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ABSTRACT 

Zhexi Zeng: Development of a Hydrophilic Interaction Liquid Chromatography (HILIC) Method 

for the Chemical Characterization of Water-Soluble Isoprene Epoxydiol (IEPOX)-Derived 

Secondary Organic Aerosol 

(Under the direction of Jason D. Surratt) 

 

Atmospheric fine particulate matters (PM2.5) adversely affects air quality and human 

health. Isoprene is the most abundant non-methane volatile organic compound primarily emitted 

from biogenic sources to Earth’s atmosphere. Atmospheric oxidation of isoprene yields large 

quantities of gaseous isoprene epoxydiol (IEPOX) by hydroxyl radicals under low-nitric oxide 

conditions. IEPOX subsequently undergoes acid-catalyzed multiphase chemistry with natural or 

anthropogenic sulfate aerosol, producing substantial amounts of water-soluble IEPOX-derived 

secondary organic aerosol (SOA) in PM2.5. The hydrophilic interaction liquid chromatography 

interfaced to electrospray ionization-high-resolution quadrupole time-of-flight mass 

spectrometry (HILIC/ESI-HR-QTOFMS) method presented here overcomes limitations of 

commonly utilized analytical techniques, making it possible to identify and quantify water-

soluble SOA constituents by a single analytical method. Atmospheric chemistry model 

predictions of the water-soluble IEPOX-derived SOA constituents (e.g., 2-methyltetrols and 

methyltetrol sulfates) in PM2.5 can now be assessed with greater accuracy and confidence. 
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CHAPTER 1: INTRODUCTION  

 

Atmospheric fine particulate matter (PM2.5, aerosol particles with aerodynamic diameters 

≤ 2.5 µm), adversely affects air quality. High concentrations of PM2.5 can lead to degradation of 

outdoor visibility1 and adversely affect human health through cardiovascular and respiratory 

diseases.2 Moreover, atmospheric PM2.5 plays a critical role in climate change through both direct 

and indirect mechanisms.3 Organic aerosol (OA) constituents are recognized to contribute a 

substantial fraction of PM2.5 mass from urban to remote regions around the world.4 OA is further 

characterized into primary organic aerosol (POA) and secondary organic aerosol (SOA). POA is 

directly emitted in the particle phase from sources, such as sea spray, wildfires, automobiles and 

cooking, while SOA is formed from the atmospheric oxidation of volatile organic compounds 

(VOCs) emitted by both anthropogenic and natural sources. Specifically, low-volatility oxidation 

products from VOCs either nucleate or condense onto existing particles and undergo multiphase 

chemistry to form SOA. SOA is estimated to contribute up to 70-90% of OA mass found within 

PM2.5.
5  

Isoprene is the most abundant non-methane hydrocarbon emitted into Earth’s atmosphere 

and is derived largely from deciduous trees.6 The atmospheric oxidation of isoprene plays an 

important role in both tropospheric ozone (O3)
7 and SOA formation in forested regions affected 

by anthropogenic activities.8-14 The hydroxyl radical (OH)-initiated oxidation of isoprene during 

the daytime under low-nitric oxide (NO) conditions produces substantial amounts of isoprene 

epoxydiols (IEPOX) (~50% yield).15,16 The acid-catalyzed multiphase chemistry (reactive 
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uptake) of IEPOX onto anthropogenic sulfate particles have been shown to produce SOA 

constituents including 2-methyltetrols,8,9,17,18 C5-alkene triols,8,9,17,18 3-methyltetrahydrofuran-

3,4-diols (3-MeTHF-3,4-diols),9 organosulfates,9,18,19,20 and oligomers.9,18,21 Studies have 

demonstrated that the acidity of sulfate aerosol plays a critical role in forming atmospheric 

IEPOX-derived SOA.22,23  

Protocols for chemical characterization of IEPOX-derived SOA C5 tracers, including the 

2-methyltetrols, C5-alkene triols, and 3-MeTHF-3,4-diols, have generally employed gas 

chromatography interfaced to electron ionization mass spectrometry (GC/EI-MS) with prior 

trimethylsilylation.8,9,17-19,24  Volatility and composition analysis by a Filter Inlet for Gases and 

Aerosol coupled to a Chemical Ionization Mass Spectrometer (FIGAERO-CIMS) equipped with 

iodide reagent ion chemistry demonstrated that IEPOX-derived SOA has lower volatility in 

nature and the majority of commonly reported IEPOX SOA C5 tracers, in particular the 2-

methyltetrols, C5-alkene triols and 3-MeTHF-3,4-diols, are likely derived from the thermal 

decomposition of accretion products (oligomers) or other low-volatility organics such as 

organosulfates.25 A second set of studies using semi-volatile thermal desorption aerosol gas 

chromatogram (SV-TAG) instrumentation with online derivatization reached a similar 

conclusion.26,27 Different protocols, based on liquid chromatography interfaced to high-

resolution tandem mass spectrometry with electrospray ionization (LC/ESI-HR-MSn), have been 

used to characterize organosulfates and oligomers. However, separation of polar, water-soluble 

components is conventionally attempted with reverse-phase liquid chromatography (RPLC) 

columns.8,9,19,28 RPLC columns do not resolve such compounds well because of either extremely 

short retention times (RTs), poor peak shapes, or ion suppression effects due to co-eluting 

inorganic aerosol constituents, leading to potential complications in identifying and quantifying 
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target compounds. The IEPOX-derived polyols are hydrophilic compounds owing to their 

hydroxyl functional groups, and the organosulfates are ionic polar compounds.12,28 Hence, an 

alternative approach for the IEPOX-derived SOA characterization that could accomplish 

simultaneous analysis of polar and water-soluble components while avoiding the drawbacks 

associated with current analytical methods would be highly desirable. 

Hydrophilic interaction chromatography (HILIC) is as an alternative LC method to RPLC 

to separate hydrophilic (i.e., water-soluble) compounds, including peptides and nucleic acids29 

and has recently been reported to separate water-soluble organosulfates with excellent 

resolution.30-32 The HILIC solid phase can be silica gel with a decreased surface concentration of 

silanol groups, or silica chemically bonded to polar groups, such as amino, amido, cyano, 

carbamate, diol, polyol, or zwitterionic sulfobetaine groups.33 A HILIC column separates 

analytes by forming a water-rich layer, which is partially immobilized around the hydrophilic 

ligands on the stationary phase. Analytes can undergo partitioning between the bulk organic 

eluents and the water-rich layer to separate based on different levels of retention.34 Although 

retention order on HILIC columns is similar to that on normal phase liquid chromatography 

(NPLC) columns, HILIC utilizes more polar mobile phases (e.g., acetonitrile and Milli-Q water) 

than the NPLC so that the HILIC method is compatible for interfacing with ESI-MS sources.35 

ESI is a soft ionization detection method not involving sample heating or derivatization and is 

appropriate for detection of polar C5 tracers, and oligomers as well as water-soluble 

organosulfates. Based on the demonstrated success of HILIC in the chemical characterization of 

organosulfates,30,31 we undertook development of a HILIC/ESI-HR-quadrupole time-of-flight 

mass spectrometry (HILIC/ESI-HR-QTOFMS) method for the simultaneous separation, 

characterization, and quantitation of water-soluble IEPOX-derived SOA constituents from 
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laboratory-generated β-IEPOX and δ-IEPOX SOA as well as PM2.5 collected from the 

southeastern U.S. and central Amazonia. The HILIC/ESI-HR-QTOFMS protocol developed here 

can resolve IEPOX-derived 2-methyltetrols, methyltetrol sulfates and oligomers thereof, 

allowing unambiguous identification and quantification. Current atmospheric models explicitly 

simulate SOA from the acid-catalyzed multiphase chemistry of IEPOX (i.e., the formation of 2-

methyltetrols and methyltetrol sulfates),36-39 and the accurate quantification of the 2-

methyltetrols and the derived organosulfates will increase confidence in evaluation of model 

predictions, which will in turn lead to improved modeling. Improvement in quantification of 

organosulfates will additionally provide much needed data for establishing carbon and sulfur 

mass closure in IEPOX-derived SOA measured or predicted during future lab and field studies.   
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CHAPTER 2: EXPERIMENTAL SEC TION  

2.1 Synthesized Chemicals 

2.1.1. Trans-ɓ- and ŭ-IEPOX 

Trans-β-IEPOX (trans-2-methyl-2,3-epoxybutane-1,4-diol) and δ-IEPOX (3-methyl-3,4-

epoxy-1,2-butanediol) were synthesized in-house according to published methods.40,41 

2.1.2. IEPOX-Derived SOA Standards: 2-methyltetrols, 2-methyltetrol sulfates, and 3-

methyltetrol sulfates 

Diastereomeric mixtures of racemic 2-methyltetrols (racemic 2-methylerythritol and 2-

methylthreitol, molecular weight (MW) = 136 g mol-1) were synthesized by acid hydrolysis of d-

IEPOX according to the procedure described in Bondy et al.40 2-Methyltetrol sulfate (MW = 216 

g mol-1) was synthesized from 2-methyltetrol. Briefly, 2-methyltetrol was partially acetylated 

with acetyl anhydride, the desired product, acetylated on the primary and secondary hydroxyl 

groups, was isolated by column chromatography on SiO2, eluted with ethyl acetate and then 

sulfated by a published procedure.30 The protecting acetyl groups were then removed by 

treatment with ammonia to afford the expected product 2-methyltetrol sulfate. The purity of the 

2-methyltetrol sulfate was determined by proton nuclear magnetic resonance (1H NMR) 

spectroscopy analysis to be ~100%, with the balance being (NH4)2SO4 (Figure S1). The 3-

methyltetrol sulfate (MW = 216 g mol-1) was prepared from d-IEPOX by a procedure described 

in Bondy et al. 40 Briefly, to an ice-cold solution of d-IEPOX in acetonitrile, Bu4NHSO4 and a 

small amount of potassium bisulfate were added and the reaction allowed to warm to room 
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temperature and stirred overnight. The resulting mixture of sulfate esters was purified on a 

Dowex 50W x 4-100 ion exchange column. The final product contained 95.5% 3-methyltetrol 

sulfates by 1H NMR analysis with the balance being K2SO4, instead of NaSO4 in Bondy et al.40 

2.2 Ultra-Performance Liquid Chromatography/Electrospray Ionization-High Resolution 

Quadrupole Time-of-Flight Mass Spectrometry (UPLC/ESI-HR-QTOFMS) Analysis 

An Agilent 6520 Series Accurate Mass Q-TOFMS instrument (Agilent Technologies), 

equipped with an ESI source operated in the negative (-) ion mode, was used to chemically 

characterize IEPOX-derived SOA standards, as well as lab and field samples. Optimum ESI 

conditions were: 3500 V capillary voltage, 130 V fragmentor voltage, 65 V skimmer voltage, 

300 ºC gas temperature, 10 L min-1 drying gas flow rate, 35 psig nebulizer, 25 psig reference 

nebulizer. ESI-QTOFMS mass spectra were recorded from mass-to-charge ratio (m/z) 60 to 

1000. HILIC separations were carried out using a Waters ACQUITY UPLC BEH Amide column 

(2.1×100 mm, 1.7 µm particle size, Waters Corp.) at 35 ºC. The mobile phases consisted of 

eluent (A) 0.1% ammonium acetate in water, and eluent (B) 0.1% ammonium acetate in a 95:5 

(v/v/) acetonitrile (ACN, HPLC Grade, 99.9%, Fisher Scientific)/Milli-Q water. Both eluents 

were adjusted to a pH of 9 with ammonium hydroxide (NH4OH). The gradient elution program 

was eluent A, 0% for 4 min, increasing to 15% from 4 to 20 min, constant at 15% between 4 and 

24 min, decreasing to 0% from 24 to 25 min, and constant at 0% from 25 to 30 min. The flow 

rate and sample injection volume were 0.3 mL min−1 and 5 µL, respectively.  Data were acquired 

and analyzed by Mass Hunter Version B.06.00 Build 6.0.633.0 software (Agilent Technologies). 

At the beginning of each analysis period, the mass spectrometer was calibrated using a 

commercially available ESI-L low-mass concentration tuning mixture (Agilent Technologies) in 

a 95:5 (v/v) ACN/Milli-Q water. Instrument mass axis calibration was conducted in the low-
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mass range (m/z < 1700). Seven masses were used for calibration: m/z 68.9958, 112.9856, 

301.9981, 601.9790, 1033.9881, 1333.9689, and 1633.9498. The adduct of hexakis (1H,1H,3H-

tetrafluoropropoxy) phosphazene + acetate (m/z 980.0164), purine (m/z 119.0363), and leucine 

enkephalin (m/z 554.2620) were continuously infused for real-time mass axis correction. The 

mass resolution of the ESI-HR-QTOFMS was approximately 8,000-12,300 from m/z 113-1600. 

For comparison purposes, RPLC separations (Waters ACQUITY UPLC HSS T3 C18 column, 

2.1×100 mm, 1.8 µm particle size) were also conducted on selected samples that were analyzed 

by HILIC.  The detailed operating procedures for RPLC separations have been described 

elsewhere.42 

2.3 Laboratory-Generated SOA from ɓ- and ŭ-IEPOX  

As described previously, SOA from acid-catalyzed reactive uptake of trans-β-IEPOX or 

δ-IEPOX was generated in the 10-m3 indoor environmental smog chamber at the University of 

North Carolina. The experimental setup and analysis techniques used in this work were described 

in detail previously.9,23 Briefly, experiments were carried out under dark and wet conditions (50-

55%, RH) at 295±1 K. Prior to each experiment, the chamber was flushed continuously with 

clean air for ~24 hours corresponding to a minimum of seven chamber volumes until the particle 

mass concentration was < 0.01 μg m-3 to ensure that there were no pre-existing aerosol particles. 

Chamber flushing also reduced VOC concentrations below the detection limit of an iodide-

adduct high-resolution time-of-flight chemical ionization mass spectrometer (HR-TOF-CIMS). 

Operating details of the HR-TOF-CIMS have been previously described.23 Temperature and RH 

in the chamber were continuously monitored using a dew point meter (Omega Engineering Inc.). 

Acidic ammonium sulfate seed aerosol was injected into the pre-humidified chamber using a 

custom-built atomizer with an aqueous solution of 0.06 M (NH4)2SO4 (aq) and 0.06 M H2SO4 
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(aq) until the desired total aerosol concentration (~75 μm3 cm-3) was achieved. After seed 

injection, the chamber was left static for at least 30 min to ensure that the seed aerosol was stable 

and uniformly mixed. Then, 30 mg of trans-β- or δ-IEPOX was injected into the chamber at 2 L 

min−1 for 10 min and then 4 L min-1 for 50 min by passing high-purity N2 (g) through a heated 

manifold (60 °C) containing an ethyl acetate solution of one of the IEPOX isomers described in 

section 2.1.1. 

On completion of IEPOX injection, a filter sample was collected for the subsequent 

offline analysis using HILIC (or RPLC)/ESI-HR-QTOFMS. Aerosols were collected onto a 46.2 

mm Teflon filter (0.2 µm, Pall Scientific) in a stainless-steel filter holder for 30 min at a flow 

rate of 13.2 L min-1. The filter sample along with a blank filter taken from the same batch on the 

day of the experiment were stored in a 20 mL scintillation vial at -20 ℃ prior to extraction and 

analysis. In addition to the filter sampling, SOA generated from the reactive uptake of IEPOX 

was collected using a particle-into-liquid sampler (PILS, Model 4001, Brechtel Manufacturing 

Inc. - BMI) system at the end of each experiment. The aerosols were sampled through an organic 

vapor denuder (Sunset Laboratory Inc.) and a 2.5-µm size-cut pre-impactor at a flow rate of 

~12.5 L min-1. The sample air flow was then mixed adiabatically with a steam flow heated at 

98.5-100 ℃ in the PILS condensation chamber to produce high supersaturation of water vapor 

that grow particles to collectable sizes for collection onto a quartz impactor plate by inertial 

impaction. Impacted droplets were transferred by a wash-flow at ~0.55 mL min-1 through a 

debubbler and the resulting bubble-free sample liquid was delivered through a tubing with an 

inline filter into 2-mL poly vials held on an auto-collector (BMI) with a rotating carousel. Air 

sampling rate and wash-flow rate were examined and recorded before and after each experiment. 

Milli-Q water used in the wash-flow was spiked with 25 µM lithium bromide (LiBr, Sigma-
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Aldrich, 99.5%) as an internal standard to correct for dilution caused by condensation of water 

vapor during droplet collection. The dilution factor was typically from 1.1-1.2. The PILS vials 

were promptly stored under dark conditions at 2ºC upon collection until analysis. Chamber 

aerosol number distributions, which were subsequently converted to total aerosol surface area 

and volume concentrations, were monitored by a scanning electrical mobility system (SEMS 

v5.0, BMI) containing a differential mobility analyzer (DMA, BMI) coupled to a mixing 

condensation particle counter (MCPC, Model 1710, BMI), in order to estimate the total aerosol 

mass. Summary of the experimental conditions can be found in Table S1.   

2.4 Field Sample Collection of PM2.5 

2.4.1 Look Rock, Tennessee, Southeastern U.S. 

Quartz filter samples of PM2.5 were collected at a field site (Look Rock, Tennessee, USA) 

during the Southern Oxidant and Aerosol Study (SOAS) campaign in Summer 2013 by a 

previously described procedure.12 The filters were stored in the dark in a -20 °C walk-in freezer 

until chemical analysis. The sample selected for re-analysis was collected for three hours (16:00-

19:00 local time) when one of the highest isoprene-derived SOA concentrations was measured 

during the campaign.12,13  

2.4.2 Manaus, Brazil, Central Amazonia 

PM2.5 samples were collected from November 28 - December 1 (transition of dry-to-wet 

season), 2016 on pre-baked Tissuquartz Filters (Whatman, 20 cm × 25 cm) using a high-volume 

PM2.5 sampler (ENERGÉTICA with PM2.5 Size Selective Inlet) located in the School of 

Technology of the Amazonas State University in Manaus, Brazil, near a major road. The high-

volume PM2.5 sampler was located 6 m above the ground and was equipped with a cyclone 

operated at 1.13 m3 min-1. Sampler was flow calibrated and the filter holder was cleaned with the 
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filter extraction solvent each day before sampling to ensure no carryover between samples. All 

filters were pre-baked for 12 h at 550 ºC and all samples were collected for 24 h (total sampling 

volume of 1527.81 m3). PM2.5 mass was determined by weighing filters before and after 

sampling following equilibration at 21±2 °C for 24 hours after equilibrating under < 50% RH. 

Filters were stored at -18 ºC in the dark until analysis. Similar to the sample selected from Look 

Rock, one sample (i.e., November 30, 2016) selected for re-analysis had the highest loading of 

PM2.5 and IEPOX-derived SOA tracers (e.g. 2-methyltetrols and C5-alkene triols) measured by 

GC/EI-MS among all samples. GC/EI-MS analysis with prior derivatization of selected samples 

as a comparison was performed following the procedures described previously.9 

2.5 Sample Preparation for Offline Analyses 

2.5.1 2-Methyltetrol and Methyltetrol Sulfate Standards 

The 2-methyltetrol, 2-methyltetrol sulfate and 3-methyltetrol sulfate standards were 

stored at -20 °C until being dissolved in a 2 mg mL-1 Milli-Q water solution, and then serially 

diluted immediately with 95:5 (v/v) ACN/Milli-Q water to 50, 10, 1, 0.25, 0.1, 0.025, and 0.01 

μg mL-1 standards. The diluted standards were kept at 4 °C and analyzed within 24 h of 

preparation.  

2.5.2 Laboratory-Generated IEPOX SOA Samples 

Blank and sample filters of SOA generated from b-IEPOX and δ-IEPOX were immersed 

in 22 mL of methanol and extracted for 45 min by ultra-sonication. The extracts were filtered 

through polypropylene membrane syringe filters and the solvent was evaporated under a gentle 

stream of nitrogen gas. Half of the dried methanol extracts were reconstituted with 150 µL of 

95:5 (v/v) ACN/Milli-Q water and then diluted by a factor of 100 or 50, respectively for the b-

IEPOX- and δ-IEPOX-derived SOA samples, in order to prepare the methyltetrol sulfates in the 
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linear range of the calibration curves. The concentrations of the methyltetrol sulfates in the 150 

µL reconstituted solutions were not saturated and estimated later to be 360-410 μg mL-1, which 

were much lower than the solubility of the methyltetrol sulfates that were determined to be at 

least 2500 μg mL-1; specifically, maximum solubility was determined by dissolving 25 mg of the 

methyltetrol sulfate standards in 10 mL of 95:5 (v/v) of acetonitrile and Milli-Q water. The 

aqueous PILS samples collected for the laboratory-generated IEPOX SOA near the end of the 

experiment were diluted by a factor of 20 using ACN in order to prepare them in 95:5 (v/v) 

ACN/water, and promptly analyzed using the HILIC/ESI-HR-QTOFMS method without any 

further pretreatment.  

2.5.3 Field Samples 

A 37-mm-diameter punch from the quartz filter from Look Rock along with a lab blank 

filter were extracted as described above. Half of the Look Rock PM2.5 extract was reconstituted 

with 150 µL of 95:5 (v/v) ACN/Milli-Q water and then diluted by a factor of 20. 

Similarly, a 47-mm diameter punch from the selected quartz filter from Manaus, Brazil, 

as well as a lab blank filter, was extracted as described above. The residues were reconstituted in 

1 mL methanol and a 0.3 mL aliquot was dried and reconstituted in 150 µL of 95:5 (v/v) 

ACN/Mill-Q water, and then diluted by a factor of 30 for analysis by HILIC/ESI-HR-QTOFMS. 
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CHAPTER 3: RESULT AND DISCUSSION 

3.1 Characterization of IEPOX-Derived SOA Standards 

Figure 1 compares the extracted ion chromatograms (EICs) of the ionized 2- and 3-

methyltetrol sulfate standards separated by RPLC and HILIC columns coupled to the ESI-HR-

QTOFMS. On the RPLC column, both methyltetrol sulfate standards co-elute as one peak at 1.5 

min (Figure 1, a1-a2). By contrast, the HILIC protocol is able to resolve four or six 

chromatographic peaks for the 2- and 3-methyltetrol sulfate standards, respectively (Figure 1, b1-

b2, also in Figure 2, b1). Comparison of the total ion chromatograms (TICs) acquired by RPLC 

and HILIC from an IEPOX-derived SOA in Figure S2, along with Figure 1 (b1-b2), 

unequivocally demonstrates the superiority of HILIC for separating and quantifying the multiple 

isomers of organosulfates derived from IEPOX.  

Calibration curves were established using authentic standards of 2-methyltetrols, 2- and 

3-methyltetrol sulfates. Figure 2 (a1) shows that the deprotonated 2-methyltetrol diastereomers 

eluted at an identical retention time (RT) of 4.0 min using the HILIC column. By contrast, 

GC/EI-MS analysis with prior derivatization resolved the 2-methyletrols diastereomers.8,9,18,24 

However, HILIC protocol is able to resolve 2- and 3-methyltetrol sulfates diastereomers not 

resolvable by GC/EI-MS. As shown in Figure 2 (b1, dashed line), four isomeric peaks with RTs 

of 2.1, 2.6, 4.2, and 5.2 min, were resolved at m/z 215.023 on the EIC corresponding to the 2-

methyltetrol sulfate standard, while six peaks with RTs of 2.1, 2.6, 4.2, 5.2, 8.0, and 8.3 min, 

were resolved from the 3-methyltetrol sulfate standard in Figure 2 (b1, solid line). Importantly, 

the 2-methyltetrols were simultaneously detected and chromatographically resolved with the 
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methyltetrol sulfates. To our knowledge, this HILIC/ESI-HR-QTOFMS method represents the 

first time that the major IEPOX-derived SOA constituents, confirmed by authentic 2-

methyletrols, 2- and 3-methyltetrol sulfates, have been chromatographically resolved and 

characterized by a single mass spectrometric technique operated with one column and ionization 

mode.  

The linear dynamic range for the 2-methyltetrols was 0.01-25 µg mL-1 with a limit of 

detection (LOD) of 7.74 μg L-1 and a limit of quantification (LOQ) of 25.8 μg L-1 (Table 1). The 

linear dynamic range of 2-methyltetrol sulfates was 0.01-10 μg mL-1, with an LOD of 1.72 μg L-1 

and an LOQ of 5.75 μg L-1. The linear dynamic range of 3-methyltetrol sulfates was 0.01-25 μg 

mL-1, with an LOD of 3.83 μgL-1 and an LOQ of 12.8 μgL-1. R2 values of the calibration curves 

ranged from 0.9994-1.0000. The linear dynamic ranges of the organosulfates in this study are 

broader than those reported by Hettiyadura et al., which ranged from 0.025-0.5 μg mL-1.30 The 

high coefficients of determination (R2) and low LOQs suggest the high performance of HILIC 

method is the most effective procedure for quantification of organosulfates in IEPOX-derived 

SOA.  

3.2 Characterization of Laboratory-Generated SOA and Ambient PM2.5 Samples 

Standard calibration curves of the authentic 2-methyltetrols, 2- and 3-methyltetrol 

sulfates were used to identify and quantify tracers. The EICs at m/z 135.066 which correspond to 

the deprotonated 2-methyltetrols resolved on the HILIC column are shown in Figure 2. Figure 2 

(a1-a5) compares the EICs of the 10 µg mL-1 standards of authentic 2-methyltetrols, aerosol filter 

extracts of laboratory-generated SOA derived from trans-β-IEPOX and δ-IPEOX, PM2.5 samples 

from the Look Rock field site during 2013 SOAS campaign and from Manaus, Brazil in 

November 2016. The chromatographic peak at 4.0 min observed in all samples corresponds to 
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the 2-methyltetrols. Figure 2 (a1-a5) demonstrates that HILIC/ESI-HR-QTOFMS can 

unequivocally identify the 2-methyltetrols in laboratory and ambient PM2.5 samples.   

Figure 2 (b1-b5) compares the EICs at m/z 215.023 of 10 μg mL-1 standards of authentic 

2- and 3-methyltetrol sulfates, filter samples of laboratory-generated SOA derived from trans-β-

IEPOX and δ-IEPOX, PM2.5 samples collected at the Look Rock site during the 2013 SOAS 

campaign and from Manaus, Brazil in November 2016, respectively.  In the EIC of the 10 μg 

mL-1 3-methyltetrol sulfate standard (Figure 2, b1, solid line), two predominant isomers eluted at 

8.0 and 8.3 min. These two chromatographic peaks were also present as major components from 

the laboratory-generated δ-IEPOX SOA (Figure 2, b3), and as minor components from the two 

field samples (Figure 2, b4-b5), but were absent from the 10 μg mL-1 standard of the 2-

methyltetrol sulfate (Figure 2, b1, dashed line), nor in the laboratory-generated trans-β-IEPOX 

SOA (Figure 3, b2), indicating that these two later-eluting isomers arise from the acid-catalyzed 

multiphase chemistry of δ-IEPOX. This observation will be helpful in studies to determine the 

origin and formation pathway of ambient methyltetrol sulfates. Peaks at RTs of 2.1, 2.6, 4.2, and 

5.2 min were present in chromatograms of sulfate ester diastereomers of 2- and 3-methyltetrol; 

however, Figure 2 (b2) shows that the peak at RT 5.2 min was predominant in the EIC of sulfate 

diastereomers from trans-β-IEPOX, suggesting that this diastereomer is indicative of trans-β-

IEPOX as the source. Full scan mass spectra of selected chromatographic peaks at m/z 215.023 

in Figure 2 are shown in Figure S3. 

The 2- and 3-methyltetrol sulfates derived from β- and/or δ-IEPOX were present in 

ambient PM2.5 SOA collected at the Look Rock and Manaus field sites (Figure 2, b4-b5). The 

two diastereomers with the longest RTs (8.0 and 8.3 min), formed from δ-IEPOX and 

predominant in the 3-methyltetrol sulfate standard, were barely detectable in the ambient aerosol 
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samples. This observation identifies (cis- or trans-) β-IEPOX as the predominant ambient 

IEPOX isomer, accounting for 97% of total ambient IEPOX,16 which corroborates results based 

on ESI-ion mobility spectrometry (IMS)-HR-TOFMS as reported by Krechmer et al.43 for the 

PM2.5 collected from the Look Rock site during the 2013 SOAS campaign. Hence, the 

methyltetrol sulfate isomers at 2.1, 2.6, 4.2, 5.2 min support β-IEPOX isomers as the major 

contributor to the PM2.5 collected at both of the Look Rock and Manaus field sites, which 

demonstrates the advantage of HILIC/ESI-HR-QTOFMS in differentiation of isomers and 

apportionment of reaction pathways.9,12,18 

3.3 Quantification of 2-Methyltetrols and Methyltetrol Sulfates in Laboratory-Generated 

SOA and Ambient PM2.5 Samples 

Concentrations of the 2-methyltetrols and methyltetrol sulfates in the laboratory-

generated SOA collected by PILS and ambient PM2.5 filters were quantified by HILIC/ESI-HR-

QTOFMS and are summarized in Table 2. PILS sampling was chosen to improve mass closure to 

avoid uncertainty due to filter sampling artifacts and pretreatment steps. Methyltetrol sulfates 

were quantified by an authentic 2-methyltetrol sulfate standard since the two major 

chromatographic peaks (RTs at 4.2 and 5.2 min) were consistently predominant in the standard 

and the PM2.5 samples, except that authentic 3-methyltetrol sulfate was used as a standard to 

quantify methyltetrol sulfate in laboratory-generated SOA from δ-IEPOX. The percentage of 2-

methyltetrols and methyltetrol sulfates in total aerosol mass is also shown in Table 2, calculated 

by dividing the mass concentration of each compound by the total aerosol mass obtained from 

SEMS-MCPC, assuming a particle density of 1.42 g cm-3 for β-IEPOX SOA or 1.55 g cm-3 for δ-

IEPOX SOA (see electronic supporting information (SI) for details). The analytical uncertainty 

in the quantification was determined to be up to ~17.2% (SI). As shown in Table 2, the 
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concentration of the 2-methyltetrols in laboratory-generated trans-β-IEPOX-derived SOA was 

63.98 μg m-3 (33.9% of total particle mass) and the concentration of methyltetrol sulfates was 

109.67 μg m-3 (58.2% of total particle mass). In the laboratory-generated SOA from δ-IEPOX, 

the concentration of the 2-methyltetrols 29.49 μg m-3 (19.6% of total aerosol mass) and 

methyltetrol sulfates was 62.98 μg m-3 (42.0% of total aerosol mass). Together, the two IEPOX-

derived SOA tracers contributed 92.1% of the total aerosol mass from β-IEPOX and 61.6 % of 

the total aerosol mass from δ-IEPOX (Table 2). The methyltetrol sulfates account for 

approximately twice the 2-methyltetrol mass. The mass fractions of methyltetrol sulfates indicate 

conversion of a significant amount of inorganic sulfate seed aerosol to organosulfates (Figure 

S4). 

In addition to the monomeric methyltetrol sulfates (m/z 215.023), Figure 3 shows that the 

HILIC column resolves multiple isomeric methyltetrol sulfate dimers (m/z 333.086) in laboratory 

SOA generated from β- and δ-IEPOX, suggesting oligomeric products as a likely source of the 

unaccounted for aerosol mass. RPLC did not resolve isomers of either species (Figure S2).9,18 

Additionally, small intensities of 2-methyltetrol dimers (C10H21O7
-, m/z = 253.129) were detected 

in ambient samples from Look Rock and Manaus field sites. These dimers were not quantified 

due to the lack of authentic standards.   

In the Look Rock PM2.5 sample, the mass concentration of the 2-methyltetrol was 

measured by HILIC/ESI-HR-QTOFMS to be 0.86 µg m-3, accounting for 5.6% of the total OA 

mass, or 7.5% of the total organic carbon (OC) mass. The total OA mass concentration averaged 

during the sampling period was determined to be 15.30 µg m-3 using an Aerodyne Aerosol 

Chemical Speciation Monitor (ACSM),12 and the total OC mass concentration from the same 

sample was measured to be 5.04 µgC m-3 using a Sunset laboratory OC-elemental carbon (EC) 
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aerosol analyzer. Methyltetrol sulfates, quantified using the 2-methyltetrol sulfate standard, were 

determined to be 2.33 µg m-3, accounting for 15.3% of the total OA (or 12.9% of the total OC) 

mass, and significantly higher than 1.14 µg m-3 measured by RPLC/ESI-HR-QTOFMS.12 This 

discrepancy suggests that the RPLC/ESI-HR-QTOFMS method likely underestimates the 

methyltetrol sulfate concentrations, possibly resulting from the lack of proper dilution or 

appropriate isomeric standards, or caused by ion suppression due to co-elution with other water-

soluble organic or inorganic aerosol components. The sum of the 2-methyltetrols and 

methyltetrol sulfates quantified by the new method accounted for 20.9% of the total OA mass in 

the Look Rock sample during the 2013 SOAS campaign when high intensity of isoprene and 

anthropogenic emissions (acidic sulfate aerosol) were observed, making IEPOX-derived SOA 

the single largest contributor to the characterized OA constituents.12 

For the Manaus sample, the HILIC/ESI-HR-QTOMS analysis measured 0.14 and 0.39 μg 

m-3 for 2-methyltetrols and methyltetrol sulfates, respectively, accounting for 0.74% and 1.34% 

of the total OC mass concentration (8.12 μgC m-3 for this particular sample collected on 

November 30, 2016) measured by a Sunset laboratory OC-EC aerosol analyzer. In addition, 

elevated concentrations of levoglucosan (0.46 μg m-3 by GC/EI-MS), EC (1.18 μgC m-3 by a 

Sunset OC-EC aerosol analyzer), and PM2.5 (46.1 μg m-3) were observed on this particular day, 

and more generally during the November 28-30, 2016, sampling period due to the large influence 

of biomass burning. In fact, average levoglucosan, OC, EC, and PM2.5 concentrations during this 

biomass burning intensive period were 0.41 μg m-3, 8.0 μgC m-3, 1.3 μgC m-3, and 43.6 μg m-3, 

respectively. The elevated biomass burning likely explains why the IEPOX-derived SOA tracers 

accounted for a lower % contribution to the total OC mass versus the southeastern U.S. sample 

(Table 2), which the latter had little influences of biomass burning.12    
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3.4 Other Measurable Water-Soluble Organic Compounds in Ambient PM2.5 

In addition to the targeted analysis for the 2-methyltetrols and methyltetrol sulfates, we 

were able to detect several other isoprene-derived organosulfates in the ambient PM2.5 samples. 

Figure 4 shows the EICs of organosulfates with chemical formulas C4H7O7S
- (m/z 199, accurate 

mass = 198.9912), C5H9O7S
- (m/z 213, accurate mass = 213.0069), and C5H7O7S

- (m/z 211, 

accurate mass = 210.9912) detected in the PM2.5 samples from Look Rock and Manaus. These 

species have also been reported from other field and laboratory studies, including EICs obtained 

from HILIC/ESI-MS.20,30-32 The ion of m/z 199 was confirmed as the sulfate ester derived from 

another isoprene SOA tracer 2-methylglyceric acid in high-NOx conditions.10,45 The structures of 

the m/z 211 and 213 were tentatively proposed with EICs consistent with previous 

observations.20,31,32    

3.5 Discrepancy between HILIC/ESI-HR-QTOFMS and GC/EI-MS ï Thermal 

Degradation of Organosulfates 

Table 3 lists the concentrations of 2-methyltetrols in samples of SOA from β-IEPOX, δ-

IEPOX, Look Rock, and Manaus quantified in parallel by HILIC/ESI-HR-QTOFMS and GC/EI-

MS with prior derivatization. The concentrations of 2-methyltetrols determined by GC/EI-MS 

were 104, 136, 60, and 188% higher, respectively, than those determined by HILIC/ESI-HR-

QTOFMS. The discrepancies are consistent with suggestions that GC/EI-MS overestimates 

semi-volatile marker compounds because of thermal degradation of low-volatility accretion 

products (e.g., oligomers or possibly organosulfates).25 To investigate whether the 

overestimation in fact resulted from thermal degradation or trimethylsilylation of the analytes, 

calibration curves of 2-methyltetrol, 2- and 3-methyltetrol sulfates were generated by GC/EI-MS 

along with the four SOA samples. As shown in Figure 5/S5/S6 (b-c), the isoprene-derived SOA 
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tracers commonly observed by GC/EI-MS, including C5-alkene triols, 2-methyltetrols, and 3-

MeTHF-3,4-diols, were detected in the pure 2- and 3-methyltetrol sulfate standards. Figure S5 

(a-c) illustrates the formation of 2-methyltetrols in the GC/EI-MS analysis of the 50 μg mL-1 2- 

and 3-methyltetrol sulfate standards. The GC/EI-MS EIC of m/z 219 for the 50 μg mL-1 

derivatized standard of authentic 2-methyltetrol diastereomer mixture is characterized by peaks 

at RTs of 34.0 and 34.8 min. Peaks with relative intensities of ~0.25 and ~5% at the same RTs 

characterize the EICs at m/z 219 of the pure 2- and 3-methyltetrol sulfate standards. The 2-

methyltetrols from degradation of the organosulfates can partially explain the large discrepancy 

measured between the HILIC/ESI-HR-QTOFMS and GC/EI-MS methods. Other organosulfates 

and oligomers present in the aerosol samples may also contribute to the discrepancy. The C5-

alkene triol tracers for isoprene SOA, have been detected only by GC/EI-MS or SV-TAG 

methods.8,9,17,26,44 Lopez-Hilfiker et al.25 have reported that the high concentrations of C5-alkene 

triols measured in PM2.5 samples analyzed by these procedures, in which samples are treated at 

high-temperature, are not consistent with their estimated volatility, and suggest that these 

compounds are degradation products of IEPOX-derived organosulfates and oligomers. Based on 

the semi-quantitative relationship established for the C5-alkene triols produced from the 2-

methyltetrol sulfate standards prepared (SI), 30.0%, 42.8%, and 14.7% of the C5-alkene triols 

measured by GC/EI-MS could be attributed to the potential thermal degradation of the 2-

methyltetrol sulfates in the PM2.5 samples from laboratory-generated β-IEPOX SOA, Look Rock, 

and Manaus, respectively (Table S2). Similarly, 11.1% of the 2-methyltetrols and approximately 

all 3-MeTHF-3,4-diols in laboratory-generated δ-IEPOX SOA may be products of the thermal 

degradation of the 3-methyltetrol sulfates (Table S3). As demonstrated above, thermal 

degradation of organosulfates as well as low-volatility accretion aerosol products (i.e., 
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oligomers) explain a substantial fraction of the isoprene-derived SOA tracers previously 

measured through analytical methods such as GC/EI-MS or SV-TAG in which samples are 

treated at high temperatures.46 HILIC/ESI-HR-QTOFMS avoids such treatment and is therefore 

preferred for accurate quantification of IEPOX-derived SOA constituents.   
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CHAPTER 4: CONCLUSION 

The availability of authentic IEPOX-derived SOA standards was critical in developing 

the HILIC/ESI-HR-QTOFMS method described here. This protocol was used to evaluate 

IEPOX-derived SOA samples generated in laboratory studies or PM2.5 samples collected from 

two isoprene-rich regions. The HILIC column can resolve the major water-soluble IEPOX-

derived SOA constituents, including the 2-methyltetrols, methyltetrol sulfates and the 

corresponding dimers that are predicted to form in regional and global scale atmospheric 

chemistry models.36-39,47-49 The major water-soluble IEPOX-derived SOA constituents can be 

quantified by one method with improved accuracy. We have demonstrated the ability to 

distinguish between different isomers of β- and δ-IEPOX-derived methyltetrol sulfates, which 

allows the contribution of the IEPOX isomers to be apportioned with the availability of authentic 

sulfate standards. Analysis by the HILIC method avoids high-temperatures required by GC/EI-

MS or SV-TAG methods which cause degradation of IEPOX-derived organosulfates and 

oligomers to 2-methyltetrols, C5-alkene triols, and 3-MeTHF-3,4-diols with consequent 

distortion of actual product distributions.25,49   

By taking advantage of authentic standards and the HILIC/ESI-HR-QTOFMS method, 

we have estimated the mass fractions of the 2-methyltetrols and the methyltetrol sulfates in 

laboratory and ambient SOA samples. In summary, these two types of SOA constituents, likely 

the two largest contributors, contributed 92% and 62% to total aerosol mass, and 21% to OA 

mass from the laboratory-generated β-IEPOX SOA, laboratory-generated δ-IEPOX SOA, and 

Look Rock PM2.5, respectively. These two SOA constituents contributed ~2.1% to OC mass 
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from Manaus PM2.5 sample, which was likely lower owing to the fact that biomass burning was a 

large contributor to the OC mass during this sampling period whereas the Look Rock PM2.5 

sample had little influences of biomass burning. The methyltetrol sulfates are the largest single 

contributor to the IEPOX SOA mass, contributing ~2-3 times of the mass of the 2-methyltetrols. 

The predominant contributions of organosulfates (>90% of the reactive uptake of β-IEPOX) 

reveal the significance of conversion of inorganic sulfate to organosulfate, and emphasize the 

importance of the multiphase chemistry of IEPOX leading to SOA formation in the isoprene-rich 

regions. In addition, oligomers derived from the methyltetrol sulfates and the 2-methyltetrols 

may explain the missing fraction of the total aerosol mass.   

Large abundances of methyltetrol sulfates in atmospheric PM2.5 could explain previous 

observations of the low-volatility nature of IEPOX-derived SOA in ambient aerosol.25,50 The 

HILIC/ESI-HR-QTOFMS procedure described here can resolve water-soluble organic carbons 

from isoprene photochemical products generated via non-IEPOX pathways. HILIC separation 

can be interfaced to current RPLC/ESI-HR-QTOFMS procedures to develop two dimensional 

LC/ESI-HR-QTOFMS, further enhancing resolution of hydrophilic organic compounds in PM2.5. 
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Table 1. Properties of the 2-methyltetrol, 2-methyltetrol sulfate and 3-methyltetrol sulfate 

standards characterized by HILIC/ESI-HR-Q-TOFMS, including linearity, coefficient of 

determination (R2), limit of detection (LOD), limit of quantification (LOQ), and relative standard 

deviation (RSD) of ten replicate injections. Note that structures are for one of two diastereomers 

for each standard and ions are shown for the methyltetrol sulfates. 

 

Standards 
Chemical 

Structure 
[M -H] - m/z 

Retention 

Time(s) 
(min) 

Linear 

Range 
(µg mL-1) 

R2 
LOD  

(µg L-1) 
LOQ  

(µg L-1) 

2-methyltetrols 

 

C5H11O4
- 135.066 4.0 0.01-25 0.9994 7.74 25.8 

2-methyltetrol 

sulfates 
 

C5H11O7S- 215.023 
2.1, 2.6, 

4.2, 5.2 
0.01-10 0.9996 1.72 5.75 

3-methyltetrol 

sulfates 
 

C5H11O7S- 215.023 

2.1, 2.6, 

4.2, 5.2, 

8.0, 8.3 

0.01-25 1.0000 3.83 12.8 
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Table 2. Concentrations and mass fractions of 2-methyltetrols and methyltetrol sulfates 

measured from laboratory-generated SOA and ambient PM2.5 samples by HILIC/ESI-HR-

QTOFMS. 

 

 2-Methyltetrols  Methyltetrol sulfates 

 
Mass Conc. 

(µg m-3) a 
% Total Mass b 

Mass Conc. 

(µg m-3) 
% Total Mass 

Laboratory β-IEPOX SOA  63.98 33.9 % 109.67 58.2 % 

Laboratory δ-IEPOX SOA 29.49 19.6 % 62.98 42.0 %  

Look Rock, TN 0.861 5.6 (7.5) % 2.334 15.3 (12.9) % 

Manaus, Brazil 0.137 (0.74) % 0.390 (1.34) % 

a The mass concentrations of 2-methyltetrols and methyltetrol sulfates were measured from the 

PILS samples for the laboratory-generated SOA, and from the filter samples for the Look Rock 

and Manaus samples; 
b The total aerosol mass (organic + inorganic, shown in bold) was used for the mass closure for 

the laboratory-generated SOA, while the organic aerosol (or organic carbon, shown in 

parentheses) mass was used for the mass closure for the Look Rock and Manaus samples. The 

total aerosol mass was determined using an SEMS-MCPC system for the laboratory-generated 

SOAs, assuming the particle density to be 1.42 or 1.55 g cm-3 after reaction from β- or δ-IEPOX 

(SI). The total organic aerosol mass for the Look Rock sample was measured by an ACSM.11,12 

The OC mass for the Look Rock and Manaus samples was measured using EC/OC analyzers. 

The relative analytical uncertainty in the quantification was determined to be up to ~17.2% (SI). 
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Table 3. Concentrations and discrepancies of 2-methyltetrols (µg m-3) from laboratory-generated 

SOA and ambient PM2.5 samples measured by HILIC/ESI-QTOFMS and GC/EI-MS. 

 

2-Methyltetrols  

(µg m-3) 
HILIC/ESI -

QTOFMS 
GC/MS 

Ratio 

(GC/HILIC) 

Laboratory β-IEPOX SOA 69.05 140.86 204 % 

Laboratory δ-IEPOX SOA 51.91 122.56 236 % 

Look Rock, TN 0.861 1.381 160 % 

Manaus, Brazil 0.137 0.394 288 % 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

26 

 

Figure 1. Extracted ion chromatograms (EICs) at m/z 215.023 corresponding to methyltetrol 

sulfates. Using a) RPLC C18 column, and b) HILIC BEH amide column: standards of 1) 2-

methyltetrol sulfates; 2) 3-methyltetrol sulfates. Standards were prepared at 10 µg mL-1. No 

significant peaks were observed beyond the shown periods of retention time.  
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Figure 2. EICs of a) m/z 135.066 corresponding to 2-methyltetrols, b) m/z 215.023 

corresponding to methyltetrol sulfates from: 1) 10 µg mL-1 synthesized standard (b1: 2-

methyltetrol sulfates (dashed line) and 3-methyltetrol sulfates (solid line)); 2) laboratory-

generated β-IEPOX SOA; 3) laboratory-generated δ-IEPOX SOA; 4) PM2.5 sample collected at 

Look Rock during 2013 SOAS campaign; 5) PM2.5 sample collected at Manaus in Nov. 2016. 

The laboratory-generated β-IEPOX SOA, δ-IEPOX SOA, Look Rock, and Manaus samples were 

diluted by a factor of 200, 100, 40, and 100, respectively. No significant peaks were observed 

beyond the shown periods of retention time. 
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Figure 3. EICs of m/z 215.023 (C5H11O7S
-) and 333.086 (C10H21O10S

-) corresponding to 

methyltetrol sulfate monomers and dimers, respectively, from a) laboratory-generated β-IEPOX 

SOA diluted by a factor of 200; and b) laboratory-generated δ-IEPOX SOA. No significant 

peaks were observed beyond 20 min. 
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Figure 4. EICs of other water-soluble organosulfates with their proposed structures: a) m/z 199 

corresponding to C4H7O7S
-, b) m/z 211 corresponding to C5H7O7S

-, and c) m/z 213 

corresponding to C5H9O7S
- observed in PM2.5 samples collected from 1) Look Rock during 2013 

SOAS campaign; 2) Manaus in Nov. 2016. No significant peaks were observed beyond the 

shown periods of retention time. 
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Figure 5. GC/EI-MS EICs of m/z 231 corresponding to C5-alkene triols (RT = 26.9, 27.9, 28.3 

min) from: a) 50 µg mL-1 standard of 2-methyltetrol; b) 50 µg mL-1 standard of 2-methyltetrol 

sulfate; c) 50 µg mL-1 standard of 3-methyltetrol sulfate; d) laboratory-generated β-IEPOX SOA; 

e) laboratory-generated δ-IEPOX SOA; f) PM2.5 sample at Look Rock during 2013 SOAS 

campaign; g) PM2.5 sample at Manaus in Nov. 2016. 
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APPENDIX 1: SUPPLEMENTARY FIGURES  

 

Figure S1. Structure and 1H NMR (D2O, 400 MHz) of 2-methytetrol sulfate (ammonium 1, 3, 4-

trihydroxy-2-methylbutan-2-yl sulfate) standard.  

 

 

 

 

 

 

 

 

 

 

 



 
 

32 

 

Figure S2. Total ion chromatograms (TICs) of a laboratory-generated β-IEPOX-derived SOA 

sample separated on a) RPLC C18 column, and b) HILIC BEH amide column. 
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Figure S3. Mass spectra from RPLC/ESI-HR-QTOFMS of the chromatographic peak of m/z 

215.023 from a) 10 μg mL-1 standard of 3-methyltetrol sulfate, b) laboratory-generated δ-IEPOX 

SOA, and c) PM2.5 sample collected at Look Rock during 2013 SOAS campaign, at RT at: 1) 2.2 

min; 2) 4.5 min; and 3) 9.6 min. Note that the chromatographic peak in “c3” has significantly 

smaller response rate compared to the other chromatographic peaks. 
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Figure S4. Time profile of total aerosol volume concentration and aerosol mass breakdown for 

the experiments from (top) trans-β-IEPOX; and (bottom) δ-IEPOX. Ammonium bisulfate 

particles were injected into the chamber to reach ~ 75 μm3 cm-3. After seed injection, the 

chamber was left static for at least 30 min to ensure that the seed aerosol was stable and 

uniformly mixed. Then, 30 mg of trans-β- or δ-IEPOX was injected into the chamber. PILS 

collection was performed at the end of each experiment, as indicated by the arrow. The bars on 

the right side show the mass concentrations of the total particles, the initial seed particles 

measured by the SEMS. 2-Methyltetrols and methyltetrol sulfates concentrations were measured 

by the HILIC/ESI-HR-QTOFMS protocol and indicated by the blue and green bars as well.  
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Figure S5. GC/EI-MS EICs of m/z 219 corresponding to 2-methyltetrols (RT = 34.0, 34.8 min) 

from: a) 50 µg mL-1 standard of 2-methyltetrol; b) 50 µg mL-1 standard of 2-methyltetrol sulfate; 

c) 50 µg mL-1 standard of 3-methyltetrol sulfate; d) laboratory-generated β-IEPOX SOA; e) 

laboratory-generated δ-IEPOX SOA; f) PM2.5 sample at Look Rock during 2013 SOAS 

campaign; g) PM2.5 sample at Manaus in Nov. 2016.  
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Figure S6. GC/EI-MS EICs of m/z 262 corresponding to 3-MeTHF-3,4-diols (RT = 22.0, 22.6 

min) from: a) 50 µg mL-1 standard of 2-methyltetrol; b) 50 µg mL-1 standard of 2-methyltetrol 

sulfate; c) 50 µg mL-1 standard of 3-methyltetrol sulfate; d) laboratory-generated β-IEPOX SOA; 

e) laboratory-generated δ-IEPOX SOA; f) PM2.5 sample at Look Rock during 2013 SOAS 

campaign; g) PM2.5 sample at Manaus in Nov. 2016.  
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APPENDIX 2: SUPPLEMENTARY TABLES AND INFORMATION  

Aerosol Mass Calculation and Aerosol Mass Closure for Laboratory-Generated SOA 

Chamber aerosol number distributions, which were subsequently converted to total 

aerosol surface area and volume concentrations, were measured by a scanning electrical mobility 

system (SEMS v5.0, Brechtel Manufacturing Inc. – BMI) containing a differential mobility 

analyzer (DMA, BMI) coupled to a mixing condensation particle counter (MCPC Model 1710, 

BMI). The SEMS system has an internal Nafion dryer connected inline between its inlet and 

neutralizer. Total aerosol mass concentration was calculated using the total volume concentration 

multiplied by the density of 1.42 g mL−1 of the particles formed after reaction (for the seed 

aerosol of acidified ammonium sulfate, a density of 1.77 g mL−1 was used). The densities used 

above were reported by Riva et al. based on single-particle characterizations from experiments 

conducted with trans-ɼ-IEPOX and acidified ammonium sulfate aerosols under similar 

conditions.1 However, the volume growth was found to be lower for δ-IEPOX-derived SOA, 

which means the resulting density was higher than 1.42 g mL−1. Therefore, assuming the widely 

reported organic density of 1.2 g mL-1 and volume additivity, the resulting density for total 

aerosol has been corrected to 1.55 g mL-1, which was used to calculate the mass of total aerosols 

generated from δ-IEPOX and acidified ammonium sulfate. It is also reasonable to assume that 

sulfates, either in inorganic or organic forms, remained in the aerosol phase and the change in 

ammonium equilibrium between the gas and aerosol phase after IEPOX uptake was small as 

indicated by ACSM measurements. Therefore, the calculated aerosol mass concentration 

includes both the inorganic sulfate group and the sulfate groups that are covalently bonded to the 

organic residue. The averaged aerosol masses during the PILS collection periods for the two 

chamber experiments are shown in Table S1 below. 
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Table S1. Experimental Conditions and Calculated Aerosol Mass for Laboratory-Generated 

IEPOX SOA  

IEPOX Isomer Seed Aerosols 
Aerosol Mass 

(μg m-3) 
Temp 

(℃) 
RH 

(%) 

trans-ɼ-IEPOX (NH4)2SO4 + H2SO4 188.51 21-23 50-50 

δ-IEPOX (NH4)2SO4 + H2SO4 150.13 21-23 50-55 

  

Figure S4 shows the aerosol volume concentration and the seed volume decay during the 

experiments. For the laboratory-generated SOA from trans-β-IEPOX (top), the PILS sample 

selected was collected near the end of the experiment at time 3:27 with 2-methyltetrols measured 

to be ~64 µg m-3 and methyltetrol sulfates measured to be ~110 µg m-3. At the same time, the 

SEMS-MCPC system measured 133 µm3 cm-3 total particle volume concentration, which was 

converted to a total mass concentration of 189 µg m-3 (density = 1.42 g mL−1); and 42 µm3 cm-3 

seed particle volume concentration (assuming first-order decay rate), which was converted to a 

total seed mass concentration of 75 µg m-3 (density = 1.77 g mL−1). Thus, the two quantified 

IEPOX SOA components accounted for ~92% of the total aerosol mass, which suggests that the 

inorganic sulfate in the seed aerosol might be substantially converted into organosulfates. A 

similar mass-closure situation was observed for the laboratory-generated SOA from δ-IEPOX 

(Figure S6, bottom). 
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Estimation of C5-Alkene Triols, 2-Methyltetrols, and 3-MeTHF-3,4-diols Potentially 

Resulting from Thermal Degradation of Methyltetrol Sulfates 

As shown in Figure 5/S4/S5, a large amount of C5-alkene triols was observed from 2-

methyltetrol sulfate standard using GC/EI-MS, while 2-methyltetrols and 3-MeTHF-3,4-diols 

were observed from 3-methyltetrol sulfate standard. By running both methyltetrol sulfate 

standards from 0.25-50 µg mL-1, we established the semi-quantitative relationship between the 

response of C5-alkene triols (as well as 2-methyltetrols and 3-MeTHF-3,4-diols) produced and 

the concentrations of 2- (or 3-) methyltetrol sulfate standards prepared. For example, the 

response factor of C5-alkene triols was determined to be 15301 peak area (in EIC of m/z 231 at 

26.9, 27.9, and 28.3 min, see Figure 5) per 1 µg mL-1 of 2-methyltetrol sulfate standard. By 

doing this, as shown in Table S2, we attribute 30.0%, 42.8%, and 14.7% of the C5-alkene triols 

to the potential thermal degradation of 2-methyltetrol sulfate from the laboratory-generated SOA 

from β-IEPOX, the Look Rock, and the Manaus samples, respectively.  

Table S2. Estimation of C5-Alkene Triols due to Thermal Degradation of 2-Methyltetrol Sulfate 

  
2-Methyltetr ol 

sulfates 

C5-Alkene triols corresponding 

to methyltetrol sulfates 

  µg mL-1 µg mL-1 % 

Lab. SOA from β-IEPOX 355 a 1183 30.0% 

Look Rock, TN, USA 58 136 42.8% 

Manaus, Brazil 175 1185 14.7% 
a The concentrations are converted to the those in the 150-µL solution after reconstitution for the dried filter extracts.  

Similarly, the response factors of 2-methyltetrols and 3-MeTHF-3,4-diols were 

determined to be 5659 and 2169 peak area per 1 µg mL-1 of 3-methyltetrol sulfate standard, 

respectively. Thus, as shown in Table S3, thermal degradation of 3-methyltetrol sulfate might 

result in 11.1% and over 100% (112.3%) of the 2-methyltetrols and 3-MeTHF-3,4-diols 

observed in the laboratory-generated SOA from δ-IEPOX.  
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Table S3. Estimation of 2-Methyltetrols and 3-MeTHF-3,4-diols due to Thermal Degradation of 

2-Methyltetrol Sulfate 

  
3-Methyltetrol 

sulfates 

2-Methyltetrols 

corresponding to 

methyltetrol sulfates 

3-MeTHF-3,4-diols 

corresponding to 

methyltetrol sulfates 

  µg mL-1 µg mL-1 % µg mL-1 % 

Lab. SOA from δ-IEPOX 361 a 3247 11.1% 322 112.3% 
a The concentrations are converted to the those in the 150-µL solution after reconstitution for the dried filter extracts.  

Note that the concentrations of the measured methyltetrol sulfates (e.g. 355 µg mL-1 in 

Table S2) indicate their concentrations with correction for dilution (40-200 times, see the notes 

under Table 2) in the 150 µL of solution after reconstitution. The solvent of reconstitution was 

95:5 ACN/water for HILIC/ESI-HR-QTOFMS or 2:1 BSTFA/pyridine for GC/EI-MS. The 

measured concentrations of C5-alkene triols (as well as 2-methyltetrols and 3-MeTHF-3,4-diols) 

corresponding to methyltetrol sulfates were also corrected for dilution (by a factor of 4, since 

only a quarter of the filter content was transferred to GC/EI-MS). Our estimation assumed the 

same progress of derivatization for the methyltetrol sulfate standards, the laboratory-generated 

SOA, and the field PM2.5 samples, since all of them were analyzed in the same GC/EI-MS 

worklist.  
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Analytical Uncertainty  

The overall analytical uncertainty, %eT, in our quantification was calculated using the 

equation below2.  

ϷὩ  = ϷὩ  ϷὩ Ễ ϷὩ 

When most the (n) relative errors reasonably applied, %eT = ±17.2%. The relative errors are 

estimated for: 

1. Purity of standards and potential degradation over time - ~5%, estimated by the internal 

standard from 1H NMR and repeated measurements for the same stock standard; 

2. Air sampling rate of the filter and PILS samplers - ~0.7%, estimated by repeated measurements 

for the same condition; 

3. Water flow rate of PILS wash flow - ~6%, estimated by repeated measurements for the same 

condition; 

4. Extraction efficiency (filter) - ~1%, the recovery rate of filter extraction using a larger piece of 

quartz filter (4 cm × 5 cm, rather than the 47-mm diameter) was determined to be 76.2 ± 0.8 % 

(for the methyltetrol sulfate standards), but we didn’t correct for recovery; 

5. Collection efficiency (PILS) - ~2%, reported by BMI and examined by comparing the PILS-

IC and SEMS-MCPC measurements; 

6. Dilution of samples (when needed) - ~1% estimated by the errors caused by transferring liquids; 

7. SEMS-MCPC measurement - ~5%; 

8. Density of IEPOX-SOA particles: ~1%; 

9. Q-TOF detection - 2%, estimated by relative standard deviation from repeated injections; 

10. GC/EI-MS - 2%, estimated by relative standard deviation from repeated injections; 

11. Data processing - ~15%, this varies by manual integration of chromatographic peak area, 

selection of linear range of calibration curve, selection of standard for quantification.  
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APPENDIX 3: METHOD DEVELO PMENT PROCEDURE 

A suite of hydrophilic authentic standards with various chemical structures and polarities 

were selected to perform the initial development of the method. The suite of standards include 

four organic acids: oxalic acid, maleic acid, malonic acid and succinic acid, and four 

organosulfates: propyl sulfate, 2-methyltetrol sulfate, glycolic acid sulfate and lactic acid sulfate. 

In preparation of the standard solution, 100 mg of each compound was dissolved in 10 ml of 

solvent. This solution was then diluted for 200 times to make 50 ppm solution. During the 

optimization process we adjusted various parameters of the method, including sample 

concentration, organic mobile phase, solvent of standards, pH of the mobile phase, 

chromatography column, flow rate, aqueous phase gradient and running time. The optimized 

method for separation of the standards is similar to the method described in the manuscript, with 

only slight changes on the gradients of the mobile phases. The gradient of organic mobile phase 

was held constant from 0 min to 2 min at 100%, and then dropped down to 85% from 2 min to 4 

min. It was held constant at 85% from 4 min to 25 min before being raised up back to 100% at 

26 min. The gradient was then held constant from 26 min to 30 min. The separation can be seen 

in the figure below: 
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           Seven out of the eight selected compounds were clearly differentiated from the solvent 

blank and were resolved into clear singlet peaks on the TIC figure, while oxalic acid remained 

undetected. The separation result of this method was satisfying for the suite of authentic 

compounds as we moved on to analyze POA and SOA samples with the method. 
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APPENDIX 4: ABSTRACT PROTOCOL OF HILIC/ESI -HR-QTOFMS METHOD  

Sample Preparation 

1. Place a filter that you wish to analyze into a 20-mL vial. Submerge the filter with ~20ml of 

methanol. 

2. Put the vial into the sonicator to sonicate for 25 minutes. Change the water in the sonicator and 

restart the sonicator for another 20 minutes. Take the vial out after sonication. 

3. Use a filtered syringe to transfer the liquid solution into a new 20-mL vial. 

4. Dry the methanol in the vial with gentle N2 flow. Lower down the needle in approximately 

every 30 minutes to make sure the flow is constant. This full drying process might take 7-8 

hours. 

5. After the vial is fully dried, replace the vial from the dryer. Add 150μL of 95:5 

Acetonitrile/H2O solvent mixture into the vial. Shake the vial so that everything remained in the 

vial gets fully dissolved in the solvent. 

6. Estimate how much dilution you need to do to make sure the amount of target compounds in 

the sample falls into the linear dynamic range of the prepared standards. If you do not need 

further dilution to you sample, simply transfer the 150μL solution with a disposable glass pipet 

into a small brown vial with a glass insert. If you need dilution, inject a small amount of the 

reconstituted solution into a new small brown vial and dilute with 95:5 Acetonitrile/H2O solvent 

mixture. (i.e. For 20x dilution, inject 50μL of the sample solution into the vial and dilute with 

950μL of 95:5 Acetonitrile/H2O solvent mixture. If the final volume of solution is smaller than 

300μL, use a glass insert in the vial. 
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7. Store the sample vial in the -20°C freezer until the day of analysis. 

Standard Preparation  

1. Select standard compounds that you wish to target in the sample from chemical inventory in 

the lab. 

2. Weigh out a specific mass (i.e. 10mg) of each standard compound and put it into a new vial. 

Add a specific volume (i.e. 1mL) of Milli-Q water into the vial to make a high-concentration (i.e. 

10,000 ppm) stock solution and make sure all standards are fully dissolved. (assuming all 

standards are water-soluble) 

3. Dilute the solution with 95:5 acetonitrile/H2O solvent mixture to make a ladder of calibration 

curve with various concentrations (i.e. 0.01ppm, 0.1ppm, 0.25ppm, 1ppm, 2.5ppm, 10ppm and 

25ppm) in small brown vials. 

4. Store the vials in the -20°C freezer until the day of analysis. 

Mobile Phase Preparation 

1. For mobile phase A (aqueous mobile phase), weigh out 0.5g of solid ammonium acetate 

compound and put it into a 500-mL volumetric flask. Add Milli-Q water into the volumetric 

flask and fully dissolve the solid. Keep adding Milli-Q water until the lower surface of the 

solution reaches the line on the volumetric flask. 

2. For mobile phase B (organic mobile phase), weigh out 0.5g of solid ammonium acetate 

compound and put it into a 500-mL volumetric flask. Add 25mL of Milli-Q water into the 

volumetric flask and fully dissolve the solid. Add acetonitrile until the lower surface of the 

solution reaches the line on the volumetric flask. 
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3. After you make the solution with the volumetric flask, transfer the solution to the mobile 

phase bottle with the correct label. You do not have to throw out the remaining solution in the 

bottle. 

4. Add small amount of ammonium hydroxide solution step by step into the mobile phase bottle 

and test the pH value of the solution with pH stripes or pH meter. Keep adding until the pH of 

the solution reaches approximately 9. 

HILIC/ESI-HR-QTOFMS Analysis 

1. Carry your prepared sample vials, mobile phase A (water + 0.1% ammonium acetate, pH 

adjusted to 9 with NH4OH), mobile phase B (95:5 ACN/H2O + 0.1% ammonium acetate, pH 

adjusted to 9 with NH4OH), a bottle of solvent mixture of 95:5 ACN/H2O and the negative ion 

mode reference bottle to the mass spec lab located in Rosenau Hall. 

2. Find the Waters ACQUITY UPLC BEH Amide column (2.1×100 mm, 1.7 µm particle size) in 

the mass spec lab and attach the column to the Q-TOF instrument. 

3. Attach mobile phase A (aqueous mobile phase) to tubed cap A1. Attach mobile phase B 

(organic mobile phase) to tubed cap B1. Attach the bottle of 95:5 ACN/H2O solvent mixture to 

tubed cap B2. 

4. If you do not wish to do MS/MS analysis, open the method “surratt-method-neg-HILIC-Stack-

Burn-MS1_171104.m” in the method folder under Surratt folder. If you do wish to do MS/MS 

analysis, open the method “Surratt-method-neg-HILIC-Galapagos-MS2_180504.m” in the 

method folder under Surratt folder. 
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5. Clean the ESI inlet with methanol and water. Examine the whole route of sample flow and 

reconnect the if necessary (check out the correct connection on the photo in the group google 

drive).  

6. Turn the pump to waste. Under “binary pump” tab, set the mixture to be 50% mobile phase A/ 

50% mobile phase B. Set the flow rate of the pump to be 2mL/min and click “apply”. Keep 

purging the pump for at least 10 minutes (this can be done at the same time as you tune the 

instrument). 

7. Tune the instrument according to the instruction of mass spec lab technicians. 

8. After tuning, go back to the acquisition mode. Go to MS Q-TOF and select the Ref Mass tab. 

Click “use bottle A” bottle to deliver solution from the reference bottle. Switch bottle B to 

solvent blank. 

9. Set the pump flow rate to 0.2mL/min and composition to 0% of mobile phase B1. After you 

click apply, turn the knob on to send flow to the LC column. 

10. Switch the composition of mobile phase B1 up by 25% every time the pressure has been 

stabilized for at least 5 minutes. The estimated trend of pump pressure change after stabilizing 

would be: 

%B 0 25 50 75 

Pressure (bar) 480 450 160 120 

  

11. Once the mobile phase composition is 100% B1, set the pump flow rate to be 0.3mL/min. 

Watch the pressure stabilized for at least 5 minutes before starting your worklist run. 
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Worklist Entry 

1. If you do not wish to do MS/MS analysis, you would want to use the method “surratt-method-

neg-HILIC-Stack-Burn-MS1_171104.m” in the method folder under Surratt folder. If you do 

wish to do MS/MS analysis, you would want to use the method “surratt-method-neg-HILIC-

Galapagos-MS2_180504.m” in the method folder under Surratt folder. 

2. At the end of your worklist, and one injection of solvent blank with the “surratt-shutdown-

neg-ms1.m” method. This will flush the column with the 95:5 ACN/H2O solvent mixture 

attached to B2 for two and a half hours before shutting down the system. 
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