect 

size from it. For a single stage parallel arm trial, the expected value of the test statistic after a 

total of n patients complete the study is  / / 2n  , where /   is an effect size. With stage 

1 weight of 0.5, the weighted sum of effect sizes in the four non-null scenarios of SPCD is 0.25. 

When n = 300, for example, the expected value of the Z score for any of these scenarios is 2.60 = 

0.3 300 / 2 , corresponding to an effect size equivalent of 0.3. Hence, one can think of SPCD as 

detecting an effect size of 0.25 as if it were an effect size of 0.30 (20% increase) in a traditional 

randomized clinical trial. Alternatively, one can think of SPCD as decreasing the sample size by 

a factor of 0.69 more than a traditional randomized clinical trial 

since 20.3 / 2 0.25 1.2 / 2 0.25 1.44 / 2n n n  .  

We have shown that it is possible to use sample size re-estimation strategies with SPCD 

in a manner similar to their use in traditional trials. The length of follow-up in SPCD is generally 
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longer due to the two-stage nature of the design; however, this aspect does not interfere with the 

successful application of these adaptive methods. In this paper, we examined continuous 

endpoint measures; nevertheless, we can similarly handle the binary outcome can be handled 

similarly.  
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CHAPTER 3: SEQUENTIAL PARALLEL COMPARISON DESIGN 

WITH BINARY AND TIME-TO-EVENT OUTCOMES 

3.1 Introduction 

A number of recent publications discussed crossover trials with time-to-event outcomes 

(Buyze & Goetghebeur, 2013; Makubate & Senn, 2010; Nason & Follmann, 2010). Care is 

needed when integrating the time-to-event endpoints into the SPCD framework. In each of the 

two stages, we define the time variable is defined as the time of event (for uncensored outcomes) 

or the end of follow-up for that stage (for censored outcomes). Stage 1 assesses this time-to-

event endpoint for all randomized to active therapy or placebo. We consider the case where 

events are favorable and therefore regard as non-responders those subjects without events in 

stage 1. We would evaluate only those censored in the stage 1 placebo group in stage 2. As such, 

we condition the SPCD test statistic from stage 2 on a negative response (in this case, censored 

time) from stage 1. In fact, this setup is analogous to the case of SPCD with binary outcomes. 

Inferential results for continuous data are not applicable with time-to-event outcomes, owing to 

the specialized methods needed in the presence of right censoring. 

Recall that with binary outcomes, the SCPD test statistic is as follows: 
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1 1

2 1 1
(1 ) / (1 )

n n

i i ii i
X Y X

 
    . We will show in Section 3.2 that this and other test statistics 

defined here are valid test statistics to test the SPCD null hypothesis that preserve the type I error 

rate under the null hypothesis.  

The most common approach to adjust for covariates is to fit a logistic regression model to 

stage 1 SPCD data and separately to stage 2 SPCD data to test the null hypothesis 

0 1 2: 0H    , where 1  and 2  are log odds ratios in stages 1 and 2. Let 1̂  be the estimated 

log odds ratio from the stage 1 logistic regression model, and 1T  be the test statistic based on 1̂ . 

Similarly, 2̂  and 2T  are the log odds ratio and the test statistic from stage 2 of SPCD. Consider 

the following test statistics:  
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III 1 21T vT vT   . 

In the above, 1( )Var   and 2( )Var   are the corresponding elements of the asymptotic 

variance-covariance matrix that is computed as the inverse of the Fisher information. The weight 

v, 0 1v   should be chosen in advance and plays a similar role to the weight w in TI and TII.  

 To address which test statistic, TII or TIII, yields better power, we examine the optimal 

weights w
*
 and v

*
. Writing TII as: 
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illustrates the connection between the two test statistics. Given observed data, one can choose the 

optimal weights w
*
 and v

*
 so that 

* *max( ( )) max( ( )) ( ) ( )II III II IIIT w T v T w T v   . This 

demonstrates that with the right choice of weight, TII and TIII have the same power. Since we are 
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interested in finding the optimal weight to maximize power, we consider the case when 
1 0T   

and 
2 0T  . It is easy to see that when 

1 0T   and 
2 0T  , the optimal weight for 

IIIT  is 

* 2 2 2

1 1 2/ ( )v T T T  . The optimal weight, w
*
, for TII can be obtained from the equation: 
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The weights w and v should be chosen in advance. However, the formulas for w
*
 and v

* 

can be useful if an investigator has prior knowledge about treatment effects and their variability 

in the two stages of SPCD.  

In the next section, we will show that the treatment effect estimates from the two stages 

are uncorrelated and that any of 
IT , 

IIT , and 
IIIT  are asymptotically mean zero under the null 

hypothesis and can be used to test the SPCD hypothesis.  

3.2 Inferences in SPCD with Binary Outcomes 

Let 
11( ,..., )P nX XX  be a vector of responses of subjects assigned to placebo in stage 1, 

and 
11( ,..., )P nY YY  be a corresponding vector of stage 2 responses. Let 

1 211( ,..., )n n nA X X X  

be a vector of responses of subjects assigned to active therapy in stage 1, and 

1 211( ,..., )n n nA Y Y Y  be the corresponding vector of stage 2 responses. Define all stage 1 data as 

,( )P AX X X , all stage 2 data as ,( )P AY Y Y , and let Z be the matrix of baseline covariates. 

Let ( 0)i iI X    be an indicator that is equal to 1 if subject’s stage 2 data are included in the 

primary efficacy analysis and 0 otherwise. Since only stage 2 data from stage 1 placebo non-

responders are included in the primary analysis, ( 0) 1i i iI X X     . We set 0i   for all 
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participants 
1 1n   through 

1 2n n  as their stage 2 data are not included in the primary analysis. 

We consider the inferential issues associated with combining test statistics and treatment effect 

estimators from the two stages with binary data.  

Consider a function ( , )f X Z  of stage 1 data, which may involve stage 1 responses and 

baseline covariates. This can be an estimated treatment effect or test statistic, potentially adjusted 

for covariates. Since our analysis only includes stage 2 data from stage 1 placebo non-

responders, the stage 2 test statistics and treatment effect estimates are functions not only of 

stage 2 responses but also of stage 1 responses, denoted by a function ( , , )g X Y Z  of data from 

both stages. It is important to recognize that the stage 2 analysis is based on the conditional 

distribution of Y  given X  and potentially Z . Thus, with binary data, the full likelihood 

function based on both stage 1 and stage 2 data factors into the stage 1 likelihood based on the 

marginal distribution of the stage 1 responses and the stage 2 likelihood based on the conditional 

distribution of the stage 1 responses given the data observed at stage 1. Such likelihood 

factorization does not occur with continuous outcomes when response is defined by 

dichotomizing the continuous response. The lack of factorization in the case of continuous 

outcomes arises because the distribution of the stage 2 data conditions on an event that subject’s 

stage 1 outcome belongs to the set of stage 1 placebo non-responders and not the underlying 

continuous outcome itself. Factorization of the likelihood, and the fact that the expectation in 

stage 2 of SPCD is conditioned on the stage 1 outcomes, allows us to write:  

   

 

cov( ( , ), ( , , )) ( , ) ( , , ) ( , ) ( , , ) | ,

( , ) ( , , ) | , [ ( , ) 0] 0.

f g E f g E E f g

E f E g E f

    

     

X Z X Y Z X Z X Y Z X Z X Y Z X Z

X Z X Y Z X Z X Z
 

whenever  ( , , ) | , 0E g X Y Z X Z . 
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Let 1/2

1 1( , ) ( )f n   X Z  and *1/

2 2

2( , , ) ( )g n   X Y Z , with 1*

1

n

i in 


 , and j  

and j  are the estimated and true treatment effects at stage j (j = 1 and 2), respectively. Note 

that when considering the distribution of the appropriately standardized j , under the 

alternative, for each fixed value of βj, the functions ( , )f X Z  and ( , , )g X Y Z  are not functions 

of unknown βj and are mean zero when βj is equal to the true value of the parameter, for j = 1, 2. 

Under the usual regularity conditions, the standardized maximum likelihood estimators 

1/2

1 1( , ) ( )f n   X Z  and *1/

2 2

2( , , ) ( )g n   X Y Z  have an asymptotic multivariate normal 

distribution for all values of 
1  and 

2 . When 
1  and 

2  are true parameter values, 

asymptotically, the stage 1 quantity is unconditionally mean zero and the stage 2 quantity is 

mean zero conditioned on the results of stage 1. When *1/2

2 2( , , ) ( ) 0g n   X Y Z , 

asymptotically, using the above result, cov( ( , ), ( , , )) 0f g X Z X Y Z  and the vector 

 1 1 2 2

1/2 *1/2( ), ( )n n      converges in distribution to bivariate normal with mean zero and a 

diagonal variance-covariance matrix. Hence, the covariance of the asymptotic distribution of 1  

and 2  is 0. Because the treatment effect estimators from the two stages are asymptotically 

normal and uncorrelated, they are independent. A similar argument can be made when ( , )f X Z  

and ( , , )g X Y Z  are test statistics as long as  ( , , ) | , 0E g X Y Z X Z , which is the case under 

the null hypothesis. These results may be summarized as follows: 

(1) In the absence of covariates, the standardized estimated treatment effects from 

stages 1 and 2 of SPCD with binary outcomes, 1  and 2 , are uncorrelated 

under the null and alternative hypotheses.  
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(2) In the presence of covariates, the estimated logistic regression coefficients 1̂  and 

2̂  are uncorrelated under the null and alternative hypotheses. As a result of 

potentially differing sample sizes in each stage, it is important to note here that all 

parameter estimates are standardized, that is, 1/2

1 1)(n     and 2

* 1/2

2( )n    .   

(3) The test statistics T1 and T2 computed at stages 1 and 2, respectively, are 

asymptotically uncorrelated under the null hypothesis.  

The standardized test statistics are only mean zero under the null hypothesis and not the 

alternative hypothesis. Note that if we center the test statistics around their mean, they will be 

uncorrelated. The standardized treatment effect estimators are mean zero for fixed values of the 

β1 and β2 under both the null and alternative hypotheses. Having shown that the standardized 

estimators are asymptotically normally distributed and uncorrelated for all values of the 

parameters, we can then use the delta method to establish the asymptotic normality of the 

weighted combination of the estimators (after standardization) and derive its variance. This result 

enables the construction of confidence intervals which are valid under both the null and 

alternative hypotheses.  

Specifically, we have the following: 

(1) The distribution of each standardized 
IT , 

IIT , and 
IIIT  is asymptotically N(0,1) 

under the null hypothesis;  

(2) The confidence interval  1 2 1 /2 1 2 1 /2(1 ) , (1 )w Z SE w Z SEw w            

for 
1 2(1 )ww     has the coverage of 1  . Here 

1 /2Z 
 is the 1 / 2  quantile 

of standard normal distribution, and the standard error, SE, is computed as 

2 2

1 2) ( ) )( 1 (SE ww Var Var   , with  
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The confidence interval 1 2 1 /2 1 2 1 /2(1 ) , (1( ) )w Z SE w Z SEw w            for 

1 2(1 )w w    has the coverage of 1  . Here 
1  and 

2  are the log odds ratios and  

2 2

1 2) ( ) )( 1 (SE ww Var Var    . 

3.3 Time-to-Event Outcomes 

Under the SPCD setting, we define time-to-event outcomes in the classical way for both 

stages 1 and 2, and censoring for each stage occurs at the end of the stage. Let (1)

iT  be subject i's 

first event time in the first stage of SPCD. If the subject does not have an event until the end of 

stage one, the subject is censored at the end of stage 1. Let (1)

iC  be the subject’s censoring time in 

stage 1, (1) (1)

i iiX T C  be the observed stage 1 time for the subject, and (1) ((1) 1)( )ii iTI C    be 

the indicator of whether the event was observed in stage 1. Let iZ  be the subject-specific vector 

of baseline covariates. Thus, the observed data for subject i in stage 1 are (1), ,{ }i i iX  Z . Let (2)

iT  

be subject i's event time in the second stage of SPCD where the time starts from the beginning of 

stage 2. Similarly to stage 1, if the subject does not have an event until the end of stage 2, the 

subject is censored at the end of stage 2. Let (2)

iC  be the subject’s censoring time in stage 2, 

(2) (2)Ci iiY T   be the observed stage 1 time for the subject, and (2) ((2) 2)( )ii iTI C    be the 

indicator of whether the event was observed in stage 2. All subjects usually participate in both 
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stages to maintain blinding, but primary analysis in SPCD only includes stage 2 data from 

subjects who did not respond to placebo in stage 1. Thus, we include only data from subjects 

assigned to placebo in stage 1 with 
(1)

i iX C  in SPCD primary analysis. Therefore, 

(1) (2)( , , , , )i i i i iX Y  Z  are the full data of subject i in stage 1 and stage 2 of SPCD. The vectors of 

responses for each treatment group and stage are defined similar to the binary case.  

A popular choice in evaluating the time-to-event data is the Cox proportional hazards 

model (Cox, 1972). The model is 0( | ) ( )exp{ }i it t  Z Z  where 0 ( )t  is the baseline hazard 

and   is the hazard ratio for active treatment versus placebo. To analyze SPCD data, we can 

consider stage-wise Cox models without or with covariates: 

0( | ) ( )ex (Treatment Activep{ })j i j j jIt t   Z , or     

0 (Trea( | ) ( )exp{ tment Acti }ve)j i j j j j it t I    Z Z . 

We are interested in testing the null hypothesis that the treatment effects from both stages 

are zero, 0 1 2: 0H    . Similarly to the binary data setup, with time-to-event outcomes, test 

statistics and treatment effect estimators computed at stage 2 are evaluated conditionally on the 

stage 1 results. That is, 2  refers to the hazard ratio for active treatment versus placebo 

conditionally on an event not occurring during the stage 1 follow-up. One may argue along the 

lines in Section 3.2 to show that the likelihood function for the stage 1 and stage 2 survival 

outcomes factors under our definition of response and thus the estimated regression parameters 

based on partial likelihood are the maximum likelihood estimators based on separate estimation 

using the stage 1 and stage 2 data. As a result, the test statistics derived from the partial 

likelihood estimators are asymptotically bivariate normal and uncorrelated under the null 

hypothesis, and the estimated treatment effects, after standardization, are asymptotically 
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bivariate normal and uncorrelated under both null and alternative hypotheses. The test statistics 

and parameter estimates may be combined, as with binary outcomes, with the theoretical 

properties of the weighted combination derived from the delta method. Analogous results in 

Section 3.2 will also apply to count data (e.g., Poisson type outcome) as long as the definition of 

placebo non-responder is a subject with no events. 

To test the SPCD null hypothesis, we can use the weighted average of the estimated 

treatment effects, 
1 2(1 )w w    , where 0 1w   and is chosen a priori, with the following 

test statistic: 

1 2
IV

2 2

1 2

(1 )

) (1 )( ( )

w
T

w Var V

w

arw

 

 

 

 
 . 

Alternatively, we can use the test statistic V 1 21T vZ vZ   , where T1 and T2 are 

stage-wise test statistics. These test statistics can be for testing the coefficients 1  and 2  in the 

Cox model, or, for example, can be stage-wise log-rank test statistics.  

3.4 ADAPT-A Trial Example 

ADAPT-A trial was a clinical trial to assess the efficacy of low-dose aripiprazole added 

to antidepressant therapy in patients with major depressive disorder and inadequate response to 

prior antidepressant therapy (Fava et al., 2012). SPCD was used with two stages of 30 days each. 

In the first stage, 167 patients were randomized to placebo and 54 to aripiprazole (3:1 

randomization ratio). All patients participated in stage 2 of the trial regardless of their stage 1 

responses. The primary analysis included all stage 1 data and stage 2 data from patients who did 

not respond to placebo in stage 2. The primary endpoint was a dichotomized Montgomery-

Asberg Depression Rating Scale (MADRS) score with success defined as a 50% or greater 

reduction in MADRS scores compared to baseline. In stage 1 of SPCD, 10 out of 54 (18.5%) 
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patients responded to aripiprazole, and 29 out of 167 (17.4%) responded to placebo. Including 

stage 2 data from stage 1 placebo non-responders into the primary analysis yields the following 

counts in stage 2: 14 out of 65 (21.5%) patients responded to aripiprazole, and 5 out of 65 (7.7%) 

responded to placebo. The primary analysis reported by Fava et al. (2012) used binomial 

repeated-measures regression, accounting for correlation between subject data in stages 1 and 2. 

The model was analyzed using SAS Proc Genmod (with identity link, binomial repeated 

measures) and included study stage, treatments and their interaction, and control for categorical 

study center variables as randomization was stratified by center. In contrast, our method allows 

for performing stage-wise analyses and then combining either the estimated treatment effects or 

the test statistics without a need to estimate correlation between estimates in the two stages. 

Since there were a total of 21 centers, for the sake of this illustration, we combined the centers 

creating two larger centers. We performed stage-wise logistic regression analysis unadjusted and 

adjusted for center (Tables 4 and 5).  

Adjusting for covariates correlated with the measured outcome generally reduces the 

standard error of the estimate. However, this was not the case in our ADAPT-A re-analysis 

example. However, the treatment effect estimates increased in the adjusted analysis compared to 

the unadjusted analysis. This, in turn, led to smaller p-values after adjusting for center (Table 5). 

In our example, the p-value corresponding to the test statistic based on the sum of weighted 

treatment effects, IIT , is smaller than the p-value corresponding to the weighted sum of the test 

statistics, IIIT , with equal weighting of the two stages. In fact, the p-value from IIT in the adjusted 

analysis is significant at 0.05 level. In our example, the p-value corresponding to the test statistic 

based on the sum of weighted treatment effects, 
IIT , is smaller than the p-value corresponding to 

the weighted sum of the test statistics, 
IIIT , with equal weighting of the two stages. To illustrate 
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the discussion about optimal weights in Section 2.1, we computed optimal weights given 

observed data and corresponding test statistics. As discussed earlier, if the optimal weight 

computed based on observed data is used, the two test statistics are exactly the same. Table 5 

also shows the results for the score test (Ivanova et al., 2011) with default parameter r = 1 and 

with the optimal parameter computed from observed data. The optimal parameter is equal to the 

ratio of the treatment effects * (14 / 65 5 / 65) / (10 / 54 29 /167) 12.0r     . 

We see in Table 4 that the effect size, defined as the treatment effect divided by the 

pooled standard deviation, is close to zero in stage 1, equaling to 0.03 and 0.04 for the 

unadjusted and adjusted analyses, respectively. Clearly, using a single-stage design would give 

the impression that there is no benefit to low-dose aripiprazole in reducing the MADRS score. In 

contrast, the effect size is substantial in stage 2 with 0.38 for unadjusted and 0.41 for adjusted 

analyses, respectively. Since the treatment effect is much higher in stage 2 of SPCD, one might 

argue that the placebo lead-in design would have led to an even smaller p-value if used in 

ADAPT-A trial. This is because it would have had all patients assigned to placebo in stage 1, 

resulting in more subjects contributing to the primary analysis in stage 2. However, the placebo 

lead-in design might not have been as effective as SPCD in identifying placebo non-responders 

and increasing the treatment effect in stage 2 (Trivedi & Rush, 1994) resulting in a smaller 

treatment effect in stage 2. Also, if stage 1 treatment effect is slightly higher than observed in 

ADAPT-A trial, the SPCD is more powerful than the placebo lead-in design due to combining 

data on treatment comparison from both stages. 

3.5 Simulation Study, Binary Outcomes 

In each simulation, allocation to placebo was 2 / 3b  , and the total sample size was 300 

for all scenarios. The additional simulations under the null hypothesis with sample sizes of 40 
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and 80 show that type I error is preserved even when the sample size is low. Data were generated 

using the inverse logit function with pre-specified treatment effect and covariate parameters. The 

correlations from the observations from the same subject were set to ρPP = 0.8 and ρPA = 0.3. The 

covariate is assumed to be normally distributed and increases the odds of an event by 22% with a 

unit increase in the covariate (corresponds to a logistic regression parameter of 0.2). Simulation 

results are based on 150,000 runs. All tests were two-sided with a significance level of 0.05 and 

were conducted in R version 3.3.1. 

Table 6 displays the results of SPCD with binary outcomes with and without adjustment 

for covariates. In both cases, type I error is maintained at 0.05. Coverage of the 95% confidence 

interval for the overall treatment effect, defined as the weighted average of stage 1 and stage 2 

treatment effects, is maintained for all scenarios. To verify the uncorrelatedness of stage 1 and 2 

analyses, we estimated the correlation between the estimated treatment effects in the two stages 

of SPCD. With M simulation runs, the standard error for the estimated correlation is 

2(1 ) / ( 2)se r M    and therefore does not exceed 0.0026 with M = 150,000. If correlation is 

outside the interval (-1.96se,1.96se) = (-0.005, 0.005), we conclude that the correlation is not 0. 

For the estimated treatment effects, the correlation is always within (-0.005, 0.005) both under 

the null and alternative hypotheses. The same is true for the correlation between stage 1 and 

stage 2 test statistics under the null hypothesis. This confirms our result in Section 3.2. The 

correlation between the test statistics under the alternative hypothesis is always outside the 

interval (-0.005, 0.005), indicating that the true correlation is not 0. This is as expected. If we 

subtract the true mean of each stage 1 and stage 2 test statistics under a given alternative, they 

would be uncorrelated.  
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3.6 Simulations, Time-to-Event Outcomes 

In each simulation, both stages 1 and 2 were 28 days long, and stage 1 allocation to 

placebo was 2 / 3b  . The sample size was 300 for all scenarios with additional null simulations 

having sample sizes of 40 and 80 to show that type I error is preserved even when the sample 

size is low. We used exponential distribution with a scale parameter of 0.01 to simulate time to 

event on placebo in stage 1, yielding a stage 1 placebo response rate of 25%. We chose the 

exponential distribution to help uphold the proportional hazards assumption, which is not an 

unreasonable assumption when the stages are short in duration as in SPCD. A placebo non-

responder is a subject who did not have an event in the first 28 days. Since having an event is a 

favorable outcome, active therapy is expected to reduce time to event compared to placebo. We 

sampled time to event in stage 1 in both the placebo and active therapy group using the inverse 

probability method proposed by Bender, Augustin, and Blettner (2005). This method ensures that 

the time to event follows the proportional hazards model assumptions. We censored all stage 1 

times at 28 days. For those placebo non-responders re-randomized to placebo in stage 2, their 

stage 2 times to event were calculated as 28 days less than their original time to event. Thus, in 

the PP group, 28 1P P P Y X . This makes intuitive sense, as nothing has changed for these 

subjects. Times to event for placebo non-responders that are re-randomized to active therapy in 

stage 2 were calculated as, 2 2exp{ (Treatment Active) 28 1 )}(P P PI    XY . These subjects, 

had they remained on placebo, would have had an event at time 28iT  . However, because they 

switched to active therapy in the second stage, their time to event was adjusted by the stage 2 

active therapy hazard. This ensures that the proportional hazards assumptions are upheld in stage 

2. Again, all stage 2 times were censored at 28 days. We reasonably assumed stage 2 treatment 

effects to be larger than in stage 1 because of the exclusion of the placebo responders. Tables 7 
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and 8 report the results of these simulations with and without a covariate. Simulation results are 

based on 150,000 trial runs. All tests were two-sided with a significance level of 0.05. 

As in the binary outcome simulations, the type I error rate is preserved. The 95% 

confidence interval of the overall treatment effect provides correct coverage with 95% coverage 

for all scenarios both without and with covariates (Tables 7 and 8). The estimated treatment 

effects from stages 1 and 2 are uncorrelated under both the null and alternative hypotheses as 

expected. The results also confirm the uncorrelatedness of the stage-wise log-rank statistics 

under the null hypothesis but not under the alternative hypothesis, where the estimated mean 

correlation is outside the interval (-0.005,0.005), indicating that the true correlation is not 0. 

We also compared SPCD with a single stage trial. Consider a scenario where we enroll 

300 subjects into a time-to-event SPCD trial with 2:1 allocation and 4 weeks follow-up in each 

stage, 8 weeks total. Instead of dividing 8 weeks into two stages, we can have a trial with 8 

weeks follow-up and 300 subjects equally assigned to active treatment and placebo. In this case, 

the sample size is the same and follow-up time is the same, but the person-months is smaller for 

SPCD compared to a standard trial because we do not include stage 2 data from stage 1 placebo 

responders. If the treatment effect   is 0.25 in a standard 8-week duration trial, and in each stage 

of SPCD, 1 2 0.25   , the power for SPCD with weight w = 0.5 is 53%, and the power for a 

single-stage design is 67%. If the treatment effect in placebo non-responders is higher than 0.37, 

the power for SPCD will be higher than the power for a trial with a standard design having an 

8-week follow-up, and potentially much higher as the stage 2 treatment effect increases. That is 

why SPCD is usually recommended for trials with high placebo response where the treatment 

effect in stage 1 is rather low and much higher treatment effects are expected in placebo non-

responders in stage 2.  
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3.7 Discussion 

SPCD is an efficient design for comparing a novel intervention with placebo. Similar to a 

crossover design, it utilizes two data points from subjects, though not from all subjects as in a 

crossover, instead of one data point as with a standard trial design. Unlike crossover, one does 

not need to worry about the carry-over effect to analyze SPCD data as there is no required 

assumption about the relevant magnitude of treatment effects in the two stages. Researchers 

propose SPCD for trials with high placebo response because they believe it eliminates placebo 

responders from stage 2 and leads to higher treatment effect in stage 2. This, combined with the 

ability to collect two data points from subjects, in general, leads to a higher power of SPCD 

compared to a standard trial. One disadvantage of SPCD is that not all data are used in the 

primary analysis. For example, data of subjects who received active treatment in stage 2 are not 

utilized. These data, however, allow for important secondary analysis. For example, one can 

compare placebo and active treatment for the duration of the two stages of SPCD by comparing 

the responses from PP and AA groups at the end of stage 2. 

For normal outcomes, many authors have proposed combining treatment effects with 

weights for the primary SPCD analysis. Chen et al. (2011) showed that the covariance between 

the estimated treatment effects is zero under the null hypothesis and, therefore, can be omitted in 

the denominator of the test statistic based on the weighted combination of the estimated 

treatment effects. Since covariance might not be zero under the alternative, one needs to estimate 

the covariance between the estimated treatment effects to construct a proper confidence interval 

when the outcome is normal. We proved that in SPCD with binary and time-to-event outcomes, 

covariance is zero between the estimated treatment effects. Therefore, it can be omitted in 

construction of the test statistic and the confidence interval for the weighted sum of treatment 
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effects. We also showed that stage-wise tests statistics are uncorrelated under the null hypothesis; 

therefore, SPCD hypothesis can also be tested based on the weighted combination of the test 

statistics. Our result applies to binary, count, and time-to-event outcomes where placebo non-

responder is defined as a subject with no event in stage 1. It is not clear if this result holds if 

placebo non-responder is defined differently or for continuous outcomes. 
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CHAPTER 4: PERMUTATION-BASED INFERENCE 

FOR SEQUENTIAL PARALLEL COMPARISON DESIGN 

4.1 Permutation Test 

Let 1,... ),( nU u u  and 1,... ),( mV v v  be two independent random samples, potentially 

drawn from two different distributions, F and G. The two-sample permutation test tests the null 

hypothesis, 0 :H F G . Let N  represent the combined sample of U  and V  of size n m . 

Additionally, let ( , )Z U V  and 'Z  be the ordered vector of size N  of all the data. Let 

1,... ),( N    be a vector that indicates the sample (U  or V ) that each ordered observation 

belongs to. We have that ˆ ( , )f Z u v      where u  and v  are the computed means of the 

observed samples of U  and V . All 
 

!

! !

N N

n m n m

 
 

 
 permutations of   are equally likely 

under the null hypothesis that F G . We denote 
*  as any one of these permutations of   and 

can compute all 
N

n

 
 
 

 permutation replications of  ̂  as * *( ) ( ), 'Zf   . This provides the 

permutation distribution of ̂ , and the probability that 
*  exceeds ̂  represents the permutation 

significance level. Measuring the observed test statistic in relation to the null distribution 

provides the exact p-value for the test. Thus, we can reject the null hypothesis at the 0.05 

significance level when * ˆ) 0.05Pr(   . In theory, one can compute the test statistic for every 

permutation of the data, but in practice this can be computationally intensive as the sample size 

increases. To reduce the computational burden, one can draw a random subset of permutations of 
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the data. Dwass (1957) proposed using “modified randomization tests” which randomly samples 

a subset of reference datasets from the set of all data permutations to provide a valid test. The 

validity of the test is maintained even when the subsets are small in comparison to the possible 

number of permutations. 

4.2 Permutation test for SPCD  

Let 1 2,n n  and 3n  be the stage 1 sample sizes for the PP, PA, and AA groups, 

respectively. For the PP group, let 
11( ,..., )P nP X XX  be a vector of stage 1 responses, and 

11( ,..., )P nP Y YY  a corresponding vector of stage 2 responses. For the PA group, let 

1 211( ,..., )n nPA nX X X  be a vector of stage 1 placebo responses, and 
1 1 21( ,..., )n nPA nY Y Y  a 

corresponding vector of stage 2 active treatment responses. For the AA group, let 

2 321 11( ,..., )n n n n nAA X X  X  be a vector of stage 1 active treatment responses, and 

2 321 11( ,..., )n n n n nAA Y Y  Y  be the corresponding vector of stage 2 active treatment responses. 

Also, let ( , )P PP PAX X X  and , ,( ),P AA PA AA X Y YZ X  be the collection of all the study data. 

We assume that PX  and PPY  are sampled from some probability distribution F and that 

,AA AAX Y  and PAY  are sampled from some probability distribution G. We are interested in testing 

the null hypothesis that 0 :H F G . 

Here, 'Z  is a vector of size n of the ordered data, and   is the corresponding group 

assignment (P or A) vector of size n for 'Z . We choose B  independent vectors, 
* *(1),..., ( )B  , 

each consisting of 1n  PP’s, 2n  PA’s, and 3n  AA’s, from the set of all 
1 2 3

N

n n n

 
 

  
 potential 

vectors.  
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For SPCD, * *( ) ( ), 'Zf    is the test statistic (see Equation 1). We compute this for 

each of the permutation replicates. We reject the null hypothesis at the 0.05 significance level 

when * ˆ) 0.05Pr(   . Since the permutation test essentially shuffles the treatment labels for 

the study participants, data from all participants from each stage need to be collected.  

We also examine, for SPCD, a stage-wise permutation test, which means that we perform 

two permutation tests and combine the resulting test statistics for the calculation of the overall 

test statistic, 1 20.5 0.5T T T , where 1T  and 2T  represent the test statistics from stage 1 and 

stage 2, respectively. The stage 1 permutation test permutes the labels of ,PP PAX X , and AAX , 

and the stage 2 permutation test permutes the labels of the stage 2 responses of stage 1 placebo 

non-responders (subset of PPY  and PAY ). 

4.3 The Bootstrap 

The bootstrap hypothesis test for 0 :H F G  is similar to the permutation test except that 

it samples with replacement and only uses information from stage 1 and stage 2 placebo non-

responders. When using a bootstrap to hypothesis test a difference in means, there is no need to 

assume that the two samples have equal variances, only equal means. In this case, one computes 

a common mean, centers both samples to this common mean, and resamples each population 

separately (Efron & Tibshirani, 1993). Slight modification to the algorithm that Efron and 

Tibshirani provide is needed to extend this testing procedure to SPCD.  

4.4 The Bootstrap for SPCD 

In order to perform the bootstrap for hypothesis testing, we center the original data for 

each stage and then compute the SPCD primary efficacy analysis test statistic. For PP PPx X , 

we compute 
*

PP PP P xx x x   , where Px  is the mean of all the stage 1 responses for the PP and 
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PA groups, and x  is the mean over all the stage 1 responses. In a similar manner, for 

,PA PA AA AAx xX X  , we compute 
*

PA PA P xx x x    and 
*

AAA AA xx x x   , where Ax  is the 

mean of all the stage 1 responses in the AA group. Stage 2 data is transformed in a similar 

manner. For PP PPy Y , we compute 
*

PP PP P yy y y   , where Py  is the mean of all the stage 2 

responses for PP, and y  is the mean over all the stage 2 responses from placebo non-responders. 

Similarly, for PA PAy Y , we compute
*

PA PA A yy y y   , where Ay  is the mean of all the stage 2 

responses in the PA group. Using these centered data, we use the test statistic in Equation 1, 

*( )bt z , for all 1,...,b B  bootstrapped datasets. We then are able to approximate the achieved 

significance level, bootASL , by *#{ ( ) } /b

boot obsASL t z t B  , where obst  is the observed test 

statistic.   

We examine three different methods for obtaining the B  bootstrapped datasets. For 

Method 1, we sample 1n  centered observations with replacement from the PP group; 2n  centered 

observations with replacement from the PA group; and 3n  centered observations with 

replacement from the AA group. The SPCD test statistic is obtained using the formula in 

Equation 1 such that all stage 1 and only stage 2 placebo non-responder information is used. 

Method 2 is similar to Method 1 except that we not only preserve the stage 1 group sizes but also 

the stage 2 group sizes. Let 
1,NRn  and 

2,NRn  represent the total number of placebo non-responders 

in the PP and the PA groups, respectively, as determined by the original data. For Method 2, we 

sample 
1,NRn  centered observations with replacement from the 

1,NRn  placebo non-responding PP 

group; 
1 1,NRn n  centered observations with replacement from the 

1 1,NRn n  placebo responding 

PP group;
2,NRn  centered observations with replacement from the 

2,NRn  placebo non-responding 
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PA group; 
,2 2 NRn n  centered observations with replacement from the 

,2 2 NRn n  placebo 

responding PA group; and 3n  centered observations with replacement from the AA group. 

Again, the SPCD test statistic is obtained using the formula in Equation 1 for each of the 

bootstrapped samples. Method 3 bootstraps stages 1 and 2 separately, obtaining two stage-wise 

SPCD test statistics and combining them to yield the overall SPCD test statistic using a weighted 

combination of the test statistics, 1 20.5 0.5T T , where 1T  and 2T  represent the test statistics 

from stage 1 and stage 2, respectively. Additionally, one could combine the p-values from stage 

1 and stage 2 using Fisher’s method, where 2

2

1

2 ln( ) ~
k

i k

i

p 


  , and solve for the overall SPCD 

p-value. For the stage 1 bootstrapped samples, we sample 1n  centered stage 1 observations with 

replacement from the PP group; 2n  centered stage 1 observations with replacement from the PA 

group; and 3n  centered stage 1 observations with replacement from the AA group. For the stage 

2 bootstrapped samples, we sample 
1,NRn  centered stage 2 observations with replacement from 

the placebo non-responding PP group, and 
2,NRn  centered stage 2 observations with replacement 

from the placebo non-responding PA group. 

The merits of the bootstrap for SPCD lie in the fact that we need only stage 1 data and 

stage 2 data for placebo. Thus, we do not need stage 2 data from the PP and PA placebo 

responders and the AA group to perform the bootstrap for SPCD. In contrast, for the permutation 

test, all data from stages 1 and 2 for each of the three groups, PP, PA, and AA, are essential. One 

potential result of this is that if one has only stage 1 and stage 2 information from the placebo 

non-responders, one can still perform the SPCD bootstrap. 
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4.5 Permutation and Bootstrap SPCD Simulation Study 

We conducted a simulation study of the SPCD permutation test and the SPCD bootstrap 

by examining the type I error and the power of these tests under different sample sizes and 

outcome distributions. Type I error was evaluated with total sample sizes of 45, 60, and 90 and 

for normal, gamma, and Poisson distributed outcomes. Power for the SPCD permutation test and 

SPCD bootstrap was evaluated with total sample sizes such that the SPCD test statistic described 

in Equation 1 would have 80% power, and for normal, gamma, exponential, and Poisson 

distributed outcomes. For both type I error and power simulations, unadjusted and adjusted (for 

baseline and a normally distributed covariate) test statistics were used. Tables 9 and 10 show the 

results of these simulations. For every scenario, we ran 20,000 simulations, each with 2,500 

bootstrapped or permutated datasets. 

Simulations of the normally distributed data were simulated in the same manner as in 

Ivanova et al. (submitted 2017) where the authors randomly generated outcome ijY  of patients 

from ij ij ij ijeY    , with group i = PP, PA, AA, stage 0,1,2j   for baseline, stage 1, and 

stage 2, respectively. Here, 10 2( , , ) 'i i i    represents the means for the stages with 0  as the 

common baseline mean; 1i  as the stage 1 mean for group i ; and 2i  as the stage 2 mean for 

placebo non-responders for group i . Additionally, 1 3 2(0,0,(1 )( )) 'i i i iZ     , where 1iZ  is the 

indicator for a placebo non-responder for group i , that is, 1 1iZ   when 1iY c , where c  is some 

predetermined response cut point, and 3i  is the stage 2 mean for placebo responders. 
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0 1 2( , , ) 'i i i ie e ee    are normally distributed, 3(0 , )N  , 
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01 12

02 12

1

1
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  

 

 
 

 
 
  

 , with variance 

2  and correlation between stages j  and 'j , jj  .  

For the evaluation of type I error with a normally distributed outcome, we set 
0 40  , 

,1 ,1 ,2 ,2 ,2 35PP PA PP PA AA          and 
,3 ,3 ,3 32PP PA AA     , 

2 36   and assumed an 

exchangeable correlation structure, 
01 02 12 0.5     . For the evaluation of power with a 

normally distributed outcome, we set 
0 40  , 

,1 ,1 ,2 35PP PA PP     , 
,1 ,2 ,2 33AA AA PA     , 

and 
,3 ,3 ,332.5, 31, 33PP PA AA     , which equates to a stage 1 and stage 2 treatment effect of 

-2. Additionally, we set
2 36   and assumed an autoregressive correlation structure, 

0.5

01 02 12 0.7     . For both type I error and power evaluations with normal outcomes, we 

chose a placebo response cut point of c = 33, which yields a placebo non-response rate of 63%. 

For the gamma distributed outcomes, we used a normal copula to impose an 

exchangeable correlation structure, 
01 02 12 0.5     , for type I error, and we used an 

autoregressive correlation structure, 0.5

01 02 12 0.7     , for power simulations. For type I 

error simulations, all outcomes (baseline, stage 1, and stage 2) regardless of group, were drawn 

from a gamma with shape parameter 6 and rate parameter 0.17. For power simulations, baseline 

outcomes, and stages 1 and 2, placebo outcomes were drawn from a gamma with shape 

parameter 6 and rate parameter 0.17. Stage 1 active outcomes and stage 2 active outcomes were 

drawn from a gamma with shape parameter 6 and rate parameter 0.13. For both type I error and 

power evaluations with gamma outcomes, we chose a placebo response cut point of c = 29.5, 

which yields a placebo non-response rate of 63%. 
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For the exponentially distributed outcomes, we used a normal copula to impose the same 

exchangeable correlation structure for type I error and autoregressive correlation structure for the 

power as with the gamma distributed outcomes. For power simulations, the baseline outcomes, 

stage 1 placebo outcomes, and stage 2 placebo outcomes were drawn from an exponential with 

rate parameter 0.25. Stage 1 active outcomes and stage 2 active outcomes were drawn from an 

exponential with rate parameter 0.53. We chose a placebo response cut point of c = 1.85, which 

yields a placebo non-response rate of 63%. 

For the Poisson distributed outcomes, we used a normal copula to impose the same 

exchangeable correlation structure for type I error and autoregressive correlation structure for the 

power as with the gamma and exponentially distributed outcomes. For power simulations, 

baseline outcomes, stage 1 placebo outcomes, and stage 2 placebo outcomes were drawn from a 

Poisson distribution with rate parameter 2.13. Stage 1 active outcomes and stage 2 active 

outcomes were drawn from a Poisson distribution with rate parameter 1.35. We used a placebo 

response cut point of c = 1. 

When adjusting for a normally distributed covariate and baseline measurements when the 

outcomes are normal, gamma, and Poisson, we modified means and rate parameters to achieve 

80% power.  

4.6 Simulation Results 

Table 9 reveals the results of the type I error simulation study. It shows that both the 

permutation test and combined stage-wise permutation test preserve the type I error at the 0.05 

level for total sample sizes of 45, 60, and 90 with normal, gamma, and Poisson distributed 

outcomes. Furthermore, we demonstrate that the type I error is preserved at the 0.05 level when 

adjusting for baseline and a covariate. For the bootstrap Methods 1 and 3, the type I error is 
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preserved at the 0.05 level for total sample sizes of 45, 60, and 90 with normal, gamma, and 

Poisson distributed outcomes with and without adjusting for baseline and a covariate. Bootstrap 

Method 2, which maintains stage 1 and stage 2 group sizes, inflates the type I error (as much as 

0.067) for sample sizes 45, 60, and 90 when not adjusting and adjusting for baseline and a 

covariate.   

Table 10 shows the power from the simulation study and directly compares the power 

achieved with the typical SPCD test statistic from Equation 1, the SPCD randomization-based 

test statistic (Ivanova, Li, Silverman, Wiener, & Koch, n.d.), the permutation test, the stage-wise 

permutation test, and the three different bootstrap tests discussed. Power is also shown for the 

adjusted (for baseline and a covariate) test in Equation 1, permutation tests, and the bootstrap 

tests. 

For a normal outcome and a total sample size of 210, the typical SPCD test statistic from 

Equation 1, the permutation tests, and the bootstrap tests perform equally well. The two 

permutation tests yield similar power with 80-81% for unadjusted and 81-82% for adjusted. The 

three methods of bootstrap unadjusted have a power of 80-83% and, after adjusting for baseline 

and a covariate, have a power of 79-81%.  

For the gamma outcome and sample size of 60, the typical SPCD test statistic from 

Equation 1 yields 81% power unadjusted and 82% power adjusted for baseline and a covariate. 

Again, the permutation tests yield similar power for both unadjusted and adjusted. Bootstrap 

Methods 1 and 2 achieve similar power with 77% and 80% power for unadjusted and 79% and 

79% when adjusting for baseline and a covariate. Bootstrapping Method 3 achieves lower power 

with 71% power unadjusted and 68% when adjusting.  
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For an exponential outcome and total sample size of 45, the SPCD test statistic from 

Equation 1 yields 79% power unadjusted and 78% power adjusted for baseline and a covariate. 

The permutation tests yield similar power for unadjusted and slightly less power when adjusting 

for baseline and a covariate (74-75% power). All three methods of the bootstrap perform worse 

with unadjusted powers of 69%, 73%, and 44%, and adjusted powers of 69%, 71%, and 42% for 

Methods 1, 2, and 3 respectively. 

When the outcome is Poisson and the sample size is 60, the SPCD test statistic from 

Equation 1 yields 81% power for both unadjusted and adjusted. Again, the permutation tests 

yield similar power for both unadjusted (80% and 79%) and adjusted (80% and 78%). Bootstrap 

Methods 1 and 2 have similar power of 81% power for unadjusted and 79% and 80% when 

adjusting for baseline and a covariate. However, bootstrapping Method 3 has 76% power 

unadjusted and 71% power adjusted. 

4.7 ADAPT-A Example 

We re-evaluate the ADAPT-A data (described in Section 3.4) using the actual MADRS 

scores and treating these scores as continuous outcomes with the discussed permutation tests and 

the bootstraps. The permutation tests use all data from both stages, whereas the bootstraps use all 

stage 1 information and stage 2 information from placebo non-responders. For each of the five 

tests (two permutation tests and three bootstrap tests), we evaluate 150,000 permuted or 

bootstrapped datasets.  

In stage 1 of SPCD, 10 out of 54 (18.5%) patients responded to aripiprazole, and 29 out 

of 167 (17.4%) responded to placebo. As addressed in the original paper, Fava et al. (Fava et al., 

2012) claim that because of the high placebo response rate, ending the trial after stage 1 would 
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result in a failed trial. However, including the stage 2 information in the primary efficacy 

analysis increases the effect size and decreases the p-value.  

Using the test statistic in Equation 1 and treating the MADRS score as a continuous 

outcome, the overall SPCD p-value is 0.074. When we use the permutation test, the overall p-

value is 0.076. Using the stage-wise permutation test, the p-value is 0.082. Conducting the 

Method 1 bootstrap where we maintain the group sample sizes in stage 1, we get a p-value of 

0.067, and when we maintain the group sample sizes in stages 1 and 2 (Method 2), we get a p-

value of 0.059. The stage-wise bootstrap (Method 3) produces a p-value of 0.076. We see that 

the permutation and the bootstrap tests yield results similar to the SPCD test statistic in Equation 

1. 

When we adjust for the baseline MADRS score, and use the test statistic in Equation 1, 

the overall SPCD p-value is 0.15. For the permutation test and the stage-wise permutation test, 

the p-value becomes 0.15 and 0.17 respectively. Bootstrap Methods 1 – 3 produce p-values of 

0.15, 0.14, and 0.17, respectively.  

4.8 Stage-wise Testing in SAS 

In Section 4.6, we demonstrated that the stage-wise permutation test, while not as 

powerful when the outcomes are not normally distributed, preserves the type I error. As a result, 

we can employ the use of popular statistical software such as SAS, to perform the stage-wise 

permutation testing procedure. We employ the help of the %NParCov4 macro developed for 

advanced randomization based-methods (Zink, Koch, Chung, & Wiener, 2017). The 

%NParCov4 macro takes the following inputs: outcomes (OUTCOMES), covariates (COVARS), 

exposures (EXPOSURES), treatment groups (TRTGRPS), hypothesis (HYPOTH), outcome 

transformations (TRANSFORM), strata (STRATA), how the analysis will accommodate 
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covariates within strata (COMBINE), strata weights (C), confidence limit for intervals 

(ALPHA), exact analysis (EXACT), random seed (SEED), number of random data sets to 

generate (NREPS), space requirements for SAS/IML (SYMSIZE), print option (DETAILS), 

input dataset (DSNIN), and prefix for output dataset (DSNOUT). For the SPCD stage-wise 

permutation test, we first read in the ADAPT-A dataset (ADAPTA). The variables of interest in 

the ADAPT-A dataset are madrs_visit3 (stage 1 outcome), madrs_visit6 (stage 2 outcome), 

treatment_stage1 (0/1 for placebo/drug assignment in stage 1), and treatment_stage2 (0/1 for 

placebo/drug assignment in stage 2). We run the %NParCov4 macro, 

%NPACOV4(OUTCOMES = madrs_visit3, COVARS =, TRTGRPS = treatment_stage1, 

HYPOTH = NULL, ALPHA = 0.05, EXACT = YES, SEED = 44, SYMSIZE = 200000, NREPS 

= 150000, DSNIN = ADAPTA, DSNOUT = stage1). With this statement, we perform the 

permutation test on the stage 1 information, at the 0.05 significance, with 50,000 replicates. We 

can find all the permuted treatment differences in the dataset _STAGE1_BETASAMP, which is 

produced by the macro. The first row of this dataset shows us the treatment difference for our 

original dataset. We can run a PROC MEANS to obtain the standard error (0.0061) of these 

permuted treatment differences for stage 1. Next, we fit %NPACOV4(OUTCOMES = 

madrs_visit6, COVARS =, TRTGRPS = treatment_stage2, HYPOTH = NULL, ALPHA = 0.05, 

EXACT = YES, SEED = 44, SYMSIZE = 200000, NREPS = 50000, DSNIN = 

ADAPTA_STAGE2, DSNOUT = stage2) to the stage 2 ADAPT-A dataset with only placebo 

non-responders (ADAPTA_STAGE2). This results in a dataset _STAGE2_BETASAMP for the 

treatment differences for stage 2. Again, we run a PROC MEANS to obtain the standard error 

(0.0067) of the stage 2 permuted treatment differences. We combine the datasets 

_STAGE1_BETASAMP and _STAGE2_BETASAMP and create the derived variable, 
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0.5 * 0 21 .5 *Stage treatment difference Stage treatment difference  , which is the stage-wise 

SPCD test statistic. This will produce 50,001 SPCD test statistics and the first row of this dataset 

will have the SPCD test statistic for the original ADAPT-A data. The p-value of this stage-wise 

permutation test is the rank of the original ADAPT-A SPCD test statistic divided by 50,001. The 

p-value of the stage-wise permutation test is 0.079. When adjusting for baseline MADRS score, 

the p-value of the stage-wise permutation test is 0.17. We see that this is similar to the results 

produced in Section 4.7.  

We chose not to employ the %NParCov4 to perform a bootstrap using the HYPOTH = 

ALT option because the macro does not center the stage 1 and stage 2 data as described in this 

paper.  

4.9 Discussion 

We showed that with four differently distributed outcomes, both permutation tests, the 

bootstrap, and the stage-wise bootstrap hypothesis tests (Methods 1 and 3) preserve type I error 

under the null hypothesis and are valid for SPCD data. The permutation test and the stage-wise 

permutation test achieve similar power to the conventional SPCD test statistic but the 

permutation test requires that all data from stage 1 and stage 2, including placebo responders. 

The bootstrap maintaining stage 1 group sizes achieves similar power or slightly less power to 

the conventional  SPCD test statistic and the stage-wise bootstrap is more conservative and less 

powerful. However, the benefit of using the bootstrap for SPCD is that one only needs SPCD 

primary efficacy analysis data, meaning all stage 1 data and stage 2 data from placebo non-

responders.  

We find that the SPCD Bootstrap Method 2 which fixes both the stage 1 and stage 2 

group sizes does not preserve type I error. Although the reason behind this is not apparent, we 
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hypothesis that by fixing stage 2 group sizes and not allowing the number of placebo non-

responders  to be random, we are not drawing from the true null distribution. When we fix stage 

1 group size and allow the number of placebo non-responders to be random as in SPCD 

Bootstrap Method 1, type I error is strictly preserved at 0.05. 

The permutation test and the bootstrap, both being non-parametric tests, require fewer 

distributional assumptions to be valid than the conventional SPCD test statistic and therefore can 

be safely applied in SPCD trials were the outcome is known to be non-normally distributed. 

However, in general both the permutation test and the bootstrap require larger sample sizes than 

the conventional SPCD test statistic because they do not impose parametric assumptions.   

We have found that the stage-wise permutation and the stage-wise bootstrap tests are 

valid for SPCD. As a result, software that can easily compute permutation and bootstrap tests for 

a standard parallel arm single stage two-treatment trial can be used for SPCD, as shown in 

Section 6. One needs only to compute the permutation test or bootstrap on stage 1 and stage 2 

data separately, extract the test statistics (or p-values) and then combine these test statistics for an 

overall SPCD test statistic. The stage-wise bootstrap, however, is much less powerful than the 

bootstrap that maintains stage 1 group sizes when the outcomes are not normally distributed. It is 

therefore, recommended, when only SPCD data is available (all stage 1 information and only 

stage 2 placebo non-responders data), to perform the bootstrap that maintains stage 1 group sizes. 

If all data is available (all responses from both stages 1 and 2) then it is recommended that the 

permutation test be used, as it is more powerful than the bootstrap. If only SPCD data is 

available (stage 1 data and stage 2 data from placebo non-responders) then it is recommended 

that the bootstrap hypothesis test be used as it both preserves type I error and is not as 

conservative as the stage-wise bootstrap hypothesis test. 
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APPENDIX 1: FIGURES AND TABLES 

 

Figure 1. Placebo lead-in study design. 
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Figure 2. Sequential parallel comparison design. Outcomes highlighted within the grey box are 

used in the efficacy analysis. 
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Figure 3: Sequential parallel comparison design with interim analysis. 
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Figure 4. Rules for adding the sample size. Final sample size is plotted by conditional power for 

different penalty terms and originally planned sample sizes.  
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Table 1. Simulated power for SPCD without sample size re-estimation, with sample size re-

estimation alone, and with weight and allocation re-adjustment for six scenarios.   

 

Asymptotic Power, 

Power under sample size re-estimation, 

Power under sample size re-estimation with weight and allocation re-

estimation 

Effect Size in 

Stage1, Effect Size 

in Stage 2 and r 

300n 
 

0.0007 
 

 

300n 
 

0.00085   

 

200n 
 

0.001   

 

 

*ˆ
medn =476 (406,519) 

ˆ
futilep  = 0.50 

ˆ
efficacyp  = 0.003 

*ˆ
medn =415 (368,442) 

ˆ
futilep  = 0.50 

ˆ
efficacyp  = 0.003 

*ˆ
medn = 327 (273,359) 

ˆ
futilep  = 0.50 

ˆ
efficacyp  = 0.003 

Scenario 1 

0, 0 

r = 0.75 

0.025, 0.025, 0.025 0.025, 0.025, 0.025 0.025, 0.025, 0.025 

 

*ˆ
medn =430 (361,501) 

ˆ
futilep  = 0.04 

ˆ
efficacyp  = 0.18 

*ˆ
medn =392 (345,435) 

ˆ
futilep  = 0.04 

ˆ
efficacyp  = 0.18 

*ˆ
medn =301 (248,348) 

ˆ
futilep  = 0.07 

ˆ
efficacyp  = 0.11 

Scenario 2 

0.25, 0.25 

r = 0.75 

0.74, 0.81, 0.77 0.74, 0.78, 0.74 0.56, 0.66, 0.61 

Scenario 3 

0.15, 0.35 

r = 0.75 

0.74, 0.81, 0.80 0.74, 0.78, 0.78 0.56, 0.66, 0.65 

Scenario 4 

0, 0.5 

r = 0.75 

0.74, 0.81, 0.90 0.74, 0.78, 0.90 0.56, 0.66, 0.79 

Scenario 5 

0.5, 0 

r = 0.75 

0.74, 0.81, 0.90 0.74, 0.78, 0.92 0.56, 0.66, 0.81 

 

*ˆ
medn =436 (365,503) 

ˆ
futilep  = 0.05 

ˆ
efficacyp  = 0.16 

*ˆ
medn =396 (348,435) 

ˆ
futilep  = 0.05 

ˆ
efficacyp  = 0.16 

*ˆ
medn = 307 (254,353) 

ˆ
futilep  = 0.08 

ˆ
efficacyp  = 0.10 

Scenario 6 

0.15, 0.35 

r = 0.60 

0.68, 0.77, 0.75 0.68, 0.74, 0.73 0.51, 0.62, 0.60 

Note. Original planned sample size is n with the interim analysis after n/2.  Allocation proportion to placebo in stage 1 of SPCD 

is 0.67 and weight of stage 1 information of 0.50. 
*ˆ
medn  represents the median total sample estimated size with (25,75) 

percentiles when SPCD is not stopped for futility or efficacy at the interim. ˆ
futilep  and ˆ

efficacyp  represent the probability of 

stopping after period 1 for futility and efficacy, respectively. Proportion of placebo non-responders is given by r. 
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Table 2. Asymptotic power for SPCD in six scenarios. 

 SPCD  

 

 

SPCD with Optimal 

Weight in Period 2 

 

 

SPCD with Optimal 

Allocation in Period 2 

SPCD with 

Optimal Weight 

and Allocation in 

Period 2 

Effect Size 

in Stage1, 

Effect Size 

in Stage 2 Power Power  

Optimal 

weight, w
*
, 

when 

allocation to 

placebo is 

b=0.67 Power 

Optimal 

allocation, b
*
,  

when the 

weight is  

w = 0.5 Power  

Optimal 

allocation 

and 

weight 

Scenario 1 

0,0 

r = 0.75 

 

0.025 0.025 
b = 0.67 

w
*
 = [0,1] 

0.025 
b

*
 = [0,1] 

w = 0.50 
0.025 

b
*
 = [0,1] 

w
*
 = [0,1] 

Scenario 2 

0.25,0.25 

r = 0.75 

 

0.74 0.75 

 

b = 0.67 

w
*
 = 0.59 

0.74 
b

*
 = 0.70 

w = 0.50 
0.75 

b
*
 = 0.61 

w
*
 = 0.63 

Scenario 3 

0.15,0.35 

r = 0.75 

 

0.74 0.75 
b = 0.67 

w
*
 = 0.39 

0.74 
b

*
 = 0.70 

w = 0.50 
0.78 

b
*
 = 1 

w
*
 = 0 

Scenario 4 

0,0.5 

r = 0.75 

 

0.74 0.84 
b = 0.67 

w
*
 = 0 

0.74 
b

*
 = 0.70 

w = 0.50  
0.92 

b
*
 = 1 

w
*
 = 0 

Scenario 5 

0.5,0 

r = 0.75 

 

0.74 0.91 
b = 0.67 

w
*
 = 1.0 

0.74 
b

*
 = 0.70 

w = 0.50 
0.93 

b
*
 = 0.50 

w
*
 = 1 

Scenario 6 

0.15,0.35 

r = 0.60 

0.68 0.68 
b = 0.67 

w
*
 = 0.44 

0.68 
b

*
 = 0.72 

w = 0.50 
0.71 

b
*
 = 1 

w
*
 = 0 

Note. Recommended parameters (allocation proportion to placebo of b = 0.67 and weight w = 0.50) are used in the 

first half of the trial (Period 1) and optimal theoretical parameters in the second half of the trial (Period 2). Optimal 

theoretical parameters are denoted with 
*
. Proportion of placebo non-responders is given by r. Total sample size is 

300. 
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Table 3. Simulated power for SPCD in six scenarios.  

 

SPCD No 

Interim Look 

SPCD with Interim 

Look and Optimal 

Weight Alone 

SPCD with Interim 

Look and Optimal 

Allocation Alone 

SPCD with Interim 

Look and Optimal 

Weight and 

Allocation 

Scenario; 

Effect Size 

in Stage1; 

Effect Size 

in Stage 2 

 

 

Power 

 

 

Weight 

and 

allocation 

Power 

 

 

b and 

estimated w 

Power 

 

 

w and 

estimated b 

Power 

 

 

Estimated b 

and w 
 

Scenario 1 

0, 0 

r = 0.75 

0.025 
b = 0.67 

w = 0.50 
0.025 

b = 0.67 

 = 0.50 

(0,0.91) 

0.025 
  = 0.70 

(0.69,71) 

w = 0.50 

0.025 

 = 0.79 

(0.51, 1) 

  = 0.38 

(0,0.95) 

 

Scenario 2 

0.25, 0.25 

r = 0.75 

0.73 

 

b = 0.67 

w = 0.50 
0.68 

b = 0.67 

  = 0.60 

(0.41,0.77) 

0.73 
  = 0.70 

(0.69,71) 

w = 0.50 

0.68 

 = 0.61 

(0.52,1) 

  = 0.65 

(0,0.86) 

 

Scenario 3 

0.15, 0.35 

r = 0.75 

0.73 

 

b = 0.67 

w = 0.50 
0.68 

b = 0.67 

  = 0.39 

(0.15,0.57) 

0.73 
  = 0.70 

(0.69,71) 

w = 0.50 

0.72 

 = 1 

(0.63,1) 

  = 0 

(0,0.61) 

 

Scenario 4 

0, 0.5 

r = 0.75 

0.73 

 

b = 0.67 

w = 0.50 
0.81 

b = 0.67 

  = 0.02 

(0,0.26) 

0.73 
  = 0.70 

(0.69,71) 

w = 0.50 

0.88 

 = 1 

(1,1) 

  = 0 

(0,0) 

 

Scenario 5 

0.5, 0 

r = 0.75 

0.73 
b = 0.67 

w = 0.50 
0.89 

b = 0.67 

  = 0.99 

(0.83,1) 

0.73 
  = 0.70 

(0.69,71) 

w = 0.50 

0.90 

 = 0.52 

(0.50,0.55) 

  = 1 

(0.92,1) 

 

Scenario 6 

0.15, 0.35 

r = 0.60 

0.68  
b = 0.67 

w = 0.50 
0.64 

b = 0.67 

  = 0.43 

(0.17,0.62) 

0.68 
  = 0.71 

(0.70,73) 

w = 0.50 

0.67 

 = 1 

(0.60,1) 

  = 0 

(0,0.68) 

 
Note. Recommended parameters (allocation proportion to placebo of b = 0.67 and weight w = 0.50) are used in the 

first half of the trial (Period 1) and estimated optimal parameters in the second half of the trial (Period 2). Estimated 

optimal parameters are denoted with 
*
. The median of the estimated optimal parameters is denoted with 

*ŵ  and 
*b̂  

(25,75) percentiles are in parentheses. Total sample size is 300 and the interim look is at 150 subjects. 
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Table 4. Estimated treatment effects, standard errors, and confidence intervals from ADAPT-A 

trial with analysis using unadjusted logistic regression model and with adjustment for center.  

 

Method Statistic 1   
2   

1 20.5 0.5    

Unadjusted Estimated treatment effect 0.08 1.19 0.63 

 Std. Err. 0.41 0.55 0.34 

 95% CI (-0.76, 0.85) (0.16, 2.38) (-0.04, 1.31) 

 Estimated effect size Stage 1: 0.03 Stage 2: 0.38 Overall: 0.20 

Adjusted Estimated treatment effect 0.12 1.32 0.72 

 Std. Err. 0.41 0.57 0.35 

 95% CI (-0.72, 0.90) (0.27, 2.53) (0.04, 1.41) 

 Estimated effect size Stage 1: 0.04 Stage 2: 0.41 Overall: 0.23 
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Table 5. Test statistics from ADAPT-A trial with analysis using unadjusted logistic regression 

model, logistic regression with adjustment for center, and the score test. 

       

  Unadjusted Adjusted 

Test Statistic 

Parameter 

in the test 

statistic 

Test 

Statistic 
P-Value 

Test 

Statistic 
P-Value 

1 2

2 2

1 2

(1 )

( ) ( ) ( )1
II

w w
T

w Var w Var

 

 

 


 
 

1w   0.193 0.847 0.286 0.775 

0w   2.149 0.032 2.337 0.019 

0.5w   1.849 0.064 2.062 0.039 

*w w  
2.158 

* 0.008w   

0.031 2.355 
* 0.0148w   

0.019 

      

III 1 21T vT vT    

 

0.5v   1.656 0.098 1.855 0.063 

*v v  
2.158 

* 0.110v   

0.031 2.355 
* 0.145v   

0.019 

 
     

Score test with parameter r 

 

r = 1 1.691 0.091 - - 

r=r
*
=12.0 2.247 0.025 - - 

Note. The weights or the test parameter in the score test(Ivanova et al., 2011) that maximize the value of the test 

statistic are denoted by 
*
.  
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Table 6. Binary outcome – logistic regression with and without covariates.  

 
  

Power/Type I 

Error 
 

Correlation Between 

Stages 

Analysis 

Sample 

Size 1  

2  
IIT  

IIIT  
CI 

Coverage 

Test 

Statistics 

Logistic 

Regression 

Coefficient 

Unadjusted 40 0 0 0.020 0.021 0.956 0.0015    -0.0033 

 80 0 0 0.043 0.041 0.957 0.0017     0.0009 

 300 0 0 0.051 0.050 0.949 0.0024     0.0025 

 80 0.2 0.3 0.08 0.08 0.954 0.009    -0.015 

 80 0.4 0.5 0.17 0.17 0.953 0.010    -0.016 

 80 0.6 0.7 0.32 0.32 0.951 0.029    -0.015 

 80 0.8 0.9 0.51 0.52 0.951 0.043    -0.011 

 300 0.2 0.3 0.19 0.19 0.950 0.0096    -0.0004 

 300 0.4 0.5 0.51 0.52 0.951 0.0156    -0.0022 

 300 0.6 0.7 0.83 0.84 0.950 0.0270     0.0022 

 300 0.8 0.9 0.97 0.98 0.949 0.0354     0.0022 

Adjusted 40 0 0 0.035 0.037 0.978 0.0005     0.0027 

 80 0 0 0.048 0.047 0.955 0.0009    -0.0044 

 300 0 0 0.050 0.050 0.950 0.0006     0.0007 

 80 0.2 0.3 0.14 0.14 0.951 0.0204    -0.0020 

 80 0.4 0.5 0.27 0.27 0.951 0.0241    -0.0111 

 80 0.6 0.7 0.45 0.46 0.950 0.0218    -0.0159 

 80 0.8 0.9 0.64 0.65 0.954 0.0294    -0.0159 

 300 0.2 0.3 0.29 0.29 0.950 0.0110     0.0001 

 300 0.4 0.5 0.65 0.64 0.949 0.0172    -0.0013 

 300 0.6 0.7 0.91 0.90 0.950 0.0226    -0.0035 

 300 0.8 0.9 0.99 0.99 0.949 0.0304    -0.0040 
Note. Type I error rate, power and confidence interval (CI) coverage for the weighted combination of the estimated 

treatment effects for SPCD with binary outcome, w = 0.5, unadjusted and adjusted for a baseline covariate.  

Parameters 1   and 2  are true log odds ratios in stage 1 and stage 2 of SPCD.  IIIT  is the test statistic based on the 

weighted combination of stage 1 and stage 2 test statistics from logistic model with v = 0.5.   
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Table 7. Time-to-event analysis – without covariate.  

 
 

Power/Type I Error 
 

Correlation Between Stages 

Sample 

Size 1  

2  
IVT  

VT   
VIT  

CI 

Coverage 

Log Rank 

Test 

Statistics 

Cox PH 

Test 

Statistics 

Cox PH 

Coefficients 

40 0 0 0.028  0.049  0.035 0.985  0.0015 -0.0004 -0.00002 

80 0 0 0.041  0.049  0.044 0.967  0.00009 -0.0023 -0.0053 

300 0
 

0 0.050  0.050  0.050 0.952 -0.00005 -0.00002  0.00024 

80 -0.2 -0.3 0.05  0.08  0.05 0.972 -0.0056 -0.0226  0.0157 

80 -0.4 -0.5 0.10  0.11  0.10 0.972 -0.0125 -0.0389  0.0077 

80 -0.6 -0.7 0.17  0.19  0.17 0.973 -0.0147 -0.0353  0.0076 

80 -0.8 -0.9 0.23  0.27  0.24 0.975 -0.0304 -0.0528  0.0081 

300
 

-0.2
 

-0.3 0.19  0.19  0.18 0.951 -0.0063 -0.0135 -0.0022 

300
 

-0.4
 

-0.5 0.46  0.49  0.47 0.951 -0.0116 -0.0163  0.0023 

300
 

-0.6
 

-0.7 0.74  0.77  0.76 0.952 -0.0161 -0.0205  0.0060 

300
 

-0.8
 

-0.9 0.90  0.93  0.92 0.949 -0.0254 -0.0301  0.0067 
Note. Type I error rate, power and confidence interval (CI) coverage for the weighted combination of the estimated 

treatment effects for SPCD, w = 0.5, with time to event outcome. Parameters 1   and 2  are true hazard ratios in 

stage 1 and stage 2 of SPCD. IVT  is the test statistic computed based on the weighted combination of the estimated 

treatment effects, with estimates from Cox model without covariates; VT  is computed as the weighted combination 

of stage 1 and stage 2 log-rank tests; and VIT  is computed as the weighted combination of test statistics from the 

Cox model, both with v = 0.5. 
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Table 8. Time-to-event analysis – with covariates.  

 

 

 

Power/Type I 

Error  

Correlation Between 

Stages 

Sample 

Size 1  

2  
IVT  

VIT   
CI 

Coverage 

Cox PH 

Test 

Statistics 

Cox PH 

Coefficients 

40 0 0  0.023  0.026 0.977 -0.0013  0.0032 

80 0 0  0.040  0.041 0.959 -0.0014 -0.0032 

300 0
 

0  0.049  0.048 0.951   0.0006  0.0008 

80 -0.2 -0.3  0.06  0.06 0.966 -0.0212  0.0103 

80 -0.4 -0.5  0.12  0.12 0.968 -0.0387  0.0128 

80 -0.6 -0.7  0.20  0.19 0.972 -0.0465  0.0250 

80 -0.8 -0.9  0.28  0.27 0.976 -0.0723  0.0026 

300
 

-0.2
 

-0.3  0.20  0.20 0.951 -0.0165 -0.0013 

300
 

-0.4
 

-0.5  0.50  0.52 0.952 -0.0204  0.0049 

300
 

-0.6
 

-0.7  0.77  0.80 0.952 -0.0266  0.0088 

300
 

-0.8
 

-0.9  0.93  0.95 0.954 -0.0437  0.0071 
Note. Type I error rate, power and confidence interval (CI) coverage for the weighted combination of the estimated 

treatment effects for SPCD, w = 0.5, with time to event outcome. Parameters 1   and 2  are true hazard ratios in 

stage 1 and stage 2 of SPCD in the adjusted model. IVT  is the test statistic computed based on the weighted 

combination of the estimated treatment effects, with estimates from the Cox model with covariates; VIT  is 

computed as the weighted combination of test statistics from the Cox model, both with v = 0.5. 
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Table 9. Type I error for normal, gamma, and Poisson distributed outcomes when the total 

sample size is 45, 60, and 90.  

  
Normal 

Observations 

Non-Normal 

observations 

(Gamma) 

Non-Normal 

Observations 

(Poisson) 

Method  N=45 N=60 N=90 N=45 N=60 N=90 N=45 N=60 N=90 

Permutation  

Test Statistic 

Unadjusted 0.047 0.049 0.050 0.049 0.048 0.048 0.050 0.048 0.050 

Combined 

Stage-wise 

Permutation 

test 

Unadjusted 0.050 0.050 0.050 0.050 0.049 0.049 0.048 0.048 0.049 

Method 1: 

Bootstrapped 

Test Statistic 

Unadjusted 0.050 0.050 0.049 0.046 0.049 0.048 0.050 0.050 0.050 

Method 2: 

Bootstrapped 

Test Statistic 

stage group 

sizes 

maintained 

Unadjusted 0.067 0.062 0.060 0.061 0.056 0.058 0.057 0.058 0.054 

Method 3: 

Combined 

Stage-wise 

Bootstrap test 

Unadjusted 0.027 0.032 0.040 0.020 0.031 0.043 0.029 0.033 0.041 

Permutation  

Test Statistic 

Adjusted 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

Combined 

Stage-wise 

Permutation 

test 

Adjusted 0.050 0.050 0.050 0.048 0.050 0.048 0.50 0.048 0.049 

Method 1: 

Bootstrapped 

Test Statistic 

Adjusted 0.038 0.045 0.048 0.042 0.046 0.049 0.051 0.050 0.053 

Method 2: 

Bootstrapped 

Test Statistic 

using only 

SPCD data 

Adjusted 0.049 0.051 0.056 0.047 0.050 0.048 0.050 0.050 0.050 

 Method 3: 

Combined 

Stage-wise 

Bootstrap test 

Adjusted 0.014 0.025 0.033 0.017 0.025 0.032 0.021 0.027 0.038 

Note. Type I errors for both unadjusted and adjusted (for baseline and a covariate) are given for each of two methods 

of permutation test (overall permutation test and stage-wise) and three methods of the bootstrap (maintaining stage 1 

group sizes, maintaining stage 1 and stage 2 group sizes, and stage-wise).



 63 

 

Table 10. Power for normal, gamma, exponential, and Poisson distributed outcomes for both 

unadjusted and adjusted (for baseline and a covariate) permutation and bootstrapped test 

statistics.  

 

Method 

 Normal 

Outcome 

N = 210 

Gamma 

Outcome 

N = 60 

Exponential 

Outcome 

N = 45 

Poisson 

Outcome 

N = 60 

Chen  

Test Statistic 

Unadjusted 0.81 0.81 0.79 0.81 

Randomization  

Test Statistic* 

Unadjusted 0.81 0.79 0.82 - 

Permutation Test 

Statistic 

Unadjusted 0.80 0.80 0.78 0.80 

Combined Stage-

wise Permutation 

test 

  

Unadjusted 

0.82 0.82 0.77 0.79 

Method 1: 

Bootstrapped  

Test Statistic 

Unadjusted 0.80 0.77 0.69 0.81 

Method 2: 

Bootstrapped Test 

Statistic stage 

group sizes 

maintained 

Unadjusted 0.83 0.80 0.73 0.81 

Method 3:  

Combined Stage-

wise Bootstrap test 

Unadjusted 0.81 0. 71 0.44 0.76 

Chen  

Test Statistic 

Adjusted 0.81 0.82 0.78 0.81 

Permutation  

Test Statistic 

Adjusted 0.82 0.81 0.75 0.80 

Combined Stage-

wise Permutation 

test 

Adjusted 0.81 0.80 0.74 0.78 

Method 1: 

Bootstrapped  

Test Statistic 

Adjusted 0.81 0.79 0.69 0.79 

Method 2: 

Bootstrapped Test 

Statistic using only 

SPCD data 

Adjusted 0.81 0.79 0.71 0.80 

Method 3:  

Combined Stage-

wise Bootstrap test 

Adjusted 0.79 0.68 0.42 0.71 

Note. Two methods of permutation test (overall permutation test and stage-wise) and three methods of the bootstrap 

(maintaining stage 1 group sizes, maintaining stage 1 and stage 2 group sizes, and stage-wise) are shown.
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