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Host genetic variation has a major impact on infectious disease susceptibility. The study of pathogen resis-
tance genes, largely aided by mouse models, has significantly advanced our understanding of infectious
disease pathogenesis. The Collaborative Cross (CC), a newly developed multi-parental mouse genetic refer-
ence population, serves as a tractable model system to study how pathogens interact with genetically
diverse populations. In this review, we summarize progress utilizing the CC as a platform to develop
improved models of pathogen-induced disease and to map polymorphic host response loci associated
with variation in susceptibility to pathogens.
Introduction
Pathogens often cause variable disease outcomes across in-
fected individuals, ranging from asymptomatic infection to se-
vere or fatal disease. Multiple factors influence an individual’s 
susceptibility to a pathogen, including variation in pathogen 
dose or virulence as well as host age, prior immune experience, 
microbiome/coinfection, and genetics. A role for host genetics in 
pathogen susceptibility is supported both by twin studies (Kall-
mann and Reisner, 1943) and by evidence of pathogen-driven 
selective pressure on the evolution of the human immune system 
(Cagliani and Sironi, 2013). Human genetic studies have demon-

strated a role for host genetics in pathogen susceptibility and 
identified polymorphic genetic loci and genes associated with 
variation in susceptibility to specific pathogens (e.g., HIV)
(McLaren et al., 2015), classes of pathogens (e.g., mycobacteria)

(Bustamante et al., 2014), and more generalized primary immu-

nodeficiencies (PIDs) that result in severe immune defects 
(Chapman and Hill, 2012). This information has enhanced our un-
derstanding of how host genetic variation affects pathogen sus-
ceptibility and how specific genes regulate human immunity and 
host-pathogen interactions.

While advances in human genetic analysis have led to the 
identification of several host genes that regulate pathogen sus-
ceptibility in humans (Newport and Finan, 2011), much of our un-
derstanding of how specific genes affect infectious disease 
pathogenesis in mammals has come from studies using mouse 
models (Masopust et al., 2017). This is in large part due to the ex-
istence of inbred mouse strains as well as the vast amount of 
immunological and molecular genetic tools available for the 
mouse, including the early generation of the mouse reference 
genome. Inbred strains, in which each mouse is essentially 
genetically identical, allow control of host genetics as well as 
other factors that can confound human studies, such as path-
ogen dose, nutrition, and prior immune exposure. Additionally, 
targeted knockout technology has been used in the mouse 
genome for almost 30 years (Bouabe and Okkenhaug, 2013). 
While advances in gene editing techniques (e.g., CRISPR) have 
recently extended these approaches to other species, geneti-
cally modified mice have been an unparalleled resource for
studying the role of specific genes in the response to a variety

of pathogens (Masopust et al., 2017). Furthermore, the use of

classical genetic crossing approaches (e.g., intercrosses), as

well as reproducible mouse genetic reference populations

(GRPs), has facilitated the discovery of key regulators of host im-

munity and pathogen susceptibility such as the innate immune

receptor Tlr4, oligoadenylate-synthetase Oas1b, and divalent

metal transporter Nramp1 (Perelygin et al., 2002; Qureshi et al.,

1999; Vidal et al., 1993). The recent development of multi-

parental GRPs, such as the Collaborative Cross (CC), promises

to further extend geneticmapping capabilities, while also leading

to the development of mouse models that more accurately

reproduce the genetic diversity and phenotypic range seen in

human populations (Churchill et al., 2004). This review will sum-

marize recent advances in the use of mouse GRPs, with an

emphasis on the use of the CC for studying infectious diseases

and immunity.

Human Genetic Variation and Infectious Disease
The impact of host genetics on pathogen susceptibility can be

illustrated by genes exhibiting large effects such as the chemo-

kine receptor CCR5 and fucosyltransferase 2 (FUT2), for which

specific variants have a major impact on resistance to viral infec-

tion (HIV and norovirus, respectively) (Quillent et al., 1998;

Thorven et al., 2005). Likewise, deleterious mutations in immune

genes can result in PIDs, which cause enhanced susceptibility to

specific or entire classes of pathogens (Carneiro-Sampaio and

Coutinho, 2007). To date, over 350 genetically driven PIDs

have been identified in humans (Picard et al., 2018). The identifi-

cation of these monogenic resistance and susceptibility genes

has enhanced our understanding of human immunity and host-

pathogen interactions while contributing to the development of

antiviral therapies, such as HIV entry inhibitors, as well as gene

therapy and immune replacement therapies (Collins and

Thrasher, 2015; Lenardo et al., 2016).

Though genes of large effect can impact human health, inher-

itance patterns suggest that susceptibility to infectious disease

is largely polygenic (driven by tens to thousands of variants of

smaller effect) (Hill, 2012). This is supported by results from
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genome-wide association studies (GWAS) designed to map loci 

associated with variation in pathogen susceptibility and vaccine 
response. For example, GWAS of HIV viral load have shown that 
mutations in the HIV co-receptor CCR5 and variants in human 
leukocyte antigen (HLA) explain approximately 15% of the total 
variance, with an additional 5% of heritable variance explained 
by additive effects of other genes (McLaren et al., 2015). GWAS 
on malaria susceptibility have identified variants in multi-ple 
genes including the calcium ATPase ATP2B4, the glucose 
phosphate dehydrogenase GP6D, and HLAs, as well as confirm-

ing previously identified variants in hemoglobin genes (sickle cell 
and thalassemia) (Hedrick, 2011; Timmann et al., 2012). Multiple 
loci have been associated with clearance of hepatitis C virus, 
including the cytokine IL-28b and HLA genes (Duggal et al., 
2013), and over 20 loci have been associated with leprosy sus-
ceptibility (Wang et al., 2016).
While GWAS have been applied to and enhanced our under-

standing of infectious diseases, these studies explain only a 
frac-tion of the heritable variation in pathogen susceptibility (Hill, 
2012). This is partly attributable to factors such as small cohort 
sizes, ethnic striations, and lack of replicates, which limit detec-
tion and interpretation of results (Du et al., 2012). Rare genetic 
variants are unlikely to be detected by GWAS, due to both lack 
of power and lack of tagging on conventional genotyping arrays 
(Auer and Lettre, 2015). A specific concern for GWAS in infec-
tious diseases is that studies can be confounded by pathogen 
genetics, pathogen dose, and other environmental factors. 
Furthermore, validation and mechanistic analysis can be difficult 
in humans due to factors such as lack of replicates and inability 
to routinely access many affected tissue types. For these rea-
sons, the use of appropriate animal models has been a critical 
resource for identifying and studying pathogen susceptibil-ity 
genes.

Mouse Models of Disease
While a variety of model genetic systems have been used to 
analyze host-pathogen interactions (e.g., Caenorhabditis ele-
gans, Danio rerio, and Drosophila melanogaster) (Allen and 
Neely, 2010; Dionne and Schneider, 2008; Marsh and May, 
2012), the laboratory mouse (Mus musculus) provides the most 
robust mammalian system for dissecting genetic regulation of 
immune responses in human-relevant diseases. Mice are 
relatively inexpensive, can be easily controlled in diet and envi-
ronment, and reproduce quickly. A wide variety of well-charac-

terized mouse immunological reagents are available, as well as 
genetic tools such as reproducible inbred strains, gene-specific 
knockouts, genome-wide mutagenesis strategies (e.g., N-ethyl-
N-nitrosourea [ENU] and CRISPR/Cas9), and transgenic 
technologies. These systems facilitate the identification and 
mechanistic characterization of specific host genes that affect 
disease pathogenesis and/or immunity (Pelletier et al., 2015; 
Takaki et al., 2017).
Though over 450 commercially available inbred mouse strains 

and outbred stocks are available (Beck et al., 2000), the majority 
of research in infectious disease and immunology is conducted 
in a limited set of strains. One of the major reasons for the focus 
on specific strains is the need to control for genetic background 
when analyzing gene-specific knockouts or performing large-
scale mutagenesis screens. Large-scale initiatives such as the
International Mouse Phenotyping Consortium (IMPC) depend

upon the ability to control background strain to analyze the

impact of specific gene deletions or mutations on a wide range

of developmental and immune phenotypes (Muñoz-Fuentes

et al., 2018), and have thus generated thesemutants on common

backgrounds using largely identical procedures. C57BL/6J is the

most commonly used inbred mouse strain; it is the source of the

mouse reference genome and the genetic background for

the majority of knockout mice. Other strains, such as the

BALB/c substrains, also have a rich history of use in immunology

and infectious disease research (Watanabe et al., 2004). While

the ongoing use of such strains is driven by the need to compare

results across studies, it is important to note that every inbred

strain has a unique set of genetic features, and thus no one strain

is representative of all mice, let alone of a genetically complex

population such as humans.

Although genetically modified mice have been an essential

resource for gene discovery and mechanistic analysis, there

has been a growing acknowledgment in the field that knockout

approaches have limitations. Approximately 15% of genes

cannot be knocked out because they are developmentally

essential (NIH, 2015). Similarly, other knockouts have no observ-

able phenotype, due to genetic redundancy and/or lack of

robustness in the phenotyping pipeline (Barbaric et al., 2007).

In other cases, knockouts have disparate phenotypes on

different genetic backgrounds due to gene-gene interactions

(Doetschman, 2009). Furthermore, gene knockouts result in

null alleles (complete loss of gene function), whereas naturally

occurring genetic variants are most likely to be hypomorphic or

hypermorphic alleles (partial loss or gain of gene function; alter-

ations in timing and magnitude of expression). Lastly, while

single-gene approaches are straightforward, they are isolated

systems that do not model the simultaneous contribution of var-

iants in multiple pathways, as would most likely be observed in a

natural system. Thus, to better model and understand the role of

genes in complex phenotypes such as immunity and infectious

disease, it is pertinent to consider complex genetic interactions

across diverse genetic backgrounds.

Genetic Reference Populations
In contrast to the approaches discussed above, researchers have

also studied the role of natural genetic variants by leveraging dif-

ferential phenotypesacross inbred strains, using classical genetic

breeding strategies to identify pathogen susceptibility genes such

asOas1b, immune cell activating receptor Ly49H, and large inter-

feron-inducedGTPaseMx1 (Casanova et al., 2002). In contrast to

mapping crosses between stocks (e.g., F2 crosses), where each

mouse is unique and therefore ephemeral, GRPs serve as repro-

duciblemodels to study the role of genetic diversity.GRPsconsist

of anywhere from a few to hundreds of inbred lines derived and

split from a common ancestral population, and each line has a

fixed and known genome that can be replicated indefinitely. The

existence of reproducible yet genetically diverse individualmouse

strains facilitates study designs that involve case versus control,

genotype by environment interactions (GxE), and phenotypic

penetrance or threshold traits. These populations further facilitate

the integration of phenotypic, genotypic, and molecular data for

systems-level data analysiswhile also allowing retrospective inte-

gration of new layers of data.



The first recombinant inbred panel, the CXB (BALB/cJ 3 
C57BL/6J), was created by Donald Bailey to facilitate mapping 
of the MHC locus (Bailey, 1971). Subsequent biparental recom-

binant inbred panels include the AXB/BXA (A/J 3 C57BL/6J, 
C57BL/6J 3 A/J), the BXH (C57BL/6J 3 C3H/HeJ), and the 
BXD (C57BL/6J 3 DBA/2J), which is the largest and most exten-
sively used of these panels (Peirce et al., 2004). Though originally 
developed to study monogenic traits, use of these panels has 
been extended to study genetically complex traits such as sus-
ceptibility to murine plasmodia (Hoffmann et al., 1984), murine 
leukemia virus (Panoutsakopoulou et al., 1998), group A strepto-
coccus (Chella Krishnan et al., 2016), and influenza A virus (IAV)
(Nedelko et al., 2012). As results from these panels accumulated, 
there was a community-wide recognition that larger and more 
genetically diverse GRPs would improve the ability to genetically 
dissect more complex traits (Threadgill et al., 2002).

The Collaborative Cross
Based on results from the early GRPs as well as genetic mapping 
studies, the Complex Trait Consortium proposed to create a 
second-generation, multi-parent advanced intercross GRP to 
promote complex trait genetic mapping and systems genetics 
research (Threadgill et al., 2002). In contrast to single-gene ap-
proaches, systems genetics considers phenotypes in the 
context of global genetic variation as well as intermediate molec-

ular factors such as gene expression, protein abundance, and 
environmental interactions. The resource ultimately derived 
from this proposal was the CC, a large panel of recombinant 
inbred strains derived from eight genetically diverse founder 
strains. The CC was designed to facilitate systems genetics ap-
proaches with improved resolution and higher statistical power 
compared to traditional GRPs, to expand the pool of genetic 
variation segregating in the population, and to bridge the 
analysis of genetic and molecular networks across diverse 
phenotypes (Churchill et al., 2004).

Of the eight CC founder strains, five are classical laboratory 
strains chosen for their rich history of use in mouse genetics 
(C57BL/6J and 129S1/SvImJ) or their relevance as models of 
common diseases including cancer, type 1 diabetes, metabolic 
syndrome, and obesity (A/J, NOD/ShiLtJ, and NZO/HiLtJ). The 
other three CC founders are wild-derived inbred strains, which 
represent the three major subspecies of Mus musculus: 
casteneus (CAST/EiJ), musculus (PWK/PhJ), and domesticus 
(WSB/EiJ), and introduce much of the genetic diversity into the 
CC. These eight founder strains were interbred in a funnel 
breeding scheme to produce recombinant mice with genomic 
contributions from each founder, which were then bred to homo-

zygosity to produce recombinant inbred (RI) CC strains (Figure 1). 
Although the initial goal was to produce 1,000 CC strains, only 
around 100 CC strains survived the inbreeding process due to 
high rates of infertility and breeding issues, largely caused by 
genomic incompatibility introduced by the wild-derived strains. 
Extinction of CC strains during the inbreeding process inspired 
the creation of the Diversity Outbred (DO) panel, an outbred pop-
ulation derived from a set of incipient CC strains (Churchill et al., 
2012). The DO now serves as its own important genetic resource 
that has proven useful for high-resolution genetic mapping as 
well as exploration of phenotypic diversity (Chick et al., 2016; 
Gatti et al., 2014; Smallwood et al., 2014; Shorter et al., 2018).
While theDO has only been used in a limited number of infectious

disease studies (McHugh et al., 2013; Niazi et al., 2015), the DO

and CC should be viewed as complementary resources for

studying how genetic variation affects pathogen susceptibility

and immunity.

While classical mouse GRPs remain actively used, and in

some ways provide a more straightforward analytical path than

the CC due to reduced complexity, several aspects of the CC

make it more attractive for discovery-based research. The CC

captures approximately 90% of common genetic variants

described within laboratory mice, with up to eight distinct haplo-

types at any region of the genome (Roberts et al., 2007). Due to

higher genetic diversity with novel allele combinations and

epistatic interactions, the CC yields more phenotypic variation

and extreme phenotypes than classical GRPs. The selection of

founder strains and the breeding design, as well as higher levels

of recombination, result in lower levels of long-range disequilib-

rium and population structure than classical GRPs, allowing for

higher resolution quantitative trait locus (QTL) mapping (Iraqi

et al., 2012; Threadgill et al., 2002). Genetic variation is also

more uniformly distributed across the genome, removing several

genomic ‘‘blind spots’’ that interfere with mapping in classical

inbred strains and GRPs (Roberts et al., 2007).

Although the CC has only been available for a relatively short

period of time, it has been utilized across a number of disciplines,

including response to environmental toxins (Venkatratnam et al.,

2017), nutrition (Schoenrock et al., 2018), body composition

(Mathes et al., 2011), and immunity and pathogenesis (discussed

further here). Importantly, these studies have highlighted previ-

ously uncharacterized phenotypic diversity, including expansion

of the phenotypic range, disassociation of traits previously

thought to be connected, and identification of completely novel

phenotypes (Srivastava et al., 2017). The CC is an especially

useful resource for studying the role of host genetics in host-

pathogen interactions because it allows for control of many of

the factors described above that confound infectious disease

studies in humans. Over the past decade, a variety of studies uti-

lizing the CC, including non-fully inbred incipient CC lines

(commonly termed the pre-CC) and derived CC populations

(such as CC-F1s), have been used to probe the role of host ge-

netics in the response to infectious disease. Here we will discuss

the current work in this field, including studies focusing on

phenotypic characterization (e.g., model development and mo-

lecular signatures of disease response) and genetic mapping

of disease trait-associated QTL.

Phenotypic Characterization in the CC
There is an ongoing debate over the validity of mouse models in

recapitulating human disease (Seok et al., 2013; Takao and

Miyakawa, 2015). While the utility of the mouse is undeniable in

the infectious disease field, it is equally true that individual clas-

sical inbred strains do not fully recapitulate human disease and

most models recapitulate only a portion of the disease pheno-

types observed in humans. In an effort to improve model fidelity

to human disease, a number of researchers have turned to the

CC to develop new mouse models. Genetically diverse CC

strains show a range of responses to pathogens, from variation

in disease severity to completely novel disease phenotypes.

This phenotypic variability better mimics the diversity of disease



Figure 1. Representative CC Funnels
CC founders were bred in funnel breeding schemes to produce progeny with genetic contributions from each of the eight founders, at which point they were
inbred for generations until reaching near homozygosity. Many different funnels were set up, each to produce a unique CC RI line.
presentation across the human population, thus providing a

more comprehensive platform to develop newer, more represen-

tative mouse models.

Ebola Virus

Ebola virus (EBOV) causes severe, and often lethal, hemorrhagic

fever in humans. While classical inbred strains are susceptible to

mouse-adapted EBOV (MA-EBOV), they do not display many of

the characteristic symptoms observed in severe human cases

such as coagulopathy, hemorrhagic manifestations, and rash

(St Claire et al., 2017). Rasmussen et al. infected a panel of F1

crosses between CC strains (CC-F1s) following an initial assess-

ment in founder strains (Rasmussen et al., 2014). They observed

significant phenotypic variation following MA-EBOV infection,

from high resistance to complete lethality, and covering a spec-

trum of different pathologies similar to the range of clinical

disease observed in humans. Importantly, some strains pre-

sented with severe hemorrhagic disease and liver damage,

consistent with human EBOV disease. Follow-up studies with

representative susceptible and resistant strains found differen-

tial transcriptional responses, highlighting the central transcrip-

tional regulatory gene Tek, for which haplotypes across these
CC-F1s correlated with weight loss and mortality following

MA-EBOV infection.

West Nile Virus

West Nile virus (WNV), a neuroinvasive flavivirus, induces a

diverse spectrum of immune responses and clinical outcomes

in humans that classical mouse models do not fully recapitulate

(Graham et al., 2015). Graham et al. assessedWNV susceptibility

in a panel of CC-F1 crosses that were heterozygous for the H-2b

MHC haplotype, which allowed quantification of WNV-specific

T cells with the same MHC tetramer. WNV outcome ranged

from highly resistant to highly susceptible, including a novel

outcome group in which mice were outwardly asymptomatic

despite higher viral titers and immunopathology in the brain.

Graham et al. followed up on one unique CC-F1 ((CC032/

GeniUnc 3 CC013/GeniUnc)-F1), in which half of the mice

that survived infection displayed sustained weight loss and

persistent viral loads in the CNS. They found that these mice

exhibited a rapid early innate inflammatory response character-

ized by increased early expression of IFN-b and the interferon-

stimulated gene IFN1, as well as high early viral titers and the

ability to control, but not clear, viral replication in the CNS



(Graham et al., 2016). Additionally, (CC032/GeniUnc 3 CC013/
GeniUnc)-F1 mice had a unique immunoregulatory signature, 
with a high number of T regulatory cells in both infected and un-
infected animals and a distinctive post-infection gene expres-
sion profile that indicated reduced cytolytic ability.

The initial Graham et al. study (Graham et al., 2015) found that 
WNV response largely tracked with the haplotype of Oas1b, a  
known flavivirus resistance gene, although there was still consid-
erable disease variation within Oas1b haplotype groups. Green 
et al. continued to dissect the impact of Oas1b on the innate im-

mune transcriptional landscape following WNV infection (Green 
et al., 2017) by performing genome-wide micro-array analysis 
across multiple time points post-infection in seven CC-F1s car-
rying different combinations of functional (wild-derived) or non-
functional (classical inbred strain-derived) Oas1b haplotypes. 
Transcriptional correlation analysis of differentially expressed 
immune genes across CC-F1s yielded three gene clusters, and 
pathway analysis led to the construction of innate immune regu-
latory networks associated with WNV infection between Oas1b 
haplotype groups.
Mycobacterium tuberculosis
Mycobacterium tuberculosis (Mtb) infection varies broadly in 
disease presentation and pathology in humans. Likewise, the ef-
ficacy of the standard TB vaccine, the live-attenuated BCG, is 
variable across individuals (Mangtani et al., 2014). Smith et al. 
studied Mtb pathogenesis and BCG vaccine efficacy in the CC 
founders and three RI strains that were selected based on a pilot 
study assessing Mtb susceptibility (Smith et al., 2016). The au-
thors observed a wide range of susceptibility to Mtb and disso-
ciation of previously associated phenotypes such as bacterial 
burden, immune cell recruitment, and tissue damage. When 
the BCG vaccine was administered prior to Mtb challenge, vac-
cine efficacy was low overall and not correlated with susceptibil-
ity to primary infection. While BCG vaccination reduced Mtb 
burden in four strains, there was an increased bacterial burden 
in NZO/HlLtJ mice, a model for obesity and type 2 diabetes. In 
addition to highlighting the importance of host genetics on Mtb 
susceptibility and BCG-induced vaccine responses, the study 
illustrates the potential impact of comorbidities, such as type 
2 diabetes in NZO/HlLtJ mice, on vaccine responses in geneti-
cally diverse populations.
Influenza A Virus and SARS-Coronavirus
Maurizio et al. analyzed the heritability of IAV-induced disease 
using CC-F1s as well as F1 crosses between founder strains 
(Maurizio et al., 2018). These studies determined that IAV-
induced weight loss was 57% heritable at day 4 post-infection, 
and that this heritability was mostly composed of additive effects 
largely attributable to the haplotype of Mx1, a polymorphic large-
effect anti-IAV gene. The genetic dominance of the protective 
Mx1 haplotype varied depending on subspecies origin, with 
the M. musculus musculus allele acting dominantly and the 
CAST/EiJ allele, identified by Ferris et al. (2013), acting addi-
tively. Consistent with Ferris et al. (discussed below), these 
authors determined that when controlling for Mx1, non-Mx1 her-
itable effects still accounted for 34% of the phenotypic variation, 
and this effect was consistent across founder diallel, pre-CC, 
and CC-F1 populations.

Human studies have identified blood transcriptomic and pro-
teomic signatures associated with IAV infection that could be
used to predict patient outcome. Elbahesh and Schughart

observed that gene signatures from IAV-infected humans were

reproduced in the peripheral blood of CC founders (Elbahesh

and Schughart, 2016). In a follow-up study, Kollmus et al. char-

acterized the transcriptional response to IAV in the peripheral

blood of eleven CC strains (Kollmus et al., 2018). Though both

human and mouse datasets were globally heterogeneous, the

CC dataset showed that genetic background strongly influenced

gene expression, highlighting the importance of genetics in

driving the immune response. For the most differentially ex-

pressed genes, the transcriptional responses in mice and hu-

mans were largely similar, demonstrating the utility of the CC in

recapitulating IAV-induced host response in humans.

Xiong et al. characterized transcriptomic variation in response

to severe acute respiratory syndrome coronavirus (SARS-CoV)

and IAV across the eight CC founder strains (Xiong et al.,

2014). Differential gene expression analysis at days 2 and 4

post SARS-CoV or IAV infection showed significant differences

driven by mouse strain, infection status, and time point. Genes

with strain-specific differential expression patterns were largely

enriched for immune pathways, while more generic differential

expression patterns were enriched for basic biological functions.

The study also noted the presence of strain-specific isoforms

and novel transcripts not present in the C57BL/6J reference

annotation.

Pseudomonas aeruginosa

Pseudomonas aeruginosa is an opportunistic bacterial pathogen

with variable clinical outcomes across susceptible individuals.

Human studies, including twin studies as well as association

studies, have identified multiple genes associated with suscep-

tibility to P. aeruginosa. Lorè et al. studiedP. aeruginosa infection

in 17 pre-CC lines, focusing on survival time and early body

weight change, and observed a large amount of variation in these

phenotypes (Lorè et al., 2015).

Genetic Mapping of Disease Response in the CC
As described above, the CC was initially envisioned as a genetic

mapping population with approximately 1,000 strains (Threadgill

et al., 2002). While the number of available CC RI strains is closer

to 100, this population has proven to be sufficient for successful

QTL mapping. Mapping studies have identified QTLs spanning

the genome that are driven by variants from all eight CC founders

and show very little overlap across pathogens (Figure 2; Table 1;

discussed below). Overall, infectious disease phenotypes map-

ped in the CC show a broad range in overall heritability (the

proportion of population-wide variation explained by differences

between strains) as well as effect sizes (the proportion of popu-

lation-wide variation explained by specific loci). Across the

studies described in Table 1, reported estimates for heritability

range from 12% to over 80%, while reported estimates for effect

size range from 5% (for a QTL of small effect influencing SARS-

CoV viral titer) to over 40% (for a large effect QTL containing the

gene Mx1 on influenza-induced weight loss). Authors have nar-

rowed many of these QTLs to lists of candidate genes, and a

small number of these candidates have been subsequently

validated.

To date, most publications have highlighted QTLs mapped by

phenotyping large panels of CC strains; however, this is not the

only successful strategy. As mentioned above, some CC strains



Figure 2. Summary of Infectious Disease and Immunity QTLs Mapped in the CC
QTLs are shown mapped onto MGSCv37/mm9; genome positions for QTLs that were mapped on GSCv38/mm10 were converted to corresponding MGSCv37/
mm9 coordinates.



Table 1. Summary of Infectious Disease and Immunity QTL Mapped in the CC

Chr Start (Mb) End (Mb) Pathogen Phenotype Name Sig Population Reference

1 6.3 12.7 A. fumigatus survival day Asprl7 * pre-CC Durrant et al., 2011

3 109.6 123.6 A. fumigatus survival day Asprl6 * pre-CC Durrant et al., 2011

8 44.2 55.5 A. fumigatus survival day Asprl1 *** pre-CC Durrant et al., 2011

10 12 23 A. fumigatus survival day Asprl4 ** pre-CC Durrant et al., 2011

10 94.3 99 A. fumigatus survival day Asprl2 *** pre-CC Durrant et al., 2011

15 31 37.5 A. fumigatus survival day Asprl3 *** pre-CC Durrant et al., 2011

18 5.2 13.6 A. fumigatus survival day Asprl5 * pre-CC Durrant et al., 2011

4 54.3 58.3 K. pneuomonia day 2 survival Kprl1 *** pre-CC Vered et al., 2014

8 29.7 33.6 K. pneuomonia day 8 survival Kprl2 *** pre-CC Vered et al., 2014

18 19.9 36.4 K. pneuomonia day 8 survival Kprl3 * pre-CC Vered et al., 2014

1 74.1 81.8 S. Typhimurium spleen bacterial load StSl3b * CC Zhang et al., 2018

1 77.5 95.6 S. Typhimurium spleen bacterial load StSl3a * CC Zhang et al., 2018

6 77.1 90 S. Typhimurium liver bacterial load StSl4 * CC Zhang et al., 2018

8 11.3 17 S. Typhimurium spleen bacterial load StSl1 *** CC Zhang et al., 2018

10 46.4 54 S. Typhimurium spleen bacterial load StSl2 ** CC Zhang et al., 2018

17 80.5 91.1 S. Typhimurium liver bacterial load StSl5 * CC Zhang et al., 2018

1 21.7 29 influenza A virus pulmonary edema (conditioned

on Mx1)

HrI3 *** pre-CC Ferris et al., 2013

7 89.1 96.7 influenza A virus weight loss HrI2 *** pre-CC Ferris et al., 2013

15 77.4 86.6 influenza A virus airway neutrophils HrI4 *** pre-CC Ferris et al., 2013

16 97.5 98.2 influenza A virus weight loss, viral titer, lung

pathology score, clinical score,

inflammation, airway damage,

and expression modules

HrI1 *** pre-CC Ferris et al., 2013

3 18.3 26.7 SARS-coronavirus vascular cuffing HrS1 *** pre-CC Gralinski et al., 2015

13 52.8 54.9 SARS-coronavirus vascular cuffing (conditioned

on HrS1)

HrS4 *** pre-CC Gralinski et al., 2015

15 72.1 75.8 SARS-coronavirus eosinophilia HrS3 ** pre-CC Gralinski et al., 2015

16 31.6 36.7 SARS-coronavirus viral titer HrS2 ** pre-CC Gralinski et al., 2015

7 55.20 117.20 SARS-coronavirus viral titer HrS7 *** CC-F2 Gralinski et al., 2015

9 116.50 124.60 SARS-coronavirus day 3 weight loss HrS6 *** CC-F2 Gralinski et al., 2015

12 81.60 108.50 SARS-coronavirus viral titer HrS8 *** CC-F2 Gralinski et al., 2015

15 00 64.40 SARS-coronavirus hemorrhage HrS9 *** CC-F2 Gralinski et al., 2015

18 27.10 58.70 SARS-coronavirus day 3 and 4 weight loss, viral

titer, and hemorrhage

HrS5 *** CC-F2 Gralinski et al., 2015

3 129 130 none transitional B cells *** pre-CC Phillippi et al., 2014

4 148.8 151.1 none H57+ (total T cells) ** pre-CC Phillippi et al., 2014

6 23.2 23.8 none B cell to T cell ratio, H57+ (total

T cells) CD19+ (total B cells)

*** pre-CC Phillippi et al., 2014

6 88.1 92.7 none B cell to T cell ratio *** pre-CC Phillippi et al., 2014

7 136.5 138.6 none CD11c mean fluorescence

intensity (MFI)

*** pre-CC Phillippi et al., 2014

7 141.1 142.2 none CD4+/CD8+ ratio, CD4+ T cells,

CD8+ T cells, and CD11c MFI

*** pre-CC Phillippi et al., 2014

8 3.1 16.8 none CD23 MFI *** pre-CC Phillippi et al., 2014

X 1000 1060 none CXCR3+ T regulatory cells HI2 *** CC-F1 Graham et al., 2017

X 1400 1450 none ICOS+ T regulatory cells HI3 *** CC-F1 Graham et al., 2017

X 1600 1710 none CD73+ T regulatory cells HI1 *** CC-F1 Graham et al., 2017

2 26 31.1 none GP23 ** CC Kri�sti�c et al., 2018

4 51.7 63.3 none GP15 ** CC Kri�sti�c et al., 2018

7 149.6 151.4 none GP25 *** CC Kri�sti�c et al., 2018

(Continued on next page)



Table 1. Continued

Chr Start (Mb) End (Mb) Pathogen Phenotype Name Sig Population Reference

10 93 94.1 none GB17b *** CC Kri�sti�c et al., 2018

12 114.5 117.9 none GP1, GP14, GP16, GP17a,

and GP20

*** CC Kri�sti�c et al., 2018

15 77.9 82.8 none GP6 and GP10 *** CC Kri�sti�c et al., 2018

16 15 20.3 none GP17b *** CC Kri�sti�c et al., 2018

Significance threshold levels: *<0.1, **0.1, ***0.05. Genome coordinates marked with 0 refer to genome assembly GSCv38/mm10; otherwise, coordi-

nates refer to MGSCv37/mm9.
present with unique disease phenotypes, which may be driven

by complex genetic regulatory networks involving multiple loci

with epistatic interactions. When one or a few CC strains

possess the combination of genetic variants needed to manifest

the novel phenotype, population-wide studies may not possess

sufficient mapping power. In these cases, researchers have suc-

cessfully used more traditional F2 or backcross approaches to

identify causal genes (Rogala et al., 2014). In this section, we

will highlight results of both population-wide and intercross-

mediated CC studies of relevance to infectious disease

research.

Aspergillus fumigatus

The first host-pathogen study in the CC examined susceptibility

to the fungus Aspergillus fumigatus, which is pathogenic in

immunocompromised individuals. Durrant et al. found that sur-

vival time varied between 4 days and over 28 days post-infection

in 66 pre-CC lines (Durrant et al., 2011). The authors mapped

multiple genome-wide significant QTLs for survival time that

were largely driven by wild-derived founder haplotypes. Candi-

date genes were identified using merge analysis, a procedure

that compares the pattern of sequence variants (e.g., SNPs or

indels) to the pattern of haplotype effects (impact of each

founder strain haplotype on the phenotype) observed under

the QTL (Yalcin et al., 2005). The application of merge analysis

to the CC enables more effective gene refinement compared

to studies in classic biparental GRPs, where the presence of

only two haplotypes means that every genetic variant in a locus

is a putative candidate causal variant. Merge analysis supported

the candidate gene Irf2, an interferon regulatory transcriptional

factor gene, under the most significant QTL; however, for the re-

maining QTLs there was no strong concordance between a priori

and merge-supported candidates.

Klebsiella pneumoniae

Vered et al. challenged 73 pre-CC lines with K. pneuomonia,

which causes severe pneumonia and sepsis in immunocompro-

mised individuals (Vered et al., 2014). The pre-CCmice displayed

broad and heritable variation in survival time exceeding that

observed in classic inbred strains, as well as dissociation of sur-

vival time from temperature or body weight changes. The study

identified one QTL at day 2 post-infection and two at day 8

post-infection. The authors used merge analysis to refine candi-

date genes; however, they found that the best merge candidates

showed simpler allele effect patterns than the more complex

haplotype effects observed under the QTL. The strongest candi-

date genes identified were Ikbkap, a transcriptional elongation

factor complex component, and Actl7a, Actl7b, and Ctnnal1,

which are involved in cell adhesion and cytoskeletal structure.
Influenza A Virus

Bottomly et al. analyzed a set of 99 pre-CC lines infected with

mouse-adapted influenza A/PR/8/34 and assessed weight

loss, clinical score, and mortality through 4 days post-infection

(Bottomly et al., 2012). A subset of pre-CC lines, classified as

high and low responders based on a composite metric of weight

loss and histopathological scoring, were selected for transcrip-

tomic profiling. Over 2,000 transcripts were differentially

expressed between susceptible and resistant classes, andmap-

ping identified 21 significant expression QTLs (eQTLs). Twelve of

the eQTLs were validated in CC founder strains, and structural

equation modeling was applied to these candidates to infer

reactive expression networks underlying the transcriptional

differences.

In a companion study, Ferris et al. further characterized varia-

tion in response to influenza A/PR/8/34 in 155 pre-CC lines (Fer-

ris et al., 2013). While disease-associated phenotypes (weight

loss, viral titer, and inflammation) were largely correlated, sub-

sets of these pre-CCmice showed breakdowns in these relation-

ships, resulting in novel phenotypic combinations not observed

in classical mouse strains (e.g., high weight loss with minimal

inflammation). This study identified four significant QTLs,

including one strong QTL that explained approximately 42% of

IAV-induced weight loss, over the IAV resistance gene Mx1.

Importantly, while Mx1 is well studied, the authors identified a

novel allelic variant derived from CAST/EiJ that protects from

weight loss but less efficiently inhibits viral replication compared

to the functionalM. musculus musculus-derived allele carried by

NZO/HiLtJ and PWK/PhJ. Consistent with Ferris et al.’s finding

of a uniquely functional CAST/EiJ Mx1 variant, Leist et al. found

that CAST/EiJ mice have a unique response to an H3N2 strain of

IAV (Leist et al., 2016). While theMx1 locus had a dominating ef-

fect in the Ferris et al. study, large phenotypic variation occurred

within Mx1 classes, suggesting the presence of modifier alleles.

Three additional QTLs were mapped when controlling for Mx1

haplotype, corresponding to variation in weight loss, pulmonary

edema, and airway neutrophils. Notably, aside from the Mx1

locus, none of the QTLs identified by Ferris et al. matched influ-

enza susceptibility loci found in mapping studies conducted in

the BXD population. (Boon et al., 2009; Nedelko et al., 2012).

These differences may reflect the more complex genetics of

the CC compared to the BXD and/or differences in the strain of

influenza or other experimental variables across studies.

Salmonella enterica

Salmonella enterica serovar Typhimurium (S. Typhimurium)

causes typhoid fever, and previous mouse mapping studies

have identified multiple loci associated with susceptibility (Roy



et al., 2006; Sebastiani et al., 1998). To identify novel loci associ-
ated with S. Typhimurium susceptibility, Zhang et al. infected 
35 CC RI strains and measured bacterial load in the liver and 
spleen at 4 days post-infection (Zhang et al., 2018). QTL scans 
for bacterial load mapped multiple significant or suggestive 
QTL (Figure 2; Table 1), which differed from those identified in 
studies conducted in other mapping populations (Roy et al., 
2006; Sebastiani et al., 1998). Zhang et al. used merge analysis 
in combination with immune cell gene expression, gene 
ontology, and analysis of known protein functions to narrow 
the list of candidate genes under the two significant loci. They 
identified candidate genes Cul4a (ubiquitin ligase), Lamp1 (lyso-
somal membrane protein), Mcf2l (guanine nucleotide exchange 
factor), Pcid2 (TREX-2 complex component involved in mRNA 
nuclear export), and a high-priority candidate Slc35f1, which 
has lactate dehydrogenase activity that may be important in 
the S. Typhimurium pyruvate metabolism pathway. The study 
also noted that one strain, CC042/GeniUnc, had extremely 
high bacterial loads, suggesting that it may be uniquely suscep-
tible to S. Typhimurium.

SARS-Coronavirus
SARS-CoV causes severe acute respiratory syndrome in hu-
mans, but the genes regulating these processes are poorly un-
derstood. Gralinski et al. infected the CC founder strains and 
147 pre-CC lines with mouse-adapted SARS-CoV and studied 
disease through day 4 post-infection (Gralinski et al., 2015). 
Variation in weight loss and viral titer was significant in the 
CC founders and even broader in the pre-CC mice. Similar to 
IAV, phenotypic dissociation was observed in some pre-CC 
lines, with viral titer not correlated with weight loss. QTL map-

ping identified a significant main effect QTL, as well as a mod-

ifier QTL for vascular cuffing in the lungs, explaining 26% and 
21% of the variation, respectively. Suggestive QTLs were iden-
tified for eosinophilia (26% of variation) and viral titer (22% of 
variation) (Figure 2; Table 1). The candidate region for the 
main effect vascular cuffing QTL was narrowed to a small 
450 kb region of shared ancestry between the high-response 
haplotypes. This region contained only one functional gene, 
Trim55, a RING zinc-finger-containing protein expressed in 
smooth muscle, which had not previously been implicated in 
any immune phenotypes. Follow-up validation studies using 
Trim55 knockout mice, which showed altered chemokine and 
tight junction gene expression as well as altered inflammatory 
cell recruitment, confirmed a role for this gene in SARS-CoV-
induced vascular cuffing. The authors also noted a high-priority 
candidate under the modifier QTL, the cadherin family member 
Cdhr2, which may be involved in migration of inflammatory cell 
from the blood into the lung.

In a subsequent study, Gralinksi et al. used an F2 cross be-
tween two CC-RI strains with highly divergent SARS-CoV sus-
ceptibilities to map five significant loci affecting weight loss, viral 
titer, and other disease phenotypes, including one main effect 
QTL that explained between 6% and 12% of the variation in 
every phenotype (Gralinski et al., 2017). Ticam2, a TLR4 adaptor 
protein, was identified as a high-priority candidate gene under 
the main effect QTL given the known importance of TLR4 in 
SARS-CoV pathogenesis (Totura et al., 2015). Ticam2 knockout 
mice had increased SARS-CoV-induced weight loss, early viral 
titers, and pulmonary hemorrhage.
Homeostatic Immunity

In addition to exhibiting high levels of variation in pathogen-

induced responses, the CC also exhibits variation in baseline

(homeostatic) immunity. Variation in immune homeostasis has

been associated with variation in vaccine responses in humans

(Tsang et al., 2014), and the CC provides a novel resource to

study how variation in pre-existing immunity affects the host

response to infection or vaccination. Phillippi et al. analyzed sub-

sets of lymphocytes and antigen-presenting cells in the CC foun-

ders, CC founder F1s, and 66 pre-CC strains (Phillippi et al.,

2014). They observed variation in the pre-CC exceeding that in

the founders, as well as novel extreme phenotypes such as lym-

phopenia and inverted CD4/CD8 ratios. While some immune

phenotypes were highly correlated, others showed little or no

correlation to other immune populations. Mapping identified 10

significant QTLs across 8 phenotypes, including B/T cell ratio

and mean fluorescence intensity for CD23, also known as Fc

epsilon RII. The CD23 QTL contains the gene Fcer2a, which co-

des for CD23 itself, and a combination of merge analysis, condi-

tional association, and residue conservation was used to identify

specific coding polymorphisms within Fcer2a driving the QTL.

Graham et al. also performed an extensive examination of

homeostatic immunity in over 100 CC-F1 crosses, with a focus

on T cell populations, expression of activation markers, and

production of inflammatory cytokines (Graham et al., 2017).

CC strains exhibited high levels of phenotypic variation that

extended well beyond the variation observed between

C57BL/6J and BALB/c, the most common laboratory strains in

immunological studies. Mapping identified two highly significant

QTLs driving the frequency of specific T regulatory subsets, and

candidates were chosen based on concordance of haplotype ef-

fects with founder polymorphisms that were coding or splice var-

iants. Similar to the cis-QTL for CD23 expression identified by

Phillippi et al., the QTL mapped by Graham et al. for CXCR3+

T regulatory cells contains the Cxcr3 gene itself.

Kri�sti�c et al. studied variation in IgG glycosylation, which is

important for antibody structure and function, in 95 CC strains

and observed nearly double the variation observed in humans

(Kri�sti�c et al., 2018). Glycosylation patterns were up to 80% her-

itable, and multiple QTLs associated with variation in different

glycans were identified. Variation in 5 different glycans all map-

ped to the immunoglobulin heavy chain locus. Variation in 2 other

glycans mapped to a locus containing the glycosyltransferase-

encoding gene Mgat3, which was identified as a strong

candidate.

Commensals and the Microbiome in the CC
While the focus of this review is on genetic control of immune

populations and response to infectious agents, there is a

growing appreciation for the role commensals play in shaping

health and modulating immune responses. Two studies have

addressed these responses in the CC (Snijders et al., 2016)

and DO (Carmody et al., 2015) populations. Both found that

there were significant contributions of host genetic back-

grounds. Further, the CC study found strong genomic signals

for many bacterial groups (OTUs) around the genome. Given

the increasing appreciation and awareness of the microbiome

in modulating a variety of biomedically relevant traits, as well

as the impact of commensals and the virome (Virgin, 2014)



on directly modulating immune responses (Masopust et al., 

2017), future work within the CC will allow for the disentangling 
of direct roles on host genetic variants on disease responses, 
as well as indirect roles mediated through effects on commen-

sals or prior immune exposure.

Utilization of the CC
The CC is a powerful resource for model development, 
extreme phenotype discovery, population-based QTL map-

ping, intercross mapping, validation of candidate genes 
across genetic backgrounds, and a variety of other ap-

proaches. Here, we provide an overview of different study 
designs that can be implemented to study the impact of 
host genetic variation on pathogen outcomes or immunity us-
ing the CC (Figure 3).
Many of the genetic mapping studies described above uti-

lized large panels of CC strains and were able to identify loci of 
moderate to large effects on pathogen outcomes. However, 
these types of studies are extremely resource intensive and may 
not always be the optimal approach. Rather, we suggest a tiered 
approach to study design within the CC, starting with a small-

scale analysis in a set of strains (e.g., 12–16) that sam-ple most 
of the haplotypes present across the CC genomes, and 
expanding as necessary. The efficacy of this type of approach is 
demonstrated by the success of small CC screens that have 
identified strains with unique phenotypes and pro-ceeded with 
further targeted studies such as F2 crosses to reveal complex 
polygenic networks driving the outlier pheno-type (Gralinski et 
al., 2017; Rogala et al., 2014). Furthermore, even when 
investigators opt for large mapping studies, they may still 
identify strains with unique outlier phenotypes that cannot be 
explained by QTLs identified in the initial screen. This missing 
heritability may be driven by complex genetic in-teractions such 
as epistasis, which are difficult to study in com-plex populations 
and are more effectively studied in targeted crosses (Rogala et 
al., 2014).
Initially screening small sets of CC strains (e.g., 12–16) allows 

the investigator to obtain insight into the distribution of trait vari-
ation (e.g., continuous, bimodal), while testing whether any 
strains show unique or strong outlier phenotypes (Gralinski et al., 
2015; Rasmussen et al., 2014; Rogala et al., 2014). These small 
screens also facilitate estimation of the proportion of phenotypic 
variation explained by genetics within the test popu-lation 
(heritability), identification of potential confounding factors (e.g., 
mouse size and activity levels), and performance of power 
calculations before embarking on a large-scale screen. In 
contrast to conducting the initial screen in the CC founders, CC 
strains exhibit more phenotypic diversity due to re-assort-ment 
of allelic variants throughout the genome. Furthermore, a 
specific set of CC strains can be chosen to avoid the presence 
of large effect resistance genes such as Mx1 or Oas1b that may 
dominate the response to some pathogens. Likewise, strains 
can be selected that carry specific gene haplotypes to facilitate 
specific assays (e.g., MHC haplotypes for antigen-spe-cific T 
cell analysis) (Graham et al., 2015, 2017).
Following an initial screen, researchers interested in devel-

oping new models can pursue the strains with the most rele-
vant phenotypes, while those interested in genetic mapping 
may either perform a more extensive population-wide study
(e.g., across the entire CC) or conduct a focused analysis of

one or more strains with extreme or novel phenotypes via clas-

sical intercrosses. Unlike CC mice, which are fully inbred and

genotyped, each mouse in an F2 or other intercross mapping

population will need to be genotyped. In both cases, genetic

mapping should identify a subset of the variants impacting

the phenotype of interest (e.g., disease). While an in-depth dis-

cussion of mapping methods is beyond the scope of this re-

view, several robust mapping strategies have been successfully

applied to the CC, including DOQTL, BAGPIPE, and R/qtl

(Arends et al., 2010; Gatti et al., 2014; Valdar et al., 2009).

Once QTLs have been mapped, investigators can confirm the

underlying haplotype effects by screening additional CC strains

with high or low responder haplotypes under the QTLs that

were not included in the initial screen, or by screening a set

of mice from the related DO population. While not essential,

this step confirms the initial mapping studies and provides con-

fidence in the QTL effects prior to embarking on candidate

gene investigation.

The identification and validation of candidate genes can be a

challenging and intensive process. QTLs are often large, con-

taining tens to hundreds of genes. In contrast to mapping in

biparental GRPs or intercross populations, where there are

only two haplotypes and every variant is a putative candidate,

in the CC, merge analysis (Yalcin et al., 2005) can be used to

narrow candidates based on how the pattern of variants

(e.g., SNPs or indels) for each founder matches the distribution

of phenotypic responses associated with each founder haplo-

type. As described above, merge analysis has been a useful

tool in the CC; however, a drawback of merge analysis is

that it assumes a single SNP variant driving the locus. In

multi-parental populations, different SNPs or other mutations

within the same gene may phenocopy one another (e.g.,

different Mx1 null alleles; Ferris et al., 2013). Furthermore,

other genetic variants (e.g., copy number variants and trans-

posable elements) are often missed by traditional merge data-

bases. Other in silico tools, including baseline tissue and/or

haplotype-specific gene expression (e.g., ImmGen and

GECCO) (Shay and Kang, 2013; http://csbio.unc.edu/gecco)

and protein functional consequence prediction (e.g., SIFT;

Sim et al., 2012), can help narrow candidates to a single

high-priority candidate gene or small set of candidates (Ferris

et al., 2013; Gralinski et al., 2015). Alternatively, if causal vari-

ants are suspected of altering transcript levels, de novo gene

expression analysis can be used to further refine candidate

genes under the locus.

Following candidate gene identification, there are several op-

tions for testing whether the candidate is actually causal. When

the phenotype is driven by an individual cellular factor, such as

an antiviral molecule or receptor, gene function can be vali-

dated in vitro using techniques such as CRISPR or ectopic

expression of different variants. When the phenotype has a

more systemic cause, in vivo validation is generally necessary.

This can be facilitated by the wide availability of knockout

mouse lines (Gralinski et al., 2015, 2017). However, in vivo vali-

dation studies should take into account factors such as genetic

background of the knockout, the effect of the variant, and the

distribution of haplotypes (e.g., a knockout on a C57BL/6J

background may not provide an interpretable phenotype if, in

http://csbio.unc.edu/gecco


Figure 3. CC Workflow Schematic
(1) Small screen in a subset of CC strains (12–16), selected based on availability or a genotype of interest (e.g., MHC haplotype).
(2) Assess variation across strains, identify outliers, measure heritability, perform power calculations, and identify confounding variables and reassess experi-
mental design if necessary.
(3) Perform a larger screen either in the full CC population or a targeted intercross. Following mapping, this can be repeated to follow-up on modifier alleles or
other unexplained loci.
(4) Reassess variation, outliers, and heritability across mapping population.
(5) Map QTLs driving phenotype of interest; analyze founder haplotype effects if mapping is done in the CC.
(6) Rationally select candidate genes using different tools as applicable.
(7) Perform validation studies in vitro and/or in vivo to confirm effect of candidate gene on phenotype.
the CC, the C57BL/6J haplotype is an extreme response haplo-
type, or if the C57BL/6J allele is hypomorphic or amorphic). 
More recent advances in CRISPR technology open up the pos-
sibility of knocking out or performing allele swaps in genes 
directly in CC founders or RI strains, enhancing the utility of 
the CC as a resource for both identifying and studying polymor-

phic genes affecting pathogen susceptibility or other pheno-
types of interest.
Challenges and Future Directions
In less than two decades since the CC was conceptualized

(Churchill et al., 2004), the CC has proven to be a fruitful resource

across many fields, including infectious disease and immu-

nology. Expanding use of the CC has highlighted certain chal-

lenges and considerations that should be recognized to drive

future development in both experimental design and resource

expansion.



Genetic mapping studies in the CC have successfully identi-

fied loci underlying infectious disease and immune phenotypes; 
however, relatively few have subsequently validated the initially 
identified candidate genes. Even more challenging than candi-
date gene validation is the identification of specific causal vari-
ants within a gene. While strategies such as merge analysis can 
help refine candidates and variants, these tools are not always 
informative. There is a need for more refinement method-ologies 
that can be applied in combination with experimental validation 
to narrow and identify causal variants.
The wide array of genomic, molecular, and immunological 

reagents available is a valuable asset for mouse research; 
however, these do not necessarily uniformly work across the CC 
and should be validated before use. Existing CC-specific re-
sources, such as GECCO, are not necessarily informative for in-
fectious disease research since lymphoid organs, such as the 
spleen, thymus, and bone marrow, are not profiled. 
Furthermore, the development of new CC-specific tools, such as 
CC-derived cell lines (e.g., MEFs and IPSCs), will expand the 
utility of the CC across fields, including the infectious diseases 
and immu-nology fields.
One of the largest challenges across all of model organism 

research is connecting back to human relevancy. The CC has 
already proven useful in providing improved models of human-

like disease, as highlighted above. A number of genes that 
have been highlighted in the CC, such as Mx1 and Oas1b, 
have human paralogs relevant in infectious disease susceptibility 
(Lin and Brass, 2013; Simon-Loriere et al., 2015), demonstrating 
the overlap between important genetically diverse infectious 
disease pathways in mouse and humans. However, the majority 
of studies have not yet made direct connections back to human 
datasets. As CC research develops, it will be increasingly impor-

tant to continue to extend analysis from the CC to human ge-
netics and vice versa. This will require more crosstalk between 
mouse and human geneticists to bridge gaps in research and 
communication.

Conclusions
Host immunity and susceptibility to infectious disease is a com-

plex response driven by a multitude of factors, from environment 
and immune experience to the genetics of both the pathogen 
and the host. Studying the role of host genetics in infectious dis-
ease directly in humans is challenging because of this 
complexity, and therefore much of the research in the field leans 
heavily on the mouse as a model organism. While the role of 
traditional laboratory strains and genetically modified mice in 
driving advances in the field cannot be understated, these 
models do not capture the genetic diversity and phenotypic 
complexity observed in the natural population. Building on the 
success of classical intercrosses and biparental GRPs, the CC is 
a highly diverse and reproducible resource for studying and 
mapping complex traits, including infectious disease suscepti-
bility. The reproducibility of CC strains will allow the community 
to cross-compare genes and genetic networks that regulate 
response across pathogens (e.g., IAV and SARS-CoV; Xiong et 
al., 2014), while also exploring the impact of factors such as the 
microbiome, co-infections, and genetic variation of the path-
ogen in the context of a controlled, genetically diverse model 
population. The CC also holds promise for the development of
newmodels and testing platforms that will better reproduce spe-

cific human disease outcomes or host responses to pathogens

and vaccines.
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