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ABSTRACT 

 

KATHLEEN S. CHRISTINE:  Functional Analysis of CASTOR in Vertebrate 

Cardiomyocyte Differentiation 

(Under the direction of Dr. Frank L. Conlon) 

 

 Cardiomyocyte differentiation is a complex coordination of cellular and 

molecular transformations which allows a mature cardiomyocyte to perform a 

specialized function within the chambered heart.  Both intrinsic and extrinsic cues 

mediate the transition of a cardiomyocyte progenitor into a differentiated 

cardiomyocyte.  However, very little is known about the molecular pathways that 

govern this differentiation process.  In this thesis, we explore the regulation of 

differentiation in cardiomyocyte progenitors. 

 

 We identified a novel para-zinc finger transcription factor, CASTOR (CST), 

which is expressed within the cardiomyocyte progenitors immediately prior to the 

onset of cardiac differentiation.  We show that CST is required for the 

differentiation of the ventral midline cardiomyocyte progenitor population and to 

regulate the proliferation of the differentiated lateral cardiomyocytes.  In the 

absence of CST, this ventral midline cardiomyocyte population remains in the 

progenitor state.  Fate mapping of the ventral midline cardiomyocyte progenitors
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reveals that they ultimately contribute to the outer curvature of the future 

ventricle.  However, the CST-depleted ventral midline cardiomyocyte progenitors 

overproliferate and remain as a coherent population of nonintegrated cells in the 

outer wall of the myocardium.    

 

 To begin to decipher how CST regulates cardiomyocyte differentiation, we 

performed a bacterial one-hybrid assay to determine that CST binds to a ten 

basepair DNA binding sequence CTAGTGGTGG.  In addition, we used a cloning 

chromatin immunoprecipitation (ChIP) screen to identify direct transcriptional 

target genes of CST.  We further show that CST may regulate the transcription of 

genes associated with cell growth control, cell migration and adhesion, Wnt 

signaling and myocardium patterning.  This work provides insight into how CST 

may influence cardiomyocyte differentiation. 
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Chapter 1 

Introduction 

 

Cardiogenesis involves a highly orchestrated series of events including 

specification, proliferation, migration, differentiation and morphogenesis. 

Disruption of any one of these steps has a tendency to result in a congenital 

heart defect. According to 2008 statistics, congenital heart defects are present in 

nine out of every one thousand live births. Consequently, 1.3 million Americans 

live with a congenital heart defect (Lloyd-Jones et al., 2008). While the most 

prevalent congenital heart defect involves defects in the ventral septum, many 

malformations result in valve defects that many not be detected until adulthood 

(Lloyd-Jones et al., 2008). To determine the causes of these congenital heart 

defects and generate treatments, the process of cardiogenesis must be better 

understood. Specifically, the mechanisms by which a naïve progenitor cell is 

instructed to become a functional cardiomyocyte are not fully known. Therefore, 

delineating these mechanisms will likely yield information that can be translated 

to the treatment of human cardiac disease.  

 

Extensive cardiac research has greatly advanced the understanding of 

cardiogenesis; however, there remain significant gaps in knowledge of the
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complex underpinnings of heart development. In particular, it is not known how a 

cardiomyocyte progenitor, for example, integrates positional cues to identify itself 

as a ventricle cardiomyocyte versus another type of cardiomyocyte. Moreover, it 

is not known how that cardiomyocyte progenitor differentiates into a specialized 

cardiomyocyte to perform one of many functions within the heart chamber. The 

primary focus of this thesis was to identify novel mechanisms of cardiomyocyte 

differentiation by characterizing a novel cardiac transcription factor, CASTOR, 

and the mechanism by which it functions. 

 

VERTEBRATE HEART DEVELOPMENT 

In all vertebrate species, the heart is the first organ to form. Despite 

interspecies differences in cardiac anatomy, the complex processes of 

cardiogenesis are highly conserved among vertebrates. Lineage tracing 

experiments in the mouse and chick have shown the cardiomyocyte progenitors 

originate from two bilateral populations of cells within the epiblast, lateral to the 

cranial portion of the primitive streak. During gastrulation, these cells are 

specified into the cardiac lineage as they undergo an epithelial to mesenchymal 

transition and ingress through the cranial portion of the primitive streak (Garcia-

Martinez and Schoenwolf, 1993; Tam and Beddington, 1987; Tam et al., 1997). 

Similarly in Xenopus, blastomeres fated to contribute to the heart can be 

identified as early as the 32-cell stage. These cells reside in two populations 

located in the dorsal marginal zone on either side of the organizer (Cohen-Gould 

and Mikawa, 1996; Dale and Slack, 1987; DeHaan and Ursprung, 1965; Moody, 
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1987). During gastrulation, these cells are specified to the cardiac lineage (Antin 

et al., 1994; Nascone and Mercola, 1995; Sater and Jacobson, 1989).  

 

Lineage tracing studies in the chick demonstrated that the cranial-caudal 

order in which the cardiac progenitors ingress through the primitive streak is 

maintained in the cranial-caudal organization of the cardiac progenitors in the 

future primary heart tube. This process is referred to as coalignment (Garcia-

Martinez and Schoenwolf, 1993; Lopez-Sanchez et al., 2001; Rosenquist, 1970). 

Thus, the first cardiac progenitors that ingress though the cranial primitive streak 

give rise to the cranial region of the linear heart tube whereas the last cardiac 

progenitors to ingress through the middle of the primitive streak give rise to the 

caudal region of the linear heart tube. It remains unknown if coalignment exists in 

the mouse. In all vertebrate species, including the mouse, chick, frog, and fish, 

the cardiomyocyte progenitors migrate within the lateral plate mesoderm 

anteriorally and ventrally towards the anterior ventral midline of the embryo 

(Fishman and Chien, 1997; Kolker et al., 2000; Mohun et al., 2000; Sater and 

Jacobson, 1990).  

 

As cardiomyocyte progenitor cells migrate, they become committed to a 

cardiac lineage. In several vertebrate species, including mouse, chick, frog and 

fish, the cardiomyocyte progenitor field is first molecularly distinguished by the 

expression of NKX2.5, GATA4, -5 and -6 (Charron and Nemer, 1999; Molkentin, 

2000; Reiter et al., 1999; Schwartz and Olson, 1999). The molecular 
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determinants of cardiac induction are not entirely known. However, it is clear that 

secreted signals emanating from adjacent tissues create a delicate balance of 

pro- and anti-cardiogenic factors that define the cardiomyocyte progenitor field. In 

the mouse, Hedgehog signals emanating from the primitive streak and the 

underlying visceral endoderm is a pro-cardiogenic factor that serves as one of 

the earliest identified inducers of Nkx2.5 expression (Zhang et al., 2001). In 

addition, both Sonic and Indian Hedgehog upregulate the expression of BMP4 

(Dyer et al., 2001). Meanwhile, studies in the chick show BMP4 and BMP2 

secreted from the anterior endoderm juxtaposed to the cardiac region are potent 

inducers of the cardiac program. BMP4 and BMP2 are required to upregulate 

expression of Gata4 and Nkx2.5 (Schultheiss et al., 1997). To limit BMP-

mediated cardiac induction, the BMP antagonists Noggin and Chordin emanate 

from the neural plate and notochord in mouse, chick and frog to inhibit the BMP 

pro-cardiac signals (Klingensmith et al., 1999; Nakajima et al., 2002; Sasai et al., 

1994; Zimmerman et al., 1996). Additionally, Wnt-1 and Wnt-3a are secreted 

from the adjacent neural tissue in chick and frog to inhibit cardiac induction 

through the canonical Wnt signaling pathway (Schneider and Mercola, 2001; 

Tzahor and Lassar, 2001). However, to maintain balance, mesodermal 

expression of Wnt-11 in frog induces cardiomyocyte progenitors though the JNK-

mediated, non-canonical Wnt pathway, which in turn inhibits anti-cardiogenic 

canonical Wnt signals from the adjacent neural tissue (Pandur et al., 2002). 

While there are many additional signals that regulate cardiac induction, it is clear 
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that cardiac transcription factors and signals secreted from surrounding tissues 

work together to delimit the cardiac field. 

 

Cardiomyocyte progenitors in mouse and chick actively migrate as two 

bilateral sheets within the lateral mesodermal tissue. Progenitors migrate to the 

ventral midline in part by interacting with a fibronectin matrix deposited between 

the underlying ectoderm and overlying endoderm (Fig 1.1A) (George et al., 1993; 

Linask and Lash, 1986). The dependence on fibronectin for directional migration 

of the cardiomyocyte progenitors was corroborated with the zebrafish fibronectin 

mutant natter. In the absence of fibronectin in natter mutants, cardiomyocyte 

progenitors fail to migrate to the ventral midline resulting in cardia bifida, the 

formation of two independent hearts in the lateral aspect of the embryo. (Trinh 

and Stainier, 2004).  

 

As demonstrated in the chick, during normal development, the two 

bilateral cardiomyocyte progenitor fields fuse across the midline to form a 

crescent-shaped cardiac field (Fig1.1A). The mesodermal tissue divides into the 

dorsal somatic mesoderm and the ventral cardiac mesoderm, which is where the 

cardiomyocyte progenitors are located (Linask, 1992). This cell sorting process 

gives rise to the lining of the pericardial cavity. Simultaneously, a population of 

cells segregates from the cardiomyocyte progenitor field and initiates expression 

of VE-cadherin (Fig 1.1A). This population of cardiac progenitor cells is thought 

to give rise to the endocardium in mouse and chick (Drake and Fleming, 2000; 
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Linask and Lash, 1993; Sugi and Markwald, 1996). Chick and mouse 

cardiomyocyte progenitors become polarized as they begin to express high 

levels of N-cadherin and β-catenin at apical adherens junctions (Fig 1.1A) 

(Linask et al., 2005; Radice et al., 1997). Subsequently, the lateral edges of the 

heart primordium migrate in association with the lateral walls of the forming 

foregut tube, enclosing the endocardial tissue. The tube then fuses dorsally to 

form the linear heart tube (Fig 1.1B). 

 

Through a sequence of complex morphological movements, the linear 

heart tube undergoes right-ward looping (Fig 1.2) (Taber et al., 1995). 

Simultaneously, the cardiomyocyte progenitors undergo differentiation and 

chamber formation. This point of cardiogenesis coincides with the onset of 

cardiomyocyte terminal differentiation as evidenced by the appearance of the 

cardiac muscle-specific proteins in mouse, chick and frog, including Myosin 

Heavy Chain α, Myosin Light Chain 2a, and Troponin Ic (Chambers et al., 1994; 

Drysdale et al., 1994; Franco et al., 1999; Tokuyasu and Maher, 1987). The 

cardiomyocytes undergo myofibrillogenesis where the myofibrils become 

organized into sarcomeres, resulting in contractile cardiomyocytes. The linear 

heart tube continues to extend both cranially and caudally until it detaches and 

extends from the pharynx, forming the primary linear heart tube (Abu-Issa and 

Kirby, 2008).  
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Interestingly, migration of the bilateral cardiomyocyte progenitor fields and 

heart tube formation in zebrafish proceeds in a slightly different manner. As in 

higher vertebrates, the cardiac lineage is specified during gastrulation and 

migrates ventrally in two bilateral fields within the anterior lateral plate mesoderm 

towards the midline of the embryo (Stainier and Fishman, 1992; Stainier et al., 

1993; Warga and Kimmel, 1990). In contrast to higher vertebrates, 

cardiomyocyte progenitors in zebrafish undergo differentiation during migration, 

prior to cardiac fusion (Yelon et al., 1999). During somatogenesis stage 13, the 

cardiomyocyte progenitors uniformly express Cardiac Myosin Light Chain 2 

(CMLC2) throughout a majority of the NKX2.5 population (Yelon et al., 1999). A 

small NKX2.5 population adjacent to the notochord of the embryo does not 

initiate CMLC2 expression and is thought to not contribute to the myocardium 

(Serbedzija et al., 1998; Yelon et al., 1999). Simultaneously, the medial leading 

edges of the bilateral cardiomyocyte progenitor fields initiate expression of 

Ventricular Myosin Heavy Chain (VMHC). Further analysis demonstrates the 

CMLC2+/VMHC+ population defines ventricular cardiomyocytes, while the 

CMLC2+/VMHC- population defines atrial cardiomyocytes (Yelon et al., 1999). 

The expression of these differentiation markers demonstrates the earliest 

molecular diversification of chamber-specific cardiomyocytes. However, this early 

pre-cardiac fusion differentiation is unique to zebrafish and absent in higher 

vertebrates. 
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As cardiogenesis proceeds in zebrafish, cardiac fusion commences as the 

two bilateral cardiac fields fuse across the midline at a posterior portion of the 

medial VMHC+ edges, creating a butterfly shape (Yelon et al., 1999). 

Subsequently, the medial anterior VMHC+ regions fuse, generating a lumen that 

projects dorsally. This dorsal projection of the VMHC expressing cardiomyocyte 

progenitors generates a shallow cone in the dorsal-ventral axis of the embryo 

(Stainier and Fishman, 1992). The cone then tilts posteriorly to the right, which in 

turn extends the heart tube and repositions the heart in the anterior-posterior axis 

of the embryo (Stainier and Fishman, 1992). This movement continues until the 

base of the cone coalesces into the tube, generating a linear heart tube oriented 

with a posterior ventricle and an anterior atrium. The linear heart tube undergoes 

subsequent movements, similar to cardiac looping, to reorient the ventricle 

anterior and to the right of the atrium (Stainier and Fishman, 1992). The chamber 

myocardium thickens as it undergoes concentric growth, in part due to signals 

emanating from the endocardium (Mably et al., 2006; Mably et al., 2003). The 

zebrafish heart later undergoes cardiac cushion formation to form valves 

between the ventricle and atrium (Hu et al., 2000). 

 

Classical lineage and cell labeling studies in the chick have suggested that 

the anterior region of the heart originates from the addition of extracardiac cells 

from an unknown source between developmental stages 12 and 18 (de la Cruz 

et al., 1977; Viragh and Challice, 1973). In 2001, three independent 

investigations in the chick and mouse identified a cardiac progenitor population in 
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the anterior splanchnic mesoderm known as the anterior, or secondary, heart 

field (Cai et al., 2003; Kelly et al., 2001; Mjaatvedt et al., 2001; Waldo et al., 

2001). Together, these studies establish the contribution of the anterior heart 

field population to the myocardial wall of the outflow region of the heart. 

However, it is intriguing that the anterior heart field has challenged the concept of 

separate heart fields and their contribution to the mature heart. To appreciate this 

evolution, one must first understand how the anterior heart field was identified. 

 

In the mouse, the anterior heart field was initially identified using a gene 

trap method, in which a transgene consisting of nuclear lacZ downstream of a 

Myosin Light Chain 1v (MLC1v) 5’ untranslated region randomly integrated 

upstream of the fgf10 locus (Kelly et al., 2001). The nlacZ expression 

recapitulated endogenous FGF10 expression, presumably due to the positional 

effects of fgf10 enhancers. Analysis of β-galactosidase (β-gal) expression in 

combination with endogenous FGF10 expression revealed that FGF10 marked 

the anterior splanchnic mesoderm medial to the earliest differentiated 

cardiomyocytes within the crescent at E7.5. By E8.5, cells expressing FGF10 

and β-gal were displaced to positions anterior and dorsal to the anterior pole of 

the developing heart, within the splanchnic/pharyngeal mesoderm. By E9.5, 

bilateral streams of cells expressing β-gal progressively moved into the outflow 

tract (OFT) and the right ventricle. Interestingly, neither endogenous FGF10 nor 

the nlacZ transgene were expressed in the OFT or the right ventricle indicating 

that FGF10 expression is extinguished after cells are incorporated into the heart 
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as differentiated myocardium. The termination of FGF10 expression coincides 

with the initiation of α-Cardiac Actin in the OFT and the right ventricle 

myocardium (Kelly et al., 2001).  

  

In chick, the OFT is composed of the proximal conus and the distal 

trunous. Mjaatvedt et al. labeled a region of the splanchnic mesoderm anterior 

and dorsal to the linear heart tube in stage 17 chick embryos with Mito Tracker 

fluorescent dye. These labeled cells gave rise to the cardiomyocytes in the distal 

conus and the entire truncus of the OFT (Mjaatvedt et al., 2001). Additionally, in 

vitro co-culture assays demonstrated that the proximal region of the developing 

heart (the right ventricle and the proximal conus) actively recruits anterior 

splanchnic mesodermal cells and is responsible for their differentiation 

(Mjaatvedt et al., 2001).  

  

Waldo et al. identified a secondary heart field (SHF) in the chick (Waldo et 

al., 2001). Waldo et al. localized expression of NKX2.5 and GATA4 from stage 

14 to stage 16 in the splanchnic mesoderm dorsal-caudal to the OFT and dorsal-

anterior to the inflow tract of the heart. Mito Tracker fluorescent dye was used in 

stage 14 chick embryos to label cells within the NKX2.5/GATA4- expressing 

splanchnic mesoderm dorsal-caudal to the anterior (outflow) region of the heart 

tube. Labeled cells were found to ultimately reside in the proximal region of the 

conus, yet were not present in the distal truncus of the OFT (Waldo et al., 2001). 
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However, it is possible that the Mito Tracker dye did not extend to the region of 

the splanchnic mesoderm that would have populated the truncus.  

 

Further analysis demonstrated that BMP2, which is required for proper 

differentiation of the primary cardiomyocytes of the linear tube, is co-expressed 

with NKX2.5 and GATA4 in the dorsal-caudal splanchnic mesoderm. BMP2 is 

also expressed in the distal myocardial end of the OFT. FGF8 was also shown to 

be expressed in the pharyngeal endoderm overlying the splanchnic mesoderm; 

however, FGF8 expression was extinguished at stage 18, coinciding with the 

completion of myocardial incorporation into the heart. Additionally, HNK-1, a 

portion of a cell surface glycoprotein that mediates cell-cell/matrix interactions, 

was expressed as SHF cells translocated into the OFT. As SHF cells 

differentiated into cardiomyocytes, HNK-1 expression was extinguished. It was 

concluded that the SHF (splanchnic mesoderm dorsal-caudal to the outflow 

region) is induced into the cardiac lineage, as evidenced by NKX2.5 and GATA4 

expression. This could be an effect of the combinatorial action of BMP2 and 

FGF8. The SHF progenitor cells become migratory, as indicated by HNK-1 

expression, and migrate into the outflow tract region. Within the OFT, these cells 

encounter increased levels of BMP2 at the distal rim of the myocardium. These 

high levels of BMP2 initiate the differentiation of SHF progenitor cells into 

cardiomyocytes of the OFT (Waldo et al., 2001). 
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The splanchnic mesoderm dorsocaudal to the OFT, the SHF, was also 

found to enter into the anterior cardiac region to contribute the distal outflow 

myocardium of the truncus at the level of the semilunar valves as well as the 

smooth muscle cells at the base of the great arterial vessels in chick (Waldo et 

al., 2005). However, this addition occurred at stage 22 to stage 28, hours later 

than the initial addition of SHF-derived myocardium to the proximal OFT (Waldo 

et al., 2001). The addition of the SHF myocardium to the OFT and the smooth 

muscle cells to the arterial vessels was impaired by unknown mechanisms in 

cardiac neural crest (cNC) ablated embryos (Yelbuz et al., 2002). The cNC cells 

originate from the neural tube in the somitic region of the embryo, where they 

migrate to the heart via the pharyngeal arches to form the aorticopulmonary 

septum, which separates the truncus into the ascending aorta and the pulmonary 

vein (Kirby et al., 1983). Since the SHF-derived smooth muscle cells abut the 

cNC-derived smooth muscle cells, it is intriguing to speculate that the cNC cells 

may recruit the SHF smooth muscle population.  

 

Taken together, the anterior heart field in the mouse and chick located in 

the splanchnic mesoderm contribute cardiomyocytes to the outflow tract of the 

heart. However, there are differences between the two species that will likely be 

uncovered by future study. For example, in the mouse, the anterior heart field is 

broader, consisting of the splanchnic and pharyngeal mesoderm, which also 

contributes cardiomyocytes to the right ventricle. However, in the chick anterior 

heart field derived cardiomyocytes are not found in the right ventricle. It is 
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possible that if the investigators had labeled the splanchnic mesoderm at an 

earlier stage, perhaps stage 12, when myocardial accretion is initiated at the 

OFT, the anterior heart field could have contributed cardiomyocytes to the right 

ventricle. Interestingly, it is presently speculated that the secondary heart field is 

a subdomain of splanchnic mesodermal cells within the anterior heart field and 

therefore does not constitute an independent cardiac field. To definitively address 

this possibility, additional molecular markers of the anterior heart field are 

required, along with a more thorough understanding of the developmental gene 

networks that regulate its development. 

  

Most molecular pathways shown to regulate anterior heart field 

contribution to the heart have been identified in the mouse. For example, a null 

mutation of Islet1 in mice results in the failure to extend the anterior pole of the 

OFT (Cai et al., 2003). Additionally, these mutants lack right ventricles and have 

reduced atrial tissue. Interestingly, similar to FGF10, Islet1 is expressed 

mediodorsal, yet contiguous to the differentiating cardiomyocyte progenitors of 

the primary heart field at E7.5. As the bilateral cardiomyocytes fuse at the ventral 

midline at E8.0, the progenitor field inverts such that the mediodorsal Islet1 cells 

reorient to be repositioned anterodorsal. In contrast, the leading migrating 

cardiomyocyte progenitors of the primary heart field reposition from a lateral to 

ventral position to fuse at the ventral midline (Cai et al., 2003). This reorientation 

of the primary and anterior heart fields also occurs in chick (Abu-Issa and Kirby, 

2008). Islet1 expression is maintained in the splanchnic mesodermal cells of the 
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pharyngeal arches and the splanchnic mesenchyme ventral to the foregut 

endoderm (Cai et al., 2003).  

 

Interestingly, fate mapping of the Islet1 population, presumably the 

anterior heart field, using Islet1-CRE to induce the expression of lacZ, revealed 

that the Islet1 population generated almost all of the OFT and right ventricle. In 

contrast to the lineage tracing in the chick, the Islet1 population also contributed 

65% and 70% of the cardiomyocytes of the right and left atria, respectively. In 

addition, progeny of the Islet1 progenitors contribute approximately 20% of cells 

to the left ventricle. These cells were located in the inner wall of the left ventricle, 

the junctional region between the left and right ventricles (Cai et al., 2003). This 

finding suggests that anterior heart field (as defined by Islet1), along with left 

ventricular primary cardiomyocytes, generate the interventricular septum of the 

heart. Additional analysis suggests that Islet1 is required to maintain an 

undifferentiated state in the anterior heart field by promoting cell proliferation and 

survival. Islet1 is also required for the migration of the splanchnic mesoderm of 

the anterior heart field (Cai et al., 2003). 

 

Mef2c, a MADS domain transcription factor, is a direct transcriptional 

target of Islet1 in the anterior heart field of the mouse (Dodou et al., 2004). 

Similar to the Islet1 mutant, Mef2c mutant mice have gross abnormalities of the 

OFT and the right ventricle (Lin et al., 1997). However, in contrast to Islet1, 

Mef2c is expressed in the OFT and the right ventricle of the murine heart (Lin et 
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al., 1997). The enhancer responsible for Islet1-dependent Mef2c transcription is 

also dependent on the presence of GATA4 (Dodou et al., 2004). In addition to 

Islet1-GATA4 dependent expression of Mef2c, Foxh1, a forkhead transcription 

factor, directly interacts with NKX2.5 to induce expression of Mef2c via an 

enhancer located less than 3 kb from the Islet1-GATA4 enhancer. This enhancer 

induces expression of Mef2c in both the anterior heart field, the OFT and right 

ventricle of the mouse heart (von Both et al., 2004). Interestingly, dHand, a basic 

helix-loop-helix transcription factor predominantly expressed in the right ventricle, 

is a downstream target of Mef2c in mouse (Lin et al., 1997). Therefore, it is 

plausible that Islet1-GATA4 and NKX2.5-Foxh1 interactions differentially initiate 

Mef2c expression in the anterior heart field and in the OFT and the right ventricle, 

respectively. Thus, dHand plays an important role in patterning of the right 

ventricle and OFT. Collectively, these data uncover a molecular pathway 

required for proper development of the right ventricle and OFT of the four-

chambered heart.  

 

Retrospective analysis identified regions colonized in E8.5 mouse hearts 

by clonally related cardiomyocytes by random intragenic recombination of a 

nlaacZ reporter engineered into the Cardiac Actin locus (Meilhac et al., 2004). 

The analysis concluded that the heart was composed of two cell lineages, based 

on cellular regionalization within the cardiac tube. The first lineage generates the 

entirety of the left ventricle, as well as portions of the myocardium of the right 

ventricle, the atria and the atrioventricular canal. The second lineage generates 
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the entirety of the OFT, along with portions of the right ventricle, the atria and the 

atrioventricular canal (Meilhac et al., 2004). Therefore, while the left ventricle and 

OFT disseminate from the first and second field, respectively, all other segments 

of the heart contain a mixture of the two lineages. Notably, the second lineage 

nearly overlaps with the contribution of cells expressing Islet1 in the anterior 

heart field of the developing heart (Cai et al., 2003). It is speculated that cells of 

the second lineage mix with cells of the first lineage in the right ventricle, atria 

and atrioventricular canal prior to the breakdown of the dorsal mesocardium. This 

occurs when the splanchnic mesoderm (anterior heart field) is continuous with 

the dorsal aspect of the primary myocardium. Following the separation of the 

primary heart tube from the pharynx, the second lineage is contiguous only at the 

anterior and posterior poles of the heart tube, and therefore, contribute the 

entirety of the OFT.  

 

This degree of intermingling of the two lineages argues against the 

existence of separate segmented heart fields. Rather, cardiomyocyte progenitors 

may have different responses to complex autonomous and non-autonomous 

patterning cues based on their position within a singular heart field. This 

hypothesis is strengthened by the finding that Islet1 protein is expressed 

throughout the entire cardiac lineage in an E7.5 mouse embryo, as it is in chick 

(Prall et al., 2007; Yuan and Schoenwolf, 2000). In the mouse, Islet1 expression 

is extinguished in differentiating NKX2.5 cardiomyocyte progenitors at E8.0 (Prall 

et al., 2007). Interestingly, Islet1 expression persists in the “primary heart field” in 
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the NKX2.5 null mouse (Prall et al., 2007). Therefore, it is possible that, as in the 

splanchnic mesoderm of the anterior heart field, Islet1 is at the top of the 

hierarchal gene regulatory network within primary and secondary cardiomyocyte 

progenitors to regulate their commitment and differentiation into the cardiac 

lineage.  

 

While the contribution of the OFT and right ventricle from the anterior 

heart field continues to be actively investigated in the mouse and chick, there has 

been very little investigation of the frog anterior heart field. The idea of an 

anterior heart field in the frog is an interesting evolutionary question. Similar to 

higher vertebrates such as the mouse and chick, the frog heart, specifically in 

Xenopus, consists of two atria, a single ventricle and an OFT. However, the frog 

heart lacks a right ventricle. In contrast to zebrafish, frogs possess lungs that 

develop during metamorphosis of the tadpole. Therefore, the frog is an 

evolutionary intermediate between higher vertebrates that possess a 

sophisticated pulmonary circulatory system and lower vertebrates who support a 

rudimentary systemic circulatory system.  

 

In the absence of a right ventricle, Xenopus maintains pulmonary 

circulation by using an evolved tiered blood flow system within the ventricle. 

Systemic deoxygenated blood enters the single ventricle of the Xenopus heart, 

where it is filtered through channel-like structures that maintain separation from 

incoming oxygenated blood. The deoxygenated blood is pumped in to the right 
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atria, where it exits the heart to be oxygenated in the lungs. Following 

oxygenation, the blood reenters the heart via the left atria. The oxygenated blood 

passes through the ventricle, where it again remains separated from the 

deoxygenated blood via the channels. The blood is then pumped out the ventricle 

to the systemic circulation.  

 

In the frog, as in the mouse and chick, Islet1 expression overlaps 

expression of NKX2.5 during neurulation (Brade et al., 2007). The Islet1 and 

NKX2.5 regions separate when the NKX2.5 cardiomyocyte progenitors fuse at 

the ventral midline. Islet1 expression is restricted to the splanchnic mesoderm 

and pharyngeal endoderm anterior and dorsal to the NKX2.5 expressing linear 

heart tube. While Islet1 expression is not detected in the heart tube as it is 

undergoing cardiac looping, NKX2.5 expression is observed extending into the 

dorsal splanchnic mesoderm, overlapping with Islet1 expression (Brade et al., 

2007). This expression pattern is highly similar to that found in both the mouse 

and chick, suggesting the possibility that the frog may possess an anterior heart 

field (Cai et al., 2003; Prall et al., 2007; Waldo et al., 2001). If Islet1 is depleted in 

the Xenopus embryo, the heart remains small and morphologically abnormal. 

However, there is a small rudiment resembling an OFT (Brade et al., 2007). The 

lack of adequate OFT markers hasten further analysis of the extent of OFT 

formation in the Islet1-depleted Xenopus embryo and its contribution from an 

anterior heart field.  
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Shortly before anterior heart field myocardial accretion to the anterior pole 

of the heart is complete, epicardium formation commences. The epicardium is 

derived from a protrusion, the proepicardium, that forms on the pericardial serosa 

overlying the septum transversum near the sinoatrial junction of the heart. In 

E9.0 mice, the proepicardial cells reach the heart by two pathways: one is by 

direct contact between proepicardium and myocardium, and the other is by 

vesiculation of the proepicardium and release of free-floating aggregates that 

attach to the dorsal wall of the heart (Komiyama et al., 1987; Rodgers et al., 

2008). A similar process occurs in stage 14 chick and stage 37 frogs. However, 

in frogs, the proepicardial cells migrate to the dorsal wall of the heart over an 

extracellular matrix stalk that bridges the proepicardium and the heart (Hiruma 

and Hirakow, 1989; Jahr et al., 2008; Manner, 1992; Nahirney et al., 2003). 

 

In the mouse, chick and frog, epicardial cells encase the heart, forming an 

epithelial sleeve that migrates from the back of the heart, over the apex of the 

ventricles, to the front of the heart. Its migration ceases after the OFT is covered. 

Production of extracellular matrix proteins including collagens, laminins, and 

fibronectin forms an interface between the epicardium and the myocardium, 

generating the subepicardium (Kalman et al., 1995; Tidball, 1992). In response to 

myocardial BMP2 and BMP4 signaling, epicardial cells subsequently undergo 

epithelial to mesenchymal transition (EMT) to populate the subepicardium 

(Morabito et al., 2001). These epicardial-derived cells (EPDCs) contribute 

endothelial cells and smooth muscle cells to the coronary vascular plexus, as 
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well as fibroblasts to the myocardium and the subepicardial space (Gittenberger-

de Groot et al., 1998; Manner, 1999; Vrancken Peeters et al., 1999).  

 

Data from embryonic stem cell cultures, quail-chick chimeras, and 

retroviral experiments have suggested that EPDCs are bipotential and 

differentiate into vascular endothelial and smooth muscle cells of the coronary 

vascular plexus in a temporal manner (Dettman et al., 1998; Mikawa and 

Fischman, 1992; Yamashita et al., 2000). Initial EMT produces EPDCs 

expressing Vascular Endothelial Growth Factor Receptor-2 (VEGFR2). In 

response to high levels of VEGF expression from the myocardium and the 

epicardium, VEGF+ EPDCs differentiate into coronary vascular endothelial cells 

(Perez-Pomares et al., 1998a; Perez-Pomares et al., 1998b; Tomanek et al., 

1999). Subsequently, a second wave of EMT produces EPDCs expressing 

Platelet-Derived Growth Factor Receptor-β (PDGFRβ). In response to PDGF 

emanating from the newly formed endothelial plexus, the EPDCs are recruited 

and differentiate into vascular smooth muscle cells of the coronary vasculature 

(Folkman and D'Amore, 1996; Shinbrot et al., 1994). 

 

The epicardium also has a trophic effect on the myocardium, particularly in 

the ventricles. Prior to development of the epicardium in the mouse and chick, 

the ventricular chambers undergo the process of trabeculation. Trabeculation 

involves the formation of finger-like projections of cardiomyocytes that protrude 

into the cardiac jelly of the chamber in responds to signals from the endocardium, 
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particularly the growth factor Neuregulin (Kramer et al., 1996; Meyer and 

Birchmeier, 1995; Stratford et al., 1999). Trabeculae are more differentiated than 

cardiomyocytes of the outer wall, the compact zone. The compact zone of the 

ventricle is highly proliferative and its formation, referred to as compaction, 

coincides with the invasion of EPDCs expressing Wilm’s Tumor-1 (WT-1) into the 

ventricle (Carmona et al., 2001; Gittenberger-de Groot et al., 1998). Interestingly, 

the invading EPDCs and the epicardium express Retinaldehyde-dehydrogenase-

1 (RALDH2), the enzyme responsible for retinoic acid (RA) synthesis (Perez-

Pomares et al., 2002; Xavier-Neto et al., 2000). The EPDCs, as well as the 

compact zone cardiomyocytes, express the RA receptor, RXRα (Kastner et al., 

1994; Sucov et al., 1994). This molecular arrangement is thought to establish an 

autocrine loop, allowing the EPDCs and the compact zone cardiomyocytes to 

sustain proliferation and maintain an undifferentiated state relative to the 

trabeculae (Lavine et al., 2005; Xavier-Neto et al., 2000). 

 

To sustain proliferation, the epicardium maintains Fibroblast Growth 

Factor (FGF) signaling in the compact zone by the RA pathway (Lavine et al., 

2005). In mouse, RA induces the expression of FGF9 in the epicardium. FGF9 

signaling via the FGFR1 and FGFR2 is essential in maintaining the proliferative 

capacity of the compact zone (Lavine et al., 2005). FGF2 and FGFR1 are highly 

expressed in the compact zone relative to the trabeculae, reflecting the 

differential mitotic index of the ventricular compartments (Pennisi et al., 2003). 

Additionally, studies in the chick demonstrate that the epicardium maintains the 
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expression of FGF2 and FGFR1 in the compact zone of the ventricle (Pennisi et 

al., 2003). It is not known if this is related to RA signaling.  

 

REGULATION OF CARIDIAC DIFFERENTIATION 

Differentiation is a process by which cardiomyocyte progenitors integrate 

intrinsic and extrinsic signals, resulting in maturation into a specialized 

cardiomyocytes, thus allowing them to perform functions characteristic of the 

region of the heart in which they ultimately reside. For proper differentiation of 

cardiomyocyte progenitors into functional cardiomyocytes, cardiomyocyte 

progenitors simultaneously undergo both cellular and molecular changes to form 

a chambered heart (Fig 1.1, 1.2). 

 

Cell migration and Cell-Cell/Matrix Interactions 

The expression of terminal differentiation proteins in the mouse, chick and 

frog, such as Myosin Heavy Chain α, Myosin Light Chain 2a, and Troponin Ic, 

coincide with the migration of the bilateral cardiomyocyte progenitor field to the 

ventral midline of the embryo (Chambers et al., 1994; Drysdale et al., 1994; 

Franco et al., 1999; Tokuyasu and Maher, 1987). However, mutations in the 

mouse and frog that prohibit migration of cardiomyocyte progenitors to the 

ventral midline do not necessarily inhibit cardiomyocyte differentiation. This 

suggests that differentiation is independent and separable from migration. For 

example, mice with a mutation in Nap1, a regulatory component of the WAVE 

complex that regulates the actin cytoskeleton, exhibit cardia bifida due to 
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destabilization of the WAVE complex. This in turn prevents cardiomyocyte 

progenitor migration (Rakeman and Anderson, 2006). However, the Nap1 mutant 

bifida hearts undergo morphogenesis and contract, suggesting differentiation 

occurs despite improper migration and cardiac fusion. A similar phenotype is 

seen in HSP27 (Heat Shock Protein 27)-depleted frog embryos (Brown et al., 

2007). Despite the inhibition of proper cardiac fusion, the resulting two bilateral 

HSP27-depleted hearts do undergo differentiation as demonstrated by Myosin 

Heavy Chain and Troponin Ic expression.  

 

Proper cardiomyocyte differentiation, independent of cardiomyocyte 

progenitor migration, is corroborated by multiple zebrafish mutants, including 

casanova (a novel SOX family transcription factor), miles apart (a sphingosine-1-

phosphate receptor) and one-eyed pinhead (member of the EGF-CFC family) 

(Chen et al., 1996; Kikuchi et al., 2001; Kupperman et al., 2000; Stainier et al., 

1996; Zhang et al., 1998). These three proteins are required for morphogenesis 

of the adjacent endoderm, as well as for creating a permissive environment for 

migration of the cardiomyocytes. In the absence of these proteins, the number of 

cardiomyocyte progenitors specified to the cardiac lineage is reduced. 

Subsequently, there is limited migration to the ventral midline of the embryo. 

Although this results in cardia bifida, the chamber myocardium does undergo 

differentiation (Chen et al., 1996; Stainier et al., 1996). However, as stated 

previously, zebrafish cardiomyocyte progenitors differentiate prior to cardiac 

migration and fusion. Therefore, differentiation would have already occurred. 
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Despite species variation, formation of a linear heart tube comprised of 

differentiated cardiomyocytes in the absence of proper fusion of the bilateral 

cardiac fields implies that cardiomyocyte differentiation is independent of cell 

migration and cardiac fusion. 

 

Cell-cell contact is an essential component of cardiomyocyte 

differentiation. As mentioned above, at the time of fusion across the ventral 

midline, cardiomyocyte progenitors in the mouse, chick and frog epithelialize to 

form a single coherent sheet. In addition, it was demonstrated in chick that the 

cardiomyocyte progenitors polarize as they express calcium dependent N-

Cadherin and β-Catenin at apical adherens junctions, while maintaining cell-

matrix interaction via Fibronectin and integrins at their basal surfaces (Fig 1.1A) 

(Linask, 1992; Linask et al., 2005). While β-Catenin is a key downstream 

component of the canonical Wnt signaling pathway and essential for 

cardiogenesis, Fibronectin/integrin signaling as well as N-Cadherin, mediate 

myofibrillogenesis by aiding in proper alignment of the myofibrils at the plasma 

membrane of epithelialized cells (Luo and Radice, 2003). 

 

The necessity of cell-cell contact has been verified with two zebrafish 

mutants, heart and soul and glass onion (Bagatto et al., 2006; Horne-Badovinac 

et al., 2001; Rohr et al., 2006; Stainier et al., 1996). The heart and soul zebrafish 

locus encodes an atypical protein kinase C (aPCKλ). In the absence of aPCKλ, 

tilting and elongation of the cardiac cone is impaired (Yelon et al., 1999). Further 
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analysis of the mutant phenotype determined aPCKλ is required to maintain 

epithelial integrity and polarization of the cardiomyocytes (Rohr et al., 2006). The 

glass onion zebrafish mutant locus encodes Cadherin2 (N-Cadherin) (Bagatto et 

al., 2006). Loss of Cadherin2 results in loosely organized cardiomyocytes with 

greatly reduced VMHC expression, suggesting N-cadherin is required for proper 

differentiation of the ventricular cardiomyocytes. Notably, the expression of 

CMLV, a differentiation marker of both the ventricle and the atrium, is properly 

expressed. However, the mutant heart does contract. Therefore, while disrupted 

cell epithelization does not entirely inhibit differentiation, it does appear to be 

required for initiation of early cardiomyocyte differentiation, particularly in the 

ventricle. 

 

Proliferation 

Additional cellular changes accompany cardiomyocyte differentiation. As 

the sheet of cardiomyocyte progenitors fold to form a linear heart tube, the entire 

heart tube consists of “primary” myocardium phenotypically characterized by 

negligible proliferation, low density of gap junction proteins, and slow conduction 

capacity (Christoffels et al., 2000; de Jong et al., 1992; Moorman et al., 1998). 

Shortly thereafter, as shown in the mouse, chick and frog, the ventral 

cardiomyocyte progenitors of the linear heart tube become specialized both 

molecularly and cellularly as they increase in size and begin to rapidly proliferate 

(Fig 1.1B) (Christoffels et al., 2000; Mohun, 2000; Soufan et al., 2006). This 

localized size expansion and proliferation forces the ventral side of the linear 
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heart tube to bulge out to form the primitive ventricle (Fig 1.2). Moreover, fate 

mapping of the ventral midline cardiomyocyte progenitors in both the chick and 

frog reveal the ventral midline cardiomyocyte progenitors of the linear heart tube 

ultimately contribute to the outer-most wall of the ventricle (Fig 1.1, 1.2) 

(Christine and Conlon, 2008; De La Cruz et al., 1989). This sequence of events 

is commonly referred to as the “ballooning” model of chamber formation and is 

thought to provide the means for cardiac looping (Christoffels et al., 2000). The 

newly formed chamber myocardium acquires chamber restricted expression of 

various transcription factors, high density of gap junctions and high conduction 

velocities (Christoffels et al., 2000). During cardiac looping, the dorsal 

cardiomyocytes of the linear heart tube reorganize to reside in the inner 

curvature of the chambered heart where they remain phenotypically in the 

primary myocardial state (Christoffels et al., 2000).  

 

Detailed retrospective analysis of cardiomyocyte growth properties in 

mouse using the nuclear laacZ reporter in the α-Cardiac Actin locus has revealed 

that the chamber myocardium proliferates in an oriented manner along the 

transmural axis. Higher proliferation occurs in the compact zone of the ventricular 

chamber resulting in the myocardial thickening of the ventricular chamber 

(Meilhac et al., 2003). This oriented proliferation, referred to as coherent growth, 

is concomitant with oriented myofibrillogenesis. Similarly, in zebrafish, the 

ventricle myocardium proliferates in an oriented manner. The requirement for 

oriented coherent growth of the ventricle is highlighted by three zebrafish 
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mutants, heart of glass, santa and valentine (Stainier et al., 1996). Heart of glass 

encodes a novel transmembrane protein in the endocardium, while santa and 

valentine encode signaling cytoplasmic proteins Cerebral Cavernous 

Malformations (CCM)-1 and -2, respectively. These proteins are expressed in 

endothelial cells of the vasculature (Mably et al., 2006; Mably et al., 2003). All 

three mutants have distended single-layered ventricles, despite having the 

proper number of cardiomyocytes. Further analysis revealed that cardiomyocyte 

proliferation occurred along the anterior-posterior axis instead of the transmural 

axis, resulting in expansion of the chamber rather than concentric growth and 

thickening (Mably et al., 2006; Mably et al., 2003). 

 

Regionalized Cardiac Gene Expression 

 Concomitant with the cellular modifications associated with differentiation, 

cardiomyocyte progenitors undergo molecular transformations to become 

specialized cardiomyocytes within the chambered heart. Multiple events occur 

simultaneously as the combinatorial effort of general cardiogenic factors, as well 

as chamber-specific factors, gradually restrict the potential of cardiomyocyte 

progenitors and facilitate the formation of regionalized chamber myocardium of 

the functional heart. 

 

For proper maturation to occur, cardiomyocyte progenitors must maintain 

expression of the early cardiac transcription factors NKX2.5 and GATA4, -5 and -

6. Numerous studies in the mouse, frog and fish determined that the endoderm is 
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a major source of secreted pro-cardiogenic factors that facilitate the maintenance 

of general cardiac transcription factor expression, including NKX2.5 and GATA4, 

-5 and -6 (Molkentin et al., 1997; Peterkin et al., 2003; Reiter et al., 2001; Shi et 

al., 2000; Walters et al., 2001). For example, in the frog and fish, endodermal 

expression of GATA6 is partially responsible for upregulation of BMP4 

expression (Peterkin et al., 2003). BMP4 is then secreted from the endoderm, 

resulting in the upregulation of NKX2.5 in the cardiomyocyte progenitors 

(Peterkin et al., 2003; Shi et al., 2000; Walters et al., 2001). In the zebrafish, 

GATA5 is downstream of endodermal BMP signaling and is required in 

cardiomyocyte progenitors to increase NKX2.5 expression in the cardiac lineage 

(Reiter et al., 2001). The zebrafish mutant locus faust encodes GATA-5 (Reiter et 

al., 1999; Stainier et al., 1996). The faust mutant preferentially forms an atria, yet 

lacks a differentiated ventricular chamber (Reiter et al., 1999; Reiter et al., 2001). 

This may be a direct result of diminished expression of NKX2.5 in the ventricular 

cardiomyocyte progenitors. In the absence of sustained NKX2.5 expression, the 

cardiomyocyte progenitors fail to induce expression of Cardiac Actin, Myosin 

Light Chain and Troponin C and remain in a progenitor state (Shi et al., 2000; 

Walters et al., 2001). 

 

The factors that determine specificity during this later stage of general 

cardiac transcription factor expression are not known. It is possible that local 

structural changes in chromatin mediate expression by allowing access to region-

specific enhancers of the chamber-restricted genes. In zebrafish, the pandora 
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mutant loci encodes SPT6, a transcription elongation factor (Keegan et al., 

2002). Homologues of SPT6 bind histones, particularly histone H3, and 

assemble nucleosomes in vitro, altering DNA accessiblity (Bortvin and Winston, 

1996). Initial differentiation in the pandora mutant cardiomyocyte progenitors is 

inhibited. However, during formation of the cardiac cone, cardiomyocytes 

express low levels of CMLC2 and VMHC. This results in a heart that consists of a 

thin stalk of VMHC+ ventricular cardiomyocytes and an atria-like chamber (Yelon 

et al., 1999). Although no in vivo targets of zebrafish SPT6 have been identified, 

it is intriguing to speculate that SPT6 regulates the timing of cardiomyocyte 

differentiation by modifying chromatin assembly and gene accessibility. 

 

In the presence of sustained general cardiac transcription factor 

expression throughout the myocardium, how do cardiomyocyte progenitors 

progress molecularly from a state of primary myocardium to chamber 

myocardium? Detailed studies over the past decade have deciphered the 

morphogenic program of the developing chambered heart, particularly the 

ventricle, yet there is still more to be elucidated. For instance, in the mouse and 

chick, only after the initiation of cardiac looping, when the cardiomyocytes are 

distinguished morphologically and electrophysiologically as ventricle chamber 

myocardium, are chamber-restricted regulators expressed, including Atrial 

Natriuretic Factor (ANF), IRX4, Chisel, and Connexin 43 (Bruneau et al., 2000; 

Christoffels et al., 2000; Houweling et al., 2002; Minkoff et al., 1993; Palmer et 

al., 2001; Yamagishi et al., 2001). The transition from a contiguous sheet of 
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cardiomyocyte progenitors to a looped, chambered heart is suggestive of 

molecular pattering that governs differentiation within specific regions along the 

dorsoventral axis of the linear heart tube, particularly in the ventral region that will 

generate the future left ventricle.  

 

However, very few known proteins are expressed exclusively in the ventral 

cardiomyocyte progenitors of the linear heart tube. One exception is the bHLH 

transcription factor eHand, which is expressed predominantly in the ventral 

cardiomyocyte progenitors of the linear heart tube in the mouse, frog and fish 

(Fig 1.1B) (Christoffels et al., 2000; Mohun, 2000; Thomas et al., 1998). Yet, very 

little is known of upstream and downstream mechanisms of eHAND function 

which would aid in deciphering mechanisms of differentiation in the dorsoventral 

axis of the linear heart tube. It has been suggested that Hif1α (Hypoxia Inducible 

Factor 1alpha) functions upstream of eHand, as knockout mice of Hif1α lack 

eHand expression. However, it is not known if Hif1α directly regulates eHand 

(Compernolle et al., 2003). If Hif1α is a regulator of eHand, this would suggest 

that an anoxic environment is required for cardiomyocyte differentiation. eHand 

does seem to be required to demarcate the limits of the left ventricle, as its 

expression is restricted to the left ventricle chamber myocardium in the mouse 

and chick (Srivastava, 1997; Srivastava et al., 1995).  

  

Deciphering the mechanisms of cardiomyocyte differentiation requires 

more than determining where and when a regionally-restricted gene is 
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expressed. It is more intriguing to understand how these factors cooperate to 

activate and/or repress differentiation of chamber myocardium in a regionally-

restricted manner. For example, GATA4 and NKX2.5 regulate transcription of 

multiple chamber myocardium differentiation genes. In mice and chick, GATA4 

and NKX2.5 transcriptionally cooperate throughout the myocardium to induce the 

expression of Cardiac Actin (Sepulveda et al., 2002). However, numerous 

studies have demonstrated the requirement of cofactors that synergize with both 

GATA4 and NKX2.5 to limit expression of chamber-restricted genes. For 

example, in the mouse and chick, NKX2.5 and GATA4 synergize with TBX5, a T-

box transcription factor expressed in the chamber myocardium of the atria and 

left ventricle, to upregulate ANF (Bruneau et al., 1999; Bruneau et al., 2001; 

Chapman et al., 1996; Hiroi et al., 2001; Plageman and Yutzey, 2004). TBX2, a 

T-box transcription factor expressed in the primary myocardium of the outflow 

tract, atrial ventricular canal, and inner curvature of the heart, forms a 

transcriptional complex with NKX2.5 which in turn inhibits TBX5 from binding 

NKX2.5, thus inhibiting expression of ANF in primary myocardium (Habets et al., 

2002). Additionally, TBX2 directly represses expression of chamber myocardium 

genes such as Connexin 40, as well as N-MYC, to inhibit proliferation (Cai et al., 

2005; Habets et al., 2002; Singh et al., 2005). Simultaneously, in the chamber 

myocardium, TBX20, a T-box transcription factor expressed throughout the 

chamber myocardium, directly activates expression of N-MYC within the mouse 

chamber myocardium, resulting in regionalized proliferation (Cai et al., 2005; 

Singh et al., 2005). The GATA4 - NKX2.5 – TBX5 - TBX20 – TBX2 
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cardiomyocyte differentiation program in part promotes the transition from 

primary linear heart tube myocardium to differentiated chamber myocardium (Fig 

1.2). However, this gene network does not constitute the sole mechanism of 

differentiation in the chambered heart.  

 

These are just a few examples that highlight the molecular complexities 

that exist to formulate regional identity within a cardiomyocyte progenitor 

population which then drives their differentiation into a chamber cardiomyocytes. 

They also underscore what remains to be discovered. While it is evident that both 

intrinsic and extrinsic mechanisms create regionalized diversity and complexity to 

form a functional heart, there remain large gaps in the understanding of the 

intricacies of cardiomyocyte differentiation. For example, given the chamber-

specific expression of ANF, Chisel, and Connexin 40 in chamber myocardium, it 

is likely that their expression depends on the mediolateral and dorsoventral 

patterning of the newly fused cardiomyocyte progenitor field and the linear heart 

tube, respectively. However, eHand is one of very few transcription factors 

known to be expressed in a ventricularly-restricted fashion in the linear heart 

tube. In light of the transcriptional regulation of chamber-restricted genes by 

general cardiac transcription factor complexes, there may exist an additional 

level of complexity of cardiomyocyte differentiation in the form of unknown 

chamber specific cofactors. Therefore, it is necessary to identify more proteins 

involved in the early differentiation of the cardiomyocyte progenitors and 

determine the mechanisms by which they function. The remainder of this thesis 
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focuses on CASTOR, a zinc finger transcription factor previously shown to be 

required for the proper differentiation of a subset of neuronal progenitors in the 

Drosophila central nervous system.  

 

CASTOR 

 CASTOR is a zinc-finger transcription factor that is required for proper 

differentiation of multiple tissue-specific progenitor populations (Christine and 

Conlon, 2008; Cui and Doe, 1992; Mellerick et al., 1992). Vertebrate CASTOR 

(CST) encodes a unique zinc finger protein. In each of the five CST zinc finger 

domains there is a classical TFIIIA Cys2His2 motif immediately proceeded by an 

additional Cys2His2 motif, creating a novel para zinc finger motif (Christine and 

Conlon, 2008; Liu et al., 2006; Miller et al., 1985; Vacalla and Theil, 2002). While 

vertebrate CST orthologues contain five para-zinc finger domains, only four para 

zinc fingers are present in Drosophila CASTOR (dCas) (Cui and Doe, 1992; 

Mellerick et al., 1992).  

 

dCas was initially identified and shown to be required for the spatial and 

temporal patterning of neuronal precursors in the developing Drosophila central 

nervous system (Cui and Doe, 1992; Mellerick et al., 1992). Within the 

developing CNS, the stem cell-like neuroblast generates a unique and invariant 

lineage by asymmetrically dividing to generate a neuroblast and a ganglion 

mother cell which continues to further divide, giving rise to neurons and/or glia. 

The sequential expression of four transcription factors - Hunchback (Hb), Kruppel 
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(Kr), Pdm1/2, and Castor (dCas) – reflects the spatial and temporal birth order, 

as well as the identity of the neuroblasts. Hb is expressed in early born 

neuroblasts, Kr and Pdm1/2 (referred to as Pdm) are expressed in intermediate 

neuroblasts, while dCas is expressed in late-born neuroblasts (Fig 1.3) (Isshiki et 

al., 2001). This pattern of expression is tightly correlated with the spatial identity 

of the neuronal lineage. Early born Hb-expressing lineages are found within deep 

layers of the embryo, while late-born dCAS lineages remain in more superficial 

layers of the embryo (Isshiki et al., 2001; Pearson and Doe, 2003). In this way, 

the temporal and spatial expression cascade generates a stereotyped sequence 

of neuronal progeny, creating a multilayered neuron network within the embryo.  

 

Multiple neuronal lineage studies have revealed the intricacies of how the 

neuroblast integrates spatial and temporal cues to generate the neuronal 

diversity defined by the expression cascade mentioned above. Misexpression 

studies show that each transcription factor in the cascade series initiates the 

expression of the succeeding transcription factor in a newly born neuroblast to 

progress the temporal identity window of the lineage (Fig 1.3). The expression of 

the new transcription factor then represses the expression of the previous 

transcription factor in the cascade (Isshiki et al., 2001). For example, Pdm is 

sufficient to drive the expression of dCas in the U5 motorneuron-generating 

neuroblast of the NB 7-1 lineage (Grosskortenhaus et al., 2006). Although Pdm 

acts alone to specify the previous U4 motorneuron lineage, Pdm and dCas act 

combinatorially in the subsequent NB to specify the U5 motorneuron lineage. As 
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dCas expression increases in the ensuing NB, dCas represses Pdm expression, 

thereby inducing the interneuron fate (Fig 1.3A). Consistent with this hypothesis, 

in the absence of dCas, Pdm is ectopically expressed due to its de-repression, 

resulting in excess U4 motorneurons at the expense of the Pdm/dCAS-positive 

U5 motorneurons, and possibly the interneurons as well (Grosskortenhaus et al., 

2006). However, precocious dCas expression is insufficient to specify the U5 

motorneuron fate, presumably due to repressed Pdm expression 

(Grosskortenhaus et al., 2006). It remains unknown if dCas alone is required to 

specify a neuronal identity in the NB 7-1 lineage due to a lack of an established 

interneuron lineage marker.  

 

Hb and Kr are termed general temporal identity factors since they are both 

necessary and sufficient to specify the first and second temporal identities, 

respectively, in multiple neuronal lineages, including NB 7-1 and NB 3-1 (Fig 

1.3A, B) (Isshiki et al., 2001; Tran and Doe, 2008). Initially, Pdm and dCas were 

defined as temporal identity factors when it was demonstrated that both were 

necessary and sufficient to specify the late-born identities in the NB 7-1 lineage 

(Fig 1.3A) (Grosskortenhaus et al., 2006). However, a detailed examination of 

the NB 3-1 neuronal lineage reveals that Pdm and dCas may not be general 

temporal identity factors as once thought. Despite being required for proper 

specification of late-born temporal identities in the NB 7-1 lineage, neither Pdm or 

dCas are directly required to specify the RP motorneuron identities in the NB 3-1 

lineage (Fig 1.3B) (Tran and Doe, 2008). However, both are required to restrict 
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the previous temporal identity window by repressing the expression of the 

previous transcription factor (Tran and Doe, 2008). For example, Pdm is required 

to repress Kr expression in the RP5-generating NB; however, it is not sufficient to 

specify the RP5 lineage (Tran and Doe, 2008). In the successive interneuron-

generating NB, dCas is required to repress Pdm expression for the proper 

advancement of the interneuron identity state (Fig 1.3B) (Tran and Doe, 2008). 

However, in the absence of an interneuron lineage marker, it has yet to be 

determined whether dCas is required for the specification of the late-born NBs 

responsible for producing interneurons. Therefore, dCas, as well as Pdm, are 

termed “timing factors” (Tran and Doe, 2008).  

 

In addition to its role in generating neuronal diversity, dCas is also 

required for the proper development of adult brain structures. Cell clusters 

expressing dCas interact with neighboring cells expressing the Drosophila genes 

linotte/derailed  and no-bridge in a non-cell autonomous fashion to control axonal 

outgrowth (Hitier et al., 2001). The gene linotte/derailed encodes a 

transmembrane receptor tyrosine kinase protein homologous to the mammalian 

RYK protein (Dura et al., 1995). This study suggests that dCas transcriptionally 

induces the expression of an unknown protein, allowing the dCas cell to respond 

to a signal originating from a neighboring cell expressing linotte/derailed and/or 

no-bridge (Hitier et al., 2001). Although much effort has led to the current 

understanding of the importance of dCas in generating neuronal diversity and 
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developing the adult brain, the mechanisms by which dCas functions are not 

known. 

 

UV-induced protein-DNA crosslinking studies conclude that dCas binds 

genomic DNA (Kambadur et al., 1998). Cyclic amplification of DNA target 

selection demonstrated that dCas binds directly to a ten basepair consensus 

sequence [(G/C)C(C/T)(C/T)AAAAA(A/T)] (Kambadur et al., 1998). Analysis of 

the Pdm promoter identified an enhancer element containing the dCas DNA 

binding site. dCas binds this enhancer element both in vitro and in vivo to repress 

the transcriptional expression of Pdm (Kambadur et al., 1998). To date, the Pdm 

is the only identified direct transcriptional target of dCas. 

 

Very little is known about vertebrate CST. Murine CST is expressed at 

E8.0 in the cardiomyocyte progenitor population of the linear tube and is 

continually expressed in the heart throughout development (Vacalla and Theil, 

2002). However, this expression analysis does not exclude the possibly that CST 

is expressed earlier within the migrating specified cardiomyocyte precursor 

population. CST is expressed in the lateral neural folds. By E9.5, its expression is 

restricted to the dorsal neural tube adjacent to the roof plate. At E11.5, CST 

mRNA is also detected in the dorsal aspect of the eye, the nasal placode and 

other neuronal derivatives.  
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 The human orthologue of CST has also been identified (Liu et al., 2006). 

Humans have two hCST proteins divergent in the 3’ terminus. Human CST5 

contains five zinc finger repeats, while hCST11, a product of alternative splicing, 

contains eleven zinc finger repeats. Northern blot analysis shows that both hCst5 

and hCst11 are highly expressed in adult heart tissue. In addition, in vitro assays 

confirm that hCst mRNA is upregulated upon differentiation of myoblasts into 

myotubes (C2C12 cells) and neuroblastoma cells (KCNR cells) into neuronal-like 

cells.  

 

 

DISSERTATION GOALS 

 Defining precise mechanisms of cardiomyocyte differentiation will provide 

valuable insight into the foundation of cardiogenesis as well as a possible basis 

for congenital cardiac diseases. Based on the function of dCAS to spatially and 

temporally regulate the differentiation of a subset of neuronal progenitor cells and 

the expression of murine CST in the linear heart tube, we sought to define a role 

for CST in the differentiation of a subset of cardiomyocyte progenitors using 

Xenopus as a model system. In Chapter 2, I characterize the requirement of 

vertebrate CST for the timely differentiation of a subset of cardiomyocyte 

progenitors at the ventral midline of the linear heart tube. Specifically, I show that 

CST is required at the ventral midline for their proper differentiation, while CST is 

required in more dorsally located cardiomyocyte progenitors to regulate 

cardiomyocyte proliferation. We go on to demonstrate by fate mapping analysis 
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for the first time in Xenopus that ventral midline cardiomyocyte progenitors 

ultimately reside in the outer curvature of the ventricle wall. In the absence of 

CST, the ventral midline cardiomyocyte progenitors remain in a progenitor state 

and fail to integrate into the mature heart. To begin to understand how CST 

mechanistically functions in the cardiomyocyte progenitors, Chapter 3 focuses on 

identifying the DNA binding site recognized by CST using a bacterial one-hybrid 

screen. No direct transcriptional targets of vertebrate CST have been identified. 

In effort to further define the molecular pathways by which CST functions in 

cardiogenesis, Chapter 4 focuses on a cloning ChIP screen to identify potential 

transcriptional targets of CST. Defining the molecular mechanisms regulated by 

CST will enhance the understanding of cardiomyocyte differentiation. 
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Figure 1.1  Cardiac fusion and linear tube formation of the vertebrate heart 

(A) A schematic depiction of the heart subsequent to fusion of the bilateral 

cardiac fields (left) based on mouse (E7.5) and chick (stage 9) (ventral view with 

anterior to the top). Ventral midline cardiomyocytes (X) are located at the region 

of fusion. The transverse section (right) depicts cardiomyocyte progenitors 

undergoing apical-basal polarization and initiating differentiation into primary 

myocardium in response to maintained expression of general cardiac 

transcription factors (such as NKX2.5) by extrinsic signals from the overlying 

endoderm. Subsequent to cell sorting of the mesoderm, endocardial tissue 

begins to express endothelial specific VE-Cadherin. (B) A schematic depiction of 

the linear heart tube (left) in mouse (E8.0) and chick (stage 10) (ventral view with 

anterior to the top). The transverse section (right) illustrates the differentiation of 

the ventral cardiomyocytes into chamber myocardium and its localized patterning 

with the expression of eHand. The proliferation ventral chamber cardiomyocytes 

are larger in comparison to the smaller cardiomyocytes of the primary 

myocardium in the dorsal region of the linear heart tube.  
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Figure 1.2    Differentiation of chamber myocardium during cardiac 

morphogenesis 

Schematic depicting the early stages of cardiac looping and morphogenesis in 

mouse (E9.0) and chick (stage 11). General cardiac transcription factor (i.e. 

NKX2.5 and GATA4) complex with chamber specific transcription factors (i.e. 

TBX5) to initiate expression of chamber restricted genes (i.e. ANF). Chamber 

myocardium rapidly proliferates to extend the ventricular tissue in part under the 

control of TBX20 and its activation of N-Myc. After proliferation, the ventral 

midline cardiomyocyte progenitors (X) ultimately reside on the outer wall of the 

left ventricle. Simultaneously, the outflow tract, atrial ventricular canal and the 

inner curvature of the heart maintains a primary myocardial state in part by 

inhibiting chamber specific gene expression and maintaining low rates of 

proliferation in part by the transcriptional repressive affects of TBX2. AO – aorta, 

SV – sinus venosus, Primary myocardium: OFT – outflow tract, IC – inner 

curvature, AVC – atrial ventricular canal, Chamber myocardium: RV – right 

ventricle, LV – left ventricle, AT- atria. 
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Figure 1.3   dCas is required for the specification of late born neuronal 

identities in the NB 7-1 and NB 3-1 lineages 

Neuroblasts (NB) of the Drosophila central nervous system asymmetrically divide 

to generate an additional NB and a ganglion mother cell (GMC) which 

subsequently divides into two neuron and/or glia. NB lineages sequentially 

express four transcription factors that dictate the NB birth order – Hunchback 

(Hb), Krupple (Kr), Pdm 1/2 (Pdm), and Castor (dCas). Each transcription factor 

initiates the expression of the following transcription factor yet inhibits the 

expression of the previous transcription factor. (A) Temporal gene expression 

profile of the NB 7-1 lineage. The NB 7-1 lineage gives rise to five U type 

motorneurons followed by multiple interneurons. dCas is necessary in 

combination with Pdm to specify the late born U5 motorneuron derived from NB 

5. dCas inhibits Pdm expression in NB 6 where it may specify the interneuron 

identity (no specific interneuron marker is presently available). (B) Temporal 

gene expression profile in the NB 3-1 lineage. The NB 3-1 lineage generates four 

RP type motorneurons followed by multiple interneurons. dCas is required to 

inhibit Pdm expression in NB 5 to close the previous temporal identity window. 

dCas may specify the interneurons derived from NB5. NB 4 expresses an 

unknown temporal identity transcription factor (?). Although Pdm is not required 

to specify the RP5 motorneurons, it is required to inhibit Kr expression in NB 4 

and close the previous temporal identity window. 
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Chapter 2 

 

Vertebrate CASTOR is required for differentiation of 

cardiac precursor cells at the ventral midline 

 

Reprinted from Developmental Cell, Volume 14, Kathleen S. Christine and Frank 

L. Conlon, Vertebrate CASTOR Is Required for Differentiation of Cardiac 

Precursor Cells at the Ventral Midline, 616-623, 2008, with permission from 

Elsevier. 

 

ABSTRACT 

 The CASTOR (CST) transcription factor was initially identified for its role in 

maintaining stem cell competence in the Drosophila dorsal midline. Here we 

report Xenopus CST affects cardiogenesis. In CST-depleted embryos, 

cardiomyocytes at the ventral midline arrest and are maintained as cardiac 

progenitors, while cells in more dorsal regions of the heart undergo their normal 

program of differentiation. Cardia bifida results from failed midline differentiation, 

even though cardiac cell migration and initial cell fate specification occur 

normally. Our fate mapping studies reveal that this ventral midline population of
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cardiomyocytes ultimately gives rise to the outer curvature of the heart; however, 

CST-depleted midline cells over proliferate and remain a coherent population of 

nonintegrated cells positioned on the outer wall of the ventricle. These midline-

specific requirements for CST suggest the regulation of cardiomyocyte 

differentiation is regionalized along a dorsal-ventral axis and that this patterning 

occurs prior to heart tube formation. 

 

INTRODUCTION 

 Terminal differentiation of progenitor populations is initiated in response to 

alterations in growth factor signaling, which leads to an arrest in cell cycle 

progression and the transcription of tissue specific genes. In contrast to other cell 

types such as neural tissue and skeletal muscle, relatively little is known about 

the molecular pathways that trigger the onset of cardiomyocyte differentiation 

during heart development. Studies in tissue culture focusing on the ability of 

growth factors to drive the formation of cardiomyocytes from stem cells have 

identified numerous pathways that may be involved in cardiomyocyte 

differentiation (Guan and Hasenfuss, 2007; Liu et al., 2007); however, the 

transcriptional targets of these pathways or the endogenous role for their 

components during in vivo embryonic cardiomyocyte differentiation remains 

unclear. Furthermore, it is not known whether cardiomyocytes differentiate in a 

uniform manner in response to a single cue or if specific subsets of 

cardiomyocytes differentiate in response to different pathways.  
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To address these issues and to begin to identify the molecular pathways 

that function in vivo to regulate the onset of cardiomyocyte differentiation, we 

have characterized the Xenopus orthologue of Castor (Cst), a protein that 

regulates stem cell competence in Drosophila (Cui and Doe, 1992; Mellerick et 

al., 1992). In this report, we show that vertebrate Cst is expressed in the 

myocardial layer of the heart in a dorsal-to-ventral gradient and demonstrate that 

CST is required within a subset of cardiac progenitor cells for the initiation of 

cardiomyocyte differentiation at the ventral midline. Fate mapping of cardiac 

tissue indicates that cardiac progenitors at the ventral midline have a specific cell 

fate, giving rise to a population of cells in the outer curvature of the ventricle. In 

contrast, ventral midline cells depleted of CST over-proliferate and fail to 

integrate into cardiac muscle. Collectively, these studies demonstrate that CST is 

required for the proper timing of differentiation within a subset of cardiac 

progenitors that are fated to give rise to the outer curvature of the ventricle, and 

suggest that regulation of cardiomyocyte differentiation is regionalized along a 

dorsal-ventral axis prior to heart tube formation. 

 

MATERIAL AND METHODS 

Embryo collection and morpholinos 

 Preparation and collection of X. tropicalis and X. laevis was performed as 

described (Showell et al., 2006) and staged according to Nieuwkoop and Faber 

(Nieuwkoop and Faber, 1967). Sequences of X.laevis Cstα, X.laevis Cstβ, 

X.tropicalis Cstα, and X.tropicalis Cstβ have been assigned Accession No: 
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920664, 919693, 919695, and 919705 (Genbank), respectively. Cst-specific 

morpholinos were obtained from Gene Tools, LLC. Sequences of all morpholinos 

are available upon request. To demonstrate morpholino efficacy, RNA was 

extracted from homogenized stage 42 tadpoles in lysis buffer (Goetz et al., 2006) 

followed by RT-PCR. 

 

Cst identification and characterization 

 RNA was extracted from embryos using Trizol (Invitrogen) 

 and the 5’ untranslated regions of Cstα and Cstβ was identified by 5’RLM RACE 

according to manufacturer’s instructions with a Cst-specific primer. Coding DNA 

regions were determined by RT-PCR using primers based on regions of 

homology of murine Cst (Acc# XM_112612) to X. tropicalis genome available 

through the Joint Genomic Institute (http://genome.jgi-psf.org). Cst 3’untranslated 

region was determined by RT-PCR using primers designed from a X. tropicalis 

UniGene cluster (UniGene Str.46155) containing 3’ untranslated region of Cst. 

Sequence conservation was analyzed using GeneDoc 

(www.psc.edu/biomed/genedoc) and synteny comparison by Metazome analysis 

(www.metazome.net). 

 

Protein expression and cellular localization 

 Cstα and Cstβ cDNAs were cloned into pcDNA 3.1-V5/His TOPO vector 

(Invitrogen) and in vitro translated using TnT Coupled Reticulocyte Lysate 

System (Promega). Tagged proteins were detected by western blot using mouse 
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anti-V5 antibody (Invitrogen) and peroxidase-conjugated Affinity Pure donkey 

anti-mouse secondary antibody (Jackson Immunoresearch Laboratories). 

Cellular localization was determined by injecting 3 ng Cstα-V5 and Cstβ-V5 

mRNA, prepared by mMessage in vitro Transcription System (Ambion). RNAs 

were injected at the one-cell stage. Embryos were cultured until Stage 32, fixed 

and sectioned as previously described (Goetz et al., 2006). Sections were 

stained with mouse anti-V5, Cy3-conjugated anti-mouse secondary antibody and 

DAPI (both Sigma) as previously described (Goetz et al., 2006). Sections were 

imaged on a Zeiss LSM410 confocal microscope. 

 

Developmental temporal expression 

 RNA was extracted from homogenized embryos at indicated stages (10 

embryos per stage) in lysis buffer (Goetz et al., 2006) followed by 

phenol:chloroform extraction. cDNA was synthesized with Superscript II reverse 

transcriptase (Invitrogen). Transcript specific PCR reactions were performed with 

Taq Polymerase using 1 μl of cDNA using the following PCR program: 94°- 3 

min, 40 cycles of 94°- 30 sec, 55°- 30 sec, 72°- 2 min followed by 7 min of 72°.  

Forward primers were designed to unique regions of each Cst transcript and the 

reverse primer was designed to a common region of both transcripts spanning 

introns. 
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Developmental wholemount in situ hybridization 

 Wholemount in situ analysis and double detection wholemount in situ 

analysis was carried out as described (Harland, 1991) using α-sense RNA 

probes of Nkx2.5 (Tonissen et al., 1994), Tbx5 (Horb and Thomsen, 1999), 

Tbx20 (Brown et al., 2003), cardiac troponin I (Logan and Mohun, 1993), Sox2 

(Kishi et al., 2000), Endodermin (Langdon et al., 2007), Endocut (Costa et al., 

2003), and Vito [ Xenopus EST clone XL043k17 (Costa et al., 2003)]. in situ 

hybridization of sectioned Xenopus heart and endoderm tissue was performed on 

20 μm frozen sections using DIG-labeled antisense RNA probes followed by 

detection according to manufacture’s protocol. For double in situs the protocol 

was modified so embryos were simultaneously analyzed with fluorosceine-

labeled Nkx2.5 probe and either Cst or cardiac troponin I DIG-labeled probe. 

Following incubation with α-fluorosceine alkaline phosphatase antibody, Nkx2.5 

expression was detected using 175 μg/ml of magenta phosphate and 225 μg/ml 

tetrazolium red in AP buffer at 4° for 3-5 days. Embryos were washed three times 

in PBS incubated in 0.1M glycine-HCl pH2.2, 0.1% Tween-20 for 10 min at RT. 

DIG-labeled probes were detected as described.  Embryos were bleached then 

photographed on a Leica MZF III fluorescent dissecting microscope. Stained 

embryos were prepared for 20 μm frozen sectioning in OTC freezing media. 

Sections were rinsed with PBS, coverslipped, and imaged on a Zeiss Axiovert 35 

microscope. 
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Immunohistochemistry 

 Immunohistochemistry was carried out with mouse anti-myosin heavy 

chain, mouse anti-tropomyosin (Developmental Studies Hybridoma Bank) and 

rabbit anti-phospho-histone H3 (Cell Signaling) using Cy3 anti-rabbit, Cy3 anti-

mouse, and Alexa 488 anti-mouse as described (Goetz et al., 2006). Embryos 

were cleared in 2:1 benzyl benzoate: benzyl alcohol and viewed on a Leica 

MZFIII fluorescence dissecting microscope. Sections were imaged on a Nikon 

Eclipse E800 fluorescent microscope. 

 

SYBR Green quantitative PCR 

 RNA was isolated from Stage 29 embryos (10 embryos per condition) 

using Trizol (Invitrogen) and purified using an RNeasy column (Qiagen) 

according to manufacture’s protocol. cDNA synthesis with 1 μg of RNA was 

performed with random primers using SuperScript II reverse transcriptase 

(Invitrogen) according to manufacture’s protocol. Expression levels were 

assessed by quantitative PCR using SYBR Green Master Mix (Sigma) on a 

Rotogene 3000. Primers (19-21 bp) were designed for each mRNA to amplify a 

100-121 bp product. Prior to quantitative PCR analysis, primer sets were tested 

by standard PCR and analyzed by 2.5% agarose gel electrophoresis to 

determine amplification of a single PCR product. GAPDH was used as the 

housekeeping gene. Reactions with 5 μl of a 1:60 dilution of the cDNA were 

heated to 94° for 2 minutes, followed by 50 cycles of 94°, 15 seconds; 55°, 15 

seconds; 72°, 20 seconds. Following amplification, melting curves were 
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generated to verify presence of a single amplification product. Each sample was 

analyzed in triplicate with a corresponding minus-RT control. Five samples (N=5) 

per condition were analyzed. Analysis generated Ct values based on thresholds 

determined by Rotogene 3000 software. Data was analyzed by the Pfaffl method 

(Pfaffl et al., 2002) and represented as relative fold change +/- S.E.M. 

 

Fate Mapping 

 Fertilized embryos were injected at one-cell stage with either Cst MOs or 

control MOs as described (Goetz et al., 2006). Stage 29 GFP-positive embryos 

were embedded in 3% methyl-cellulose and injected with 0.3 nl of 1mM Mito 

Tracker Red CMXRos (Molecular Probes) at the ventral midline 5.5 mm from the 

posterior boundary of the cement gland. Two hours post-injection, embryos were 

analyzed and scored for incorporation into GFP-positive cardiac tissue. Stage 35 

and 45 hearts were dissected in 1x Modified Barths Solution (MBS) and placed in 

1x MBS supplemented with 0.1M KCl to arrest contraction. Stage 35 labeled-

clones were scored based on anterior-posterior axis and inner-outer curvature of 

the heart and Stage 45 based on location of labeled-clones in the atrium or 

ventricle. Transgenic animals expressing cardiac actin-GFP were a generous gift 

from Dr. Tim Mohun (Latinkic et al., 2002). 

 

Statistical Methods 

 Morpholino injections were performed on greater then fifteen batches of 

embryos. Similar results were seen in each experiment. Statistical differences of 
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cell counts between injected embryos were determined using one-tailed, 

unpaired t-tests. Number of embryos used in each experiment is noted in the 

results. 

 

RESULTS 

Cst is Expressed in the Myocardium Prior to the Onset of Cardiomyocyte 

Differentiation 

 To begin to identify the molecular pathways that are involved in the 

decisions of cardiac progenitor cells to proliferate or differentiate, we have 

focused on the vertebrate orthologues of Castor (Cst), a known regulator of stem 

cell competence in Drosophila. We have identified two alternatively 5-prime 

spliced variants of vertebrate Castor (Cstα and Cstβ) from Xenopus laevis (X. 

laevis) as well as Xenopus tropicalis (X. tropicalis) (Fig 2.1A, S2.1A). Synteny 

and sequence analysis confirmed that these are the true orthologues of jawed 

vertebrate and Drospholia Castor (Fig S2.1B-D). in vitro translation of CSTα and 

CSTβ give proteins of the expected size (Fig S2.1E). Injection of mRNAs into 

Xenopus show CSTα and CSTβ both localize to the nucleus in Xenopus tissue 

(Fig S2.1F-G). RT-PCR analysis with Cstα and Cstβ specific primers (Fig S2.2A) 

indicate Cstα is expressed at the onset of neurulation (Stage13) whereas Cstβ is 

expressed slightly later (Stage15) with both transcripts continuing to be 

expressed throughout embryonic development. Using a probe common to Cstα 

and Cstβ, shows a nearly identical spatial pattern of expression in X. laevis and 

X. tropicalis (Fig 2.1B, S2.2B-K, S2.3), with Cst expression first observed at the 
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dorsal midline in the developing hindbrain region of the embryo (Fig S2.2B) 

(Stage 13) and by early tailbud stage in the developing somites (Fig 2.1B). By 

early tailbud stage (Stage 27) we also observe expression of Cst in the heart 

primordium (Fig 2.1B) during the period when the bilateral heart fields begin to 

fuse across the ventral midline and at Stage 29 find Cst co-expressed with the 

cardiac maker Nkx2.5 throughout the heart tube (Fig 2.1B-C, S2.4). On more 

detailed analysis, we observe Cst expression within the myocardial layer of the 

heart in a dorsal to ventral gradient (Fig 2.1D). We further note that onset and 

maintenance of Cst expression is not disrupted in TBX5, TBX20 or HSP27 

depleted embryos (Brown et al., 2007; Brown et al., 2005) suggesting CST is not 

a downstream component of these pathways (data not shown). 

 

CST is Required for Heart Development 

To determine the requirement for CST in development, both CSTα and 

CSTβ were depleted using morpholinos that block splicing of a common 

conserved region of the transcripts located between exon 8 (ex8D MO) and exon 

9 (ex9A MO) (Fig S2.5A). These splice junction morpholinos, referred to 

collectively as CstMO, abrogate proper splicing of both pre-mRNAs and 

introduce a stop codon after the second amino acid following exon 8. CstMO, but 

not a five nucleotide mis-matched CstMO, properly target Cst until at least 

tadpole stage (Stage 42) as shown by RT-PCR with the CstMO giving an 

amplified product that is larger than control-MO injected embryos by the size of 

the corresponding intron (679bp) (Fig 2.1K). Cloning and sequencing of 
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respective PCR bands confirmed that they were the expected products derived 

from the Cst locus. Together, these data demonstrate that CstMO depletes the 

embryo of CSTα and CSTβ until at least Stage 42. 

 

Examination of CST-depleted embryos indicate that they are 

indistinguishable from control MO-injected embryos until Stage 41 when fluid 

begins to accumulate over the dorsal fin (Fig 2.1J) and they have small, compact 

hearts (Fig 2.1G-J). Shortly thereafter (Stage 42), CST-depleted embryos 

develop a ventral edema (Fig S2.6) and die when sibling embryos develop to 

Stage 46.  Despite the normal appearance of earlier CST-depleted tadpole stage 

embryos (Stage 37) (Fig 2.1G-H), upon closer examination, CST-depleted hearts 

had improperly looped giving the overall appearance of a twisted kinked tube (Fig 

2.1L) when examined by MHC staining. Cst-specific morpholinos against the 5' 

regions of Cstα and Cstβ (Fig S2.5B) gave identical results confirming that the 

phenotype is due to depletion of CSTα and CSTβ. This strongly implies that any 

protein associated with the Cst splice junction morpholinos is non-functional 

rather than acting as a dominant negative protein. These data demonstrate that 

CST is required for early cardiac development in Xenopus. 

 

CST is Required for the Onset of Cardiomyocyte Differentiation at the 

Ventral Midline 

Since Cst is first expressed in heart primordium at Stage 27, the abnormal 

heart morphology at tadpole Stage 37 is likely a consequence of an earlier 
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requirement for CST in cardiac development. During the process of early 

cardiogenesis, specified cardiac progenitor cells migrate towards the ventral 

midline where they meet (Stage 26) and fuse at the ventral midline (Stage 29). 

Cardiomyocytes then undergo epithelialization, initiate the expression of cardiac 

structural genes, and begin myofibrillogenesis. To determine when CST is 

required in heart development, in situ analysis was performed on control and 

CST-depleted embryos with a panel of early cardiac markers that include Nkx2.5, 

Tbx5, Tbx20, Gata4, Gata5, and Gata6. No alteration in temporal or spatial 

expression of any of these markers was observed between control and CST-

depleted embryos up to Stage 29 (Fig 2.2A-L, S2.7) suggesting that CST is not 

required for the determination, migration, or, most critically, fusion of cardiac 

precursor cells. 

 

To determine if CST is required for cardiomyocyte differentiation, 

wholemount antibody staining was conducted with antibodies against MHC (Fig 

2.2M-U) and tropomyosin (Tmy; Fig 2.2V-Y). Although CST-depleted embryos 

have a single normal sized continuous cardiac field that uniformly expresses 

Nkx2.5, Tbx5, Tbx20, Gata4, Gata5, and Gata6 (Fig 2.2A-L, S2.7), we found that 

CST-depleted embryos fail to initiate cardiac differentiation at the ventral midline 

(Fig 2.2M-O, V-W). We confirmed that the cells at the ventral midline are Nkx2.5 

positive by double wholemount in situ analysis with Nkx2.5- and cardiac troponin 

I-specific probes (Fig 2.2Z-B’). Additionally, we find CST-depleted hearts have 

architectural defects including distention along the left-right axis in the ventral 
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region of the embryo (Fig 2.2N-O, D’). These results collectively suggest that 

CST is required within a six hour period of heart development between Stage 27 

and Stage 29 for proper differentiation of a subset of cardiomyocyte progenitors 

at the ventral midline. 

 

To verify that alteration in heart morphology in CST-depleted embryos is 

associated with a failure of ventral cardiomyocytes to undergo differentiation, we 

determined the total number of differentiated cardiomyocytes in control and CST-

depleted heart tissue staining with DAPI, to mark cell nuclei, and anti-MHC, to 

mark differentiated cardiomyocytes (Fig 2.2C’-E’). Consistent with a failure of the 

ventral midline cells to express MHC, there is a significant reduction in the 

number of terminally differentiated cardiomyocytes in CST-depleted hearts 

relative to control hearts, 525.90±42.16 versus 690.5±19.76 respectively (Fig 

2.2E’). We further note that this decrease is not a reflection of a role for CST in 

cardiac cell survival since we observed no increase in the total number of cardiac 

cells that were positive for TUNEL or the apoptotic marker Capase-3 during 

these stages (data not shown). Taken together, these data demonstrate a role for 

CST in cardiac differentiation at the ventral midline and suggest that regulation of 

cardiomyocyte differentiation is regionalized along the dorsal-ventral axis. 

 

Failure of the cardiac cells in CST-depleted embryos to uniformly 

differentiate across the ventral midline leads to a bifurcation of the developing 

linear heart tube by slightly later stages (Stage 32) (Fig 2.2Q-R, Y). Similar to 
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genetic mutants in zebrafish which lead to cardia bifida, e.g. natter, miles apart, 

mtx, bon (Chen et al., 1996; Sakaguchi et al., 2006; Stainier et al., 1996), 

severity of the bifida ranges from extreme phenotypes (30% penetrance) (Fig 

2.2R,Y) in which CST-depletion results in two separate linear heart tubes, to 

moderate phenotypes (60% penetrance) (Fig 2.2Q) that manifest as two heart 

fields joined along the ventral midline either posteriorly or along the length of the 

heart field to form an irregular heart tube. Variation in linear heart tube formation 

ultimately disrupts the morphogenic movements of the heart tube, resulting in a 

secondary cardiac looping defect seen in the chambered heart (Stage 37) (Fig 

2.2T-U). An identical cardiac phenotype is observed when a combination of 

morpholinos targeting the 5' UTR of Cstα and Cstβ is injected (Fig. S2.5C). 

Taken together, these results imply that, in contrast to other cardia bifida 

phenotypes, CST depletion causes a bifurcation of the heart due to lack of 

uniform differentiation of cardiomyocytes across the midline.  

 

CST-Depletion Does Not Affect Endoderm Formation or Patterning, 

Components of the Extracellular Matrix, or Cardiac Polarity 

Signals from the endoderm are required for proper cardiac midline 

development (Chen et al., 1996; Stainier et al., 1996). However, we are unable to 

detect Cst expression within the endoderm or endodermal derivatives over the 

periods in which we observe the phenotype in CST-depleted embryos (Fig 2.1B, 

S2.2). To further exclude the possibility that the inability of cardiomyocytes to 

differentiate at the ventral midline in CST-depleted embryos is a secondary 
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consequence of alterations in the formation, maintenance or patterning of 

endodermal tissue, endodermal markers Endodermin, Sox2, Endocut and Vito 

were assayed for spatial expression by in situ analysis in both wholemount and 

sectioned embryos, and for quantitative expression by SYBR Green quantitative 

PCR (Fig 2.3). No alterations in spatial or quantitative expression of any 

endodermal markers were observed in CST-depleted embryos, further 

suggesting CST is not required for the proper formation, maintenance or 

patterning of endodermal tissue.  

 

To determine if CST functions in a tissue-autonomous fashion, we 

assayed for alteration in components of the extracellular matrix (fibronectin and 

fibrillin), cardiomyocyte polarity (β-catenin) and endocardium/BMP signaling 

(SMAD1/5/8). No alteration in the staining pattern of any of these markers was 

observed between control MO and CstMO derived hearts (data not shown). 

Collectively, these data demonstrate that the midline defect as a consequence of 

CST-depletion are due to a block or delay in cardiomyocyte differentiation and 

are not a secondary consequence of alterations in cardiac migration or polarity. 

Moreover, these results suggest that the phenotype of CST-depletion is not 

associated with inappropriate activation of the canonical Wnt pathway or 

inactivation of the BMP2/4/7 pathway.  
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Fate Mapping of Cardiac Ventral Midline Cells 

Collectively, our results imply cardiomyocytes at the ventral midline have a 

fate different from that of neighboring cardiomyocyte progenitors. To determine 

the ultimate fate of these cardiomyocytes at the ventral midline, we conducted 

fate mapping studies at the time when we first detect a phenotype in CST-

depleted embryos; i.e. when cardiac progenitors have fused at the anterior 

ventral midline (Stage 29). Using anatomical landmarks and a cardiac actin-GFP 

(CA-GFP) transgenic reporter host strain of Xenopus to unambiguously identify 

cardiac tissue, we injected MitoTracker dye into the ventral midline of control 

MO-injected CA-GFP positive embryos (Fig 2.4A-B), identified by GFP 

expression in the developing somites. We then scored embryos that incorporated 

the dye into the underlying mesoderm. Broadly consistent with studies in chick 

(Abu-Issa and Kirby, 2007; De La Cruz et al., 1989; Moreno-Rodriguez et al., 

2006), we find that by the stage at which the heart initiates chamber 

morphogenesis, cardiomyocytes derived from the ventral midline give rise to cells 

that occupy positions in the medial outer curvature of the heart (Stage 35) (Fig 

2.4C, E-I). At later stages, during the period after completion of chamber and 

valve formation (Stage 45) cells preferentially colonize the outer curvature of the 

mature ventricle and to a lesser extent, the atrium (Fig 2.4D, V-Z).   

 

 

 



 78

CST-Depleted Cardiac Ventral Midline Cells Fail to Integrate Into the Mature 

Heart   

To further establish the role of CST in cardiac midline development, and to 

confirm that cells that occupy a position in cardiac ventral midline in CST-

depleted embryos are cardiomyocyte progenitors, we fate mapped ventral 

midline cells in CA-GFP embryos in which we depleted CST. In stark contrast to 

results from wildtype embryos, ventral midline cells in CST-depleted embryos 

preferentially give rise to cells that occupy positions in the posterior midline of the 

developing heart (Fig 2.4J-N). Interestingly, we also found a portion of fated 

CST-depleted ventral midline cells located in a posterior undifferentiated 

ventricular cleft (Fig 2.4O-S). Although we often observe that CST-depleted 

ventral midline cells are delayed but not blocked in cardiomyocyte differentiation, 

in all case cells fail to integrate into the heart and remain as a condensed 

population of cells attached to the outer ventricular wall (Fig 2.4V-Z).  

 

CST is Required for the Regulation of Cardiomyocyte Proliferation 

We observe from our fate mapping studies at later stages that CST-

depleted labeled ventral midline cells consistently give rise to a much larger 

population of cells relative to controls (Fig 2.4 compare Y with D’). Consistent 

with this observation, we find cardiomyocytes undergoing differentiation in the 

more dorsal regions of the CST-depleted hearts have a significant increased 

mitotic index (Fig S2.8). Collectively these data imply that CST plays a critical 
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role in regulating the proliferation and onset of differentiation of cardiac 

progenitors. 

 

DISCUSSION 

Our findings collectively imply that cardiomyocytes do not differentiate in a 

uniform manner and strongly suggest that cells in the ventral region of the heart 

field differentiate in response to localized signals. Our results further imply that 

cardiomyocytes differentiate along a dorsal-ventral axis before the onset of 

terminal cardiomyocyte differentiation, thus, cardiac progenitor fates appear to be 

determined prior to the formation of the linear heart tube.  

 

We observe that the requirement for CST in cardiomyocyte differentiation 

is within a subset of cardiac progenitor cells in which Cst is expressed. What then 

limits CST function to the ventral midline? One possibility is that CST functions 

redundantly with other transcription factors in regulating cardiomyocyte 

differentiation in more dorsal regions of the heart; however, CST binds DNA 

through a unique para-zinc finger domain (Mellerick et al., 1992). Similar to 

studies in Drosophila, we are unable to identify any protein in genomes of 

Xenopus, chick or mammals which contains a similar domain suggesting CST 

acts on an exclusive set of transcriptional targets. Based on these observations, 

our phenotypic analysis of cardiac tissue depleted of CST, and by inference with 

Drosophila (Kambadur et al., 1998), we hypothesize that CST activity is 

regulated by as yet, unidentified factors. Consistent with this proposal, we have 
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shown that over-expression of CST throughout the embryo leads to cellular 

defects only in tissue types which normally express CST (data not shown). 

 

We note that our fate mapping studies of early Xenopus hearts are 

consistent with those performed in chick showing that cardiac progenitors at the 

ventral midline preferentially give rise to terminally differentiated cardiomyocytes 

in the outer ventricular wall (De La Cruz et al., 1989; Moreno-Rodriguez et al., 

2006). Studies in chick further demonstrated that cardiomyocyte progenitors at 

the ventral midline are derived from the cephalic mesoderm; i.e. the anterior 

heart field. Therefore, it is intriguing to speculate that the regulation of CST 

activity restricts its role to cardiac cell derived from the anterior heart field.  

 

In light of the role for CST in cardiac differentiation and its high degree of 

sequence conservation and expression between vertebrates (Liu et al., 2006; 

Vacalla and Theil, 2002), it will be interesting in the future to examine the 

relationship between CST and congenital heart disease and cardiac hypertrophy.  
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Figure 2.1  CST is required for vertebrate heart development. 

(A) Predicted schematic representation of CSTα and CSTβ proteins; nuclear 

localization signal (yellow), zinc finger repeats (red), serine-rich region (red). (B-

F) Wholemount in situ analysis of Stage 27 (early tailbud), Stage 32 (tailbud), 

and Stage 36 (early tadpole) embryos using a Cst-specific probe common to 

Cstα and Cstβ. (B lateral view with anterior to the left, C and D ventral and dorsal 

views, respectively, with anterior to the top). (D) and (F) Transverse sections of 

wholemount in situ Stage 36 embryos through  (D) the heart and (F) the 

hindbrain: hindbrain (hb), somites (s), heart primordium (hp), heart (h), 

myocardium (m), endocardium (en), commissural neurons (c). (G-J) 

Representative (G,I) control MO and (H,J) CstMO embryos. (G) Stage 32 control 

MO and (H) CstMO embryos are indistinguishable. (I) Stage 41 control MO and 

(J) CstMO embryos. CST-depleted embryos present with dorsal fin edema and 

no gross ventral region abnormalities. (K) RT-PCR analysis of Stage 42 tadpole 

injected at the one-cell stage with the CstMO demonstrating inhibition of proper 

slicing of Cst pre-mRNA. Control MO (Con MO) and 5-mismatch MO (5-mis MO) 

are negative controls. (L) Wholemount MHC antibody staining of tadpole Stage 

37 CST-depleted embryos (lateral views with anterior to the left); inflow tract (i), 

ventricle (v), outflow tract (o). Scale bars: B-C = 0.5 mm, G = 1 mm, D & L = 100 

μm. 
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Figure 2.2  CST is required for cardiomyocyte differentiation at the ventral 

midline. 

(A-L) Wholemount in situ analysis with early cardiac markers Nkx2.5 (A,B,G,H), 

Tbx5 (C,D,I,J), and Tbx20 (E,F,K,L), of tailbud Stage 26 and 29 control and CST-

depleted embryos (ventral view with anterior to the top). Cardiac progenitors 

have properly migrated and completely fused across the ventral midline. (M-U) 

Wholemount MHC antibody staining at Stage 29 (onset of cardiac differentiation), 

Stage 32 (completion of linear heart tube formation), and Stage 37 (chamber 

formation) (ventral view with anterior to the top). (M) Stage 29 control MO 

embryos and (N-O) CST-depleted embryos. (P) Stage 32 control MO embryos 

and (Q-R) CST-depleted embryos display varying degrees of cardia bifida of the 

linear heart tube upon CST depletion. (S) Stage 37 control MO embryos and (T-

U) CST-depleted embryos display morphological consequence of CST depletion 

on chamber formation. (V-Y) Wholemount Tmy antibody staining of Stage 29 and 

32 (V,X) control MO and (W,Y) CST-depleted embryos demonstrate lack of 

differentiation is not specific to MHC. (Z-B’) Simultaneous detection of cardiac 

progenitor cells and differentiated cardiac cells in a Stage 29 CST-depleted 

embryo. (Z-A’) Wholemount double in situ analysis using a Nkx2.5-specific probe 

(pink) to mark cardiac progenitor cells and Cardiac troponin I-specific probe 

(blue) to mark differentiated cardiac cells in (Z) control MO and (A’) CST-

depleted embryos. (B’) Magnified image of the cardiac region in the CST-

depleted embryo in panel A’. (C’-D’) Transverse sections of Stage 29 (C’) control 

MO and (D’) CST-depleted embryos stained with MHC antibody and DAPI. 
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Brackets highlight the lack of differentiation at the ventral midline. (E’) 

Quantification of differentiated cardiomyocytes determined by counting the total 

MHC-positive cells derived from serial sectioned embryos. Bars represent the 

average of at least six embryos per condition +/- SEM. *, p<0.01. Representative 

images are derived from a single experiment, all experiments were repeated at 

least twice with independent batches of embryos. Scale bars: C = 0.5 mm, S & X 

= 100 μm, C’ = 200 μm. 
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Figure 2.3  CST is not required for formation or patterning of endodermal 

tissue.  

(A) Schematic representation of endodermal tissue markers that demarcate 

pharyngeal endoderm (Sox2 and Endodermin), ventral midgut (Vito and 

Endodermin) and posterior endoderm (Endocut). (B) Relative expression levels 

of endodermal markers Sox2, Vito, Endodermin, and Endocut in Stage 29 CST-

depleted embryos (N=5) relative to control MO embryos (N=5) using GAPDH as 

the housekeeping gene. Bars represent the relative expression levels ± SEM. (C-

F) Wholemount in situ analysis of endodermal markers (C) Sox2, (D) Vito, (E) 

Endodermin, and (F) Endocut  in Stage 29 (top) control MO and (bottom) CST-

depleted embryos (lateral views with anterior to the left). (G-I) in situ analysis of 

endodermal and cardiac markers on adjacent transverse sections through the 

cardiac region of (top) control MO and (bottom) CST-depleted Stage 29 embryos. 

(G) Sox2 and Nkx2.5 expression on adjacent sections demonstrating proper 

expression within pharyngeal tissue of CST-depleted embryos. (H) Endodermin 

and Tbx20 expression on adjacent sections demonstrating proper relative spatial 

expression within the cardiac tissue and endoderm of the embryo. 
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Figure 2.4  Fate mapping cardiac ventral midline cells. 

(A) Brightfield image of a living cardiac actin-GFP transgenic embryo injected 

with MitoTracker at Stage 29 along the ventral midline 5.5mm posterior to the 

cement gland (CG). (B) Fluorescent image of the same embryo demonstrating 

the location of incorporated MitoTracker into cells at the ventral midline (ventral 

views with anterior to the top). Fluorescence anterior to site of injection is 

reflection off the surface of the live embryo. (C,D) Tabulation of the location of 

MitoTracker-labeled cardiac cells of control MO and CST-depleted embryo at (C) 

midtailbud Stage 35 and (D) tadpole Stage 45. Images of CA-GFP transgenic 

control MO-injected and CST-depleted (E-H, J-M, O-U) Stage 35 and (V-Y, A’-D’) 

Stage 45 dissected hearts. (F,K,P,T,U,Z) Corresponding images of GFP 

expression. (G,L,Q,X,C’) Corresponding images of fated MitoTracker-labeled 

cardiac ventral midline cells. (H,M,R,U,Y,D’) Merged images of GFP and fated 

MitoTracker-labeled ventral midline cells. (T,U) Note the fated ventral midline 

cells in a pocket of undifferentiated (GFP-negative) cardiomyocytes. (I,N,S,Z,E’) 

Schematics representing fate of the cardiac ventral midline cells to the outer 

curvature of the ventricle in (I) Stage 35 and (Z) Stage 45 control MO-injected 

hearts. CST-depleted fated ventral midline cells located in the (N) posterior 

midline or (S) in an undifferentiated cleft in the outer ventricular myocardium in 

Stage 35 CST-depleted hearts and (E’) in a condensed mass of cells on the 

outer ventricle in Stage 45 CST-depleted hearts. 
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Figure S2.1  Identification and characterization of Xenopus CST. 

(A) Predicted genomic locus structure of Xenopus Cstα and Cstβ (5' to 3', not to 

scale). Exons are shown in boxes with the corresponding size given in basepairs. 

Exons in gray depict those containing the zinc finger repeats, and the sizes of 

intervening introns are indicated beneath each intron. Alternative splicing of the 5' 

regions is also indicated. (B,C) Table showing the evolutionary conservation of 

the full length CST amino acid sequence (B) and the zinc finger repeats (repeats 

1-4) (C). The percentage of identical amino acids (identity) and the percentage of 

conservative substitutions (similarity) are given for comparison between CST 

proteins of X. tropicalis, hCST (human), mCST (mouse), predicted gCST 

(chicken), and dCAS (Drosophila). (D) Syntenic relationship between vertebrate 

Cst genomic loci using Metazome blast analysis. (E) Western blot analysis of 

CSTα-V5 and CSTβ-V5 in vitro translation. Both CST proteins run at the 

predicted size of 148 kDa. (F,G) CSTα and CSTβ cellular localization. 

Transverse confocal images of CSTα-V5 and CSTβ-V5 injected Xenopus 

embryos at Stage 32. Histological sections were stained with a V5 antibody 

(Red) to visualize the CST proteins and with DAPI (Blue) to identify the nucleus. 

Scale bar indicates 10μm. 
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Figure S2.2  Xenopus laevis Cst developmental and spatial expression. 

(A) Developmental time course of X. laevis Cstα and Cstβ expression by RT-

PCR of egg lysate (maternal transcripts), whole embryo ranging from Stage 10 

(gastrulation) to Stage 42 (late tadpole), and adult heart. Ef1α is used as a 

positive control. (B-K) Whole mount in situ hybridization of Stage 14 (neurula) to 

Stage 40 (tadpole) embryos using a Cst-specific probe common to both Cstα and 

Cstβ. B,C are dorsal views with anterior to the left. D-H, and J are lateral views 

with anterior to the left: hindbrain (hb), presomitic mesoderm (psm), somites (s), 

heart primordium (hp), eye (e), otic vesicle (ot), nasal placode (np), trigeminal 

ganglion (tg), facial placodes (p), heart (h), kidney (k), vascular vitelline network 

(vvn).  
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Figure S2.3  Xenopus tropicalis Cst spatial expression. 

Whole mount in situ hybridization of Cst in X. tropicalis of Stage 14 (neurula) to 

Stage 40 (tadpole) embryos using a Cst-specific probe common to both Cstα and 

Cstβ. A is an anterior view. B-F, I-J are lateral views with anterior to the left. G is 

a ventral view with anterior to the top. H is a dorsal view with anterior to the left. 

hindbrain (hb), presomitic mesoderm (psm), somites (s), heart primordium (hp), 

otic vesicle (ot), nasal placode (np), facial placodes (p), heart (h), kidney (k), 

vascular vitelline network (vvn). 
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Figure S2.4  Xenopus Cst is expressed throughout the linear heart tube. 

Whole mount double in situ hybridization of Stage 29 embryos using a Nkx2.5-

specific probe (pink) to mark the cardiac field and a Cst-specific probe (blue). Left 

panel is a lateral view with anterior to the left. Right panel is a ventral view with 

anterior to the top. 
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Figure S2.5  Morpholino design and phenotype. 

(A) Position of the Cst splice junction morpholinos relative to the pre-mRNA 

transcripts targeting the donor the exon 8 (ex8D MO) and the acceptor of exon 9 

(ex9A MO), referred collectively as CstMO. (B) Position of the Cst-5′ UTR 

morpholinos (red) relative to the Cstα and Cstβ cDNA transcripts. (C-D) Whole 

mount antibody staining with anti-MHC of Stage 32 control MO (C) and Cstα/β 

MO (D) embryos (ventral view) indicating an identical cardia bifida phenotype is 

obtained with both the CstMO (splice MO) as the Cstα/β MO (5′ UTR MO). Scale 

bar: C = 100 μm. 
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Figure S2.6  Statistics of Ventral Edema in CST-depleted embryos. 

Distribution of incidences of ventral edema in control and CST-depleted embryos 

from Stage 37 to Stage 42. Graph represents one batch of 56 embryos. Analysis 

was performed with two independent experiments. 
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Figure S2.7  CST is not required for expression of Gata4, Gata5, or Gata6. 

Whole mount in situ hybridization of Stage 29 control MO and CST-depleted 

embryos demonstrating proper expression of (A,B) Gata4, (C,D) Gata5, and 

(E,F) Gata6. Ventral views with anterior to the top.  

 



 102

Figure S2.8  CST is required for proper cell growth of cardiomyocytes 

dorsal to the cardiac ventral midline.   

(A) Representative transverse sections of Stage 29 control MO (top) and CstMO 

(bottom) injected embryos stained with MHC antibody to mark differentiated 

cardiomyocytes, phospho-histone H3 (pH3) antibody to mark cardiac cells in the 

M-phase of the cell cycle, and DAPI. Bracket highlights undifferentiated cardiac 

ventral midline cells. (B) CST-depleted differentiated cardiomyocytes have an 

increased mitotic index at Stage 29. Quantification of the mitotic index was 

determined by calculating the percentage of pH3-positive differentiated 

cardiomyocytes. Bars represent the average of at least three embryos per 

condition +/- SEM. *, p<0.01; Scale bars: 200 μm. 
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Chapter 3 

Identification of the Xenopus CASTOR 

DNA binding sequence 

 

ABSTRACT 

 Previous work revealed an integral role for CASTOR (CST) in the 

differentiation of cardiomyocyte progenitors specifically located at the ventral 

midline of the linear heart tube (Christine and Conlon, 2008). Yet no information 

exist as to how vertebrate CST functions during development. We have utilized a 

bacterial one-hybrid assay to determine the DNA binding sequence recognized 

by vertebrate CST. While vertebrate CST did not bind the previously identified 

DNA binding sequence of the Drosophila orthologue, it did recognize a novel 10 

basepair DNA binding sequence (C/A)(T/A)A(G/C)TGGT(G/C)G. These studies 

present the first investigations into the molecular function of vertebrate CST. 

Together with further proposed analysis, this information will begin to decipher 

the role of vertebrate CST in development. 
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INTRODUCTION 

 Inherent characteristics of a DNA-binding transcription factor include the 

affinity and specificity to the DNA sequence that it recognizes to activate and/or 

repress transcription. Therefore, identifying the DNA binding sequence (DBS) 

associated with a transcription factor potentially allows for analysis of regulatory 

regions of tissue-specific genes to build a more comprehensive understanding of 

gene regulatory networks driving development. We previously identified 

vertebrate CASTOR (CST) and characterized its role in regulating differentiation 

of a subset of cardiomyocyte progenitors in the developing heart (Christine and 

Conlon, 2008). However, the mechanism by which CST regulates differentiation 

has yet to be determined. 

 

 Vertebrate CST encodes a novel zinc finger transcription factor, consisting 

of four tandem para-zinc fingers followed by a fifth additional C-terminal para-zinc 

finger. Each para-zinc finger consists of a classical Cys2-His2 motif originally 

characterized in the Xenopus TFIIIA transcription factor immediately preceded by 

an additional Cys2-His2 motif (Christine and Conlon, 2008; Miller et al., 1985). 

Analysis of the CST para-zinc fingers yields a highly conserved motif – Cys-X4-

Cys-X6-His-(F/Y)-His-Cys-X4-Cys-X4-(F/Y)-X5-ψ-X2-His-X3-His, where X can be 

any amino acid and ψ is a hydrophobic residue. Additionally, the entire amino 

acid sequence of the zinc finger repeats is 100-98% identical in the vertebrate 

CST orthologues (Christine and Conlon, 2008). 
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 The DBS of the Drosophila orthologue of CST, known as dCas, has been 

previously identified by cyclic amplification of selected targets (Kambadur et al., 

1998). This technique yielded a 10 basepair consensus DBS  

[(G/C)C(C/T)(C/T)AAAAA(A/T)] of which mutational analysis demonstrated that 

the A-T rich core is essential for dCas DNA binding. Moreover, the dCas DBS is 

present within the proximal promoter of Pdm-1, a POU homeobox transcription 

factor (Kambadur et al., 1998). dCas and Pdm-1 are essential components of 

developmental pathways in the Drosophila central nervous system. Together 

dCas and Pdm specify the temporal identity of the neuroblast 7-1 lineage U5-

type motorneurons (Grosskortenhaus et al., 2006). However, in a subsequent 

neuroblast, the expression of Pdm-1 is repressed to regulate the specification of 

the interneuron identity. Both in vivo and in vitro studies reveal dCas directly 

binds the consensus DBS within the Pdm-1 promoter resulting in its extinguished 

expression in the late born interneuron-generating neuroblast (Kambadur et al., 

1998). To date, Pdm-1 is the sole direct transcriptional target of dCas. 

 

 In contrast, not a single direct transcriptional target of vertebrate CST has 

been identified. However, based on the differences between dCas and the 

vertebrate CST orthologues, it is feasible that vertebrate CST may recognize a 

different DBS. For example, the amino acid sequence of the vertebrate CST zinc 

finger domains is only 49% identical to that of dCas (Christine and Conlon, 

2008). Additionally, vertebrate CST orthologues contain a single fifth zinc finger 

domain C-terminal to the four tandem zinc finger domains that is not present in 
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dCas. It is conceivable that the fifth zinc finger domain is required for 

homodimerization and/or recruitment of cofactors which could in turn alter DNA 

binding specificity. How the variance of the amino acid sequence and the fifth 

zinc finger domain affect DNA binding specificity and/or affinity of vertebrate CST 

remains unknown. 

 

 To begin to dissect the molecular pathway by which CST functions, we 

have used a bacterial one-hybrid (B1H) screen to determine the vertebrate CST 

DBS (Meng et al., 2005). The B1H system consists of three components: 1) a 

bait vector containing the DNA binding domain (DBD) of a transcription factor of 

interest cloned in-frame to the alpha subunit of RNA polymerase; 2) a purified 

prey library containing randomized 18-mers that mimic DNA binding sequences 

upstream of two selection reporters, the HIS3 and URA3 yeast genes; and finally, 

3) a bacterial selection strain depleted of the E. coli homologues of the yeast 

HIS3 and URA3 genes (Fig 3.1). If the DBD of the transcription factor recognizes 

and binds to a target DNA sequence in the prey library reporter vector, the alpha 

subunit of the DBD fusion protein recruits RNA polymerase to the lac promoter of 

the prey library reporter vector to activate the expression of the HIS3 reporter 

gene. Cells grown on plates containing 3-aminotriazole (3-AT), a competitive 

inhibitor of histidine, allows only clones with a positive interaction to survive. 

Following the isolation of the prey library plasmid from surviving clones, the DBS 

is sequenced and identified.  
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 Utilizing the B1H approach affords advantages over the traditional 

methods of Pollock and Treisman (Pollock and Treisman, 1990) or yeast one-

hybrid screens (Li and Herskowitz, 1993). Once a library of sufficient diversity is 

produced, one can rapidly screen a very diverse profile of DNA binding 

sequences. Unlike the Pollock and Treisman method of multiple rounds of PCR 

amplification of in vitro bound purified, active protein-DNA complexes, the B1H 

assay requires only one round of selection in which the only limitation in the 

number of possible DNA binding sequences screened in one assay is the 

bacterial transformation efficiency. Therefore, unlike a yeast one-hybrid screen, 

the B1H assay has the ability to screen a minimum of 108 DNA binding 

sequences in under two weeks time. Additionally, the power of this selection 

relies on a low copy bait vector (~10 copies/cell) and an extremely low copy prey 

vector (~6 copies/cell), a feature that alleviates false interactions due to 

overabundance and proximity of the bait and prey that plagues the traditional 

methods. Finally, this method eliminates the need for associated cofactors since 

the alpha subunit fusion protein directly recruits RNA polymerase to drive 

transcription.  

 

 In this study, we have used the B1H assay system to determine if 

vertebrate CST binds the previously identified dCas DBS found within the Pdm-1 

promoter. Additionally, we performed the B1H assay with vertebrate CST and the 

purified prey library to determine if vertebrate CST has affinity to a novel DBS. 
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MATERIALS AND METHODS 

B1H Assay Components 

 Plasmids pB1H2 (bait vector – Ampicilin resistance), pB1H1 (bait vector – 

Chloramphenicol resistance), pH3U3 (prey library backbone – Kanamycin 

resistance), pB1H1-Zif268, pH3U3-Zif268DBS, and the E. coli USO∆hisB∆pyrF 

bacterial strain were generously provided by Dr. Scot Wolfe.  

 

DNA binding domain constructs 

 The DNA binding domain of Xenopus CST was subcloned into the KpnI 

and AvrII of pB1H1 (Ampicilin). The CST DBD construct (pB1H2-CSTDBD) 

contains 621 amino acid residues, twelve amino acids N-terminal to the first zinc 

finger domain to the translational termination codon located 45 amino acids C-

terminal of the fifth zinc finger. The DBD of Drosophila Cas was also subcloned 

into the pB1H1 (Ampicilin). The dCas DBD construct (pB1H2-dCasDBD) contains 

256 amino acid residues, ten amino acids N-terminal to the first zinc finger 

domain to 28 amino acids C-terminal of the fourth zinc finger domain.  

 

Generation of the purified prey library 

 A 56 bp oligo (purchased from Integrated DNA Technologies) containing 

an 18 bp randomized region flanked by a 5’ NotI and a 3’ AscI restriction site was 

extended with the following conditions: 10 units GO Taq Flexi, 1x GO Taq buffer 

(Promega), 2nmol dNTPs (Invitrogen), 1nmol 18 bp randomized prey oligo, 3 

nmol complimentary (to 3’ end of 18 bp randomized prey oligo) extension oligo.  
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Extension reaction took place using the following program: 94°, 3.5 minutes; 50°, 

5 minutes; 72°, 15 minutes. Double stranded oligo product was ran on a 4% 

agarose gel in TAE. The double stranded (DS) prey DNA was excised and 

isolated by electroelution for one hour at 100 V in 1000 dalton molecular weight 

cutoff dialysis tubing (GE Healthcare). Following ethanol precipitation, the DS 

prey DNA was sequentially restriction digested by AscI and NotI (each - 37°, 

overnight). Digested DS prey library digested DNA was ran on a 4% agarose gel, 

electroeluted and ethanol precipitated. Seventeen large scale 20 μl ligations of 

0.5 μg DS prey library digested DNA and 1 μg AscI/NotI digested pH3U3 (ratio 

determined empirically) using Ligation Kit (Stratagene) with 40 U of ligase were 

incubated a 4° for two days. The ligation reactions were pooled, ethanol 

precipitated and resuspended in 21 μl of water. The entire ligated product was 

transformed into 1200 μl XL-Blue1 electrocompetent cells (20 – 60 μl 

electroporation reactions) using a BioRad Gene Pulser electroporator at 1.70 

kVolts, 200 Ω, 25 μFarads. Electroporated cells were resuspended in 940 μl pre-

warmed SOC and subsequently added to 100 ml of pre-warmed SOC. 

Transformants were recovered for one hour at 37°, 250 rpm generating a prey 

library estimated to contain approximately 1.67x108 unique clones. The library 

was then expanded for four hours at 37°, 250 rpm in 2xYT broth containing 

Kanamycin. Prey library plasmids were isolated using a Midi DNA plasmid prep 

(Invitrogen).  
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 To generate a purified prey library, approximately 2x108 prey library clones 

were electroporated into the USO∆hisB∆pyrF bacterial strain. Following one hour 

recovery in pre-warmed SOC at 37°, 250 rpm, cells were centrifuged for ten 

minutes at room temperature in a benchtop clinical centrifuge and resuspended 

in 2XYT broth with Kanamycin. The cells were incubated one hour at 37°, 250 

rpm. Transformants were pelleted and washed three times with 2XYT broth, 

plated and challenged to grow on ten 245 mm x 245 mm YM plates containing 2 

mM 5-fluoroorotic acid. 8.8x107 surviving purified prey library clones were 

recovered in 15 ml of 2XYT broth followed by plasmid isolation using the Midi 

DNA plasmid prep (Invitrogen).  

 

Binding site selection 

 To identify a DBS, 1 μg bait construct and 3.6 μg purified prey library were 

electroporated at 1.70 kVolts, 200 Ω, 25 μFarads into 60 μl of the 

USO∆hisB∆pyrF bacterial strain. After addition of 940 μl pre-warmed SOC, 

transformants were recovered for one hour at 37°, 250 rpm. Cells were pelleted 

in a benchtop clinical centrifuge for 10 minutes at room temperature and 

subsequently resuspended in 5 mls NM media supplemented with 0.1% histidine, 

Ampicilin (or Chloramphenicol) and Kanamycin. Transformats grew one hour at 

37°, 250 rpm, and were subsequently pelleted and washed three times in NM 

media. After the final wash, cells were divided among four 150 mm NM- Amplicin 

(or Chloramphenicol) plates containing 0.1% histidine, 1 mM, 2 mM or 4 mM 3-



 114

AT. Plates were inverted and incubated at 37° for about 20 hours. Prey library 

plasmids of surviving clones were isolated and sequenced. 

 

Analysis of DNA binding Site 

 Unique 18 bp regions were analyzed for overrepresented motifs using 

MEME (http://meme.sdsc.edu/meme4/cgi-bin/meme.cgi) and BioProspector 

(http://ai.stanford.edu/~xsliu/BioProspector/). DBS identified by MEME or 

BioProspector to contribute to an overrepresented motif were imported into 

WebLOGO (http://weblogo.berkeley.edu/logo.cgi) to generate a sequence logo. 

 

RESULTS 

 The prey library of the B1H assay contains an 18 bp randomized region 56 

bp 5’ to the weak lac promoter that drives the expression of histidine and uracil 

(Fig 3.1). To successfully identify the vertebrate CST DBS, the prey library has to 

have the capacity to represent as many DBS as possible. The raw prey library 

generated for this study is estimated to contain 1.7x108 unique clones. This 

degree of complexity statistically represents the likelihood of containing every 

possible sequence combination within a 13 bp DBS, which is adequate to identify 

the DBS of most transcription factors (i.e. dCas DBS is 10 bp). To remove self-

activating plasmids from the prey population, the raw library was challenged to 

grow in the presence of 5-fluoroorotic acid, a compound that is rendered toxic by 

the uracil biosynthesis pathway. The recovered surviving population is the 

purified prey library. 
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 To demonstrate the efficacy of the purified prey library, the B1H assay 

was performed with the previously characterized classical zinc finger 

transcription factor Drosophila Zif268 (Christy and Nathans, 1989; Meng et al., 

2005). Screening 5x108 purified prey library clones (3X the library complexity) in 

the USO∆hisB∆pyrF bacterial strain on minimal media containing 0.1% histidine, 

1 mM, 2 mM and 4 mM 3-AT resulted in a dose-dependent decrease in the 

number of surviving clones reflecting the increasing stringency of the selection 

(Fig 3.2A). Of the surviving clones, ten unique clones were isolated, sequenced 

and analyzed using the MEME software. Analysis of the 18 bp randomized 

regions generated an alignment consisting of seven of the ten clones that 

produced a 9 bp consensus motif strikingly similar to the published Zif268 DBS of 

“GCG(G/T)GGGCG” (Fig 3.2B) (Christy and Nathans, 1989; Meng et al., 2005). 

With successful detection of the Zif268 DBS, the purified prey library is a reliable 

source to decipher the vertebrate CST DBS using the B1H assay system. 

 

 Many transcription factors, especially zinc finger proteins, function in a 

modular fashion with each domain functioning independently (Jamieson et al., 

2003; Meng et al., 2007; Urnov et al., 2005). Therefore, the CST DBD bait was 

constructed using C-terminal region of Xenopus CST consisting of the first zinc 

finger domain to the translational termination codon 45 amino acids C-terminal to 

the fifth zinc finger domain (Fig 3.3A). In similar fashion, the dCas DBD bait was 

constructed to consist of its four tandem zinc finger domains (Figure 3.3B). 

Eliminating non-DNA binding regions of a transcription factor alleviates potential 
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problems such as codon bias and toxicity in E. coli.  To confirm proper 

expression of the α-RNA Polymerase subunit DBD fusion proteins, the 

expression of both the CST and dCas bait proteins were induced in the 

USO∆hisB∆pyrF bacterial strain. Utilizing the FLAG epitope within the linker of 

the bait proteins, western analysis demonstrated proper expression of the CST 

DBD fusion protein (Fig 3.3C). However, the dCas DBD fusion protein failed to 

be expressed (Data not shown). This may be due to rare codon usage which can 

be alleviated by substituting synonymous codons preferred by E. coli in the 

future. 

 

 To determine whether vertebrate CST binds the previously identified dCas 

DBS, a dCas DBS prey plasmid was generated consisting of the 10 bp dCas 

DBS (CCTCAAAAAA)  flanked by four randomly chosen nucleotides to maintain 

the 18 bp interval (Kambadur et al., 1998). When the CST DBD fusion bait vector 

and the dCas DBS prey vector were introduced into the B1H system, there were 

no surviving clones on any of the 3-AT selection plates indicating vertebrate CST 

does not bind the dCas DBS in the context of the B1H assay. In parallel, the B1H 

assay was conducted with the CST DBD fusion bait and the purified prey library. 

This assay resulted in a dose-dependent survival of clones on 1 mM, 2 mM, and 

4mM 3-AT. Of the 414 surviving clones on the 4 mM 3-AT selection plate, 73 

clones were isolated, sequence and analyzed. Seventeen unique 18 bp 

randomized DNA binding regions were analyzed using BioProspector software. 

Of the seventeen analyzed, seven clones aligned to generate a consensus DBS 
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of (C/A)(T/A)A(G/C)TGGT(G/C)G (Fig 3.4A). The position weight matrix renders 

the nucleotide most probable at each position of the DBS (CTAGTGGTGG) 

which is also depicted in a sequence logo (Fig 3.4B, C).  

 

 Interestingly, two of the seven aligned sequences contained the sequence 

CTAGTGGTGG within completely unique 18 bp randomized DNA binding 

regions. To be sure this sequence did not self-activate and escape previous 5-

fluoroortic acid selection, the prey library plasmid was isolated and reintroduced 

into the USO∆hisB∆pyrF bacterial strain and challenged to grow in the presence 

of 5-fluoroortic acid. As expected, the bacteria survived, demonstrating the prey 

plasmid was not self-activating. To ascertain whether the CST/CTAGTGGTGG 

binding interaction tolerates increasing doses of the histidine inhibitor, the CST 

DBD bait vector and the CTAGTGGTGG-containing prey plasmid was re-

introduced into the USO∆hisB∆pyrF bacterial strain and challenged to grow 

under 3-AT selection. The CST/ CTAGTGGTGG binding interaction responded to 

the selection in a dose-dependent fashion suggesting CST binds the putative 

CST DBS with a measurable affinity (Fig 3.5). 

 

DISCUSSION 

 Previous work has demonstrated that CST is required for the proper 

differentiation of a subpopulation of cardiomyocyte progenitors at the ventral 

midline of the heart (Christine and Conlon, 2008). To begin to address the 
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biological mechanism of CST, we have used a bacterial one-hybrid assay to 

determine the DNA binding site of CST.   

 

 We have generated a representative purified prey library with a complexity 

sufficient to detect as large as a 13 bp DBS. Since many zinc finger domains 

function independently, we utilized the DBD of CST consisting of the C-terminal 

portion from the first zinc finger domain to the translational termination codon 

(Jamieson et al., 2003; Meng et al., 2007; Urnov et al., 2005). In the context of 

the B1H assay system, CST recognizes a 10 bp DBS - 

(C/A)(T/A)A(G/C)TGGT(G/C)G. Interestingly, the sequence CTAGTGGTGG was 

identified twice in two independent, unique prey plasmids, invoking confidence in 

the putative CST DBS. Additionally, the dose-dependent survival of the bacteria 

containing the CST DBD and the CTAGTGGTGG-containing prey plasmid 

suggests that CST binds this DBS with an affinity to overcome as much as 4 mM 

3-AT, a competitive inhibitor of histidine. As an indirect measure, this suggests 

the CST/CTAGTGGTGG interaction binds with an affinity that produces an 

amount of histidine in excess to the concentration of the 3-AT inhibitor. This 

finding allows for further characterization of the CST DBS by mutational analysis 

which would assess CST’s specificity (tolerance of nucleotide variation) as well 

as affinity (strength of the binding interaction). For example, the CST DBS 

sequence logo indicated the adenosine at position 3 and the guanidine at 

position 10 may be essential for CST DBS recognition. If mutated, it would be 
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interesting to ascertain whether CST would continue recognize and bind the 

altered DBS.   

 

 A more direct assessment of the specificity and affinity of CST to the 

putative DBS is to perform a similar mutational analysis using either 

Electromobility Shift Assay (EMSA) or the PHERAstar assay system. This high-

throughput analysis directly measures binding affinity of proteins to a DBS by 

measuring the intrinsic spin of a fluorescent-labeled DBS probe free in solution 

relative to the spin of the fluorescent-labeled DBS probe bound to a protein of 

interest. This analysis will be conducted with full length CST to directly determine 

the binding affinity to the consensus DBS identified by the B1H assay as well as 

mutated variants to assess the specificity of CST DNA binding recognition. 

 

 Significantly, vertebrate CST did not bind the dCas DBS in the context of 

the B1H assay. Since dCas contains only the first four tandem zinc finger 

domains, it is intriguing to speculate that the fifth C-terminal vertebrate zinc finger 

domain may influence vertebrate CST DNA binding recognition. It has been 

documented that tandem zinc finger domains are required for DNA recognition, 

while single zinc finger domains are thought to contribute secondary structure for 

DNA recognition (Wolfe et al., 2000). Therefore, a deletion series of the CST 

DBD (i.e. removal of the fifth zinc finger domain or the serine-rich region flanked 

by the fourth and fifth zinc finger domains) will be useful to investigate 

contribution of each region to CST DNA binding recognition. It is also plausible, 
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for example, the fifth C-terminal zinc finger domain is required for dimerization to 

itself or a transcriptional cofactor which in turn modifies the three-dimensional 

configuration of the four tandem zinc finger domains for DNA binding recognition. 

If it is discovered that CST heterodimerizes to a transcriptional cofactor, the B1H 

assay system could be utilized to investigate the affect of heterodimerization on 

CST DBS specificity and affinity. Since two α-subunits are present in the RNA 

Polymerase complex, CST and the cofactor can be expressed as independent α-

subunits fusion proteins in the B1H assay. This procedure was successful in 

reproducing the previously identified DBS for the Drosophila core-binding factor 

α/β, Runt/Big Brother heterocomplex (Melnikova et al., 1993; Meng et al., 2005). 

It is possible homo- and/or heterodimerization of CST could modify either the 

specificity and/or the affinity of CST to DNA. 

 

 In addition to EMSA assays presently being conducted with full length 

CST and the consensus DBS, transcriptional assay will also be conducted in 

293T cells to confirm CST DNA binding recognition to the consensus DBS in the 

context of a mammalian cell. Utilizing the basic and SV40 enhancer luciferase 

reporter in the transcriptional assays affords the ability to determine whether CST 

binds the DBS to activate and/or repress transcription. This will be an interesting 

finding since dCas is reported to act as a transcriptional repressor 

(Grosskortenhaus et al., 2006).  
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 While further validation studies are necessary, we have identified the 

putative vertebrate CST DNA binding sequence using a bacterial one-hybrid 

assay system. We further established that vertebrate CST does not interact with 

the previously reported dCas DBS. This is an interesting finding considering 

vertebrate CST evolved to contain a fifth single C-terminal zinc finger domain that 

is not present in dCas. The influence of the additional fifth zinc finger domain on 

DNA recognition as well as transcriptional activation and/or repression 

capabilities is the focus of active investigation. These studies are the first 

biochemical investigation of vertebrate CST function and will increase 

understanding the role of vertebrate CST in development. 
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Figure 3.1   Overview of the bacterial one-hybrid assay 

 Schematic depiction of the B1H assay. The prey library construct 

containing the HIS3 and URA3 selection reporters downstream of the lac 

promoter. Interaction of the CST DBD alpha subunit fusion protein recognizes a 

DNA sequence in the 18 bp randomized DNA region, the alpha subunit will 

recruit RNA polymerase to the lac promoter to activate transcription of HIS3 and 

URA3, allowing the bacterial clone to survive on minimal media plates containing 

3-AT, a competitive inhibitor of histidine. 
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Figure 3.2   Validation of the purified prey library  

The purified prey library successfully determined the DBS of Drosophila Zif268. 

(A) Dose-dependent survival of bacterial clones containing the Zif268 DBD and 

the purified prey library challenged to grow on increasing concentrations of 3-AT. 

(B) The sequence logo generated based on an alignment of seven 18 bp 

randomized regions. The consensus sequenced determined with the purified 

prey library in the B1H assay is very similar to the previously published Zif268 

DBS. 
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Figure 3.3   CST and dCAS DNA binding domain constructs for the B1H 

assay 

(A) Schematic showing the region of Xenopus CST expressed as bait in the B1H 

assay. The CST DBD α-subunit fusion protein contains the C-terminal portion of 

CST from the first zinc finger domain (red) to the translational termination codon, 

including the serine rich region (blue). (B) Schematic showing the region of dCas 

expressed as bait in the B1H assay. The dCas DBD α-subunit fusion protein 

contains the four tandem zinc finger domains (red). (C) Western blot analysis of 

induced expression of vertebrate CST α-subunit fusion protein expressed in the 

USOΔhisBΔpryF bacterial strain using an anti-FLAG antibody. Yellow region – 

nuclear localization signal, Green triangle – FLAG epitope, Un – Uninduced, PI – 

Post Induction.  



 126

 



 127

Figure 3.4   Vertebrate CST DBS determined by B1H assay 

(A) Alignment of seven 18 bp randomized regions isolated from bacterial clones 

containing the CST DBD α-subunit fusion protein and the purified prey library that 

survived in the presence of 4 mM 3-AT. The aligned 10 bp DBS were used for 

further analysis. (B) Position weight matrix of the 10 bp DBS demonstrating the 

probability of each nucleotide at each of the ten positions. The most likely 

nucleotide is highlighted in red. This analysis generates a CST consensus DBS 

of CTAGTGGTGG. Note – sequences 1 and 2 in A contain this consensus DBS 

in two independent, unique 18 bp randomized regions. (C) Sequence logo of the 

vertebrate CST DBS created from the aligned regions highlighted in A.
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Figure 3.5   Vertebrate CST recognizes the CTAGTGGTGG binding motif 

The CST DBD α-subunit fusion protein and the CTAGTGGTGG-containing prey 

plasmid was reintroduced into the USO∆hisB∆pyrF bacterial strain and 

challenged to grow on minimal media containing increasing concentrations of 3-

AT. The dose-dependent decrease in the survival of clones validates the 

CTAGTGGTGG-containing prey plasmid interaction with the CST DBD. 
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Chapter 4 

 

Identification of novel CASTOR transcriptional targets in 

cardiogenesis 

 

ABSTRACT 

 Vertebrate CASTOR (CST) is required for proper differentiation of a 

subset of cardiomyocyte progenitors at the ventral midline of the heart. Moreover, 

CST is required to regulate proliferation of cardiomyocyte progenitors lateral to 

the ventral midline. To date, no transcriptional targets of vertebrate CST have 

been identified. To begin to elucidate the biological pathways in which CST is 

active, we have used a cloning chromatin immunoprecipitation (ChIP) screen to 

identify direct transcriptional targets of vertebrate CST. This analysis has 

generated a pool of putative CST transcriptional targets which are now 

undergoing a secondary validation screen. The majority of the putative CST 

targets have been associated with major biological pathways, suggesting a 

potential role for CST in regulating cell growth, cell adhesion, Wnt signaling 

pathways and chamber myocardium patterning. 

 



 133

INTRODUCTION 

 Cardiomyocyte differentiation is regulated in part by the initiation of 

transcription of unique, spatially and temporally restricted proteins. Previously, 

we identified a role for CASTOR (CST) in mediating differentiation of a subset of 

cardiomyocyte progenitors located at the ventral midline of the linear heart tube 

(Christine and Conlon, 2008). In the absence of CST, the ventral midline 

cardiomyocyte progenitors remain in a premature state and fail to differentiate in 

a timely manner. The remaining cardiomyocyte progenitor population undergoes 

differentiation; however, a portion of the cardiomyocytes remain in a 

hyperproliferative state (Christine and Conlon, 2008). The dual nature of the CST 

phenotype suggests the presence of spatially unique transcriptional targets in the 

cardiomyocyte progenitors. To understand the biological functions regulated by 

CST, we set out to identify novel direct transcriptional targets of CST. 

 

 In the absence of a Xenopus genomic DNA ChIP, we chose to identify 

direct transcriptional targets of CST using a cloning chromatin 

immunoprecipitation (ChIP) screen. Unlike a reverse ChIP assay, which is used 

to investigate the interaction of a protein with a predetermined gene of interest 

using PCR amplification, the cloning ChIP method is an unbiased approach that 

entails isolating the CST-DNA complexes by immunoprecipitation and 

subsequently subcloning the target DNA fragments. This method has been used 

successfully to identify novel direct transcriptional targets of the SOX2 and E2F 
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transcription factors in development (Taranova et al., 2006; Weinmann et al., 

2001). 

 

 In this study, we generated a CST-specific antibody to perform the cloning 

ChIP screen on both early tailbud stage 27 – 29 Xenopus tropicalis whole 

embryos and heart-enriched regions of early tailbud stage 27 – 29 Xenopus 

tropicalis embryos. The cloning ChIP screen has generated a pool of potential 

CST transcriptional targets that are in the process of being validated. 

 

MATERIALS AND METHODS 

Xenopus CST antibodies 

 Polyclonal antibodies against CST were generated in rabbits at Covance, 

Inc. Antibodies were raised against a maltose binding protein (MBP)-8x-histinde 

epitope fused in-frame to the C-terminal fragment of CST containing the amino 

acids on the immediate C-terminal side of the fourth zinc finger domain and 

extending to and including the translation termination codon. The antigen fusion 

protein was expressed in E. coli and purified by nickel Sepharose 

chromatography. CST-specific antibodies were affinity-purified. 

 

Xenopus tropicalis embryo and tissue collection 

 Xenopus tropicalis females were stimulated to ovulate by pre-priming with 

10U human chorionic gonadotropin (hCG) followed by priming 20 h later with 200 

units of hCG. Embryos were fertilized in vitro and cultured in 0.1x Marc's Modified 
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Ringer's buffer. Embryos were collected at early tailbud stage 27 – 29. Heart-

enriched regions of the embryos were collected by dissecting posterior to the 

pharyngeal region and anterior to the gut endoderm.  Following dissection, the 

tissue was rinsed in cold phosphate-buffered saline (PBS) and incubated in 1% 

formaldehyde containing protease inhibitors (Complete Mini Protease tablets, 

Roche) for 1 h at room temperature to crosslink protein-DNA complexes. Batches 

of 50 cross-linked embryos or heart-enriched regions were incubated in 0.125M 

glycine in PBS for 10 min at room temperature followed by three washes with 

PBS.  Samples were flash-frozen in a dry ice/ethanol bath and stored at -80°C. 

 

Cloning Chromatin Immunoprecipitation 

 Sixty whole embryos and 400 heart-enriched regions were used for the 

cloning ChIP screen. Samples were lysed in 800 μl cell lysis buffer (50 mM Tris-

HCl pH 8.0 containing 2 mM EDTA, 0.1% NP-40, 10% glycerol and the Complete 

Mini Protease Inhibitor cocktail) for 10 min on ice with vigorous pipetting. Nuclei 

were pelleted by centrifuging at 2500 rpm for 5 min at 4°C. The cell lysis 

supernatant was removed and the nuclei pellets were washed with ice-cold PBS. 

Nuclei were resuspended in 200 μl nuclei lysis buffer (50 mM Tris-HCl pH 8.0 

containing 10 mM EDTA, 1% SDS and the Complete Mini Protease Inhibitor 

cocktail) for 10 min on ice with vigorous pipetting. Four hundred microliters of IP 

dilution buffer (20 mM Tris-HCl pH 8.0 containing 2 mM EDTA, 150 mM NaCl, 

1% Triton-X100 and the Complete Mini Protease Inhibitor cocktail) were added to 

the samples to adjust the volumes for sonication. Whole-embryo samples were 
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sonicated to generate DNA fragments of approximately 4 kb with the Branson 

Digital Sonifier at an amplitude of 20% for two cycles of 30 s each (1 s on / 0.5 s 

off). Samples of heart-enriched tissue were sonicated for one additional cycle of 

15 s (1 s on / 0.5 s off). After each cycle, the sample was placed in a dry 

ice/ethanol bath for 5 s followed by a 2-min incubation on ice.  Samples were 

centrifuged at 15,000 rpm for 10 min at 4°C. Supernatants were removed to fresh 

tubes and pellets were discarded. Samples were pre-cleared for 2 h at 4°C by 

incubation with protein A/G beads (Santa Cruz) that have been blocked in 5% 

bovine serum albumin (BSA) in PBS with rotation. To reduce the concentration of 

SDS prior to immunoprecipitation, 400 μl of IP dilution buffer was added to the 

pre-cleared samples. Five micrograms of affinity-purified anti-CST antibody were 

added to the pre-cleared samples and incubated overnight at 4°C with rotation. 

To immobilize antibody-bound CST-DNA complexes, 50 μl of BSA-blocked 

protein A/G beads were added and incubated for 2 h at 4°C with rotation. The 

CST-DNA-bead complexes were washed with 1 ml IP dilution buffer three times 

for 15 min each at 4°, followed by three 2-min washes with 1 ml IP dilution buffer 

at room temperature and two 2-min washes with 1 ml TE buffer at room 

temperature; all washes were done with constant rotation. All samples were 

centrifuged between washes at 4000 rpm for 1.5 min at the temperature of the 

previous wash. To elute the CST-DNA complexes, beads were washed at 65°C 

with 150 μl elution buffer (50 mM Tris-HCl pH 8.0 containing10 mM EDTA and 

1% SDS) and gently vortex-mixed every 2 min for 10 min. This procedure was 

repeated once and the eluates were pooled and treated with 30 μg RNaseA 
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(Sigma) at 37°C for 3 h. Crosslinking was reversed by incubating samples in 280 

mM NaCl overnight at 65°C in a hybridization oven to reduce condensation. 

Samples were treated with 20 μg Proteinase K (Sigma) for 4 h at 55°C in a 

hybridization oven. The samples were sequentially extracted with 

phenol:cholorform and chloroform, ethanol-precipitated in the presence of 37.5 

μg linear acrylamide and 500 mM NaCl and incubated overnight at -80°C. DNA 

was pelleted by centrifugation at 15000 rpm for 15 min at 4°C. The pellets were 

washed with 70% ethanol followed by centrifugation at 15000 rpm for 5 min spin 

at 4°C. DNA was air-dried for approximately 10 min and resuspended in 35.5 μl 

of water. The entire DNA sample was digested with NlaIII (New England Biolabs) 

in a 50 μl reaction mixture overnight at 37° in a PCR machine to reduce 

condensation. Digested DNA was purified by ethanol precipitation in the 

presence of 37.5 μg linear acrylamide and 370 mM NaCl overnight at -80°C. 

DNA was pelleted by centrifugation at 15000 rpm at 4°C for 15 min. Pellets were 

washed with 70% ethanol followed by centrifugation at 15000 rpm for 5 min at 

4°C. DNA was air-dried for approximately 10 min and resuspended in 5 μl of 

water. The entire 5 μl NlaIII-digested DNA sample was ligated into 100 ng SphI-

(New England Biolabs) digested pUC19 in a 10 μl reaction mixture for 2 d at 4°C 

using the DNA ligation kit (Stratagene). Two-microliter aliquots of ligation 

products were transformed into 25 μl aliquots of NEB10β electrocompetent cells 

at 1.7 kV, 200 Ω and 25 μF using the BioRad Gene Pulser. Transformants were 

suspended in 975 μl pre-warmed SOC and recovered for 1 h at 37°C. 

Transformants were plated on seven 150-mm LB plates containing 100 μg/ml 
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ampicillin and 100 μg/ml β-galactosidase (β-gal ) (Sigma) and incubated 

overnight at 37°C. White transformants were cultured and plasmids were isolated 

using a standard DNA isolation protocol. Plasmid DNA was resuspended in 30 μl 

water and sequenced using the M13 Forward primer. 

 

Transcriptional target annotation 

 CST target DNA sequences between the two NlaIII restriction sites were 

first assessed by BLAT analysis using the UCSC Xenopus tropicalis Genome 

Browser (http://genome.ucsc.edu, August 2005 assembly) to identify their 

locations within the scaffolds of the Xenopus tropicalis genome. A positive 

identification was defined as a 100% homology match between the CST target 

DNA and a single genomic scaffold region. Complete homology to multiple 

scaffolds identified the target DNA as a repetitive sequence. The DNA scaffold 

location coordinates were imported into the Joint Genome Institute Xenopus 

tropicalis v4.1 database (http://genome.jgi-psf.org/Xentr4/Xentr4.home.html ). 

The genomic scaffold was scanned for the nearest gene up to 100 kb 5’ and 3’ to 

the CST target DNA.  

 

RESULTS 

 The success of the CST cloning ChIP screen depends on an antibody with 

high specificity and affinity for CST. Therefore, a CST-specific polyclonal 

antibody that targets the C-terminal portion of the protein was generated (Fig 

4.1A). Following affinity purification, the CST-specific antibody was used to 
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immunoprecipitate in vitro translated V5 epitope-tagged CST (Christine and 

Conlon, 2008). The CST-specific antibody successfully immunoprecipitated CST-

V5 while rabbit pre-immune serum did not (Fig 4.1B). However, the CST cloning 

ChIP screen requires immunoprecipitation of endogenous CST. To confirm that 

the antibody also specifically recognizes endogenous CST, the anti-CST 

antibody was used to immunoprecipitate endogenous CST from an adult 

Xenopus tropicalis heart (Fig 4.1C). 

  

 The CST cloning ChIP screen was implemented in a slightly different 

manner than in previous studies utilizing a cloning ChIP screen (Taranova et al., 

2006; Weinmann and Farnham, 2002); here the screen was modified to allow 

subcloning of the CST target DNAs in the most efficient manner. The genomic 

DNA was sheared to fragments of approximately 4 kb; this is four times larger 

than used in previous studies. Following isolation of immunoprecipitated DNA, 

NlaIII, a four-base pair DNA restriction enzyme, was used to digest the DNA to 

fragments of approximately 400 to 40 bp. NlaIII digestion provided a 5’ overhang 

compatible with the overhang of the restriction enzyme SphI. The SphI 

recognition sequence is located within the multiple cloning site of the pUC19 

vector, and therefore, ligation of the NlaIII-digested CST target DNA into SphI-

digested pUC19 provided an efficient method to subclone the CST target DNA 

and screen positive clones by blue/white β-gal selection. However, this cloning 

method slightly complicates the analysis and validation of the CST-bound DNA. 

Since the 4 kb CST target DNA wasreduced to 400 to 40 bp fragments, it is 
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possible that the DNA fragments isolated by this approach do not represent the 

region of DNA bound by CST. Therefore, validation of the CST target DNAs must 

include analysis of DNA 4 kb upstream and downstream of the isolated CST 

target DNA. However, independent isolation of CST target DNAs that are located 

within 4 kb of each other will provide supporting evidence that the nearby gene is 

a genuine transcriptional target of CST.  

 

 To validate the modified CST cloning ChIP screen, a pilot analysis was 

completed using 30 Xenopus tropicalis stage 27 – 29 embryos. The whole-

embryo CST cloning ChIP screen generated approximately 47,000 clones, of 

which 112 clones were analyzed. Ten CST target DNAs were located within an 

intronic region of a gene, while 11 CST target DNAs were found within 10 kb of a 

nearby gene. A high yet expected number of clones - 35 of 112 - contained 

repetitive DNA while 12 CST target DNAs were not identified within the Xenopus 

tropicalis genome. Seven of the 112 CST target DNAs were identified within the 

genome; however, in the case of these seven DNAs, there were no genes within 

100 kb of upstream or downstream of the isolated DNA.  

 

 Because Cst mRNA is expressed within the hindbrain and other neuronal 

derivatives, it is reasonable to assume that CST may regulate transcription of 

neuronal genes (Christine and Conlon, 2008). Therefore, it is not surprising that 

analysis of the CST target DNAs revealed eight genes associated with neuronal 

cell processes (Table 4.1).  
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 To enrich for CST cardiac transcriptional targets, the CST cloning ChIP 

screen was performed on 400 dissected Xenopus tropicalis stage 27 – 29 heart-

enriched regions. This developmental window was chosen based on the 

observation that Cst mRNA expression is initiated within the cardiomyocyte 

progenitors at stage 27 and that the cardiac phenotype first appears in stage 29 

CST-depleted embryos (Christine and Conlon, 2008). This screen produced 

approximately 840 clones of which 602 have been sequenced, analyzed and 

annotated. Sixty-one CST target DNAs were located within introns and 50 were 

located within 10 kb of a nearby gene. Two hundred ninety-six additional CST 

target DNAs were identified in the genome; however, they were located at a 

distance greater than 10 kb from the nearest gene. Forty-seven of the 296 CST 

target DNAs located at a distance greater than 100 kb from any gene were 

identified in the genome. Of the 602 CST target DNAs analyzed, 77 were 

repetitive DNA and 71 were not identified within the Xenopus tropicalis genome.  

 

 Further analysis of the CST target DNAs indentified two genes 

represented by multiple hits to two independent regions of DNA, the genes 

encoding Wnt-1 inducible signaling pathway 1 (Wisp1) and the N-myc 

downstream regulated gene 1 (Ndrg1). Of the 110 putative CST targets that were 

identified by CST target DNAs located in an intron or within 10 kb of a nearest 

gene, 12 putative targets were represented by multiple hits to the same CST 

target DNA region. Seventeen putative CST targets were represented by multiple 

hits to the same DNA region located beyond 10 kb of the nearest gene. However, 
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due to the large distances between the CST target DNAs and the corresponding 

genes, these putative targets were not further analyzed. The 110 putative CST 

transcriptional targets identified by CST target DNAs lying within an intron or 

within 10 kb of another gene were further investigated to determine whether they 

are expressed in the myocardium and/or endocardium of the developing heart in 

vertebrate species (Table 4.2). The putative CST targets were further 

categorized into broad developmental pathways, all of which are involved in 

cardiogenesis. Table 4.2 provides the initial characterization of putative CST 

targets organized in a hierarchy based on documented cardiac expression in 

vertebrate species. 

 

DISCUSSION 

 The CST cloning ChIP screen has generated a pool of putative CST 

targets with documented expression in the heart of vertebrate species (Table 

4.2). The putative targets have been further categorized based on their 

involvement in major developmental pathways that are integral to cardiogenesis, 

including cell growth, migration and adhesion, the Wnt signaling pathway, tissue 

patterning, cell and tissue structural, and metabolism. Although further validation 

is required to determine if these are bona fide CST transcriptional targets, the 

putative targets and their established roles in development provides insight into 

the potential function of CST in cardiogenesis. 
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 CST is required for the differentiation of cardiomyocyte progenitors at the 

ventral midline immediately following cardiac fusion (Christine and Conlon, 

2008). Interestingly, the ventral midline cardiomyocyte progenitor population 

mediates the fusion of the two bilateral cardiac fields. These leading edge cells 

must sense the environmental signals to detect the approaching opposed cardiac 

field, halt migration and establish cell-cell contact to form a single coherent 

cardiac field while simultaneously commencing differentiation and rapid 

proliferation to form the primitive ventricle. While the signals and corresponding 

pathways that influence the initial contact and fusion of the cardiac fields into one 

coherent cardiac field are not entirely understood, it is intriguing that the CST 

cloning ChIP screen identified multiple genes implicated in mediating cell-cell 

and/or cell-matrix contact and migration. Despite the occurrence of cardiac fusion 

in CST-depleted embryos, it is plausible that CST activates and/or represses a 

gene(s) that are instructive or responsive to environmental cues to mediate 

cardiac fusion. CST may be required to mediate cell-cell adhesion and/or inhibit 

further migration of the ventral midline cardiomyocyte progenitor population 

subsequent to cardiac fusion. In the absence of CST, the integrity of fusion and 

cohesiveness within the ventral midline cardiomyocyte progenitor population may 

be jeopardized resulting in inhibition of differentiation. 

 

 Properly orchestrated cell growth is essential in the developing heart, 

especially during the temporal window in which CST functions. Cardiomyocyte 

progenitors rapidly proliferate during migration to the ventral midline. Once 
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cardiac fusion occurs, the ventral cardiomyocytes undergo coherent growth and 

rapid proliferation along the perpendicular axis of the heart tube to form the 

multilayered ventricle chamber (Meilhac et al., 2003; Soufan et al., 2006). In the 

absence of CST, a population of differentiated cardiomyocytes lateral to the 

ventral midline have an increased mitotic index (Christine and Conlon, 2008). 

However, it has not been determined whether these cells are proliferating 

aberrantly or  whether they are arrested in the M-phase of the cell cycle, either of 

which could prevent these cells from differentiating properly. Notably, while there 

is a significant decrease in the number of differentiated cardiomyocytes in CST-

depleted hearts, the decrease may not be entirely accounted for by the reduced 

number of undifferentiated ventral midline cardiomyocyte progenitors. Therefore, 

it is possible that the lateral cardiomyocytes with an increased mitotic index are 

also undifferentiated and will undergo excessive proliferation in the subsequent 

coherent growth phase of ventral chamber formation. Notably, the ventricular 

myocardium appears strikingly thicker in mid-tailbud stage 33 CST-depleted 

embryos, suggesting that unrestrained proliferation is occurring when coherent 

growth should be taking place (unpublished results). The cloning ChIP screen 

identified multiple cell growth-associated putative CST targets. Interestingly, with 

one exception (Jumonji domain containing 1A), all identified putative CST targets 

associated with cell growth were also associated with the cell growth-inhibiting 

p53 pathway (Table 4.2). The repression and/or activation of these putative 

targets by CST may account in part for the hyperproliferation of the lateral 
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cardiomyocytes and the lack of differentiation of the ventral midline 

cardiomyocyte progenitors in the CST-depleted embryos. 

 

 The cloning ChIP screen also implicates CST in the Wnt signaling 

pathway. The canonical Wnt pathway involves the binding of canonical Wnts to 

their frizzled receptors which results in the inhibition of GSK3β. GSK3β inhibition 

releases β-catenin, which then relocates to the nucleus to associate with 

TCF/LEF transcription factors to mediate transcription of Wnt target genes. The 

non-canonical Wnt pathway involves activation of JNK downstream of RhoA and 

Rac, which mediates β-catenin-independent signaling. This non-canonical Wnt 

pathway is commonly referred to as the planar cell polarity (PCP) pathway and is 

associated with oriented cell division and convergence-extension cell 

movements. Canonical Wnt signaling emanating from neural tissue is thought to 

inhibit cardiac specification as the cardiomyocyte progenitors migrate from the 

primitive streak to the ventral midline of the embryo. Simultaneously, the non-

canonical Wnt pathway promotes commitment to the cardiac lineage by inhibiting 

canonical Wnt signaling. Wnt2a and Wnt8a, canonical Wnts, are expressed in 

the linear heart tube in mouse, but surprisingly, data obtained using the β-catenin 

transgene reporter mouse line indicate that canonical Wnt signaling does not 

occur in the linear heart tube (Jaspard et al., 2000; Maretto et al., 2003; Monkley 

et al., 1996). It is possible that these canonical Wnt ligands also interact in non-

canonical Wnt pathways; however, further investigation is necessary to test this 

hypothesis. Interestingly, Wnt2a and Wnt3a have been demonstrated to induce 
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cardiac differentiation in murine embryonic stem cells (Deb et al., 2008; Monkley 

et al., 1996). Conditional knock-out of β-catenin in the Islet1-Cre mouse line 

demonstrates that canonical Wnt signaling is also required for the specification 

and proliferation of the anterior heart field (Cohen et al., 2007; Lin et al., 2007). 

Therefore, canonical Wnt signaling appears to have multiple roles in 

cardiogenesis: inhibiting cardiac specification, maintaining proliferation of the 

anterior heart field cardiomyocyte progenitors, and regulating cardiomyocyte 

differentiation. Results of the CST cloning ChIP screen suggest that CST may 

repress the transcription of canonical Wnt targets such as NBL4 or Wisp1 in the 

linear heart tube to induce differentiation. Further validation is needed to test this 

hypothesis.  

 

 The non-canonical PCP Wnt pathway is also required for proper migration 

of the cardiomyocyte progenitors to the ventral midline in Xenopus. Wnt11R, a 

non-canonical Wnt, is expressed within the migrating cardiomyocyte progenitors 

just prior to cardiac fusion at the ventral midline (Garriock et al., 2005). 

Pharmacological inhibition studies have shown that Wnt11R regulates migration 

of the cardiac fields to the ventral midline through a JNK-mediated pathway 

(Garriock et al., 2005). It would be interesting to determine if the non-canonical 

Wnt pathway also participates in coherent growth of the ventricle chamber 

myocardium since the PCP pathway is associated with oriented cell proliferation 

and the time at which the non-canonical Wnt pathway is active in the 

cardiomyocyte progenitors coincides with the initiation of coherent myocardial 
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growth (Ciruna et al., 2006; Meilhac et al., 2003). Downstream components of 

the PCP pathway, Shisa2 and/or Prickle1, were identified in the cloning ChIP 

screen as putative transcriptional targets of CST. If these genes are expressed in 

the linear heart tube, further investigation will determine if CST regulates their 

transcription to mediate the PCP pathway in cardiomyocytes. 

 

 Formation of a functional cardiac chamber requires not only the induction 

of chamber-specific gene expression but also the repression of cardiac genes 

specific to adjacent areas of the forming heart, thus maintaining boundaries 

between chambers. Interestingly, Msx1 was identified as a putative 

transcriptional target of CST in the cloning ChIP screen. Msx1 is a homeobox 

transcription factor that directly interacts with the T-box transcription factor TBX3 

to repress the expression of connexin 43 in the primary myocardium of the 

atrioventricular canal (Boogerd et al., 2008). Msx1 is also required for the survival 

of the anterior heart field progenitors (Chen et al., 2007). It will be interesting to 

determine if Msx1 expression is transcriptionally repressed by CST in the 

ventricular chamber myocardium. It is also possible that CST is expressed in the 

anterior heart field progenitors where it can regulate Msx1 expression. 

 

 Validation of the putative CST transcriptional targets will be prioritized 

based on selected criteria. Highest priority will be given to putative targets that 

were identified by multiple hits to independent genomic regions. Thus far, this 

includes Wisp1 and Ndrg1. The second group of putative targets to be 
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investigated will be those that were identified multiple times within the same 

genomic region. These include Msx1, jumonji domain containing 1A, troponin T 

type3, NBL4, and cyld (Table 4.2). Next, the CST target DNAs located within 4 kb 

of a gene will be analyzed to determine if they contain any of the six CST DNA 

binding sequence (DBSs) that contribute to the CST consensus DBS identified in 

Chapter 3. If a CST DBS is identified in any of the target DNAs, those putative 

targets will receive a higher priority for validation. The CST target DNAs located 

within 4 kb of a gene will also be analyzed for phylogenetic conservation. DNA 

regions conserved among Xenopus, mouse and human are likely to be 

regulatory enhancer regions of genes that are targeted by transcription factors. 

Therefore, the conserved regions can also be analyzed for the presence of 

known DBSs of cardiac transcription factors such as NKX2.5, GATA, SRF and 

Tbox proteins. Those putative CST targets that have phylogenetically conserved 

regions will be given priority for validation, particularly if the CST or other cardiac 

transcription factor DBS is identified within those regions. Finally, the putative 

CST targets associated with major developmental pathways such as those 

involving cell proliferation, migration/adhesion, patterning and the Wnt pathway 

will also be validated. 

 

 To begin the secondary validation screen, the spatial and temporal 

expression patterns of the putative CST targets will be assessed in wildtype and 

CST-depleted Xenopus embryos by in situ hybridization. If CST transcriptionally 

regulates the putative target, its temporal and spatial expression pattern in the 
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CST-depleted embryo may be altered relative to wildtype embryos. For example, 

if CST is required in the primitive ventricle to repress expression of a tumor 

suppressor gene to permit chamber myocardium proliferation, the putative CST 

target may by ectopically expressed in the ventricular chamber myocardium in 

the CST-depleted embryo. While in situ hybridization studies will assess the 

spatial and temporal expression of the putative targets, SYBR Green quantitative 

PCR will be used to assess the level of expression of the putative CST target in 

wildtype and CST-depleted dissected heart-enriched regions. Altered expression 

levels will indicate if CST is repressing or activating transcription of the putative 

CST target. If a commercial antibody is available for any of the putative CST 

targets, whole mount antibody staining and western analysis will be performed to 

assess the spatiotemporal pattern and level of protein expression. 

 

 The putative CST targets that show altered expression in the CST-

depleted embryo will undergo further validation by in vitro transcriptional assays. 

The CST target DNAs and associated phylogenetically conserved regions will be 

subcloned into a luciferase reporter construct and transfected with CST into 293T 

cells. Using a standard luciferase reporter construct, CST should increase 

luciferase transcription if CST acts on the target DNA as a transcriptional 

activator. In contrast, when using a luciferase reporter construct containing an 

SV40 enhancer that increases basal levels of luciferase expression, 

transcriptional repression would result in decreased luciferase expression if CST 

acts on the target DNA as a transcriptional repressor. If the putative CST target is 
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associated with a cellular pathway, appropriate assays will be conducted to 

validate a role for CST in its regulation. For example, the TOP-FLASH luciferase 

reporter construct consists of multiple TCF/LEF binding sites for β-catenin/TCF-

mediated transcription and, therefore, serves as a readout for the canonical Wnt 

signaling pathway. If CST-depletion results in altered expression of a gene in the 

canonical Wnt signaling pathway, a TOP-FLASH luciferase assay can be 

conducted to determine the effect of altered expression of the target on β-

catenin/TCF-mediated transcription.  

 

 In validating a transcriptional target of CST, it will be essential to 

demonstrate CST-mediated transcriptional activation/repression of the target in 

vivo. If it is determined, based on the assays described above, that CST 

activates the expression of a particular transcriptional target, antisense 

morpholinos will be designed to deplete the transcriptional target to determine if 

the CST target-depleted embryo phenocopies the CST-depleted embryo. If CST 

represses the target, CST target mRNA will be injected into the embryo to 

achieve overexpression. Ideally, this would also phenocopy the CST-depleted 

cardiac phenotype. However, this approach is problematic in that depletion or 

overexpression of a gene may cause either embryonic lethality or disruption of 

other aspects of development, precluding the ability to assess similarities of the 

cardiac phenotypes. To circumvent this obstacle, a transgene (Tg) containing the 

region of CST target DNA, with or without 4 kb of flanking DNA determined by 

the in vitro analysis to be required for CST activation or repression, can be 
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cloned upstream of a DsRed reporter and integrated into the genome of the 

embryo. Following initial cleavage, Cst morpholino or Cst mRNA can be injected 

into both cells of the embryo. The levels of DsRed expression can be compared 

in the CST-depleted/Tg or CST over-expressing/Tg embryos to levels in the 

embryos harboring the Tg alone. Ideally, the DsRed expression would increase 

in the CST-depleted/Tg embryo and decrease in the CST over-expressing/Tg 

embryos if CST acted as a transcriptional repressor. In contrast, DsRed 

expression would decrease in the CST-depleted/Tg embryo and increase in the 

CST-overexpressing/Tg embryos if CST acted as a transcriptional activator. This 

would be an ambitious experiment accompanied by its own challenges; however, 

it would provide functional in vivo relevance to the role of CST on the 

transcription of its putative target.  

 

 The cloning ChIP screen generated a pool of putative CST targets and 

further analysis is underway to determine whether these genes are bona fide 

CST transcriptional targets. Moreover, the design of the validation analysis will 

provide insight into the mechanism(s) by which CST regulates the expression of 

its targets and determine whether it functions as a transcriptional activator and/or 

a transcriptional repressor. Given the nature of the putative targets and the 

biological pathways which they are associated, this validation screen will provide 

the first illustration of a role for vertebrate CST in an established developmental 

pathway. 
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Figure 4.1  Generation of a CST-specific antibody 

(A) Schematic of CST demonstrating the region of the protein used to develop 

the polyclonal CST-specific antibody (green). The antigen consisted of the C-

terminal portion of CST immediately following the fourth zinc finger domain 

including the serine-rich region (blue) and the fifth zinc finger domain (red) to the 

translation termination codon. (B) Western blot analysis of immunoprecipitated in 

vitro translated CST-V5 with the CST-specific antibody and pre-immune rabbit 

serum. (C) Western blot analysis of immunoprecipitated endogenous CST with 

the CST-specific antibody and pre-immune serum from adult Xenopus tropicalis 

heart tissue. Red arrow indicates the position of the endogenous CST protein. 
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Table 4.1   Putative CST transcriptional targets from a whole embryo 

cloning ChIP screen 

Putative CST transcriptional targets identified in the whole Xenopus troplicalis 

embryo cloning ChIP screen associated with development of the central nervous 

system. The distance of the putative CST target relative to the CST target DNA 

isolated in the cloning ChIP screen is documented as internal (found within an 

intron of the gene), 3’ or 5’ ± 4 kb. 
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Table 4.2   Putative CST transcriptional targets from the heart-enriched 

tissue cloning ChIP screen 

Putative CST targets identified in the cloning ChIP screen using heart-enriched 

regions from stage 27-29 Xenopus tropicalis embryos. Putative CST targets 

listed are associated with cardiac expression and are categorized according to 

their involvement in developmental pathways. If the gene was identified multiple 

times in the screen, (#X) follows the gene name. The distance of the putative 

CST target relative to the CST target DNA isolated in the cloning ChIP screen is 

documented as internal (found within an intron of the gene), 3’ or 5’ ± 4 kb. 

Expression in the myocardium and/or endocardium in vertebrate species is 

documented: h – human, m – mouse, mA – mouse adult heart, c – chick, ND – 

not determined. If documented with “Heart”, no distinction between myocardium 

and endocardium in the literature.  
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Chapter 5 

Discussion and Future Directions 

 

  Differentiation of cardiomyocyte progenitors proceeds in a specific 

temporal and spatial manner to program cardiomyocytes for specialized functions 

within the developed heart. However, there remains significant deficiency in our 

understanding of the regulation of cardiomyocyte differentiation. This dissertation 

lays the foundation for a novel mechanism of cardiomyocyte differentiation 

involving CASTOR (CST), a unique para-zinc finger transcription factor. These 

studies have investigated the role of CST within the cardiomyocyte progenitor 

population. CST is required for the differentiation of the ventral midline 

cardiomyocyte progenitors. In an effort to further characterize the role of CST in 

cardiomyocyte differentiation and elucidate the molecular mechanism by which it 

functions, two screens were employed to 1) determine the DNA binding 

sequence (DBS) recognized by CST to regulate transcription and 2) to identify 

direct transcriptional targets of CST within cardiomyocytes of the developing 

heart. 
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CST is required for cardiomyocyte progenitor differentiation  

 The Drosophila orthologue of vertebrate CST, dCas, is required for the 

spatial and temporal differentiation of a subset of neuronal progenitors within the 

developing central nervous system (Cui and Doe, 1992; Mellerick et al., 1992). In 

addition, the murine orthologue of CST is expressed in the heart of the 

developing mouse embryo (Vacalla and Theil, 2002). Therefore, CST was an 

excellent candidate to study to further our understanding of the regulatory 

mechanisms that mediate the temporal and spatial differentiation of 

cardiomyocyte progenitors. 

 

 Chapter 2 characterizes the temporal and spatial expression of Cst in 

Xenopus. Cst expression is initiated in the cardiomyocyte progenitors at early 

tailbud stage 27 as the bilateral heart fields migrate toward the ventral midline. 

CST depletion using morpholinos demonstrated that CST is required in a subset 

of cardiomyocytes at the ventral midline for their timely differentiation, 

immediately following fusion of the bilateral cardiac fields (tailbud stage 29). Fate 

mapping of ventral midline cardiomyocytes demonstrated that these cells 

ultimately contribute to the outer wall of the ventricle. In contrast, CST-depleted 

ventral midline cardiomyocytes remained in an undifferentiated progenitor state 

as an unincorporated, hyperproliferative mass near the inflow region of the 

chambered heart. Interestingly, this hyperproliferation is consistent with an 

increased mitotic index of cardiomyocytes located in the dorsolateral 

differentiated cardiomyocyte population adjacent to the undifferentiated ventral 
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midline cardiomyocyte progenitors at stage 29. This analysis has provided the 

first characterization of a role for CST in vertebrate heart development. 

 

Molecular mechanism of CST function 

 Chapters 3 and 4 detail how CST may regulate differentiation. This was 

especially important given that no molecular pathways have been identified for 

vertebrate CST. Additionally, CST is a novel zinc finger transcription factor in that 

each of the five zinc finger domains contains a classical Cys2-His2 immediately 

preceded by an additional Cys2-His2 motif, generating a novel para-zinc finger 

domain. Therefore, the identification of any molecular characteristics of this novel 

transcription factor is unprecedented.  

 

 In Chapter 3, results from the bacterial one-hybrid assay performed to 

identify the DBS of vertebrate CST are presented. Vertebrate CST recognizes a 

10 bp consensus DBS – (C/A)(T/A)A(G/C)TGGT(G/C)G. However, vertebrate 

CST did not bind the previously identified dCAS DBS – 

(G/C)C(C/T)(C/T)AAAAA(A/T) (Kambadur et al., 1998). These data suggest that 

the fifth zinc finger domain, which is only found in vertebrate CST, may modulate 

DNA binding recognition. It is also possible the fifth zinc finger binds to 

coordinates the three-dimensional configuration of the other four consecutive 

zinc finger domains for DNA binding or engages the binding of cofactors that 

modulate DNA binding specificity. How this domain contributes to DBS specificity 

and/or affinity will be investigated actively in future experiments. 
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 The identification of direct transcriptional targets of CST is critical for 

determining which molecular pathway(s) it regulates to direct cardiomyocyte 

differentiation. Chapter 4 presents a cloning chromatin immunoprecipitation 

(ChIP) screen which identified twenty-three putative CST transcriptional targets 

that have been previously shown previously to be expressed in cardiac tissue of 

vertebrate species. Interestingly, a majority of these putative CST targets are 

implicated in cell cycle and cell growth control, cell migration and adhesion, Wnt 

signaling and myocardium patterning. Although these putative CST targets are 

presently being validated, they do provide insight into how CST may influence 

cardiomyocyte differentiation.  

 

The potential role of CST in cardiomyocyte cell adhesion 

 Cell migration and adhesion are essential components of cardiogenesis. 

Cardiomyocyte progenitors migrate as bilateral epithelial sheets to the ventral 

midline and fuse to become a single coherent epithelial cardiac field. Upon 

formation of the linear heart tube, the ventral cardiomyocytes undergo 

morphogenesis as they proliferate to form the chambers of the heart while 

maintaining cell-cell contact to preserve the integrity of the cardiac tissue. 

 

 It is intriguing that the ventral midline cardiomyocyte progenitors are 

affected in the CST-depleted embryo. The ventral midline cardiomyocytes are 

present at the leading edge of the migrating bilateral cardiac fields. They must 

respond to the environmental cues to detect the approaching, opposed cardiac 
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field, halt migration and establish cell-cell contact to form a single coherent 

cardiac field while simultaneously commencing differentiation and rapid 

proliferation to form the primitive ventricle. Therefore, it is possible that CST 

regulates the transcription of genes that are instructive or responsive to 

environmental cues to mediate the fusion of the bilateral cardiac field. Although 

cardiac fusion in the absence of CST has been demonstrated exhaustively, the 

adhesive properties of the CST-depleted ventral midline cardiomyocyte 

progenitors may be altered, resulting in excessive or insufficient cohesiveness 

that could lead to improper intercalation with the opposing leading edge cells. 

Interestingly, in the most severely affected CST-depleted hearts, it appears as 

though the leading edges appear to fuse at the ventral midline yet continue to 

migrate, forcing the leading edges of the bilateral cardiac progenitor fields into 

the interior regions of the ventricle chamber. This hypothesis argues that the CST 

mediates the cohesive properties of the ventral midline cardiomyocytes that 

facilitate their ability to differentiate. This notion is consistent with the fate 

mapping studies that demonstrated that the CST-depleted ventral midline 

cardiomyocyte progenitors remain in a progenitor state clustered near the 

posterior inflow region of the mature heart. This is in contrast to wildtype ventral 

midline cardiomyocyte progenitors that extend along the anterior-posterior axis of 

the outer ventricular myocardium in the mature heart.  
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The potential role of CST in cardiomyocyte cell growth and survival 

 The cloning CST ChIP screen also revealed putative CST targets 

implicated in cell growth. Properly orchestrated cell growth is essential in the 

developing heart, especially during the temporal window in which CST functions. 

Interestingly, all but one of the eight putative CST targets involved in cell growth 

were associated with the tumor suppressor p53. p53 is a transcriptional activator 

that mediates cell growth arrest, DNA repair and apoptosis in response to DNA 

damage and cellular stress (Danilova et al., 2008). p53 arrests  progression of 

the S- and M-phases of the cell cycle by inhibiting cyclin dependent kinase 2 

(CDK2) and cell division cycle 2 (CDC2), respectively (Dulic et al., 1994; Milner 

et al., 1990). However, p53 is tightly regulated to maintain low expression levels 

in part by MDM2-mediated ubiquitin-based degradation (Grier et al., 2006).  

MDM2 and MDM4 were both identified as putative CST targets in the cloning 

ChIP screen. Since both mediate degradation of p53, it is possible that CST 

upregulates the expression of these proteins to maintain low levels of p53 in 

cardiomyocytes (Grier et al., 2006; Xiong et al., 2007). This may partially explain 

the increase in mitotic index of the CST-depleted cardiomyocytes. In the absence 

of CST, and thereby reduced levels of MDM2 and MDM4, p53 levels may rise 

and inhibit CDC2, arresting the cardiomyocytes in the M-phase of the cell cycle. 

Notably, there was no increase in apoptosis of differentiated cardiomyocytes at 

tailbud stage 29 when an increased mitotic index in dorsolateral cardiomyocytes 

was observed. Comparison of the cell cycle profile of isolated CST-depleted 

heart-enriched regions versus wildtype by determining the expression levels of 
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p53 and established cell cycle-specific markers would be informative (Goetz et 

al., 2006). However, caution must be taken in evaluating the cell cycle profile 

results since cardiac tissue can not be isolated from the surrounding tissue at this 

stage of development. Although there is no detectable level of CST expression in 

the anterior endoderm, which appears unaffected in the CST-depleted embryo, 

molecular perturbations may affect the anterior endoderm in the CST-depleted 

embryo that could in turn alter the cell cycle profile. Additionally, the large 

number of cells may mask the detection of an altered cell cycle profile within the 

relatively small number of affected CST-depleted cells. Despite these potential 

setbacks, these experiments may still provide insight into the potential role of 

CST in cell cycle control. 

 

 A second hypothesis for the increased mitotic index of the dorsolateral 

CST-depleted cardiomyocytes is that the cells are not arrested in M-phase but 

are aberrantly hyperproliferating. Once cardiac fusion occurs, the ventral 

cardiomyocytes undergo coherent growth, rapidly proliferating along the 

perpendicular axis of the heart tube to form the multilayered ventricle chamber 

(Meilhac et al., 2003; Mohun, 2000; Soufan et al., 2006). Coherent growth is 

associated with oriented cell division along the transmural axis that, in concert 

with trophic signals from the overlying epicardium, forms the compact zone of the 

ventricle (Meilhac et al., 2003). Hyperproliferation of the dorsolateral CST-

depleted cardiomyocytes could affect this coherent growth in the ventricular 

myocardium. As noted in Chapter 4, the ventricle myocardium of the CST-
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depleted mid-tailbud stage 33 embryo appears thicker than its wildtype 

counterpart. This is suggestive of unrestrained proliferation, perhaps due to the 

hyperproliferation of the dorsolateral CST-depleted cardiomyocytes. This may in 

part be due to altered expression of the cell cycle/growth putative CST targets 

noted earlier. However, numerous Wnt pathway-associated components were 

also identified in the cloning ChIP screen. Canonical Wnt signaling has been 

documented to maintain the proliferative state of the anterior heart field 

cardiomyocyte progenitors in the mouse (Cohen et al., 2007; Lin et al., 2007). 

Previous studies have also shown that ES cells require canonical Wnt signaling 

for proper differentiation into cardiomyocytes (Deb et al., 2008; Monkley et al., 

1996). Although these Wnt pathway-associated putative CST targets are being 

validated, it is intriguing that the canonical Wnt pathway is associated with 

phenotypes of the two subpopulations of affected CST-depleted cardiomyocytes, 

the hyperproliferative dorsolateral cardiomyocytes and the undifferentiated 

ventral midline cardiomyocyte progenitors. 

 

The potential role of CST in non-canonical Wnt signaling 

 The non-canonical Wnt pathway is associated with the planar cell polarity 

(PCP) pathway, which acts through JNK downstream of RhoA and Rac to 

mediate β-catenin-independent signaling. Studies in Xenopus demonstrate that 

the PCP pathway mediated by Wnt11R and JNK is active in cardiomyocyte 

progenitors as the bilateral cardiac fields fuse (Garriock et al., 2005). Strikingly, 

the phenotype of the Wnt11R-depleted heart is very similar to that of the CST-
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depleted heart (Christine and Conlon, 2008; Garriock et al., 2005). In the 

Wnt11R-depleted frog heart, the fusion of the bilateral cardiac fields is perturbed, 

resulting in their leading edges protruding into the interior of the ventricle. In the 

most severely affected hearts, Wnt11R-depletion results in cardia bifida. 

Additionally, the ventricular myocardial wall is thicker due to increased 

extracellular space between the cardiomyocytes at midtailbud stage 34. 

Therefore, Wnt11R and its associated downstream effectors are required in the 

linear tube to establish and maintain cell adhesion through the PCP pathway 

(Garriock et al., 2005). The similarity in the phenotypes of the CST-depleted and 

the Wnt11R-depleted hearts suggests CST may also mediate cell-cell adhesion, 

as suggested earlier through the non-canonical Wnt/PCP pathway.  

 

 The PCP pathway is also responsible for oriented cell division during 

developmental processes, such as in the Drosophila wing (Doyle et al., 2008). 

Therefore, determination of whether CST is required for coherent growth of the 

ventricular chamber myocardium, as well as whether this growth depends on the 

PCP pathway, would be interesting. With the hyperproliferation of the 

dorsolateral CST-depleted cardiomyocytes, the thickening of the ventricular 

myocardium at mid-tailbud stage 33 and the observed similarities with the non-

canonical Wnt11R phenotypes, CST is likely involved in restricting coherent 

growth of the myocardium through the PCP pathway. Two putative CST targets, 

Shisa2 and Prickle1, are associated with the non-canonical Wnt/PCP pathway. A 

direct contribution of the non-canonical Wnt/PCP pathway to coherent growth of 
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the chamber myocardium has not been examined since depletion of components 

of this pathway results in gastrulation defects and early lethality.  

 

 Xenopus provides an excellent system in which to test the role of CST in 

coherent growth of the ventricular chamber myocardium and its dependence on 

the non-canonical Wnt/PCP pathway. To begin, early tailbud stage 29 heart-

enriched regions would be excised and analyzed for differences in 

phosphorylated JNK between CST-depleted and CST-overexpressing cardiac 

explants relative to wildtype controls. Significant differences would suggest that 

CST is involved in the non-canonical Wnt pathway. If a difference in 

phosphorylated JNK is observed, explants of wildtype, CST-depleted and CST-

overexpressing heart region could be excised at early tailbud stage 26 and 

cultured in a commercially available JNK inhibitor that prevents 

phosphorylation/activation of JNK and, therefore, the non-canonical Wnt pathway 

(Garriock et al., 2005; Langdon et al., 2007). These treated explants would be 

analyzed at stage 29 to determine if the wildtype JNK inhibitor-treated explant is 

phenotypically similar to the untreated CST-depleted or CST-overexpressing 

hearts (i.e. lack of ventral midline cardiomyocyte progenitor differentiation, 

hyperproliferation of dorsolateral cardiomyocytes and overall morphology), 

suggesting that CST may mediate non-canonical Wnt signaling. In addition, 

levels of phosphorylated JNK would be compared in the untreated CST-

depleted/overexpressing and untreated wildtype hearts. If CST activates the non-

canonical Wnt/PCP pathway, the phosphorylated JNK levels would be lower in 
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the CST-depleted hearts and higher in the CST-overexpressing hearts that the 

wildtype controls. Likewise, if CST repressed the non-canonical Wnt/PCP 

pathway, the levels of phosphorylated JNK would be increased in the CST-

depleted hearts and decreased in the CST-overexpressing hearts relative to 

wildtype controls. Comparison of untreated and JNK inhibitor-treated CST-

depleted cardiac explants at midtailbud stage 33 would determine if the 

thickening of the ventricular chamber myocardium is due to altered non-canonical 

Wnt signaling.  

 

 To test whether CST and/or the non-canonical Wnt pathway are 

associated with coherent growth, JNK inhibitor-treated CST-depleted and 

wildtype explants would be injected with fluorescent-labeled MitoTracker in the 

ventral cardiomyocytes of the linear heart tube at early tailbud stage 29 and 

cultured until mid-tailbud stage 33 and late tailbud stage 37. Transverse sections 

of the explants would be analyzed for the MitoTracker-labeled cells to determine 

the orientation of their proliferation from the compact zone into the trabeculae of 

the ventricle. If CST is required for coherent growth, proliferation of the 

MitoTracker labeled cells along the transmural axis would be perturbed in the 

CST-depleted hearts. Incorporating the JNK inhibitor-treated hearts in this 

experiment would determine the contribution of the non-canonical Wnt/PCP 

pathway in coherent growth of the heart. Likewise, to determine whether the non-

canonical Wnt/PCP pathway is required for coherent growth, the MitoTracker-

labeled cells along the transmural axis in the JNK inhibitor-treated explants would 
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be analyzed and compared to those in untreated wildtype explants. If perturbed, 

this result would suggest that the non-canonical Wnt/PCP pathway mediates 

coherent growth of the ventricle chamber myocardium. If both CST and the non-

canonical Wnt/PCP pathway are associated with coherent growth, JNK inhibitor-

treated CST-overexpressing explants and its untreated counterpart could be 

injected with MitoTracker and analyzed as previously mentioned. If CST-

mediated coherent growth is regulated through the non-canonical Wnt/PCP 

pathway, the proliferation of the MitoTracker-labeled cells would be altered along 

the transmural axis of the ventricle chamber myocardium in the JNK inhibitor-

treated CST-overexpressing cardiac explant. Results from this analysis would 

have considerable impact on identifying a functional role and molecular pathway 

for CST in heart development. 

 

The potential role of CST in the anterior heart field 

 The sparse number of hyperproliferative cardiomyocytes relative to the 

differentiated cardiomyocyte population suggests that they may be incorporated 

into the linear heart tube from the anterior heart field prior to dorsal closure of the 

linear heart tube and its separation from the pharynx/anterior endoderm. This 

hypothesis is supported by lineage tracing of the Islet1-anterior heart field-

derived cardiomyocytes, which revealed that 20% of the left ventricle in the 

mouse originated from the anterior heart field (Cai et al., 2003). However, Islet1-

positive anterior heart field-derived cardiomyocytes were never located in the 

outer left ventricular wall, which arises from the ventral midline cardiomyocytes in 
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the chicken and frog (Christine and Conlon, 2008; De La Cruz et al., 1989). 

Although the existence of the anterior heart field has not been definitively 

established in Xenopus, it is possible that the hyperproliferative dorsolateral 

cardiomyocytes in the CST-depleted heart are derived from an anterior heart field 

cardiomyocyte progenitor population and that CST is required to establish and/or 

maintain their differentiation. In the absence of CST, these cardiomyocytes 

escape cell growth control. Expression of Islet1 is similar in the frog, mouse and 

chick, suggesting that an anterior heart field does exist in the frog (Brade et al., 

2007; Cai et al., 2003; Mjaatvedt et al., 2001). If the frog anterior heart field is 

added to the linear heart tube as it is in the mouse or chick, expression of Islet1 

and FGF10, markers of the anterior heart field, would most likely be extinguished 

immediately as they upregulate developmental programs characteristic of 

primary cardiomyocytes including NKX2.5 (Kelly et al., 2001; Prall et al., 2007). 

Therefore, in the absence of lineage tracing of the Islet1-expressing cells in 

Xenopus, it would be very difficult to prove the hypothesis that the 

hyperproliferative CST-depleted dorsolateral cardiomyocytes were derived from 

an anterior heart field. Because of this, the role of CST in the anterior heart field 

will be addressed in the mouse in future experiments. 

 

Future Directions 

 This dissertation has provided a foundation for investigating the 

mechanism by which CST regulates cardiomyocyte differentiation. However, 

many additional aspects of CST remain to be addressed. For example, we will 
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analyze the gene expression profile of CST-depleted hearts by cDNA microarray 

analysis. A cDNA microarray analysis with CST-depleted heart-enriched regions 

at early tailbud stage 27-28, when CST expression is initiated in the 

cardiomyocyte progenitors, will potentially provide more transcriptional targets of 

CST. Although many of the misregulated cDNAs observed could be an indirect 

consequence of CST-depletion, cDNA microarray analysis has the added benefit 

of providing insight into CST-mediated molecular pathways based on their 

altered regulation in CST-depleted tissue. 

 

 The dual nature of the CST-depleted cardiomyocyte indicates that CST 

mediates unique molecular mechanisms within these cells in a spatial and 

temporal manner. Therefore, it is likely that the specificity of CST function in 

different cardiomyocyte populations is regulated through interactions with 

spatially-restricted cofactors. To address this possibility, a yeast two-hybrid 

screen has been performed with full length CST. This screen has identified two 

candidate cofactors, Maskin and WRB. Maskin is an acidic coiled-coil domain 

protein that promotes cell proliferation in the frog by anchoring mitotic spindles to 

the centrosome of mitotic cells (Albee and Wiese, 2008). The human orthologue 

of Maskin, TACC3, directly binds directly to FOG1 (Friend of GATA 1) to 

sequester it in the cytoplasm and inhibit differentiation of the erythroid and 

megakaryocytic lineages (Garriga-Canut and Orkin, 2004; Sadek et al., 2003). 

WRB, a tryptophan-rich basic protein, is a candidate gene identified in a region of 

DNA associated with congenital cardiac defects in Down syndrome patients 
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(Egeo et al., 1998). WRB is expressed in the endocardial lineage of the fetal 

heart and in the adult heart (Egeo et al., 1998). However, the role of WRB and 

Maskin in cardiogenesis is presently unknown and currently being investigated. 

To isolate additional cofactors, mass spectroscopy will be used to identify 

cofactors that immunoprecipitate with endogenous CST from Xenopus heart-

enriched tissue. This provides the additional benefit of identifying endogenous 

tissue-specific cofactor-CST interactions, which will provide insight into the 

molecular mechanisms regulated by CST. 

 

 Having focused thus far on downstream pathways of CST, it is also 

necessary to identify upstream regulators of Cst expression. To do this, the CST 

promoter will be identified based on its ability to drive expression of an eGFP 

transgenic reporter in endogenous CST-expression domains of the heart in the 

Xenopus embryo. Regions of the CST promoter can then be analyzed by 

mutagenesis to identify the minimal enhancer regions sufficient to drive CST 

expression in early cardiomyocyte progenitors. These enhancer regions will be 

further analyzed in available databases, such as TRANSFAC, to identify 

transcription factor DNA binding sites, which will provide insight into how Cst 

expression is regulated within the cardiomyocyte. 

 

 Thus far, we have discussed the characterization of CST in the context of 

Xenopus. However, it is essential to characterize the role of CST in a mammalian 

system in an effort to translate these findings to human cardiac disease research. 
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Therefore, two CST mouse strains are presently being constructed. The first 

strain utilizes the Cre-loxP system such that loxP sites are inserted surrounding 

an exon common to both CST isoforms to create a null CST allele when crossed 

to a transgenic mouse strain expressing a tissue-specific Cre recombinase. For 

example, the floxed CST mice will be crossed to Nkx2.5-cre transgenic mice to 

create a null allele of CST in all cells that express Nkx2.5. Upon obtaining 

homozygous floxed mice (CSTfl/fl) through breeding, CST will be effectively 

absent in the cardiomyocytes of the mouse heart. These animals will allow us to 

examine the role of CST in Nkx2.5-expressing tissues, including the heart and 

the pharyngeal arches. Similar breeding crosses can be conducted with Myosin 

Heavy Chain α-cre and Islet1-cre mice to examine the role of CST in the primary 

and anterior heart fields, respectively.  

 

 A second mouse strain has a tamoxifen-inducible Cre recombinase 

knocked-in to a coding exon of CST, enabling Cre recombinase expression 

under the endogenous CST promoter in the presence of tamoxifen. The 

advantage of this CST allele is that it can be crossed to the ROSA26-lacZ 

indicator mouse strain to lineage-trace CST-expressing cardiomyocytes and their 

progeny at different stages of heart development. These tamoxifen-inducible 

CST-cre mice can also be crossed to CSTfl/fl mice to generate a tamoxifen-

inducible CST knockout strain at different stages of development. For example, 

CST can be removed at E8.0 when it is expressed in cardiac progenitors of the 

cardiac crescent or at later gestational time points to determine a later role for 
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this factor in cardiogenesis. Tamoxifen-inducible CST-cre recombinase mice can 

also be crossed to the heterozygous floxed CST mice (CSTfl/+) to observe 

dosage effects of CST on cardiac development.  

 

 With the above CST knockout mice, we will be able to determine the 

function of CST in mammalian cardiogenesis during discrete periods of 

development. We hypothesize that the role of CST will be conserved in 

cardiomyocyte differentiation based on its conserved expression of CST in the 

developing mouse heart. Investigation of CST in the mouse lends itself to 

techniques that are otherwise unavailable at this time in Xenopus. For example, 

to compliment the work presented in this dissertation, identification of additional 

transcriptional targets can be more readily ascertained by performing ChIP-chip, 

namely CST chromatin immunoprecipitation followed by genomic DNA chip 

analysis. Identification of additional CST transcriptional targets by genomic chip 

analysis will likely provide more putative targets in comparison to the cloning 

ChIP screen and will greatly advance our understanding of how CST regulates 

cardiomyocyte differentiation. Investigation of CST in the mouse also allows for 

the isolation and manipulation of CST-expressing primary cardiomyocytes in 

vitro. For example, to investigate the hypothesis that CST regulates 

cardiomyocyte cell growth, these primary cardiomyocytes could be sorted by flow 

cytometry and then analyzed for their cell cycle profile. Likewise, the primary 

cardiomyocytes could be supplemented with growth factors to determine 

potential upstream signaling pathways that may regulate CST function in 
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cardiogenesis. Most importantly, these CST knockout mouse will serve as a 

model to investigate the function of CST in the human population. The cardiac 

defects observed in these mice will provide valuable information that may 

implicate CST as a candidate gene associated with a human congenital cardiac 

defect and/or syndrome.  

 

 Human CST is located in the 1p36 region of chromosome 1 approximately 

8.6 Mbp from the telomeric region. Human patients with a 10.5-11.1 Mbp terminal 

deletion of 1p36 on chromosome 1 present with left-ventricular non-compaction 

(LVNC) and Epstein’s anomaly (Kurosawa et al., 2005; Saito et al., 2008). LVNC 

is characterized as excessive ventricular trabeculation with deep intertrabecular 

recesses which is hypothesized to be due to abnormal endocardial function 

(Finsterer et al., 2006; Xing et al., 2006). Epstein’s anomaly is a malformation of 

the tricuspid valve between the right atrium and right ventricle resulting in 

regurgitation of deoxygenated blood between the two chambers and hampered 

delivery of the deoxygenated blood to the lungs. Since CST is within this deleted 

chromosomal segment, CST is a candidate gene for mutation leading to LVNC 

and Epstein’s anomaly. However, finer mapping of the chromosomal region is 

necessary to determine the gene(s) responsible for these cardiomyopathies. 

 

CASTOR as a therapeutic agent 

 Zinc finger transcription factors, specifically the Cys2-His2 type, are at the 

forefront of molecular therapeutics. Zinc finger domains are now being used to 
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synthesize novel engineered artificial transcription factors that are designed to 

manipulate the genome (Blancafort and Beltran, 2008). Based on crystal 

structure analysis, most Cys2-His2 zinc finger domains make three DNA contacts 

through the α-helix, while the two β-sheets maintains a three-dimensional 

structure, in part, by coordinating a zinc ion (Wolfe et al., 2000). Together with 

crystal structure analysis, DNA binding sequences (DBS) of many zinc finger 

transcription factors have provided a library of zinc finger domains and their 

associated DBS. The independent modular nature of zinc finger domains has 

promoted the engineering of artificial zinc finger transcription factors composed 

of multiple zinc finger domains with the anticipation of creating a protein that can 

specifically target a predetermined DNA sequence within the genome. To provide 

specificity to the artificial factor, they are usually composed of multiple zinc finger 

domains in an effort to increase the size of the DBS to approximately 16 bp 

(Blancafort and Beltran, 2008). As a result, non-specific binding is greatly 

reduced. The artificial zinc finger transcription factors have been designed to 

alter the transcriptome of a cell by attaching effector domains. Thus far, 

transcriptional activators, repressors, DNA methyltransferases and 

endonucleases have been used successfully to modify the genome and/or alter 

transcription of endogenous target genes. For example, DBSs in the promoter, 

as well as the 5’ and 3’ untranslated region, of VEGF were targeted by artificial 

zinc finger transcription factors resulting in the upregulation of VEGF-A 

transcription in HEK293 cells and in the ears of mice, where it promoted new 

blood vessel growth (Liu et al., 2001; Rebar et al., 2002). An artificial VEGF-A 
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factor is being tested currently in clinical trials for promotion of blood vessel 

growth to alleviate peripheral arterial disease (Klug, 2005).  

 

 This technology can also be used in gene therapy applications to replace 

a defective gene by homologous recombination. Homologous recombination 

within a targeted locus is more efficient in the presence of nearby double-

stranded DNA breaks. Therefore, site-specific nucleases that target the damaged 

locus in close proximity to the restriction sequence have been engineered onto 

an artificial factor. In this manner, the mutation associated with the human X-

linked Severe Combined Immune Deficiency (SCID) syndrome was corrected by 

homologous recombination in 15% of somatic K562 cells (Klug, 2005).  

 

 The uniqueness of the para-zinc finger domains of CST makes them 

attractive candidates for incorporation into artificial zinc finger transcription factor 

libraries. Additionally, the potential ability of CST to coordinate two zinc ions may 

provide an advantage, such as stability and/or specificity, over the classical Cys2-

His2 zinc finger domain. To do this, the crystal structure of the para-zinc finger 

domains of CST would need to be resolved to identify the amino acids that 

establish contact with the DBS determined in Chapter 3. If CST does indeed 

regulate cell growth and/or cell adhesion, its DBS may be found in the 

endogenous promoter or untranslated regions of dysregulated genes in cancer 

and/or cardiovascular disease. Likewise, if the para-zinc finger configuration 

provides an advantage for artificial zinc finger transcription factors, the five para-
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zinc fingers could be manipulated to forge specificity to a predetermined DBS to 

alter expression of a gene of interest. Therefore, CST in the context of an 

artificial zinc finger transcription factor may provide a future therapeutic treatment 

for human disease in the future. 
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ABSTRACT 

 T-box genes have diverse functions during embryogenesis and are 

implicated in several human congenital disorders. Here we report the 

identification, sequence analysis and developmental expression patterns of four 

members of the T-box gene family in the diploid frog Xenopus tropicalis. These 

four genes – Tbx1, Tbx2, Tbx5 and Tbx20 – have been shown to influence 

cardiac development in a variety of organisms, in addition to their individual roles 

in regulating other aspects of embryonic development. Our results highlight the 

high degree of evolutionary conservation between orthologues of these genes in 

X.tropicalis and other vertebrates, both at the molecular level and in their 
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developmental expression patterns, and also identify novel features of their 

expression. Thus, X.tropicalis represents a potentially valuable vertebrate model 

in which to further investigate the functions of these genes through genetic 

approaches.  

 

INTRODUCTION 

    DNA-binding transcription factors encoded by several members of the T-

box gene family have been shown to have both cell-autonomous and non-cell 

autonomous roles in controlling the development of the heart during 

embryogenesis (Plageman and Yutzey, 2005; Stennard et al., 2005). These roles 

appear to be conserved during evolution and, in some cases, their importance is 

highlighted by the association between mutations in these factors and the 

incidence of human congenital heart defects (Mandel et al., 2005; Packham and 

Brook, 2003; Ryan and Chin, 2003). In addition, the same genes have been 

shown to be required for the proper development of other tissues and organs, 

such as the eye (Tbx5) (Koshiba-Takeuchi et al., 2000) and ear (Tbx1) (Liao et 

al., 2004; Lindsey et al., 2001; Moraes et al., 2005; Piotrowski et al., 2003; Raft 

et al., 2004), while other T-box genes have key roles in regulating early 

embryonic patterning (Showell et al., 2004). 

 

  Xenopus is a valuable model organism in which to investigate the 

molecular and genetic regulation of organogenesis in general and heart 

development in particular, and reverse genetic approaches have recently been 
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developed to isolate mutant alleles in specific genes of interest in the diploid frog 

Xenopus (Silurana) tropicalis.  In comparison with the zebrafish (Danio rerio), 

Xenopus cardiac morphology is more similar to that of humans, including 

septation of the atrium into left and right chambers (Hu et al., 2000; Mohun et al., 

2000). Also, the accessibility of the embryo throughout development and the high 

fecundity of the frog are significant advantages over the mouse, both in 

embryological analysis and in genetic screening. 

  

   The genes analyzed here – Tbx1, Tbx2, Tbx5 and Tbx20 – are all known 

to play important roles in regulating normal cardiac development. TBX1 lies 

within a critical region of human chromosome 22 (22q11.2) that is deleted in 

patients with DiGeorge syndrome, and loss of Tbx1 function in the mouse mimics 

the severe morphological defects of the outflow tract of the heart that are seen in 

DiGeorge patients (Jerome and Papaioannou, 2001; Lindsay et al., 2001). 

Similarly, mutations in the human TBX5 gene are associated with Holt-Oram 

syndrome, affecting atrioventricular septation, the cardiac conduction system and 

the development of the upper limbs (Basson et al., 1997; Li et al., 1997).  Tbx5 

has been shown to act in concert with Tbx20 at the molecular level to control 

cardiac morphogenesis (Brown et al., 2005). Conversely, Tbx5 and Tbx2 appear 

to function within distinct domains of the developing heart, contributing to the 

patterning of the early heart tube and its subsequent morphological 

regionalization. A number of recent studies have also demonstrated a 

requirement for Tbx20 function for proper regulation of Tbx2 expression within 
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the developing heart (Cai et al., 2005; Singh et al., 2005; Stennard et al., 2005). 

As a preliminary step in investigating the molecular basis of their developmental 

roles through genetic analysis in the emerging model organism Xenopus 

tropicalis, we have identified cDNA clones containing full-length coding 

sequences corresponding to these four T-box genes, determined the structure of 

their genomic loci in silico, and characterized their spatial expression patterns 

over a wide range of stages during embryogenesis. Our results demonstrate the 

high degree of sequence conservation of T-box gene orthologues in Xenopus 

tropicalis 

and highlight both conserved and previously undescribed aspects of their 

embryonic expression. 

 

MATERIAL AND METHODS 

Identification and isolation of cDNA clones  

   cDNA clones TNeu106g11, TGas050k23 and TTpA031n09, encoding 

X.tropicalis orthologues of Tbx1, Tbx2 and Tbx20 respectively, were identified by 

searching a database of X.tropicalis expressed sequence-tagged clones derived 

from oligo-dT primed cDNA libraries specific to several developmental stages 

(www.sanger.ac.uk; (Gilchrist et al., 2004)). Specifically, nucleotide sequences 

from the 5’ ends of the coding regions of the corresponding X.laevis orthologues 

(Tbx1 Genbank Acc. # AF526274; Tbx2 Genbank Acc. # AB023815; Tbx20 

Genbank Acc. # AY154394) were used to BLAST search (Altschul et al., 1990) 

for X.tropicalis clones containing the predicted translation start codon and which 
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were therefore likely to contain full-length cDNAs. The clones were obtained 

(MRC Geneservice) and the cDNA inserts were sequenced. A cDNA encoding 

Tbx5 was cloned by low-stringency RT-PCR, using total RNA template from 

stage 13-20 X.tropicalis embryos. Primers were designed based on sequences 

flanking the X.laevis Tbx5 coding sequence (forward: 5’-

GAAGATCTATGGCGGACACAGAGGAGGCT-3’; reverse: 5’-

GAGAGATCTACGCTGTTTTCATTCCAGTCTGG-3’). The resulting product was 

cloned into pcDNA3.1 (Invitrogen Corp.). All cDNA sequences are deposited in 

Genbank (Tbx1 accession # DQ124205; Tbx2 accession # DQ124206; Tbx5 

accession # DQ124207; Tbx20 accession # DQ124208). 

 

In silico analysis 

   To identify genomic sequence scaffolds corresponding to Tbx1, Tbx2, 

Tbx5 and Tbx20, the corresponding cDNA sequences were used to search the 

X.tropicalis draft genome sequence (versions 2.0 and 3.0) using the BLAST 

algorithm (Altschul et al., 1990) (DoE Joint Genome Institute). Pairwise sequence 

alignments and analyses of sequence conservation of conceptually translated 

proteins were performed using GeneDoc (www.psc.edu/biomed/genedoc). 

 

Embryo collection and in situ hybridization 

    X.tropicalis embryos were collected following natural single-pair mating 

between animals from a partially inbred (F6) line (NASCO). Males and females 

were pre-primed with ten units of human chorionic gonadotropin (hCG; SIGMA) 
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twenty hours before being primed with an additional two hundred units. One hour 

after priming, males and females were paired and allowed to mate for 

approximately five hours in shallow water at 25ºC. Embryos and unfertilized eggs 

from successful matings were collected, treated with 2% cysteine hydrochloride 

to remove their jelly coat, and sorted. Embryos were cultured at 25ºC in sterilized 

water from our aquatic system and staged according to criteria set out in the 

Normal Table of Xenopus laevis (Nieuwkoop and Faber, 1967). 

 

   A 908bp KpnI-XhoI fragment of the Tbx1 EST clone was subcloned into 

pBluescript-KS and this construct was linearized with Acc657 to generate a 

template for in situ hybridization probe synthesis. Template for Tbx2 probe 

synthesis was produced by linearizing the full-length cDNA clone described 

above using HindIII. The Tbx5 cDNA was cut from pcDNA3.1-Tbx5 by NotI-SpeI 

digest and sub-cloned into pBluescript-KS to generate a probe template 

construct that was subsequently linearized with NotI. To generate a template for 

Tbx20 probe synthesis, a 565bp SalI-NotI fragment from the Tbx20 EST clone 

was sub-cloned into pBluescript-KS and the construct linearized using SalI. In 

situ hybridizations were performed according to a standard protocol (Sive et al., 

2000) with the following exceptions: Fixed embryos were devitellinized by 

enzymatic treatment with collagenase A (Roche Applied Science), proteinase K 

and hyaluronidase (SIGMA) (Islam, 1996). No further proteinase K treatment was 

performed. Embryos were pre-hybridized overnight (approx. 15 hours) and the 

RNase treatment step prior to antibody incubation was omitted (Khokha et al., 
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2002). After staining with BM Purple alkaline phosphatase substrate (Roche 

Diagnostics), embryos were re-fixed in 1X MEM salts containing 10% formamide 

and then dehydrated in methanol.  

 

  Where necessary, embryos were cleared in 2:1 benzyl benzoate:benzyl 

alcohol (SIGMA). Embryos were photographed on a Leica M-series 

stereomicroscope (Leica Microsystems Ltd.) using the Spot Advanced image 

capture system (Diagnostic Instruments Inc.) and edited using Photoshop 7.0 

(Adobe Systems Inc.). 

 

Cryosectioning 

  For cryosectioning, embryos were embedded in gelatin using a method 

modified from Stern and Holland (Izpisúa-Belmonte et al., 1993). Following in situ 

hybridization, embryos were fixed in 4% paraformaldehyde in PBS and incubated 

overnight at 4ºC in 30% sucrose/PBS (w/v). The embryos were then pre-warmed 

to 38ºC before being transferred to 15% sucrose/PBS containing 7.5% gelatin 

(~300 Bloom; SIGMA) at 38ºC. Embryos were incubated in gelatin for a minimum 

of thirty minutes before being transferred to specimen molds (Tissue-Tek; Sakura 

Finetek U.S.A., Inc.). Embedded embryos were stored at 4ºC prior to 

cryosectioning. Sections were taken at a thickness of 20μm. Gelatin was rinsed 

from the sections using PBS at 38ºC before mounting in aqueous mounting 

medium (Faramount; DakoCytomation). 
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RESULTS AND DISCUSSION 

Sequence analysis of Xenopus tropicalis T-box gene orthologues 

  cDNA clones corresponding to Tbx1, Tbx2 and Tbx20 were identified by 

BLAST searches within a database of Xenopus tropicalis expressed sequence 

tags and a clone containing the translation initiation codon was obtained and 

sequenced for each gene. A cDNA encoding the X.tropicalis orthologue of Tbx5 

was cloned by RT-PCR and sequenced. These cDNA sequences were used to 

search the X.tropicalis draft genome sequence (DoE Joint Genome Institute) for 

genomic scaffolds containing the corresponding loci. The cDNA sequences were 

then mapped onto the genomic locus sequences and the exon/intron boundaries 

were identified based on consensus sequences for eukaryotic splice donor and 

acceptor sites (Stemple et al., 1996). 

 

  All four Xenopus tropicalis cDNA clones exhibit a very high degree of 

sequence identity when compared with their Xenopus laevis orthologues, 

particularly within their coding regions. The 1389nt open reading frame within the 

3065bp Tbx1 cDNA is 94% identical to that of Xenopus laevis Tbx1 (Genbank 

Acc. # AF526274) (89% identity in untranslated regions). The degrees of identity 

and similarity between the conceptually translated Xenopus tropicalis Tbx1 

coding sequence and several vertebrate orthologues are shown in Table A1.1. 

The results of our analysis of the genomic Tbx1 locus are shown in Figure A1.1a. 
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  The 3510bp Tbx2 cDNA identified here contains a 2055nt open reading 

frame with 94% identity to Xenopus laevis Tbx2 (Genbank Acc. # AB032941) 

(86% identity in untranslated regions). Table A1.1 shows the degrees of identity 

and similarity between conceptually translated Xenopus tropicalis Tbx2 and 

vertebrate orthologues. Mapping of the Tbx2 cDNA sequence to the available 

genome sequence identified a 14,129bp region containing the complete cDNA 

sequence divided amongst seven exons (Fig. A1.1b). 

 

 Xenopus tropicalis Tbx5 is encoded by a 1557nt open reading frame. 

Alignment of this sequence with the Xenopus laevis Tbx5 cDNA (Genbank Acc. # 

AF133036) identified 93% nucleotide sequence identity between the coding 

regions of the two orthologues. The Xenopus tropicalis Tbx5 cDNA encodes a 

product exhibiting a high degree of evolutionary conservation amongst vertebrate 

species (Table A1.1). Results obtained from in silico analysis of the Tbx5 

genomic locus are shown in Figure A1.1c. 

 

  The Tbx20 cDNA clone obtained consists of 2117bp, containing a 1320nt 

open reading frame with 93% sequence identity to that of Xenopus laevis Tbx20 

(Genbank Acc. # AY154394) (75% identity in untranslated regions). Table A1.1 

shows the degree of sequence identity and similarity between conceptually 

translated Xenopus tropicalis Tbx20 and its orthologues in other vertebrates. The 

Tbx20 sequence was found to be divided amongst eight exons within a 19,354bp 

region of a single genomic scaffold (Fig. A1.1d). 
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   Analysis of Tbx1 expression during embryogenesis 

  Tbx1 function is required for normal heart development in vertebrates. It is 

thought to act indirectly, influencing the differentiation of migrating cardiac neural 

crest cells by regulating the expression of one or more intercellular signals 

emanating from Tbx1-expressing cells in the pharyngeal endoderm and the 

mesenchymal core of the pharyngeal arches (Kochilas et al., 2005). The cardiac 

neural crest cells contribute to the formation of the outflow tract of the heart and 

the development of this region is severely affected in DiGeorge patients and in 

mouse models of the syndrome. Initial analysis of the phenotype of a 

hypomorphic Tbx1neo allele in the mouse suggests that the observed alignment 

and septation defects of the outflow tract are independent, thus underscoring the 

value of analyzing more subtle alleles in addition to single gene knockouts and 

larger deletions in vertebrate models (Xu et al., 2005). To determine the spatial 

patterns of Tbx1 mRNA expression during the course of X.tropicalis 

embryogenesis, whole mount in situ hybridization was performed. At the earliest 

stage analyzed, stage 10.5 (early gastrula), no expression of Tbx1 was detected. 

In early neurulae (stage 13), regionally restricted expression was clearly detected 

in a broad anterior domain surrounding the anterior end of the medio-dorsal 

groove of the neural plate (Fig. A1.2a). Within this broad ectodermal domain, two 

bilateral patches of strong Tbx1 expression were detected flanking the medio-

dorsal groove (Fig. A1.2a,c). These patches marked the posterior boundary of 

the Tbx1 expression domain. In late neurulae (stage 19), strong expression was 

detected in the anterior ectoderm (Fig. A1.2d-f). This expression domain 
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appeared to largely exclude the central nervous system, commonly defined by 

the expression of pan-neural markers such as the neural cell adhesion molecule 

(N-CAM) (Eagleson et al., 1995). Expression was not detected in the developing 

eye anlagen and cement gland, and was only weakly detected in the region of 

the neural tube posterior to the eye anlagen. Instead, expression of Tbx1 was 

found to immediately abut these regions of the ectoderm. As at stage 13, two 

distinct bilateral regions of strong staining were observed within the Tbx1 

expression domain at stage 19, extending as approximately dorsoventral stripes 

in the ectoderm on either side of the anterior CNS. It is unclear whether this Tbx1 

expression domain corresponds to the location of the proposed primordium of the 

ectodermal (neurogenic) placodes (Schlosser and Ahrens, 2004; Schlosser and 

Northcutt, 2000). At early tailbud stage (stage 25), Tbx1 was found to be 

expressed in three distinct areas within the pharyngeal region and in the ventral 

region of each otic vesicle (Fig. A1.2g,h). At stage 33, expression within the otic 

vesicles extended further laterally (Fig. A1.2n). However, in subsequent stages 

(stages 40, 47) expression remained restricted to the ventral and lateral regions 

of the vesicles. This differs from the pattern reported for X.laevis, in which Tbx1 

appeared to be expressed throughout the vesicles (Ataliotis et al., 2005). 

 

 Expression of Tbx1 orthologues in the pharyngeal region is broadly 

conserved amongst vertebrate species. Between stages 25 and 33, the 

elaboration of the expression pattern of Tbx1 in this region of the X.tropicalis 

embryo reflects the morphogenesis of the pharyngeal arches. In this region, the 
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cells expressing Tbx1 lay beneath the overlying epidermis. At stages 25 and 26, 

expression was detected in the mandibular and hyoid arches (Fig. A1.2g,h,i) and 

in a third domain corresponding to the future branchial arches, posterior to the 

hyoid arch. At stage 27, at which the first branchial arch becomes fully formed, 

Tbx1 expression was detected in four distinct pharyngeal domains – the 

mandibular, hyoid and first branchial arches and a more posterior branchial 

region (Fig. A1.2j,k). By stage 33, expression was also detected in the second 

branchial arch (Fig. A1.2n). At this stage, Tbx1 appears to mark distinct dorsal 

and ventral regions within the hyoid, first branchial, second branchial and forming 

third branchial arches.    

 

Analysis of Tbx2 expression during embryogenesis 

  In situ hybridization showed that, as in X.laevis (Hayata T, 1999), Tbx2 is 

expressed ventrally in X.tropicalis early gastrulae (stage 10.5) (Fig. A1.3a,b). 

However, in contrast to the reported expression in X.laevis, Tbx2 is expressed 

most strongly in the outer layer of ectodermal cells in X.tropicalis (Fig.  A1.3c). In 

dissected wholemount embryos and in cryosectioned embryos (Fig. A1.3c), very 

faint staining was observed in the underlying ventral mesoderm. At the late 

gastrula stage (stage 12), expression appeared to be consistently upregulated in 

a small group of cells clustered around the ventral edge of the closing blastopore 

(Fig. A1.3d). At the early neurula stage (stage 13), four regions of ectodermal 

expression were clearly detected. Strong staining was observed in the 

developing cement gland (Fig. A1.3e) and in a U-shaped domain around the 
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proctodeum at the posterior of the embryo (Fig. A1.3g). Two bilateral patches of 

expression were seen in the head, at the edge of the neural plate, in the region of 

the future neurogenic placodes caudal to the eye anlagen (Fig. A1.3f,g). It is 

unclear whether this domain includes both the profundal-trigeminal placodal area 

and the dorsolateral placodes. In Xenopus, the dorsolateral placodes give rise to 

the lateral line placodes and the otic placodes at later stages (Schlosser and 

Northcutt, 2000). Finally, a diffuse pattern of Tbx2-positive cells was seen in the 

ventral epidermis (Fig. A1.3h, j-l). At stage 19 (late neurula), expression persists 

in the cement gland, the ventral epidermis, the proctodeal region, the lens 

placodes, and in a broad placodal area caudal to the eye anlagen (Fig. A1.3h-l). 

In addition, expression was detected in the dorsal root ganglia of the future spinal 

cord (Fig. A1.3i). At stage 21/22, Tbx2 expression was seen in a wishbone-

shaped group of cells situated dorsal and caudal to each developing optic vesicle 

(Fig. A1.3m), corresponding to the cranial (profundal and trigeminal) ganglia. 

Expression was found to persist in these cells through tailbud and into early 

tadpole stages (Fig. A1.3n-r). From stage 21/22 onwards, the bilateral expression 

of Tbx2 in the ectodermal placodes became restricted primarily to the otic 

placode and the developing otic vesicles. Unlike Tbx1, Tbx2 was found to be 

expressed throughout the otic vesicles, and this expression was detected at all 

subsequent stages analyzed (stages 24 to 40). At stage 24, additional staining 

was observed in the precursors of the hypaxial muscles and the pronephric duct 

in the trunk, in the developing branchial arches, and in the primordium of the 

heart (Fig. A1.3o,p). A small group of cells within the telencephalon is also 
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stained at this stage (Fig. A1.3o-r). In stage 29 embryos, expression was clearly 

detected in the frontonasal process (Fig. A1.3q). Tbx2 continues to be expressed 

in the same regions of the embryo at stage 33, although its expression becomes 

clearly regionalized in the looping heart. A higher level of expression was clearly 

detected in the ventricle compared with the atrium, as reported in other 

organisms (Fig. A1.3r). 

 

Analysis of Tbx5 expression during embryogenesis 

  The expression pattern of Tbx5 was analyzed at developmental stages 

from mid-gastrula (stage 11) to early tadpole (st40). No expression was detected 

at stage 11. In late neurulae (stage 19), a gradient of Tbx5 expression was 

present within the eye anlagen, with higher levels dorsally (Fig. A1.4a,b). At this 

stage, two small patches of cells on either side of the embryo were also stained, 

corresponding to regions within the migrating bilateral heart primordia. At early 

tailbud stage (stage 25), this pattern of expression was maintained in a dorsal 

region of each developing eye (Fig. A1.4c) and in the heart primordia, located 

ventrally (Fig. A1.4c,d). In stage 26 embryos, the Tbx5-expressing cells of the 

heart primordia were seen to converge at the ventral midline (Fig. A1.4f), while 

expression was also detected in two bilateral groups of cells continuous with and 

extending dorsally from the heart primordia. These cells likely correspond to the 

progenitors of the right and left branches of the sinus venosus and common 

cardinal veins (Horb and Thomsen, 1999; Nieuwkoop and Faber, 1967). In other 

organisms, Tbx5 has been shown to play an important role in eye development, 
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particularly in guiding the projection of neurons between the retina and tectum 

(Koshiba-Takeuchi et al., 2000). In X.tropicalis, expression in the dorsal region of 

the eye was found to be maintained until early tadpole stages (stage 40), 

although its expression becomes greatly restricted between stages 33 and 40 

(Fig. A1.4h,i). At stage 31/32, strong expression was detected in the posterior 

region of the heart tube in cleared embryos (Fig. A1.4g). Following looping of the 

heart, a higher level of expression was detected in the ventricle (situated 

ventrally and offset to the left side of the embryo) than in the atrium (Fig. A1.4j). 

The regional differences in the expression of Tbx5 within the hearts of 

X.tropicalis tadpoles were seen consistently in both wholemount and sectioned 

embryos. Transverse sections through the heart at stages following heart looping 

showed expression of Tbx5 in the ventricular myocardium, while staining was not 

detected in the atrial region of the heart (Fig. A1.6b). 

 

Analysis of Tbx20 expression during embryogenesis 

 The expression pattern of X.tropicalis Tbx20 was analyzed in embryos 

between stages 13 (neural plate stage) and 40 (early tadpole). Although 

expressed weakly in the developing cement gland as early as stage 13 in 

X.laevis (Brown et al., 2003), we did not detect expression at this stage in 

X.tropicalis. At late neurula stage (stage 20), Tbx20 was strongly expressed in 

the developing cement gland and in the bilateral heart primordia (Fig. A1.5a-c). 

Expression in the cement gland was found to decrease from stage 25 onwards, 

while expression continued to be strongly detected in the developing heart.  In 
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the heart-forming region at stage 25, a single domain of expression was 

detected, corresponding to the heart field formed by fusion of the bilateral heart 

primordial (Fig. A1.5e). This fusion of the Tbx20-expressing domains appears to 

occur earlier in X.tropicalis than in X.laevis. Notably, this pattern of expression 

differs considerably from that of Tbx5, in which fusion of the bilateral pre-cardiac 

expression domains begins at around stage 26 (see above). In addition to this 

cardiac expression, two small domains of expression were observed in the 

hindbrain (rhombencephalon) at this stage, corresponding to the second and 

fourth rhombomeres. At stage 29/30, expression persisted in these regions and 

was also weakly detected in a more posterior region of the hindbrain (Fig. A1.5f). 

The hindbrain expression of Tbx20 was found to be upregulated in embryos at 

subsequent stages and, as in more anterior regions, was detected in distinct 

paired subdomains (Fig. A1.5g,j,k,m,n). At stage 33, when heart looping is 

initiated, Tbx20 was found to be broadly expressed in the heart tube, with strong 

staining detected in the ventricle, atrium and both branches of the sinus venosus 

(inflow tract) (Fig. A1.5g,i). Thus, the expression domain of Tbx20 in the 

developing chambers of the heart tube only partially overlaps that of Tbx5. This is 

consistent with the patterns of Tbx20 expression reported in other vertebrates 

(Ahn et al., 2000; Brown et al., 2003; Kraus et al., 2001; Plageman and Yutzey, 

2004; Yamagishi et al., 2004). During heart looping (stage 36), Tbx20 was 

expressed at a higher level in the atrium than in the ventricle (Fig. A1.5l). This 

regional difference in the expression level of Tbx20 was maintained in early 
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tadpole stage embryos (stage 40) and was clearly seen both in whole embryos 

and in transverse sections through the heart (Fig. A1.5o., 6c). 
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Table A.1   Sequence conservation of T-domain protein orthologues in 

vertebrates  

X.tropicalis Tbx1, Tbx2, Tbx5 and Tbx20 were analyzed by pairwise alignment 

with their orthologues in X.laevis (African clawed frog), Danio rerio (zebrafish), 

Gallus gallus (chicken), Mus musculus (mouse) and Homo sapiens (human). 

Overall sequence identity and similarity (in parentheses) between amino acid 

sequences are shown as percentages. Where putative full-length sequences 

were not available, these comparisons were omitted (N/A). 
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Figure A1.1  Genomic locus structure of Tbx1, Tbx2, Tbx5 and Tbx20 in 

X.tropicalis 

 Tbx1, Tbx2, Tbx5 and Tbx20 cDNAs and their corresponding genomic loci are 

shown in diagrammatic form (not to scale). Coding regions of each cDNA are 

shown (boxes) together with their nucleotide positions and the position of the T-

box (defined by alignment of the encoded proteins with the T-domain of Xbra) is 

also indicated. The exons corresponding to the cDNA sequences are shown 

together with their sizes (in base pairs) plus those of the intervening introns. Note 

that as the size of the first exon of each gene is predicted based on the available 

cDNA sequence, the sizes of these exons may be underestimated here. 
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Figure A1.2  Expression pattern of Tbx1 in X.tropicalis 

The results of in situ hybridizations for Tbx1 expression from early neurula to late 

tailbud stages are shown (embryos uncleared). Except for the anterior views 

shown in a) and d), all embryos are oriented with anterior to the left. Stage 13 is 

shown in anterior (a), lateral (b) and dorsal (c) views. Bilateral patches of 

stronger expression are indicated in a) by arrowheads. Stage 19 is shown in 

anterior (d), lateral (e) and dorsal (f) views. Bilateral stripes of stronger 

expression are indicated in f) by an asterisk. Tbx1 expression through tailbud 

stages is shown as follows: Stage 25 lateral (g) and ventral (h), stage 26 lateral 

(i), stage 27 lateral (j) and ventral (k), stage 28 lateral (l) and ventral (m), stage 

33 lateral (n). ba1 first branchial arch, ba2 second branchial arch, cg cement 

gland, ea eye anlagen, ha hyoid arch, ma mandibular arch, ov otic vesicle.  
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Figure A1.3  Expression pattern of Tbx2 in X.tropicalis 

In-situ hybridization results are shown for Tbx2 (embryos uncleared). Expression 

at early gastrula (stage 10.5) is shown in lateral (a) and vegetal (b) views of 

wholemount embryos, and in transverse section (c; ventral to the right). In both a) 

and b), the embryo is oriented with dorsal to the left and the dorsal blastopore lip 

is indicated by an arrowhead in a). A vegetal view of a late gastrula (st12) is 

shown in d), ventral side uppermost. Expression at early neurula (stage 13) (e-g) 

late neurula (stage 19) (h,l) and tailbud stages 21/22 (m), 25 (n), 26 (o,p), 29 (q) 

and 33 (r) are also shown. Expression in the forebrain (telencephalon) at tailbud 

stages is indicated by an asterisk (o-r). Except for anterior (d,j) and posterior (l) 

views, all embryos are oriented with anterior to the left. cg cement gland, crg 

cranial ganglia, drg dorsal root ganglia, fn frontonasal process, hm hypaxial 

muscle, ht heart tube, lp lens placode, ov otic vesicle, pd pronephric duct, pr 

proctodeum.  
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Figure A1.4  Expression pattern of Tbx5 in X.tropicalis 

The expression pattern of Tbx5 detected by in situ hybridization between late 

neurula and early tadpole stages is shown (uncleared except for g). Stages are 

as follows: Stage 19 (a,b), stage 25 (c,d), stage 26 (e,f), stage 31/32 (g) 

(cleared), stage 33 (h), and stage 40 (i,j). Except for the anterior view in b) and 

the ventral view in j), embryos are oriented with anterior to the left. Anterior is to 

the top in j). ea eye anlagen, hp heart primordium, v ventricle. 
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Figure A1.5  Expression pattern of Tbx20 in X.tropicalis 

The expression pattern of Tbx20 detected by in situ hybridization between late 

neurula and early tadpole stages is shown (embryos uncleared). Stages are as 

follows: Stage 20 (a-c), stage 25 (d, e), stage 29/30 (f), stage 33 (g-i), stage 36 (j-

l), and stage 40 (m-o). Except for the anterior view in a), embryos are oriented 

with anterior to the left. a atrium, cg cement gland, h heart, hb hindbrain, hp heart 

primordium, ht heart tube, sv sinus venosus, v ventricle. 
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Figure A1.6  Cardiac expression of Tbx2, Tbx5 and Tbx20 

The in situ hybridization patterns of Tbx2, Tbx5 and Tbx20 in the forming cardiac 

chambers were examined in transverse sections through the tadpole heart after 

looping. a) Tbx2 expression was seen in the myocardium of both the atrial (am) 

and ventricular (vm) regions of the looped heart at stage 36. b) Expression of 

Tbx5 was restricted primarily to the developing ventricular myocardium at stage 

38. c) In contrast to Tbx5, high levels of Tbx20 expression were seen in the atrial 

region but not in the ventricle (stage 40). Magnification: 100X.  
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ABSTRACT 

 The small heat shock protein Hsp27 has been shown to be involved in a 

diverse array of cellular processes, including cellular stress response, protein 

chaperone activity, regulation of cellular glutathione levels, apoptotic signaling, 

and regulation of actin polymerization and stability. Furthermore, mutation within 

Hsp27 has been associated with the human congenital neuropathy Charcot-

Marie Tooth (CMT) disease. Hsp27 is known to be expressed in developing 

embryonic tissues; however, little has been done to determine the endogenous 

requirement for Hsp27 in developing embryos.  In this study, we show that 

depletion of XHSP27 protein results in a failure of cardiac progenitor fusion 
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resulting in cardia bifida. Furthermore, we demonstrate a concomitant 

disorganization of actin filament organization and defects in myofibril assembly. 

Moreover, these defects are not associated with alterations in specification or 

differentiation. We have thus demonstrated a critical requirement for XHSP27 in 

developing cardiac and skeletal muscle tissues. 

 

 INTRODUCTION 

 Formation of a functioning heart requires the organization and 

synchronization of many cellular and tissue-level processes, including proper cell 

movements and polarity establishment, specification and differentiation of cardiac 

precursors, and morphogenesis of the heart. During gastrulation a bilaterally 

symmetric pair of fields within the anterior lateral plate mesoderm (LPM) is 

initially specified as cardiac precursors. Once the cardiac precursor fields are 

specified, they undergo two separate migration events as neurulation proceeds.  

The large-scale tissue movements involved in neurulation result in the anterior 

movement of the cardiac progenitors toward more anterior regions. This process 

seems to be largely controlled by FGF family members, including FGF8 and 

FGF4 (Beiman et al., 1996; Ciruna and Rossant, 1999; Gisselbrecht et al., 1996; 

Sun et al., 1999) as well as G-coupled proteins (Quertermous, 2007; Scott et al., 

2007; Zeng et al., 2007).  Soon after migration to more anterior positions in the 

embryo, the cardiac progenitors migrate ventrally as an epithelial sheet towards 

the anterior ventral midline where they proceed to fuse, proliferate and form a 
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linear heart tube (DeHaan, 1963; Goetz and Conlon, 2007; Kolker et al., 2000; 

Mohun et al., 2003; Trinh and Stainier, 2004).   

 

 Several requirements for the ventral migration and fusion of the cardiac 

fields have thus far been identified, including proper cardiomyocyte differentiation 

(Reiter et al., 1999; Yelon et al., 2000), interaction or signaling from the 

endoderm (Alexander et al., 1999; Kikuchi et al., 2000; Reiter et al., 1999; Schier 

et al., 1997), epithelial organization of the cardiac fields, and migration cues from 

the midline (Trinh and Stainier, 2004). Recent work by Trihn and Stainier (2004) 

has demonstrated a requirement for fibronectin (Fn) in the migrating cardiac 

precursor fields in zebrafish; fish mutant for Fn exhibit cardia bifida, which is 

characterized by unfused cardiac progenitors that independently differentiate into 

cardiac tissue (Trinh and Stainier, 2004). Their results indicate that Fn at the 

junction between the endoderm and mesoderm is required for epithelial integrity 

within the cardiac fields. Furthermore, deposition of Fn at the ventral midline 

regulates the timing of migration. Other studies have shown that mutant mice 

lacking Fn display defects in cardiogenesis, despite normal specification of the 

cardiac precursors (George et al., 1997; George et al., 1993). It is also well 

established that the anterior endoderm is required for cardiac progenitor 

migration (reviewed in (Lough and Sugi, 2000). For example, many genes 

involved in endoderm differentiation and maturation, including Gata4, Gata5, 

one-eyed pinhead (oep), casanova, and miles apart result in cardia bifida when 

mutated in mice or fish (Kuo et al., 1997; Kupperman et al., 2000; Reiter et al., 
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1999; Stainier, 2001). Furthermore, studies have shown that abrogation of proper 

myocardial differentiation can also result in cardia bifida (Reiter et al., 1999; 

Yelon et al., 2000). In the present study we report a requirement for the small 

heat shock protein, Hsp27, in proper cardiac fusion. 

 

 Hsp27, also called Hsp25 in mice and HspB1 in humans, is one of the 

most widely distributed and most studied of the small heat shock proteins 

(sHSPs; reviewed in (Ferns et al., 2006). Changes in Hsp27 expression have 

been observed in cells and tissues exposed to numerous stress conditions, 

including oxidative damage (Arrigo, 2001; Baek et al., 2000; Dalle-Donne et al., 

2001; Escobedo et al., 2004; Huot et al., 1996; Komatsuda et al., 1999; Mehlen 

et al., 1995), metal toxicity (Bonham et al., 2003; Leal et al., 2002; Somji et al., 

1999), and ischemia (Hollander et al., 2004; Reynolds and Allen, 2003; Shelden 

et al., 2002; Vander Heide, 2002), as well as in disease states such as cardiac 

hypertrophy (Knowlton et al., 1998; Scheler et al., 1999), and muscle myopathies 

(Benndorf and Welsh, 2004). In addition, a role for HSP27 function has been 

implicated in cellular processes, including protein chaperone activity (Jakob et 

al., 1993), regulation of cellular glutathione levels  (Arrigo, 2001; Baek et al., 

2000), apoptotic signaling (Bruey et al., 2000; Paul et al., 2002), inhibition of actin 

polymerization (Benndorf et al., 1994; Miron et al., 1991; Rahman et al., 1995), 

and stabilization of actin filament arrays (Huot et al., 1996; Lavoie et al., 1993a; 

Lavoie et al., 1993b; Lavoie et al., 1995). Furthermore, mutation within Hsp27 

has been associated with the human congenital disorder Charcot-Marie-Tooth 
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disease (CMT; (Evgrafov et al., 2004). CMT is a progressive neuropathy of the 

peripheral nervous system, and is the single most-common inherited neuropathy 

at an estimated prevalence of 1 in 2,500 (Skre, 1974).  

 

 Hsp27 is known to be expressed during both skeletal and cardiac muscle 

development in several organisms, including human (Shama et al., 1999), mouse 

(Gernold et al., 1993), pig (David et al., 2000) and zebrafish (Mao et al., 2005; 

Mao and Shelden, 2006).  A role for Hsp27 in heart development has been 

implied by studies over-expression of Hsp27 can protect mice from induced heart 

failure (Brundel et al., 2006; Liu et al., 2007). However, the precise requirement 

for Hsp27 during normal cardiac development is not known. Here we report the 

sequence and expression of the X. laevis orthologue of heat shock protein 27 

(XHsp27).  We demonstrate using anti-sense morpholinos that XHSP27 is 

required for proper fusion of cardiac precursors and for actin organization in 

developing cardiac and skeletal muscle. We further demonstrate that cardiac 

specification and differentiation appear unaltered as assayed by several markers 

of cardiac precursor and differentiated cardiomyocyte populations.  

 

MATERIAL AND METHODS 

Embryo culture and injections 

 Preparation and injection of X. laevis embryos was carried out as 

previously described (Wilson and Hemmati-Brivanlou, 1995). Embryos were 

staged according to Nieuwkoop and Faber (Nieuwkoop and Faber, 1967). An 



 231

antisense morpholino oligonucleotide was designed against the translation start 

site of XHsp27. XHSP27 morpholinos were obtained from Gene Tools, LLC. with 

the following sequence: 5’  AAT TCT GCG TTC TGA CAT TTT CTC T 3’. The 

human β-globin splice-mutant standard control morpholino from Gene Tools was 

used as control. For the in vitro translation studies, TBX20MO was used to show 

specificity of the HSP27MO (Brown et al., 2005). HSP27MO was injected at 

60ng/embryo. 

 

Translation inhibition by morpholinos 

 In vitro translations were performed using TNT Coupled Reticulocyte 

Lysate System (Promega) following the manufacturer’s protocol. Reactions were 

carried out in the presence or absence of HSP27MO or TBX20MO. A carboxy-

terminal hemagluttin tagged version of HSP27 was generated using the pSP64T-

HA vector (generous gift of Masazuma Tada). An HA-tagged TBX20 was also 

used in the in vitro translation study (Brown et al., 2005). We have recently 

demonstrated that X. laevis SHP2 is uniformly expressed throughout early 

development (Brown et al., 2005) and anti-PTP1D/SHP2 primary antibody was 

used at 1:2500 (Transduction Laboratories) as a loading control with peroxidase-

conjugated AffiniPure donkey anti-mouse (H+L) 2° antibody (1:10,000). HA-

tagged proteins were probed with anti-HA primary antibody (Covance) at 1:1000 

dilution, and peroxidase-conjugated AffiniPure Donkey anti-mouse (H+L) 

secondary antibody (Jackson ImmunoResearch Laboratories) at 1:10,000 

dilution. For in vivo translation analyses, embryos were injected with MOs and 
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mRNA at the one-cell stage. At stage 19, 40 embryos per treatment were 

collected and lysed in 300 �l of lysis buffer: 140 mM NaCl, 50 mM Tris (pH 7.6), 

10 mM EDTA, 1% Surfact-Amps Triton-100 (Pierce), Complete EDTA-free 

Protease Inhibitor (Roche), and 25mM PMSF (Roche). Lysates were resolved on 

12% SDS-PAGE gels, and visualization was carried out using luminol-based 

chemi-luminescence solutions at 1:1 ratio: solution A: 100mM Tris pH8.5, 2.5mM 

Luminol (Sigma), 0.4 mM p-Coumaric acid (Sigma); solution B: 100 mM Tris pH 

8.5, 0.02% H2O2 (Sigma). 

 

Whole-mount in situ hybridization 

 Whole-mount in situ hybridization was performed as previously described 

(Harland, 1991). Probes used include Tbx20 (Brown et al., 2003), Nkx2.5 (Brown 

et al., 2005), Gata4 and Gata6 (generous gifts of Roger Patient; (Jiang and 

Evans, 1996), Mlc1v’ (IMAGE clone 4408657, GenBank Accession No.: 

BG884964), and Titin Novex 3 (Brown et al., 2006). 

 

Immunodetection 

 Embryos were prepared for whole-mount immunohistochemistry as 

previously described (Kolker et al., 2000). Briefly, fixed embryos were incubated 

overnight at 4°C with an antibody against myosin heavy chain � (Abcam), at a 

dilution of 1:500. Following washes, the embryos were incubated overnight at 

4°C with a Cy3-conjugated anti-mouse secondary antibody (Sigma) at a dilution 

of 1:100. For imaging, embryos were cleared with 2:1 benzyl benzoate: benzyl 
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alcohol and viewed on a Leica MZFLIII fluorescence dissecting microscope. For 

immunostaining of histological sections, embryos were collected at the indicated 

stages, fixed for 2 hours in 4% paraformaldehyde, and embedded in OCT 

cryosectioning medium (Tissue Tek). Cryostat sections (14 �m) were rinsed with 

wash buffer (PBS with 1% Triton and 1% heat inactivated calf serum), and 

incubated at 4°C overnight, as indicated, with mouse anti-myosin heavy chain � 

(Abcam), at a dilution of 1:500 or anti-tropomyosin 1:50 (Developmental Studies 

Hybridoma Bank), and phalloidin conjugated to Alexa 488 flourophore (Molecular 

Probes). Sections were then rinsed with wash buffer and incubated with anti-

mouse Cy3-conjugated secondary antibody (1:200; Sigma). Sections were rinsed 

and incubated for 20 minutes at room temperature with DAPI, cover slipped and 

visualized on either a Zeiss LSM410 confocal microscope or a Nikon Eclipse 

E800 fluorescent microscope. 

 

 For western blot analysis, stage 29 and 33 embryos (N=10) per treatment 

were collected, lysed, and sonicated in 100 μl of lysis buffer used in the in vivo 

morpholino studies above. 10 μg of each lysate was run on a 4-12% SDS-PAGE 

gel and transferred. Western blots were probed with antibodies against actin 

(Santa Cruz) and α-tubulin (Abcam) at dilutions of 1:100 and 1:1000, 

respectively, in 5% non-fat milk in TBS-T. Actin was detected using peroxidase-

conjugated AffiniPure donkey anti-mouse (H+L) secondary antibody (Jackson 

ImmunoResearch Laboratories). α-tubulin was detected using was detected 

using peroxidase-conjugated AffiniPure donkey anti-rabbit (H+L) secondary 



 234

antibody (Jackson ImmunoResearch Laboratories). Both secondary antibodies 

were used at 1:10,000 dilution. Visualization was carried out using Super Signal 

West Pico Chemiluminescent Substrate (Pierce).  

 

 Transmission electron microscopy 

 Briefly, stage 37 embryos were fixed in 2% paraformaldehyde/2.5% 

gluteraldehyde overnight (Goetz et al., 2006). Embryos were post-fixed in 

ferrocyanide-reduced osmium and embedded in Spurr’s epoxy resin. Transverse 

ultra-thin (70 nm) sections were mounted on copper grids, and post-stained with 

4% aqueous uranyl acetate followed by Reynolds’ lead citrate. Sections were 

imaged with a LEO EM-910 transmission electron microscope. 

 

 

RESULTS 

XHsp27 expression is developmentally regulated in differentiating cardiac 

and skeletal muscle. 

 XHsp27, the X. laevis orthologue of Hsp27 (HSP25, HspB1; GenBank 

Accession No.: EF066483) was initially identified in a screen for differentially 

expressed cardiac genes as an expressed sequence tag (GenBank Accession 

No.: AW766262) identified in the developing heart (D. Brown and F.L.C., 

unpublished data). This EST was subsequently sequenced and a BLASTn 

search revealed that the EST is highly similar to several members of the small 

heat shock protein 27 subfamily. The X. laevis Hsp27 transcript consists of at 
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least 1123 nucleotides and encodes for 213 putative amino acids (Fig. A2.1A). 

The XHsp27 transcript appears to align with a single locus within the Xenopus 

tropicalis (X. tropicalis) genome (JGI, ver. 4.1, scaffold 72), consisting of 3 exons 

separated by two introns. This organization appears to mirror that of mouse 

Hsp27 (Ferns et al., 2006), which also consists of three exons. In addition, a 

synteny search using Metazome (www.metazome.net) reveals that the genomic 

locus within X. tropicalis is highly syntenic with the Hsp27 orthologue locus on 

human chromosome 7, mouse chromosome 5, rat chromosome 12, and chick 

chromosome 19. (Fig. A2.1C). Protein alignments performed against Hsp27 

orthologues in human (GenBank Accession No.: BC073768), rat (GenBank 

Accession No.: NM_031970), mouse (GenBank Accession No.: AK003119), pig 

(GenBank Accession No.: NM_001007518), dog (GenBank Accession No.: 

NM_001003295), chick (GenBank Accession No.: NM_205290), and zebrafish 

(GenBank Accession No.: NM_001008615) reveal conservation of identities in 

the range of 64-70% (Fig. A2.1A-B). An “alpha-crystallin-hsps” domain within the 

transcript is conserved between the Hsp27 orthologues, as identified by the NCBI 

conserved domain search (cd#: cd00298; Fig. A2.1A). The crystallin domain is 

critical in homo- and heterodimerization between various sHSPs (Feil et al., 

2001). Furthermore, one of two putative actin interacting domains appears to be 

highly conserved between XHsp27 and the various orthologues, with a second 

domain showing a smaller degree of conservation (Fig A2.1A; Mao et al., 2005). 

Thus, this transcript is likely the X. laevis orthologue of Hsp27 and we refer to 

this transcript as XHsp27. 
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 By whole-mount in situ hybridization, XHsp27 appears to be expressed 

diffusely throughout the developing embryo during gastrulation, consistent with 

recent findings in zebrafish (Fig. A2.2; (Mao and Shelden, 2006).  Shortly after 

gastrulation XHsp27 becomes restricted to thin dorsal-ventral stripes within a 

subdomain of each developing myotome within the somitic mesoderm (Fig. 

A2.2C). This expression initially begins in the anterior most somites and 

proceeds in a wave towards the posterior end, mirroring the wave of somitic 

formation and development (Fig A2.2B-L). As myogenesis progresses, the 

thickness of each vertical stripe expands to encompass the entire myotome and 

this expression remains in the developing muscle until at least stage 40 (Fig 

A2.2B-I).  During cardiac precursor fusion and linear heart tube formation, 

XHsp27 expression commences throughout the developing myocardium and 

remains expressed throughout the developing heart at all stages examined (Fig 

A2.2G-I, L, M).  Furthermore, as muscle development continues during early 

tadpole stages, XHsp27 expression becomes evident in other muscle domains 

such as those in the developing jaw and the body wall (Fig A2.2I). Expression is 

also detected in the brain of tadpole stage embryos (Fig A2.2I). These results 

indicate that XHsp27 is a developmentally regulated gene and may be involved 

in gastrulation, cardiac and skeletal myogenesis, and neural development. 

 

XHSP27 morpholinos specifically inhibit HSP27 translation 

 In order to test whether XHsp27 protein is required during embryogenesis, 

we sought to knock down endogenous XHSP27 protein levels using antisense 
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morpholino oligonucleotides. To this end we designed morpholinos targeted 

against the start site of XHsp27, which we refer to as HSPMO (Fig. A2.3A).  

Unfortunately, attempts to detect endogenous or in vitro translated X. laevis 

HSP27 were unsuccessful using several of the available commercial HSP27 

antibodies.  Thus we sought to test the efficiency and specificity of morpholino 

translation inhibition using a hemagglutinin (HA) epitope-tagged version of 

XHSP27 both in vitro and in vivo. For the in vitro inhibition study, 

transcription/translation reactions were incubated with HA-HSP27 construct 

alone and together with increasing concentrations of HSP27MO (Fig. A2.3B). 

TBX20MO was included as a negative control (Brown et al., 2005). Furthermore, 

HSPMO was incubated with HA-Tbx20 to show specificity of the HSP27MO. 

Results from these assays show that HSP27MO efficiently blocks translation of 

HA-XHsp27 in vitro while TBX20MO and ControlMO do not. In contrast, 

HSP27MO does not block translation of HA-TBX20 (Fig. A2.3B). 

 

 In order to test whether HSP27MO can knock down XHSP27 translation in 

vivo, HA-Hsp27 capped mRNA was injected into one-cell stage embryos along 

with HSP27MO.  To insure that the MOs did not bind the mRNA prior to injection, 

embryos were first injected with 30ng or 60ng HSPMO or 60ng ControlMO. 

Embryos were then re-injected with 100pg HA-HSP27 capped mRNA prior to first 

cleavage. Embryos were then collected at stage 20, lysed, submitted to Western 

blotting with an anti-HA antibody, and with an antibody against the protein 

phosphatase, SHP2, as loading control (Brown et al., 2005; Langdon et al., 
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submitted). As shown in Figure A2.3C, embryos injected with HSPMO completely 

lack HA-HSP27 protein, in contrast to ControlMO injected embryos, which 

display no inhibition of HA-HSP27 translation. 

 

Knockdown of XHSP27 protein translation results in partial cardia bifida. 

 To determine the requirement for XHSP27 during development, we 

injected HSP27MO into one-cell stage embryos. Despite XHsp27 expression in 

gastrula embryos, no defects in gastrulation were observed, suggesting that 

XHSP27 is not required for this process. However, by linear heart tube formation 

stage (stage 33), defects in heart tube fusion became apparent as assayed by 

myosin heavy chain (MHC) whole-mount antibody staining (Fig. A2.4J-L). As 

shown in Figure A2.4, XHSP27 morphants display a bifurcation in the posterior 

inflow region of the linear heart tube. The degree of bifurcation varies between 

embryos, and in the most severe cases the hearts appear to be almost entirely 

divided, resulting in complete cardia bifida (Fig. A2.4P-R). Additional Hsp27 

morphoinos designed against either the 5-prime UTR or splice donor/junctions 

led to partial reduction of HSP27 and a similar albeit weaker phenotype while 

mis-match splice morpholinos gave no phenotype (data not shown). Attempts to 

rescue the phenotype by mis-expression of Hsp27 lead to developmental 

abnormalities at gastrulation and early embryonic lethality precluding analysis of 

heart development.  
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Despite aberrant morphogenesis of the heart, the extant cardiac tissue 

becomes rhythmically contractile; however, XHSP27 morphant embryos arrest 

development shortly thereafter (stage 40).  These results suggest that XHSP27 is 

critical for proper cardiac morphogenesis. 

 

The cardiac transcriptional program appears to be unaltered in XHSP27 

morphants. 

 To assess whether the cardiac and skeletal muscle precursors are 

properly specified and differentiate, whole-mount in situ hybridizations were 

performed on XHSP27 morphant embryos using a panel of cardiac and skeletal 

muscle markers. Tbx20, Nkx2.5, Gata4, and Gata6 probes were used to mark 

both early cardiac precursors and terminally differentiated cardiomyocytes, while 

titin novex-3 (XTn3) and myosin light chain 1v’ (Mlc1v’) were used to mark 

differentiated skeletal and cardiac muscle.  As shown in Figure A2.5, the cardiac 

and skeletal muscle domains appeared normal in all cases. This data, combined 

with the observation that the hearts are contractile, suggests that the cardiac and 

skeletal muscle precursors are properly specified, migrate to the correct location 

within the embryo and can initiate terminal differentiation.  

 

XHSP27 morphants display actin filament disorganization in the developing 

heart and somites. 

 Recent studies have shown that in addition to a requirement for cardiac 

differentiation and endoderm maturation in heart tube formation, proper epithelial 
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organization, adhesion and migration are absolutely critical for heart tube 

formation. Furthermore, HSP27 has been shown to stabilize the actin 

cytoskeleton in response to stress (Huot et al., 1996; Lavoie et al., 1993a; Lavoie 

et al., 1993b; Lavoie et al., 1995). Thus considering that the cardiomyocytes are 

apparently specified and differentiate properly, that XHsp27 is not detected in 

endoderm tissue, and that XHsp27 is known to be involved in cytoskeletal 

dynamics, we hypothesized that actin organization may be disrupted in the 

developing myotomes and heart of XHSP27 morphants.  To address this 

possibility we injected HSP27MO into one-cell stage embryos and collected the 

embryos at stages during cardiac fusion (stage 28), linear heart tube formation 

(stage 33), and cardiac looping (stage 37).  Embryos were then transversely 

cryosectioned and cardiac sections were immunostained for myosin heavy chain 

(MHC) using a MHC-specific antibody and F-actin using phalloidin. Somitic 

sections were stained for F-actin and with DAPI to mark nuclei in somitic 

sections.  In control hearts, actin staining is most apparent at the basal and 

apical surfaces of the cells in the forming heart tube, which consists of a single 

layer of cardiac cells, as well as in fibers perpendicular to the lumen, which 

appear to correspond with the lateral membranes of cardiac cells (Fig. A2.6A-C, 

G-I).  However, in XHSP27 morphant hearts, actin staining appears diffuse and 

disorganized (Fig. A2.6D-F, J-L). Few distinct fibers are apparent within the 

morphant hearts, except where lumen formation occurs (Fig. A2.6L). A similar 

and more dramatic defect in actin organization is evident within the developing 

somites.  In control morpholino-injected embryos, the somites display thick, 
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highly organized actin bundles oriented along the anterior-posterior axis (Fig. 

A2.6M-O, S-U).  However, in XHSP27 morphants, the actin appears 

disorganized and scattered throughout the somites (Fig. A2.6P-R, V-X).  

Furthermore, the somitic domain itself appears to be larger and less well-defined 

(Fig. A2.6P-R, V-X).  This appearance is similar to the appearance of the somites 

at earlier stages, after which the somites normally become smaller and more 

compact, possibly due to the formation of the thick actin bundles. These 

alteration in actin organization are not due to the levels of actin as western blots 

with a actin specific antibody show equal levels of actin in control and Hsp27MO 

embryos (Fig. A2.7) therefore, suggesting that XHsp27 is required for proper 

regulation of cytoskeletal dynamics during myogenesis. 

 

 In order to gain further insight into the nature of microfilament 

disorganization in XHSP27 morphants, embryos were injected with control or 

XHSP27 morpholinos, collected at stage 38 and visualized using transmission 

electron microscopy (TEM). As shown in Figure A2.8, ControlMO hearts display 

many myofibril bundles, the majority of which were found to be oriented along the 

anterior-posterior axis, as demonstrated by transversely sectioned myofibers 

(Fig. A2.8). In regions where longitudinal sections of myofibers are present, clear 

z-lines are evident showing the fusion between individual sarcomeres (Fig. 

A2.8A, B). Furthermore, in transverse myofiber sections, the highly organized 

myosin structure can be seen (Fig. A2.8C inset). In contrast, XHSP27 morphant 

hearts show very few myofiber structures (Fig. A2.8D-E). In addition, the 
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occasional myofibers are very short and no z-lines or connections between 

multiple fibers were apparent, indicating a lack of sarcomeric assembly (Fig. 

A2.8D-E). In some sections, large aggregates of bodies are apparent that appear 

very similar to cross-sectional views of myosin in control myofibrils (Fig. A2.8F 

inset). However, these aggregates lack any of the obvious structure in spacing or 

organization characteristic of myofibrils (Fig. A2.8F inset). Similar results are 

observed within the developing myotomes in the somitic region of XHSP27 

morphants. In the forming skeletal muscle, all myofibers analyzed appeared to be 

sectioned transversely, indicating that these fibers are arranged along the 

anterior-posterior axis. ControlMO injected myotomes display thick myofiber 

structures that generally extend throughout the entire cell (Fig. A2.8G, H). In 

higher magnifications, the myofibril structure is visible as highly ordered arrays of 

microfilaments (Fig. A2.8H). In contrast, XHSP27 morphants display much fewer 

apparent myofibers and most of these appear abnormal in morphology (Fig. 

A2.8I, J). Magnification of these myofibers reveal a less-ordered structure and an 

apparent lack of thick myosin filaments in these structures (Fig. A2.8J). These 

observations suggest that the lack in actin organization is accompanied by a 

failure of myofibril assembly and sarcomere formation. Collectively, these results 

indicate that XHSP27 is required for normal cardiac precursor fusion and muscle 

formation, and that these defects are accompanied by a failure in actin 

organization and proper myofibril assembly.  
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DISCUSSION 

Developmental regulation of Hsp27 expression 

 Hsp27 has been shown to be involved in a diverse array of cellular 

processes.  In general, the majority of functional data on Hsp27 comes from 

experiments performed both in vitro and in cell culture, and much of this research 

has focused on the function of Hsp27 in response to various cellular stressors.  

However, surprisingly little has been done to address the potential role of Hsp27 

in developing embryos.  In this study, we report the identification of X. laevis 

Hsp27 and demonstrate that this orthologue is expressed in a developmentally 

regulated manner throughout developing gastrula, skeletal muscle and cardiac 

tissues.  The temporal and spatial expression appears to be highly conserved 

between X. laevis and zebrafish (Mao and Shelden, 2006; Tuttle et al., 2007).  In 

frogs and fish, XHsp27 is initially detected diffusely throughout the gastrulating 

embryo, suggesting that Hsp27 may be involved in gastrulation.  However, 

embryos depleted of XHsp27 protein by antisense morpholinos did not display 

any defects in gastrulation, suggesting either that XHSP27 is not required for 

gastrulation or that a functionally redundant sHSP is present in X. laevis. During 

neurulation, XHsp27 expression commences in the anterior most developing 

somites, followed by a posterior wave of expression in newly forming somites. As 

development proceeds, expression within the somitic myotomes expands to 

encompass the entire myotome, suggesting that XHSP27 may be involved in 

morphogenesis or differentiation of muscle tissue. However, our data from 

XHSP27-depleted embryos suggest that XHSP27 functions in cytoskeletal 
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dynamics but is not involved in differentiation. In addition to its role in skeletal 

muscle, XHsp27 is expressed in developing cardiac tissue, beginning at heart 

tube formation, with this expression continuing through stage 40. During tadpole 

stages, additional domains of expression within developing jaw and body wall 

muscles also become evident, suggesting that XHSP27 may be involved in 

general mechanisms of muscle formation and development. 

 

Hsp27 in cardiogenesis and myogenesis 

 Formation of a linear heart tube requires the coordination of cardiac 

specification, differentiation, and cell behavior within defined spatial and temporal 

domains. In the present study, we identify the small heat shock protein, Hsp27, 

as being integral to this process. Several studies have shown that Hsp27 is 

expressed in developing muscle tissues.  While it is clear that Hsp27 is critical in 

mediating the cellular response to a wide variety of stressors, it is unclear what 

role Hsp27 may be playing during cardiogenesis and myogenesis under un-

stressed physiological conditions. Evidence from studies of embryonic stem cell 

differentiation has suggested that Hsp27 can function as a molecular switch 

between differentiation and apoptosis (Mehlen et al., 1997). Furthermore, it is 

known that proper cardiomyocyte differentiation is necessary for cardiac fusion 

and heart tube formation (Reiter et al., 1999; Yelon et al., 2000). However, while 

our data does not rule this out as a possible function for XHsp27, it at least 

suggests that a primary function of Hsp27 may be to regulate actin dynamics in 

the context of myogenesis.  Our results show that the cardiac and skeletal 
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muscle appears to be specified and to differentiate normally, at least as assayed 

by several markers of specification and terminal myocyte differentiation. 

Furthermore, the total amount of cardiac and skeletal tissue appears grossly 

normal in XHsp27-depleted embryos. With the exception of actin, all markers 

examined appear to be normally expressed and the defects in heart development 

appear to be primarily morphogenetic in nature. These data suggest that the 

cause of the cardiac defect is not a failure of cardiomyocyte differentiation. It 

remains formally possible that the cardiac fusion defects may result from a loss 

of differentiation or an increase in apoptosis in a subset of cardiac precursors at 

the midline, essentially creating a barrier between the two cardiac fields. 

However, further studies must be conducted to precisely define whether Hsp27 

can influence differentiation or apoptosis in the developing embryo. 

 

 Abrogation of XHsp27 function in X. laevis embryos results in improper 

fusion of the cardiac progenitors, resulting in two unfused or partially fused 

contractile hearts. Our data suggest that the primary role of Hsp27 in 

cardiogenesis is to regulate actin dynamics, and thus cell motility or adhesion. In 

support of this hypothesis, previous research has shown that cardiac epithelial 

integrity and cell motility and adhesion are critical for proper fusion of the cardiac 

primordia (Trinh and Stainier, 2004). In addition, the precardiac field was shown 

to consist of a single polarized epithelial layer. Our results demonstrate that actin 

fibers are visible primarily at the cell membrane in the single-cell layered cardiac 

precursors. However, in XHSP27-depleted embryos, few discrete fibers are 
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visible. These results suggest that epithelial organization or polarization is 

defective in the cardiac fields and that XHSP27 is required for this organization. 

Actin fiber organization appears to be morphologically different in developing 

skeletal muscle. Within the developing myotomes, thick actin fibers are arranged 

in an anterior-posterior orientation and do not appear to delineate the 

membranes in an epithelial manner. However, similar to what is seen in cardiac 

primordia, actin protein appears to be completely disorganized in XHSP27 

morphant embryos, again suggesting that cell polarity or tissue integrity is 

affected by HSP27 loss.  
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Figure A2.1  XHsp27 is a conserved member of the Hsp27 subfamily of 

proteins. 

(A) Protein sequence alignments of X. laevis Hsp27 with various Hsp27 

orthologues. Alignment was performed using the GeneDoc program. Blue 

underline indicates conserved crystallin domain. Red underline indicates putative 

actin interacting domains. (B) Percent identity and similarity between Hsp27 

orthologues. (C) Synteny between X. tropicalis, human, mouse, rat, and chick 

Hsp27 loci as revealed by Metazome. Hsp27 is indicated in black. Upstream and 

downstream genes are colored as indicated. 
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Figure A2.2  XHsp27 is expressed in the gastrula, and developing skeletal 

and cardiac muscle. 

Whole mount in situ hybridization of X. laevis embryos using an antisense probe 

specific for XHsp27 at the indicated stages. (A) Dorsal is to the top. (B-I) Anterior 

is to the left. (J-M) transverse sections through somitic (J, K) and cardiac (L, M) 

regions. Dorsal is to the top. b, body muscle; br, brain; h, heart; j, jaw muscle, m, 

myotome; mc, myocardium. 
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Figure A2.3  HSP27 morpholinos specifically block translation in vitro. 

(A) Diagram depicting XHsp27 mRNA structure and morpholino-targeted region. 

(B) Western blot demonstrating translation inhibition in vitro using rabbit 

reticulocyte lysate. Reactions were incubated with the indicated total amounts of 

HA-Hsp27 mRNA and/or HSP27MO. TBX20MO was included as a negative 

control. HSP27MO was incubated with HA-Tbx20 mRNA to show specificity of 

the HSP27MO. HA-HSP27 and HA-TBX20 was visualized using anti-HA 

antibody, and SHP2 antibody was used as loading control. (C) Western blot 

demonstrating translation inhibition in vivo by coinjection of HA-Hsp27 mRNA 

with HSP27MO. Embryos were injected with the indicated amount of HSP27MO, 

ControlMO, and/or HA-Hsp27 mRNA. Embryos were collected at stage 20. 

Western blotting was performed on lysate using anti-HA antibody. SHP2 antibody 

was used as loading control. 
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Figure A2.4  Depletion of XHSP27 results in unfused or partially fused 

hearts. 

Whole-mount antibody staining using anti-myosin heavy chain α (MHC). Embryos 

were injected at the one-cell stage with either HSPMO or ConMO, fixed, and 

stained for MHC at the indicated stages. All views are ventral with anterior 

upwards. Arrows indicate separation between the two cardiac fields or 

developing hearts. a, atrium; i, inflow tract; o, outflow tract; v, ventricle. 
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Figure A2.5  Specification and differentiation of cardiac and skeletal muscle 

appear unaltered in HSP27 morphants. 

Whole-mount in situ hybridizations using antisense probes against (A) Nkx2.5, 

(B) Tbx20, (C) Gata4, (D) Gata6, (E) Mlc1v’, and (F) Titin novex 3 (Tn3). 

Embryos were injected with either HSP27MO or ControlMO and fixed at the 

indicated stages. (A-F) Ventral views with anterior upward. (E, F) Stage 37 

embryos shown laterally with anterior to the left. All markers analyzed appear 

normal between control and HSP27 morphant embryos. 
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Figure A2.6  Depletion of XHSP27 results in actin disorganization in 

developing skeletal and cardiac muscle. 

Transverse 12 �m sections through the heart (A-L) and somite (M-X). All 

sections are shown with dorsal upward. Heart sections were immunostained for 

F-actin using phalloidin (A, D, G, J) and MHC using anti-MHC antibody (B, E, H, 

K). Overlays are shown in (C, F, I, L). Somite sections were immunostained for 

F-actin using phalloidin (M, P, S, V) and stained with DAPI to visualize the nuclei 

(N, Q, T, W). Overlays are shown in (O, R, U, X). 
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Figure A2.7  HSP-depletion does not alter levels of actin.  

Western blot demonstrating actin levels in control and Hsp27-depleted embryos 

(Hsp27MO) at the indicated stages. α-tubulin antibody staining was used as a 

loading control.  
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Figure A2.8  XHSP27 morphant ultrastructure analysis reveals a lack in 

myofibril assembly. 

Transmission electron microscopy of ventral myocardium in stage 38 control and 

XHSP27 morphant hearts. (A-C) Ventral myocardium of ConMO injected embryo. 

(D-F) Ventral myocardium of XHSP27MO injected embryo. Cardiac muscle fibrils 

are shown pseudo-colored in yellow. Inset in (C) shows magnification of myofibril 

structure and inset in (F) shows magnification of apparent myosin aggregates. 

(G, H) Muscle fibers within the myotome in stage 38 control morpholino injected 

embryos. (I, J) Muscle fibers within the myotome in stage 38 XHsp27 morpholino 

injected embryos. l, longitudinal myofibers section; t, transverse myofibers 

section; z, z-line. 
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