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ABSTRACT 

KATY LIU: Functions of Myosin-X in Polarized Epithelial Cells 

(Under the direction of Dr. Richard E. Cheney) 

 

 Myosin-X (Myo10) is an unconventional myosin, known functions of which have 

been largely deduced through studies in non-polarized cells. Myo10 is well-known for 

localizing to the tips of filopodia and has important roles in filopodial formation. Myo10 is 

expressed at high levels in epithelial tissues such as kidney, yet relatively little is known 

about the functions of Myo10 in polarized epithelia. Here, we determine that Myo10 

localizes to the basolateral domain of polarized epithelial cells and has important functions 

in junction assembly and epithelial morphogenesis. 

Polarized epithelial cells have apical and basolateral domains, which are separated 

by the apical cell junction. Normal functions of polarized cell junctions, such as barrier 

formation and maintenance of cell polarity, are critical. Dysfunction is commonly observed 

in inflammatory diseases and infection where the epithelial barrier is breached, and in 

ischemic states and invasive cancers, where malignant cells undergo epithelial to 

mesenchymal transition. Thus, it is important to identify molecules that mediate these 

processes in polarized epithelia. 

 In kidney, we found that Myo10 is expressed at the basolateral domain. We then 

used MDCK cells as a cell culture model to generate stably expressing GFP-Myo10 and 

Myo10 knockdown lines. Consistent with our results in vivo, GFP-Myo10 localized to the 

lateral membrane during junction assembly. Importantly knockdown led to a delay in 
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junction formation and increased paracellular permeability. Furthermore, Myo10 

knockdown resulted in abnormal multiple lumen formation during cystogenesis. 

 In fully polarized cells, GFP-Myo10 showed striking localization to the tips of 

basolateral filopodia. Intriguingly, GFP-Myo10 HMM (heavy mero-myosin, a construct 

lacking the tail) was found at apical microvilli. Yet, localization experiments using GFP-

Myo10 and anti-Myo10 antibodies showed full-length Myo10 is not detected in microvilli. 

Moreover, knockdown studies indicated that Myo10 does not appear to function in the 

formation of microvilli. Nonetheless, the apical localization of GFP-Myo10 HMM led us to 

investigate apico-basal targeting of Myo10. The tail of Myo10 localized to the basolateral 

membrane, and deletion of the pleckstrin homology (PH) domains resulted in localization to 

the apical microvilli. Additionally, disruption of phosphatidylinositol binding partially 

redistributed Myo10 to apical microvilli. Our results suggest Myo10 targeting to basolateral 

filopodia is regulated by PH domains of the tail.  

 Recent studies have revealed that basolateral filopodia are critical for normal tissue 

patterning, yet relatively few proteins are known to localize to and function in basolateral 

filopodia. Given the importance of Myo10 in filopodia and the functions we have discovered 

here in polarized epithelia, it is likely that Myo10 mediates critical processes in basolateral 

filopodia, a subject that beckons further investigation. 
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CHAPTER ONE 

INTRODUCTION 

 

Polarized Epithelia and Cell Junctions are Important for Normal Physiology and can be 

Compromised in Disease States 

Polarized epithelial cells line organs in the body such as the kidney tubules and the 

small and large intestines. These specialized cells function to absorb nutrients, ions and 

water, and to provide a protective barrier against luminal antigens and pathogens. These 

functions are made possible by the polarized structure and uneven distribution of proteins 

and lipids in polarized epithelial cells. The polarized structure consists of the apical domain 

which faces the lumen, and the basolateral domain where cell-cell interactions and cell-

substrate interactions occur. The apical domain includes microvilli and the terminal web. 

Microvilli are actin-rich, finger-like projections that are directed toward the lumen. The 

roots of the microvilli terminate in a dense meshwork of actin called the terminal web. The 

apical and basolateral domains are separated by cell junctions. The cell junction is a 

structural complex comprised of the tight junction and adherens junction. The paracellular 

barrier is maintained by the tight junction, which blocks the translocation of most solutes, 

microorganisms and luminal antigens. The basolateral domain can be further divided into 

lateral and basal surfaces. The lateral membrane is the site of cadherin-based cell-cell 

adhesion, while the basal surface facilitates integrin-mediated cell-substrate adhesion. 
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Polarized epithelial cells organize into cell sheets and are crucial for organ 

development; during development, polarized epithelial cells organize into complex three-

dimensional cysts and tubules in a process called epithelial morphogenesis. Furthermore, 

maintenance of polarized epithelial cells is important, as compromises to polarity are 

characteristic in certain disease states such as ischemia, inflammatory diseases, bacterial 

infection and cancer. Thus, the establishment and maintenance of polarized epithelial cells 

is critical for normal physiology. 

During ischemic injury in the kidney, loss of oxygen perfusion leads to depletion of 

cellular ATP and rearrangements in epithelial polarity.  Following ischemic injury, the 

polarized distribution of proteins is lost; the normally basolateral Na
+
-K

+
 ATPase appears at 

the apical domain, and the apical leucine aminopeptidase is found at the basolateral 

membrane (Molitoris, 1991). Ischemic injury can also result in the loss of polarity of 

integrins (Goligorsky et al., 1993) as well as a compromised tight junction barrier; both can 

cause increased membrane permeability and back-leak of filtrate into the underlying 

basement membrane (Goligorsky et al., 1993). 

In the gut, increased epithelial permeability can result from defects in the cell 

junctions, as is seen in Crohn’s disease or infections with intestinal parasites or bacteria 

(Laukoetter et al., 2006). Crohn’s disease is an inflammatory bowel disease that is 

characterized by transmural inflammation of the intestine, most commonly in the distal 

small intestine. Tissue from Crohn’s patients shows tight junction proteins are disrupted 

(Oshitani et al., 2005), and junctional protein expression and mRNA are down-regulated 

(Gassler et al., 2001). This junctional dysregulation contributes to increased intestinal 
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epithelial permeability (Laukoetter et al., 2006). Evidence suggests that alterations in 

epithelial permeability in Crohn’s may precede the onset of disease (Irvine and Marshall, 

2000; Podolsky, 2002); moreover, damage to the apical domain of intestinal epithelial cells 

is compounded by the overproduction of pro-inflammatory cytokines (Bruewer et al., 2003). 

Additionally, intestinal parasites and bacteria such as enteropathogenic and 

enterohemorrhagic E. coli (EPEC, EHEC), Vibrio cholerae, and Giardia lamblia disrupt 

polarized epithelia as a host infection mechanism (Chatterjee et al., 2004; Muza-Moons et 

al., 2004; Troeger et al., 2007). For instance, EPEC disrupts the tight junction in vivo (Shifflett 

et al., 2005), and the increase in epithelial permeability allows for bacterial translocation 

and activation of host inflammatory responses. EPEC can also cause microvillar effacement, 

which can be mediated by an effector protein, EspB, that inhibits myosin function (Iizumi et 

al., 2007). 

Finally, in cancer, the uncontrolled growth of epithelial cells is evident in over 90% of 

malignant tumors (Fish and Molitoris, 1994). A defect in normal cell-cell adhesion or cell-

substrate adhesion programs can result in high degree of invasiveness in a malignant tumor. 

Consistent with this mechanism, E-cadherin expression is decreased in a subset of 

esophageal, gastric and breast carcinomas (Fish and Molitoris, 1994). 

It is clear that the establishment and maintenance of polarized epithelial cells are 

important for normal epithelial physiology, while dysfunction contributes to disease states 

characterized by loss of epithelial polarity and increased membrane permeability. In order 

to develop treatments for diseases of polarized epithelial cells, it is essential to understand 

the underlying mechanisms that regulate epithelial polarity and cell junctions by identifying 
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and exploring key mediators of these processes. This thesis will define the roles of myosin-X 

in polarized epithelial cells, a subject that is completely unexplored, and will identify new 

functions for myosin-X in polarized epithelial cells. 

 

The Actin Cytoskeleton is an Essential Component of Polarized Epithelial Cells 

Filamentous actin (F-actin) forms the structural backbone of polarized epithelial 

cells. Actin-based structures can be divided into several classes (Figure 1.1). At the apical 

domain, microvilli have a core of actin filaments with the plus ends of the filaments 

oriented toward the tips of the microvilli (Figure 1.1A). The actin filaments are cross-linked 

by actin-binding proteins such as villin and fimbrin, and the actin is surrounded by and 

attached to the plasma membrane by myosin-1a. The cell junctions are also associated with 

the actin cytoskeleton (Figure 1.1B); a circumferential ring of bundled actin filaments 

connects to the adherens junction, while a loose meshwork of actin associates with the 

tight junction (Ivanov, 2008). Actin is necessary for the formation of the apical domain as 

cytochalasin D, an actin polymerization inhibitor, results in the loss of microvilli (Kellerman 

et al., 1990) and junctional proteins (Shen and Turner, 2005; Stevenson and Begg, 1994) as 

well as increased membrane permeability (Madara et al., 1986; Stevenson and Begg, 1994). 

Along the basolateral domain of most epithelial cells, sheet-like protrusions at the lateral 

membrane extend into neighboring cells (Figure 1.1C) (Demontis and Dahmann, 2007), and 

at the basal surface, dynamic filopodia are embedded within lamellipodia (Figure 1.1D) 

(Georgiou and Baum, 2010). In fact, both types of basolateral protrusions are dynamic, 
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although basal filopodia showed quicker rates of extension and retraction than lateral 

protrusions by live cell imaging (Georgiou and Baum, 2010). 

 

Filopodia are Implicated in the Establishment of Polarized Epithelia 

Filopodia have been proposed to function at key steps in the formation of microvilli 

and cell junctions. Filopodia are slender, actin-rich projections located at the cell periphery 

and are involved in cell motility, migration and adhesion. As an actin-based structure, 

filopodia are structurally related to microvilli, but filopodia are generally more dynamic, 

have fewer actin filaments, and filopodia vary considerably in length. 

Given the structural similarities between filopodia and microvilli, filopodia have 

been theorized to precede microvillar formation (Peterson and Mooseker, 1993) (Figure 

1.2A). However, an alternate theory conjectures that microvilli elongate from shorter 

microvillar ‘pimples’ (DeRosier and Tilney, 2000; Tilney et al., 2004) (Figure 1.2B). While 

several proteins are capable of inducing formation of microvilli (Baas et al., 2004; Chiba et 

al., 2006; Nielsen et al., 2007), the proteins necessary for microvillar formation are largely 

unidentified (Hanono et al., 2006). Surprisingly, microvilli-specific proteins such as villin and 

ezrin are not required for formation of microvilli in vivo (Ferrary et al., 1999; Saotome et al., 

2004), although ezrin is necessary for normal microvillar morphology (Saotome et al., 2004). 

During polarization and junctional assembly, filopodia are theorized to form nascent 

junctions by initiating ‘actin cable’ contacts between adjacent cells (Vaezi et al., 2002; 

Vasioukhin et al., 2000) (Figure 1.3). At the sites of filopodial contact, ‘puncta’ of adherens 

junction proteins, like E-cadherin, and tight junction proteins, like occludin and ZO-1, have 
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been observed (Ivanov et al., 2005; Takai and Nakanishi, 2003). Importantly, assembly by 

actin cables has been detected in cultured polarized epithelial cells (Ivanov et al., 2005). As 

nascent junctions mature, junctional complexes are established, and puncta of junctional 

proteins at filopodial contacts become a continuous adhesive belt (Ivanov et al., 2005).  

 

Myosin-X is Required for Filopodial Formation but its Role in Polarized Epithelial Cells is 

Unknown 

Myosin-X (Myo10) is a 237 kD molecular motor with a head, neck and tail domain 

(Figure 1.4A). The conserved head domain binds to actin and generates motor activity 

through ATP hydrolysis. The neck region consists of three IQ motifs and is hypothesized to 

regulate motor activity. The neck region is followed by a length of stable alpha helix (SAH), 

which may dimerize the myosin motor (Knight et al., 2005). Most intriguing is the tail 

domain of Myo10 which may allow the protein to take on unique functions within the apical 

domain. The tail includes three PH (pleckstrin homology) domains, a MyTH4 (myosin tail 

homology 4) domain and a FERM (band 4.1, ezrin, radixin, moesin) domain. The PH domains 

may provide a means for regulation of microvillar dynamics and junctional assembly, as 

they function as binding sites for inositol phospholipids in phosphatidylinositol 3-kinase 

signaling pathways necessary for cell motility (Berg et al., 2000) and junctional integrity 

(Balda et al., 1991; Laprise et al., 2002). Additionally, the FERM domains of the tail region 

bind integrins and would potentially allow Myo10 to interact with integral membrane 

proteins (Berg et al., 2000).  

By Northern blot, Myo10 is expressed at highest levels in the kidney (Berg et al., 

2000), and immunohistochemistry indicates Myo10 is expressed most abundantly in 



7 
 

epithelial cells (Uhlen et al., 2005). Nonetheless, the role of Myo10 in polarized epithelial 

cells remains completely unexplored. From our lab’s work in fibroblast cells, Myo10 

localizes to the tips of filopodia, which I have also observed in unpolarized Caco-2 and 

MDCK cells (Figure 1.4B). Importantly, it is clear that Myo10 is necessary for filopodial 

formation; Myo10 knockdown in HeLa cells dramatically reduces the number of dorsal 

filopodia (Bohil et al., 2006).  

 

Since filopodia are structures implicated in the formation of the polarized epithelia 

and Myo10 is required for filopodial formation, my graduate work has investigated the role 

of Myo10 in polarized epithelial cells, and specifically, in the formation of microvilli and cell 

junctions. Finally, I explored the apico-basal localization of Myo10 and the requirement of 

the PH domains for proper apico-basal localization. 

 

The following describes the contents of the next chapters in this dissertation. 

Chapter 2 is a review on myosins in cell junctions, in preparation for submission to the 

journal BioArchitecture. Chapter 3 is a published article: Liu KC, Jacobs DT, Dunn BD, 

Fanning AS and Cheney RE. 2012. Myosin-X Functions in Polarized Epithelial Cells. Mol Biol 

Cell. 23:1675-1687. For this published work, I performed all of the experiments and wrote 

the majority of the manuscript. Chapter 4 is a work in progress on the targeting of Myo10 in 

polarized epithelial cells. The Appendix is unpublished data that does not support a role for 

Myo10 in microvilli. 
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Figure 1.2 Filopodia are theorized to precede formation of microvilli. 

hypothesis: Mature microvilli form from filopodia

Microvillar ‘pimples’ extend to form mature microvilli.
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Filopodia are theorized to precede formation of microvilli. (A) Filopodia-

hypothesis: Mature microvilli form from filopodia-like precursors. (B) Alternate hypothesis: 

‘pimples’ extend to form mature microvilli. 
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Figure 1.3 Filopodia are theorized to function in 

(B) contact to form nascent junctions. (C) Mature linear junctions form.
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Figure 1.4 Myo10, a molecular motor that localizes to tips of filopodia. 

early Caco-2 cells (1-3 days), Myo10 (green) localizes to the tips of filopodia

stained for F-actin (red). Scale bar = 10 
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Myo10, a molecular motor that localizes to tips of filopodia. (A) Structure of Myo10. (B) In 
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CHAPTER TWO 

MYOSINS IN CELL JUNCTIONS 

INTRODUCTION 

Myosins are a superfamily of ATP-dependent molecular motors that bind to and 

move along actin filaments. Myosins serve a growing array of functions within the cell, 

including force generation, membrane and organelle trafficking, actin organization and 

cell shape, tethering/anchoring to the actin cytoskeleton, and cell signaling (Hartman et 

al., 2011; Woolner and Bement, 2009). Conventional class II myosins were first discovered 

in skeletal muscle where homodimers of myosin-II heavy chains assemble into the thick 

filaments required for muscle contraction. Importantly, nonmuscle cells also express class 

II myosins. All other classes of myosins are referred to as unconventional myosins and are 

found in a variety of tissues and cell types. Myosins are known to be expressed in 

polarized epithelial cells, a metazoan-specific cell type with specialized cell junctions. Yet, 

only in recent times have we begun to tease apart the functions of different myosin 

classes and isoforms in polarized epithelial cells. Also, previous studies have tended to 

focus on class II myosins, even though the number of unconventional myosin genes easily 

outnumbers that of conventional myosins. However, several recent studies have 

identified important functional roles for unconventional myosins in cell junctions in 

polarized epithelia. Here, we review the functions of myosins at epithelial cell junctions 

with particular emphasis on unconventional myosins. 
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Myosins consist of a highly conserved N-terminal head or motor domain that 

contains binding sites for F-actin and ATP. The motor domain is followed by the neck 

domain with IQ motifs that can bind calmodulin or calmodulin-like light chains (Cheney and 

Mooseker, 1992). In the C-terminal tail domain, the structural motifs vary greatly between 

myosin classes, but are relatively conserved within a myosin class (Mermall et al., 1998). In 

the human genome, there are at 38 different myosin genes (and five named pseudogenes) 

that can be divided into 12 classes (Berg et al., 2001; Kollmar, 2006). Of the human myosin 

genes, 24 encode unconventional myosins, while 14 encode conventional myosins. Several 

unconventional myosins (myosins VIIa, VIIb, X, XVb) contain MyTH4-FERM domains (myosin 

tail homology 4-protein 4.1, ezrin, radixin, moesin). The MyTH4 and FERM domains are 

found in tandem and form a structural supramodule (Wu et al., 2011). Functionally, MyTH-

FERM myosins are frequently found in actin-based extensions, such as filopodia and 

stereocilia, and often have roles in cell adhesion. 

 In vertebrate epithelial cells that line organs such as the gut and kidney, polarity is 

defined by the apical, lumen-facing domain and underlying basolateral domain. At the 

intersection of these two domains, the apical junctional complex is comprised of two parts: 

the tight junction and adherens junction (Figure 2.2A). The tight junction is the apical-most 

network of intramembranous strands that form a selective paracellular barrier between 

neighboring cells (Van Itallie and Anderson, 2006). The adherens junction contains a 

cadherin-catenin complex that mediates cell-cell adhesion (Nelson, 2008). Cadherins are 

calcium-dependent transmembrane receptors, and catenins are submembranous 

scaffolding proteins. The apical junctional complex is coupled to the underlying actin 
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cytoskeleton with a dense circumferential actin belt adjacent to the adherens junction 

(Hirokawa et al., 1983; Hirokawa and Tilney, 1982) and a looser network of actin filaments 

associated with the tight junction (Madara, 1987). Notably, nonmuscle myosin-II is well-

known component of the circumferential actin belt (Drenckhahn and Dermietzel, 1988; 

Ivanov et al., 2005). 

The apical junctional complex is essential to maintain the barrier function and 

integrity of the epithelial cell sheet. Yet, the apical junctional complex is not static, but 

rather, it is dynamic and constantly remodeling (Kametani and Takeichi, 2007; Sasaki et al., 

2003). In cell culture, junction assembly and disassembly are often modeled using the 

calcium-switch assay (Cereijido et al., 1978). In this assay, removal of extracellular calcium 

results in loss of cadherin-mediated cell-cell adhesion and disassembly of cell junctions, 

while subsequent re-addition of calcium triggers junction assembly (Figure 2.2B). After 

junction disassembly, apical F-actin organizes into ring-like structures in the now 

unpolarized cells. Then, during junction assembly, radial actin cables are observed at sites of 

initial cell-cell contact (Vaezi et al., 2002; Vasioukhin et al., 2000). Using this model, it has 

been observed that nascent adherens-like junctions precede tight junction formation 

(Ando-Akatsuka et al., 1999; Ivanov et al., 2005). As epithelial cells mature, junctional 

proteins and the circumferential actin belt organize at the cell junctions.  

Indeed, the actin cytoskeleton is critical for the apical junctional complex, as 

disruption of actin dynamics affects the structural and functional integrity of cell junctions 

(Ivanov et al., 2005; Ivanov et al., 2004; Madara et al., 1986). Yet, how does the apical 

junctional complex physically interact with the actin cytoskeleton? Numerous proteins have 
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been shown to interact with the tight junction cytoplasmic plaque, some of which are actin-

binding proteins (Schneeberger and Lynch, 2004; Shen et al., 2011). Despite this, the 

identity of the linkages between the adherens junction and actin cytoskeleton remains 

controversial (Drees et al., 2005; Yamada et al., 2005). As actin-binding proteins that can 

generate force and movement, myosins are prime candidates to interact with the actin 

cytoskeleton at the apical junctional complex.  

 

Nonmuscle Myosin-II: Isoforms A & B have differential roles at cell junctions 

 For nonmuscle myosin-II (abbreviated here as Myo2), there exist three isoforms: A, 

B and C (gene names: MYH9, 10 and 14) (Golomb et al., 2004; Simons et al., 1991). One or 

more Myo2 isoforms are ubiquitously expressed throughout mouse development and show 

broad tissue distribution (Golomb et al., 2004). Myo2A and B (Figure 2.1) differ in their duty 

ratio, which is the proportion of time the motor spends binding actin during its ATPase 

cycle. Myo2B has a higher duty ratio than Myo2A, that is, Myo2B remains bound to actin for 

a greater fraction of its ATPase cycle than Myo2A (Kovacs et al., 2003; Rosenfeld et al., 

2003; Wang et al., 2003). The Myo2 light chains can be regulated by phosphorylation, for 

example, via myosin light chain kinase (MLCK) or Rho kinase (ROCK) (Bresnick, 1999; 

Redowicz, 2001). Finally, all three Myo2 isoforms can be inhibited by blebbistatin (Kovacs et 

al., 2004; Limouze et al., 2004). The effects of global inhibition of nonmuscle myosin-II at 

cell junctions have been reviewed previously (Ivanov, 2008). Blebbistatin treatment has 

been shown to disrupt junction assembly and disassembly (Ivanov et al., 2005; Ivanov et al., 

2004), paracellular permeability of the tight junction (Shen et al., 2006), and recruitment of 
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epithelial cadherin (E-cadherin) to cell-cell contacts (Shewan et al., 2005). Clearly, Myo2 is 

critical for junctional processes, but are there distinct roles for different Myo2 isoforms? 

Here, we focus on isoform-specific functions of nonmuscle Myo2. 

 Isoform-specific knockout studies indicate roles for both Myo2A and Myo2B in cell 

adhesion and polarized cell junctions. Myo2A knockout mice are lethal; in the embryo, the 

visceral endoderm shows loss of polarized columnar morphology, whereas knockout 

embryoid bodies exhibit cell shedding, suggesting a cell adhesion defect. Interestingly, E-

cadherin and β-catenin is reduced at cell-cell contacts in the absence of Myo2A (Conti et al., 

2004). Myo2B is enriched in brain, particularly in the neuroepithelial layers. Myo2B 

mutants, also lethal, develop hydrocephalus and spinal canal obstruction; morphologically, 

the apical domain of neuroepithelial layers in Myo2B mutants show structural defects and 

discontinuities (Ma et al., 2007).  

In polarized epithelial cells, a subset of both Myo2A and Myo2B localize to the apical 

junctional complex (Ivanov et al., 2005; Shewan et al., 2005) (Figure 2.3A). Specifically, 

Myo2A functions in the dynamics of junction assembly and disassembly. In regard to 

junction assembly, Myo2A knockdown cells show a kinetic delay in junction formation, 

measured by transepithelial resistance (TER) and localization of tight junction and adherens 

junction markers. Despite the delay of several hours, apical junctions were eventually able 

to form (Ivanov et al., 2007). In addition, Myo2A knockdown affects junction disassembly, as 

F-actin reorganization into actin rings was disrupted and translocation of tight junction 

protein occludin from cell-cell junctions was affected (Ivanov et al., 2007). Thus, Myo2A is 

needed for the proper kinetics of junction assembly and disassembly. 
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Isoform-specific knockdown has also identified differential roles for Myo2A and B in 

E-cadherin-based cell-cell contacts. Myo2A is needed for proper E-cadherin organization at 

the adherens junction, as Myo2A siRNA reduces the amount of E-cadherin at cell-cell 

contacts and decreases cadherin-based homophilic adhesion (Smutny et al., 2010). 

Interestingly, an E-cadherin blocking antibody decreased Myo2A staining at cell-cell 

contacts (Shewan et al., 2005). Thus, Myo2A activity is needed for E-cadherin localization to 

the junctions and vice versa. Furthermore, Myo2A knockdown results in increased and 

irregular oscillatory movement of E-cadherin at cell-cell contacts (Smutny et al., 2011). In 

contrast, Myo2B maintains the integrity of E-cadherin at the adherens junction, as Myo2B 

knockdown decreases actin and its dynamics at cell junctions, and fragments E-cadherin 

localization as well (Smutny et al., 2010). The high duty ratio of Myo2B may allow the motor 

to generate tension to support dynamic actin at the cell junctions. As a result, live cell 

imaging of Myo2B knockdown cells shows significantly less translational movement of actin 

and E-cadherin (Smutny et al., 2011). Interestingly, double knockdown of Myo2A and B 

leads to disruption of the tight junction, visualized by zonula occludens-1 (ZO-1) localization 

(Smutny et al., 2010). One potential link between the actin cytoskeleton and the tight 

junction complex is cingulin, a submembranous tight junction-associated phosphoprotein 

that co-purifies with and binds Myo2 (Citi et al., 1989; Cordenonsi et al., 1999).  

Together, these studies propose isoform-specific roles for Myo2: Myo2A is required 

for normal kinetics of junction assembly and organizes E-cadherin at the adherens junction; 

whereas, Myo2B supports the integrity and dynamics of the circumferential actin belt. 

 



18 
 

Myo1e at specialized glomerular junctional complexes 

Class I myosins are single-headed motors with short tails (Albanesi et al., 1985; 

Stafford et al., 2005). Class I myosins are a phylogenetically ancient class of myosins found 

in amoebae as well as fungi, worms, flies and vertebrates (Berg et al., 2001). In some 

organisms, there exist several members of class I myosins; for example, the slime mold 

Dictyostelium discoideum has at least seven different myosin I proteins (Soldati, 2003), and 

vertebrates possess eight class I myosins (Gillespie et al., 2001). Many class I myosins bind 

lipids, including Myo1a, which forms a link between actin and the surrounding plasma 

membrane in microvilli (Tyska et al., 2005). Myo1e (initially called human myosin-1c or 

myr3) is a “long-tailed” class I myosin (Berg et al., 2001) with a tail containing a membrane-

binding domain and an SH3 domain (Bement et al., 1994b) (Figure 2.1). Myo1e is 

ubiquitously expressed, highest levels of which are found in kidney, prostate, colon, liver 

and ovary (Bement et al., 1994a). Notably, Myo1e in kidney is predominantly found in the 

glomerulus and its podocytes, which are epithelial cells that extend “foot processes” to 

wrap around glomerular capillaries (Mele et al., 2011). 

Myo1e localizes to cell junctions in several cell types. The rat homolog of Myo1e was 

first shown to localize with β-catenin to the adherens junction in chicken intestine and 

kidney. In Caco-2 cells, Myo1e is enriched at the apical cell junctions in spreading cells and 

mature monolayers (Skowron et al., 1998). Also, in cultured monolayers of mouse podocyte 

cells, Myo1e frequently localizes to cell-cell contacts and may be needed for proper actin 

organization (Krendel et al., 2009).  Renal glomeruli from Myo1e knockout mice show 

disrupted podocyte foot processes as well as thickened and disorganized glomerular 
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basement membranes (Krendel et al., 2009; Mele et al., 2011). Disruption in the 

cytoskeleton of the glomerular intercellular junctional complexes has been shown to impair 

renal function (Faul et al., 2007). As a class I myosin, Myo1e could function to stabilize the 

actin cytoskeleton by binding the surrounding glomerular membrane. 

In Myo1e knockout studies, Myo1e-deficient mice exhibit podocyte injury and 

impaired renal function (Krendel et al., 2009). Mutations in human Myo1e are associated 

with familial focal segmental glomerulosclerosis, an autosomal recessive disease of 

podocytes (Mele et al., 2011). Thus far, no extrarenal defects have been identified in 

knockout mice or patients with Myo1e mutations. This may indicate that Myo1e is not 

needed for proper function of other organs and tissues, or perhaps less apparent functional 

defects have yet to be uncovered.  

Apart from Myo1e, little is known regarding class I myosins and epithelial cell 

junctions. Do any of the other seven class I myosins localize to or function in cell junctions? 

With the Myo1a knockout mouse available, are there observable junctional defects? Of 

note, as investigations into class I myosins move forward, functional redundancy should be 

considered given the many class I myosins. 

 

Myosin VI at cadherin-based cell-cell contacts 

 Myosin VI (Myo6) is unique in that it is the only known motor that moves toward the 

minus end of actin filaments (Wells et al., 1999) (Figure 2.1). In general, the plus ends of 

actin filaments are oriented toward the plasma membrane (Svitkina et al., 1997), so Myo6 

might be expected to transport vesicles inward or push actin outward. Myo6 arose early 
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during the metazoan radiation and is found in most metazoans (Berg et al., 2001). Myo6 is 

ubiquitously expressed in mammalian cells (Buss et al., 1998). Myo6 is a processive motor 

that can dimerize by cargo binding to the tail (Nishikawa et al., 2002; Phichith et al., 2009; 

Rock et al., 2001), and as high duty ratio motor, Myo6 spends most of its ATPase cycle 

bound to actin (De La Cruz et al., 2001; Robblee et al., 2004). This also means that a single 

Myo6 dimer would theoretically be able to transport a vesicle along an actin filament. Myo6 

is well-known for its roles in clathrin-mediated endocytosis (Buss et al., 2001b) as well as 

endocytic trafficking and sorting (Hasson, 2003; Morris et al., 2002). In epithelial cells, Myo6 

is needed for the polarized transport of certain cargoes to the basolateral membrane (Au et 

al., 2007).  

 Importantly, loss of Myo6 causes deafness in both humans and mice (Snell’s waltzer) 

(Avraham et al., 1995; Deol and Green, 1966). In the inner ear hair cells, Myo6 is enriched 

both in the vesicle-rich pericuticular necklace and in stereocilia, and in the Snell’s waltzer 

mouse, the inner ear hair cells improperly develop disorganized and fused stereocilia (Self 

et al., 1999). Furthermore, loss of function studies in fly also indicate Myo6 is critical for 

epithelial morphogenesis. Drosophila Myo6 (Jaguar) deficiency disrupts border cell 

migration during oogenesis (Deng et al., 1999; Geisbrecht and Montell, 2002) as well as 

dorsal closure, a process of epithelial sheet fusion at the dorsal midline in late 

embryogenesis (Lin et al., 2007; Millo et al., 2004). 

 Myo6 has been demonstrated to have functional roles in cadherin-based cell-cell 

contacts and the perijunctional actin cytoskeleton. In vitro studies in MCF-7 cells show that 

Myo6 localizes to mature cell-cell contacts and co-localizes with E-cadherin (Maddugoda et 
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al., 2007). Immunoprecipitation studies indicate Myo6 interacts with E-cadherin 

(Maddugoda et al., 2007) and β-catenin/Armadillo (Geisbrecht and Montell, 2002). Myo6 

also binds Echinoid (Lin et al., 2007), a cell adhesion molecule that cooperates with 

Drosophila epithelial cadherin (DE-cadherin) (Wei et al., 2005). Interestingly, Myo6 and E-

cadherin/β-catenin each appear to stabilize the expression of the other protein. In Myo6-

null or mutant Drosophila border cells, DE-cadherin and Armadillo (β-catenin) levels are 

reduced (Geisbrecht and Montell, 2002; Millo et al., 2004). Conversely, Drosophila Myo6 

protein expression is reduced in cells lacking either DE-cadherin or Armadillo (Geisbrecht 

and Montell, 2002). Similar results were obtained in vitro by Myo6 knockdown (Maddugoda 

et al., 2007). Thus, Myo6 stabilizes E-cadherin at epithelial cell-cell contacts. 

 Given its high duty ratio, Myo6 may also stabilize the perijunctional actin 

cytoskeleton and/or tether membrane proteins, such as E-cadherin or β-catenin, to the 

perijunctional actin cytoskeleton. Myo6 has been previously reported to stabilize actin 

filament networks in unpolarized cells (Noguchi et al., 2006), and Myo6 serves a similar 

membrane anchoring role in stereocilia, which are mechanosensing actin-based protrusions 

on hair cells (Seiler et al., 2004; Self et al., 1999). In epithelial cells, loss of Myo6 leads to 

disrupted perijunctional actin (Maddugoda et al., 2007; Millo et al., 2004) as well as loss of 

tight junction markers at cell-cell contacts (Maddugoda et al., 2007). Maddugoda et al. 

demonstrate that vinculin, a cytoskeletal protein found in focal adhesions and adherens 

junctions, is a downstream effector of Myo6. Together, Myo6 and vinculin have been 

proposed to stabilize perijunctional actin and cadherin-based cell-cell contacts (Figure 2.3B) 

(Maddugoda et al., 2007). However, the precise mechanism of these interactions has yet to 
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be determined. Functionally, it has been suggested that Myo6’s tethering role could provide 

the protrusive force needed for cell migration, i.e. in border cells during oogenesis 

(Geisbrecht and Montell, 2002). 

 

Myosin VIIa interacts with junction-associated proteins at epithelial cell-cell contacts 

 Myosin VIIa (Myo7a) is a member of the MyTH-FERM family of myosins (Figure 2.1). 

Drosophila Myo7a can form an inactive monomer regulated by head-to-tail folding (Umeki 

et al., 2009) but appears to function as a processive dimer (Sakai et al., 2011; Yang et al., 

2006). Biochemical experiments indicate Myo7a has a high duty ratio (Watanabe et al., 

2006). Myo7a is conserved in Dictyostelium and in metazoans (Berg et al., 2001). In 

mammals, Myo7a is predominantly expressed epithelial cells (Sahly et al., 1997) with 

highest levels in the testis, cochlea and retina, and lower expression in kidney (Hasson et al., 

1995). Intriguingly, Myo7a is expressed in microvilli- or stereocilia-rich epithelial cells, and 

the expression pattern of Myo7a parallels the appearance of epithelial microvilli or cilia 

during development (Sahly et al., 1997). 

 Mutations in human Myo7a are responsible for Usher Syndrome 1B (USH1B), a 

disease of congenital deafness, vestibular dysfunction and pre-pubertal onset of retinitis 

pigmentosa leading to blindness (Adato et al., 1997; Weil et al., 1995; Weil et al., 1996; 

Weston et al., 1996). Myo7a encodes the shaker-1 mouse gene locus (Gibson et al., 1995), 

and shaker-1 mouse homozygotes are characterized by deafness and vestibular dysfunction 

(Lord and Gates, 1929). In cochlear hair cells, Myo7a mutations result in disruption in 

stereocilia structure and organization (Chen et al., 1996; Self et al., 1998). In stereocilia, 
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Myo7a binds cadherin-23 (Bahloul et al., 2010), an atypical cadherin (Bolz et al., 2001) at 

the lateral links between stereocilia, and this interaction has been proposed to physically 

link together stereocilia (Di Palma et al., 2001) and to apply the tension needed for proper 

stereocilia organization (Bahloul et al., 2010; Boeda et al., 2002) (Figure 2.3C). Myo7a has 

also been reported to interact with protocadherin-15 in hair cells of the inner ear (Senften 

et al., 2006). Finally, mutations in Drosophila Myo7a are responsible for crinkled, a fly 

mutant with defects in actin-based bristles and hairs, as well as deafness (Kiehart et al., 

2004; Todi et al., 2005). Both shaker-1 and crinkled phenotypes indicate a role for Myo7a in 

the formation of actin-based structures.  

 In polarized epithelial cells, endogenous Myo7a (Sousa et al., 2004) and the GFP- 

Myo7a tail (Kussel-Andermann et al., 2000; Sousa et al., 2004) localize to cell-cell contacts. 

In addition, Myo7a in the testis is found in a dynamic adhesive structure called the 

ectoplasmic specialization (Velichkova et al., 2002). Myo7a has been shown to interact with 

several junction-associated proteins at epithelial cell-cell contacts. First, the FERM domain 

of Myo7a interacts with vezatin, a transmembrane protein at the adherens junction (Kussel-

Andermann et al., 2000). Vezatin, also shown to bind E-cadherin and α- and β-catenin, has 

been proposed to bridge Myo7a to the cadherin-catenin complex at the adherens junction. 

Functionally, Myo7a and vezatin are needed for the bacterial entry of Listeria 

monocytogenes into epithelial cells (Sousa et al., 2004). The MyTH-FERM domain of Myo7a 

also mediates the interaction with Shroom2, a tight junction-associated protein (Etournay 

et al., 2007). Thus, Shroom2 may link Myo7a and the actin cytoskeleton to the tight junction 

(Etournay et al., 2007). Finally, Myo7a binds the actin-associated protein, Keap1, at the 
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specialized adhesion junctions in testis (Velichkova et al., 2002). It should be noted that the 

localizations of vezatin, Shroom2 and Keap1 are Myo7a-independent, as the localization of 

each Myo7a-binding protein in shaker-1 mutants is unchanged (Etournay et al., 2007; 

Kussel-Andermann et al., 2000; Velichkova et al., 2002). Thus, Myo7a may link the apical 

junctional complex to perijunctional actin via its interactions with junction-associated 

proteins in epithelial cells. Loss of Myo7a results in functional defects in lateral contacts 

between stereocilia. Does Myo7a knockdown lead to similar defects in cell-cell contacts of 

polarized epithelial cells? 

 

Myosin-IXA: a Rho GAP at cell-cell junctions regulates collective epithelial cell migration 

 Class IX myosins are metazoan-specific motor proteins (Berg et al., 2001) (Figure 

2.1). Unique among myosins, class IX myosins are Rho GTPase activating proteins (GAPs) 

that negatively regulate Rho GTPases (Reinhard et al., 1995). In vitro, the purified RhoGAP 

domain of Myo9a can inactivate RhoA and RhoB, with marginal activity on Cdc42 and none 

on Rac1 (Chieregatti et al., 1998). Rho GTPases have functional roles in cell morphogenesis, 

cell migration and proliferation, and actin organization (Jaffe and Hall, 2005; Ridley, 1996). 

Importantly, Rho GTPases and their downstream effectors are involved in epithelial junction 

assembly (Braga and Yap, 2005; Terry et al., 2011). Yet, until recently, little was known 

about the RhoGAP, Myosin-IXA (Myo9a, formerly known as myr 7) or its functions. 

 Myo9a is expressed at cell junctions both in vivo and in vitro (Abouhamed et al., 

2009), and FRET studies indicate Myo9a negatively regulates Rho GTPase activity (RhoA) at 

cell-cell contacts (Omelchenko and Hall, 2012). In cultured human bronchial epithelial cells 
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(16HBE), Myo9a localizes to nascent cell-cell contacts and co-localizes with F-actin and ZO-1 

(Omelchenko and Hall, 2012). Similarly, Myo9a is expressed in Caco-2 cells along cell-cell 

junctions as well as in the cytosol (Abouhamed et al., 2009). Myo9a is ubiquitously 

expressed during development (Gorman et al., 1999). In adult tissues, Myo9a is particularly 

abundant in the brain and testis with lower levels of expression in the adrenal gland, kidney, 

lung and spleen (Chieregatti et al., 1998). In the brain, Myo9a is highly expressed in 

multiciliated ependymal epithelial cells (Abouhamed et al., 2009). In knockout studies, 

Myo9a-deficient mice develop severe hydrocephalus along with stenosis and dilation of the 

ventricular system. Loss of Myo9a results in a distorted ependymal layer by immunostaining 

for E-cadherin and β-catenin as well as loss of occludin localization to the tight junction 

(Abouhamed et al., 2009), leading to the hypothesis that Myo9a functions in the formation 

of epithelial cell junctions. 

 A recent study by Omelchenko and Hall highlights the role of Myo9a in collective cell 

migration using its RhoGAP activity at cell-cell junctions (Omelchenko and Hall, 2012) 

(Figure 2.3D). Similar to the knockout mouse phenotype, Myo9a siRNA knockdown shows 

loss of ZO-1 and irregular E-cadherin staining at cell-cell contacts, in addition to fewer radial 

actin bundles observed at cell-cell contacts. Importantly, Myo9a knockdown leads to 

impaired wound healing and a dramatic cell scattering phenotype as initial cell-cell contact 

expansion and stabilization are disrupted (Omelchenko and Hall, 2012). However, 

knockdown studies in Caco-2 cells indicate that cell junctions eventually assemble and have 

normal apico-basal polarity (Abouhamed et al., 2009). These results suggest Myo9a is 

needed to form adhesive cell-cell contacts by regulating the expansion and stabilization of 



26 
 

cell-cell contacts. In future experiments, it would be interesting to test whether Myo9a 

functions in cell junctions in mature epithelial monolayers. 

 

Myosin-X: a MyTH-FERM myosin at the basolateral domain of polarized epithelial cells 

 Myosin-X (Myo10) is a MyTH-FERM myosin best known for localizing to filopodial 

tips. It appears to have arisen just prior to the evolution of the metazoans but has been lost 

in the lineages leading to flies and worms (Berg et al., 2001). The tail of Myo10 has several 

unique subdomains: three pleckstrin homology (PH) domains bind inositol phospholipids 

with high affinity for phosphatidylinositol (3,4,5)-triphosphate (PIP3) (Plantard et al., 2010; 

Tacon et al., 2004; Umeki et al., 2011); and a MyTH-FERM domain that can bind 

microtubules (Weber et al., 2004) and β-integrins (Zhang et al., 2004) (Figure 2.1). Myo10 is 

ubiquitously expressed with high levels of expression in epithelial tissues such as kidney 

(Berg et al., 2000). Notably, Myo10’s IQ motifs can bind either calmodulin or calmodulin-like 

protein (CLP), which is an epithelia-specific light chain (Rogers and Strehler, 2001). 

 In unpolarized cells, Myo10 localizes to tips of filopodia and is required for the 

formation of filopodia (Bohil et al., 2006). Myo10 localizes to the cell cortex in Xenopus 

embryos (Woolner et al., 2008), and in polarized MDCK cells, Myo10 localizes to the lateral 

membrane during junction assembly (Liu et al., 2012). Correspondingly, Myo10 is found at 

the basolateral domain in kidney (Liu et al., 2012) and biochemically fractionates with the 

basolateral fraction (Yonezawa et al., 2003). In epithelial cells, since inositol phospholipids 

are segregated in a polarized fashion such that PIP2 is found at the apical domain and PIP3 

is exclusively basolateral (Martin-Belmonte et al., 2007), it is likely that Myo10 is targeted to 
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the basolateral domain by PH domain binding to PIP3. Consistent with this, the PH domains 

of Myo10 localize to the basolateral membrane (Lu et al., 2011).  

 Our recent work reveals that Myo10 has important roles in junction assembly and 

epithelial morphogenesis (Liu et al., 2012). Myo10 knockdown results in a delay in junction 

assembly as measured by a delay in peak transepithelial resistance (TER) measurements and 

a delay in the localization of tight junction and adherens junction markers to cell-cell 

contacts. This delay in junction assembly is similar to the kinetic delays observed with 

knockdown of critical junction proteins ZO-1 and E-cadherin (Capaldo and Macara, 2007; 

McNeil et al., 2006). In addition, Myo10 knockdown monolayers show defects in 

paracellular permeability. In three-dimensional culture, epithelial cells normally form cysts 

with a single lumen, but Myo10 knockdown cells form cysts with multiple lumens. 

Importantly, apico-basal polarity is unaffected, so it is unlikely that defects are due to 

disruption of epithelial cell polarity. Although Myo10 has been reported to interact with VE-

cadherin and to undergo co-transport with it in filopodia (Almagro et al., 2010), but no 

interaction between Myo10 and E-cadherin has been detected thus far (Liu et al., 2012). 

 In junction assembly, filopodia or radial actin cables are theorized to form initial cell-

cell contacts (Vasioukhin et al., 2000). Interestingly, GFP-Myo10 shows localization to the 

tips of dynamic filopodia-like structures at the basal surface during junction assembly (Liu et 

al., 2012). Thus, Myo10 is likely to function in the formation of filopodial cell-cell contacts 

during early junction assembly (Figure 2.3E). Also, since Myo10 is needed for normal spindle 

positioning and orientation (Kwon et al., 2008; Liu et al., 2012; Toyoshima and Nishida, 

2007; Weber et al., 2004; Woolner et al., 2008), and spindle misorientation can result in 
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multi-lumen cysts in three-dimensional culture (Jaffe et al., 2008; Rodriguez-Fraticelli et al., 

2010; Zheng et al., 2010), Myo10 knockdown may affect lumen formation in cysts via its 

function in spindle orientation. Although Myo10 is reported to localize to the spindle poles 

in Xenopus, future studies are needed to determine the precise interactions between 

Myo10 and the mammalian mitotic spindle. 

 

Myosin XVa in stereocilia and Drosophila Sisyphus in dorsal closure 

 Myosin XVa (Myo15a) is a member of the MyTH-FERM family of myosins, and exists 

as two alternatively spliced isoforms with or without a large N-terminal extension 

(Belyantseva et al., 2003; Liang et al., 1999) (Figure 2.1). Mammalian Myo15a has limited 

expression and is enriched in a subset of inner ear neurosensory cells (Lloyd et al., 2001).  

Human mutations in Myo15a are responsible for human non-syndromic autosomal 

recessive deafness (DFNB3) (Friedman et al., 1995; Liburd et al., 2001; Nal et al., 2007; 

Shearer et al., 2009; Wang et al., 1998). In mouse, Myo15a mutations (shaker-2) result in 

deafness and vestibular dysfunction (Probst et al., 1998; Wakabayashi et al., 1998; Wang et 

al., 1998). Myo15a localizes to the tips of stereocilia in the inner ear (Belyantseva et al., 

2003), and shaker-2 mice have shorter and disorganized stereocilia that are defective in 

forming their characteristic staircase structure (Probst et al., 1998). Therefore, Myo15a is 

necessary for the graded elongation of stereocilia. In stereocilia, Myo15a interacts with 

whirlin (Belyantseva et al., 2005), a scaffolding protein associated with Usher syndrome 

type 2 (Ebermann et al., 2007), and with Eps8, an actin capping protein, to form a stereocilia 

tip complex (Manor et al., 2011).  
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 Initial investigations of Myo15a in epithelial cells have been carried out in Sisyphus, 

the Drosophila homolog of Myo15 (Liu et al., 2008). Liu et al. show that Sisyphus is required 

for epithelial morphogenesis and likely functions in cell adhesion. As epithelial sheets close 

during dorsal closure, Sisyphus accumulates in contact-making filopodia and newly formed 

junctions. Sisyphus-deficient mutants show defects in epithelial alignment, and delay 

and/or failure in fusion of epithelial sheets. Sisyphus was reported to co-localize with and 

bind DE-cadherin, and Sisyphus-deficient embryos show reduced DE-cadherin at the dorsal 

side of leading edge cells during dorsal closure (Liu et al., 2008). 

 It appears that Myo15a has varying roles in different tissue types. In the mammalian 

inner ear, Myo15a functions in stereocilia length regulation and organization. Drosophila 

Myo15 is reported to interact with DE-cadherin and is critical for epithelial morphogenesis, 

particularly epithelial sheet alignment and adhesion during dorsal closure. 

 

Dachs: a Drosophila unconventional myosin is planar-polarized at apical junctions 

 Dachs is a unique class of unconventional myosin in Drosophila (Bridges and Morgan, 

1919; Mao et al., 2006; Tzolovsky et al., 2002) that lacks a clear mammalian homolog (Mao 

et al., 2006) (Figure 2.1). Recent investigations reveal that Dachs is required for proper 

orientation of cell division and tissue growth (Mao et al., 2011). Dachs has an N-terminal 

extension preceding the head and neck. The structure of the tail is unknown and shows no 

sequence similarity to other proteins. Dachs mRNA is broadly expressed throughout 

embryonic and wing disc development (Mao et al., 2006). In the wing disc epithelium, Dachs 
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is planar polarized along the proximal-distal axis, localizing to the distal side near the 

adherens junction (Mao et al., 2006; Rogulja et al., 2008). 

Loss of Dachs results in tissue undergrowth, shortened wings and legs, and often 

fused tarsal segments (Mao et al., 2006; Waddington, 1940). In dachs mutants, tissue 

undergrowth specifically involves disrupted wing disc elongation along the proximal-distal 

axis, as dachs mutant wing discs are rounded and shortened in the proximal-distal axis (Mao 

et al., 2011). Importantly, dachs mutants show mitotic spindle misorientation (Mao et al., 

2011) (Figure 2.3F). Apical junction proteins have been previously reported to affect mitotic 

spindle orientation (Hao et al., 2010). Interestingly, dachs mutants have dilated apical cell 

surfaces, which suggests that the Dachs myosin exerts a polarized contractile force to 

constrict the apical junctions and to orient the mitotic spindle along the proximal-distal axis 

(Mao et al., 2011). 

Dachs has been identified as a downstream component of the Fat signaling pathway 

(Mao et al., 2006). Fat is a large protocadherin (Mahoney et al., 1991), and the planar 

polarized distribution of Dachs is disrupted in the absence of Fat or other Fat signaling 

regulators (Rogulja et al., 2008). Functionally, the planar polarization of Dachs generates 

polarized cell tension that orients the mitotic spindle and resultant cell division to produce 

net elongation and tissue growth along the proximal-distal axis. As an unconventional 

myosin only recently discovered, it would be useful to determine the structural and 

biochemical properties of Dachs. 
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CONCLUSIONS 

 In addition to nonmuscle myosin-II, several unconventional myosins have been 

identified to have important roles at epithelial cell junctions, many of which are members of 

the MyTH-FERM family of myosins. As knowledge of the roles of unconventional myosins in 

cell junctions continues to grow, several themes begin to emerge. Unconventional myosins 

and nonmuscle myosin-II can function at cell junctions by affecting cell adhesion, tethering 

of junctional proteins, actin organization, and mitotic spindle orientation. Another obvious 

function for myosin motors is cargo transport. Are there unconventional myosins that 

transport cargoes to cell junctions in polarized epithelial cells? At present, there are 

numerous unconventional myosins with yet unknown functions in polarized epithelia and 

cell junctions. It is clear that the importance of myosins at cell junctions spans well-beyond 

conventional myosin-II, and indeed, unconventional myosins offer a great deal that remains 

to be explored in cell junctions. 
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Figure 2.1 Conventional and unconventional myosins with roles in cell junctions of vertebrates and 

fly. Several MyTH-FERM myosins have identified roles in cell junctions. 
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Figure 2.2 The apical junctional complex and calcium switch model of junction assembly. (A) The 

tight junction and adherens junction, and their associated actin cytoskeleton, comprise the apical 

junctional complex. The tight junction strands form a semi-permeable barrier, and ZO-1 functions as 

a tight junction scaffolding protein. At the adherens junction, the cadherin-catenin complex 

contributes to cell adhesion. The apical junctional complex separates the apical and basolateral 

domains. (B) In the calcium-switch model, junctions are disassembled by removing calcium (left, low 

Ca2+). Upon calcium re-addition (center), the junctions begin to assemble, and radial actin cables are 

observed at early cell-cell contacts. Cells are fully polarized in a mature monolayer (right). The red 

lines indicate the cross-section slice.  
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Figure 2.3 Functional roles of myosins in cell junctions and cell-cell contacts. (A) Myo2 (isoforms A 

and B) localizes to the adherens junction-associated circumferential actin belt, and Myo2 

knockdown disrupts E-cadherin-based cell-cell contacts. (B) Myo6 and vinculin have been suggested 

to tether E-cadherin to the perijunctional actin cytoskeleton. (C) In stereocilia, Myo7a binds 

cadherin-23 and protocadherin-15 in a stereocilia adhesive tip complex. (D) Myo9a is a RhoGAP that 

localizes to cell-cell contacts and suppresses Rho activity. Myo9a knockdown shows defects in 

formation and stabilization of early cell-cell contacts, resulting in a cell scattering phenotype. (E) 

Myo10 localizes to the tips of filopodia at nascent cell-cell contacts during junction assembly, and 

Myo10 knockdown delays junction assembly. (F) Dachs has a planar polarized distribution in 

Drosophila wing disc epithelia. Loss of Dachs disrupts orientation of the mitotic spindle and cell 

division along the proximal-distal axis. 
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CHAPTER THREE 

MYOSIN-X FUNCTIONS IN POLARIZED EPITHELIAL CELLS 

INTRODUCTION 

Myosin-X (Myo10) is an unconventional myosin that localizes to the tips of 

filopodia and has critical functions in filopodia. Although Myo10 has been studied 

primarily in non-polarized, fibroblast-like cells, Myo10 is expressed in vivo in many 

epithelia-rich tissues such as kidney. Here, we investigate the localization and functions of 

Myo10 in polarized epithelial cells, using MDCK (Madin-Darby Canine Kidney II) cells as a 

model system. Calcium-switch experiments demonstrate that, during junction assembly, 

GFP-Myo10 localizes to lateral membrane cell-cell contacts and to filopodia-like structures 

imaged by TIRF on the basal surface. Knockdown of Myo10 leads to delayed recruitment 

of E-cadherin and ZO-1 to junctions, as well as a delay in tight junction barrier formation 

as indicated by a delay in the development of peak transepithelial electrical resistance 

(TER). Although Myo10 knockdown cells eventually mature into monolayers with normal 

TER, these monolayers do exhibit increased paracellular permeability to fluorescent 

dextrans. Importantly, knockdown of Myo10 leads to mitotic spindle misorientation, and 

in 3D culture, Myo10 knockdown cysts exhibit defects in lumen formation. Together, 

these results reveal that Myo10 functions in polarized epithelial cells in junction 

formation, regulation of paracellular permeability, and epithelial morphogenesis. 
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Myosin-X (Myo10) is an unconventional myosin that is broadly expressed in 

vertebrate tissues (Berg et al., 2000; Kerber and Cheney, 2011). Myo10 has key functions in 

filopodia and experiments with fibroblast-like cells have revealed that Myo10 localizes to 

the tips of filopodia and undergoes intrafilopodial motility (Berg and Cheney, 2002; Kerber 

et al., 2009; Watanabe et al., 2010). Importantly, overexpression of Myo10 induces 

filopodia, while knockdown of Myo10 inhibits the formation of filopodia (Berg and Cheney, 

2002; Bohil et al., 2006). Knockdown of Myo10 also inhibits the formation of invadopodia 

(Schoumacher et al., 2010), actin-based extensions involved in the spread of cancer cells. 

Although mRNA and blotting studies indicate that Myo10 is expressed at highest levels in 

epithelia-rich tissues such as kidney (Berg et al., 2000), very little is known about the 

localization and functions of Myo10 in polarized epithelial cells. 

Myo10 is a member of the MyTH4-FERM family of myosins, a phylogenetically 

ancient group of actin-based motor proteins that have key functions in membrane-

cytoskeleton interactions (Breshears et al., 2010; Sousa and Cheney, 2005). The ~237 kDa 

Myo10 heavy chain can be divided into three regions, a myosin head with motor activity 

(Kovacs et al., 2005; Nagy et al., 2008; Sun et al., 2010), a neck consisting of three IQ motifs 

that bind calmodulin or calmodulin-like light chains, and a large tail. The Myo10 tail includes 

three pleckstrin homology (PH) domains, one of which can bind to phosphatidylinositol-

3,4,5-trisphosphate (PIP3) (Lu et al., 2011; Mashanov et al., 2004; Plantard et al., 2010). 

Binding to PIP3 targets Myo10 to phagosomes (Cox et al., 2002) and has recently been 

reported to facilitate targeting to filopodia (Lu et al., 2011; Plantard et al., 2010; Umeki et 

al., 2011). The structure of the MyTH4-FERM (Myosin Tail Homology 4 domain and band 
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4.1/ezrin/radixin/moesin domain) region was recently solved (Wei et al., 2011). This region 

of Myo10 can bind directly to microtubules (Weber et al., 2004) and Myo10 is required for 

normal spindle positioning and orientation (Kwon et al., 2008; Toyoshima and Nishida, 

2007; Weber et al., 2004; Woolner et al., 2008). The FERM domain of Myo10 can bind the 

cytoplasmic domains of β1, β3 and β5 integrins (Zhang et al., 2004), important 

transmembrane receptors for extracellular matrix components. It should also be noted that 

the neck domain of Myo10 binds to calmodulin-like protein (CLP), an epithelial specific 

calcium-binding protein that can function as a Myo10 light chain (Bennett et al., 2007).  

Epithelial cells have critical functions in normal physiology and disease, and 

epithelial morphogenesis is required for the proper development of tissues and organs. In 

tissues such as kidney, the epithelium of a tubule is organized into a single layer of polarized 

cells. The polarity of the epithelial cell is defined by the apical and basolateral domains, with 

the apical domain facing the lumen, and the basolateral domain contacting the extracellular 

matrix. The two domains are separated by the apical junctional complex (AJC), the major 

components of which are the adherens junction and the tight junction. The adherens 

junction promotes cell-cell adhesion and coordinates changes in cell shape during 

morphogenesis of tissues and organs (Perez-Moreno et al., 2003). A key component of the 

adherens junction is the cadherins, which are calcium-dependent, homophilic cell adhesion 

receptors located in the basolateral domain. Cadherins at the adherens junction are linked 

to actin filaments by scaffolding proteins such as the catenins (Harris and Tepass, 2010). The 

tight junction (also known as the zonula occludens) is located immediately above the 

adherens junction and provides a paracellular barrier to the movement of ions and solutes 
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between cells. The first protein to be identified at the tight junction was Zonula Occludens-1 

(ZO-1) (Stevenson et al., 1986), a cytoplasmic scaffolding protein that has important 

functions in tight junctions. In addition, over 40 proteins are now known to associate with 

the tight junction (Schneeberger and Lynch, 2004; Shen et al., 2011) including the claudins, 

the transmembrane proteins that are major elements of the tight junction strands that form 

the paracellular barrier (Van Itallie and Anderson, 2006). 

It is now theorized that the paracellular barrier includes at least two pathways 

(Anderson and Van Itallie, 2009), and different methods are used to measure the integrity 

of the tight junction barrier and to distinguish between these pathways. Small pores in the 

tight junction allow some charged ions to pass, and the transepithelial electrical resistance 

(TER) of an epithelial monolayer provides an instantaneous measurement of this 

paracellular barrier to ion movement (Anderson and Van Itallie, 2009). The second pathway, 

termed the ‘leak’ pathway, allows for the passage of larger solutes, and this permeability 

can be measured as the cumulative paracellular movement (flux) of a solute, such as 

dextran, over time. Although changes in electrical resistance and solute flux often coincide, 

it is now apparent that the two pathways can be independently regulated (Anderson and 

Van Itallie, 2009; Balda et al., 1996; Van Itallie et al., 2009). Since the pores in tight junctions 

are too small to allow for passage of large solutes, permeability to larger solutes is thought 

to be due to a different mechanism, such as relatively slow rearrangements of the tight 

junction strands (Anderson and Van Itallie, 2009; Shen et al., 2011). 

The actin cytoskeleton serves as an important structural scaffold for the formation 

and function of the apical junctional complex (Hirokawa et al., 1983; Hirokawa and Tilney, 
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1982; Zhang et al., 2005). Ultrastructural studies show that actin filaments associate with 

both the adherens junction and the tight junction; at the adherens junction, the cadherin-

based cell-cell contacts are clearly associated with a circumferential bundle of actin 

filaments (Hirokawa and Heuser, 1981; Hirokawa et al., 1983; Hirokawa and Tilney, 1982). 

Importantly, changes to the actin cytoskeleton can regulate paracellular permeability 

(Hartsock and Nelson, 2008; Madara, 1998); for example, there is evidence that contraction 

of actin bundles at the zonula adherens may modulate paracellular permeability (Shen et 

al., 2006).  

While conventional myosin-II has been shown to have important roles in junction 

assembly, permeability, and epithelial morphogenesis (Ivanov et al., 2007; Ivanov et al., 

2008; Ivanov et al., 2004; Shewan et al., 2005; Smutny et al., 2010), growing evidence 

indicates unconventional myosins also have critical functions in these processes. Mutations 

in Myo5b cause microvillar inclusion disease (Muller et al., 2008) and Myo5b has recently 

been implicated in apical membrane trafficking and lumen formation during epithelial 

morphogenesis (Roland et al., 2011). Myo6 has been shown to regulate polarized trafficking 

(Au et al., 2007) as well as E-cadherin adhesion at epithelial cell-cell contacts (Maddugoda 

et al., 2007; Mangold et al., 2011). Mutations in Myo7a and Myo15a, two MyTH4-FERM 

myosins distantly related to Myo10, lead to defects in the stereocilia on the apical surfaces 

of the inner ear hair cells and cause human deafness (Friedman et al., 1995; Liu et al., 1997). 

Myo9a, an unconventional myosin that acts as a Rho-GAP, is reported to localize to cell 

junctions and loss of Myo9a leads to defects in epithelial differentiation and to 

hydrocephalus (Abouhamed et al., 2009). Finally, recent work with Dachs, an 
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unconventional myosin in fly, indicates that that this myosin generates tension in cell-cell 

junctions and is involved in spindle orientation (Mao et al., 2011). 

Although Myo10's functions in the filopodia of non-polarized cells have been the 

subject of intensive study, its localization and functions in polarized epithelial cells remain 

largely unknown. Here, we show Myo10, an unconventional myosin that is broadly 

expressed in epithelial tissues, has important functions in tight junction biogenesis, the 

maintenance of paracellular permeability, and epithelial morphogenesis. 

 

MATERIALS AND METHODS 

Cell culture and Plasmids 

MDCK II tet-off cells (Clontech, Mountain View, CA), referred to as “MDCK”, were 

grown in complete media: DMEM high glucose (Gibco/Invitrogen, Carlsbad, CA) with 10% 

fetal bovine serum (Gibco) and 100 units/ml penicillin-streptomycin (Sigma, St. Louis, MO). 

MDCK cells were maintained at 37°C and 5% CO2 and were passaged every five days. 

Plasmids: Canine Myo10 shRNA constructs were generated by cloning Myo10 shRNA 

(target sequences: ggagaagaacagagataca (sh#2); and ggagatgcatcactggata (sh#5)) into the 

BglII/HindIII sites of the pSuper vector (Oligoengine, Seattle, WA). The non-silencing (NS) 

shRNA construct was generated by cloning a non-specific shRNA (gatcgacttacgacgttat) into 

the pSuper vector. To generate Myo10 knockdown or NS shRNA expressing cell lines, MDCK 

cells were plated at 150x10
4
 cells per 10 cm dish. After overnight incubation, 2 μg Myo10 

shRNA (pool of Myo10 shRNAs #2 & #4) and 0.2 ug pBLAST49 with blasticidin resistance 

(InvivoGen, San Diego, CA) were co-transfected using 41 μl lipofectamine 2000 (Invitrogen, 
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Carlsbad, CA). Cells were incubated for three days and plated at different dilutions into 15 

cm dishes. Clonal cell lines were selected by antibiotic resistance using complete media with 

10 μg/ml blasticidin (InvivoGen). Myo10 shRNAs #16, 38 and 44 are clones of pooled Myo10 

shRNAs as described above. All results were confirmed using two independent Myo10 

shRNAs, sh#2 (clone 8) and sh#5 (clones 16, 35). 

Since the antibodies to human Myo10 exhibited high background in 

immunofluorescence experiments with MDCK cells, we generated MDCK cells stably 

expressing a GFP-Myo10 plasmid. The GFP-Myo10 plasmid (BD71) contains an EGFP-1xFLAG 

tag at the N-terminus of full-length bovine Myo10 (aa 1-2052) and a Spe1 site immediately 

5' to the Myo10 stop codon. The GFP-Myo10 is expressed by a pSNAPtag(m) (New England 

Biolabs) vector that was modified by deleting the SNAP tag while retaining the vector's IRES 

for expression of neomycin resistance in mammalian cells. MDCK II cells were transfected 

with the BD71 GFP-Myo10 by Nucleofection using conditions optimized for MDCK II cells 

(Lonza, Basel, Switzerland). Clonal stable cell lines (#3) were selected using 0.9 mg/ml G418 

(Sigma). Expression of GFP-Myo10 was confirmed by immunoblot. 

To demonstrate that the knockdown effects were specific, stable knockdown cells 

were stably rescued by co-transfection with 2 μg GFP-Myo10 (BD71) and 0.1 μg 

pSVZeo
 
(Invitrogen) by Amaxa nucleofection Kit L using conditions optimized for MDCK II 

cells. Clonal cell lines (#7) were selected using 1 mg/ml zeocin (InvivoGen). Expression of 

GFP-Myo10 was confirmed by immunoblot. 

 

 



43 
 

Immunofluorescence Microscopy and Immunoblotting 

Antibodies: rabbit anti-human Myo10 (Sigma, HPA024223; SDIX, 2243.00.02), mouse 

anti-human ZO-1 (Invitrogen, 33-9100), mouse anti-human E-cadherin (Sigma, U3254), 

mouse monoclonal gp135 (Ojakian, SUNY Downstate), rabbit anti-actin (Sigma, A2066), goat 

anti-human aquaporin-2 (Santa Cruz, Santa Cruz, CA), monoclonal rat aquaporin-1 (Thermo 

Fisher Scientific, Waltham, MA), mouse monoclonal γ-tubulin (Sigma, T6557), rabbit anti-

mouse Par3 (Millipore, 07-330), mouse anti-human aPKCλ (BD Biosciences, 610207), rabbit 

anti-GFP (Invitrogen, A6455). 

Cells were prepared for immunofluorescence by fixation in 4% paraformaldehyde 

(Electron Microscopy Sciences, Hatfield, PA) in PBS for 30 minutes at room temperature, 

permeabilization for 10 minutes in 0.5% Triton-X (Sigma) in PBS, blocking for one hour in 5% 

heat-inactivated goat serum (Sigma), incubation in primary antibody (Myo10 Sigma, E-

cadherin, ZO-1, gp135; 0.5-1.0 μg/ml in 5% goat serum + 0.05% NaN3) overnight at 4°C and 

secondary antibody (1.0 μg/ml in goat serum) for two hours at room temperature. Alexa 

Fluor 568 phalloidin (13 nM) (Invitrogen Molecular Probes) and DAPI (200 nM) (Sigma, 

D9542) were added with secondary antibody in 5% goat serum. Alexa Fluor 488 goat anti-

rabbit or anti-mouse, and Alexa Fluor 568 goat anti-mouse IgG (Invitrogen Molecular 

Probes) were used as secondary antibodies (1.0 μg/ml). 

Immunofluorescence samples were imaged on an Olympus FLUOVIEW FV1000 

confocal, inverted microscope (Center Valley, PA) using a PlanApo 60X Oil (1.42 NA) 

objective. The confocal is equipped with diode lasers for 405nm, 559nm and 635nm and an 
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Argon laser for 488nm. For z-stacks, 640 x 640 pixel, 0.44-0.5 μm slices were collected at 4.0 

μs/pixel sampling speed in sequential line mode and using Kalman integration.  

Samples were prepared for immunoblot by lysing in SDS sample buffer with protease 

inhibitor cocktail, EDTA-free (Roche, Indianapolis, IN). Samples were either used 

immediately or flash frozen in liquid nitrogen and stored at -80°C. Samples were loaded 

onto 4-12% Bis-Tris gels (Invitrogen). Following gel electrophoresis, protein was transferred 

onto nitrocellulose (Fisher Scientific). The membrane was blocked in 5% milk in TBST (50 

mM Tris, 150 mM NaCl, 0.05% Tween 20, pH 7.5) for 30 minutes followed by primary 

antibody (Myo10 Sigma, Actin; 0.8-1.0 μg/ml) in TBST overnight at 4°C. For 

chemiluminescence, HRP donkey anti-rabbit or donkey anti-mouse secondary antibodies 

(Jackson ImmunoResearch Laboratories, West Grove, PA) were used at 1:10,000 and 

incubated for 50 minutes in TBST, followed by developing. For LI-COR, membranes were 

incubated in anti-rabbit IgG IRDye700 (Rockland Immunochemicals Inc., Gilbertsville, PA) at 

1:10,000 in TBST and incubated for 45 minutes. Blots were imaged using the Odyssey 

Infrared Imaging System (LI-COR Biosciences, Lincoln, NE) and analyzed by measuring 

integrated intensities in the Odyssey applications software version 3.0 (LI-COR Biosciences). 

 

Immunohistochemistry 

Protocols were approved by IACUC at UNC-Chapel Hill. 5 μm parrafin-embedded 

kidney sections from C57BL/6 mice were a gift from Dr. Carie Facemire (UNC-Chapel Hill). 

Sections were incubated for two hours at 60°C. Samples were washed twice with xylene, 

then through a graded series of ethanol to distilled water washes: 6 minutes in 100% 
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ethanol, 5 minutes in 95% ethanol, 3 minutes in 70% ethanol, and 1 minute in distilled 

water. Antigen retrieval was performed by decloaking in citrate buffer solution, pH 6 (Dako, 

S1699, Carpinteria, CA) in a decloaking chamber (Biocare Medical, Concord, CA) heated at 

120°C for 30 s, 90°C for 10 s and room temperature for 20 minutes. Sections were blocked 

in 5% heat-inactivated goat serum for one hour. Samples were incubated in 5-10 μg/ml 

primary antibody (Myo10 Sigma, AQP1, AQP2) in 5% goat serum overnight at 4°C, followed 

by rinses in PBS and incubation in secondary antibody at 1 μg/ml in 5% goat serum for 2 

hours at room temperature. 

 

Barrier assays: Calcium-switch, TER, and Paracellular flux 

For calcium-switch assays, MDCK cells were plated in quadruplicate at 7.5x10
4
 

cells/well on 10-mm Transwell-Clear filters with 0.4 μm pore size (Corning, Corning, NY) in 

0.5 ml complete media. MDCK cells were grown for at least five days until confluent. Cells 

were then incubated overnight at 37°C in low calcium media: SMEM (Gibco) with 5% 

calcium-depleted fetal bovine serum, 100 units/ml pen-strep and 5 μM CaCl2 to disrupt 

junctions as previously described (Gumbiner and Simons, 1986). After overnight incubation, 

low calcium media was replaced with complete normal calcium media. For time-course 

experiments, samples were fixed in 4% paraformaldehyde at 0, 0.5, 2, 2.5, 4.5, 5.5 and 24 

hours for immunofluorescence microscopy. For transepithelial electrical resistance assays, 

TER measurements of transwell filters were taken at regular time intervals using an 

EndOhm-12 chamber
 
and an EVOM epithelial volt-ohm-meter (WPI,

 
Sarasota, FL). 

Paracellular flux of uncharged macromolecules was measured using 3.0 kD fluorescein-
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conjugated dextran (Invitrogen) on 6-7 day monolayers (Van Itallie et al., 2009). Transwell 

filters were preincubated for 30 minutes with Hanks’ buffered salt solution (-CaCl2, MgCl2, 

MgSO4) (Gibco) supplemented with 1.8 CaCl2. 0.3 mg/ml FITC-dextran was added to the 

apical compartment; after two hour incubation, samples were taken from the basolateral 

compartment. FITC-dextran concentrations were measured in replicate using the Synergy 

HT plate reader with Gen5 Data Analysis Software (BioTek, Winooski, VT). Sample 

concentrations were determined by plotting against a standard curve of known FITC-

dextran concentrations using linear regression in Microsoft Excel. 

 

Spindle angle and length measurements 

MDCK cells were grown to confluence on glass coverslips. MDCK monolayers were 

fixed in 4% paraformaldehyde for 30 minutes, permeabilized with 0.5% Triton-X for 10 

minutes, and blocked with 5% heat-inactivated goat serum. Cells were stained with DAPI 

(1:500) and anti-γ-tubulin (1:1000). Metaphase cells were identified by DAPI staining of 

condensed chromosomes located at the metaphase plate. Centrosomes were identified by 

γ-tubulin. Z-stacks (0.5 μm slice thickness) were collected by laser scanning confocal 

microscopy (UNC-Olympus Imaging Center). Z-stacks were imported into ImageJ, and for 

each centromere, the z-position was determined by measuring the plane of maximum 

fluorescence using the ‘plot z-axis profile’ function. The z-distance between two 

centromeres within a cell was calculated by the difference between z-positions. Then, 

maximum xy-projections were generated from γ-tubulin z-stacks. The projected xy-distance 

between two centromeres within a cell was measured, and given the z-distance (z) and 
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projected xy-distance (xy), the spindle angle (α⁰) was calculated by the equation, α⁰=tan
-

1
(z/xy). Spindle angle is defined by 0⁰ being horizontal or parallel to the coverslip. Spindle 

length was calculated by the Pythagorean theorem, spindle length = √(z
2
+(xy)

2
). 50 

metaphase cells were measured per condition. Statistical analysis was performed in 

GraphPad Prism 5. 

 

3D cysts 

MDCK cells were grown in 3D culture using a protocol modified from Jaffe et al. 

(2008). Trypsinized MDCK cells were resuspended at 0.5x10
4
 cells/well in 40% Matrigel 

phenol-free (BD Biosciences, San Jose, CA), 1 mg/ml rat tail collagen I (Sigma) and 20 mM 

Hepes pH 7.5, and plated on 10-mm transwell filters. The gels were allowed to set for 30 

minutes at 37°C before adding complete media. 3D cysts were grown for six days, then fixed 

in 4% paraformaldehyde as described above. For each experiment, random fields of view 

were imaged and cysts were counted as having single or multiple lumens from these 

images. One hundred cysts were counted for each experiment per condition. 

 

Statistical analysis 

For steady state TER and paracellular flux measurements, statistical analysis was 

determined using a two-tailed Student’s t test with significance defined by p-value < 0.01. 

For 3D cysts, the average numbers of single lumens were compared between groups using 

one-way ANOVA. If significant, post hoc comparisons using Tukey’s method were 
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performed. All statistical analyses were performed in GraphPad Prism 5. All error bars 

denote standard error of the mean. 

 

RESULTS 

Myo10 Localizes to the Basolateral Domain in Kidney Tubules 

To investigate the functions of Myo10 in polarized epithelial cells, we first asked 

where Myo10 localizes in kidney cells in vivo. Kidney is one of the tissues that expresses the 

highest levels of Myo10, although it should be noted that Myo10 is a low abundance 

protein and that even in the kidney, it is estimated to constitute only ~0.0005% of total 

protein (Berg et al., 2000). Immunofluorescence of kidney sections from adult mouse 

showed that anti-Myo10 labels a subset of tubules (Figure 1). To identify the types of 

tubules that express Myo10, sections were double-labeled with antibodies to aquaporin-2 

(AQP2), an apical integral membrane protein that is selectively expressed in connecting 

tubules and collecting ducts (Nielsen et al., 2002). Since all AQP2-positive tubules were also 

labeled by Myo10 (Figure 1A), this indicated that Myo10 is expressed both in connecting 

tubules, an element of the distal nephron, and in the subsequent collecting ducts. Strikingly, 

although AQP2 showed its expected apical localization, Myo10 was largely basolateral 

(Figure 1B). The basal Myo10 staining often appears to extend into the cytoplasm, 

potentially due to the numerous infoldings of the basal plasma membrane present in renal 

tubules (Windhager, 1992). Also, anti-Myo10 did stain renal vasculature (data not shown), 

consistent with previously reported expression in endothelial cells (Pi et al., 2007). Since 

some Myo10 positive tubules were not labeled by AQP2, we also performed double-label 
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experiments with aquaporin-1 to determine if Myo10 is expressed in proximal tubules 

(Nielsen et al., 2002). No colocalization of Myo10 and aquaporin-1 was detected (Figure 1C), 

indicating that little or no Myo10 is expressed in proximal tubules, a region with an 

extensive brush border and numerous apical microvilli (Booth and Kenny, 1976). Relatively 

little Myo10 staining was detected in glomeruli (Figure 1C, asterisk). These experiments 

demonstrate that Myo10 is expressed in connecting tubules and collecting ducts, and that 

Myo10 exhibits a largely basolateral localization in these polarized epithelial cells. 

 

Myo10 Localizes to Lateral Membranes during Polarized Junction Assembly 

Based on our observations in mouse kidney, we used Madin-Darby Canine Kidney 

(MDCK) II cells as a model system to determine the functions of Myo10 in polarized 

epithelial cells. Immunoblotting showed that Myo10 is expressed in MDCK cells (Figure 2A). 

Since trial immunofluorescence experiments with antibodies to human Myo10 yielded high 

background in MDCK cells (data not shown), for localization studies, we generated MDCK 

lines that stably express GFP-Myo10 at levels comparable to endogenous Myo10 (Figure 

2A). In subconfluent, spreading MDCK cells, GFP-Myo10 localized to the tips of filopodia 

(Figure 2B), as expected from results in other cell types (Berg and Cheney, 2002).  

Next, we examined the subcellular distribution of GFP-Myo10 in MDCK cells during 

junction formation. Junction assembly was induced using the calcium-switch assay 

(Cereijido et al., 1978). In this assay, monolayers of MDCK cells are exposed overnight to 

low calcium, which disrupts cadherin-dependent cell-cell adhesion, leading to a loss of cell-

cell junctions and cell polarity. Re-addition of calcium triggers cell-cell adhesion, and over 
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several hours, the adherens junctions and tight junctions re-assemble. In many types of 

epithelial cells, E-cadherin exhibits initial localization to cell-cell contacts that matures into a 

narrow band at the adherens junction (Adams et al., 1996; Boller et al., 1985); however, in 

MDCK cells, E-cadherin remains localized throughout the lateral membrane (Gumbiner and 

Simons, 1987). As junctions re-assemble, TER transiently increases to high levels, and then 

declines over 1-2 days towards the much lower “steady state” TER of mature monolayers 

(Gonzalez-Mariscal et al., 1985). After overnight incubation in low calcium media, MDCK 

cells had a rounded and unpolarized morphology; GFP-Myo10 localization was diffuse 

within these cells (Figure 2C). We also found that GFP-Myo10 showed variable levels of 

expression from cell to cell. Upon re-addition of calcium to trigger junction assembly, GFP-

Myo10 showed clear but transient labeling at the lateral membrane of cell-cell contacts, 

most notably at 2-6 hours. The transient localization of GFP-Myo10 to lateral membranes 

could also be seen in xz-projections (Supplemental Figure S1). By 24 hours, the lateral 

staining of GFP-Myo10 largely disappears (Figure 2G). 

Since GFP-Myo10 localized to the lateral membrane during junction assembly, we 

examined the subcellular distribution of GFP-Myo10 relative to the adherens junction 

protein E-cadherin. As expected, after incubation in low calcium, E-cadherin showed a 

diffuse localization in the cytoplasm. Following re-addition of calcium, E-cadherin rapidly 

redistributed to cell-cell contacts and formed adherens junctions. GFP-Myo10 co-localized 

with E-cadherin at the lateral membrane at 2 and 4.5 hours after calcium re-addition (Figure 

2; E” and F”). E-cadherin localization to the lateral membrane, however, preceded that of 
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GFP-Myo10; E-cadherin was detected at the lateral membrane at 0.5 hours (Figure 2; D and 

D’).  

Like E-cadherin, ZO-1 localization was disrupted after incubation in low calcium and 

was apparent at cell-cell contacts prior to Myo10 (Supplemental Figure S2; B and B’). 

Although both ZO-1 and Myo10 were present in lateral membranes, the distribution of ZO-1 

was more focused at the apical junctional complex. In fact, little if any Myo10 was detected 

in xy-sections at the level of ZO-1 and the apical junction complex (Supplemental Figure S2; 

A-E). Thus, although GFP-Myo10 co-localizes with E-cadherin at the lateral membrane 

during junction assembly, Myo10 is not enriched at the apical junctional complex in MDCK 

cells. Furthermore, GFP-Myo10 was not detected at the lateral membrane during the initial 

recruitment of E-cadherin (or ZO-1) to cell junctions. 

To investigate the dynamics of Myo10 during junction assembly, we imaged GFP-

Myo10 during calcium-switch (Movie 1). TIRF microscopy of the basal surface revealed 

numerous puncta of GFP-Myo10, many of which localize to the tips of highly dynamic, 

filopodia-like projections. GFP-Myo10 was present at filopodia-like projections throughout 

junction assembly, even prior to localization of GFP-Myo10 to lateral membranes. 

 

Myo10 Knockdown Delays the Assembly of E-cadherin and ZO-1 to Cell-Cell Contacts 

Given the localization of Myo10 during junction assembly, we tested whether 

Myo10 has functional roles in junction formation in polarized epithelial cells. Since Myo10 

has previously been efficiently knocked down in other cell lines using RNAi approaches 

(Bohil et al., 2006; Pi et al., 2007; Zhang et al., 2004), we established stable Myo10 
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knockdown lines in MDCK cells using shRNA constructs. Knockdown of full-length Myo10 

was confirmed by immunoblot (Figure 5A), and Myo10 was depleted by ~70-80%. We then 

employed the calcium-switch assay to examine the process of junction assembly in Myo10 

knockdown cells. Importantly, Myo10 knockdown cells showed a delay in the recruitment of 

both E-cadherin and ZO-1 to cell-cell contacts (Figure 3). Most notably, at 2.5 hours, E-

cadherin and ZO-1 staining was discontinuous or punctate in Myo10 knockdown cells 

(Figure 3; G and G’), whereas E-cadherin and ZO-1 were organized in a continuous, linear 

pattern in control MDCK cells (Figure 3; C and C’). Assembly of ZO-1 into continuous, linear 

contacts was quantified using ImageJ (Arganda-Carreras et al., 2010). Consistent with 

immunofluorescence studies, Myo10 knockdown cells showed reduced continuous ZO-1 

length at all time points until 4.5 hours (Supplemental Figure S3). E-cadherin was properly 

restricted to the lateral membrane and ZO-1 to the apical junction; therefore, knockdown of 

Myo10 does not appear to affect overall cell polarity. We stained for other additional 

polarity markers, ezrin and gp135, and their localization was also unchanged in five day old 

MDCK monolayers with Myo10 knockdown (Figure 4). Also, the localization of polarity 

protein markers, Par3 and aPKC, in MDCK monolayers grown for five days were unaffected 

by Myo10 knockdown (Supplemental Figure S4). These and subsequent studies were 

confirmed with two independent shRNAs (Supplemental Figure S5). 

 

Loss of Myo10 Leads to a Delay in Tight Junction Barrier Formation as Assayed by TER 

The delay in localization of E-cadherin and ZO-1 to cell-cell contacts suggested that 

loss of Myo10 might result in a delay in reestablishing tight junction barrier function. We 
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thus tested if loss of Myo10 leads to defects in the formation of the epithelial barrier by 

measuring transepithelial electrical resistance (TER) during junction assembly. As expected 

for control MDCK cells, TER was low in the absence of calcium; upon re-addition of calcium, 

TER increased substantially and peaked between 6-8 hours. Myo10 knockdown cells, 

however, showed a marked delay in attaining peak TER (Figure 5B). This ~4 hour delay to 

peak TER indicates a defect in the kinetics of tight junction formation, a phenomenon that 

has also been observed in MDCK cells in which critical tight junction and adherens junction 

proteins, such as ZO-1 and E-cadherin, have been depleted (Capaldo and Macara, 2007; 

McNeil et al., 2006).  

Although Myo10 knockdown led to a delay in the development of peak TER, by ~28 

hours, the TER of both knockdown and control cells declined to typical steady state levels, 

~60 Ω∙cm
2
 (Figure 5B). Knockdown and control cells were also indistinguishable when the 

TER was assayed after five days in culture (Figure 5C). This demonstrates that although 

Myo10 is required for normal kinetics of junction assembly, it is not necessary for 

maintenance of TER once junctions have formed. Consistent with the latter point, 

knockdown of Myo10 in Caco-2 cells (a model for intestinal epithelial cells), also had no 

effect on the steady state TER (Supplemental Figure S6; A and B). 

 

Loss of Myo10 Increases Paracellular Permeability to Uncharged Solutes 

A key feature of epithelial barrier function is the ‘leak’ pathway, which represents 

the paracellular permeability to large solutes (Anderson and Van Itallie, 2009). The leak 

pathway can be regulated independently of permeability to small ions that is assayed by 
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TER (Balda et al., 1996) and is most frequently analyzed by measuring the movement of 

uncharged dextran conjugates across the monolayer. Importantly, paracellular permeability 

to 3.0 kD dextran more than doubled in Myo10 knockdown cells (Figure 5D). This 

demonstrates that, although Myo10 is not required to maintain the permeability barrier to 

small ions, Myo10 is required to establish or maintain the permeability barrier to large 

solutes. Myo10's role in regulating permeability is not limited to MDCK cells, since 

knockdown of Myo10 in Caco-2 cells led to similar results (Supplemental Figure S6; C and 

D). 

 

Myo10 is Required for Proper Mitotic Spindle Orientation 

Myo10 can bind to microtubules through its MyTH-FERM domain (Weber et al., 

2004), and Myo10 has been shown to be important for spindle formation and length in 

Xenopus (Woolner et al., 2008) and proper spindle orientation in fibroblast-like cells 

(Toyoshima and Nishida, 2007). Yet, whether Myo10 is required for spindle orientation in 

polarized epithelial cells is largely unknown. To investigate role of Myo10 in the spindles of 

MDCK cells, we fixed mature monolayers and stained for DAPI to identify dividing 

metaphase cells. By co-staining for γ-tubulin to identify centromeres, we measured the 

spindle angle and spindle length, and found that Myo10 knockdown cells showed increased 

average spindle angle (0⁰=horizontal) and a wider distribution of spindle angles when 

compared with control cells (Figure 6; A and B). This defect in spindle orientation is similar 

to those reported for key proteins required for spindle orientation such as Cdc42 (Jaffe et 
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al., 2008) and cadherins (den Elzen et al., 2009). No difference in average spindle length was 

detected with Myo10 knockdown (Figure 6C). 

 

Myo10 is Required for Normal Lumen Formation in MDCK Cysts 

Our experiments on two-dimensional MDCK monolayers demonstrated that Myo10 

has a role in the formation of adherens and tight junctions as well as in spindle orientation. 

Since cell junctions and the spindle have been shown to have important roles in epithelial 

morphogenesis (Krasnow and Nelson, 2002), we tested whether Myo10 is required for 

morphogenesis of epithelial cysts. We seeded cells at low density in a collagen-matrigel 

matrix and allowed each cell to grow into a cyst for six days before staining with various 

markers. While the majority (~80%) of control MDCK cells were able to form a single lumen, 

only ~20-40% of Myo10 knockdown cells formed single lumens and instead showed a 

striking multi-lumen phenotype (Figure 7; A and B). Although there was a clear defect in 

lumen formation, Myo10 knockdown cysts did not appear to have defects in the polarized 

localization of the junctional marker ZO-1, the apical marker gp135, or the basolateral 

marker E-cadherin (Figure 7; B and D). Similar to what was observed in 2D culture, normal 

apico-basal polarity was also confirmed by additional markers including ezrin at the apical 

domain and Na,K-ATPase at the basolateral domain (Supplemental Figure S7). Thus, Myo10 

does not appear to be necessary for establishment of apico-basal polarity, but is required 

for epithelial morphogenesis to form normal cysts with single lumens. 
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GFP-Myo10 Rescues Defects in Cyst Formation 

To confirm that the effect of Myo10 shRNA was specific, we generated Myo10 

knockdown lines that stably express bovine GFP-Myo10 and asked whether expression of 

the transgene rescued the multiple lumen phenotype. Immunoblotting confirmed the 

knockdown of endogenous Myo10 and the expression of GFP-Myo10 (Figure 8A). In 

addition, confocal imaging of rescue cells plated at low density showed GFP-Myo10 labeling 

at the tips of filopodia (Figure 8B). Rescue cells were plated in collagen-matrigel to assay the 

efficacy of cyst formation in 3D culture. Although the number of single lumens in control 

cells was somewhat lower in this series of experiments (~70-75%), GFP-Myo10 expression 

partially rescued the multi-lumen phenotype of Myo10 knockdown cells (Figure 8E); ~60% 

of GFP-Myo10 rescue cysts had single lumens compared to ~35% of Myo10 knockdown 

cysts. The partial rescue is probably attributable to the heterogeneous expression of GFP-

Myo10 in the rescue cells, especially given that some cells exhibited little to no expression 

of GFP-Myo10, much like the stable GFP-Myo10 cells shown in Figure 2. Apico-basal polarity 

also remained intact in GFP-Myo10 rescue cysts (data not shown). To further confirm the 

specificity of the Myo10 knockdown, we generated additional knockdown lines that stably 

express different shRNAs to Myo10 and confirmed all the phenotypes in junction assembly, 

paracellular permeability, and cyst formation (Supplemental Figure S5). 

 

DISCUSSION 

Although Myo10 is broadly expressed in epithelial tissues, its functions in polarized 

epithelial cells have remained largely unknown. Here we show that Myo10 has important 
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and unexpected functions in epithelial cells, including junction formation, maintenance of 

the permeability barrier to large solutes, and epithelial morphogenesis.  

 

Myo10 Localizes to the Basolateral Domain in Polarized Epithelial Cells 

While previous work with non-polarized cells has shown that Myo10 localizes to 

protrusive structures such as the tips of filopodia (Berg et al., 2000; Tokuo et al., 2007), the 

in vivo localization data here from the kidney connecting tubules and collecting ducts show 

that Myo10 exhibits a largely basolateral distribution in polarized epithelial cells. Given that 

Myo10 localizes to dorsal filopodia in non-polarized cells, it is somewhat surprising that 

Myo10 was not detected in proximal tubules, which have numerous apical microvilli, and 

that GFP-Myo10 was not detected in the apical microvilli of MDCK cells. This demonstrates 

that Myo10 is not targeted to the tips of all actin-based bundles and suggests that there are 

important differences between the dorsal filopodia of non-polarized cells and the apical 

microvilli of polarized epithelial cells. Our results showing a basolateral localization of 

Myo10 are consistent with biochemical fractionation experiments that identified Myo10 in 

basolateral rather than apical fractions from kidney (Yonezawa et al., 2003). They are also 

consistent with proteomics data showing that Myo10 was not among the 14 myosins 

detected in the intestinal brush border (McConnell et al., 2011). Although the precise 

mechanisms underlying the basolateral localization of Myo10 remain unknown, the Myo10 

tail domain binds to PIP3 and to β-integrins, (Mashanov et al., 2004; Wei et al., 2011; Zhang 

et al., 2004), both of which localize basolaterally in MDCK cells (Martin-Belmonte et al., 

2007; Schoenenberger et al., 1994). 
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Loss of Myo10 Delays Junction Formation 

Using MDCK cells and the calcium-switch model, we found that at early stages of 

junction assembly GFP-Myo10 was diffusely distributed within the cell, and as cell-cell 

contacts formed, it localized to the lateral membrane. More importantly, Myo10 

knockdown cells showed a delay in junction formation as indicated by, (1) delays in the 

localization of E-cadherin and ZO-1, (2) delay in barrier function as indicated by the ~4 hour 

delay to reach peak TER. The delay in junction formation was temporary, and by ~28 hours, 

knockdown cells exhibited normal TER. Knockdown of Myo10 thus leads to defects 

remarkably similar to those resulting from loss of key junction components such as E-

cadherin and ZO-1, both of which lead to similar delays in junction formation and TER 

without affecting steady state TER (Capaldo and Macara, 2007) (McNeil et al., 2006; Umeda 

et al., 2004).  

Loss of Myo10 could delay junction formation by several mechanisms. In 

keratinocytes, nascent junctions have been hypothesized to form by filopodial contacts 

between adjacent cells (Vasioukhin et al., 2000). Since we observed Myo10 at the tips of 

filopodia in unpolarized MDCK cells, Myo10 is well-positioned to facilitate the formation of 

initial cell-cell contacts. Furthermore, TIRF microscopy revealed that GFP-Myo10 localizes to 

the tips of filopodia-like structures at the basal surface of MDCK monolayers; these 

basolateral puncta of GFP-Myo10 were very dynamic (Movie 1). This data illustrating GFP-

Myo10 at the tips of filopodia-like structures suggests a mechanism whereby Myo10 

functions in junction formation by affecting filopodial cell-cell contacts. A similar role has 

recently been suggested for Myo10 in endothelial cells, where Myo10 transiently co-
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localized with VE-cadherin at the tips of filopodia during the initial stages of cell-cell contact 

(Almagro et al., 2010). This suggested that knockdown of Myo10 might impair junction 

formation, although this was not tested. Here, we directly show that knockdown of Myo10 

leads to a delay in junction formation. Since it is reasonable to suspect that the role of 

Myo10 in junction formation could be due to an interaction with E-cadherin, we performed 

series of preliminary immunoprecipitation experiments, both during calcium-switch and in 

mature monolayers, but did not detect an interaction between Myo10 and E-cadherin (data 

not shown).  

As an actin-based motor, Myo10 could potentially transport or localize proteins 

involved in junction formation. Although E-cadherin was detected at lateral membranes 

prior to GFP-Myo10, E-cadherin localization to the lateral membrane was delayed in Myo10 

knockdown cells. This suggests that loss of Myo10 leads to delays at an earlier step, such as 

formation of initial contacts, or that amounts of Myo10 too low for us to detect are 

sufficient to localize E-cadherin to lateral membranes. The normal apico-basal polarity 

observed in Myo10 knockdown cells suggests that Myo10 is not essential for pathways 

required for polarized membrane trafficking.  

It is also possible Myo10 is required to properly regulate actin dynamics at cell 

junctions. Interestingly, we observed differences in actin morphology with Myo10 

knockdown, most notably in calcium-depleted cells. While in control cells F-actin formed 

apical ring-like structures (Figure 3A”, arrows) as previously described (Ivanov et al., 2004), 

Myo10 knockdown cells showed fewer apical F-actin rings and more F-actin 

“condensations” within the cells (Figure 3E”, arrowheads). Upon calcium re-addition, actin 
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condensations could be observed at early stages (0.5-2 hrs), but by 5.5 hrs and in mature 

monolayers, the Myo10 knockdown cells exhibit apparently normal actin organization. 

Although the nature of the actin condensations is not clear, similar actin structures have 

been reported in cells knocked down for ZO-1 (McNeil et al., 2006). It is thus possible that 

Myo10 knockdown delays junction assembly by perturbing actin organization, especially 

given that myosin-II and Myo6 are involved in the assembly of junctions and associated 

actin structures (Ivanov, 2008; Ivanov et al., 2007; Mangold et al., 2011; Smutny et al., 

2010). 

 

Loss of Myo10 Results in Increased Paracellular Permeability 

Myo10 knockdown monolayers showed increased movement of dextran solute 

through the paracellular pathway over a period of two hours. This finding indicates that 

Myo10 is required for maintenance of the paracellular barrier. Although the mechanisms 

underlying the paracellular ‘leak’ pathway are unclear, the actin cytoskeleton is integral for 

retaining the paracellular barrier (Shen et al., 2011). It is thus possible that Myo10 is 

required for cytoskeletal organization or dynamics that are necessary to maintain normal 

paracellular flux. Although Myo10 was not enriched at the tight junction, other proteins 

that localize outside of the tight junction, such as E-cadherin, have been shown to affect 

paracellular permeability in MDCK cells (Capaldo and Macara, 2007).  

Loss of Myo10 increases paracellular permeability, but at the same time, it does not 

affect steady state TER. How can this be reconciled? Transepithelial electrical resistance and 

paracellular permeability are not necessarily coupled. This has been shown in several cases 
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(Balda et al., 1996; Bruewer et al., 2004; McCarthy et al., 2000), most recently in ZO-1 

knockdown in MDCK cells, where steady state TER is unchanged and paracellular flux is 

increased (Fanning et al., 2012; Van Itallie et al., 2009). It has been theorized that the highly 

dynamic tight junction fibrils act akin to a series of gates (Claude, 1978), where the opening 

and closing of tight junction fibrils allow solute particles to progress through the paracellular 

pathway over time. Thus, while TER is an instantaneous, static reading of the epithelial 

barrier to small ions, paracellular flux is a time-dependent, dynamic measurement of the 

barrier to larger solutes.  

 

Myo10 is Needed for Normal Lumen Formation in Epithelial Morphogenesis 

In three-dimensional culture, Myo10 knockdown leads to a dramatic increase in the 

number of cysts with multiple lumens. Defects in several different pathways can result in a 

multiple lumen phenotype, including establishment of apico-basal polarity (Schluter et al., 

2009; Shin et al., 2005) or mitotic spindle orientation (Jaffe et al., 2008). Apico-basal polarity 

is established in part by polarity proteins, and the loss of polarity proteins such as Crumbs3 

gives rise to multiple lumens or an absence of lumens in 3D cysts (Schluter et al., 2009; Shin 

et al., 2005). Disruption of the normally basolateral PIP3 localization in MDCK cells also 

results in cysts with multiple lumens (Martin-Belmonte et al., 2007). Since Myo10 binds PIP3 

(Lu et al., 2011; Plantard et al., 2010; Umeki et al., 2011), it may act downstream of PIP3 in 

cyst morphogenesis.  

Myo10 could also act via its involvement in spindle orientation, since spindle 

misorientation can lead to multi-lumen cysts, as demonstrated with Cdc42 knockdown 
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(Jaffe et al., 2008) as well as Tuba and Par3 knockdown (Hao et al., 2010; Qin et al., 2010). 

Consistent with this, we show that Myo10 knockdown leads to defects in spindle 

orientation in MDCK monolayers (Figure 6). Although Woolner et al. (2008) report that 

morpholino-mediated knockdown of Myo10 in Xenopus embryos led to a ~35% increase in 

spindle length, we did not detect changes in spindle length in Myo10 knockdown MDCK 

cells. This may reflect differences in species, cell type, or method of knockdown. Whereas 

Toyoshima and Nishida (2007) showed that Myo10 is required for spindle orientation in 

unpolarized HeLa cells, a process that depends on integrin-based cell-substrate adhesions, 

our work reveals that Myo10 is also required for spindle orientation in polarized epithelial 

cells, where the cues for spindle orientation are thought to be provided, at least in part, by 

cell-cell contacts. 

 

Together, our results demonstrate important and unexpected roles for Myo10 in 

polarized epithelial cells. The phenotypes we observe in tight junction formation and 

epithelial morphogenesis are similar to those observed with critical junctional proteins such 

as E-cadherin and ZO-1, and indicate that it will be important for future studies to 

investigate Myo10's precise mechanisms of action and its functions in vivo.  
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Figure 3.1 Myo10 localizes basolaterally in kidney. (A) Anti-Myo10 antibody labels the basolateral 

domain in several types of tubules in the renal cortex. These include connecting tubules and 

collecting ducts, which are labeled by aquaporin-2, an apical protein. (B) A magnified image of the 

inset box details Myo10’s basolateral localization. (C) Little or no Myo10 signal is detected in 

proximal tubules (labeled with aquaporin-1, red) or in glomeruli (asterisk).  
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Figure 3.2 GFP-Myo10 localizes to the tips of filopodia in spreading MDCK II cells and to lateral 

membranes during junction formation. (A) Immunoblot showing expression of Myo10 in mouse 

kidney, MDCK cells, and MDCK cells stably expressing GFP-Myo10. Actin was used as a loading 

control. MDCK samples were collected from monolayers after 5 days in culture, and kidney lysates 

were obtained from adult C57BL/6 mice. (B) GFP-Myo10 (green) localizes to the tips of filopodia in 

spreading MDCK cells. Cells were fixed one day post-plating and were also stained for F-actin with 

568 phalloidin (red). (C-G) GFP-Myo10 transiently localizes to the lateral membrane during junction 

assembly. After overnight incubation in low calcium to disrupt cell-cell adhesion, cells were rounded 

and GFP-Myo10 showed a diffuse cortical localization (C). After junction assembly was triggered by 

re-addition of calcium (D-G), GFP-Myo10 is transiently recruited to the lateral membrane, most 

strongly between 2-4.5 hours. (C'-G') Localization of E-cadherin during junction assembly. Note that 

E-cadherin is present at the lateral membrane at 0.5 hours (D'), prior to the recruitment of GFP-

Myo10. (C”-G”) Merged images of GFP-Myo10 (green) and E-cadherin (red). GFP-Myo10 co-localizes 

with E-cadherin at the lateral membranes at 2 and 4.5 hours (E”,F”). Images (G-G”) from a 24 hour 

time point showing lack of Myo10 staining at lateral membrane in more mature monolayers. Images 

are single confocal planes taken from mid-section of the cell monolayers. 
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Figure 3.3 Myo10 knockdown delays E-cadherin and ZO-1 localization during junction formation. In 

calcium-switch experiments, knockdown of Myo10 (sh#44) delays the appearance of E-cadherin (A-

H).  This is most evident at the 2.5 hour time point, where the cadherin staining in Myo10 

knockdown cells shows a more punctate and discontinuous pattern that largely normalizes by 5.5 

hrs. Similar delays were observed with ZO-1 (A'-H') and F-actin (A''-H''). In control calcium-depleted 

MDCK cells, concentric actin “rings” were observed (A”, arrows), whereas fewer actin rings and 

many actin “condensations” were detected in Myo10 knockdown cells at early time points, most 

notably at t=0 (E”, arrowheads). All images are maximum projections of confocal z-stacks with 0.5 

μm slice thickness. 
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Figure 3.4 Myo10 knockdown does not affect markers of apico-basal polarity in MDCK monolayers. 

(A,B) Apical markers, ezrin and gp135, localize to the apical microvilli in knockdown (sh#16) and 

control MDCK cells. (C) E-cadherin localizes to the basolateral membrane in knockdown and control 

cells. Cells were fixed at 6 days post-plating. Confocal images were acquired on a Zeiss 510 LSM 

using a 63X Plan-Apochromat 1.4 NA Oil objective. Sections were acquired every 0.5 μm.  
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Figure 3.5 Myo10 knockdown delays tight junction formation measured by TER.  (A) Immunoblot 

showing knockdown of Myo10 in stable MDCK lines, sh#38 and #44. Actin was used as a loading 

control. (B) Myo10 knockdown cells show a ~4 hr delay in the timing of the peak TER during the 

calcium-switch assay, thus demonstrating a kinetic defect in junction formation. By ~28 hours, the 

TER in both control and knockdown cells return to normal levels, ~60 Ω∙cm2. (C) Knockdown of 

Myo10 does not affect TER in mature monolayers (measured after 5 days in culture). (D) Knockdown 

of Myo10 does increase paracellular permeability to large solutes in mature monolayers.  Cells were 

cultured for 5 days, then flux assays were performed to measure the movement of 3.0 kD FITC-

dextran over a two hour time period. Calcium-switch experiments were performed in quadruplicate. 

Paracellular permeability results were averaged over two experiments. ** denotes significance of 

p=0.01, ns = not significant. 
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Figure 3.6 Myo10 knockdown cells show a defect in proper spindle orientation but not spindle 

length in mature MDCK monolayers. (A) Myo10 knockdown cells (sh#2-8) show increased average 

spindle angle from horizontal (0⁰) and a larger distribution of spindle angles (B) (see Supplemental 

Methods). The histogram in (B) plots the number of metaphase cells with spindle angles binned in 

10⁰ increments. (C) Myo10 knockdown has no significant effect on spindle length in MDCK 

monolayers. 50 cells/condition were counted. *** denotes significance of p<0.001, ns = not 

significant. 
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Figure 3.7 Myo10 knockdown leads to the formation of cysts with multiple lumens. (A,C) The 

majority of control MDCK cells grown in three-dimensional collagen-matrigel matrix for six days 

form cysts with a single lumen whereas the majority of Myo10 knockdown cells (sh#44) form cysts 

with multiple lumens (B, D).  Cysts were stained for the tight junction marker ZO-1, the basolateral 

marker E-cadherin, and the apical markers gp135 and F-actin, as well as DAPI to stain for nuclei. 

Myo10 knockdown cells retain apico-basal polarity, as the apical and basolateral markers localize to 

their proper domains. (E) Bar diagrams showing the number of cysts with single versus multiple 

lumens, ascertained from 100 randomly selected cysts per condition and averaged over two 

experiments. While ~80% of control MDCK cells form single lumen cysts, only ~20-40% of Myo10 

knockdown cells form single lumen cysts. Statistical significance (p<0.05) was achieved between 

MDCK vs. sh#16, MDCK vs. sh#38, and MDCK vs. sh#44. 
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Figure 3.8 Partial rescue of multiple lumen cyst phenotype by expression of GFP-Myo10. (A) 

Immunoblot showing knockdown and rescue of Myo10 expression in MDCK lines. Anti-actin is 

shown as a loading control. (B) Fluorescence image of a rescue MDCK cell during spreading shows 

that GFP-Myo10 (green) localizes to filopodia tips as expected for functional Myo10; F-actin (red) 

was stained with phalloidin. (C) Myo10 knockdown (sh#44) increased the number of cysts with 

multiple lumens relative to control cells, and expression of GFP-Myo10 partially rescued this defect. 

Statistical significance (p<0.05) was achieved for MDCK vs. sh#44, and sh#44 vs. GFP-Myo10 rescue. 
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Figure 3.S1 GFP-Myo10 localizes along the lateral membranes in xz-sections during junction 

assembly. After re-addition of calcium, GFP-Myo10 transiently localizes to the lateral membranes at 

2 and 4.5 hours during calcium-switch (B,C). (A-E) MDCK cells expressing GFP-Myo10 were fixed and 

stained with an antibody against GFP. (A’-E’) Localization of E-cadherin during junction assembly. 

Lines in xy-sections denote the plane of xz-cross sections. Lines in xz-sections denote the plane of 

xy-planes.  
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Figure 3.S2 GFP-Myo10 is not detected at the tight junction in MDCK monolayers. Single confocal 

planes were acquired at the level of the tight junction to show GFP-Myo10 (A-E) and ZO-1 staining 

(A’-E’) during calcium-induced junction assembly. ZO-1 starts to be seen in a continuous pattern at 

apical junctions at 0.5 hours (B’) while GFP-Myo10 is still diffusely distributed within the cytosol (B). 

GFP-Myo10 is enriched at the lateral membrane at the plane of the apical junctions (C-E). 24 hour 

images (E,E’) were acquired from a separate experiment and again show lack of GFP-Myo10 

enrichment at the tight junction in MDCK cells. Images were acquired from the same experiment 

and field of view as Figure 3.2. 
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Figure 3.S3 Length measurements show Myo10 knockdown monolayers have less continuous, linear 

ZO-1 staining during junction assembly. Total length of continuous ZO-1 staining was quantified at 

different time points during calcium switch (see Supplemental Methods). Myo10 knockdown (sh#44) 

showed reduced ZO-1 length at each time point until 4.5 hours. * denotes significance of p<0.05, 

and ns = not significant.  
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Figure 3.S4 Localization of polarity proteins Par3 and aPKC is unchanged with Myo10 knockdown. In 

Mature MDCK monolayers (grown for 5 days), there were no apparent differences in localization of 

anti-Par3 (A) and anti-aPKCλ (B) in Myo10 knockdown cells when compared with NS shRNA-

expressing MDCK controls. All images are maximum projections of a confocal stack.   
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Figure 3.S5 Stable knockdown lines expressing shRNA#2 and shRNA#5 have similar defects in 

junction assembly and epithelial morphogenesis. (A) Immunoblot of myo10 knockdown using sh#2 

and sh#5, and control cell expressing non-specific (NS) shRNA. (B) sh#5 and sh#2 show a similar 

kinetic delay in peak TER during calcium-switch. (C) Myo10 knockdown (sh#5) results in increased 

paracellular permeability to 3.0 kD FITC-dextran. (D) In 3D culture, Myo10 knockdown (sh#5) cells 

form fewer single lumens (~20-40%) compared with ~80% single lumens in control NS shRNA cells. 

Statistical significance (p<0.001) was achieved for NS vs. sh#5-16, NS vs. sh#5-35, and sh#5-16 vs. 

sh#5-35. (E,F) Apical marker ezrin and F-actin are localized properly in Myo10 shRNA cysts (sh#5-35) 

(F) compared with NS shRNA control cysts (E). 
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Figure 3.S6 As with MDCK cells, knockdown of Myo10 in Caco-2 cells has no effect on steady state 

TER but increases paracellular permeability to 3.0 kD FITC-dextran. (A) Immunoblot showing 

knockdown of Myo10 in Caco-2 BBe1 (human colon adenocarcinoma) cells using lentivirus methods 

(see Supplemental Methods). (B) No difference in steady state TER is observed in mature 

monolayers of Caco-2 cells (2 weeks in culture). (C) Immunoblot showing Myo10 knockdown by 

lentivirus methods; Cacl-2 cells were infected with lentivirus encoding Myo10 shRNA and placed 

under drug selection to select for infected cells. (D) Myo10 knockdown increases paracellular 

permeability in mature monolayers of Caco-2 cells (2 weeks in culture). ** denotes significance of 

p=0.0018. 
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Figure 3.S7 Myo10 knockdown does not affect the localization of ezrin or Na,K-ATPase in MDCK cells 

grown in 3D culture. Myo10 knockdown (sh#38) and control cells are stained with (A,B) ezrin and 

actin, and (C,D) Na,K-ATPase and actin. (B,D) Although Myo10 knockdown cysts have multiple 

lumens, ezrin is properly localized to the apical domain (B), and Na,K-ATPase is properly localized to 

the basolateral domain (D). 
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SUPPLEMENTAL METHODS 

Quantification of linear ZO-1 staining: Z-stacks of ZO-1 staining from 10 random 

fields of view were acquired at each time point in Myo10 knockdown and control MDCK 

monolayers during calcium-switch. From the z-stacks, standard deviation z-projections of 

ZO-1 staining were generated in ImageJ. Linear ZO-1 was identified in ImageJ using a 

procedure of enhancing contrast, applying the find edges filter, and generating a binary 

mask. Punctate ZO-1 staining was filtered out using the despeckle function. Length of linear 

ZO-1 staining was measured in an automated fashion using the AnalyzeSkeleton ImageJ 

plugin (Arganda-Carreras et al., Microsc Res Tech 2010), thresholded for all line segments 

greater than 0.5 μm. Total ZO-1 length was calculated in Microsoft Excel, and statistical 

analysis was performed using GraphPad Prism 5. This automated method of identifying ZO-

1 length was manually validated by hand-tracing total ZO-1 length. 

Caco-2 lentivirus Myo10 knockdown using cell sorting: (Supplemental Figure S6; A 

and B) Human Myo10 shRNA constructs were designed using siDESIGN Center (Dharmacon). 

Two siRNA constructs were made to target sequences in the motor domain of myosin-X 

(NM_012334): ggaaaggaattatcacata (bp 1236-1254) and aagtgcgaacggcaaaagaga (bp 4253-

4273). One non-specific construct was made: gatcgacttacgacgttat. Forward and reverse 

oligonucleotides were designed, produced and annealed. The vector pLentiLox 4.0 was 

digested with XhoI and HpaI. For lentivirus infection, HEK-293 cells (ATCC CRL-1573) were 

plated at 150x10
4
 cells per 10 cm dish and grown in complete growth medium: DMEM with 

10% fetal bovine serum, 100 units/ml penicillin/streptomycin. At 16-18 hours post-plating 

(day 1), FuGENE reagent (Qiagen), viral promoters pMDL-G/P-RRE, pRSV-REV, pCMV-VSVG, 
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and pLL shRNA (pool of 2 Myo10 shRNAs or NS shRNA) were added to serum-free DMEM. 

After incubation for 30 minutes, the DNA and FuGENE were added to the HEK293 cells. The 

efficiency of transfection was evaluated by screening for GFP fluorescence after 36-48 hours 

(day 3), and the media was changed to Caco-2 complete growth medium. On day 4, Caco-2 

cells were split and replated to ~25% confluency. On day 5, viral media was removed from 

HEK293 cells and transferred to a 15 ml conical tube. Viral media was spun down at 3500 

rpm for 5 minutes. To infect the Caco-2 cells with the lentivirus, viral supernatant was 

added to the Caco-2 cells, and polybrene (Sigma) at 4 μg/ml was added to the media. 

Following 8 hour incubation, the viral media was aspirated, discarded and replaced with 

fresh Caco-2 complete growth medium. On day 7, the infected Caco-2 cells were split into 

T75 flasks. On day 9, infected cells were sorted by fluorescence activated cell sorting. Caco-

2 cells selected for GFP were replated in 10 mm transwell filters at 5000 cells/well. Caco-2 

cells were grown for two weeks, changing media every 2-3 days. 

Caco-2 lentivirus Myo10 knockdown using antibiotic resistance: (Supplemental 

Figure S6; C and D) Myo10 shRNA (target sequence: ggaaaggaattatcacata) was cloned into 

the HpaI/XhoI sites of pLL 5.0 BSR (blasticidin resistance, no GFP), a gift from Dr. Alan 

Fanning. Myo10 shRNA and empty pLL5.0 were used to infect Caco-2 cells using the above 

protocol (A). Following infection, Caco-2 cells were grown in 5 μg/ml blasticidin (InvivoGen) 

to select for infected knockdown or control cells. Selected Caco-2 cells were replated in 10 

mm transwell filters at 5000 cells/well. Caco-2 cells were grown for two weeks, removing 

blasticidin one week prior to the experiment. 
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Immunoprecipitations: MDCK cells were grown in 10 cm plates to confluence (4-6 

days), and calcium switch was performed. At 2 or 4 hours after calcium re-addition, cells 

were washed once with PBS. 1 ml of RIPA buffer (150 mM NaCl, 50 mM Tris-HCl pH 8, 1% 

NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM NaF, 10 mM Na4P2O, 0.2 mM sodium 

orthovanadate, protease inhibitor cocktail (Roche)) or Cadherin IP lysis buffer (150 mM 

NaCl, 25 mM Tri-HCl pH 7.4,1 mM EDTA, 1% NP-40, 0.25% sodium deoxycholate, 50 mM 

NaF, 10 mM Na4P2O, 0.2 mM sodium orthovanadate, protease inhibitor cocktail) was added 

to each plate. Cells were scraped into eppendorf tubes and incubated on ice for 30 minutes. 

Cell lysates were passed through a 27-gauge needle to shear DNA. Cell lysates were 

centrifuged at 13,000xg for 15 minutes at 4⁰C. Cell lysates were incubated with Myo10 

(Sigma, HPA024223)/E-cadherin (BD Biosciences, 610181) antibody and Gammabind plus 

sepharose beads (GE Healthcare, Piscataway, NJ) for one hour at 4⁰C, rotating. For 

immunoprecipitations of endogenous Myo10 in mature MDCK cells, MDCK cells were grown 

on 10 cm plates for 6 days. Immunoprecipitation protocol follows as above. The lysis buffer 

contains 40 mM HEPES pH 7.4, 75 mM KCl, 1% Triton-X, 2 mM K-EGTA, 5 μM latrunculin B, 5 

mM ATP, protease inhibitor cocktail. The lysate, beads and antibody were incubated for 4 

hours at 4⁰C. For FLAG tag immunoprecipitation of GFP-Myo10, stable GFP-Myo10 cells 

were grown to confluence in 10 cm plates, and the lysis buffer contains 50 mM Tris-HCl (pH 

7.4), 150 mM NaCl, 1% Triton-X, 2 mM MgCl2, 5 nM latrunculin B, 5 mM ATP, 4 mM DTT, 

protease inhibitor cocktail. Cells were washed with PBS and incubated in lysis buffer for 10 

minutes on ice. Cell lysates were centrifuged for 13,000xg for 15 minutes at 4⁰C. anti-FLAG 

M2 agarose beads (Sigma, A2220) were incubated with the cell lysate for 30 minutes at 4⁰C. 
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Elutions were collected using 200 μg/μl 3X FLAG peptide (Sigma, F4799; diluted in 50 mM 

Tris-HCl, 150 mM NaCl, pH 7.9). 
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MOVIE LEGEND 

Movie 3.1 Dynamics of GFP-Myo10 in filopodia-like structures on the basal surface of a confluent 

layer of MDCK cells during junction assembly. TIRF microscopy was used to image the basal surface 

of MDCK cells during calcium-switch. Puncta of GFP-Myo10 at the tips of filopodia-like structures 

show dynamic extension and retraction throughout junction assembly, and are present on the basal 

surface before E-cadherin localizes to cell-cell contacts. MDCK cells are stably expressing GFP-Myo10 

at near endogenous levels. Note that GFP-Myo10 puncta exhibit similar dynamics despite the cells 

having variable levels of GFP-Myo10 expression. The frame rate is 1 frame/4 minutes with an 

exposure time of 130 ms. TIRF imaging was performed on an Olympus IX81 inverted microscope 

with a 60X Apo N, NA 1.49 Oil lens. Images were captured on an ImagEM-1K cooled CCD camera 

(Hamamatsu). 488 nm laser line was used at 66.29⁰ incident angle and penetration depth of 110 nm. 

Temperature was maintained at 37⁰C and CO2 was injected using a Bioptech closed chamber system 

(Bioptech, Butler, PA). Cells were plated on 35 mm Delta T dishes. Cells were calcium depleted 

overnight. To begin calcium-switch, 1.8 mM CaCl2 was added to trigger junction formation. 

Metamorph software was used to acquire images, adjust contrast, scale images and build the movie. 

This movie was taken at 3.75 hrs after calcium addition, but similar Myo10 dynamics were observed 

prior to calcium addition and in mature monolayers. Scale bar = 35 μm.  
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CHAPTER FOUR 

APICO-BASAL TARGETING OF MYOSIN-X IN POLARIZED EPITHELIAL CELLS 

 

INTRODUCTION 

 Myosin-X (Myo10) is an unconventional myosin that localizes to the tips of 

filopodia and has been shown to have important functions in filopodia in non-polarized 

cells. Recently, we found that Myo10 has key functions in junction assembly, maintenance 

of paracellular permeability, and epithelial morphogenesis in polarized epithelial cells (Liu 

et al., 2012). We saw that GFP-Myo10 localizes to basolateral puncta in MDCK cells during 

junction formation. Here, using TIRF microscopy, we show that full-length Myo10 localizes 

to the tips of actin-based filopodia at the basal surface, and that these basal puncta of 

Myo10 are extremely dynamic. Interestingly, the Myo10 tail is sufficient for basolateral 

localization. Although full-length Myo10 was not detected in apical microvilli, GFP-Myo10 

HMM (a construct lacking the tail) does localize to apical microvilli. Thus, the PH domains 

of the tail are necessary and sufficient for Myo10’s basolateral localization. Deletion of 

the PH domains or disruption of phosphatidylinositol binding results in redistribution of 

Myo10 to the apical domain. Thus, apico-basal targeting of Myo10 is regulated, at least in 

part, by its PH domains. 
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 In organs such as the kidney and small intestine, epithelial cells line tubular 

structures in a polarized manner with a lumen-facing apical domain and a basolateral 

domain contacting neighboring cells and the basement membrane. Apico-basal polarity is 

established by several conserved signaling pathways: Par3-Par6-aPKC, Scribble-Lgl-Dlg and 

Crumbs-Stardust-PATJ (McCaffrey and Macara, 2009). These signaling pathways arrange an 

unequal distribution of proteins between the apical and basolateral domains. Apical domain 

formation has been studied extensively, as proper apical surface organization is needed for 

the formation of normal, central lumens in tubules and cysts (Lincz et al., 1997; Olson et al., 

1991). However, less is known regarding the establishment of the basolateral domain.  

The actin cytoskeleton is a major structural component of the apical domain, cell 

junctions and basolateral domain. At the apical domain, actin filaments comprise the 

microvillus core and the underlying terminal web (Mukherjee and Staehelin, 1971). At the 

cell junction, a dense circumferential ring of actin is apposed to the adherens junction 

(Hirokawa et al., 1983; Hirokawa and Tilney, 1982). At the basal surface, robust actin 

bundles constitute stress fibers (Byers et al., 1984). Although often overlooked, the 

basolateral domain has other actin-based protrusions – sheet-like projections on the lateral 

membrane and filopodia on the basal surface (Figure 4.1) (Georgiou and Baum, 2010).  

Basolateral actin-based protrusions are dynamic, and inhibiting actin polymerization 

eliminates both lateral projections and basal filopodia (Georgiou and Baum, 2010). 

 The formation of the basolateral domain, like the apical domain, is defined by 

polarized signals. The structure of the basolateral actin cytoskeleton is regulated by Par 

proteins, Par3 and Par6 (Georgiou and Baum, 2010) and Dlg/Lgl/Scrib (Discs large/Lethal 
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giant larvae/Scribble) (Bilder et al., 2003). Also, formation of the basolateral plasma 

membrane is regulated by the polarized distribution of phosphatidylinositols (Gassama-

Diagne et al., 2006). Specifically, phosphatidylinositol-4,5-bisphosphate (PIP2) is found at 

the apical domain while phosphatidyinositol-3,4,5-triphosphate (PIP3) is basolateral 

(Martin-Belmonte et al., 2007; Watton and Downward, 1999). Importantly, basolateral 

filopodia have a critical role in Delta-Notch signaling during Drosophila bristle organization 

(Cohen et al., 2010). Furthermore, components of the basolateral domain affect overall cell 

morphology. Defects in basolateral actin-based structures perturb cell morphology  

(Georgiou and Baum, 2010), and inhibition of endogenous PIP3 production results in 

abnormally short lateral domains (Gassama-Diagne et al., 2006). The basal surface is also 

the site of important cell-ECM (extracellular matrix) interactions. For example, basolateral 

β1-integrins regulate epithelial cell surface polarity in three-dimensional culture (Ojakian 

and Schwimmer, 1994). Yet, despite our current knowledge, relatively few regulators of the 

basolateral domain and its associated actin cytoskeleton are known. 

 Myosin-X (Myo10) is an unconventional myosin that is found at the tips of filopodia 

and has critical roles in filopodial formation (Berg and Cheney, 2002; Bohil et al., 2006; 

Kerber et al., 2009). Myo10 is widely expressed in epithelial cells (Berg et al., 2000), and in 

the kidney, Myo10 localizes to the basolateral domain (Liu et al., 2012) and is biochemically 

enriched in the basolateral fractions (Yonezawa et al., 2003). Myo10 is organized into a 

motor, neck and tail (Berg et al., 2000). The motor domain contains actin- and nucleotide-

binding regions. The neck domain has three IQ motifs that can bind calmodulin or 

calmodulin-like protein (CLP), an epithelia-specific calcium-binding protein (Bennett et al., 
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2007). The tail domain of Myo10 allows for a variety of unique molecular interactions. 

Importantly, three pleckstrin homology (PH) domains regulate the interaction of Myo10 

with membrane-bound phosphatidylinositol-3,4,5-triphosphate (PIP3) (Mashanov et al., 

2004; Plantard et al., 2010). The PH domains have been shown to affect filopodial formation 

in non-polarized cells (Plantard et al., 2010). The Myo10 tail also has a MyTH4-FERM domain 

(Myosin Tail Homology 4 domain and band 4.1/ezrin/radixin/moesin domain) that mediates 

Myo10’s interactions with microtubules (Weber et al., 2004; Woolner et al., 2008) and β-

integrins (Zhang et al., 2004). β-integrins are known to localize to the basolateral membrane 

in cultured polarized epithelial cells (Schoenenberger et al., 1994; Schreider et al., 2002).  

 Myosins function at both apical and basolateral domains. In the small intestine, 

Myo5b is critical for proper apical domain morphology, as knockout of Myo5b causes 

microvillar inclusion disease, where microvilli are enclosed in cytoplasmic vacuoles and 

remaining apical microvilli are morphologically abnormal (Muller et al., 2008). Myosin-VI is 

needed for basolateral trafficking of tyrosine motif-containing proteins (Au et al., 2007). 

Finally, Myosin-II is required for the maintenance of the circumferential actin ring at the 

zonula adherens (Ivanov et al., 2007).  

 Recently, we found that Myo10 functions in polarized epithelial cells (Liu et al., 

2012). Specifically, Myo10 localizes to the lateral membrane during junction assembly and 

Myo10 knockdown results in defects in junction assembly, paracellular permeability and 

epithelial morphogenesis. We also found that Myo10 localizes to dynamic basal puncta, 

which we hypothesize to correspond to the tips of basolateral filopodia. Here, we provide 

evidence that supports Myo10 localization to the tips of basolateral filopodia. Also, we 
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demonstrate that the Myo10 tail domain and PH domains are required for basolateral 

localization. Myo10 constructs lacking either the tail or the PH domains localize to apical 

microvilli. Similar to the phenotype seen with inhibition of PIP3 production (Gassama-

Diagne et al., 2006), preliminary studies show Myo10 knockdown cells are shorter and 

wider (Appendix I) and suggest a possible role for Myo10 in the regulation of cell 

morphology. 

 

MATERIALS AND METHODS 

Cell culture and Plasmids 

Caco-2 BBe1 cells (ATCC, CRL-2102) were cultured in complete media (DMEM high 

glucose (Gibco/Invitrogen, Carlsbad, CA) with 10% fetal bovine serum (Gibco), 100 units/ml 

penicillin-streptomycin (Sigma, St. Louis, MO), 10 ug/ml human holo-transferrin (Sigma). 

Plasmids: Bovine GFP-Myo10, GFP-Myo10-heavy meromyosin (GFP-Myo10 HMM), GFP-

Myo10 tail and GFP-Myo10 Headless were previously described (Berg and Cheney, 2002). 

GFP-Myo10∆3PH was generated by Taofei Yin, based on constructs previously described 

(Cox et al., 2002). 

 

Transfection and PI(3)K Inhibition 

Caco-2 cells were plated at 7.5x10
4
 cells/well in 10-mm transwell filters with 0.4 μm 

pore size (Corning, Corning, NY) for two to three days. Caco-2 cells were transfected by 

Magnetofection with PolyMag beads (Oz Biosciences, Marseille, France). 1.5 μl DNA and 1.5 

μl PolyMag beads were added to each well, followed by 15-minute incubation above a 
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super-magnetic plate (OZ Biosciences). After 48 hours, samples were fixed and prepared for 

immunofluorescence microscopy. PI3K inhibition experiments were performed by 

incubating GFP-Myo10-transfected cells with 20 μM LY294002 (Sigma) or 0.15 μM 

wortmannin (Sigma) for 1 hour at 37⁰C. 

 

Immunofluorescence Microscopy 

               Alexa Fluor 568 phalloidin (Invitrogen Molecular Probes) was used to label F-actin. 

To label focal adhesions, monoclonal anti-vinculin (V9264, Sigma) and mouse anti-paxillin 

(05-417, Millipore) antibodies were used. Immunofluorescence microscopy was performed 

as previously described (Liu et al., 2012). Immunofluorescence samples were imaged on an 

Olympus FLUOVIEW FV 1000 inverted confocal microscope (Center Valley, PA) using a 

PlanApo 60X Oil, 1.42 NA objective (UNC-Olympus Imaging Research Center). The FV1000 

has diode lasers for 405nm, 559nm and 635nm wavelengths, and an Argon laser for 488nm 

wavelength use. For z-stacks, 640 x 640 pixel, 0.44 μm slices were collected at 4.0 μs/pixel 

sampling speed in sequential line mode and using Kalman integration.  

 

TIRF Imaging 

For TIRF imaging of basolateral filopodia, control MDCK II cells or MDCK II cells stably 

expressing GFP-Myo10 were transiently transfected with tagRFP-Lifeact (gift from Dr. Jim 

Bear) using Lipofectamine 2000 (Invitrogen). Cells were plated on 35mm Bioptech Delta T 

dishes (Bioptechs Inc., Butler, PA) and cultured in complete media for ~3 days or until 

confluent. Prior to TIRF imaging, media was changed to OptiMEM with 10 mM HEPES, 4% 
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FBS and penicillin-streptomycin. TIRF imaging was performed on a Nikon TE-2000U inverted 

microscope equipped with a Nikon TIRF-II illuminator with 18 mm field of view. Images 

were obtained using a 60X 1.45 NA TIRF objective. TIRF illumination was provided by a 300 

mW argon laser and a AOTF was used for rapid wavelength selection and shuttering. Using a 

1.45 NA lens with 514 nm light at 63° incidence, the calculated penetration depth of the 

TIRF field is ~158 nm. Experiments were performed at 37°C. Time-lapse images were 

acquired at 30 seconds/frame to 2 minutes/frame.  

 

Filopodia Quantification 

MDCK cells stably expressing GFP-Myo10 and untreated MDCK II cells were 

trypsinized from subconfluent cultures and plated at low density onto collagen-coated 

gridded glass coverslips. Cells were incubated in complete media for two hours at 37⁰C and 

5% CO2. Cells were fixed with 4% paraformaldehyde in PBS for 30 min at RT, then washed 

with PBS. Single cells were visualized by DIC microscopy on a Nikon TE-2000U inverted 

microscope using a 60X TIRF objective. Randomly selected, single cells were imaged. 

Filopodia number was quantified in ImageJ. From each cell, all thin filopodia-like projections 

were traced, from the cell edge to the tip of the projection. A filopodium was defined as a 

projection > 0.5 μm in length. The graph and statistical analysis were generated in GraphPad 

Prism 5.  

 

 

 



91 
 

Transmission Electron Microscopy 

All TEM experiments were performed at the Microscopy Services Laboratory in the 

Department of Pathology and Laboratory Medicine at UNC-Chapel Hill. Cell monolayers 

cultured on filter substrates were rinsed with PBS or serum-free medium and fixed in 3% 

glutaraldehyde/0.1 sodium cacodylate with 0.05% CaCl2, pH 7.4. After three rinses with 

sodium cacodylate buffer, the monolayers were postfixed for 1 hour in 1% osmium 

tetroxide/1.25% potassium ferrocyanide in 0.1 sodium cacodylate buffer. After rinsing in 

deionized water, the cells were dehydrated using increasing concentrations of ethanol 

(30%, 50%, 75%, 100%, 100%, 10 minutes each) followed by embedment in Polybed 812 

epoxy resin (Polysciences, Inc., Warrington, PA). The samples were sectioned perpendicular 

to the substrate using a diamond knife. 70-nm ultrathin sections were mounted on formvar-

carbon filmed 200 mesh copper grids and stained with 4% aqueous uranyl acetate for 15 

minutes, followed by Reynolds lead citrate for 7 minutes. Samples were viewed using a LEO 

EM910 transmission electron microscope operating at 80kV (LEO Electron Microscopy Inc., 

Thornwood, NY). Digital images were acquired using a Gatan Orius SC1000 CCD Digital 

Camera and Digital Micrograph 3.11.0 (Gatan, Inc., Pleasanton, CA). 

 

RESULTS 

GFP-Myo10 labels the Tips of Basolateral Filopodia in Caco-2 and MDCK cells 

For the majority of our experiments, we used Caco-2 cells (human colon 

adenocarcinoma) cells as a model system. Caco-2 cells have a robust apical cytoskeleton 

with actin-rich microvilli and terminal web, and a basolateral domain with actin-based 
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lateral protrusions, basal filopodia, and basal stress fibers (Figure 4.1). Additionally, fully 

polarized Caco-2 cells grow to be approximately 30 μm tall (Peterson et al., 1993), such that 

the apical and basolateral domain can be clearly distinguished by confocal microscopy. For 

Myo10 localization studies, we transiently transfected Caco-2 cells with GFP-Myo10 and 

other GFP-tagged Myo10 constructs (Figure 4.2). GFP-Myo10 localized at the basolateral 

domain (Figure 4.3; A and B), cytosolic labeling and strong labeling of the basal surface 

(Figure 4.3B), although some labeling is also detected on the lateral surfaces. GFP-Myo10 

has a striking punctate localization, which we hypothesize to be at the tips of basolateral 

actin-based filopodia. To verify that the basolateral localization pattern observed in Caco-2 

cells was not an artifact of overexpression, we used a Madin-Darby Canine Kidney (MDCK) 

cell line stably expressing GFP-Myo10 at near endogenous levels. In fixed MDCK cells, we 

observed the same punctate basolateral localization (Figure 4.3D), in agreement with our 

observations in transiently transfected Caco-2 cells. GFP-Myo10 was not detected at the 

apical domain, neither in microvilli nor the terminal web (Figure 4.3D), despite the ability of 

Myo10 to select for bundled actin (Nagy et al., 2008) in in vitro motility assays. The results 

showing Myo10 at basal puncta in fixed Caco-2 and MDCK cells are consistent with our 

previously reported results in live MDCK cells stably expressing GFP-Myo10 (Movie 3.1) 

during calcium-switch.  

To determine if puncta of GFP-Myo10 localize specifically to filopodial tips at the 

basal surface, we transiently transfected GFP-Myo10 stable MDCK cells with tagRFP-Lifeact 

to label F-actin. Since transfection efficiency is partial, this allows for unambiguous 

identification of actin-based structures of a single cell within a monolayer. Using live-cell 
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TIRF microscopy, co-transfection experiments demonstrate GFP-Myo10 labels the tips of 

actin-labeled protrusions on the basal surface (Figure 4.4; Movie 4.1). To rule out concerns 

that the basolateral filopodia are a result of filopodia induced by overexpression of GFP-

Myo10, we used stable GFP-Myo10 cells expressing near endogenous levels as assessed by 

immunoblotting. As an additional control, filopodia were quantified in single cells, and there 

was no significant difference in the average number of filopodia per cell between GFP-

Myo10 and MDCK controls (Figure 4.5) (GFP-Myo10: 18.84 ± 1.12 filopodia/cell vs. MDCK 

control: 20.11 ± 0.99 filopodia/cell). We also confirmed that MDCK cells normally have 

basolateral filopodia by expressing tagRFP-Lifeact to label basal actin-based protrusions in 

control MDCK cells (Figure 4.6; Movie 4.2). Finally, to exclude the possibility that Myo10 

puncta correspond to focal adhesions, we co-stained GFP-Myo10 stable cells with the focal 

adhesion markers vinculin and paxillin. GFP-Myo10 does not colocalize with focal adhesion 

markers at the basal surface of MDCK cells (Figure 4.7), consistent with previously reported 

results in non-polarized cells (Kerber et al., 2009; Zhang et al., 2004). Together, our results 

demonstrate Myo10 localizes to the tips of actin-based filopodia on the basal surface of 

MDCK and Caco-2 cells.  

 

Myo10 Tail is Required for Basolateral Localization 

In order to identify the domains that are needed for Myo10’s basolateral 

localization, we performed preliminary targeting experiments using Myo10 deletion 

constructs. First, we asked whether the tail is needed for basolateral localization. Strikingly, 

GFP-Myo10 HMM (a construct consisting of the head, neck and alpha helical region but 
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lacking the rest of the tail; Figure 4.2) localizes predominantly to apical microvilli in Caco-2 

cells (Figure 4.8A). GFP-Myo10 HMM colocalizes with F-actin at the apical domain, and little 

to no GFP-Myo10 HMM was detected at the basal surface (Figure 4.8A).  

 Next, we tested the GFP-Myo10 Tail construct, which consists of the three PH 

domains and the MyTH-FERM domain (Figure 4.2). GFP-Myo10 Tail localizes basolaterally, 

but instead of punctate labeling like full-length Myo10, GFP-Myo10 Tail is distributed 

throughout the basolateral membrane and does not localize to basal puncta under other 

cells (Figure 4.8B). Finally, we assessed the localization of GFP-Myo10 Headless (Figure 4.2), 

which lacks most of the motor but includes the stable alpha helical region (SAH) (Knight et 

al., 2005) thought to allow Myo10 to dimerize. Similar to GFP-Myo10 Tail, GFP-Myo10 

Headless labels the basolateral membrane and appears to co-localize with F-actin (Figure 

4.8C).  

These results suggest that the tail of Myo10 is necessary and sufficient for 

localization to the basolateral domain, and the presence of the stable alpha helical region 

does not restore the punctate basolateral localization of GFP-Myo10 tail.  

 

PH Domains and Phosphatidylinositol Binding are Needed for Basolateral Localization 

 We next sought to identify the tail domains necessary for the punctate basolateral 

localization of Myo10. Since the PH domains of Myo10 have high affinity for 

phosphatidylinositol-3,4,5-triphosphate (PIP3) (Mashanov et al., 2004; Plantard et al., 

2010), and PIP3 is a basolateral-specific phosphatidylinositol in polarized epithelial cells 

(Watton and Downward, 1999; Yu et al., 2003), we hypothesized that the PH domains of 
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Myo10 are required for its basolateral localization. Consistent with this, we found the PH 

domains of Myo10 indeed localize to the basolateral domain; GFP-Myo10 3PH (Figure 4.2) 

labels the basolateral membrane in Caco-2 cells (Figure 4.9A). Like GFP-Myo10 HMM, GFP-

Myo10∆3PH, a deletion construct lacking all three PH domains (Figure 4.2), shows 

localization to the apical microvilli (Figure 4.9B).  

As an alternative method to disrupt PIP3, we treated GFP-Myo10-transfected Caco-2 

cells with phosphatidylinositol (PI) 3-kinase inhibitors. In cells treated with LY294002, the 

punctate basolateral localization of GFP-Myo10 was largely disrupted, and GFP-Myo10 

partially relocalized to apical microvilli and cytoplasmic puncta (Figure 4.10). Similar effects 

were observed in GFP-Myo10 transfected Caco-2 cells treated with wortmannin, another PI 

3-kinase inhibitor (data not shown). These results suggest that the PH domains and PIP3 

binding are required for localization of Myo10 to basolateral puncta. 

 

DISCUSSION 

GFP-Myo10 localizes to Basolateral Filopodia in Polarized Epithelial Cells 

 Myo10 has well-established roles in filopodial formation and dynamics (Berg and 

Cheney, 2002; Bohil et al., 2006). In addition, Myo10 is theorized to localize to filopodia by 

selecting for bundled actin (Nagy et al., 2008). In polarized epithelial cells, there are distinct 

sets of bundled actin at different parts of the cell: apical microvilli, circumferential actin at 

cell junctions, lateral infoldings, and basal filopodia (Figure 1.1 and Figure 4.1) (Georgiou 

and Baum, 2010). We show that GFP-Myo10 is highly dynamic and localizes to tips of actin-

based filopodia on the basal surface. Importantly, this striking localization was not due to 
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the filopodia-inducing activity of Myo10. GFP-Myo10 is expressed at near endogenous 

levels and does not increase filopodia number, and basal actin-based filopodia are observed 

in untreated MDCK cells.  

Recently, basolateral filopodia have been shown to be important in physiological 

processes such as tissue patterning (Cohen et al., 2010), and basolateral filopodia share 

important features with invadopodia, which are actin-based protrusions associated with 

malignant cancers. Myo10 localizes to invadopodia, and Myo10 knockdown inhibits 

invadopodia formation (Schoumacher et al., 2010). Thus, it is likely that Myo10 has 

functional roles in basolateral filopodia of polarized epithelial cells. For example, Myo10 

could function during junction assembly in forming initial filopodia-like cell-cell contacts 

(Vasioukhin et al., 2000). As a molecular motor, Myo10 could, in theory, transport cargoes 

to the basolateral domain. Given that Myo10 can bind membrane, it could be generating 

the force needed to maintain actin-based protrusions on the basal surface. 

What targets Myo10 to basolateral filopodia rather than apical microvilli? Our data 

support the hypothesis that Myo10 targets to the basolateral plasma membrane by the tail 

(and its membrane-binding PH domains), then the motor domain targets Myo10 to the actin 

bundles of basolateral filopodia. 

 

Myo10 Tail is Sufficient for Localization to the Basolateral Domain 

 GFP-Myo10 shows striking punctate localization to the tips of basolateral filopodia. 

We first asked whether the tail was responsible for this basolateral localization. We found 

that the Myo10 tail localizes to the basolateral membrane in Caco-2 cells. However, unlike 
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GFP-Myo10, the Myo10 tail localizes along the length of the basolateral membrane rather 

than in basolateral puncta. From the data presented here, it is likely that the PH domains 

target the Myo10 tail to the basolateral membrane by binding PIP3. Consistent with this, Lu 

et al. show that the PH domains also target to the basolateral membrane in MDCK cells (Lu 

et al., 2011). These results support the hypothesis that Myo10 is first recruited to the 

basolateral membrane by PH domain-mediated interactions, followed by motor-dependent 

localization to nearby actin-based filopodia. Our recent work showing transient localization 

of GFP-Myo10 to lateral membranes during junction assembly (Liu et al., 2012) is also 

consistent with this hypothesis. Formally, it is possible that deletion of the PH domains 

could disrupt the folded conformation of Myo10, such that Myo10 is in an unfolded, active 

state. It is also possible that the MyTH-FERM domain contributes to targeting of the Myo10 

tail to the basolateral membrane by binding to β-integrins. Notably, some β-integrins 

localize along the length of the basolateral membrane (Schoenenberger et al., 1994).  

The fact that deletion of the PH domains leads to targeting to microvilli suggests that 

binding to PIP3 has a dominant role in the basolateral targeting of Myo10, at least in the 

Caco-2 model used here. 

 

The Motor Domain of Myo10 can bind Microvillar Actin Bundles 

 Our results show that GFP-Myo10 HMM targets to the apical domain, which 

demonstrates that the tail is required for basolateral localization of Myo10. GFP-Myo10 

HMM appeared to co-localize with the microvillar F-actin. Because of the limited resolution 

of confocal microscopy in xz- cross-sections (microvilli in MDCK cells are ~1 μm in height), it 
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was unclear whether GFP-Myo10 labeled only the tips or along the length of microvilli. 

Additional experiments are needed to determine the precise localization of Myo10 and 

Myo10 mutant constructs. In order to differentiate between tip or microvilliar length 

labeling, future experiments could include dissociating the cells for higher resolution 

imaging of microvilli in the xy-plane. Also, immunogold labeling using an antibody to GFP 

(antibodies to Myo10 may not be sufficiently robust) can be performed and imaged at 

higher resolution by electron microscopy. Our observations strongly suggest that the motor 

domain of Myo10 can move along microvillar actin bundles, but that the PH domains in the 

tail normally target it basolaterally.  

Intriguingly, GFP-Myo10 HMM was rarely observed at basolateral actin bundles. If 

Myo10 were non-selective for actin bundles, one might have expected the population of 

GFP-Myo10 HMM to be evenly distributed between apical and basolateral actin bundles; 

yet, GFP-Myo10 HMM was predominantly found in apical microvilli. One possibility is that 

the quantity and concentration of F-actin bundles in apical microvilli outweighs the 

basolateral actin bundles, so that this shifts the population of GFP-Myo10 HMM toward the 

apical domain. Another possibility could involve the organization of actin bundles, as 

basolateral actin bundles or stress fibers are not polarized, but rather, the bundles are 

arranged antiparallel to one another.  

 

PH Domains and PI3K Activation are Needed for Basolateral Localization 

 The tail of Myo10 has several domains that could contribute to its basolateral 

localization in polarized epithelial cells. PIP3, found at the basolateral domain, is known to 
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bind Myo10 with high affinity, and the PH domains of Myo10 localize to the basolateral 

membrane. Thus, we tested whether deletion of the PH domains affect Myo10’s punctate 

basolateral localization. Similar to results with GFP-Myo10 HMM, GFP-Myo10∆3PH targets 

to apical microvilli and co-localizes with F-actin. In preliminary experiments, treatment with 

PI3K inhibitors partially disrupts GFP-Myo10 localization to basolateral filopodia, with a 

subpopulation of GFP-Myo10 redistributing to the apical domain or to cytoplasmic puncta. 

This suggests PI3K activation may be needed for basolateral localization. Further 

experiments quantifying GFP-Myo10’s apico-basal distribution are needed to confirm this 

result. A partial effect with PI3K inhibitors could be due to the interaction of Myo10 with β-

integrins, which are components of adhesive structures found at the basolateral membrane; 

thus, it is possible that β-integrins contribute to Myo10’s localization at the basolateral 

domain. 

 Phosphatidylinositols, and PIP3 in particular, have been implicated in establishing 

the leading and trailing edges of chemotaxing cells, as well as in the polarization of neurons 

and epithelial cells. Interestingly, Myo10 has been is found in the same location as has been 

reported for PIP3 in several cell types. PIP3 accumulates at the leading edge in non-

polarized cells and induces actin polymerization (Chen et al., 2003). We have observed 

Myo10 localization at the leading edge of unpolarized epithelial and endothelial cells. 

Additionally, PIP3 is reported to be enriched in filopodia of neuronal dendrites where 

Myo10 is also detected (Luikart et al., 2008). Finally, in polarized epithelial cells, PIP3 

localizes to the basolateral membrane (Watton and Downward, 1999; Yu et al., 2003). We 

have also demonstrated that Myo10 localizes to lateral membranes during junction 
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assembly in MDCK cells (Liu et al., 2012). Further experiments are needed to test whether 

Myo10 and PIP3 indeed co-localize. PH domains are a unique feature of Myo10 among 

MyTH-FERM myosins. In comparison, Myo7b, a MyTH-FERM myosin that is expressed in 

epithelial cells but lacks PH domains, localizes to the tips of microvilli. 

  

 Here, we show that GFP-Myo10 has a unique distribution to the tips of basolateral 

filopodia in fully polarized epithelial cells. The basolateral targeting of Myo10 requires the 

tail and the PH domains. Intriguingly, GFP-Myo10 HMM and 3PH deletion localizes to apical 

microvilli, and disruption of PIP3 production showed similar effects. In our working model, 

full-length Myo10 localizes to the tips of basolateral filopodia via a two-step process (Figure 

4.11). Myo10 is present in the cytoplasm as a folded, inactive monomer (Figure 4.11A). 

Myo10 is targeted to the basolateral membrane as the PH domains bind PIP3 (Figure 4.11B). 

Binding to PIP3 also results in unfolding and activation of Myo10, which can then dimerize 

and allow Myo10 move onto actin in basolateral filopodia (Figure 4.11C). However, in the 

absence of the PH domains, dimerized Myo10-HMM has the ability to move on microvillar 

actin (Figure 4.11D). Alternatively, it is possible that Myo10 is excluded from certain 

subpopulations of bundled actin; for example, actin-binding proteins like tropomyosin could 

“mask” certain bundled actin from Myo10, whereas its absence on other actin bundled 

arrays would permit Myo10 to bind. 

Recent studies have focused on the functional importance of the basolateral domain 

and basolateral filopodia. Polarized cell morphology is affected by perturbations in the lipid 

composition of the basolateral domain (Gassama-Diagne et al., 2006). Interestingly, 
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exogenous PIP3 injected into the apical domain leads to recruitment of basolateral proteins 

and membrane restructuring at the apical domain (Gassama-Diagne et al., 2006).  Also, 

tissue patterning is regulated by basolateral filopodia that induce lateral inhibition via Delta-

Notch signaling (Cohen et al., 2010). In addition, basolateral filopodia are structurally similar 

and share many of the same molecular components with invadopodia, basal actin-based 

protrusions characteristic of invasive cancer cells that can breach the basement membrane. 

Intriguingly, Myo10 is enriched in invadopodia and Myo10 knockdown results in a 

decreased ability for matrix degradation (Schoumacher et al., 2010). Finally, basolateral 

filopodia are observed in HGF-induced tubulogenesis in 3D culture (Williams and Clark, 

2003), and Myo10 is phosphorylated downstream of HGF stimulation (Hammond et al., 

2010). Basolateral filopodia are implicated in several physiological and pathophysiological 

processes, which suggest functional roles for Myo10 in polarized epithelial cells that remain 

to be explored.  
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Figure 4.1 Basolateral actin-based protrusions of Caco-2 cells by TEM. (A) Sheet-like protrusions are 

found at the lateral membrane, interdigitating between neighboring cells. (B) Basal infoldings 

contact the underlying polycarbonate filter substrate. Scale bar = 0.5 μm. Images were acquired 

using a Gatan Orius SC1000 CCD Digital Camera and Digital Micrograph 3.11.0 (Microscopy Services 

Laboratory, UNC Department of Pathology). 

  



 

                                                                               

                                               

Figure 4.2 Bar diagram of Myo10 constructs.
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Bar diagram of Myo10 constructs. All constructs are in pEGFP-C2 and contain a GFP tag at 
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Figure 4.3 GFP-Myo10 localizes to the basolateral domain in Caco

section of Caco-2 monolayer shows GFP

cytoplasm. (B) GFP-Myo10 shows punctate staining on the basal surface of Caco

no GFP-Myo10 is detected at the apical 

cytoplasm. Caco-2 cells were transiently transfected. Note that green dots sometimes extend 

beneath adjacent cells, raising the possibility that they correspond to the tips of filopodia that have 

extended beneath adjacent cells.
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Myo10 localizes to the basolateral domain in Caco-2 and MDCK cells.
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Figure 4.4 GFP-Myo10 localizes to the tips of tagRFP-Lifeact-labeled basal filopodia in an MDCK 

monolayer. Stably expressing GFP-Myo10 MDCK cells were transfected with tagRFP-Lifeact. TIRF 

live-cell imaging reveals GFP-Myo10 puncta at the tips of basal actin-based filopodia in cells 

expressing tagRFP-Lifeact (A) within a monolayer. Autofluorescence was used to determine the 

outlines of untransfected cells (B) which express little to no GFP-Myo10. (C) Some untransfected 

cells expressing only GFP-Myo10 showed similar basal puncta of GFP-Myo10. Scale bar = 5 μm. 
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Figure 4.5 Stable expression of GFP-Myo10 at near endogenous levels does not increase filopodia 

number. Stable GFP-Myo10 cells and untreated MDCK II cells were plated on collagen for two hours 

before fixation. Single, fixed cells were imaged by DIC. The number of filopodia was quantified by 

ImageJ. There was no significant (ns) difference in filopodia number between GFP-Myo10 stables 

and MDCK control cells. 70 cells were quantified in total from three separate experiments. 
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Figure 4.6 MDCK cells not expressing GFP

transfected with tagRFP-Lifeact and cultured to form monolayers on glass dishes. Live

imaging shows dynamic actin-based filopodia (arrows). MDCK cells are in a confluen

surrounding cells not expressing tagRFP
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MDCK cells not expressing GFP-Myo10 have basal filopodia. MDCK II cells were 

Lifeact and cultured to form monolayers on glass dishes. Live

based filopodia (arrows). MDCK cells are in a confluen

surrounding cells not expressing tagRFP-Lifeact. Scale bar = 10 μm. 
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Figure 4.7 GFP-Myo10 does not co

Myo10 MDCK cells were fixed and immunolabeled for vinculin and paxillin (red). GFP

showed little to no colocalization

(C,F). Scale bar = 10 μm. 
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Figure 4.8 The Myo10 Tail is necessary and sufficient

GFP-Myo10 HMM localizes to the apical domain. 

GFP-Myo10 Headless (C) localize to the basolateral membrane.

of the cell monolayer. Caco-2 cells were transiently transf

A  GFP- Myo10 HMM

B  GFP-Myo10 Tail 

109 

         

 

 
necessary and sufficient for basolateral localization in Caco

Myo10 HMM localizes to the apical domain. F-actin is labeled in red. GFP-Myo10 Tail (B) and 

Myo10 Headless (C) localize to the basolateral membrane. xy-plane is taken from mid

2 cells were transiently transfected. Scale bar = 10 μm. 

Myo10 HMM 

 
Apical 

C  GFP-Myo10 Headless 

GFP-Myo10 HMM 
 

 
 

F-Actin 

 
Merge 

GFP-Myo10 Tail 

 
 

F-Actin 

 
Merge 

GFP-

Headless

 

for basolateral localization in Caco-2 cells. (A) 

Myo10 Tail (B) and 

plane is taken from mid-section 

.    

Myo10 

Headless 

 
 

F-Actin 

 
Merge 



 

 

 

 
 

 

 
 
 
 
 
 
 
 

 

 
Figure 4.9 PH domain deletion leads to 

basolateral membrane and cytoplasm. xy

(B) GFP-Myo10∆3PH localizes to the apical microvilli. 

actin is labeled with phalloidin in red. 
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Figure 4.10 PI3K inhibition partially 

cytoplasmic puncta. Caco-2 cells transfected with GFP

Myo10 was partially redistributed to the apical domain

punctate staining remained at the basolateral domain. 
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partially redistributes GFP-Myo10 to the apical domain 

2 cells transfected with GFP-Myo10 were treated with LY

Myo10 was partially redistributed to the apical domain and to cytoplasmic puncta. 

at the basolateral domain. F-actin is labeled in red. Scale bar = 10 
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Figure 4.11 Working model for Myo10 targeting to basolateral filopodia in polarized epithelial cells. 

(A) In the cytoplasm, Myo10 is in a folded, inactive monomer. (B) PIP3 binding to Myo10’s PH 

domains activates and allows for dimerization of Myo10. (C) Dimerized Myo10 targets to basolateral 

filopodia. (D) In the absence of PH domains, Myo10-HMM can move on microvillar actin. 
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MOVIE LEGENDS 

Movie 4.1 GFP-Myo10 localizes to the tips of tagRFP-Lifeact-labeled filopodia in an MDCK 

monolayer. Stably expressing GFP-Myo10 MDCK cells (green) were transfected with tagRFP-Lifeact 

(white). TIRF live-cell imaging reveals GFP-Myo10 puncta at the tips of actin-based filopodia in cells 

expressing tag-RFP-Lifeact. Three cells are present in the field of view. The left cell expresses GFP-

Myo10 and tagRFP-Lifeact. The center cell expresses no GFP-Myo10. Autofluorescence was used to 

determine the outlines of untransfected cells. The right-most cell expresses GFP-Myo10 only and 

shows similar basal puncta of GFP-Myo10. Images were collected at 1 frame/30 seconds on a Nikon 

TE-2000U inverted microscope. Scale bar = 5 μm. 

Movie 4.2 MDCK II cells have basal filopodia. MDCK II cells, not expressing GFP-Myo10, were 

transfected with tagRFP-Lifeact and cultured to form monolayers in glass dishes. Live-cell TIRF 

imaging shows dynamic actin-based filopodia in cells transfected with tagRFP-Lifeact while 

surrounding cells do not express tagRFP-Lifeact. Images were collected at 1 frame/30 seconds on a 

Nikon TE-2000U inverted microscope. Scale bar = 10 μm.  
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CONCLUSIONS AND FUTURE DIRECTIONS 

Conclusions 

 The experiments presented here are the first in-depth investigations on the role of 

Myo10 in polarized epithelial cells.  We found that Myo10 localizes largely to the basolateral 

domain in kidney in vivo. Using MDCK and Caco-2 cells as model systems, we found that 

GFP-Myo10 localizes the tips of basolateral filopodia. Furthermore, during junction 

assembly, GFP-Myo10 transiently localizes to the lateral membrane. Importantly, these 

studies are the first to identify functional roles for Myo10 in polarized epithelial cells in 

junction assembly, paracellular permeability and epithelial morphogenesis. Myo10 

knockdown cells show a delay in junction assembly, increased paracellular permeability to 

fluorescent dextrans, and multi-lumen cysts in three-dimensional culture. Furthermore, we 

found that Myo10 is targeted to the basolateral domain by the tail, and specifically, the PH 

domains. Excitingly, Myo10 reveals basolateral filopodia and provides a tool by which to 

characterize and study these lesser known structures in polarized epithelial cells. 

 

How does Myo10 Affect Junction Assembly and Epithelial Morphogenesis? 

 Although our studies identified functional roles for Myo10 in polarized epithelial 

cells, the mechanisms of action that result in defects in junction assembly kinetics, 

paracellular permeability and epithelial morphogenesis remain unclear. Myo10 has critical 

functions in filopodia, and Myo10’s effect on filopodial formation and dynamics could cause 
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delays in initial cell-cell contact formation during junction assembly. Live-cell imaging of 

Myo10 knockdown cells using a membrane marker could be utilized to examine specific 

defects in early junction assembly dynamics. For example, are there fewer filopodia at 

nascent cell-cell contacts in Myo10 knockdown cells? Moreover, one could identify other 

proteins that are critical for filopodial formation and ask whether knockdown has similar 

effects on initial cell-cell contact formation. Of course, any results would be correlative by 

providing supporting evidence for a filopodial mechanism for proper junction assembly. 

During junction assembly and epithelial morphogenesis, Myo10 could be 

transporting cargoes to the basolateral domain. It is possible that Myo10 is found on 

vesicles, as GFP-Myo10 showed punctate cytoplasmic localization (Figure 2.4). Further 

experiments are needed to test whether Myo10 localizes to one or more populations of 

vesicles. To confirm the presence of dynamic cytoplasmic puncta, live-cell imaging of GFP-

Myo10 could be performed, which would also avoid artifacts from fixation or 

immunostaining. To determine whether cytoplasmic puncta of Myo10 localize to specific 

membrane compartments, colocalization studies can be performed by co-labeling GFP-

Myo10 cells with vesicular compartment markers. In polarized epithelial cells, other 

myosins such as Myo6 and Myo5B have established trafficking roles. Thus far, Myo10 has 

not been implicated in vesicular trafficking. 

In my experiments in MDCK cells, Myo10 knockdown results in spindle 

misorientation. Interestingly, a recent Xenopus study shows defective spindle positioning 

with Myo10 knockdown (Woolner and Papalopulu, 2012). There are now several examples 

in which spindle misorientation is a mechanism that disrupts single lumen formation in 
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three-dimensional cysts (Hao et al., 2010; Jaffe et al., 2008; Rodriguez-Fraticelli et al., 2010). 

The majority of Myo10 spindle experiments have been performed in Xenopus oocytes, 

where the Bement group shows endogenous Myo10 localizing to the mitotic spindle poles 

(Woolner et al., 2008). Future studies should determine whether Myo10 localizes to the 

mammalian mitotic spindle as well. Although I have not observed Myo10 at the spindle in 

subconfluent GFP-Myo10 expressing MDCK cells, a comprehensive screening using mitotic 

synchronization methods could be performed in the future to confirm this result. Even if 

Myo10 does not localize to the mitotic spindle in mammalian epithelial cells, Myo10 could 

still function in spindle orientation. Spindle orientation is thought to be mediated by 

contacts between astral microtubules and the lateral cortex, and Myo10 can bind 

microtubules via the MyTH domain. Interestingly, Myo10 localizes to the lateral membrane 

during junction assembly, as do proteins important for mitosis, i.e. the adaptor protein LGN 

(leucine-glycine-asparagine repeat protein) (Zheng et al., 2010). It is possible that Myo10 

recruits proteins to the lateral membrane. Does Myo10 knockdown affect Pins or LGN 

localization to the lateral cortex? In future immunostaining experiments, MDCK cysts can be 

immunolabeled to determine Pins localization in dividing Myo10 knockdown cells.  

In addition to controlling for off-target effects, rescue experiments are often used to 

elucidate the mechanism of action. However, rescue experiments have proven to be 

difficult due to heterogeneous expression levels, and full length GFP-Myo10 rescue only 

partially restores the single lumen phenotype observed in 3D culture. Future rescue 

experiments reintroducing different Myo10 deletion constructs may thus be difficult to 

interpret – recent work indicates Myo10 is found in a folded, inactive state such that the 
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motor domain binds the FERM and PH domains of the tail (Umeki et al., 2011). Thus, 

deletion of certain domains may disrupt Myo10’s folded conformation and generate a 

constitutively active Myo10 motor, rather than the intended effect of deleting specific 

functional domains. To address this issue, Myo10 point mutations can be used instead, 

provided that the motor-to-tail interacting sites for the folded conformation are not 

disrupted.  

 

Myo10 Reveals Basolateral Filopodia in Polarized Epithelial Cells 

 Basolateral filopodia are an understudied subclass of filopodia, perhaps due to the 

difficulty in observing basal filopodia within a continuous cell monolayer. Excitingly, Myo10 

provides a means to visualize basal filopodia by marking the tips of basolateral filopodia. At 

present, basolateral filopodia are not well-characterized. To our knowledge, Myo10 and F-

actin are the only known components of basolateral filopodia. In this case, what other 

proteins comprise basolateral filopodia? VASP, known to interact with Myo10, is a 

candidate to localize to basolateral filopodia. Another candidate is fascin, an actin-bundling 

protein found in dorsal filopodia of non-polarized cells, but unfortunately, fascin is absent 

or expressed at very low levels in epithelial cells (Zhang et al., 2008). It is important to 

determine what molecules are involved in the formation of basolateral filopodia. In non-

polarized cells, Myo10 is required for the formation of dorsal and substrate-attached 

filopodia. Does Myo10 have a similar requisite role in the formation of basolateral filopodia 

in polarized epithelial cells? In the future, it would be intriguing to test whether Myo10 

knockdown affects the number of basolateral filopodia, since Myo10 knockdown 
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significantly reduces the number of dorsal filopodia in non-polarized cells (Bohil et al., 

2006). In contrast, does Myo10 overexpression induce basolateral filopodia? To visualize 

basolateral filopodia, single cells can be labeled for F-actin by transiently transfecting with 

fluorescently-tagged Lifeact. Using live-cell imaging, we can ask what proteins affect the 

dynamics of basolateral filopodia. MDCK cells stably expressing GFP-Myo10 could be 

instrumental for TIRF imaging of basal filopodia and their dynamics. As lesser known actin-

based structures in polarized epithelial cells, initial characterization studies of basolateral 

filopodia are certainly needed. 

 

Possible Functions for Basolateral Filopodia: Force Generator or Adhesive Complex? 

 Basolateral filopodia have been recently established as important regulators of 

tissue patterning in Drosophila (Cohen et al., 2010) and cell morphology in cultured 

epithelial cells (Georgiou and Baum, 2010). What are other possible functional roles for 

basolateral filopodia, and how does Myo10 fit into these functional processes?  

At the basal surface, filopodia could be force generating structures involved in the 

movement of epithelial cell sheets. Cell monolayers of are dynamic, and the collective and 

cooperative movement of cells is termed plithotaxis (Trepat and Fredberg, 2011). Recently, 

the movement of cell sheets has been elegantly demonstrated in a cell culture model. In a 

three-dimensional collagen culture, epithelial cysts rotate in a coordinated manner (Tanner 

et al., 2012) where the cells within the cyst cooperate to generate collective cell movement. 

Interestingly, cysts comprised of cancerous epithelial cells do not rotate in a coordinated 

fashion. In addition, polarized follicle cells in the Drosophila ovary undergo rotation by the 
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basolateral domain contacting underlying extracellular matrix to promote follicular shape 

change (Haigo and Bilder, 2011). By contacting the underlying extracellular matrix, 

basolateral filopodia are prime position to facilitate force generation in epithelial cells. The 

movement of cell sheets is also important in pathophysiologic conditions such as wound 

healing. Our preliminary studies suggest Myo10 knockdown slows wound closure (Figure 

5.1). Interestingly, in a wound healing model, basal structures called “cryptic lamellipodia” 

have been observed to crawl and reach beneath neighboring cells, several rows behind the 

wound edge (Farooqui and Fenteany, 2005). It is possible that these cryptic lamellipodia are 

present throughout a cell monolayer, and that Myo10 is a component of the cryptic 

lamellipodia. Future studies should determine whether Myo10 has a functional role in 

collective cell migration. For example, using the stable Myo10 knockdown lines, it would be 

straightforward to ask whether Myo10 knockdown cells undergo cyst rotation. As a possible 

caveat, it is not known whether a multi-lumen cyst will show rotational movement, 

although this independently poses an interesting question. Another myosin, Myo9B, has 

been recently implicated in collective cell migration (Omelchenko and Hall, 2012). Myo9B is 

a RhoGAP (Rho GTPase-activating protein), and Myo9B knockdown results in slower wound 

closure and a cell scattering phenotype during cell-cell contact formation. These results 

suggest Myo9B is needed for cell-cell contact expansion and stabilization (Omelchenko and 

Hall, 2012). 

 Alternatively, basolateral filopodia could function as part of an adhesion complex. 

There are a small number of studies that report the observation of ventral “actin waves”, 

and a recent report by Case and Waterman suggests that these F-actin waves are adhesive 



120 
 

and integrin-based (Case and Waterman, 2011). The adhesive actin waves show progressive 

recruitment of molecules: first zyxin and VASP appear, followed by paxillin and vinculin, and 

finally talin and integrin. Since basolateral filopodia and actin waves are both dynamic actin-

based basal protrusions, they may be related structures. Since Myo10 sometimes localizes 

to the cell’s leading edge (Berg et al., 2000), it may be a component of actin waves, and 

Myo10 could function to recruit other proteins to the actin wave. Myo10 was been 

reported to interact with VASP (Tokuo and Ikebe, 2004), and although Myo10 has not been 

shown to colocalize with paxillin and vinculin at focal adhesions (Kerber et al., 2009; Zhang 

et al., 2004), we have not ruled out the possibility that Myo10 transiently localizes to focal 

complexes, nascent adhesive structures. Also, Myo10 can bind β-integrins, and thus, Myo10 

could be involved in building adhesive actin waves at the basal surface. In addition, actin 

waves rapidly assemble and disassemble (Case and Waterman, 2011), so Myo10 could be 

engaged in the dynamics of these basal actin-based protrusions.  

 

A Conserved Role for MyTH-FERM Myosins in Cell Adhesion? 

 The MyTH-FERM family is an ancient group of myosins comprised of Myo7a, Myo7b, 

Myo10 and Myo15a. They are a phylogenetically conserved myosin family – could there be 

a conserved functional role for MyTH-FERM myosins? Similar to Myo10, Myo7b is expressed 

in epithelial cells, but Myo7b localizes apically to the tips of microvilli (Chen et al., 2001). 

Myo7b’s localization at microvillar tips raises the possibility that it is part of an adhesive 

microvillar tip complex. Both Myo7a and Myo15a have been reported to localize to cell-cell 

contacts. Myo7a localizes to cell-cell contacts in polarized epithelial cells and a specialized 
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adhesive structure in testis (Velichkova et al., 2002), while Drosophila Myo15a localizes to 

newly formed junctions in dorsal closure (Liu et al., 2008). Functionally, Myo7a binds 

cadherin-23 in stereocilia and likely provides the physical link between stereocilia (Bahloul 

et al., 2010). Drosophila Myo15a has been reported to interact with DE-cadherin and is 

important for proper epithelial sheet adhesion and fusion during dorsal closure (Liu et al., 

2008). Together, the studies of Myo7a, Myo7b, Myo10 and Myo15a are provocative and 

allow us to consider a conserved role for MyTH-FERM myosins in cell adhesion. 

 

Myo10 and Cell-Cell Adhesion 

 Myo10 transiently localizes to lateral membranes during junction assembly (Liu et 

al., 2012), and Myo10 has been reported to co-transport VE-cadherin in endothelial cells at 

early stages of cell-cell contact (Almagro et al., 2010). In my experiments, Myo10 

knockdown results in a delay in E-cadherin localization to cell-cell contacts during junction 

assembly. Thus, in epithelial cells, an interaction between Myo10 and E-cadherin could 

contribute to cell-cell contact formation. Interestingly, other myosins such as Myo6 bind E-

cadherin and have functional roles in E-cadherin-based cell-cell contacts (Maddugoda et al., 

2007). However, in our preliminary studies, we did not detect an interaction between 

Myo10 and E-cadherin. Myo10 and E-cadherin immunoprecipitations were performed on 

MDCK cells during junction assembly and in mature monolayers using several different lysis 

buffer conditions. In addition, GFP-Myo10 was immunoprecipitated using the FLAG tag, but 

we did not observe co-immunoprecipitation with E-cadherin. These results do not rule out 
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the possibility that Myo10 and E-cadherin may interact transiently or under some 

conditions.  

Alternatively, Myo10 could interact with other junction-associated proteins, similar 

to Myo7a, which binds vezatin, a transmembrane protein at the adherens junction (Kussel-

Andermann et al., 2000), and Shroom2, a tight junction-associated protein (Etournay et al., 

2007). Given Myo10’s localization to cell-cell contacts and effect on junction assembly, 

further studies exploring the role of Myo10 in cell-cell adhesion are promising. 

 

Myo10 and Cell-ECM Adhesion 

 Myo10 localizes to the tips of filopodia on the basal surface, and we hypothesize 

Myo10 is a component of F-actin waves, which are likely integrin-based, adhesive structures 

on the basal surface. Myo10 can bind β1, β3 and β5 integrins (Zhang et al., 2004), and in 

MDCK cells, β1, β3 and β4 integrins localize to the basolateral membrane (Schoenenberger 

et al., 1994). Future experiments could determine whether Myo10 interacts with β-integrins 

at the basolateral domain. Preliminary experiments suggest Myo10 is not detected at focal 

adhesions, but is Myo10 found in focal complexes? Also, does Myo10 co-localize with β-

integrins in polarized epithelial cells? In unpolarized endothelial cells, Myo10 and β-

integrins both localize to filopodia, with β-integrin found slightly behind the Myo10-labeled 

filopodial tip (Zhang et al., 2004). Functionally, does loss of Myo10 reduce basal surface 

adhesion to the extracellular matrix? The apico-basal targeting of Myo10 could also be 

affected, at least in part, by interaction with β-integrins. Myo10 primarily localizes to the 



123 
 

basal surface at steady state, and preliminary targeting experiments show only a partial 

redistribution of Myo10 to the apical domain when treated with PI3K inhibitors.  

Finally, cell-ECM interactions are also important in three-dimensional culture, as 

epithelial cysts self-assemble such that the basolateral surfaces contact the surrounding 

extracellular matrix. The precise localization of GFP-Myo10 in 3D cysts remains unclear, 

probably due to the faint GFP-Myo10 signal and/or increased autofluorescence from the 

surrounding 3D matrix. We hypothesize that GFP-Myo10 is found at the cell-ECM interface 

in 3D cysts, similar to GFP-Myo10 localization in two-dimensional monolayers, but future 

experiments should test this hypothesis in 3D culture.  

Interestingly, Myo10 is one of a small number of proteins phosphorylated on 

tyrosine following HGF (hepatocyte growth factor) stimulation (Hammond et al., 2010); 

since there is evidence to suggest Myo10 interacts with HGF receptor, and filopodia-like 

basal protrusions have been implicated in HGF-mediated tubulogenesis (Guo et al., 2008; 

Williams and Clark, 2003), future experiments should next determine the localization of 

Myo10 during HGF-induced tubulogenesis in 3D cysts. While Myo10 clearly affects 

cytogenesis in MDCK cells, does Myo10 have a role in tubulogenesis as well? In preliminary 

experiments, overall inspection of HGF-stimulated MDCK cysts suggests Myo10 knockdown 

cells still have ability to form tubules. However, whether the tubules differ in morphology or 

dynamics remains to be determined.  

 

 The work described here is the first extensive examination of Myo10 and its 

functions in polarized epithelial cells. While defects were observed in junction assembly, 
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paracellular permeability and epithelial morphogenesis, the precise mechanisms for these 

defects remain unsolved. Importantly, Myo10 reveals basolateral filopodia, lesser known 

yet prominent actin-based structures on the basal surface of polarized epithelial cells. GFP-

Myo10 serves as an excellent marker for the tips of basolateral filopodia, which provides a 

valuable imaging tool for future studies. Essential work lies ahead to fully characterize and 

identify functions for basolateral filopodia, as well as to understand where Myo10 fits into 

the larger framework of basolateral filopodia.  
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Figure 5.1 In preliminary experiments, Myo10 knockdown slows wound closure. Myo10 stable 

knockdown lines 58 (shRNA #5) and 55 (shRNA #5) showed reduced velocity of wound closure 

compared with NS shRNA-expressing and MDCK untreated controls. 3 day old MDCK monolayers 

were scratch wounded using a P10 pipette tip and imaged immediately over the next 18 hours using 

the Olympus VivaView incubator microscope at 37⁰C and 5% CO2. Two random stage positions 

along the scratch wound were imaged. Wound healing velocities were calculated by preparing 

kymographs of the leading edge using the Metamorph software. Per stage position, 6 kymographs 

were prepared. There were two stage positions per condition. 
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APPENDIX 

DOES MYOSIN-X HAVE A ROLE IN MICROVILLI? 

 
INTRODUCTION 

Myo10 is an unconventional myosin that is known to have important roles in 

filopodia (Bohil et al., 2006). Microvilli share some similarities with filopodia, but differ in 

that they are found at the apical domain of polarized epithelial cells and are involved in 

absorptive functions. Given that both microvilli and filopodia are slender cellular 

extensions based on actin bundles, we tested whether Myo10 plays a role in the 

formation of microvilli using Caco-2 cells, a well-characterized model for microvilli. 

Immunoblotting demonstrates that Myo10 is present throughout Caco-2 differentiation, 

Myo10 expression is highest during early stages. To test whether Myo10 function is 

required for microvillar formation, Myo10 was knocked down by infecting Caco-2 cells 

with shRNA-expressing lentivirus. Using scanning electron microscopy to visualize the 

apical surface, Myo10 knockdown showed no obvious effect on the formation of 

microvilli. Nonetheless, Myo10 knockdown did affect cell morphology, as Myo10 shRNA 

cells were shorter and wider than control cells. Although knockdown of Myo10 did not 

affect microvilli, preliminary studies support functions for Myo10 in early development of 

polarized epithelia as well as proper cell morphology. 
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Microvilli are finger-like membrane protrusions located on the apical domain of 

polarized epithelial cells. Microvilli function to absorb nutrients and salts in tissues such as 

the small intestine, proximal tubules of the kidneys and retinal pigmented epithelia in the 

eye. Like filopodia and stereocilia, microvilli are structures that are comprised of actin 

bundles with the plus ends of actin filaments oriented toward the tips of microvilli 

(Mooseker and Tilney, 1975). The actin core of each microvillus terminates at its base in the 

terminal web region (Hull and Staehelin, 1979); together, the microvillus and terminal web 

domain form the brush border. The microvillar actin filaments are cross-linked by actin-

bundling proteins, villin and fimbrin, and actin is bound to the surrounding plasma 

membrane by myosin-1a (Tyska et al., 2005). While the structural components of microvilli 

have been established and largely understood, the molecular mechanism of microvillar 

formation remains unclear. Using a human cell culture model, Peterson et al. suggested 

microvilli develop from filopodia-like precursors (Peterson and Mooseker, 1993). 

Contrastingly, based on studies using Drosophila bristles, Tilney et al. theorized that actin 

bundles are nucleated and elongate from small electron-dense regions on the apical surface 

into microvilli (Tilney et al., 2004). 

We approached our investigation of microvillar formation by focusing on myosins, 

which are molecular motors that move in a directed manner along actin filaments. Myosins 

have important roles in the formation of other actin-bundled structures such as filopodia 

and stereocilia. Myosin-X is critical for filopodial formation, and myosin-VIIa and myosin-

XVa are important for proper stereocilia formation and organization (Belyantseva et al., 

2003; Self et al., 1998). Thus, myosins are potentially involved in the formation of actin-
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based microvilli. In fact, many classes of myosins have been implicated in several other 

microvillar processes. Myosin-1a functions to link microvillar actin bundles in to the 

surrounding membrane and facilitates membrane shedding at tips of microvilli (McConnell 

and Tyska, 2007; Tyska et al., 2005). Myosin-Vb deficiency has been linked to cases of 

microvillus inclusion disease, and Myosin-Vb is involved in trafficking and proper localization 

of apical and basolateral proteins (Muller et al., 2008). Additionally, myosin-VI is involved in 

clathrin-mediated endocytosis at the apical surface of polarized epithelial cells (Buss et al., 

2001a).  

Myosin-X (Myo10) is an unconventional molecular motor that moves toward the 

plus ends of actin filaments (Homma et al., 2001), Myo10 is required for the formation of 

filopodia (Berg et al., 2000; Bohil et al., 2006). Furthermore, Myo10 localizes to the tips of 

filopodia and undergoes intrafilopodial motility (Berg and Cheney, 2002), leading to the 

hypothesis that Myo10 functions as an intrafilopodial transport system to move cargo to 

the tips of filopodia. Although Myo10 is highly expressed in epithelial tissues such as kidney 

and small intestine (Berg et al., 2000), the majority of experiments on Myo10 have been 

performed in non-polarized cells. Intriguingly, Myo10 is a member of the family of MyTH-

FERM myosins, which have critical roles in actin-bundled structures such as microvilli and 

stereocilia (see Chapter 2). Myosin-VIIb localizes to the tips of microvilli (Chen et al., 2001; 

Wolfrum et al., 1998) while myosin-VIIa and myosin-XV are important for proper formation, 

elongation and organization of stereocilia (Belyantseva et al., 2005; Liang et al., 1999). 

Given the critical function of Myo10 in filopodial formation and the requirement for other 
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MyTH-FERM myosins in bundled actin structures, we tested whether Myo10 localizes to and 

is needed for the formation of microvilli. 

We used human colon adenocarcinoma (Caco-2) cells as a model system to study 

Myo10 in microvilli. Caco-2 (clone BBe1) cells were advantageous for the study of microvilli 

because they have a robust brush border (Peterson and Mooseker, 1992). However, a 

noticeable experimental drawback is the relatively slow developmental time course, which 

requires two to three weeks for cells to reach full maturity. Another disadvantage of using 

Caco-2 cells is the low transfection efficiency attained by transient transfection. At 0-2 days 

post-plating, Caco-2 cells are initially unpolarized, and as the cells spread along the 

substrate, filopodia and lamellipodia are observed along the cell edges. As cells become 

polarized, junctional complexes form at the sites of cell-cell contacts, and the apical 

junctional complexes separate the apical and basolateral domains. The apical domain has an 

actin-rich brush border comprised of microvilli and the terminal web. At two weeks, fully 

polarized Caco-2 cells have microvilli that are compact and fairly uniform in length. We also 

used the LLC-PK1 cell line, a porcine kidney cell line derived from the proximal tubule 

(Perantoni and Berman, 1979), to study Myo10 in microvilli. 

Here, we characterize the localization and expression pattern of Myo10 in Caco-2 

cells. We find that Myo10 shows varying levels of expression and localization patterns based 

on the degree of Caco-2 cell maturation. Interestingly, we find that Myo10 is expressed at 

highest levels at early stages in Caco-2 development. Although preliminary experiments 

showed Myo10 antibody 117 stained microvilli, further investigation revealed that this 

antibody cross-reacts with ezrin, a particularly abundant protein in microvilli. Using new 
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antibodies directed against different portions of Myo10, we detected little to no 

endogenous Myo10 in microvilli, and Myo10 knockdown studies suggest Myo10 is not 

needed for formation of microvilli. However, Myo10 does appear to affect cell morphology 

as Myo10 knockdown cells are shorter and wider than control cells. Although our studies 

here do not support a role for Myo10 in apical microvilli, the Caco-2 expression studies 

presented here encouraged us to turn our attention to Myo10 during early stages of 

epithelia development.  

 

MATERIALS AND METHODS 

Cell culture 

Caco-2 BBe1 cells (ATCC, Manassas, VA) were cultured in complete growth medium: 

DMEM (Invitrogen/Gibco, Grand Island, NY) supplemented with 10% fetal bovine serum 

(Sigma, St. Louis, MO), 100 units/ml penicillin-streptomycin (Sigma) and 10 μg/ml human 

holo-transferrin (Sigma). LLC-PK1 cells (ATCC) were cultured in complete growth medium: 

DMEM supplemented with 10% FBS and 100 units/ml penicillin-streptomycin. Caco-2 cells 

were maintained at 37°C and 5% CO2. Caco-2 cells were passaged every 2-3 days. Caco-2 

cells were split by trypsin addition (Sigma) followed by a 10-minute incubation at 37°C. 

Caco-2 cells were replated to approximately 25% confluency. The media was changed every 

2-3 days. 
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Plasmids and Constructs 

shRNA constructs were designed using siDESIGN Center (Dharmacon). Two siRNA 

constructs were designed against target sequences in the motor domain of human myosin-X 

(NM_012334): GGAAAGGAATTATCACATA (bp 1236-1254) and 

AAGTGCGAACGGCAAAAGAGA (bp  4253-4273). One non-specific siRNA construct was made 

against the target sequence, GATCGACTTACGACGTTAT, which does not recognize any gene 

in human, rat or mouse genomes. Forward and reverse oligonucleotides were designed, 

produced and annealed. The pLentiLox 4.0 vector (Rubinson et al., 2003) was digested with 

restriction enzymes XhoI and HpaI. Oligonucleotides were ligated with pLentiLox 4.0, and 

clones were tested by restriction digest with XbaI and NotI. Positive clones were confirmed 

by DNA sequencing. 

The Myo10 putative dominant negative construct in pEGFP-C2 consists of the stable 

alpha helical region of Myo10 (bp 2434-2836; aa 812-946), generated by PCR from human 

Myo10 (Bohil et al., 2006). Immunoblot analysis shows a band at approximately 55 kD, the 

expected molecular weight of GFP-Myo10 coiled coil. 

 

Immunofluorescence 

For immunofluorescence experiments, we used a 19-day time course of Caco-2 or 

LLC-PK1 cells with time points at 1, 2, 3, 6, 8, 10, 13, 15, 17 and 19 days. For each time point, 

cells were counted with a haemocytomer after trypsinization. Samples at all time points 

were replated at 7.5x10
4
 cells/well in 10-mm transwell filters with 0.4 μm pore size 

(Corning, Lowell, MA). The time course was setup such that the longest time point, 19 days, 
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was plated up to 19 days. At day 19, all samples were rinsed twice with PBS before fixation 

with 4% paraformaldehyde (EMS, Hatfield, PA) in PBS for 20 minutes at 37°C. Cells were 

rinsed with PBS three times for 15 minutes each. Samples were permeabilized with 0.5% 

Triton-X (Sigma) in PBS for 10 minutes at room temperature followed by three 15-minute 

washes in PBS. Samples were blocked by incubating in 5% heat-inactivated goat serum 

(Sigma) with 0.05% sodium azide for 2 hours at room temperature. Primary antibody was 

added at 0.8-1.0 μg/ml in 5% goat serum and incubated overnight. Antibodies used were 

117 rabbit anti-Myo10, SDI rabbit anti-Myo10 (2243.00.02, SDIX, Newark, DE), Sigma rabbit 

anti-Myo10 (Sigma, HPA024223), mouse anti-villin (1D2C3, abcam, Cambridge, MA), mouse 

anti-ezrin (abcam, 3C12), rabbit non-immune IgG (Sigma) and mouse non-immune IgG 

(Sigma). After three 15-minute washes in PBS, samples were incubated overnight with 

fluorescently-tagged secondary antibody at 0.75 μg/ml in 5% goat serum. The samples were 

washed with 0.66 μl/ml fluorescently-tagged phalloidin at 1:500 dilution (Invitrogen 

Molecular Probes) for 20 minutes. After three additional 15-minute washes in PBS, the 

filters were cut out of the plastic transwell holders using a scalpel, filters were mounted 

cell-side up onto slides with Gel-mount mounting medium (EMS), and sealed with a No. 1.5 

thickness cover glass (Fisher Scientific, Pittsburgh, PA). Mounting medium was allowed to 

dry overnight before visualization on the Zeiss LSM 510 confocal inverted microscope (UNC 

Neuroscience Center). 
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Myo10 Lentivirus Knockdown and Dominant Negative Expression 

To generate lentivirus, HEK293 cells (ATCC, CRL-1573) were plated at 150x10
4
 cells 

per 100-mm dish and cultured in complete growth medium: DMEM supplemented with 10% 

fetal bovine serum, 100 units/ml penicillin-streptomycin. At 16-18 hours post-plating (day 

1), FuGENE reagent (Qiagen, Germantown, MD), viral promoters pMDL-G/P-RRE, pRSV-REV, 

pCMV-VSVG, and  pLL shRNA (Myo10 shRNA or NS shRNA) were added to serum-free 

DMEM. After incubation for 30 minutes, the DNA and FuGENE were added to the HEK293 

cells. Transfection efficiency was evaluated by screening for GFP fluorescence after 36-48 

hours (day 3), and the media was changed to Caco-2 complete growth medium. On day 4, 

Caco-2 cells were split and replated to ~25% confluency. On day 5, viral media was collected 

from HEK293 cells and transferred to a 15 ml conical tube. Viral media was spun down at 

3500 rpm for five minutes and filtered through a 0.45 μm filter (Millipore, Billerica, MA). For 

lentiviral infection of Caco-2 cells, the undiluted viral supernatant was added to Caco-2 cells, 

and polybrene (Sigma) at 4 μg/ml was added to the media. After an 8-hour incubation, the 

virus-containing media was aspirated, discarded and replaced with Caco-2 complete growth 

medium. On day 7, the infected Caco-2 cells were split into T75 flasks (Corning). On day 9, 

GFP-expressing infected cells were selected by fluorescence-activated cell sorting. Selected 

Caco-2 cells were replated in 10-mm transwell filters at 5000 cells/well and in 6-well plates 

at 20,000 cells/well. Caco-2 cells were grown for two weeks, changing media every 2-3 days.  
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Immunoblotting 

During the 19-day time course, Caco-2 or LLC-PK1 cells were replated onto 6-well 

dishes at 20x10
4
 cells/well for immunoblot analysis. On day 19, all samples were lysed with 

200 μl lysis buffer (40 mM HEPES pH 7.4, 75 mM KCl, 1% Triton-X 100, 2 mM K-EGTA, fresh 

5X protease inhibitor cocktail EDTA-free (Roche)), scraped and transferred into an 

eppendorf tube. Hot LSB (Laemmli Sample Buffer) was added up to 1X dilution, and samples 

were immediately heated at 95°C for 5-8 minutes. Samples were either used immediately or 

flash frozen in liquid nitrogen and stored at -80°C. Samples were loaded into a 5-12% Bis-

Tris gel (Invitrogen). Following gel electrophoresis, the protein was transferred onto a 

nitrocellulose membrane in an XCell SureLock Electrophoresis system (Invitrogen), at 140 

volts for ~90 minutes using a PowerPac Basic power supply (BioRad). The membrane was 

incubated in 5% dry milk in TBST (50 mM Tris, 150 mM NaCl, 0.05% Tween 20, pH 7.5) for 30 

minutes followed by primary antibody, 1:1000 dilution for rabbit anti-actin (Sigma) or 

1:3,000 for mouse anti-villin (abcam) for at least one hour. The membrane was for blotted 

for actin or villin as loading controls. The blot was washed three times in 1X TBST for 10 

minutes each. HRP secondary antibody (Jackson Laboratories, Bar Harbor, ME) at 1:10,000 

was added to the membrane for 50 minutes. After three 10-minute washes in TBST, the 

developing solution (West Pico Luminescent Reagents, Thermo Fisher Scientific, Rockford, 

IL) was added at 1:1 before developing. The intensities of the actin bands were quantified 

using Adobe Photoshop. Using the loading control quantification, volumes of time course 

samples were adjusted to obtain equal total protein loading. The new membrane was 

immunoblotted for Myo10 using 117 (1 μg/ml) or SDI (0.8 μg/ml). 
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Scanning Electron Microscopy 

After two weeks, the GFP-sorted lentivirus-infected Caco-2 cells on transwell filters 

were washed three times with PBS and fixed overnight using 2% paraformaldehyde and 

0.5% glutaraldehyde. Cells were incrementally dehydrated by incremental washes in 50%, 

75%, 90% and 100% ethanol. Ethanol was removed from samples by critical point drying, 

and samples were coated with a ~10 nm layer of 60% gold / 40% palladium. Filters were cut 

out of the plastic transwell holders and mounted onto carbon-coated aluminum stubs (EMS) 

for scanning electron microscopy. SEM was performed on a Zeiss Supra 25 Field Emission 

Scanning Electron Microscope (Microscopy Services Laboratory, Department of Pathology 

and Laboratory Medicine, UNC Chapel Hill). For each sample, low-power fields of view at 

10,000X magnification were captured, and at least 20 random high-power 25,000X fields of 

view were captured.  

 

Microvillar Morphology  

Random, high-power (25,000X) SEM fields of view were used for microvillar analysis. 

The number of microvilli was quantified by selecting a 2μm x 2μm square on each high-

power image, its position remaining constant in from image to image. An alternative square 

was selected if the edge of a cell clearly crossed through the square, cracks on the cell 

surface ran through the square, or if artifact was present, such as debris or obstruction. A 

microvillus was counted if the entire length of the microvillus resided within the square or if 

the base of a microvillus began inside and continued outside the square. 
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Statistical Analysis 

The number of microvilli was averaged for each treatment case and was analyzed by 

single-variable ANOVA. If significant, Tukey’s method was performed as post hoc 

comparison tests. When comparing GFP-Myo10-CC and GFP alone treatment cases, t-test 

analyses were performed to determine significance. In all cases, p value<0.01 was defined 

as statistically significant. 

 

Immunoprecipitation 

Two 100-mm plates of 2 week old Caco-2 monolayers were washed twice with PBS 

and lysed with 1 ml lysis buffer (40 mM HEPES pH 7.4, 75 mM KCl, 1% Triton-X-100, 2 mM K-

EGTA, fresh 5X protease inhibitor, 5 μM latrunculin B, 5 mM ATP). Plates were scraped and 

lysate transferred to an eppendorf tube. The lysate was passed through a 27-gauge needle 

several times to shear the cells and DNA. The lysate was ultracentrifuged at 100,000g for 15 

minutes at 4°C. Beads were prepared by adding 50 μl Gammabind beads plus Sepharose (GE 

Healthcare, UK) to six eppendorf tubes. 200 μl PBS was added to the beads, and beads were 

pelleted by low-speed centrifugation. PBS was aspirated and washes were repeated twice. 

200 μl of lysis buffer was added to the beads followed by pelleting and aspiration of the 

lysis buffer. Lysate supernatant was added to tubes 2-4. 18 μg antibody to Myo10 or the 

protein to be pulled-down, i.e. ezrin, was added to tubes 3 and 5. 18 μg non-immune 

antibody was added to tubes 4 and 6. Volumes in all tubes were raised to 500 μl with lysis 

buffer. Each experiment is setup such that tube 3 is the IP lane and remaining tubes are 

controls. Tube 1 is beads alone, tube 2 is beads + lysate, tube 3 is beads + lysate + IP 
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antibody, tube 4 is beads + lysate + non-immune antibody, tube 5 is beads + IP antibody, 

and tube 6 is beads + non-immune antibody. Tubes were incubated for 4-5 hours, rotating, 

at 4°C. To pellet the beads, tubes were centrifuged at 5000 rpm for 3 minutes. Tube 3 

supernatant was transferred to a new tube. The supernatant from remaining tubes was 

aspirated. The beads were washed three times with PBS. 100 μl PBS and 25 μl 5X LSB was 

added to each tube and heated at 95°C for 5 minutes. Beads were pellet prior to running on 

SDS-PAGE gel. 

 

Proteomics analysis 

An immunoprecipitation was performed using Myo10 antibody 117 from 2-week old 

Caco-2 monolayers, as described above. The gel of the immunoprecipitation lane (beads + 

lysate + IP antibody) was stained with 0.1% Coomassie R-250 in 10% acetic acid for 1.5 

hours, rocking. The gel was destained with several washes in 10% acetic acid. The stained 

gel was sent to the UNC Proteomics Center for analysis by mass spectrometry and MADLI-

TOF peptide sequencing. 

 

RESULTS 

Myo10 is Expressed at High Levels in Early Stage Caco-2 Cells 

Immunoblotting of the Caco-2 cell developmental time course shows endogenous 

Myo10 is present at all time points, and expression levels vary based on degree of 

maturation (Figure A.1). Highest Myo10 expression levels are observed between 3-6 days 

post-plating, and levels decrease as Caco-2 cells mature. As a control, villin expression was 
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quantified, and as expected, increasing villin levels in Caco-2 cells correlates with 

maturation of microvilli. All protein levels were normalized against F-actin loading controls. 

Consistent with these results, a Caco-2 microarray study shows higher Myo10 mRNA levels 

at early stages of Caco-2 cell development (Halbleib et al., 2007). In LLC-PK1 cells and MDCK 

cells, full length Myo10 protein expression did not differ between time points (data not 

shown). 

Full-length Myo10 was detected using two different antibodies, 117 and SDI, which 

yielded similar results. However, in addition to the full-length endogenous Myo10 (~237 

kDa), 117 detects an extra band at 75 kDa with a higher signal intensity than the full-length 

Myo10 band in both Caco-2 and MDCK cells (Figure A.2).  

 

Ezrin is identified as the 75 kDa band detected by 117 anti-Myo10  

The identity of the 75 kDa band was inadvertently discovered during our search to 

identify binding partners for Myo10. We performed immunoprecipitation experiments with 

Myo10 antibody, and immunoblotting with an anti-ezrin antibody recognized a 75 kDa 

band. However, when I performed the reverse immunoprecipitation using the anti-ezrin 

antibody, immunoblotting with 117 anti-Myo10 recognized the 75 kD band but not the full-

length Myo10 band (Figure A.3). Proteomic analysis identified the 75 kD band as ezrin and 

radixin, and ezrin was quantified as more abundant than radixin in Caco-2 cells (Figure A.4). 

To confirm these results, we probed bacterially expressed ezrin, and the 117 antibody was 

also found to react with this (data not shown). As a possible explanation for the cross-

reactivity with ezrin, the 117 Myo10 antibody was made against its predicted coiled-coil 
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region (Berg et al., 2000), and ezrin contains a coiled-coil region as well (Turunen et al., 

1998). We thus used different Myo10 antibodies for subsequent experiments. 

Immunoprecipitation using Myo10 antibodies from SDI and Sigma did not co-

immunoprecipitate the 75 kDa band (data not shown). 

 

Myo10 Is Not Detected in Microvilli of Mature Caco-2 Cells 

 The immunofluorescence experiments using the SDI anti-Myo10 antibody 

demonstrate that, as Caco-2 cells become fully polarized (11 days), little to no Myo10 is 

detected in the actin-rich microvilli of the apical surface (Figure A.5). Instead, this antibody 

labeled diffuse cytoplasmic puncta in the basolateral portion of the cell. Non-immune 

antibody immunostaining does not show localization to cytoplasmic puncta. 

 

Myo10 Knockdown does not affect number of microvilli 

 Since microvilli are hypothesized to develop from filopodia, we tested whether 

Myo10 is needed for the formation of microvilli. Myo10 knockdown was achieved by 

infecting Caco-2 cells with shRNA-expressing lentivirus. Lentivirus shRNA knockdown has 

the advantage of long-term shRNA expression by stably integrating into the host genome. 

~40% of cells were infected with the shRNA-expressing lentivirus, as identified by GFP 

labeling. The infected cells were fluorescence-activated cell sorted (FACS) to select for GFP-

shRNA expressing cells. Immunoblotting indicated that Myo10 continued to be knocked 

down by ~80-90% using shRNA lentivirus in Caco-2 cells at two weeks post-plating (Figure 

A.6).  
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Although preliminary scanning electron microscopy (SEM) experiments had 

suggested that Myo10 knockdown decreased the number of microvilli, the lentivirus-

treated Caco-2 cultures used in those experiments were contaminated with mesenchymal 

HEK293 cells used to produce the lentivirus. After resolving the contamination issue by 

harvesting virus via filtration rather than centrifugation, Myo10 knockdown cells did not 

show a statistically significant decrease in number of microvilli. 

 

Myo10 Knockdown Cells Differ in Cell Morphology 

Since Myo10 knockdown did not appear to affect number of microvilli, we next 

asked whether Myo10 knockdown affects overall cell morphology. To measure changes in 

cell morphology, cell area and cell height were examined (Figure A.7). To quantify cell area, 

Caco-2 monolayers expressing Myo10 or NS shRNA were immunostained for ZO-1, and cell 

area was measured using the junction borders delineated by ZO-1 staining. Myo10 

knockdown cells showed increased cell area versus control cells (Myo10 shRNA: 150.9 ± 

19.42 μm
2
 vs. NS shRNA 251.2 ± 35.01 μm

2
). This result using GFP-cell sorted Caco-2 

knockdown cells was verified with antibiotic-selected Caco-2 knockdown cells (Myo10 

shRNA: 170.0 ± 12.9 μm vs. NS shRNA: 310.8 ± 30.9 μm). Furthermore, Myo10 knockdown 

cells were shorter than control cells (Myo10 shRNA: 15.02 ± 0.9 μm vs. pLL 5.0: 26.17 ± 0.9 

μm), as measured using transmission electron micrographs of cross-sections through Caco-2 

monolayers.  
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DISCUSSION 

Myo10 is Expressed at Highest Levels at Early Stages in Caco-2 Cells 

During the developmental time course of Caco-2 cells, Myo10 is expressed at all 

time points, yet Myo10 expression varies over time. At early stages, Myo10 expression 

increases and peaks between 3-6 days. Myo10 levels then decrease and level off as Caco-2 

cells mature. These results are in agreement with microarray studies that found high Myo10 

mRNA levels at early stages of Caco-2 development (Halbleib et al., 2007). Since Myo10 

expression is highest between 3-6 days, this could support a functional role for Myo10 at 

early stages of Caco-2 development. Interestingly, high Myo10 expression levels correlate 

with the presence of abundant actin-based filopodia and lamellipodia in early stage, 

spreading Caco-2 cells. Myo10 localizes to the tips of filopodia and at the edge of 

lamellipodia (Berg et al., 2000), and Myo10 is needed for formation of filopodia. Thus, it is 

possible that Myo10 is involved in filopodial and lamellipodial processes, such as cell 

spreading and initial cell-cell contact formation, at early stages in Caco-2 cells. In addition, 

microvilli begin to develop at early stages in Caco-2 cells, so it was also possible is that high 

Myo10 expression correlated with a role in microvillar formation. Conversely, lower levels 

of Myo10 are expressed in mature, polarized Caco-2 cells when apical microvilli are the 

predominant actin-based structure, as evidenced by increased villin expression. However, 

low expression levels do not rule out a role for Myo10 in mature, polarized epithelial cells as 

Myo10 is a ubiquitous but generally low abundance protein (Berg et al., 2000). Thus, Myo10 

expression data presented here suggests a functional role for Myo10 in early stages of 

polarized epithelial cell development. 
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Myo10 Labels the Basolateral Domain in Polarized Caco-2 Cells 

In mature Caco-2 cells, the majority of anti-Myo10 (SDI) immunostaining was 

basolateral and cytoplasmic, and the staining pattern was strongly punctate rather than 

diffuse. This localization of endogenous Myo10 is likely specific, as staining with the non-

immune antibody showed a significantly weaker, more diffuse signal. Also, similar staining 

patterns were observed using two Myo10 antibodies, SDI and Sigma. Furthermore, GFP-

Myo10 also shows some punctate localization in MDCK cells (Figures 3.1 and 3.S1).  

Our studies indicate endogenous Myo10 is not enriched in apical microvilli, yet we 

cannot rule out trace amounts of Myo10 in microvilli that are below our level of detection. 

Consistent with these results, biochemical fractionation studies of polarized epithelial tissue 

show that Myo10 fractionated in the basolateral fraction of kidney lysates (Yonezawa et al., 

2003). In addition, McConnell et al. failed to detect Myo10 in the brush border fraction from 

mouse small intestine, although get did detect 14 other myosins (McConnell et al., 2011). 

Friedman lab has also reported that GFP-Myo10 does not localize to stereocilia in cultured 

hair cells (Kitajiri et al., 2010). 

Thus far, the identity of the Myo10-labelled cytoplasmic puncta is uncertain. One 

possibility is that Myo10 is present on cytoplasmic vesicles. While Myo10 has not been 

implicated in trafficking roles, other unconventional myosins, such as Myo6, Myo5B and 

Myo5C, have known functional roles in endocytosis, membrane trafficking and exocytosis 

(Tuxworth and Titus, 2000). Alternatively, one could hypothesize that inactive Myo10 

localizes to a vesicular compartment until needed by the cell. To determine whether Myo10 
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indeed localizes to cytoplasmic vesicles, future experiments could include immunostaining 

for vesicular compartment markers and assessing for colocalization with Myo10. However, 

it is formally possible that the cytoplasmic puncta are an artifact of immunostaining or 

fixation. To address this issue, Caco-2 cells transiently transfected with fluorescently-tagged 

Myo10  or stable GFP-Myo10 MDCK cells can be imaged using live-cell spinning disc 

microscopy. Although further experiments are needed to definitively characterize Myo10-

labelled cytoplasmic puncta, the results presented here indicate that Myo10 is not enriched 

in apical microvilli.  

 

Myo10 Is Not Needed for Formation of Apical Microvilli 

 Since microvilli have been theorized to develop from filopodia and Myo10 is 

necessary for filopodial formation, we tested whether knockdown of Myo10 inhibits the 

formation of microvilli. Our data thus far shows that Myo10 knockdown does not affect the 

number of apical microvilli as assayed by scanning electron microscopy. Thus, our results 

support the view that Myo10 is not needed for the formation of microvilli. Instead, these 

results suggest that microvilli and filopodia are distinct structures with different 

mechanisms of formation. However, it is formally possible that the amount of Myo10 in 

microvilli is below our threshold level of detection, in which case, a knockout mouse is 

needed to obtain conclusive results. 

These studies highlight a fundamental question: what is the difference between 

filopodia and microvilli? After all, filopodia and microvilli are both actin-based structures, 

and oftentimes the nomenclature is used interchangeably; for example, surface protrusions 
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on cells in suspension, i.e. leukocytes, have been referred to as either microvilli or filopodia. 

Yet, there are clear differences between filopodia found on the dorsal surface of non-

polarized cells and apical microvilli in polarized epithelial cells. Filopodia are dynamic, and 

among filopodia, the length and number of actin filaments within the core actin bundle can 

vary considerably. In contrast, polarized epithelial cells have microvilli – fundamentally 

apical structures with a core of approximately 20 actin filaments (Mooseker, 1985), and 

microvilli maintain a constant height of 1-2 μm. The rate of retrograde flow is slower in 

microvilli (~7 nm/min) than in filopodia (10-100 nm/sec) (Kerber et al., 2009; Nambiar et al., 

2010). Both filopodia and microvilli are composed of actin bundles, but interestingly, 

different proteins cross-link the actin filaments. Fascin is a major actin crosslinker in most 

filopodia, whereas fimbrin and villin bundle actin in intestinal microvilli. Although filopodia 

and microvilli are similar actin-based structures, our investigations with Myo10 suggest that 

their mechanisms of formation may differ.  

 

Myo10 May Be Needed for Proper Cell Morphology 

 Preliminary cell morphology analysis of shows that Myo10 knockdown cells have 

increased cell area and decreased cell height compared with control cells. Our observations 

are similar to the defect reported for inhibition of phosphatidylinositol (3,4,5)-triphosphate 

(PIP3) production in MDCK cells (Gassama-Diagne et al., 2006). Phospholipids are 

segregated in polarized epithelial cells such that PIP3 is restricted to the basolateral domain 

(Martin-Belmonte et al., 2007). Since Myo10 binds PIP3 via its PH domain region, it is 

plausible for Myo10 to affect cell morphology through its interaction with basolateral PIP3. 
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The PH domains of Myo10 have been recently shown to target to the basolateral domain in 

polarized epithelial cells (Lu et al., 2011). Perhaps Myo10 recruits binding partners to the 

basolateral membrane via targeting by PIP3. 

 Interestingly, Myo10 knockdown results in an increase in cell area in non-polarized 

cells (Bohil et al., 2006). In non-polarized cells, it has been postulated that the loss of 

filopodia increases the amount of available cell membrane (previously used to make 

filopodia), which results in a larger cell area. Although our results suggest Myo10 does not 

affect the formation of microvilli, which would provide large amount of available cell 

membrane, Myo10 may be important for other actin-based protrusive structures in 

polarized epithelial cells. Notably, in polarized epithelial cells, basolateral filopodia and 

sheet-like lateral membrane protrusions have been observed (Georgiou and Baum, 2010). 

In future studies, it would be important to determine whether Myo10 functions in 

basolateral filopodia or lateral protrusions and to correlate this with the defect in cell 

morphology. 

Alternatively, it is possible the observed changes in cell morphology results from 

Myo10 knockdown cells developing at a slower rate. Myo10 is necessary for proper spindle 

orientation (Weber et al., 2004), which in turn, will affects the process of cell division. 

Normally, as polarized epithelial cells grow increasingly taller and more compact as cells 

divide and form monolayers. Thus, the shorter and wider cell phenotype could result from 

Myo10 knockdown cells observed at an earlier stage of maturation. In order to address this 

concern, we plated Caco-2 cells at confluent densities. Other controls could include 

immunoblotting for polarized epithelial differentiation markers such as sucrose-isomaltase 
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or dipeptidyl peptidase IV (DPP-IV). Also, epithelial monolayer could be cultured for longer 

time periods to ensure that cell height of the monolayer has fully stabilized.  

 

 Myo10, a motor protein critical for the formation of filopodia, is highly expressed in 

epithelial tissues. Yet, the role of Myo10 in polarized epithelia is relatively unknown. Here, 

we present initial characterization of Myo10 expression in Caco-2 cells, and we test the 

hypothesis that Myo10 is needed for microvillar formation. Notably, Myo10 is expressed at 

high levels early in Caco-2 development. Localization studies indicate Myo10 is not enriched 

in microvilli, which is consistent with a recent proteomic analysis that failed to detect 

Myo10 in the apical domain of intestinal cells (McConnell et al., 2011); instead, Myo10 is 

found in the basolaterally. Moreover, in my experiments, Myo10 knockdown does not 

affect the formation of microvilli. Interestingly, Myo10 may have a role in cell morphology 

as Myo10 knockdown led to shorter and wider cells in both Caco-2 and MDCK cultures. Our 

studies raise the issue of how filopodia and microvilli differ. Although filopodia and 

microvilli are both actin-based structures, our studies suggest that formation of filopodia 

and microvilli are likely regulated by different mechanisms. Thus, we consider microvilli as a 

fundamentally apical structure.  
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Figure A.2 anti-Myo10 antibody 117

Caco-2 cells. Immunoblotting in Caco

approximately 250 kD. 117 antibody

particular, there is an extra band at 75 kD, the intensity of which is significantly stronger than that of 

full-length Myo10.  
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Figure A.3 Ezrin co-immunoprecipitates with Myo10, but only the 75 kD band 

immunoprecipitates with Ezrin. 

Myo10 and the 75 kD band are immunoprecipitated and

immunoprecipitates with 117 but not with non

the 75 kD band, but not full-length Myo10, 

Myo10 117 cross-reacts with ezrin

spin); Sup 2 = supernatant 2 (unbound to beads); B = beads; L = lysate; RbNI = rabbit non

antibody. 
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Figure A.4 Ezrin is the 75kD band detected by the Myo10 antibody 117. (A) Coomassie stain of 

proteins immunoprecipitated with Myo10 antibody 117. The ~75 kD band was sent for mass 

spectrometry and proteomics analysis. (B) Results from the proteomics analysis identifi

(accession ID: Q6NUR7_HUMAN) and Radixin (accession ID: AAH47109). “Peptide count” refers to 

the number of peptides that match peptides from theoretical digest.
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Ezrin is the 75kD band detected by the Myo10 antibody 117. (A) Coomassie stain of 

proteins immunoprecipitated with Myo10 antibody 117. The ~75 kD band was sent for mass 

spectrometry and proteomics analysis. (B) Results from the proteomics analysis identifi

(accession ID: Q6NUR7_HUMAN) and Radixin (accession ID: AAH47109). “Peptide count” refers to 

the number of peptides that match peptides from theoretical digest. 

 

Ezrin is the 75kD band detected by the Myo10 antibody 117. (A) Coomassie stain of 

proteins immunoprecipitated with Myo10 antibody 117. The ~75 kD band was sent for mass 

spectrometry and proteomics analysis. (B) Results from the proteomics analysis identifies Ezrin 

(accession ID: Q6NUR7_HUMAN) and Radixin (accession ID: AAH47109). “Peptide count” refers to 
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Figure A.5 Immunostaining shows little or no endogenous Myo10 is detected in microvilli of Caco-2 

cell monolayers. (A) SDI anti-Myo10 (green) is not enriched in microvilli, but rather, endogenous 

Myo10 localizes to cytoplasmic puncta. F-actin is labeled in red. Images are confocal xz-sections 

from 11-day Caco-2 monolayers. (B) Non-immune control. Scale bar = 10 μm. 
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Figure A.6 Myo10 is knocked down by shRNA lentivirus methods (with filtration of viral 

supernatant). Immunoblot shows mature Caco-2 cells (2 weeks) infected with Myo10 shRNA are 

knocked down for Myo10 when compared with Caco-2 cells infected with control NS shRNA 

lentivirus. Actin was used as a loading control. 
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Figure A.7 Myo10 knockdown by lentivirus in Caco-2 cells shows (A) increased cell area and (B) 

reduced cell height. Increased cell area and reduced cell height in shRNA transfected Myo10 

knockdown cells were consistent with lentivirus knockdown results. Caco-2 cells were knocked 

down for Myo10 using shRNA nucleofection. Cells were plated at confluent densities and allowed to 

grow for one week. Cell area was measured by ZO-1 staining using immunofluorescence. pLL 5.0 = 

control lentivirus vector. (n=2) 
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