
 
 
 

 
 

Contact with beach sand and risk of illness
 
 
 
 
 

Christopher David Heaney 
 

 
 
 
 
A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in 
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the 
Department of Epidemiology, School of Public Health. 
 

 
 
 
 

Chapel Hill 
2008 

 
 
 
 
 

Approved by:  
 

Steve Wing, Ph.D. (Chair) 
 

Timothy Wade, Ph.D. (Research Advisor) 
 

Steve Marshall, Ph.D. (Reader) 
 

J. Richard Seed, Ph.D. (Reader) 
 

Marc Serre, Ph.D. (Reader) 



 

 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
© 2008 

Christopher David Heaney 
ALL RIGHTS RESERVED



 

 iii 

 
 
 
 
 

ABSTRACT 
 

CHRISTOPHER DAVID HEANEY: Contact with beach sand and risk of illness 
(Under the direction of Steve Wing, Ph.D. and Timothy Wade, Ph.D.) 

 
 

Background: Recently, numerous studies of fecal contamination of beach sand have 

shown that beach sand can harbor higher concentrations of fecal indicator organisms than 

nearby recreational waters.  Although fecal pathogens have also been isolated from beach 

sand, the risk of illness associated with beach sand contact and fecal indicator organism 

concentrations in sand is unclear.  Methods: During 2003-2005 and 2007, beach visitors at 7 

U.S. beaches were enrolled in the study and asked about sand contact the day of their beach 

visit.  Ten to 12 days later participants were telephoned to answer questions about health 

symptoms experienced since the visit.  At 2 study beaches in 2007, beach sand was analyzed 

for concentrations of the fecal indicators Enterococcus, Bacteroides, B. thetaiotaomicron, 

and F+-specific coliphage.  Results: We completed a total of 27,365 interviews at 4 

freshwater and 3 marine water beaches.  Sand contact was strongly associated with age, 

water contact, and beach.  After controlling for age, sex, water contact, race/ethnicity, and 

beach, digging in the sand was positively associated with gastrointestinal (GI) illness 

(aIPR=1.14; 95% CI 1.02–1.26) and diarrhea (aIPR=1.20; 95% CI 1.05–1.36).  The point 

estimate was slightly stronger between being buried in the sand and GI illness (aIPR=1.22; 

95% CI 1.04–1.42) and diarrhea (aIPR=1.23; 95% CI 1.01-1.51), respectively.  Similar 

effects were observed among nonswimmers digging in sand for GI illness (aIPR = 1.26; 95% 

CI = 1.03-1.55) and diarrhea (aIPR = 1.26; 95% CI = 0.98-1.62).  Stronger associations were 
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observed among those getting sand in their mouth for GI illness (aIPR=1.82; 95% CI 1.19-

2.78) and diarrhea (aIPR=1.65; 95% CI = 0.96-2.84).  Non-enteric illnesses were not 

consistently associated with sand contact.  Variation was observed in beach specific results 

suggesting site-specific factors may be important in the risk of illness following sand 

exposure.  At 2 marine beaches 144 sand samples were analyzed for fecal indicators and 

4,999 interviews were completed.  A molecular measure of Enterococcus in sand (qPCR 

CCE/g) was positively associated with GI illness among those digging in sand (aOR per log 

increase in qPCR CCE/g=1.45; 95% CI 1.05-2.01) and buried in the sand (aOR = 3.12; 95% 

CI 1.08-9.05).  The relationship between other sand fecal indicator measures with GI illness 

was not consistent.  Conclusions: Contact with beach sand was positively associated with 

enteric illness at beach sites but there was variability in the effect by beach.  This study 

demonstrated a positive relationship between sand contact activities and GI illness as a 

function of microbial sand quality. 
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I. INTRODUCTION 
 

In the United States, increasing numbers of people are moving towards coastal 

areas.  In 2003, the National Oceanic and Atmospheric Association (NOAA) estimated 

that approximately 53 percent of the nation’s population (153 million people) lived in the 

Nation’s 673 coastal counties.1  This is an increase of 33 million people since 1980.1  In 

addition to increasing numbers of people moving to coastal areas, seasonal visitation of 

coastal beaches is a favored pastime in the United States.  In a survey of >75,000 

households, 40% of respondents ≥16 years of age, equivalent to 82 million individuals 

(extrapolated from the survey), reported visiting beaches for outdoor recreational 

activities during 1999-2000.2,3  Beaches, particularly the sand and water, may become 

contaminated by fecal pollution from human sewage as a result of municipal waste water 

treatment plant (WWTP) discharges and combined sewer overflows, and diffuse sources 

such as urban run-off, domestic and wild animals, and human bathers.2  It is therefore 

important to study the impact of fecal contamination of the beach environment on human 

health as a result of recreational beach activities.   

 In response to concerns about fecal contamination at beaches, the 106th Congress 

of the United States of America signed the Beaches Environmental Assessment and 

Coastal Health Act (BEACH Act) into law on October 10, 2000.4  The BEACH Act 

amends the Federal Water Pollution Control Act with the goal of reducing the risk of 

disease to users of the Nation's recreational waters.  The BEACH Act authorizes the 
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United States Environmental Protection Agency (EPA) to publish performance criteria 

for monitoring and assessment of coastal recreational waters and provide prompt 

notification of exceeding applicable water quality standards through: 1) strengthening of 

beach standards and testing, 2) provision of faster laboratory test methods, 3) prediction 

of pollution, and 4) investments in health and methods research.4  The BEACH Act 

recommends that individual states with coastal areas adopt coastal recreation water 

quality criteria for pathogen indicator organisms based on densities of E. coli and/or 

Enterococcus in water.  EPA works with states, tribes, and local governments to 

strengthen local beach health monitoring efforts and procedures to achieve these 

standards by providing technical guidance and training on new test methods and 

predictive models.  

As a result of the BEACH Act of 2000, much research has focused on the risk of 

illness resulting from swimming exposure to pathogen indicators in recreational waters.5-

10  In 2003 the EPA and the Centers for Disease Control and Prevention (CDC) initiated 

the National Epidemiologic and Environmental Assessment of Recreational (NEEAR) 

water study, a multi-year large prospective cohort study of the association between 

recreational water contact (e.g., swimming) and illness among beach-goers.  The results 

of this and other related studies have shown an increased risk of illness (including enteric 

and non-enteric illness) among swimmers exposed to increased levels of indicators of 

fecal contamination in recreational water.5-7,10-33  

The BEACH Act does not make recommendations for monitoring and testing of 

sand; nor does it set guideline or criteria values for indicators of sand quality.  Little is 

known about the relationship between human-derived fecal pollution in beach sand and 



 

 3 

the risk of illness among beach-goers who come into contact with beach sand during 

recreational activities.  This research summarizes the results of a two-phase investigation 

of the relationship between human contact with beach sand and the risk of illness at 

beaches influenced by a point source municipal sewage discharge.  During the first phase 

of this research, we examined the relationship between self-reports of specific beach sand 

contact activities (digging in the sand or building sand castles; having one’s body buried 

in the sand) and the risk of illness among beachgoers using data from participants in the 

2003-2005 and 2007 NEEAR water studies.  During the second phase, we evaluated the 

relationship between levels of fecal indicators of microbial pathogens (Enterococcus, 

Bacteroides, B. thetaiotaomicron, and F+-specific coliphage) in beach sand and risk of 

health symptoms and illness reported by beach-goers participating in the 2007 NEEAR 

Water Study. 



 
 
 

II. REVIEW OF THE LITERATURE 
 

A. Critical review of literature 

1. The fecal indicator concept 

Fecal indicator organisms include a group of bacteria and viruses, such as total 

and fecal coliforms, E. coli, Enterococcus, Bacteroides, Clostridium perfringens, and 

bacteriophage (coliphage), whose presence in the environment indicates the presence of 

fecal contamination and the pathogenic organisms associated with such contamination.34-

37  Monitoring for specific pathogens is not usually considered a practical or cost-

effective strategy to protect the public’s health from fecal contamination in the 

environment (e.g., water, sand, sediment, air).34-37   There are too many pathogens to 

incorporate into routine monitoring and surveillance.  Individual pathogens are usually 

present in low concentrations and often require analysis of large sample volumes.  

Methods for detecting pathogens are also generally expensive, technically demanding, 

and time-consuming.36  Microbiologists routinely examine organisms whose presence in 

the environment (e.g., water, sand, sediment, air) indicates the presence of fecal 

contamination and pathogens associated with such contamination.  These organisms are 

classified as fecal indicator or index organisms.  The indicator concept involves 

quantifying microbes (or chemical compounds) that are non-pathogenic and commonly 

occur in the feces of humans and warm-blooded animals.  The presence of these non-
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pathogenic indicator organisms suggest that fecal contamination has occurred and that 

harmful pathogenic organisms may also be present.  Methods for the quantification of 

fecal indicator organisms in the environment are generally less expensive, faster, and 

easier to perform in most laboratories.   

Bonde (1966), Goyal, (1983), and Stetler (1984) have contributed greatly to the 

body of research on fecal indicator organisms.  According to their observations, the ideal 

fecal indicator should:  

1) be present in feces, sewage, and fecally contaminated samples when pathogens 

are present;  

2) be absent in non-fecally contaminated samples and when pathogens are absent;  

3) occur in much greater numbers than pathogens;  

4) occur in a constant ratio to pathogens (numbers should correlate with amount of 

fecal pollution);  

5) be incapable of “regrowth” or “aftergrowth” in the environment;  

6) have survival/persistence greater than or at least equal to pathogens in natural 

environments and treatment processes;  

7) be easily detected/quantified by simple laboratory tests in a short time;  

8) have constant characteristics;  

9) be harmless to humans and other animals;  

10) have numbers in water and other media that are associated with risks of enteric 

illness (dose-response relationship); and  

11) be applicable to all types of water (and other environmental samples). 34-37 
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No single fecal indicator organism meets all of the criteria and often a grouping or 

suite of these indicators can be very useful to quantify levels of fecal contamination and 

pathogens in the environment (e.g., water, sand, sediment, air).  Many fecal indicator 

organisms, including several groups of indicator bacteria and viruses, can provide a 

fitting estimation of health risks for the general population (e.g., healthy adults) and also 

for sensitive sub-populations (e.g., infants, children, the elderly, and 

immunocompromised individuals).   

2. Health effects water quality indicators 

The fecal indicator concept grew out of a need to effectively monitor the quality 

of surface and drinking water supplies with the goal of improving decision-making to 

prevent waterborne disease.  Each fecal indicator organism and its accompanying 

measurement method(s) has advantages and limitations.  The literature suggests that there 

is no single gold standard water quality fecal indicator to predict health symptoms and 

illness.38  In Water Pollution Microbiology, Volume 2 (1978), Cabelli defines a health 

effects water quality indicator as “some microbial, chemical, or physical parameter which 

indexes the potential risk of infectious disease coincident with people’s use of the aquatic 

environment as a source of water, recreation, or food.  In the final analysis, the best 

indicator—there is no ideal—is the one whose densities correlate best with health hazards 

associated with a given (preferably several) type of pollution”.39 Cabelli suggests that 

health effects water quality indicators can be screened against several criteria.39  These 

criteria parallel the criteria for fecal indicator organisms identified by Bonde (1966), 

Goyal, (1983), and Stetler (1984) but are tailored to indicators that are best for prediction 

of health effects.  Cabelli suggests that, “the indicator: (i) should be consistently and 
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exclusively associated with the source of pathogens; (ii) must be present in sufficient 

numbers to provide an “accurate” density estimate whenever the level of each of the 

pathogens is such that the risk of illness is unacceptable; (iii) should approach the 

resistance to disinfectants and environmental stress, including deposited toxic materials, 

of the most resistant pathogen potentially present at significant levels in the source; and 

(iv) should be quantifiable in recreational waters by reasonably facile and inexpensive 

methods and with considerable accuracy, precision, and specificity”.39 

Cabelli’s criteria for health effects water quality indicators has relevance for the 

future development of a health effects beach sand quality indicator.  Currently little 

epidemiologic information exists characterizing associations between concentrations of 

fecal indicators in beach sand and health symptoms and illness.  The literature suggests 

that several (i.e., a group or suite) of the fecal indicators may be useful as predictors of 

health outcomes experienced by beach-goers who come into contact with beach sand.38,40-

45  Numerous recent studies suggest that Enterococcus, Bacteroides, and F+-specific 

coliphage could be candidate health effects sand quality indicators.  To provide 

background for the use of Enterococcus, Bacteroides, and F+-specific coliphage as health 

effects beach sand quality indicators during these research activities, a review of several 

classes of fecal indicator organisms and their utility as a model of the presence of human-

derived fecal pathogens in various media (e.g., water, sand, sediment) is presented.   

a. Total coliforms and fecal coliforms 

Methods for detection of coliform bacteria, which include total coliforms, 

thermotolerant or fecal coliforms, and E. coli, are codified throughout the world and 

commonly accepted to quantify fecal contamination in drinking, waste, marine, and fresh 
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water, and other media (e.g., soil, sediment, sand, air) samples.34-36,46,47  Coliform bacteria 

include Escherichia, Enterobacter, Citrobacter, and Klebsiella species.  Coliform 

bacteria are traditionally defined as aerobic and facultatively anaerobic, gram-negative, 

non-spore forming, rod-shaped bacteria that ferment lactose with gas and acid production 

in 24 to 48 h at 35ºC.36,47-52  Total coliform bacteria possess the enzyme β-galactosidase. 

Total coliforms can originate from non-fecal environmental sources such as plants and 

soils whereas thermotolerant or fecal coliforms and E. coli mainly have been shown to 

restrict enumeration to coliforms of fecal origin.48,53,54  

Fecal or thermotolerant coliforms, a more definitive indicator of homeothermic 

fecal contamination, grow and ferment lactose with the production of gas and acid at 44.5 

± 0.2ºC.47  Studies have shown that coliform bacteria are found in contaminated water at 

densities roughly proportional to waterborne fecal pollution.48  Coliform bacteria also 

have demonstrated longer or similar survival and viability in the environment than 

disease-causing or pathogenic bacteria.  Historically, for this reason it has been thought 

that the absence of coliform bacteria in water suggests that it is safe for human use.48  

However, a recent review of the regulatory reliance upon total coliform monitoring (as 

required by the Total Coliform Rule of 1990) is raising questions regarding its use to 

prevent waterborne disease outbreaks.49,54,55  There have been major waterborne disease 

outbreaks where coliform bacteria have been absent or present at allowable 

concentrations.50,51  The most severe example is the 1993 epidemic of cryptosporidiosis 

in Milwaukee, Wisconsin, caused by the protozoan parasite Cryptosporidium, in which 

more than 400,000 individuals became ill.56  The survival (of disinfection processes) and 

persistence (in the environment) of coliform bacteria do not correlate with the survival of 
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certain pathogens, including enteric viruses belonging to the Picornoviridae, 

Adenoviridae, and Caliciviridae families and protozoan (oo)cysts, such as 

Cryptosporidium parvum and Giardia lamblia.  For this reason, coliform bacteria may be 

more appropriate indicators of enteric bacterial pathogens such as Campylobacter, 

Salmonella, Shigella, Yersinia, and Vibrio. 

b. Escherichia coli 

A common problem with the use of total and fecal coliforms, which include the 

genera Escherichia and Klebsiella, is that their presence does not differentiate between 

animal, human, and other sources of fecal contamination.  Fecal coliforms, specifically 

the Klebsiella genus, can also originate from non-fecal environmental sources such as 

carbohydrate-rich industrial effluent and vegetative material.57 Although E. coli is a 

member of the fecal coliform group of bacteria, it has been demonstrated to be a more 

specific indicator for the presence of homeothermic fecal contamination.58  It can be 

enzymatically distinguished by the lack of urease and the presence of β-glucuronidase.47  

The EPA has adopted recreational freshwater quality criteria for bacteria based upon E. 

coli as an indicator of fecal contamination.59  Epidemiologic and microbiologic studies 

summarized by EPA in the Health Effects Criteria for Fresh Recreational Waters 

demonstrated a positive linear relationship between swimming-associated gastroenteritis 

and E. coli concentrations.60  However, E. coli has been not been shown to be effective at 

predicting gastrointestinal (GI) illness in marine waters because it dies off quickly, 

making it an unsuitable fecal indicator in the marine environment.61-67  Additionally, in 

tropical environments, E. coli has been detected in pristine forest aquatic and plant 

systems and several studies suggest that E. coli may be able to replicate in the sand, 
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sediment, and soils of temperate regions.68-72  Therefore its use in tropical and equatorial 

regions of the world (and during the hot summer months of more temperate regions) may 

not be appropriate as an indicator of fecal pollution.47,51 

c. Enterococcus and Bacteroides 

Given some of the limitations of the coliform group (e.g., total and fecal coliforms 

and E. coli) as indicator organisms, other Enterobacteriaceae have been proposed as 

indicators.  These include enterococci such as Enterococcus faecalis and E. faecium and 

other anaerobes such as Bacteroides spp. and Bifidobacteria spp.  E. faecalis, and E. 

faecium are gram-positive bacteria commonly inhabiting the intestinal tracts of humans 

and animals.73  Bacteroides are a genus of gram-negative, rod-shaped bacteria. 

Bacteroides are obligate anaerobes and as many as 1010-1011 cells per gram of human 

feces have been reported.74  Bacteroides spp. dominate the human intestinal flora, and 

because research has shown that some species (B. thetaiotaomicron) mainly only live in 

the human intestine, these bacteria may be useful to distinguish human from nonhuman 

sources of fecal contamination.67,75-77  Enterococcus and Bacteroides are more resistant 

than coliforms (including E. coli) to chlorine disinfection during the sewage treatment 

process and Enterococcus survives for longer periods in the marine environment, making 

them attractive for use as indicators of groups of fecal pathogens that survive sewage 

treatment.   

The enterococci group is a subgroup of the fecal streptococci that are 

differentiated from other streptococci by their ability to grow in 6.5% sodium chloride, at 

pH 9.6 and at 10°C and 45°C.47,78  The term fecal Streptococcus is synonymous with 

Lancefields’s group D Streptococcus, which include E. faecalis, E. faecium, S. bovis, and 
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S. equinus.  E. faecalis and E. faecium are the most commonly detected Enterococcus 

inhabiting the human intestinal tract and thought to be more human specific indicators of 

fecal contamination, especially in marine waters.59  Consequently the EPA has adopted 

recreational marine water quality criteria for bacteria based upon Enterococcus as an 

indicator of fecal contamination.59  EPA’s recreational marine water quality guideline for 

Enterococcus is based on bacterial density and is 35 Enterococcus /100 ml.51  Geldreich 

(1978) found that fecal streptococcus counts greater than 100 /100 ml indicate significant 

fecal pollution derived from a warm-blooded animal source.11,15,27  Several studies have 

shown that Enterococcus are more accurate indicators of swimming-associated health 

risks than members of the coliform group.11  In 1982 Cabelli et al., found that among 

swimmers vs. non-swimmers at beaches with varying water quality in New York City, 

Boston, and Lake Pontchartrain, LA, the numbers of Enterococcus most closely 

correlated with the appearance of gastrointestinal symptoms following exposure to 

fecally polluted waters.43,79-81   

Recently studies have suggested that sand and sediment may serve as a reservoir 

for Enterococcus, as greater numbers of Enterococcus have been found in sand compared 

to bathing waters.10,67  Findings of the retention and possible replication of Enterococcus 

in beach sand, particularly in tropical climates, raise questions about the appropriateness 

of its use and the specificity of this indicator for determining recent sewage 

contamination.  Because of these findings Fujioka (2001 & 2006) recommends the use of 

alternate bacterial indicator organisms, such as Clostridium perfringens, and viral 

indicator organisms, such as FRNA and FDNA coliphages (non-pathogenic viruses that 

infect and replicate in E. coli bacteria), because non-point source fecal contamination 
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(i.e., of non-sewage origin) may dominate in tropical waters, sands, and soils.61,67  Data 

and results from exposure assessment and epidemiologic studies involving these novel 

indicators have not been sufficiently compelling for EPA to change its national 

recreational water quality criteria (which are based on densities of E. coli and 

Enterococcus).82  However, F+-specific coliphage will be discussed in the Bacteriophage 

section below. 

In temperate marine waters and beach environments where sewage point sources 

dominate, Enterococcus can serve as an effective indicator of fecal contamination.  

Additionally, given supportive epidemiologic evidence (e.g., dose-response relationship), 

approval by EPA for its widespread use, and standardized detection methods, 

Enterococcus is an attractive health effects sand quality indicator for the proposed study 

of the association between sand exposure and health effects at marine beaches.  

d. Bacteriophage 

Much research has focused on the use of bacteriophage as an alternate indicator to 

traditional fecal bacterial indicators such as coliforms, E. coli, and Enterococcus.  The 

use of bacteriophage as a health effects water quality indicator arose partially due to 

studies documenting their greater survival and resistance to disinfection during the 

sewage treatment process than bacterial indicators (e.g., total and fecal coliforms, E. coli, 

Enterococcus, Bacteroides)83 and enteric viruses such as poliovirus84,85.  Bacteriophage 

are present in higher concentrations than enteric viruses in fecally polluted environmental 

waters and are considered useful as indicators of pathogenic enteric viruses and sewage 

contamination.  Bacteriophage are ubiquitous in human and animal feces and in sewage 

contaminated waters.86,87  Significant correlations (0.999) between bacteriophage and 
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coliform bacteria in freshwater show that bacteriophage can be used to indicate the 

sanitary quality of water.88   

Bacteriophage are viruses that infect, replicate in, and subsequently lyse bacterial 

host cells such as E. coli.88   They consist of a nucleic acid molecule (RNA or DNA) 

surrounded by a protein coat or capsid.88  FRNA bacteriophage have received the most 

attention and study because they are usually present in higher concentrations than FDNA 

bacteriophage and have morphological characteristics most similar to enteric viruses.  

Bacteriophage that infect E. coli are called coliphage.  The two main coliphages of 

interest as indicators of sewage contamination and pathogenic enteric viruses are somatic 

and male-specific coliphages.  The main difference between these two groups of 

coliphages is their mechanism for attachment to E. coli host bacterial cells.  Somatic 

coliphages infect E. coli through direct attachment to receptor sites on the bacterial cell 

membrane or cell wall.88  Male-specific coliphages infect E. coli host cells through 

receptors on the E. coli F pili (i.e., F+-specific coliphage).  Somatic coliphage have been 

detected in the feces of humans, cattle, pigs, chickens, and other animals.  Male-specific 

or F+-specific coliphage have been detected in feces from cows, pigs, and humans.  A 

beneficial aspect of using bacteriophage as fecal indicators is the ability to detect and 

enumerate low numbers of bacteriophage in environmental water samples through 

enrichment methods.  The EPA has accepted Method 1601, a two-step enrichment 

method for the detection of F+-specific coliphages in water and other media, as a standard 

method.89  Enrichment involves adding host bacteria (somatic or male-specific) and 

nutrients to a sample, and then incubating the sample for 16- to 24-h under conditions 

that permit infection of the bacteria and multiplication of the indigenous phages.90  
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Selection of the proper host bacteria is of critical importance to achieve consistent results 

using the enrichment method.   

Wild E. coli strains are not considered consistent and reliable host cells for study 

of coliphages.  A commonly studied male-specific or F+-specific host strain is F-Amp.91  

The F-amp host is resistant to both ampicillin and streptomycin, a characteristic that 

minimizes overgrowth by indigenous bacteria in environmental samples.92  The F-amp 

host is more attractive for environmental samples relative to somatic hosts such as C3000 

because it reduces the interfering indigenous background bacteria present in water, sand, 

and sediment.  F-amp host has added utility because genotypic and phenotypic methods 

can be performed on coliphage that infect it.  This allows for source tracking of observed 

fecal contamination (e.g., differentiation between animal vs. human-specific sources).  

Molecular techniques were developed by Furuse et al (1981) to serotype F+-specific RNA 

coliphages into four groups (I-IV) revealing that serogroup II and III phages tend to be 

isolates of human feces, whereas group I are usually of animal origin and group IV is of 

mixed origin.92  Havelaar et al, (1990), also found that group II and III phages were 

present in high concentrations in human sewage.92  In human sewage, both somatic and 

male-specific coliphages have been found to be present at concentrations of around 1000 

PFU/100ml.10,18,43-45,61,63,64,66,68-70,79,93-112  However, concentrations of somatic coliphages 

in sewage can range up to 15,900 PFU/ml.10,12,18,43,44,61,93,98,101,102,104,113-117  In a review of 

coliphages as indicators of pathogenic enteric viruses, Leclerc et al (2000) found, through 

observations on septic tanks, that F+-specific coliphage concentrations were not high.118  

In their review they also found that only 3% of humans have E. coli with F+-specific or 

FRNA coliphages.43  Still, the advantage of typing FRNA coliphages is considerable.  
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The high specificity of FRNA coliphage (e.g., groups II and III) to human sources of 

fecal contamination outweighs the disadvantage of possible non-detection due to low 

numbers in the environment.  Somatic coliphages are not attractive as indicators because 

studies have shown that they may naturally occur in the environment.  There is also a 

lack of correlation between somatic coliphages and enteric viruses.43,94,99,103,119-126  Use of 

somatic coliphage as a health effects sand quality indicator is problematic because of its 

lack of specificity to sewage discharges.118  However; compared to the bacterial 

indicators presently recommended by EPA (e.g., E. coli and Enterococcus), both somatic 

and F+-specific coliphages are better models of pathogenic enteric viruses in the marine 

environment.44,61,65,68-70,79,93,95,96,98,104,109-111,123,127-130   

3. Applications to health effects sand quality indicators 

The above discussion of health effects water quality indicators provides the 

background for selection of fecal indicator organisms that are appropriate health effects 

sand quality indicators.  The literature shows that each fecal indicator has a variable 

sensitivity and specificity to mark the presence of fecal contamination from a known 

sewage discharge into the marine environment.  Additionally, the literature shows that 

each fecal indicator has a variable sensitivity and specificity to groups of pathogenic 

organisms (viruses, bacteria, and protozoan parasites) that are known to have variable 

resistance to disinfection during the sewage treatment process.   

No single indicator organism can be considered a gold standard.  Total and fecal 

coliforms, E. coli, and somatic coliphage have poor specificity to human sewage in the 

marine environment.  Total and fecal coliforms, E. coli, and somatic coliphage therefore 

are not attractive candidate health effects sand quality indicators.  Of the group of 
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bacterial indicators discussed above, Enterococcus and Bacteroides are more resistant to 

chlorine disinfection during sewage treatment.  All of the bacterial indicators, however, 

are more susceptible than F+-specific coliphage to inactivation by chlorine disinfection 

during sewage treatment.131-135   

Bacterial indicators may not be adequately sensitive to mark the presence of 

pathogenic enteric viruses and protozoa because bacterial cells die-off more readily 

during sewage treatment.131-135  Traditional bacterial culture methods measure live 

bacterial cells in the marine environment (e.g., water and sand).  A novel method of 

detection of Enterococcus and Bacteroides, quantitative TaqMan polymerase chain 

reaction cell equivalents (QPCR CCE), measures both live and dead bacterial cells in 

water and sand.136  This detection method is a more sensitive indicator of the presence of 

viral and protozoan pathogens that survive sewage treatment and improves upon the 

limitations of culture-based bacterial assays.9 

Considering the advantages and limitations of each indicator, it is most 

appropriate to use a suite of fecal indicators that include the following bacteria (e.g., 

Enterococcus, Bacteroides) and viruses (F+-specific coliphage).38  Additionally, 

considering the limitations of the bacterial culture-based methods it is appropriate to use 

a novel QPCR CCE method for measurement of Enterococcus and Bacteroides.  This 

approach will maximize the advantageous properties of the indicators and provide a good 

balance between sensitivity to detect fecal contamination when it is present in the marine 

environment and specificity to identify the source of fecal contamination as a known 

municipal sewage outfall.   
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4. Abundance of fecal indicator organisms and pathogens in beach sand  

Recently, numerous exposure assessment studies have triggered interest amongst 

scientists, the news media, and the general public concerning levels of fecal 

contamination in beach sand.22,40-45,65,68,69,99,110,120,122,123,137,138  These studies consistently 

showed high concentrations of fecal indicator organisms in beach sand and sediment 

during the summer swimming season and also throughout the year.  Some studies 

attributed the source of the fecal indicator organisms to known municipal sewage 

discharges in close proximity to the beaches; however, other studies attributed the source 

of fecal contamination to warm-blooded domestic and wild animals.43,68,110,111  Shiaris et 

al., found that fecal coliforms were present in sediments at abundances 2 to 4 orders of 

magnitude higher than in the overlying water column.109  Wheeler Alm et al., observed a 

mean summer abundance of E. coli and Enterococcus 3-38 times as high in the top 20 cm 

of wet-sand cores compared to levels in the water column at six freshwater bathing 

beaches on Lake Huron, MI.68,110,111 

In addition to fecal indicator organisms, several studies have detected pathogenic 

bacteria (Pseudomonas aeruginosa, Salmonella, Shigella, Campylobacter jejuni, 

Staphylococcus aureus, Vibrio parahaemolyticus, and Vibrio harvey), viruses 

(adenovirus, norovirus, enterovirus, hepatitis A virus), fungi (Candida albicans and 

dermatophytic fungi), protozoan parasites (Cryptosporidium parvum, Giardia lamblia), 

and parasitic nematodes (Toxocara canis) in beach sand.64,65,68-70,96,98,128  Numerous 

studies found that the conditions in foreshore, nearshore, and backshore sand favor the 

persistence, survival, and possible re-growth of E. coli and Enterococcus suggesting that 

elevated levels of these fecal indicator bacteria (FIB) in sand may represent 
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autochthonous populations rather than impacts from sewage sources of 

contamination.32,41,124  The conditions that favor persistence, survival, and possible re-

growth of FIB in sand include increased protection from sunlight, buffered temperatures, 

more nutrient availability, reduced osmotic stress, cover from predation by other 

microorganisms, a large surface area for biofilm development, and higher moisture and 

organic content from wave swash.32,45  Some studies suggest that conditions in nearshore 

wet sand may be more favorable for FIB survival than backshore dry sand32,33; however, 

others suggest that dry sand conditions favor the ability of E. coli to outcompete 

predators and survive as an autochthonous population.124  The literature suggests that 

foreshore wet sand is more directly impacted by municipal sewage discharges whereas 

backshore sand is more impacted by fecal contamination from wild animals, domestic 

pets, and human activities (such as bathhouses, showers, and restrooms).41,43,94  At any 

specific beach, it is not entirely clear which bacterial sources initially populate the sand 

bacteria community, but it is clear that bacterial and viral indicators of fecal pathogens 

(including E. coli, Enterococcus, Bacteroides, and F+-specific and somatic coliphage) are 

present orders of magnitude higher in wet beach sand compared to nearby bathing waters; 

and that sewage discharges directly impact wet nearshore sand via wave swash.40,41,43  

5. Beach sand and illness 

Recent exposure assessment studies have shown that fecal indicators, specifically 

E. coli and Enterococcus, and fecal pathogens are present at high concentrations in beach 

sand.  However, neither EPA nor States currently recommend any monitoring criteria for 

sand quality.  This raises important questions regarding the safety of human contact with 

beach sand and whether sand exposure poses an increased risk of illness for beach-goers.  
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Although numerous exposure studies have provided useful information for water and 

sand quality assessments, the relationship between contact with sand among beach-goers 

and illness has not been properly evaluated through a full-scale epidemiologic 

study.6,7,9,15,16,21,22,139   

In 1985, Seyfried et al. collected water and sediment samples up to three times a 

day at ten beaches in Ontario, Canada and analyzed them for fecal coliforms, fecal 

streptococci, coagulase-positive and coagulase-negative staphylococci, Pseudomonas 

aeruginosa, and heterotrophic bacteria.140 Their primary research question focused on 

comparing the incidence of illness among those exposed and unexposed to fecal 

indicators in water (i.e., comparing swimmers to non-swimmers).  The authors used 

linear regression models to explore associations.  However, during the course of this 

study it was observed that FIB densities were found to be approximately 10 times higher 

in the sediment than in the corresponding surface water samples.18  To investigate this 

secondary finding, the authors used linear regression models to explore associations 

between FIB concentrations in sand and self-reported gastrointestinal (GI) illness.  The 

authors reported no association between levels of FIB in beach sediment samples and GI 

illness.  From their description of the sand exposure assessment, it appears that Seyfreid 

et al. did not perform a detailed sand exposure assessment.  The study lacked detailed 

questions of participants and their activities involving contact with sand, information on 

sand sample distribution, sample collection method, and number of samples.  Seyfried et 

al. interviewed a total of 8,402 people, of which only 3,967 swimmers and 2,105 non-

swimmers provided complete information.  The authors had missing information for 28% 

of their sample.  If the individuals with missing information were systematically different 
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from those with complete information then their findings could have been biased.  The 

authors also do not report the percentage of participants exposed and unexposed to 

contact with beach sand and details of their method of classifying exposure to sand.  

Their study ancillary investigation of sand exposure does not provide adequate answers to 

the research question regarding sand exposure and its association with illness. 

Similar to Seyfried et al., Marino et al. (1995) collected water and sand samples at 

a beach in Malaga, Spain and interviewed beach goers about illnesses they experienced 

after recreational beach activities.9  Water samples were tested for total coliforms, fecal 

coliforms, Escherichia coli, fecal streptococci, Clostridium perfringens, coliphage, 

Salmonella spp., Staphylococcus aureus, Pseudomonas aeruginosa, Aeromonas 

hydrophila, Vibrio spp., and Candida albicans.  As a secondary research endeavor, sand 

samples were collected and tested for fecal indicators, Candida albicans, and 

dermatophytic fungi only.  The investigators examined the potential association between 

fecal indicator levels in sand and illness.  Their results did not demonstrate an association 

between self-reported contact with beach sand and illness or between increasing levels of 

fecal indicators in sand and illness.  The investigators do not report details of their sand 

exposure assessment methods (e.g., sand sampling distribution, frequency, collection 

method).  It appears that the study lacked detailed questions on participants’ activities 

involving contact with sand, information on sand sample distribution, sample collection 

method, and number of samples.  The authors state that they, “selected a representative 

sample of the total population (9,691 persons, of them 6,157 were locals and 3,534 

tourists) that was not affected by confounding factors, such as: bathing in another beach, 

bathing in swimming-pools, presence of any allergic processes, problems related to toxi-
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infections by contaminated food and/or beverages, etc”.124  They present the sample 

population in Table 1 of the manuscript.  Although 9,691 individuals were said to be 

selected from the source population, totals from Table 1, indicate that only 2,463 exposed 

(swimmers) and 304 unexposed (non-swimmers) were included (a total of 2,767 

individuals) in their analysis of swimming-associated illness.  The authors limited their 

sample size and their power to detect effect by initially selecting a representative sample 

and then further restricting their study population.  Marino et al. (1995) report that they 

did not observe an effect between sand exposure and illness, but the authors do not report 

the number of individuals exposed and unexposed to beach sand.  It is likely that their 

sub-group analysis of sand exposure and illness suffers to a greater extent from small 

numbers of individuals in categories of exposed and unexposed to sand.  Marino et al.’s 

(1995) finding of a lack of an association between contact with beach sand and illness 

must be interpreted cautiously due to likely poor statistical power to detect an effect. 

Recently Bonilla et al., (2007) conducted an exposure assessment and pilot 

epidemiological study of the prevalence and distribution of fecal indicator organisms in 

water and sand at three South Florida marine beaches.141  The authors observed that 

“indicator organisms were statistically elevated in sand relative to water,” and decided to 

consider “the potential health risks associated with beach use and exposure to 

sand”.44,61,113,125  Over a two-year period, Bonnilla et al., measured fecal coliforms, E. 

coli, enterococci, somatic coliphages, and F+-specific coliphages in water and sand at Ft. 

Lauderdale Beach, Hollywood Beach, and Hobie Beach in South Florida.  The authors 

also conducted two experiments: one to assess the impact of gull excrement on sand and 

another to model movement of FIB by people walking across dry sand on the beach.  For 



 

 22 

the latter the authors tracked the spread of fluorescently dyed beads the size of fecal 

indicator bacteria to assess the spread of fecal indicator organisms across sand.  They also 

examined the microspatial distribution of Enterococcus in both wet and dry beach sand at 

short intervals along 2m transects.  This study involved a more detailed exposure 

assessment by measuring fecal indicator levels in sand and investigating the fate and 

transport of fecal indicators in sand.  The findings of the exposure assessment 

experiments and activities support the findings of previous studies.  FIB were found at 

higher concentrations in sand relative to water.   FIB were also found at higher 

concentrations in dry sand relative to wet sand, but, their results suggest that the high 

levels in the dry sand are due to animal (e.g., gull) fecal inputs.  Bonilla et al. described 

their pilot prospective cohort study with insufficient detail and did not present details of 

their study design including the selection of the study population, exposure and outcome 

classification, and data analysis methods.  The authors stated that the study population 

consisted of 882 individuals in an experimental group and 609 individuals in a control 

group.  The authors also report that the control group consisted of non-beach-goers 

randomly chosen from the general population who had not visited a beach in at last 9 

days.  They reported that crude rates of gastrointestinal (GI) illness were higher among 

controls (15.3/100) relative to beachgoers (8.5/100).  Because rates of GI illness were 

higher among the control group, the investigators excluded the controls and calculated 

odds ratios based upon the number of minutes beach-goers’ spent in the wet sand (1.008 

(95% CI 1.001-1.015) and the number of minutes spent in the water (1.009 (95% CI 

1.000-1.018)).  The effect estimates were provided without supporting tabular data 

illustrating the number of individuals who refused participation, the percent of 
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respondents excluded due to missing data, and the number of participants included in the 

analyses by exposure, outcome, and covariate(s) status.  The authors report a positive 

dose-response relationship between the number of minutes spent in the water and the 

number of minutes spent in the wet sand and GI illness, respectively.  The limitations of 

Bonilla et al.’s (2007) pilot epidemiologic study include: 1) a small study population (i.e., 

likely poor statistical power to examine subgroups or effect measure modification); 2) 

selection of and exclusion of external control group that was not comparable to beach-

goers; 3) a lack of details describing their study design features (i.e., exposure 

assignment, exposure and outcome classification); and 4) lack of details describing their 

epidemiologic data analysis methods (e.g., exposure assignment, exclusion of controls 

from the analysis; lack of adjustment for covariates of interest).  These limitations 

diminish the study’s contribution to addressing the question of whether contact with 

beach sand is associated with an increased risk of illness.  

The studies by Seyfried et al. and Marino et al. were designed with a primary 

focus on water quality and swimming-associated illness; not on sand quality and sand-

associated illness.  Seyfried et al. and Marino et al. also did not perform a detailed sand 

exposure assessment.  They did not include detailed questions about the extent of sand 

exposure including activities such as playing in the sand, digging in the sand, having 

one’s body buried in the sand, hand-washing after playing in the sand, and eating with 

one’s hands after playing in the sand.  Such lack of detail in the planning of sand 

exposure assessment can result in exposure misclassification and in certain cases 

attenuate effect estimates towards the null (e.g., non-differential exposure 

misclassification).142  Although Bonilla et al., performed a more detailed exposure 
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assessment with respect to fecal indicator sand sampling, the epidemiologic aspects of the 

study were lacking as evidenced by their selection of an external control group, poor 

statistical power to detect an effect (i.e., small sample size), and lack of adjustment for 

potential confounders during data analysis.   

The epidemiologic studies reviewed above leave unresolved questions concerning 

sand exposure and its association with illness.  The questions that are unresolved could be 

addressed by a study that included: 1) a detailed exposure assessment that includes a sand 

activities questionnaire and fecal indicator sand sampling; 2) a sufficiently large sample 

size to give reasonable statistical power to detect an effect; 3) appropriate epidemiologic 

study design features to reduce the potential effect of systematic errors (e.g., 

measurement of exposure and confounders of interest before outcome measurement, 

measurement of outcomes of interest at baseline and after a follow-up period, 

selection/use of an appropriate control group); and 4) appropriate data analysis methods 

to control for covariates that are known confounding factors or effect measure modifiers.  

A well-powered epidemiologic study with appropriate design features and data analysis 

methods is needed to address unresolved questions raised by the literature on the 

relationship between beach sand exposure and illness at beaches with a known point 

source of sewage contamination.   

The health effects 59, economic burden 59, and severity of illness 93,143-145 

associated with bathing in fresh and marine recreational waters contaminated with 

domestic sewage have been well-studied.  In 2006, Wade et al. showed that rapidly 

measured Enterococcus in recreational waters is predictive of swimming-associated GI 

illness.9  Wade et al. (2006) reported results from the 2003-2004 NEEAR water studies at 
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the Great Lakes freshwater beaches.  Their analyses focused first on the association 

between swimming contact and GI illness.  The authors observed that those with any 

water contact were almost twice as likely to have GI illness compared with nonswimmers 

[adjusted odds ratio (AOR) = 1.96; 95% confidence interval (CI), 1.33-2.90]. 9  Next, the 

authors evaluated the association between Enterococcus levels in water, measured by 

quantitative TaqMan polymerase chain reaction cell equivalents (qPCR CCE) per 100 ml, 

and GI illness.9  Wade et al. (2006) used daily averages of Enterococcus qPCR CCE to 

characterize the association with gastrointestinal (GI) illness.  Wade et al., (2006) 

reported a positive exposure-illness relationship between rapid Enterococcus qPCR CCE 

counts and GI illness.9  A log10 increase in Enterococcus qPCR CCE was associated with 

a 1.37 (95% CI, 1.10-1.71) increase in the odds of GI illness.9  Wade et al. (2006) 

examined the association between exposure to a single fecal indicator (i.e. qPCR CCE 

counts of Enterococcus) and risk GI illness among swimmers and non-swimmers.9  

Wade et al., (2008) reported that children at 10 years or younger were at greater 

risk for GI illness following exposure to swimming.146  Research has demonstrated a 

positive relationship between increased levels of FIB at marine beaches and swimming-

related illness.  The relationship between contact with beach sand and health outcomes 

remains unresolved and has not been properly evaluated through a well-powered 

epidemiologic study.  These research activities build and improve upon the work 

described in the literature and employ study design features and data analysis methods 

that can advance the state of knowledge concerning the safety of contact with sand during 

recreational beach activities.  
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B. Synopsis and Summary 

The literature suggests that beach sand may play an important role as a 

contributory factor to health effects experienced by beach-goers as a result of recreational 

beach activities.  There is mounting evidence that sand harbors high concentrations of 

fecal indicators and pathogens.  Wheeler Alm et al. observed that the mean summer 

abundance of Enterococcus was 3-38 times as high in the top 20 cm of wet-sand cores 

than in the water column at six freshwater bathing beaches on Lake Huron, MI.43  Similar 

findings by other investigators have prompted interest in the question of whether sand 

can serve as a vehicle for transmission of pathogenic microorganisms and increase the 

occurrence of illness following contact with sand during recreational beach activities.  

Past studies, however, have focused primarily on exposure assessments of sand via 

measurement of microbes and have not fully investigated relationships with health 

outcomes among individuals in contact with sand during recreational beach activities.  

Potential health risks have not been properly evaluated through an epidemiological 

study.32,33,41,124 The following two-phase study examines physical health symptoms and 

illness [including gastrointestinal (GI) illness, upper respiratory illness (URI), urinary 

tract infection, skin rash, eye ailment, ear ache, and infected cuts] experienced by beach-

goers in contact with sand and the relationship of these outcomes to health effects sand 

quality indicators (i.e., Enterococcus, Bacteroides, B. thetaiotaomicron, F+-specific 

coliphage) measured in sand in which human fecal (sewage) sources dominate.  These 

illnesses were selected because they have been shown to be associated with recreational 

water exposure in previous studies.9,10  
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It is clear that the sand sampling distribution (i.e., nearshore wet vs. backshore dry 

beach sand) is an important factor to consider so that variability of human sewage 

contamination can be captured and then used to assign exposure to participants of the 

NEEAR water study.  The sand sampling approach (as well as the fecal indicator 

laboratory analytical methods) will be described in detail in the Methods section.  

Sampling wet sand in the nearshore region of the beach (e.g., 1 m from the waterline) 

captures the variability of fecal contamination from a municipal sewage point source.43,68  

Nearshore wet sand is impacted by wave swash in the surf zone, whereas dry sand in the 

backshore region of the beach is not usually affected by wave swash (except during rare 

hurricane storm surges).  A point source of fecal contamination from a municipal sewage 

outfall has more impact on the wet sand in the surf zone through wave action than dry 

backshore sand.68  Sampling dry sand in the backshore region of the beach captures the 

variability of fecal contamination from non-point animal-sources (e.g., droppings of wild 

bird populations, domestic pets, other animals).43  To best characterize fecal 

contamination from a known sewage outfall, wet nearshore sand (e.g., 1 m from the 

waterline) should be sampled.   

The fecal indicators considered for this research include those that are regulated 

by EPA through current or proposed guidelines for recreational marine surface waters.  

Enterococcus was adopted by EPA in 1986 as a fecal indicator bacteria (FIB) for routine 

monitoring to meet marine surface water quality criteria.11,15,39,59,60  EPA’s ambient water 

quality guideline of 35 Enterococcus /100 ml for recreational marine waters is based on 

bacterial density.9,136  Enterococcus is a fecal indicator whose presence in water suggests 

warm-blooded animal or human fecal contamination.  The Enterococcus laboratory 
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analyses described in and the Methods section below will cover measurements used 

during phase two.  Briefly, two methods will be used.  The first is EPA Method 1600 for 

the enumeration of Enterococcus, an overnight culture-based method, approved as a 

standard method for the quantification of Enterococcus in water and other media.  

Method 1600 measures live culturable Enterococcus bacterial cells and the process 

requires overnight enrichment, taking up to 48 hours to get results.  The Enterococcus 

qPCR CCE measurement method is included in this research because it may better reflect 

the presence of human pathogenic viruses and protozoa that survive wastewater treatment 

and also because it offers rapid results reporting (i.e., within ≤2 hours results) greatly 

improving public health decision-making.  The rapidity of the assay is advantageous 

because high levels of fecal contamination detected in the morning (e.g., an 8:00 am 

sample) allow beach staff to make decisions about beach closures and advisories the 

same day of sample collection; thereby protecting beach-goers from same-day exposures 

to high levels of fecal contamination.  Although Method 1600 and qPCR CCE both are 

measures of Enterococcus, the methods provide two different measures of the quality of 

the sand.  Method 1600 positive results indicate the presence of viable Enterococcus 

bacteria and suggest the presence of viable bacterial pathogens.  Enterococcus qPCR 

CCE positive results indicate the presence of both viable and non-viable Enterococcus 

(qPCR CCE results reflect the presence of genetic fragments of Enterococcus).  

Enterococcus cell fragments that are inactivated during treatment of sewage effluent are 

detectable by qPCR CCE analysis.  Investigators at the US Environmental Protection 

Agency (EPA) National Exposure Research Laboratory (NERL) in Cincinnati, Ohio 

completed Method 1600 and molecular analyses.  This analysis method has been 
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proposed as a better indicator of the presence of viral and protozoan pathogens in sand 

because these pathogens also survive treatment of sewage effluent.   

F+-specific coliphage were chosen because, relative to Enterococcus, they are 

more resistant to disinfection during sewage treatment and have been shown to be more 

suitable indicators of the potential presence of viral enteric pathogens.147-149  F=-specific 

coliphage analyses were completed at the Laboratory of Environmental Health 

Microbiology and Virology at the University of North Carolina at Chapel Hill.  

Bacteroides thetaiotaomicron is included because it is considered to be a more specific 

indicator of human sewage contamination.150  Each of the indicators discussed (and 

associated detection methodologies) has limitations (such as the ability to differentiate 

between fecal sources) and these must be weighed against cost and ease of laboratory 

processing.  The use of multiple fecal indicator organisms (i.e., Enterococcus, 

Bacteroides, B. thetaiotaomicron, and F+-specific coliphage) reflects the fecal indicator 

criteria set forth by Cabelli (1978) which are adapted and applied to this research as a 

suite of health effects sand quality indicators.  Previous studies’ use of multiple fecal 

indicators to model the association between illness and fecal contamination in marine 

water makes this approach warranted.10 

Access to data and resources from the NEEAR water studies afford a unique 

opportunity to classify beach-goers’ exposure to sand using: 1) self-reported survey 

results from detailed questionnaires administered during the summer swimming seasons 

of 2003-2005 and 2007 and 2) measured concentrations of fecal indicator organisms in 

beach sand.  A sand monitoring approach using a suite of health effects sand quality 

indicators (i.e., Enterococcus, Bacteroides, B. thetaiotaomicron, and F+-specific 
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coliphage) balances sensitivity and specificity to capture the variability of point source 

sewage contamination in wet beach sand at Fairhope Beach, AL and Goddard Memorial 

State Park Beach, RI.  To the best of our knowledge this is the first study to fully 

investigate the association between exposure to beach sand and health outcomes and also 

to explore whether increasing levels of fecal indicators in sand increases beach-goers’ 

risk of illness.   



 

 

III.  STATEMENT OF STUDY QUESTIONS 

A. Study questions  

1) Is there an increased risk of illness among people in contact with beach sand 

(digging in sand or building sandcastles; buried in sand) compared to those who 

are not in contact with beach sand (including among a subgroup of children ≤10 

years of age)?   

2) Is there an increased risk of illness among people in contact with beach sand with 

higher daily average levels of fecal indicator organisms present (Enterococcus, 

Bacteroides, B. thetaiotaomicron, and F+-specific coliphage) compared to those in 

contact with beach sand with lower daily average levels of fecal indictor 

organisms? 

3) Is there an increased risk of illness among people in contact with beach sand with 

higher daily average levels of fecal indicator organisms present compared to those 

who are not in contact with beach sand? 

B. Hypotheses 

1) There is an increased risk (incidence proportion) of illness among people in 

contact with beach sand compared to those who are not in contact with beach sand 

– including among a subgroup of children ≤10 years of age. 

2) There is an increased risk (odds) of illness among people in contact with beach 

sand with higher daily average densities of fecal indicator organisms present 
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compared to those in contact with beach sand with lower daily average densities 

of fecal indicator organisms present. 

3) There is an increased risk (odds) of illness among people who are in contact with 

beach sand with higher daily average densities of fecal indicator organisms 

present compared to those who are not in contact with beach sand. 

C. Specific aims 

Using data from the 2003-2005, and 2007 NEEAR water studies, we aim to: 

1) Measure associations between self-reported contact with sand (e.g., digging in the 

sand or building sandcastles; being buried in the sand) and the risk (incidence 

proportion) of self-reported symptoms and illness during the 10-12 days following 

exposure — including a subgroup analysis among children ≤10 years of age.  

Using data from the 2007 NEEAR water studies, we aim to: 

2) Evaluate associations between daily average concentrations of fecal indicator 

organisms (Enterococcus, Bacteroides, B. thetaiotaomicron, and F+-specific 

coliphage) in wet sand and illness risk (odds) during the 10-12 days following 

sand contact activities. 

 

 



 
 
 
 

IV. METHODS 

A. Overview of methods 

1. NEEAR water study 

The National Epidemiological and Environmental Assessment of Recreational 

(NEEAR) water study is a large prospective cohort study of beachgoer health.  The 

NEEAR water study is designed and funded by the United States Environmental 

Protection Agency (EPA) and implemented through collaboration with the Centers for 

Disease Control and Prevention (CDC).  The NEEAR water study was conducted during 

the 2003-2005 and 2007 summer swimming seasons at seven beaches across the United 

States.  During 2003 and 2004 four Great Lakes freshwater beaches were sampled.  The 

Great Lakes beaches included West Beach, Indiana Dunes National Lakeshore in Porter, 

Indiana; Huntington Beach in Bay Village, Ohio; Silver Beach in St. Joseph, Michigan; 

and Washington Park Beach in Michigan City, Indiana.  Huntington Beach is on Lake 

Erie and the other beaches are on Lake Michigan.  In 2005 a marine beach, Edgewater 

Beach in Biloxi, Mississippi, was sampled.  In 2007 two marine water beaches were 

sampled: Fairhope Beach in Fairhope, Alabama and Goddard Memorial State Park Beach 

in Warwick, Rhode Island.  Sampling and analysis of water for fecal microbial indicators 

was performed during 2003-2005 and during 2007, however, sampling and analysis of 

beach sand was performed during 2007 only. 
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Beach selection for the NEEAR water study was an important first step for 

collecting data.  A set of criteria was outlined that fulfilled the requirements of the 

BEACH Act of 2000 while also maintaining cost-effectiveness.  Criteria for beach 

selection were as follows: 1) must have been a coastal beach as outlined by the BEACH 

Act of 2000; 2) must have been an officially designated recreational area near a large 

population center; 3) must have had a large attendance (e.g., 300 - 400 swimmers/day); 4) 

the age range of the swimmers must have been broad (i.e., including children, teenagers, 

and adults); 5) the beach generally had to meet state or local water quality standards with 

a range of concentrations of fecal indicator bacteria (FIB); 6) the beach must have been 

contaminated by an identified human source of pollution (point-source); and 7) the 

swimming season must have been at least 90 days long.  

For each beach, packets of informational materials were developed and sent to 

state and local health officials and regional EPA offices to inform them of the beach 

selection in their area, the project’s purpose, and the intent to enlist support for the 

project.  If beach managers were interested in participating, a site visit was made months 

prior to the swimming season to meet local parties and obtain preliminary planning and 

data collection information.  This included: 1) GIS mapping of the beach and potential 

point source contamination; 2) daily bather load/usage data; 3) historical seasonal usage 

data to plan enrollment activities; and 4) mapping of access points and weather patterns 

for planning enrollment activities. 

During the 2003-2005 and 2007 rounds of the NEEAR water study EPA collected 

data on several fecal indicators of beach water quality.  EPA has completed studies of the 

relationship between these fecal indicators of water quality and gastrointestinal (GI) 
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illness.  EPA is continuing preliminary analyses of associations between exposure 

markers for sewage in bathing water and health outcomes (including GI illness, diarrhea, 

upper respiratory illness (URI), urinary tract infection, skin rash, eye ailment, earache, 

and infected cuts) among beachgoers.  These illnesses were selected because they have 

been shown to be health concerns of exposure to fecal contamination.   

This research has been approved by the UNC Public Health-Nursing institutional 

review board (IRB) (IRB Study #07-0769) and the Centers for Disease Control and 

Prevention institutional review board (CDC IRB Protocol #3544) and makes use of data 

collection activities of the EPA NEEAR water study.  This research involves: 1) 

secondary de-identified data of participant responses to questionnaires administered 

during the NEEAR water study; 2) collection of beach sand samples during the NEEAR 

water study; and 3) measurement of concentrations of fecal indicator organisms (i.e., 

Enterococcus, Bacteroides, and F+-specific coliphage) in collected beach sand samples.  

The NEEAR water study questionnaire was for use during the 2004, 2005, and 2007 

rounds of the NEEAR water study.  Environmental sand sampling was performed at 8:00 

am each day before the baseline enrollment questionnaire was administered to 

participants of the NEEAR water study.  

The purpose of these two phases of research is to investigate potential 

associations between human contact with beach sand and health effects (due to exposure 

to pathogens of fecal origin in beach sand).  The first phase involves a secondary data 

analysis of 2003-2005 and 2007 NEEAR water study data.  Secondary data include 

participant self-reported contact with beach sand and self-reported physical symptoms 
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and illness after 10-12 days of follow-up.  Associations were evaluated between contact 

with sand and the incidence of illness 10-12 days after beach sand contact activities.   

During the second phase of research, beach sand samples were collected at 

Goddard Memorial State Park Beach, RI and at Fairhope Beach, AL during the 2007 

NEEAR water study.  Beach sand samples were analyzed to quantify concentrations of 

the following fecal indicators: Enterococcus (CFU) using culture methods (EPA Method 

1600) 151 and a previously described and validated quantitative polymerase chain reaction 

cell equivalent (qPCR CCE) method 9, Bacteroides (qPCR CCE), B. thetoiotaomicron 

(qPCR CCE), and F+-specific coliphage (EPA Method 1601).  Investigators at US EPA 

NCER in Cincinnati, Ohio and local laboratories in Alabama (Severn Trent Laboratories, 

Inc.) and Rhode Island (BAL Laboratories, Inc.) completed Enterococcus, Bacteroides, 

and B. thetaiotaomicron analyses.  F+-specific coliphage analyses were completed at the 

Environmental Health Microbiology and Virology Laboratory at the University of North 

Carolina at Chapel Hill.  Associations between laboratory results of fecal indicator 

organism measurements in beach sand and self-reported health outcomes were evaluated 

adjusting for covariates of interest.  During both phases of research, sub-group analyses 

were conducted to examine the potential increased susceptibility of children (≤10 years of 

age) to illness following recreational contact with beach sand. 

Data collected at Fairhope Beach, Alabama and Goddard Memorial State Park 

Beach, Rhode Island during the 2007 summer swim season included environmental and 

beach sand measures (e.g., meteorologic conditions, beach conditions, and Enterococcus, 

Bacteroides, and F+-specific coliphage concentrations in beach sand) on days of 

participant recruitment for the 2007 NEEAR water study.  Self-reported data was 
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abstracted from NEEAR water study participant responses to a detailed questionnaire 

administered via in-person interview at baseline and at departure from the beach and via 

telephone interview after 10-12 days of follow-up.  Measurement of fecal indicators in 

beach sand was performed at 8:00 AM each day of NEEAR water study participant 

recruitment between May 19, 2007 and September 2, 2007 (weekend days and holidays).  

Sand samples were collected at three transects along the beach that correspond to the 

water sample collection transects.   

B. Study Design 

1. Participant identification/sampling 

a. Source population: Beach enrollment and beach exit questionnaires 

A prospective cohort study was used to enrolled participants over four summer 

swim seasons at four freshwater beaches (2003-2004) and two marine beaches (2005 and 

2007).  Interviewers attempted to approach all beach-goers between 11:00 A.M. and 5:00 

P.M on the day of their visit (weekend days and holidays).  Interviewers excluded 

unaccompanied minors (below 18 years) or those who could not speak English or 

Spanish.  During the baseline interview, participants were asked about illnesses 

experienced during the 3 days prior to their visit to the beach.  Upon leaving the beach, 

participants were interviewed to ascertain information about beach activities, including 

swimming and contact with beach sand.  Ten to 12 days following the beach-exit 

interview all participants were interviewed by telephone to determine whether they 

developed enteric and/or non-enteric illness during the time since their beach visit.  

Demographic information, exposures, covariates, and physical symptoms and illness 
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were measured via a detailed questionnaire administered at baseline, departure from the 

beach, and after 10-12 days of follow-up.  During 2003-2005 and 2007 interviewers 

performed the following:  

1) Approached all beach-goers about participation in the beach study; 

2) Enrolled participants on the beach and obtained verbal consent and obtained 

demographic information on the household members at the beach;   

3) Interviewed enrollees as they left the beach to answer questions about their 

activities, including swimming habits and contact with sand during that beach 

visit;   

4) Followed-up participants using a detailed health effects telephone questionnaire 

10-12 days after their beach visit.  

All beach-goers were approached on weekend days during the designated study 

period.  An adult family member was approached for initial enrollment.  After receiving 

verbal consent, eligibility was determined.  Subsequently information on family make-

up/membership, demographics, and baseline activities and illness were obtained.  Follow-

up contact information was also requested.  After completion of the enrollment interview 

(at baseline), families were encouraged to visit project work sites near exits on the beach, 

when they were leaving, to complete the exit beach questionnaire.  The information 

collected during the beach exit interview included the day’s activities, including food and 

water consumption, water and sand exposure (extent, duration, frequency, and location of 

swimming), and other covariates.  The questionnaire obtained individual level 

information on health status and potential confounders such as age, sex, race, Hispanic 
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status, housing characteristics, family characteristics, and behaviors.  A low cost 

incentive was offered following completion of the beach questionnaire.    

b. Identification of participants with physical symptoms and illness 

Ten to 12 days after the family’s beach visit, an adult caregiver who participated 

in the enrollment/baseline and beach exit interviews (preferably the original one 

interviewed the day of beach enrollment) was asked a series of questions about family 

members’ health status and potential burden of illness since the beach exit interview.  

Questions covered common physical symptoms of enteric and non-enteric illnesses 

(gastrointestinal, diarrhea, upper respiratory, skin rash, ear, eye, cut/wound infections) 

and, if possible, determined the duration and frequency of any reported illness.  A low 

cost incentive was given following completion of the telephone questionnaire.   

2. Methods 

a. Classification of exposure 

1. Exposure of interest 

We considered two primary exposures of interest.  The first was self reported 

contact with beach sand which was measured by two questions on the enrollment-day 

beach exit survey.  The first question covered digging in the sand or playing in the sand 

and the second question asked whether participants had their body buried in the sand.  

Multiple survey questions on participant contact with beach sand allowed us to evaluate 

two methods of defining exposure.  Self-reported sand contact activities were reported as 

binary (0 = No; 1 = Yes).  The exposure measure during the second phase of research 
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was the concentration of fecal indicators (Enterococcus, Bacteroides, B. 

thetaiotaomicron, F+-specific coliphage) measured in beach sand samples.  Several 

methods of exposure classification were considered for the fecal indicators data: 

classification as a continuous variable, binary variable, and ordinal categorical variable.    

2. Exposure period 

The exposure period was defined as the period of recreational activity at the beach 

between the baseline/enrollment and beach exit interviews.  The enrollment interview 

was conducted during the morning when participants arrived at the beach and the exit 

interview was conducted after recreational activities were completed as participants were 

leaving the beach (the same day of enrollment).  During the enrollment and exit 

interviews participants were asked about exposures they experienced during the 3 days 

prior to enrollment and on the day of enrollment, respectively.  Exposures that occurred 3 

days before the day of enrollment included activities such as swimming at a pool, 

swimming at another beach, swimming at the same beach, or eating raw or undercooked 

eggs, red meat, fish, or shellfish.  These exposure activity questions were repeated during 

the telephone follow-up questionnaire conducted 10-12 days after participants left the 

beach.  

3. Beach sand exposure measurement  

For the first phase, beach sand exposure was measured by participant self-report 

of contact with beach sand during the 2003, 2004, 2005, and 2007 NEEAR water studies.  

Upon leaving the beach in 2003, 2004, and 2005, NEEAR water study participants were 

asked to self-report if they:  
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1) Had been digging in the sand or building sand castles, or 

2) had their body buried in the sand. 

During the 2007 NEEAR water studies beach sand exposure questions were 

expanded.  Upon leaving the beach, participants were asked the following instead of 1) 

and 2) above:  

1) Did you engage in any of the following activities while at the beach today?  

a. Collecting sea shells, rocks, feathers, etc? 

b. Digging in sand or building sand castles? 

c. Had your body buried in sand? 

1. (If YES to 1.b., or 1.c.) Did you get any sand in your mouth? 

a) After digging in the sand, or building sand castles…did you 

eat anything with your hands? (not necessarily at beach)?  

b) After digging in the sand, or building sand castles did you 

wash your hands before eating (washing of hands may 

include the use of a personal water-free hand sanitizer)? 

Participant answers to this series of questions were coded as: Yes = 1, No = 2, Refused = 

7, or Don’t Know = 8.   

During phase two, self-reported data from the exit interview (as described above) 

was combined with results from the fecal indicator beach sand sampling effort.  Beach 

sand sampling was conducted prospectively during the 2007 NEEAR water study to 

measure fecal indicator concentrations (Enterococcus, Bacteroides, B. thetaiotaomicron, 

and F+-specific coliphage) in beach sand along three transects at Goddard Memorial State 

Park Beach, RI and Fairhope Beach, AL.  This provided a continuous measure of sand 
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exposure and allowed us to perform an evaluation of associations between fecal indicator 

concentrations in sand and NEEAR water study participant self-reports of illness 

(including GI illness, diarrhea, upper respiratory illness, eye ailment, earache, skin rash, 

and infected cuts/wounds).   

In the following sections, we describe various approaches to the distribution of 

sand samples, method of sand sample collection, method of measuring fecal indicators (in 

sand samples at beaches), and statistical methods to evaluate sand exposure as well as 

associations between fecal indicators in sand and health outcomes.   

4. Consideration of the distribution of sand samples  

The sand sampling strategy for the proposed research was based on previously 

published approaches from the scientific literature.152-154  There were many factors to 

consider in developing a sand sampling strategy (e.g., distance from the waterline, depth, 

and timing of sample collection).  Past studies have involved complex sand sampling 

strategies; however, that was not the focus of this research.  Cost was a constraint on the 

spatial and temporal frequency of sand samples that could be collected.  Available 

resources allowed for collection of 3 beach sand samples during the 2007 NEEAR water 

studies.  It was important to consider several methods to collect these samples to identify 

the approach that would balance costs and allow us to adequately evaluate associations 

with health effects. 

Sufficient financial resources were not available to collect sand samples at 

varying distances from the waterline (i.e., nearshore vs. backshore sand of the beach), nor 

to collect samples at varying depths or varying time points during the day.  We employed 

a sand sampling strategy involving collection each weekend day (i.e., Saturday and 
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Sunday) of the 2007 NEEAR water study at 8:00 a.m., at a distance of 1 m from the 

lowest point of the waterline (see Figure 1), at a depth of at least 8 cm (including the 

Independence Day and Labor Day holidays).  Sand was collected along 3 transects (the 

same 3 transects for water sampling) using a soil auger at distance of 1 m from the lowest 

point of the waterline, at a depth of at least 8 cm (see Figure 1).  This method accounted 

for the movement of the tides because the sand sample collection point (lowest point of 

the water line) would move along with the tides (i.e., our sampling point followed the 

lowest point of the water line and the sample was taken 1 m from that point).   

Figure 1.  Distribution of wet sand sampling points (1-3) along three transects 
approximately 60 m apart (not drawn to scale).  
 

 

 

 

 

 

 

 

 

 

The sand sampling approach was evaluated after a local laboratory fecal indicator 

results from a dry run were reviewed.  Laboratory fecal indicator results from our sand 

sampling approach were also reviewed during the first week of enrollment of the 2007 

NEEAR water study (at Fairhope Beach, AL).  During the initial weeks of the study, 

several sand sampling factors listed above could have been changed (e.g., distance from 

waterline, depth below surface, and time of day); however, given the satisfactory review 
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of results from the local laboratory (Severn Trent Laboratories, Inc. Mobile, AL) after the 

dry run and first week of sampling during enrollment, the sand sampling approach was 

not modified.   

For completeness, a presentation of an alternate sand sampling approach is 

presented (see Figure 2).  For example, 2 samples could have been collected—one 

sample 1 m from the waterline (wet sand) and one ~10 m from the waterline (to capture 

variability in fecal indicators in wet sand vs. dry sand) (see Figure 2).  Briefly, alternate 

approaches could also have involved sampling sand: (1) at varying depths below the 

surface (e.g., 8 cm, 50 cm, 1 m, 2 m, etc.); (2) at varying times throughout the day (8:00 

a.m., 11:00 a.m., and 3:00 p.m.); and (3) at varying distances from the waterline (at 1 m 

to capture nearshore wet sand quality vs. at 10 meters to capture backshore dry sand 

quality).  Figure 2 shows an example of an alternate sand sampling approach where 

samples could have been collected at varying distances from the waterline.  This would 

have allowed for comparisons of sand quality in the nearshore region (i.e., wet sand) 

compared to the backshore region (i.e., dry sand).  Although several studies have used 

this approach to compare sand quality at varying distances from the waterline, we will 

not adopt this approach based upon the assumption that sewage discharges from nearby 

municipal outfalls will more likely impact the nearshore wet sand region as opposed to 

the backshore dry sand region.  The sampling approach was not changed after the dry run 

and initial weeks of the 2007 NEEAR water study.  An alternate sand sampling approach 

could have been considered during the 2007 NEEAR water study, however, approach 

outlined in Figure 1 was adopted for this research.    
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Figure 2. Alternate sample distribution example for wet nearshore sand (locations 1-3) vs. 
dry backshore sand (locations 4-6) along six transects 60 m apart (not drawn to scale).   
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samples representative of sand quality in the nearshore wet sand region of the beach.  All 
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Severn Trent Laboratories, Inc in Mobile, Alabama.  Investigators at the US EPA NCER 

in Cincinnati, Ohio assayed molecular Enterococcus, Bacteroides, and B. 

thetaiotaomicron in sand.  Culture-based F+-specific coliphage was assayed at the 

Environmental Health Microbiology and Virology Laboratory at the University of North 

Carolina at Chapel Hill. 

5. Beach sand sample collection  

We collected 3 beach sand samples along with the 8:00 a.m. water samples each 

weekend day.  The sand samples were collected 1 meter from the lowest point of the 

water level (when the waves receded to their lowest point from the shoreline) at the same 

3 transects where water samples were collected.  The sand was wet.  If the sand was not 

wet at 1 meter from the waterline, the sand collection location was moved the shortest 

possible distance toward the water to a location where the sand was wet.  The actual 

distance from the water was recorded if this occurred.  Global Positioning System (GPS) 

readings of the actual sand collection locations and a photo of the sample collection sites 

were taken.  

Sand samples were collected with a 2.25-inch diameter stainless steel soil auger 

with sterile, 2 inch x 12 inch plastic liners (AMS, American Falls, Idaho, or the 

equivalent).  The auger was pushed into the sand at least 8 inches.  If polypropylene 

liners were not available, the liners were sterilized using ethylene oxide or 70 % ethanol.  

Liners containing the sand samples were capped at both ends, placed in zip-lock plastic 

bags labeled using a simplified version of the usual alpha-numeric system (see below), 

and transported to the laboratory on ice.  Samples were stored in a refrigerator at 4 °C 

until analyzed. 
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6. Beach sand sample analysis for fecal indicators 

In the laboratory, sand samples were aseptically transferred to sterile wide-mouth 

polypropylene bottles (500 ml or 1- liter, depending on the quantity of the sand), and 

labeled using the simplified version of the usual alpha-numeric labeling system.   

a. Enterococcus  

For each sand sample, 75 grams of sand was aseptically weighed out in a sterile, 

pre-tared, wide-mouth 500-ml bottle (using sterile spatulas), and 300 ml of Standard 

Methods73 phosphate-buffered rinse/dilution water was measured with a sterile graduated 

cylinder and was added to each bottle.  Each bottle was vigorously shaken 50 times.  

Immediately after shaking, some of the contents of the bottle were poured into two sterile 

50-ml, disposable centrifuge tubes (Corning 430829 or the equivalent) and filled to the 

50-ml mark.  The supernatant was removed from the centrifuge tubes using a sterile 

pipette and placed in a sterile 100-ml polypropylene bottle for subsequent analysis by 

Method 1600 and the quantitative polymerase chain reaction cell equivalent (qPCR CCE) 

method.136,151 This molecular method was also applied to quantification of Bacteroides 

and B. thetaiotaomicron assays. 

The accuracy of the 50-ml mark on the disposable tubes was checked before the 

dry run by randomly choosing 5 tubes from the package, weighing each of the 5 tubes, 

and recording the weights. After 50 ml of distilled water was measured with a graduated 

cylinder and poured into each of the tubes, the tubes were again weighed.  The position of 

the water meniscus was observed with reference to the 50-ml mark on the tubes.  In 

addition, 5 randomly chosen, preweighed tubes were filled with distilled water so that the 

meniscus touched the top of the 50-ml line.  The tubes were weighed again to determine 
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the weight of the water by difference.  If the mark was accurate, the weight of the 

distilled water was close to 50 grams.  All results were recorded and copies were sent to 

investigators at EPA. 

During the dry run, aliquots of 10 ml and 1 ml of each undiluted sand extract and 

1 ml of the 10-1 – 10-6 dilutions of each extract in phosphate-buffered dilution water were 

analyzed by EPA Method 1600 for Enterococcus.  The number of filtrations for the 

actual study was reduced after the normal range of concentrations in sand was determined 

during the dry run.  Three 20-ml aliquots of each sample were filtered, and the filters will 

be frozen, as described in the QPCR CCE Method, during the dry run.  The sand 

extraction method described above and the volumes used for both tests were adjusted, 

depending on the normal range of concentrations of Enterococcus in the extracts 

observed during the dry run.  The laboratory and contractor obtained EPA’s approval 

before they changed the protocol or volumes analyzed. 

In addition, the pH of each extract was taken and recorded, and a 25-gram portion 

of each sand sample was dried at 100 degrees C for several days to a week in a 

preweighed container.  After the samples were dry, the containers were weighed again to 

determine the dry weight of the sand samples by difference.  Leftover sand samples, the 

bottles of the sand-buffer slurry, and extracts were stored in the refrigerator until all the 

results had been obtained with all Enterococcus Method 1600 tests. 

b. Bacteroides and B. thetaiotaomicron 

At the contract laboratory a separate volume of the sand-buffer slurry solution 

was membrane filtered.  The extract on the filters was frozen and the filters were sent on 
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dry ice to the contract laboratory to be assayed by QPCR CCE method for Bacteroides 

and B. thetaiotaomicron using previously validated methods.75,158-160 

c. F+-specific coliphage 

After the needed sand sample volume was removed for the Enterococcus and 

Bacteroides analyses, ≥250 g of sand from the leftover sand sample was aseptically 

weighed and transferred to a new wide-mouth polypropylene sand sample bottle (500 ml 

or 1- liter, depending on the quantity of the sand or similar suitable sterile container).  At 

least 250 g of sand was weighed and transferred.  The amount weighed and transferred 

(in grams) was labeled on the new sand sample bottle.  The new sand sample bottle was 

labeled with the sample ID that was assigned with the simplified version of the usual 

alpha-numeric labeling system.  This was repeated for each sand sample that was 

collected on each weekend day.  The sand sample bottles were placed in a small plastic 

cooler (e.g., cardboard-lined styrofoam shipping cooler) containing dry ice or several 

blue ice packs and shipped via FedEx priority overnight.  The sand samples arrived at the 

EPA Human Studies Division in Chapel Hill at the latest on Tuesday mornings (10:00 

a.m.) following sample collection on Saturday and Sunday each previous weekend.  A 74 

hour holding time for the Saturday 8:00 a.m. sand sample was not exceeded.  All samples 

were analyzed using EPA standard Method 1601: Male-specific (F+) and somatic 

coliphage in water by two-step enrichment procedure 89.  

7. Beach sand sample alpha-numeric system 

To avoid confusion and duplicate sample numbers we used the following 

simplified alphanumeric (9-digit) scheme for sand sample ID numbers: S-MMDD-
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NPPXX.  Where: S stood for Sand; MMDD was the date of the sample collection; MM 

was the numeric month and DD was the day, e.g., 0614 for June 14; N was the transect 

location at the beach (1 – 3, left to right when facing the water); PP was the analytical 

method number, using either 01 = Membrane Filter Method 1600 or 02 = QPCR Method; 

XX was the planned time of day for the sample collection using 08 = 8:00 a.m., 11 = 

11:00 a.m., and 15 = 3:00 p.m. (8:00 a.m. was the only planned time for sand sample 

collection). 

8. Beach sand sample data collection activities  

Each Saturday and Sunday of participant recruitment during the 2007 NEEAR 

water studies the collection of a total of three sand samples was coordinated.  One sample 

was collected at each of the 3 transects where water samples were collected.  The sand 

samples were collected 1 m from the lowest point of the waterline at a depth of at least 8 

cm to ensure that the sand was wet.  Investigators at the EPA performed an initial site 

visit to each beach and also made follow-up visits each weekend of participant 

recruitment throughout the summer swim season to ensure proper collection of beach 

sand samples and proper laboratory processing of beach sand samples.  

Weekend day beach sand monitoring followed the sample collection and 

laboratory analysis procedures described above.  EPA trained contractors and beach field 

monitoring staff.  The contractor and beach field monitoring staff training were an 

essential to ensure that all beach sand samples were collected correctly and with the 

appropriate care each morning of participant recruitment.  Training included review of 

written instructions covering beach sand sample collection activities, including sample 

collection equipment operation and the proper handling and storage of collected sand 
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samples.  Each day of participant recruitment of the 2007 NEEAR water study beach 

sand samples were collected (weather permitting).  Lightning at the time of sample 

collection suspended sand sampling activities for that day.  Sand sample collection was 

scheduled at 8:00 a.m. and preceded participant the enrollment and baseline interview 

and enrollment day exit interview. 

b. Classification of outcome 

1. Measurement of physical health symptoms and illness 

NEEAR water study participants were interviewed at enrollment and asked to 

self-report physical health symptoms and illness at baseline and during the 3 days prior to 

enrollment.  As they departed from the beach at the end of the day of enrollment, 

participants were asked to report beach activities and were also asked for permission to 

conduct a follow-up telephone interview.  Participants who agreed were contacted by 

telephone 10-12 days following their beach exposure and asked to self-report if they had 

experienced any of the following symptoms or illnesses since their exit interview on the 

day of beach recreation: (1) gastrointestinal (GI) illness; (2) diarrhea; (3) upper 

respiratory illness; (4) eye ailments; (4) earache; (6) skin rash; or (7) infected cuts or 

wounds.  Participants’ self-reported answers to a series of questions about the occurrence 

of physical symptoms and illness were coded as: Yes = 1, No = 2, Refused = 7, or Don’t 

know = 8.   



 

 52 

2. Physical health symptoms and illness data 

Secondary health outcome data was abstracted from the 2007 NEEAR water 

study using questionnaire results from the NEEAR Water Studies (2003-2005 and 2007).  

Data included information about self-reported physical health symptoms, illness, and 

beach exposures.  This secondary dataset contained de-identified self-reports of physical 

health symptoms and illness measured once at baseline (to and again at 10-12 days of 

follow-up after enrollment day beach activities (to distinguish between prevalent and 

incident illness).  

Secondary data included binary self-reported: 1) GI illness; 2) respiratory illness 

(upper and lower); 3) earache; 5) eye ailment (watery eyes, irritation, or infection); 6) 

rash; 7) infected cuts or wounds, and 8) potential confounders (e.g., age, race, sex, beach 

site, swimming status).  Symptoms and illness were assessed via in-person questionnaire 

at baseline and three days prior to enrollment (including use of prescriptions, diagnosis of 

pre-existing medical conditions, etc.).  It was important to have recent medical history 

and physical symptoms data to be able to document a change in health status during the 

follow-up period and also to identify potential exclusion criteria.  For example, persons 

who reported GI illness in the three days prior to enrollment were excluded from analysis 

of GI illness, but were eligible for analyses of other illnesses.  The secondary data set 

from the 2003-2005 and 2007 rounds of the NEEAR water study allow us to capture 

information related to frequency and duration of health symptoms (e.g. “What day did 

symptoms start?” and “How many days did the symptoms last?”).  Surveys at baseline 

and after 10-12 days of follow-up allow us to differentiate between pre-existing outcomes 

and incident outcomes.  Secondary data including frequency (number of symptom 
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episodes in past two weeks) and duration (how many days symptoms lasted) were 

abstracted for the following physical health symptoms and illnesses:   

1. GI illness, defined as any of the following:  a) Diarrhea (3 or more loose stools in 

a 24 hour period), b) vomiting, c) nausea and stomachache; 

2. Diarrhea alone (3 or more loose stools in a 24 hour period); 

3. Upper Respiratory illness (URI), defined as any two of the following: sore throat, 

cough, runny nose, cold, fever; 

4. Skin Rash; 

5. Eye ailment, defined as either eye infection or watery eye; 

6. Earache;  

7. Infected cuts or wounds. 

3. Data analysis methods 

a. Data checking  

A preliminary review of the environmental exposure (e.g., beach sand samples, 

environmental beach conditions, and meteorologic conditions) and health outcome 

secondary data of physical symptoms and illness from all rounds of the NEEAR water 

study were performed to check for outliers and implausible data points.  Errors in data 

were evaluated and if deemed actual errors by comparisons with responses of other 

participants and based upon substantive reasoning, then they were deleted from the data 

set.  Data sets were also cleaned and evaluated for missing values.  Beach sand 

measurements of fecal indicators (Enterococcus, Bacteroides, and F+-specific coliphage) 
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were recorded as continuous measures in data sets on secure servers at the EPA, Research 

Triangle Park, NC. 

b. Overview of data analysis  

We examined the association between beach sand exposure and physical health 

symptoms and illness using prospective data collected during the NEEAR water study 

(2003-2005 and 2007) from 7 recreational beach sites across the U.S.  Data analysis was 

completed in two phases. First, we evaluated the association between self-reported 

exposure to beach sand [digging in the sand or building sand castles; burying one’s body 

in the sand] and the incidence of self-reported physical health symptoms and illness 

during 10-12 days follow-up (Study Question 1, Hypothesis 1, and Specific Aim 1).  

Next, we evaluated the association between exposure to fecal indicators (Enterococcus, 

Bacteroides, B. thetaiotaomicron, and F+-specific coliphage) measured in beach sand 

samples and the incidence of self-reported health symptoms and illness during 10-12 days 

of follow-up (Study Question 2, Hypothesis 2, and Specific Aim 2).  

There were 2 hypotheses that corresponded to the 2 phases of research.  For phase 

1, we hypothesized that among people who were exposed to beach sand the incidence 

proportion of illness would be higher than the incidence proportion of illness among 

people unexposed to beach sand (including among a subgroup of children ≤10 years of 

age).  For phase 2, we hypothesized that among people who were exposed to beach sand 

with higher levels of fecal indicator organisms, the incidence proportion of illness would 

be higher than the incidence proportion among people who were exposed to beach sand 

with lower levels of fecal indicator organisms (including among a subgroup of children 

≤10 years of age). 
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The primary outcomes were self-reports of physical symptoms and illness, 

measured on a binary scale with 1 being YES to a physical symptom and 2 being NO to a 

physical symptom.  Physical symptoms were grouped into 7 outcomes (illnesses).  We 

considered the following: (1) GI illness, 2) Diarrhea, (3) Upper Respiratory illness (URI); 

(4) Rash; (5) Eye; (6) Earache; and 7) Infected cuts or wounds. 

To exclude those with prevalent illness, participants who were ill in the 3 days 

prior to their beach visit were excluded for the outcome with which they were afflicted.  

For example, a subject who reported GI symptoms at baseline was excluded for the GI 

analysis, but was eligible for other outcomes.  We also examined different definitions of 

GI illness, including diarrhea alone (three or more loose stools in a 24 hour period). 

c. Data analysis (Specific Aims 1 & 2) 

For phase 1 (Specific Aim 1) the hypothesis was that the incidence proportion of 

illness would be higher among those who were exposed to beach sand compared to the 

incidence proportion of illness among those unexposed to beach sand (including among a 

subgroup of children ≤10 years of age).  For phase 2 (Specific Aim 2) the hypothesis was 

that among people who were exposed to beach sand with higher levels of fecal indicator 

organisms, the incidence proportion of illness would be higher than the incidence 

proportion among people who were exposed to beach sand with lower levels of fecal 

indicator organisms (including among a subgroup of children ≤10 years of age).   

Critical covariates for this analysis included age, sex, race/ethnicity, swimming, 

beach, contact with animals, contact with other persons with diarrhea, number of other 

visits to the beach, any other chronic illnesses (GI, skin, asthma), eating food while at the 

beach, eating raw or undercooked meat since the time of the beach interview, and eating 
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raw or undercooked eggs since the time of the beach interview.  For respiratory and skin 

outcomes, the use of insect repellent and sun block were also considered.  A variable was 

also created to control for a large festival that took place at Silver Beach, drawing over 

17,000 visitors directly adjacent to the beach.  A number of covariates, especially 

swimming status and beach site, were considered potential important effect measure 

modifiers of exposure-illness associations.   

We considered using log-linear binomial regression to model the association 

between beach sand quality measures and health effects, however, a small sample size led 

to problems with model convergence.  We therefore used logistic regression models to 

estimate the association between the incidence of illness and Enterococcus qPCR CCE/g, 

Enterococcus Method 1600 CFU/g, Bacteroides qPCR CCE/g, and F+-specific coliphage 

PFU/g, respectively in sand: (1) among those who had contact with the sand; and (2) 

among all participants with those who did not have contact with sand as the reference 

category.  Generalized linear models (GLM) using an identity link and a binomial error 

structure were also considered to estimate the attributable risk (contact with sand minus 

no-contact with sand), which we also will refer to as sand-associated illness.  We 

considered that the robust variance estimates, or the “sandwich” estimator of variance, 

was used in all models to account for the non-independence resulting from the 

household-cluster sample.   

Incidence proportion ratios (IPR) were used to estimate the association between 

exposure data (i.e., self-reported contact with sand) and follow-up health outcome data 

(self-reported illness).  At the start of analysis a 5% change-in-estimate of IPRs and 

backwards elimination approach was employed.  Potential effect measure modifiers were 
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evaluated using stratification and the Breslow-Day test of homogeneity.  All analyses 

were completed using SAS version 9 © (SAS Institute Inc., Cary, NC, USA), Stata 

version 9.2 © (StataCorp LP, College Station, TX, USA). 

d. Statistical power calculation 1 

This study involved hypothesis testing and the study size was fixed.  We 

estimated power.  The first hypothesis was was that among people who were exposed to 

beach sand the incidence proportion of illness would be higher than the incidence 

proportion of illness among people unexposed to beach sand.  

For this power calculation we assumed that alpha was 0.05 and that our study 

size, based on data from a preliminary study by Wade et al, (2006) and from unpublished 

data, was 20,436.  We were trying to estimate beta.  To examine statistical power for 

binary outcome variables, we used the formulae given by Clayton and Hills (1996), 

Friedman et al., (1998), and Selvin (1996).  To simplify the power analysis, we 

considered the simple problem of comparing two levels of exposure (exposed and 

unexposed) with 8,975 participants in the exposed group (those digging in the sand) and 

11,461 participants in the unexposed group (those not digging in the sand) as observed by 

Wade et al, (2006) in a preliminary study and from unpublished data.  This power 

calculation reflected phase one plans for binary exposure categories.  We considered 

other exposure classification methods.  In phase two of the proposed research, exposure 

was represented by a continuous index (e.g. CFU, qPCR CCE, or PFU per g of sand).  In 

addition, we assumed that individuals are independent.  We assumed two-sided tests and 

a Type I error rate (significance level) of 5%.   
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Considering a binary outcome variable, onset of symptoms and again using 

unpublished data data provided by Tim Wade (EPA), we defined “onset” for a given 

symptom as a “Yes” self-report on a binary scale.  Among the seven illnesses and 

physical symptoms studied, incidence ranged from 7.4% for GI illness, to 0.4% for 

infected cuts, with an average incidence across all symptoms of 3.1%.  For the purposes 

of power analysis, we considered the incidence distribution of each of the illnesses 

studied by Wade et al, (2006) and from unpublished data sets.  

 
Table 1. Smallest Detectable Incidence Proportion Ratio 

Power Incidence of illness and symptoms 
(from preliminary data) 80% 90% 

7.4% (GI illness) 1.15 1.17 
5.8% (Upper respiratory illness) 1.17 1.20 

3.0% (Eye irritation) 1.25 1.29 
2.7% (Rash) 1.26 1.31 

1.5% (Earache) 1.37 1.45 
0.6% (Urinary tract infection) 1.66 1.81 

0.4% (Infected cut) 1.88 2.10 
 

Table 1 shows the smallest detectable incidence proportion ratio (IPR) across the 

distribution of incidence for each illness, for 80% and 90% power.  For GI illness the 

study has good power to detect an IPR of 1.17.  In general, the study has good power to 

detect IPRs around 1.25.  

e. Statistical power calculation 2  

For this power calculation we focused on children as a sub-group (≤10 years of 

age).  The study involved hypothesis testing and the study size was fixed.  We estimated 

power.  The hypothesis was that, among a subgroup of children ≤10 years of age who are 
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exposed to beach sand, the incidence proportion of illness was higher compared to the 

incidence proportion among those who were not exposed to beach sand. 

We assumed that alpha was 0.05, that our sub-group analysis study size was 4,712 

based on unpublished data from Tim Wade and that we were estimating beta.  The 4,712 

individuals consisted of children (10 years of age or younger) from each of the five 2003-

2005 NEEAR water studies beach sites.  To examine statistical power for binary outcome 

variables, we used the formulae given by Clayton and Hills (1996), Friedman et al 

(1998), and Selvin (1996).  To simplify the power analysis, we considered the simple 

problem of comparing two levels of exposure (exposed and unexposed) with 3,566 

children in the exposed group (those digging in the sand) and 720 children in the 

unexposed group (those not digging in the sand) as observed by Wade et al., 2006 in a 

preliminary study and from unpublished data.  This power calculation reflected phase 1 

plans to consider binary exposure categories (other exposure classification methods were 

considered).  In phase 2 of the proposed research, exposure was represented by a 

continuous index (e.g., CFU or qPCR CCE Enterococcus concentration per g of sand).  

We assumed that individuals were independent.  We assumed two-sided tests and a Type 

I error rate (significance level) of 5%.   

Considering a binary outcome variable, onset of symptoms, and again using data 

from our preliminary study and unpublished data, we defined “onset” for a given 

symptom as a YES self-report on a binary scale.  Across the seven illnesses and physical 

symptoms, incidence ranged from 8.6% for GI illness, to 0.2% for infected cuts, with an 

average incidence across all symptoms of 3.6%. 
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Table 2. Smallest Detectable Incidence Proportion Ratio 
Power Incidence of illness and symptoms among 

children (from preliminary data) 80% 90% 
8.6% (GI illness) 1.56 1.70 

8.2% (Upper respiratory illness) 1.58 1.73 
3.2% (Rash) 2.40 3.20 

2.2% (Eye irritation) 3.61 8.00 
1.8.% (Earache) 6.00 N/A* 

0.7% (Urinary tract infection) N/A* N/A* 
0.2% (Infected cut) N/A* N/A* 

                     * Incidence of illness is too low to calculate 90% power. 

 

We excluded participants with illness at baseline (prevalent cases).  For the 

purposes of power analysis, we considered the incidence distribution of each of the 

illnesses studied by Wade et al, (2006).  Table 2 shows the smallest detectable cumulative 

incidence proportion ratio (IPR) across the distribution of incidence for each illness, for 

80% and 90% power.  For GI illness among the sub-group of children ≤10 years old the 

study has good power to detect IPRs of around 1.56.  Preliminary unpublished data and 

data from Wade et al, (2006) show that the study may not have good power to detect 

IPRs for illnesses with an incidence below 2.2%.  In general, this power calculation 

demonstrated that the sub-group study had good power to detect IPRs around 1.7.



 

 
 
 
V. RESULTS 

A. Contact with beach sand among beach-goers and risk of illness 

1. Introduction 

Recently, numerous studies of fecal contamination in beach sand have triggered 

interest among scientists, the news media, and the general public.22,40-

45,65,68,69,99,108,110,120,122,123,137,138,161  There is evidence that beach sand may harbor higher 

concentrations of fecal indicator organisms (microbes whose presence indicates the 

potential presence of fecal pathogens) than nearby bathing waters.43-45,65,68,79,110,123  These 

studies have consistently showed high concentrations of fecal indicator organisms in 

beach sand and sediment during the summer swimming season and also throughout the 

year.  Wheeler Alm et al., observed a mean summer abundance of E. coli and 

Enterococcus 3-38 times higher in the top 20 cm of wet-sand cores compared to levels in 

the water column at six freshwater bathing beaches on Lake Huron, MI.43  In addition to 

fecal indicator organisms, several studies have detected pathogenic bacteria 

(Pseudomonas aeruginosa, Salmonella, Shigella, Campylobacter jejuni, Staphylococcus 

aureus, Vibrio parahaemolyticus, and Vibrio harveyi), viruses (adenovirus, norovirus, 

enterovirus, coxsackievirus types A16, B1, and B5, echovirus type 1, poliovirus type 2, 

hepatitis A virus), fungi (Candida albicans and dermatophytic fungi), and parasitic 

nematodes (Toxocara canis) in beach sand.45,64,65,68-70,96,98,128   

The sources of high levels of fecal microbial pollution in beach sand are not clear.  

Some research attributed the source of the fecal pollution to municipal sewage treatment 
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plant discharges in close proximity to beaches; however, other studies attributed the 

source of fecal pollution to non-point sources such as urban runoff and/or warm-blooded 

domestic and wild animals.43,68,110,111  Numerous studies found that the conditions in 

foreshore, nearshore, and backshore sand can favor the persistence, survival, and re-

growth of E. coli and Enterococcus suggesting that elevated levels of these fecal indicator 

bacteria (FIB) in beach sand may represent autochthonous populations rather than 

impacts from sewage sources of contamination.32,41,124  Conditions that favor the 

persistence, survival, and possible re-growth of autochthonous FIB in sand include 

increased protection from sunlight, buffered temperatures, more nutrient availability, 

reduced osmotic stress, cover from predation by other microorganisms, a large surface 

area for biofilm development, and higher moisture and organic content from wave 

swash.32,45  Some studies suggest that conditions in nearshore wet sand may be more 

favorable for FIB survival than backshore dry sand,32,33 while others suggest that dry sand 

conditions favor the ability of E. coli and other FIB to outcompete predators and survive 

as an autochthonous population.124  It is not entirely clear which fecal microbial pollution 

sources initially populate the beach sand community.  However, nearshore wet sand is 

more likely than backshore dry sand to be impacted directly by municipal sewage 

treatment plant discharges via wave swash.40,41,43  It is also likely that nearshore wet sand 

(as well as backshore dry sand) is impacted by pollution from animal (gull, other bird, 

and domestic pet) and human (at beach bathhouses, showers, and restrooms) 

activities.41,43,94  Regardless of the source of fecal contamination, there is considerable 

evidence that fecal indicator bacteria and viruses, including E. coli, Enterococcus, 

Bacteroides, Clostridium perfringens, and F+-specific and somatic coliphage (used to 
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indicate the potential presence of fecal pathogens), have been found to be present orders 

of magnitude higher in beach sand compared to nearby bathing waters.40,41,43   

The results of these numerous exposure assessment studies suggest that beach 

sand contact activities may be associated with health effects; however, a consistent 

relationship with health effects has not been demonstrated across previous 

studies.32,33,41,124  Whereas the health effects,59 economic burden,59 and severity of illness 

93,143-145 associated with bathing in fresh and marine recreational waters has been well-

studied (demonstrating a positive relationship between swimming in fresh and marine 

recreational water and enteric illness), little is known about the relationship between 

specific sand contact activities and health effects.  Although numerous exposure 

assessment studies have provided useful information about beach sand quality, very few 

studies have examined whether specific beach sand contact activities are associated with 

an increased risk of illness among beach-goers.32,33,41,124  The relationship between 

beachgoer reports of specific beach sand contact activities and health effects therefore 

remains largely unresolved.   

The National Epidemiological and Environmental Assessment of Recreational 

(NEEAR) Water Study is a large national survey of beachgoers sponsored by the EPA 

and the Centers for Disease Control and Prevention (CDC).9,146  Using data gathered from 

beachgoers participating in the  2003-2005 and 2007 rounds of the NEEAR Water Study, 

we examined the relationship between specific beach sand contact activities (digging in 

the sand or building sand castles; having one’s body buried in the sand) and the risk of 

enteric [gastrointestinal (GI) illness and diarrhea] and non-enteric illnesses [upper 

respiratory illness (URI), skin rash, eye ailments, earache, and infected cuts].  To the best 
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of our knowledge this is the most comprehensive investigation of the association between 

specific beach sand contact activities and risk of illness. 

2. Methods 

a. Study Design / Participant Sampling 

The NEEAR Water Study is a prospective cohort design conducted of visitors to 

freshwater Great Lake beaches on Lake Michigan and Lake Erie during the summers of 

2003 and 2004 and also visitors to marine water beaches on the Gulf of Mexico and the 

Atlantic Coast during the summers of 2005 and 2007.  The NEEAR Water Study was 

designed to evaluate microbial water quality at U.S. beaches and swimming-associated 

illness.  Examining relationships between beach sand contact and illness was originally 

not a goal of the NEEAR water studies.  The data collection methods of the NEEAR 

water studies have been described previously.15,146  In brief, we attempted to enroll all 

beach-goers between 11:00 AM and 5:00 PM during summer weekends and holidays.  

Unaccompanied minors (below 18 years) or those who could not speak English or 

Spanish were ineligible.9,146  At the time of enrollment, we interviewed volunteers to 

collect baseline information on demographic characteristics and exposures and illnesses 

that occurred during the previous 3 days.  We interviewed volunteers again as they were 

leaving the beach to ascertain information about their degree of contact with beach sand, 

swimming behaviors, and other beach activities.  Ten to 12 days later, one of the adults in 

the household was interviewed by telephone about health symptoms experienced by 

participating household members.  We used a standard questionnaire from year to year to 

collect all demographic, exposure activity, covariate, and illness information from study 

participants at beaches.  Because of the acute nature and short duration of illnesses and 
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infections considered during this study, participants could re-enroll in the study 28 days 

after their previous enrollment.  

b. Beach Descriptions 

Seven beaches with nearby sewage treatment plant discharges were chosen for the 

NEEAR Water Studies.9,146 Human-derived pollution sources generally cause the most 

health concern at recreational beaches.162  In 2003, NEEAR water studies were conducted 

at West Beach (on Lake Michigan in Indiana Dunes National Lakeshore in Porter, 

Indiana) and Huntington Beach (on Lake Erie in Bay Village, Ohio).  In 2004, 2 Lake 

Michigan beaches were studied: Silver Beach, near St. Joseph, Michigan, and 

Washington Park Beach in Michigan City, Indiana.  In 2005, a marine water beach was 

studied: Edgewater Beach, on the Gulf of Mexico near Biloxi, Mississippi.  In 2007, we 

studied 2 additional marine water beaches: Fairhope Beach, on Mobile Bay in Fairhope, 

Alabama, and Goddard Beach, on Greenwich Bay near Warwick, Rhode Island.   

c. Definition of Sand Contact 

We ascertained the nature of participants’ contact with beach sand through a 

structured interview as beach-goers were leaving the beach.  The interview included 

questions about sand exposure, important potential risk factors for sand exposure, 

important potential risk factors for the illnesses studied, and other activities during 

participants’ time spent at the beach. We asked all participants to give yes or no answers 

to questions, but participants could refuse to answer any question or report that they 

didn’t know the answer.  We considered two types of sand exposure: (1) digging in the 

sand; and (2) having one’s body buried in the sand.  Participants who “dug in the sand” 
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were defined as those who reported that they dug in the sand or built sand castles during 

the time at the beach the day of the interview.  Having one’s body buried in the sand was 

defined as those who reported that they had their body buried in the sand during the time 

spent at the beach on the day of the interview.  We suspected that body buried in the sand 

could be a more intense exposure to sand.  During the 2007 NEEAR water studies, we 

also collected more specifically defined information on sand exposures including whether 

participants got sand in their mouth, whether participants ate or drank after playing in the 

sand, and whether participants washed their hands before eating or drinking after playing 

in sand.   

d. Exposure Period 

The exposure period encompasses recreational activities performed during the day 

of enrollment while participants were at the beach.  This was the period between the 

baseline enrollment interview and the beach exit interview.  The enrollment interview 

was conducted as participants arrived at the beach and the exit interview was conducted 

after completion of enrollment-day recreational activities as participants were leaving the 

beach.  During the beach enrollment interview participants were asked about the 

exposures and activities that occurred three days prior to enrollment and during exit 

interviews participants were asked about the exposures and activities that occurred on the 

day of enrollment, respectively.  Exposures that occurred 3 days before the day of 

enrollment included activities such as swimming at a pool, swimming at a beach, and 

exposures that were considered potential confounders of the exposure of interest such as 

eating raw meat, runny eggs, or shellfish.  Some of these exposure questions were 
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repeated during the telephone follow-up interview conducted 10-12 days after 

participants departed the beach.  

e. Health Assessments 

NEEAR water study participants were interviewed at baseline and asked to report 

physical health symptoms and illness experienced during the 3 days prior to enrollment.  

We scheduled a follow-up telephone interview as participants departed from the beach on 

the day of enrollment.  Participants who agreed were contacted by telephone 10-12 days 

following the day of beach exposure and asked to report if they had experienced any of 

the following physical symptoms or illnesses since their beach-exit interview the day of 

enrollment:  

1. “Gastrointestinal illness” (GI illness) was defined as any of the 

following: diarrhea (three or more loose stools in a 24-hour period); 

vomiting; nausea and stomach ache; nausea or stomach ache, and 

interference with regular activities (missed time from work or school, 

or missed regular activities as a result of the illness). 

2. “Upper respiratory illness” (URI) was defined as any 2 of the 

following: sore throat, cough, runny nose, cold, or fever. 

3. “Rash” was defined as a rash or itchy skin. 

4. “Eye ailments” were defined as either eye infection or watery eye. 

5. “Earache” was defined as earache, ear infection, or runny ears. 

6. “Infected cut” was defined as a cut or wound that became infected  

During the telephone follow-up interview, participants answered a series of 

questions about the occurrence of physical symptoms and illnesses.  Ascertainment of 
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physical symptoms and illness at baseline (3 days prior to enrollment) and again after 10 

to 12 days of follow-up allowed us to differentiate between pre-existing or prevalent 

health outcomes and incident health outcomes.  During the telephone follow-up interview 

we also asked participants about other potential risk factors since the enrollment-day 

interview.  This included information such as the number of times participants went to 

the same beach, went swimming at another beach (swimming defined as any water 

contact), went swimming in a pool, or ate raw or under-cooked foods (e.g., red meat, fish, 

shellfish, eggs).  Participants with prevalent illness were excluded from the analysis for 

that outcome and were eligible to be included in analyses of other outcomes.  We also 

examined a definition of GI illness as diarrhea alone (three or more loose stools in a 24-

hour period). 

f. Statistical Analysis 

A preliminary review of demographic, sand exposure, health outcome, and 

covariate data was performed to check for outliers and implausible data points.  Errors in 

data were evaluated and, if deemed actual errors by comparisons with responses of other 

participants and based upon substantive reasoning, were deleted.  Analysis data sets were 

also cleaned and evaluated for missing values.  Only those with complete data on 

important covariates were kept.  This involved creation of data sets for each outcome that 

excluded missing data values for that outcome, sand exposure variables, and critical 

covariates (age, sex, race/ethnicity, swimming status, and beach). 

We examined the frequency of each beach sand contact activity – digging in the 

sand or building sand castles; having one’s body buried in the sand – first stratified by 

beach and then across all beaches combined.  We used log-linear binomial regression 
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models to estimate the crude and adjusted incidence proportion ratio (IPR) and 95% 

confidence intervals (CI) for each outcome and its association with each beach sand 

contact activity.  For models comparing those who dug in the sand to those who did not 

dig in the sand, the aIPR can be interpreted as the risk of illness among those who dug in 

the sand divided by the risk of illness among those who did not dig in the sand.  

We assumed the household to be the unit of independence in the data.  There are 

no individual identifiers in the data (e.g., name, Social Security number, address).  To 

identify potential re-enrollees we matched observations on age (birth date), sex, 

race/ethnicity, ZIP code, beach and several chronic conditions (Crohn’s disease, irritable 

bowel syndrome, asthma, emphysema / COPD, and chronic skin problems such as 

psoriasis or eczema).  Observations that matched on all of these factors were considered 

potential re-enrollees.  To account for the nonindependence of re-enrollment, the unique 

household ID of the re-enrollment study entry date was re-assigned to the unique 

household ID of the first study entry date.  Robust estimates of variance were used to 

account for the nonindependence of observations within household.163,164 

We evaluated relationships between the exposure (beach sand contact activities), 

health outcomes, and covariates that were important potential confounders.  We 

considered covariates strongly associated with beach sand contact and illness or those 

regarded by investigators to be potential confounding factors for inclusion in regression 

models.  These factors included age, sex, race/ethnicity, swimming (defined as any 

contact swimming), beach, contact with animals, contact with other persons with 

diarrhea, number of other visits to the beach, any other chronic illnesses (GI, skin, 

asthma) and eating any food or drink while at the beach.  An indicator variable was also 
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created for a festival that took place at Silver Beach, drawing 17,000 visitors to an area 

adjacent to the beach.  For URI, rash, infected cuts, and eye outcomes, use of insect 

repellent and sun block were also considered.  For each analysis, the set of covariates was 

reduced through a change-in-estimate procedure.142  The aIPRfull and aIPRreduced were 

compared using the formula: ln|RRfull/RRreduced| * 100.  A criterion of a 5% change was 

used.  For the pooled analysis, the covariates in models included age, sex, race/ethnicity, 

any contact swimming, and beach.  For the sub-group analyses, the covariates in models 

included age, sex, and beach, and selection through change-in-estimate procedure from 

the following: race/ethnicity, any contact swimming, contact with animals, contact with 

other persons with diarrhea, eating food while at the beach, eating raw or undercooked 

meat since the time of the interview, eating raw or undercooked eggs since the time of the 

interview, number of other visits to the beach, and any other chronic illnesses (GI, skin, 

asthma).  For upper respiratory illness and skin outcomes, insect repellent and sum block 

use were also considered.  The selection procedure generally reduced the number of 

covariates to 7 or fewer.   

Because age was strongly associated with sand exposure and the illnesses 

considered, we examined the functional form of the distribution of each of the illnesses 

with respect to age.  We plotted incident cases of illness using five-year age intervals 

(except age groups for the very young: 0 - < 1 yr, 1 – < 2 yr, 2 – 4 yr, and the elderly: 65 

– 103 yr).  After examining the functional form of the distribution of each of the health 

outcomes by age, we considered several methods to control for age including: (1) linear 

age; (2) polynomial age; and (3) age regression splines (linear, quadratic, and restricted 

quadratic).  The goodness of fit of each method of age coding was evaluated by 
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comparing akaike’s information criteria (AIC) values (the age adjustment method that 

resulted in the lowest AIC value was chosen).  Choice of spline age variable knots was 

informed by examining the inflection points of the plots of the illness incidence 

proportion distributions by age.  We observed an age-sex crossover in the incidence 

proportion of enteric illnesses (GI illness and diarrhea).  To model this observed age-sex 

crossover more precisely, multiplicative interaction coding between age and sex variables 

was used in log-linear binomial regression models for the enteric illnesses (GI illness and 

diarrhea).  This process (of examining the functional form of the incidence proportion by 

age) was used for each of the other outcomes.  Non-enteric illnesses showed a linear 

trend of decline in the age-specific incidence proportions and no age-sex crossover.  For 

the non-enteric illnesses (URI, skin rash, eye ailments, earache, infected cuts) linear age 

was used in regression models. 

We also examined potential effect measure heterogeneity (on the multiplicative 

scale) of the sand exposure/illness relationship across strata of covariates with biological 

plausibility as potential effect measure modifiers.  We first examined potential 

heterogeneity across the 7 beaches, then by swimming status.  Multiplicative interaction 

terms were coded for: (1) sand exposure and beach; and (2) sand exposure and swimming 

status.  This allowed slopes to differ across beaches and then across levels of swimming 

status.  Because of sample size limitations we were unable to estimate interaction effects 

for all stratified estimates.  For covariates that were not biologically plausible effect 

measure modifiers, or were not estimable because of small cell sizes, we reported 

combined effect measure estimates adjusted for potential confounders. 
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Because previous analysis demonstrated a high sensitivity of children to 

swimming-associated gastrointestinal illness, 146 (and because age was observed to be 

strongly associated with the outcomes), a stratified analysis was conducted for age in the 

following categories: (1) 0 to 10 years (children); (3) 11-54 years (children and adults); 

and (3) 55-103 years (older adults).  The age groups were selected based on sample size 

considerations and previous research.146  All analyses were completed using SAS version 

9 © (SAS Institute Inc., Cary, NC, USA) and Stata version 9 © (StataCorp LP, College 

Station, TX, USA).  

3. Results 

A total of 27,365 interviews from 13,220 household groups were completed.  Of 

these interviews, 26,339 interviews had complete information on the full set of key 

covariates: age, sex, race/ethnicity, contact with beach sand, and water contact status 

(swimming) and were included for further analysis.  Relationships between sand 

exposure and each of the health outcomes were evaluated using interviews with complete 

exposure, outcome, and covariate information. 

Respondents at the 7 beaches differed by age, race/ethnicity, miles traveled to the 

beach, and proportion of individuals who reported digging in sand.  Respondents were 

80% white and 56% female, with a median age of 28 years.  Those who dug in the sand 

were younger than those who did not dig in the sand (median age 14 and 35 years, 

respectively) but were equally likely to report vomiting, other GI symptoms, rash, eye 

irritation, earache, and a history of chronic respiratory problems or asthma at baseline 

(Table 1).  Fewer individuals who dug in the sand reported a history of chronic GI illness 

(2% vs. 3%), a history of chronic allergies (18% vs. 20%), and consumption of red or raw 
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meat prior to or immediately after the beach visit (8% vs. 11%).  More individuals who 

dug in the sand reported an infected cut or wound at baseline (8% vs. 5%), contact with 

animals 48 h prior to or immediately after the beach visit (77% vs. 72%), and swimming, 

defined as any contact with the water (82% vs. 52%).  Those who had their body buried 

in the sand were also younger than those who did not have their body buried in the sand 

(median age 10 and 30 years, respectively), but were equally likely to report vomiting, 

other GI symptoms, sore throat, eye irritation, and earache at baseline (Table 1).  Fewer 

individuals who had their body buried in the sand reported a history of allergies (17% vs. 

19%), a history of chronic GI illness (1% vs. 3%), and consumption of red or raw meat 

48 h prior to or immediately after the beach visit (7% vs. 10%).  However, individuals 

who had their body buried in the sand were more likely to have reported an infected cut 

at baseline (8% vs. 6%), swimming the day of the beach interview (89% vs. 62%), and 

have had contact with animals 48 h prior to or immediately after the beach visit (77% vs. 

74%). 

There were more female beach-goers than male in both sand-contact groups 

(digging in sand and body buried in the sand), with the largest discrepancy among those 

who did not dig in the sand (58% vs. 42%) and the smallest among those who reported 

having their body buried in the sand (51% vs. 49%).  Most participants in contact with 

sand were white.  The percentages of other races were similar across sand-contact groups, 

except Whites who were less likely to have their body buried in the sand (77% vs. 81%) 

and Hispanic/Latino participants who were more likely to report being buried in the sand 

(14% vs. 10%).  More swimmers than non-swimmers reported digging in the sand (82% 

vs. 18%) and being buried in the sand (89% vs. 11%).  Participants at Washington Park 
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Beach reported digging in the sand (47%) and buried in the sand (16%) most frequently 

followed by participants at West Beach who were slightly less likely to have reported 

digging in the sand (46%) being buried in the sand (13%).   

a. Relationship Between Sand Contact Activities and Illness  

The incidence of GI illness was 7.3% (1863 of 25548 without baseline illness) 

during the 10 to 12 day follow-up period.  GI illness incidence was highest among 

children 10 years of age and younger (9%) and lowest among those aged 55 and older 

(5%).  The adjusted risk of GI illness among those who dug in the sand was 1.14 times 

the risk of GI illness among those who did not dig in the sand (95% CI = 1.02–1.26; 

Table 2).  The incidence of diarrhea was 4.9% (1258 of 24471) during the 10 to 12 day 

follow-up period.  Diarrhea incidence was highest among children 10 years of age and 

younger (6%) and lowest among those aged 55 and older (5%).  The adjusted risk of 

diarrhea among those who dug in the sand was 1.20 times the risk of diarrhea among 

those who did not dig in the sand (95% CI = 1.05–1.36; Table 2).   

Approximately 6% of respondents reported URI and incidence was highest among 

children 10 years of age and younger (8%) and lowest among adults 55 years of age and 

older (3%).  The crude incidence of URI was higher among those who dug in the sand 

compared to those who did not dig in the sand, but after adjustment there was little 

difference in risk (aIPR = 1.06; 95% CI = 0.93–1.20; Table 2).  Age was a strong 

confounder because younger respondents were more likely both to dig in the sand and 

report URI.  The remaining non-enteric illnesses did not show a strong or consistent 

positive association with digging in the sand.  
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Generally, the association between a more intense sand exposure, being buried in 

the sand, and enteric illness was stronger than the association between digging in the sand 

and enteric illness.  The adjusted risk of GI illness among those who had their body 

buried in the sand was 1.22 times the adjusted risk of GI illness among those who did not 

have their body buried in the sand (95% CI = 1.04–1.42; Table 2).  The adjusted risk of 

diarrhea among those who had their body buried in the sand was 1.23 times the adjusted 

risk of diarrhea among those who did not have their body buried in the sand (95% CI = 

1.01–1.51; Table 2).  For the non-enteric illnesses studied no consistent increase in risk 

was observed among those buried in the sand compared to those not buried in the sand 

(Table 2). 

Stronger and more consistent positive associations between sand contact activities 

and enteric illnesses were observed among children 10 years of age and younger.  An 

elevated risk of GI illness was observed among children who dug in the sand (1.29; 95% 

CI = 0.97–1.71; Table 3).  There was no evidence of risk among adults 55 years of age 

and older (0.91; 95% CI = 0.54–1.55; Table 3).  Diarrhea risk was highest among 

children 10 years of age and younger digging in the sand (1.46; 95% CI = 1.01–2.12; 

Table 3) and lowest among those 55 years of age and older (1.01; 95% CI = 0.57–1.81; 

Table 3).  The risk of GI illness was elevated among children who had their body buried 

in the sand (1.30; 95% CI = 1.04–1.62; Table 3).  However, the GI illness risk was also 

elevated among those 11 to 54 years of age (1.24; 95% CI = 1.01–1.53; Table 3) and 

somewhat among adults 55 years of age and older (1.27; 95% CI = 0.41–3.94 ; Table 3).  

Due to a low illness incidence and low exposure prevalence, the effect estimate among 

adults 55 years of age and older was imprecise (Table 3).  Diarrhea risk was highest 
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among children 10 years of age and younger buried in the sand (1.30; 95% CI = 0.98–

1.71; Table 3) and lowest among those 55 years of age and older (1.08; 95% CI = 0.27–

4.36; Table 3).  The effect estimate for those 55 years of age and older was imprecise 

(Table 3) due to the low incidence of diarrhea (4%) and low prevalence of exposure (2%) 

in this sub-group.  The non-enteric illnesses did not show a strong or consistent positive 

association with either of the sand contact activities among the age sub-groups. 

The risk of illness following sand exposure showed considerable variation across 

the beaches studied.  Among those digging in the sand, effect estimates ranged from 0.99 

to 1.89 (Table 4).  The strongest associations were among those who dug in the sand at 

Fairhope Beach with GI illness (1.50; 1.03–2.20; Table 4) and diarrhea (1.89; 1.25–2.84; 

Table 4).  The weakest associations were among those who dug in the sand at Huntington 

Beach with GI illness (0.99; 0.77-1.27) and with diarrhea (1.01; 0.76-1.36).  There was 

also variation by type of beach (marine vs. freshwater).  Risks of enteric illnesses were 

higher at marine beaches than at freshwater beaches.  At the marine beaches, the adjusted 

risk of diarrhea among those who dug in the sand was 1.46 times the adjusted risk of GI 

illness among those who did not dig in the sand (1.09–1.95; Table 4).  This association 

was also somewhat elevated for GI illness at marine beaches (1.26; 0.99–1.60; Table 4).  

Similar variability was observed among those with their body buried in the sand (Table 

4).  There was little observed evidence of consistent swimming-specific variation in the 

effect of sand contact on risk of illness.  Overall, the results of analyses of associations 

between beach sand contact activities and non-enteric illnesses demonstrated a weak or 

small strength of effect. 
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4. Discussion 

Results of our study suggest that, among beach-goers participating in a large 

prospective cohort study, reported contact with beach sand (defined as either digging in 

the sand or having one’s body buried in the sand) was associated with an elevated risk of 

enteric illnesses (GI illness and diarrhea) in the 10-12 days following exposure.  Being 

buried in the sand appeared to be a more intense sand exposure as evidenced by higher 

point estimates for enteric illness compared to those for the digging in the sand exposure.  

We also observed a higher proportion of people who got sand in their mouth among those 

buried in the sand compared to those who dug in the sand.  Data from more specifically 

defined sand exposure questions collected during the 2007 NEEAR water study revealed 

that participants buried in the sand reported getting sand in their mouth nearly twice as 

frequently as those who dug in the sand (39.8% vs. 20.4%).   

Although an elevated risk of enteric illness from contact with beach sand has been 

hypothesized, ours is one of the first studies to demonstrate an association with specific 

sand contact activities.  One previous study demonstrated that time spent in the wet sand 

was associated with a dose-dependent increase in GI illness (per 10 minute increase in 

time spent in contact with wet sand an adjusted OR = 1.008; 95% CI = 1.001-1.015).41  

However, the authors cautioned that this finding needed to be validated by future 

epidemiologic studies.41  The variability observed across beaches, however, indicates that 

risks may be site-specific, and may depend on characteristics of each individual beach. 

We examined variation in the relationship between sand contact and illness in 

sub-groups of age.  The results provided some evidence that children ≤10 years of age 

may be at higher risk of GI illness and diarrhea following digging in the sand.  In general, 

the enteric illness risk of digging in the sand was lower in the two older age sub-groups 
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(11-54 years and 55+ years) than children (0-10 years).  However, for the body buried in 

the sand exposure (considered a more intense sand exposure) elevated enteric illness risks 

were observed among children (0-10 years of age) and also among the other age groups 

(11-54; 55+ years of age).  This suggestion of increased enteric illness risk among 

children (0-10 years) could be due to a susceptibility to illness following exposure or a 

prolonged or more intense exposure to sand.  In our study, children (0-10 years) had a 

much higher frequency of exposure to sand (79% reported digging in sand) as well as a 

higher frequency of getting sand in their mouth (18.9%) compared to older children and 

adults (11-54 years) (4.1%) and older adults (55+ years) (1.8%).  A recent study of soil 

ingestion among parents and their children by Davis et al., showed that soil ingestion was 

highest among children.165  We observed some evidence of increased diarrhea risk among 

older adults (55+ years) who had their body buried in the sand.  For example, even 

though there was some evidence of increased GI illness risk for the body buried in the 

sand exposure among children (0-10 years), children and adults (11-54 years), and older 

adults (55+ years), GI illness risk was most elevated among older adults (55+ years).  Our 

ability to make valid conclusions about enteric illness risks among those 55 years and 

older buried in the sand was limited because this group was exposed infrequently and 

also reported the lowest incidence of enteric illness.  The enteric illness effect estimates 

for those aged 55 years and older were therefore imprecise and must be interpreted with 

caution.  

We observed beach-specific variation in the enteric illness risk following beach 

sand contact.  This could have been due to a number of site-specific differences at the 

beaches studied, including factors such as sand composition (e.g., clay, silt, loam), 
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particle size, moisture and organic content, nutrient availability, osmotic pressure, tidal 

phenomena, wave action, currents, and algae/seaweed density that may impact the 

sand.45,68  Human factors such as bather density and use of sand grooming practices (such 

as daily tilling) may also impact beach sand quality.17,121,138,166  The observed variation in 

enteric illness risks across beaches could also be explained by different levels of fecal 

pollution influencing recreational waters and subsequently sand from sources including: 

publicly owned treatment works (POTW) sewage discharges, non-point source run-off 

(e.g., domestic and wild animals, urban stormwater), and bather density.  Each of these 

factors may impact beach sand quality. 

It is possible that variation between marine and freshwater risks could be 

explained by differential survival of enteric pathogens in beach sand impacted by marine 

vs. freshwater.  Different sand characteristics (at marine vs. freshwater beaches) 

mentioned above including particle size, clay content, salinity, etc. may also play a role.  

It has been observed that salinity increase is inversely correlated with the survival of 

bacterial indicators of the presence of feces in recreational waters, however, data to 

explore this relationship and other sand characteristics relationships in sand were not 

available during the present study.167  It is also possible that there were differences in 

levels of fecal pollution at the marine vs. freshwater beaches studied.  The observed 

beach-specific variation in risk of enteric illness and the stronger association between 

sand contact and enteric illness at marine beaches warrant further investigation.  There 

was little evidence of consistent swimming-specific variation in the effect of sand contact 

activities on risk of illness.  To attempt to disentangle the effect of digging in the sand 

from swimming, we examined associations with enteric illness among nonswimmers who 
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dug in the sand.  There was a similar effect among nonswimmers who dug in the sand for 

GI illness (aIPR = 1.26; 95% CI = 1.02-1.55) and diarrhea (aIPR = 1.26; 95% CI = 0.97-

1.62) compared to our results among all participants who dug in the sand. 

We observed beach-specific variation in frequency of reports of sand contact that 

may reflect the potential influence of site-specific characteristics on exposure, including 

sand type and aesthetic and physical characteristics of sand (e.g., rocky sand vs. 

fine/grainy sand, dark color vs. light color).  Data from more specific sand exposure 

questions collected during 2007 at 2 marine beaches revealed that fewer participants 

reported any sand contact (digging in sand or being buried in sand) at Goddard Beach 

(25.6%) where sand was rocky and dark-colored compared to Fairhope Beach (61.3%) 

where sand was more fine, grainy, and light-colored.  Data from more specific sand 

exposure questions of getting sand in one’s mouth, eating or drinking, and handwashing 

after sand contact at both beaches revealed that 20.3% reported getting sand in their 

mouth, 48.8% reported eating or drinking anywhere after sand contact, and over half 

(59.1%) reported not washing their hands before eating or drinking after sand contact. 

Some of the illnesses studied were nonspecific (e.g., GI illness, eye irritation) and 

may have been affected by recall bias.  We expected that recall would have been 

nondifferential with respect to sand exposure status.  Therefore there would have been 

limited influence by recall bias (although there could have been a loss of precision due to 

potential under-recall/reporting of illness).  The illness categories were broad endpoints, 

the association between contact with sand and enteric illnesses was robust to varying 

definitions of sand contact (digging in the sand and being buried in the sand) and 

definitions of enteric illness (GI illness and diarrhea).  The association was not robust 
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across all 7 beaches as we observed variation in the beach-stratified point estimates, 

suggesting potential site-specific factors may influence the risk of illness following sand 

contact.  Few studies have evaluated associations between beach sand exposure and 

symptoms of illness.32,41,124  Previously, observed associations with symptoms of illness 

have been inconsistent and only one study demonstrated an association between time 

spent in contact with wet sand and GI illness.41  Our results are consistent with this 

study’s finding of an association between sand contact and GI illness.  Relationships 

between beach sand contact and nongrastrointestinal (nonenteric) health conditions 

appeared to be less consistent.  Similar to previous studies, we found no consistent 

relationship between nonenteric illnesses and contact with beach sand.32,41,124   

We do not know if the relationships we observed between contact with beach 

sand and symptoms of illness can be extended to relationships with concentrations of 

fecal indicator organisms in beach sand, or to beaches affected by different sources of 

fecal contamination in water (non-point sources of pollution).  During the NEEAR water 

studies (2003-2005 and 2007), all beach sites had evidence of fecal contamination (by 

measurement of fecal indicator bacteria and F+-specific coliphage in water).  In 2007 

sand samples were collected at 2 beaches.  A detailed analysis of concentrations of fecal 

indicators will be presented in future research.  The findings of the present study suggest 

a need for future epidemiologic investigation of relationships with quantitative measures 

of beach sand quality (i.e., fecal indicator organism concentrations in beach sand) along 

with prospective ascertainment of beach sand exposure activities and symptoms of 

illness.  Previous studies of swimming exposure have demonstrated stronger associations 

with symptoms of illness compared to the associations reported in our present study of 
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beach sand exposure and illness.9,146  However, our results suggest that contact with 

beach sand was associated with enteric illness risk at certain beaches.  Future studies 

should focus on better defining this risk and understanding factors that contribute to fecal 

contamination of sand.   

5. Conclusions 

Contact with beach sand appears to increase the risk of enteric illness.  Sand 

contact may be particularly important as a source of risk for young children because they 

may not swim, but play in the sand.  There may be potential to reduce the observed 

increased risk of enteric illness by reducing levels of fecal pollution from municipal 

sewage discharges and non-point sources that may impact sand as well as recreational 

water.   
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Table 1. Characteristics of Those Who Did Not Dig in the Sand, Those Who Dug in the Sand, Those Who Did 

Not Have Their Body Buried in the Sand, and Those Who Did Have Their Body Buried in the Sand.

No Yes No Yes

(n = 15685) (n = 10654) (n = 23905) (n = 2436)

No. (%)
a

No. (%)
a

No. (%)
a

No. (%)
a

Age (yrs)

0-4 503 (3) 1651 (15) 1732 (7) 423 (17)

5-10 646 (4) 2703 (25) 2454 (10) 894 (37)

11-19 2154 (14) 1724 (16) 3418 (14) 462 (19)

20-54 10525 (67) 4236 (40) 14144 (59) 618 (25)

55+ 1857 (12) 340 (3) 2157 (9) 39 (2)

Sex

Male 6593 (42) 4948 (46) 10338 (43) 1201 (49)

Female 9092 (58) 5706 (54) 13559 (57) 1234 (51)

Race/Ethnicity

White 12747 (81) 8498 (80) 19364 (81) 1874 (77)

Black 981 (6) 642 (6) 1486 (6) 137 (6)

Asian 229 (1) 59 (1) 368 (2) 20 (<1)

American Indian 49 (<1) 26 (<1) 66 (<1) 9 (<1)

Hispanic/Latino 1584 (10) 1173 (11) 2405 (10) 352 (14)

Multiethnic/other 95 (<1) 156 (1) 208 (<1) 43 (2)

Miles traveled to the beach

0-5 miles 3856 (25) 2442 (23) 5859 (25) 435 (18)

6-20 miles 4297 (28) 2432 (23) 6162 (26) 566 (24)

21-50 miles 3892 (25) 2810 (27) 5983 (25) 717 (30)

50 miles or greater 3472 (22) 2845 (27) 5633 (24) 684 (28)

Conditions in the 3 d prior to the beach visit

Vomiting 166 (1) 106 (1) 245 (1) 27 (1)

Other GI symptoms 361 (2) 226 (2) 540 (2) 47 (2)

Sore throat 822 (5) 645 (6) 1323 (6) 144 (6)

Rash 347 (2) 264 (2) 538 (2) 73 (3)

Sunburn 839 (5) 438 (4) 1182 (5) 94 (4)

Infected cut 849 (5) 837 (8) 1488 (6) 198 (8)

Eye irritation 79 (<1) 53 (<1) 117 (<1) 15 (<1)

Earache 195 (1) 157 (1) 317 (1) 35 (1)

History of chronic respiratory problems or 1027 (7) 718 (7) 1588 (7) 156 (6)

asthma

History of allergies 3060 (20) 1911 (18) 4565 (19) 404 (17)

History of chronic GI illness 503 (3) 184 (2) 658 (3) 29 (1)

Any history of chronic GI illness, asthma, or allergies 3061 (20) 1913 (18) 4567 (19) 405 (17)

Water contact status

No water contact 7510 (48) 1945 (18) 9185 (38) 267 (11)

Water contact 8175 (52) 8709 (82) 14712 (62) 2168 (89)

Contact with animals 48 h prior to or after beach visit, or 11374 (72) 8241 (77) 17745 (74) 1864 (77)

between beach visit and phone interview

Consumption of red, raw or undercooked meat 48 h prior 1754 (11) 878 (8) 2453 (10) 178 (7)

to beach visit or between beach visit and phone

interview

Beach

Goddard Beach 2270 (14) 574 (5) 2743 (11) 101 (4)

Fairhope Beach 1243 (8) 752 (7) 1885 (8) 110 (5)

Edgewater Beach 826 (5) 483 (5) 1208 (5) 101 (4)

Washington Park Beach 2174 (14) 1964 (18) 3487 (15) 649 (27)

Silver Beach 5726 (37) 4678 (44) 9440 (40) 961 (40)

Huntington Beach 1913 (12) 903 (8) 2682 (11) 134 (6)

West Beach 1533 (10) 1300 (12) 2452 (10) 379 (16)
a
Excludes those with missing information on age, sex, race/ethnicity, water contact status, and beach.

Digging in the Sand Body Buried in the Sand



 

 84 

 

 

 

 

 

TABLE 2. Illness Incidence According to Sand Exposure and Adjusted Incidence

Proportion Ratios (aIPR) Comparing Those With Sand Exposure to Those Without 

Sand Exposure

No Yes No.

Illness No. (%) No. (%) Observations aIPR (95% CI)

GI 999 (7) 864 (8) 25548 1.14 (1.02-1.26)

Diarrhea 671 (4) 587 (6) 25729 1.20 (1.05-1.36)

Respiratory illness 711 (5) 667 (7) 24869 1.06 (0.93-1.20)

Rash 400 (3) 319 (3) 25716 1.02 (0.85-1.21)

Eye ailments 506 (3) 265 (3) 26204 0.86 (0.73-1.03)

Earache 210 (1) 181 (2) 25981 1.05 (0.84-1.32)

Infected cuts 72 (<1) 40 (<1) 26328 0.70 (0.45-1.08)

No Yes No.

Illness No. (%) No. (%) Observations aIPR (95% CI)

GI 1639 (7) 224 (9) 25541 1.22 (1.04-1.42)

Diarrhea 1112 (5) 146 (6) 25722 1.23 (1.01-1.51)

Respiratory illness 1238 (5) 140 (6) 24862 0.86 (0.70-1.05)

Rash 644 (3) 75 (3) 25709 0.98 (0.76-1.26)

Eye ailments 709 (3) 62 (3) 26197 1.00 (0.75-1.34)

Earache 361 (2) 30 (1) 25974 0.67 (0.45-0.99)

Infected cuts 100 (<1) 12 (<1) 26321 1.11 (0.58-2.12)

Numbers are those reporting new symptoms, among those without baseline symptoms.  For GI

reporting illness, subjects vomiting or other GI symptoms in the past 3 d shown in Table 1 were 

excluded.  aIPR estimated from log-risk binomial regression models adjusted for age, sex, race/

ethnicity, beach, and swimming.

Digging in the Sand

Incidence

Body Buried in Sand

Incidence 
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Table 3. Adjusted Incidence Proportion Ratios (aIPR) for Illness Comparing Those With Sand Exposure to 

Those Without Sand Exposure, by Age Group

Incidence aIPR Incidence aIPR Incidence aIPR

No. (%) (95% CI) No. (%) (95% CI) No. (%) (95% CI)

GI Illness 446 (9) 1.23 (0.93-1.62) 1268 (7) 1.12 (1.00-1.26) 107 (5) 0.90 (0.54-1.51)

Diarrhea 291 (6) 1.45 (1.01-2.09) 848 (5) 1.14 (0.98-1.32) 82 (4) 1.03 (0.58-1.81)

URI 413 (8) 1.15 (0.86-1.54) 875 (5) 1.09 (0.94-1.25) 51 (3) 1.13 (0.54-2.38)

Rash 178 (3) 0.89 (0.61-1.30) 486 (3) 1.10 (0.90-1.33) 39 (2) 0.47 (0.17-1.35)

Eye 110 (2) 0.93 (0.54-1.59) 558 (3) 0.84 (0.70-1.02) 78 (4) 1.42 (0.77-2.62)

Earache 96 (2) 0.80 (0.47-1.35) 256 (1) 1.20 (0.93-1.55) 18 (<1) 0.87 (0.17-4.41)

Infected Cuts 22 (<1) 0.65 (0.23-1.84) 80 (<1) 0.75 (0.46-1.21) 5 (<1) --

GI Illness 446 (9) 1.21 (0.97-1.51) 1268 (7) 1.24 (1.00-1.53) 107 (5) 1.43 (0.44-4.68)

Diarrhea 291 (6) 1.23 (0.94-1.63) 848 (5) 1.19 (0.91-1.55) 82 (4) 1.24 (0.29-5.30)

URI 413 (8) 0.85 (0.66-1.10) 875 (5) 1.02 (0.76-1.36) 51 (3) --

Rash 178 (3) 0.83 (0.57-1.21) 486 (3) 1.26 (0.90-1.77) 39 (2) 1.49 (0.22-10.24)

Eye 110 (2) 1.40 (0.90-2.17) 558 (3) 0.92 (0.61-1.37) 78 (4) --

Earache 96 (2) 0.61 (0.34-1.08) 256 (1) 0.80 (0.46-1.40) 18 (<1) --

Infected Cuts 22 (<1) 1.07 (0.39-2.91) 80 (<1) 1.35 (0.56-3.24) 5 (<1) --

Numbers are those reporting new symptoms, among those without baseline symptoms.  aIPR estimated from log-risk 

binomial regression models.  Covariates in models included age, sex, and beach, and selection through change in estimate 

procedure from the following: race/ethnicity, any contact swimming, contact with animals, contact with other persons with 

diarrhea, eating food while at the beach, eating raw or undercooked meat since the time of the beach interview, eating raw

or undercooked eggs since the time of the beach interview, number of other visits to the beach, and any other chronic 

illnesses (GI, skin, asthma). For upper respiratory illness and skin outcomes, insect repellent and sun block use were also 

considered.

Body Buried in the Sand

Digging in the Sand

>55

Age Group (Years)

0-10 11-54
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Table 4. Adjusted Incidence Proportion Ratios (aIPR) for Illness Comparing Those With Sand 

Exposure to Those Without Sand Exposure, by Beach, and by Marine versus Fresh Water

Beaches

Incidence Incidence

No. (%) aIPR (95% CI) No. (%) aIPR (95% CI)

Beach

Goddard Beach 130 (5) 1.27 (0.79-2.05) 78 (3) 1.38 (0.73-2.59)

Fairhope Beach 155 (8) 1.50 (1.03-2.20) 113 (6) 1.89 (1.25-2.84)

Edgewater Beach 118 (9) 1.05 (0.69-1.62) 74 (6) 1.12 (0.65-1.93)

Washington Park Beach 287 (8) 1.32 (1.02-1.71) 25 (5) 1.25 (0.92-1.71)

Silver Beach 632 (6) 1.09 (0.90-1.31) 390 (4) 1.20 (0.94-1.54)

Huntington Beach 270 (10) 0.99 (0.77-1.27) 206 (8) 1.01 (0.76-1.36)

West Beach 229 (8) 1.11 (0.83-1.49) 176 (6) 1.03 (0.74-1.43)

Marine Water Beaches

Goddard, Fairhope, 403 (7) 1.26 (0.99-1.60) 265 (5) 1.46 (1.09-1.95)

and Edgewater Beaches

Fresh Water Beaches

Washington Park, Silver, 1418 (7) 1.11 (0.99-1.24) 970 (5) 1.14 (0.99-1.32)

Huntington, and West

Beaches

Beach

Goddard Beach 130 (5) 1.73 (0.76-3.94) 78 (3) 1.95 (0.61-6.28)

Fairhope Beach 155 (8) 1.25 (0.55-2.81) 113 (6) 1.63 (0.65-4.14)

Edgewater Beach 118 (9) 1.55 (0.82-2.95) 74 (6) 1.79 (0.75-4.27)

Washington Park Beach 287 (8) 0.94 (0.65-1.35) 25 (5) 0.91 (0.57-1.46)

Silver Beach 632 (6) 1.28 (1.01-1.64) 390 (4) 1.18 (0.84-1.65)

Huntington Beach 270 (10) 0.91 (0.49-1.70) 206 (8) 0.85 (0.40-1.79)

West Beach 229 (8) 1.77 (1.25-2.53) 176 (6) 1.89 (1.26-2.83)

Marine Water Beaches

Goddard, Fairhope, 403 (7) 1.36 (0.90-2.05) 265 (5) 1.52 (0.89-2.58)

and Edgewater Beaches

Fresh Water Beaches

Washington Park, Silver, 1418 (7) 1.22 (1.03-1.45) 970 (5) 1.21 (0.97-1.51)

Huntington, and West

Beaches

Numbers are those reporting new symptoms, among those without baseline symptoms.  aIPR estimated 

from log-risk binomial regression models.  Covariates in models included age, sex, and beach, and selection 

through change in estimate procedure from the following: race/ethnicity, any contact swimming, contact with 

animals, contact with other persons with diarrhea, eating food while at the beach, eating raw or undercooked

meat since the time of the interview, eating raw or undercooked eggs since the time of the interview, number 

of other visits to the beach, and any other chronic illnesses (GI, skin, asthma). For upper respiratory illness 

and skin outcomes, insect repellent and sun block use were also considered. 

Digging in the Sand

Body Buried in the Sand

Illness

GI Illness Diarrhea
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B. Association between concentrations of fecal indicators in beach sand and risk of 
GI illness 

1. Introduction 

The results of recent exposure assessment studies, showing that high levels of E. coli, 

Enterococcus, and other indicators of fecal contamination have been isolated from beach 

sand (often at higher concentrations than in nearby bathing waters), have raised questions 

about whether beach sand can serve as a vehicle for transmission of pathogens associated 

with fecal contamination to humans, leading to an increased risk of infection and subsequent 

symptoms of illness.40,41,43,45,68,96,110,168  These questions are of increasing concern to beach 

managers, public health officials, and beach-goers and remain largely unresolved due to 

inconsistent results from a small number of previous epidemiologic studies.32,41,124  Because 

the beach-going public typically spends more time on the beach than in the water and young 

children often spend most of their time at the water’s edge playing in sand, it is important to  

understand the relationship between fecal indicator concentrations in sand, sand contact 

activities, and risk of illness. There currently exists limited information on the safety of 

human exposure to fecal contamination in beach sand.  Positive associations between fecal 

indicator organism concentrations (which are non-pathogenic microorganisms used to 

indicate the degree of fecal contamination) in recreational water and swimming-associated 

illness have been well documented.6,9-11,15,21,33,59,60,146,169  GI illness has most commonly been 

associated with fecal indicator organisms in recreational water and this informed our focus 

on GI illness during this study.   

In addition to fecal indicator organisms – such as fecal coliforms, E. coli, 

Enterococcus, male-specific and somatic coliphage, Bacteroides, B. thetaiotaomicron, and 

Clostridium perfringens – pathogenic viruses, bacteria, fungi, and parasites have been 
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isolated from sand at nearshore (sand-water interface) and backshore (dry sand) regions of 

beaches.43,52,68,94,96,105,110,170,171  Although human-derived pollution sources generally cause 

the most health concern at recreational beaches 162 competing theories exist about whether 

beach sand acts as a net source and/or net sink of fecal contamination.  Several studies 

provide evidence of fecal indicator bacteria (E. coli and Enterococci) re-growth in sand 

63,65,69,110,168,172 while others suggest that point (sewage outfalls) and non-point (wild and 

domestic animals and humans) sources 63,173 of fecal contamination directly impact beach 

sand.  Survival and dispersion of fecal contamination on beach sand seems to depend on a 

complicated interplay between numerous factors including latitude (e.g., temperate vs. 

tropical beach), region of the beach (wet nearshore sand vs. dry backshore sand), the 

presence of protective conditions providing cover from microbial inactivation and predation 

(e.g., cladophora mats), tidal phenomena, beach sand grooming practices, the season, and 

fecal contamination source (e.g., point source sewage outlet vs. non-point source animal vs. 

human bather inputs).45  Determining which of these numerous competing factors is the most 

predominant at a given beach is often challenging. 

Notwithstanding uncertainty about the predominant sources of fecal contamination in 

beach sand, the results of these numerous exposure assessment studies and one recent pilot 

epidemiological study 41 suggest that increased fecal indicator organism concentrations in 

beach sand could be related to health effects – particularly GI illness.  A consistent 

relationship between concentrations of fecal indicators and GI illness has not been 

demonstrated across previous studies, however, Bonilla et al. observed a positive association 

between time spent in wet sand and GI illness.32,33,41,124  Very few studies have examined 

whether increasing concentrations of fecal indicators in beach sand are associated with an 
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increasing risk of GI illness among beach-goers who engage in specific sand contact 

activities.32,33,41,124  

The National Epidemiological and Environmental Assessment of Recreational 

(NEEAR) water study is a large national survey of beachgoers sponsored by the EPA and the 

Centers for Disease Control and Prevention (CDC).9,146  It was designed to investigate 

relationships between water quality and swimming-associated illness at beaches impacted by 

municipal sewage discharges.  During the 2007 rounds of the NEEAR water study, beach 

sand samples were collected at two marine beaches (Fairhope Beach, Alabama and Goddard 

Memorial State Park Beach, Rhode Island and analyzed for the fecal indicator organisms 

Enterococcus, F+-specific coliphage, Bacteroides, and B. thetaiotaomicron (which have been 

reported as indicators of potential fecal contamination).10,92,135,158,168,174-177  The addition of 

beach sand sample collection and quality analyses to the NEEAR water study afford an 

opportunity to examine associations between concentrations of fecal indicator organisms and 

risk of GI illness following contact with beach sand.  It was our aim to explore whether an 

increase in daily average fecal indicator concentrations (indicating daily average sand 

quality) led to an increased risk of GI illness: (1) among those engaged in sand contact 

activities only; and (2) among all participants with those not engaged in contact with sand as 

the reference category. 

2. Methods 

a. Study Design / Participant Sampling 

The NEEAR water study is a prospective cohort design conducted in 2007 of visitors 

to marine beaches on the Gulf of Mexico and the Atlantic Coast during weekends and major 

holidays of the summer swimming season (from Memorial Day to Labor Day).   The data 
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collection methods of the NEEAR water studies have been described previously.9,146  In 

brief, we attempted to enroll all beach-goers between 11:00 AM and 5:00 PM during summer 

weekends and holidays. We excluded unaccompanied minors (below 18 years) or those who 

could not speak English or Spanish.9,146  At the time of enrollment, we interviewed 

volunteers to collect baseline information on demographic characteristics and exposures and 

illnesses that occurred during the previous 3 days.  We interviewed volunteers again as they 

were leaving the beach to ascertain information about their degree of contact with beach 

sand, swimming behaviors, and other beach activities.  Ten to 12 days later, one of the adults 

in the household was interviewed by telephone about health symptoms experienced by 

participating household members.  We used a standard questionnaire to collect all 

demographic, exposure activity, covariate, and illness information from study participants at 

beaches.  Because of the acute nature and short duration of enteric symptoms and illness 

considered during this study, repeat enrollment by participants was allowed.  Participants 

were eligible to re-enroll in the study 28 days after their previous enrollment. 

b. Beach Descriptions 

Beach sites affected by nearby sewage treatment plant discharges were chosen for the 

NEEAR water studies.9,146  The 2007 NEEAR water studies were conducted at 2 marine 

beaches: Fairhope Beach (on Mobile Bay in Fairhope, Alabama) and Goddard Memorial 

State Park Beach (on Greenwich Bay near Warwick, Rhode Island).  

c. Beach Sand Sample Collection and Sample Analysis 

Beach sand samples were tested for fecal indicator bacteria Enterococcus, 

Bacteroides and Bacteroides thetaiotaomicron using a quantitative polymerase chain reaction 
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cell equivalent (qPCR CCE) method.136  B. thetaiotaomicron is considered a more human-

specific indicator of fecal contamination.75,177,178  Samples were also tested for Enterococcus 

and F+-specific coliphage using culture-based EPA Method 1600151 and EPA Method 160189, 

respectively.  Beach sand samples were collected at 8:00 AM along with water samples each 

weekend day of the 2007 NEEAR water studies.  Wet sand samples were collected using a 

2.25-inch diameter stainless steel soil auger at a distance of 1 meter perpendicular to the 

lowest point of the water level (when the waves receded to their lowest point on the 

shoreline) along the same 3 transects where water samples were collected.  Transects were 

located at least 60 m apart to encompass the entire beach area.  The soil auger was pushed 

into the sand at least 8 inches, capped, labeled with a unique alpha-numeric code, sealed in a 

zip-loc bag, and transported to the laboratory for processing on ice in a cooler maintained at 

1 to 4°C.  Analyses of Enterococcus were performed by local laboratories within 6 hours of 

collection.  Samples were filtered for qPCR analysis within 6 hours of collection.  To ensure 

consistency across the 2 beaches, the filters were frozen and sent on dry ice by overnight 

express for analysis by EMSL Analytical, Inc. Laboratory (Westmont, NJ).  The qPCR 

method used in this study has been previously described.9,136,179   

Samples that were analyzed for F+-specific coliphage were sent on dry ice by 

overnight express and processed using EPA Method 1601 with some modifications.  Fecal 

indicator organism concentrations are reported as quantitative polymerase chain reaction 

calibrator cell equivalents (qPCR CCE) for Enterococcus, Bacteroides, and Bacteroides 

thetaiotaomicron, colony-forming units (CFU) for Enterococcus by Method 1600, and 

plaque-forming units (PFU) for F+-specific coliphage by Method 1601 per gram of sand.  At 

each sampling time we recorded environmental conditions, including air and water 
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temperature, cloud cover, UV light, rainfall, wind speed and direction, wave height, beach 

population density, boats, animals (number and type), and debris. 

d. Definition of Sand Contact 

We ascertained participants’ contact with beach sand through a structured interview 

as beach-goers were leaving the beach.  The interview included questions about sand 

exposure, important potential risk factors for sand exposure, important potential risk factors 

for GI illness, and other activities during participants’ time spent at the beach. We asked all 

participants to give yes or no answers to questions, but participants could refuse to answer 

any question or report that they didn’t know the answer.  We considered two types of sand 

exposure: (1) digging in the sand; and (2) having one’s body buried in the sand.  Participants 

who “dug in the sand” were defined as those who reported that they dug in the sand or built 

sand castles at the beach the day of the interview.  Having one’s body buried in the sand was 

defined as those who reported that they had their body buried in the sand at the beach on the 

day of the interview.  We considered being buried in the sand a more intense sand exposure 

than digging in the sand. 

e. Exposure Period 

The exposure period encompasses recreational activities performed during the day of 

enrollment while participants were at the beach.  This was the period between the baseline 

enrollment interview and the beach exit interview.  The enrollment interview was conducted 

as participants arrived at the beach and the exit interview was conducted after completion of 

enrollment-day recreational activities as participants were leaving the beach.  During the 

beach enrollment interview participants were asked about the exposures and activities that 
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occurred 3 days prior to enrollment and during the exit interview participants were asked 

about the exposures and activities that occurred on the day of enrollment, respectively.  Some 

exposure questions were repeated during the telephone follow-up interview conducted 10-12 

days after participants departed the beach.  

f. Health Assessment 

NEEAR water study participants were interviewed at baseline and asked to report 

physical health symptoms and illness experienced during the 3 days prior to enrollment.  

Participants who agreed were contacted by telephone 10-12 days following the day of beach 

exposure and asked to report if they had experienced physical symptoms of gastrointestinal 

illness (GI illness) since their beach-exit interview the day of enrollment.  GI illness was 

defined as any of the following: diarrhea (three or more loose stools in a 24-hour period); 

vomiting; nausea and stomach ache; nausea or stomach ache, and interference with regular 

activities (missed time from work or school, or missed regular activities as a result of the 

illness). 

During the telephone follow-up interview, participants answered a series of questions 

about the occurrence of physical symptoms and illness.  Ascertainment of physical symptoms 

and illness at baseline (3 days prior to enrollment) and again after 10 to 12 days of follow-up 

allowed us to differentiate between pre-existing or prevalent health outcomes and incident 

health outcomes.  During the telephone follow-up interview we also asked participants about 

other potential risk factors since the enrollment-day interview.  This included information 

such as the number of times participants went to the same beach, went swimming at another 

beach (swimming defined as any water contact), went swimming in a pool, or ate raw or 
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under-cooked foods (e.g., red meat, fish, shellfish, eggs).  Participants with prevalent GI 

illness were excluded from the analysis. 

g. Statistical Analysis 

A preliminary review of sand fecal indicator measure, sand exposure, demographic, 

health outcome, and covariate data was performed to check for implausible data points and 

outliers.  Errors in data were evaluated and, if deemed actual errors based upon comparisons 

with other observations’ values or substantive reasoning, were deleted.  Analysis data sets 

were also cleaned and evaluated for missing values.  Only observations with complete data 

on fecal indicator measures and important covariates (age, sex, race/ethnicity, swimming 

status, and beach) were kept.  This involved creation of a data set that excluded missing data 

values for the outcome (GI illness), sand exposure variables (digging in the sand and body 

buried in the sand), and critical covariates (age, sex, race/ethnicity, swimming status, and 

beach). 

1. Sand Fecal Indicator Organism Data Analysis 

We first explored the spatial variability of sand fecal indicator measure data by 

examining the proportion of fecal indicator-positive sand samples by collection transect at 

each beach.  Because fecal indicator organism data were highly skewed, raw data were log-

transformed (base 10) for analysis.  The arithmetic mean of the log-transformed values was 

used to summarize sand quality at the beach on a given day.  F+-specific coliphage samples 

below the detection limit (0.0092 PFU/g) were assigned a value of one-half the lower 

detection limit (0.0046 PFU/g).  Enterococcus samples below the detection limit by Method 

1600 (0 CFU/g) were assigned a value of 0.1 CFU/g to allow log-transformation of the raw 
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data.  qPCR CCE samples below the detection limit were assigned the value of the lower 

detection limit and subsequently log-transformed (base 10).  We focused the analyses on the 

daily average of the three 8:00 AM sand samples.  The daily average represented average 

sand quality at the beach on a particular day.  Analysis of variance models were used to 

explore the relationship between log10 qPCR CCE and log10 CFU by beach.  We examined 

the frequency of each beach sand contact activity – digging in the sand or building sand 

castles; having one’s body buried in the sand – first stratified by beach and then across all 

beaches combined.   

For the fecal indicator measures, we considered the following types of exposure 

definitions: (1) a simple presence-absence categorical variable; (2) a categorical variable 

reflecting the number of samples positive out of the three samples collected each day (used 

only for F+-specific coliphage); (3) a categorical variable of less than or equal to the median 

and above the median value; (4) a tertiles variable; and (5) a quartiles variable. (6) a 

continuous variable (except for F+-specific coliphage);    

2. Sand Fecal Indicator Organism Densities and GI Illness Association Data 

Analysis 

We first considered categorical classifications of the fecal indicator measures of sand 

quality.  Because a large proportion of F+-specific coliphage data were below the detection 

limit we only considered classifications involving simple presence/absence, number of 

positive samples out of the 3 samples collected each day and ≤ vs. > the median 

concentration (PFU/g).  For the bacterial fecal indicator measures (Enterococcus CFU/g, and 

Enterococcus, Bacteroides, and B. thetaiotaomicron qPCR CCE/g) we did not consider the 

classification of number of positive samples out of the 3 samples collected each day because, 
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unlike F+-specific coliphage, there were few days when these indicators were not detected in 

beach sand.  Instead, in addition to simple presence/absence and ≤ vs. > the median, we 

evaluated categorical classifications of tertiles (of CFU/g and qPCR CCE/g).  Categorical 

models involved comparisons between those in contact with sand on days when there was a 

specific average level of a specific fecal indicator present (e.g., above the median, highest 

tertile) and those in contact with sand on days when that specific fecal indicator was absent.  

For these models, the aOR can be interpreted as the risk (odds) of GI illness among those 

digging in sand when a specific fecal indicator was present at a specific daily average 

category (e.g., highest tertile) divided by the risk (odds) of GI illness among those digging in 

the sand when that particular fecal indicator was absent in sand.  Then we evaluated 

comparisons between those in contact with sand on days when a specific fecal indicator was 

present at a specific daily average category (e.g., highest tertile) to those who were not in 

contact with sand (did not dig; were not buried in sand).  For these models, the aOR can be 

interpreted as the risk (odds) of GI illness among those who dug in the sand on days when 

average sand quality was at a specific level (e.g., highest tertile) divided by the risk (odds) of 

GI illness among those who did not have contact with sand (did not dig in the sand; were not 

buried in sand).   

Next we evaluated the association between each continuous sand fecal indicator 

measure and GI illness: (1) only among those engaged in each sand contact activity (digging 

in the sand or building sand castles; and having one’s body buried in the sand); (2) among all 

participants with those not engaged in each sand contact activity as the reference category; 

(3) among all participants with those not engaged in each sand contact activity assigned a 

uniformly low exposure value for each fecal indicator.  We considered the body buried in the 
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sand exposure to be a more intense form of sand contact than digging in the sand.  Using 

logistic regression models, we estimated adjusted odds ratios (aOR) and 95% confidence 

intervals (CI) for GI illness and its association with fecal indicator organism measures among 

those digging in the sand.  For these models, the aOR can be interpreted as the increase in the 

odds of GI illness per unit increase in the fecal indicator organisms in the sand among those 

in contact with sand (digging in the sand; body buried in sand).  Next we considered models 

where those not in contact with sand were included in the analysis, but assigned a uniformly 

low value of sand quality exposure - 10% and 1% of the lower detection limit for each fecal 

indicator measure.  This was performed because we considered it possible that those not 

engaging in the two sand contact activities (digging in the sand; body buried in the sand) may 

have experienced a uniformly low exposure to beach sand through incidental contact (e.g., 

setting up or breaking down a beach chair or sitting on a sandy beach towel during the day).  

We evaluated whether the choice of different values (10% vs. 1% of the detection limit) 

assigned to those who reported no contact with sand affected the results of the fecal 

indicator-GI illness relationship.   

To evaluate the occurrence of multiple fecal indicators in the sand, we considered an 

exploratory, non-traditional method of creating an index variable defined by the 

presence/absence of each of the fecal indicators at each of the 3 sample locations.  The range 

of the fecal indicator index variable (from 0 to 15) was an indication of presence/absence for 

each of the five fecal indicators summed across the 3 sampling transects.  This index variable 

was classified into categories of 0 to 4, 5 to 9, and 10 to 15.  This variable was created as an 

alternative method to represent daily average sand quality reflecting the presence of one or 

more of the fecal indicator measures. 
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Models using an identity link and a binomial error structure (linear model) were used 

to directly estimate the attributable risk142 (risk among those with sand contact minus the risk 

among those without sand contact) which we refer to as illness associated with each of the 

sand contact activities (digging in sand; buried in sand).  

We assumed the household was the unit of independence in the data.  There are no 

individual identifiers in the data (e.g., name, Social Security number, address).  To identify 

potential re-enrollees we matched observations on age (birth date), sex, race, ZIP code, beach 

and several chronic, conditions (Crohn’s disease, irritable bowel syndrome, asthma, 

emphysema / COPD, and chronic skin problems such as psoriasis or eczema).  Observations 

that matched on all of these factors were considered potential re-enrollees.  To account for 

the non-independence of re-enrollment, the unique household ID of the re-enrollment study 

entry date was re-assigned to the unique household ID of the first study entry date.  Robust 

variance estimates were used to account for the non-independence of observations within 

household.163,164 

We evaluated relationships between the exposure (beach sand contact activities), 

health outcomes, and covariates that were important potential confounders.  We considered 

covariates strongly associated with beach sand contact and illness or those regarded by 

investigators to be potential confounding factors for inclusion in regression models.  The 

factors included in all regression models were age, sex, race/ethnicity, swimming (defined as 

any contact swimming), and beach.  Although information on other covariates was collected 

(i.e., contact with animals, contact with other persons with diarrhea, number of other visits to 

the beach, any other chronic illnesses (GI, skin, asthma) and eating any food or drink while at 

the beach) these factors were not evaluated because of the limited sample size of the 2 
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beaches. Because of the sparseness of the data (limited sample size) we were not able to 

evaluate potential effect measure heterogeneity (on the multiplicative scale) of the sand 

exposure/illness relationship across strata of covariates with biological plausibility as 

potential effect measure modifiers.  We reported combined effect measure estimates adjusted 

for potential confounders.  All analyses were completed using SAS version 9 © (SAS 

Institute Inc., Cary, NC, USA) and Stata version 9.2 © (StataCorp LP, College Station, TX, 

USA). 

3. Results 

A total of 4,999 interviews from 2,388 household groups were completed.  Of these 

interviews 4,838 respondents provided complete information on age, sex, race/ethnicity, 

contact with beach sand, and swimming.  Relationships between fecal indicator measures, 

sand exposure, and GI illness were evaluated using interviews with complete exposure, 

outcome, and covariate information.   

Respondents at the 2 beaches differed by age, race/ethnicity (defined as white/non-

white), miles traveled to the beach, and proportion of individuals who reported contact with 

the sand.  Respondents were 66% white and 58% female, with a median age of 30 years.  

Those who dug in the sand were younger than those who did not dig in the sand (median age 

10 and 36 years, respectively) but were equally likely to report vomiting and other GI 

symptoms at baseline (Table 1).  More individuals who dug in the sand reported contact with 

animals 48 h prior to or immediately after the beach visit (71.3% vs. 61.5%) (Table 1).  

Fewer individuals who dug in the sand reported a history of chronic GI illness (1.6% vs. 

3.5%) and consumption of raw or red meat prior to or immediately after the beach visit (8.4% 

vs. 14.4%).  Digging in the sand was strongly associated with swimming as 80.9 % of 
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swimmers reported digging in the sand compared to only 19.2% of non-swimmers.  Those 

who had their body buried in sand were also younger than those who did not have their body 

buried in the sand (median age 8 and 31 years, respectively), were equally likely to report 

vomiting and other GI symptoms at baseline (Table 1).  Those who had their body buried in 

sand were less likely to report a history of chronic GI illness (0% vs. 3.1%), less likely to 

report consumption of raw or red meat 48 h prior to or immediately after the beach visit 

(6.6% vs. 13%), and more likely to report contact with animals 48 h prior to or immediately 

after the beach visit (68.7% vs. 63.9%).  Having one’s body buried in the sand was strongly 

associated with swimming, 88.4 % of swimmers reported being buried in the sand compared 

to only 11.7% of non-swimmers.  

There were slightly more female beach-goers than male in both sand-contact groups. 

There were differences in frequency of sand contact by race/ethnicity (Table 1).  Most 

participants in contact with sand were white.  Results by race/ethnicity for body buried in the 

sand were similar to the exposure of digging in the sand (Table 1).  Participants at Fairhope 

Beach were more likely to have reported digging in the sand (37.7%) and having their body 

buried in the sand (5.5%) (Table 1).   

 Concentrations of fecal indicator organisms in sand measurements differed by beach 

(Table 2).  The mean concentration of F+-specific coliphage was higher at Goddard Beach 

(1.5406 PFU/g vs. 0.14 PFU/g) as well as for each of the qPCR measures (Enterococcus, 

Bacteroides, and B. thetaiotaomicron) (Table 2).  The mean concentration of the culture-

based Enterococcus measure (CFU/g) was higher at Fairhope Beach (87.4 CFU/g vs. 32.2 

CFU/g).  Of all the fecal indicator measures, F+-specific coliphage was detected least 

frequently with 82.9% of samples below the detection limit.  For the remaining fecal 
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indicators the percent below the detection limit ranged from 18.0% for Enterococcus (qPCR 

CCE/g) to 52.6% for Bacteroides (qPCR CCE/g).  We observed spatial variability in fecal 

indicator measures (Table 3).  At Fairhope Beach a higher percentage of samples was 

positive at transect 3 (Table 3).  At Goddard Beach a higher percentage of samples was 

positive at transect 1 (Table 3).   

a. Relationship Between Sand Contact, Measures of Fecal Indicators in Sand, 
and GI Illness 

The incidence of GI illness was 6.2% (301 of 4523) during the 10 to 12 day follow-up 

period.  GI illness incidence was highest among children younger than 5 years (9.5%) and 

lowest among those aged 55 and older (5.5%).  The adjusted risk (odds) of illness was 1.40 

times higher among those who dug in the sand than among those who did not dig in the sand 

(95% CI = 1.02–1.93).  The risk of GI illness among children aged 10 and younger who dug 

in the sand was 1.81 times the risk of GI illness among those who did not dig in the sand 

(95% CI = 0.96–3.43).  The association was weaker between digging and GI illness among 

children and adults aged 11 to 54 (aOR = 1.26; 95% CI = 0.85–1.87) and among older adults 

(aOR = 1.33; 95% CI = 0.34–5.29). 

Categorical classifications involving presence/absence and above/below the median 

value were used for the F+-specific coliphage because there were few days when this measure 

was detected in sand (Table 4).  The contrast of those who dug in the sand on days when F+-

specific coliphage was present compared to those who did not dig in the sand (aOR = 1.25; 

95% CI = 0.72–2.16) produced a lower point estimate than the point estimate of the contrast 

of those who dug in the sand on days when F+-specific coliphage was absent compared to 

those who did not dig in the sand (aOR = 1.57; 95% CI = 1.02–2.41) (Table 4).  For the body 

buried in the sand exposure (which we considered a more intense exposure to sand), there 
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was an elevated effect estimate comparing those buried in the sand on days when F+-specific 

coliphage was present to those not buried in the sand, but the point estimate was imprecise 

(aOR = 2.41; 95% CI = 0.78–7.42). Categorization of the number of F+-specific coliphage-

positive sand samples out of the 3 samples collected each day revealed a weak positive 

association.  The risk (odds) of GI illness among those digging in the sand on days when 3 

out of 3 samples were positive was 2.44 times the risk (odds) of GI illness among those who 

did not dig in the sand (95% CI = 0.87–6.87).  Small sample sizes did not permit estimation 

of effect measures for those buried in sand using this classification method.  A stronger, but 

imprecise point estimate was observed for the comparison of the risk (odds) of GI illness 

among those who were buried in the sand on days with F+-specific coliphage above the 

median value (0.00124 PFU/g) to the risk (odds) of GI illness among those not buried in the 

sand (aOR = 4.49; 95% CI = 0.36–55.76).  However, overall, these results are not suggestive 

of a strong association between F+-specific coliphage, the sand exposures considered, and GI 

illness (Table 4).  

For culturable Enterococcus (by Method 1600), there was a positive association with 

GI illness for digging in the sand, but not for the body buried in the sand exposure (Table 5).  

The risk (odds) of GI illness among those digging in the sand on days when daily average 

Enterococcus levels (CFU/g) were in the highest quartile was 2.00 times the risk (odds) of GI 

illness among those not digging in the sand (95% CI = 1.28–3.12).  A weakening of this 

positive association was evident for the sand exposure buried in the sand (Table 5). 

For Enterococcus measured in sand by qPCR CCE method, we observed a 

consistently positive association with GI illness for the digging in the sand exposure (Table 

6).  The risk (odds) of GI illness among those digging in the sand with Enterococcus in the 
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highest tertile (>48.87 qPCR CCE/g) was 2.20 times the risk (odds) of GI illness among 

those digging in the sand with Enterococcus in the lowest tertile (>0–28.04 qPCR CCE/g) 

(95% CI = 1.09–4.44).  The risk (odds) of GI illness among those digging in the sand with 

Enterococcus in the highest tertile (>48.87 qPCR CCE/g) was 1.95 times the risk (odds) of 

GI illness among those not digging in the sand (95% CI = 1.23–3.09).  Among the most 

highly exposed group (>48.87 qPCR CCE/g) we estimated an excess of 41 cases of GI illness 

per 1000 individuals compared to those who did not dig in the sand.   

The magnitude of the positive association between Enterococcus (qPCR CCE) and GI 

illness increased for the more intense sand contact exposure, buried in the sand (Table 6).  

The risk (odds) of GI illness among those buried in the sand with Enterococcus in the highest 

tertile (>48.87 qPCR CCE/g) was 9.11 times the risk (odds) of GI illness among those buried 

in the sand with Enterococcus in the lowest tertile (>0–28.04 qPCR CCE/g) (95% CI = 1.47–

56.35) (Table 6).  However, the wide 95% confidence interval reflects the imprecision of this 

point estimate and the fact that there were few participants in this group.  This observed 

positive association between Enterococcus (qPCR CCE/g) in sand, sand contact exposures, 

and GI illness was robust to choice of reference category.  For example, the risk (odds) of GI 

illness among those buried in sand in the highest tertile of Enterococcus exposure (>48.87 

qPCR CCE/g) was 3.49 times the risk (odds) of GI illness among those who did not report 

being buried in the sand (95% CI = 1.43–8.50) (Table 6).  Among the most highly exposed 

group (>48.87 qPCR CCE/g) we estimated an excess of 115 cases of GI illness per 1000 

individuals compared to those who were not buried in the sand. 

An inconsistent relationship was observed between Bacteroides (qPCR CCE/g) and 

GI illness for each of the sand exposures (Table 7).  Although positive associations were 
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observed between Bacteroides (qPCR CCE/g) and GI illness for the classification of 

above/below the median for both digging in the sand (aOR = 1.80; 95% CI = 1.21–2.69) and 

buried in sand (aOR = 2.90; 95% CI = 1.40–6.00), these positive associations were not robust 

to the other classification methods that were considered (presence/absence, tertiles, and 

quartiles) (Table 7).  For example, a decline was observed among those with digging 

exposure in the highest quartile of Bacteroides in sand (>241.31 qPCR CCE/g) (aOR = 1.17; 

95% CI = 0.67–2.07) (Table 7).  A similarly inconsistent relationship was observed between 

B. thetaiotaomicron (qPCR CCE/g) (considered to be a more human-specific indicator of 

fecal contamination) and GI illness for both sand contact exposures across categorical 

classification methods (Table 8). 

The incidence of GI illness was positively associated with densities of Enterococcus 

qPCR CCE in sand for both forms of sand contact considered (Table 9).  Among participants 

who reported digging in the sand, a 1 log10 increase in the daily Enterococcus qPCR CCE 

average resulted in a 1.45 increase in the risk (odds) of GI illness (95% CI = 1.05–2.01).  The 

relationship was stronger among participants buried in the sand (aOR = 3.12; 95% CI = 1.08–

9.05).  Re-assignment of a uniformly low value to those not in contact with sand (i.e., not 

digging; not buried) resulted in a decrease in the magnitude of observed associations, but an 

improvement in precision (Table 9).  After re-assigning those not digging in the sand a 

uniformly low value of exposure, a 1 log10 increase in the daily Enterococcus qPCR CCE 

average resulted in a 1.11 increase in the risk (odds) of GI illness (95% CI = 1.03–1.18).  The 

choice of uniformly low value (10% or 1% of the daily average detection limit) for re-

assignment did not substantially alter the results (data not shown).  
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The relationship between the remaining fecal indicator measures (culture-based 

Enterococcus, and qPCR CCE Bacteroides and B. thetaiotaomicron), respectively with GI 

illness for the two sand contact exposures was not as strong or consistent as the association 

observed for the Enterococcus qPCR CCE measure (Table 9).  Although positive 

relationships were observed for both Enterococcus CFU as well as Bacteroides QPCR CCE 

densities.  For the associations between these remaining continuous fecal indicator measures 

in sand and GI illness, the aORs ranged from 0.95 to 1.33 for digging in the sand and from 

1.11 to 1.65 for buried in the sand (Table 9).  We did not report model estimates of the F+-

specific coliphage continuous measure because there were so few days when F+-specific 

coliphage was detected, leading to unstable and imprecise estimates.   

The composite index of fecal contamination showed consistent and positive 

associations with GI illness.  This was observed by classification of the 5 fecal indicators into 

an index with categories of positive samples summed across each of the 3 sand samples that 

were collected at the 2 marine beaches each day (Table 10).  This relationship was robust to 

type of sand contact (digging in sand; body buried in the sand).  The risk (odds) of GI illness 

among those digging in the sand on days when 10-15 out of the 15 sand samples were 

positive for fecal indicators was 1.69 times the risk (odds) of GI illness among those not 

digging in the sand (95% CI = 1.03–2.78).  The magnitude of the positive association was 

greater for the more intense exposure buried in the sand.  The risk (odds) of GI illness among 

those buried in the sand on days when 10-15 out of the 15 sand samples were positive for 

fecal indicators was 2.84 times the risk (odds) of GI illness among those not buried in the 

sand (95% CI = 1.01–7.97).  For those buried in the sand, the association was robust to 

choice of reference category.  The risk (odds) of GI illness among those buried in the sand on 
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days when 10-15 out of the 15 sand samples were positive for fecal indicators was 5.48 times 

the risk (odds) of GI illness among those buried in the sand on days when 0-4 out of the 15 

sand samples were positive for fecal indicators (95% CI = 1.09–27.56).  

4. Discussion 

This investigation evaluated associations between 5 fecal indicators measured daily in 

sand along 3 transects at 2 marine beaches, two types of sand contact activities (digging in 

sand; buried in sand), and GI illness.  A molecular measure of fecal contamination 

(Enterococcus qPCR CCE) was consistently associated with GI illness for both sand contact 

activities.  The strong positive association observed between daily average concentrations of 

Enterococcus (qPCR CCE/g) in sand, sand contact exposures, and GI illness was robust to 

the various estimation approaches that were considered – continuous variable models vs. 

categorical variable models (including use of various reference categories).  There was 

moderate evidence of positive associations between the 2 sand contact activities and GI 

illness for culturable Enterococcus, culturable F+-specific coliphage, and molecular 

Bacteroides, however, these fecal indicator measures showed some inconsistency with 

respect to the methods of exposure classification considered.  Our ability to make 

conclusions for the F+-specific coliphage measure was limited because of the low percentage 

(17.1%) of days when it was detected in beach sand samples (Table 2).  B. thetaiotaomicron 

did not show a consistent or strong association with GI illness for the 2 sand exposures 

considered.  An index variable of the daily sum of all 5 fecal indicators present or absent in 

beach sand at the 3 transects demonstrated a consistently positive association with GI illness.  

This index reflects both the diversity and presence of multiple fecal indicators in sand on a 

given day.  This index provides some evidence that the presence of one or more fecal 
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indicators in the sand on a given day may be associated with an increased risk of GI illness 

among those exposed.  However, this index does not account for a specific combination of 

fecal indicators that may be present in sand and should be viewed as an index of the diversity 

of multiple fecal indicators to assess daily sand quality for exposure classification.  

To the best of our knowledge, this is the first study to demonstrate an association 

between GI illness and beach sand contact as a function of microbial sand quality.  One 

previous study demonstrated a relationship between sand contact and GI illness; however it 

observed a positive association with GI illness as a function of time spent exposed to wet 

sand, not as a function of microbial sand quality.41  The results of two other studies of beach 

sand exposure and health effects (which included beach sand fecal indicator measures) did 

not demonstrate an association between fecal contamination in beach sand, sand contact 

activities, and illness (including GI illness).32,124  These investigators did observe higher 

concentrations of fecal microbial indicators (including E. coli and Enterococcus) in beach 

sand/sediment samples compared to beach water samples.  It has been hypothesized that sand 

could serve as a source of fecal contamination in water, especially in the surf zone along the 

shoreline.  Numerous exposure assessments have demonstrated that sand can serve as a both 

a source and a sink of fecal microbial contamination.  Debate therefore exists concerning use 

of fecal indicator bacteria (E. coli and Enterococcus) to monitor beach water quality and sand 

quality.  Several studies have demonstrated potential for re-growth of E. coli and 

Enterococcus in sand; further complicating a clear understanding of fecal contamination 

sources.  Beach sand may serve as a source of autochthonous E. coli and Enterococcus in 

water in the absence of fecal contamination (and associated pathogens) and contribute to 

unnecessary beach closures when relying on water tests of fecal indicators bacteria.68,69  EPA 
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guidelines for monitoring of fresh and marine recreational waters are based on E. coli and 

Enterococcus and currently, no sand quality guidelines exist. 

Although there is debate about the relative impact of autochthonous fecal indicator 

populations in sand versus non-point source (urban run-off, domestic and wild animal, and 

human bather) versus point source (municipal sewage outfalls) fecal contamination on sand 

quality, our results are suggestive of an association between Enterococcus qPCR CCE and GI 

illness.  This association was stronger than that observed for the traditional culturable 

measure of Enterococcus and several novel measures (culturable F+-specific coliphage, and 

molecular Bacteroides and B. thetaiotaomicron) that are thought to be better indicators of 

human-specific fecal contamination.  Previous research has demonstrated a strong and 

consistent association between Enterococcus qPCR CCE and swimming-associated illness 

among adults and also among children.9,146  Wade et al., speculated that “molecular 

measurement of Enterococcus DNA provides a stable, conservative means of quantifying the 

level of fecal contamination, which is not subject to die-off but may mirror the dilution and 

dispersion of fecal material.146”  Culturable fecal indicator bacteria cells (e.g., total and fecal 

coliforms, E. coli, and Enterococcus) are readily inactivated during the sewage treatment 

process whereas pathogenic viruses and protozoan parasites often survive treatment and are 

discharged into recreational waters.  Molecular methods of measuring Enterococcus may 

provide a more reliable estimate of pathogenic microbes that survive wastewater treatment 

and are discharged into the water environment.   

Water quality at the 2 marine beaches studied was influenced by human sources of 

pollution (nearby municipal sewage outfall).  It is possible that fecal contamination from 

municipal sewage outfalls reached the shoreline producing impacts on the beach environment 
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as well as sand quality through tidal flow, wave action, and currents.  There is, however, 

contradictory evidence suggesting that sewage from municipal outfalls does not predominate 

the beach environment as much as diffuse fecal contamination sources (such as coastal birds, 

other animal populations, and urban run-off).81,180,181  We do not know if the relationships we 

observed between Enterococcus qPCR CCE and GI illness can be extended to beaches not 

influenced by a municipal sewage outfall (i.e., beaches primarily influenced by non-point 

source pollution) or to freshwater beaches.  

The definition of GI illness in this study was non-specific, and may have been 

affected by recall bias.  A broad endpoint accounted for the diverse range of GI symptoms 

potentially associated with sand exposure, but may obscure more specific effects of sand 

quality and sand exposure.  While those in contact with sand (digging in sand; buried in 

sand) may have been more likely to recall illness than those not in contact with sand, it is 

unlikely that recall occurred among those in contact with sand at varying levels of sand 

quality.  The primary focus of the NEEAR water studies is water quality and swimming-

associated illness, also making it unlikely that participants in contact with sand would have 

been more likely to recall illness than those not in contact with sand.  Digging in the sand 

(80.9 % of swimmers vs. 19.2% of nonswimmers reported digging in sand) and being buried 

in the sand (88.6% of swimmers vs. 11.4% of nonswimmers reported being buried in sand) 

were strongly associated with swimming.  This may make it difficult to tease out the effect of 

sand exposure alone.  However, consistency in the associations between Enterococcus qPCR 

CCE and GI illness was observed across varying definitions of sand contact (digging in the 

sand, buried in the sand).  As was expected, for a more intense sand exposure (those buried in 

the sand), the results observed were stronger than the results for those digging in sand.  We 
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also considered a definition of sand contact defined as any sand contact (either digging in the 

sand or buried in the sand) and the results for this definition did not substantially alter the 

results (data not shown).  

5. Conclusions 

Research on health effects among beach-goers has largely focused on investigating 

swimming-associated illness and microbial water quality and has neglected relationships 

between sand contact activities, sand quality, and health effects.  As far as we know, this is 

the first study to demonstrate a relationship between sand contact activities and GI illness as 

a function of microbial sand quality.  Further investigation of the microbial quality of beach 

sand and its association with enteric and non-enteric illness among those in contact with sand 

appears warranted based on our results.  It is unknown whether the relationships we observed 

between Enterococcus qPCR CCE and GI illness can be extended to more specific 

definitions of GI illness (diarrhea, vomiting) and nonenteric illnesses (upper respiratory 

illness, eye irritation, skin rash, earache, and infected cuts/wounds).  Furture studies should 

consider the relationship between sand quality and health effects among those in contact with 

sand.  Confirmation of the findings presented here at a broader geographic range of sites and 

sand types will help to further understanding of illness risks associated with sand exposure 

and the association between illness and fecal indicator organisms in the sand.  
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Table 1. Characteristics of Those Who Did Not Dig in the Sand, Those Who Dug in the Sand, Those

Who Did Not Have Their Body Buried in the Sand, and Those Who Did Have Their Body Buried

in the Sand.

No Yes No Yes

(n = 3512) (n = 1326) (n = 4627) (n=211)

Characteristic No. (%)
a

No. (%)
a

No. (%)
a

No. (%)
a

Age (yrs)

0-4 179 (5.1) 287 (21.6) 418 (9.0) 48 (22.7)

5-10 208 (5.9) 411 (31.0) 529 (11.4) 90 (42.7)

11-19 348 (9.9) 165 (12.4) 493 (10.7) 20 (9.5)

20-54 2142 (61.0) 427 (32.2) 2518 (54.4) 51 (24.2)

55+ 635 (18.1) 36 (2.7) 669 (14.5) 2 (<1)

Sex

Male 1471 (41.9) 584 (44.0) 1961 (42.4) 94 (44.6)

Female 2041 (58.1) 742 (56.0) 2666 (57.6) 117 (55.4)

Race

White 2315 (65.9) 870 (65.6) 3061 (66.2) 124 (58.8)

Black 467 (13.3) 222 (16.7) 653 (14.1) 36 (17.1)

Asian 60 (1.7) 24 (1.8) 82 (1.8) 2 (<1)

American Indian 7 (<1) 5 (<1) 9 (<1) 3 (1.4)

Hispanic/Latino 636 (18.1) 186 (14.0) 778 (16.8) 44 (20.9)

Multiethnic/other 27 (<1) 19 (1.4) 44 (1.0) 2 (1.0)

Miles traveled to the beach

0-5 miles 851 (24.7) 320 (24.5) 1117 (24.6) 54 (26.1)

6-20 miles 1556 (45.2) 504 (38.6) 1981 (43.6) 79 (38.2)

21-50 miles 781 (22.7) 394 (30.2) 1108 (24.4) 67 (32.4)

50 miles or greater 254 (7.4) 89 (6.8) 336 (7.4) 7 (3.4)

Conditions in the 3 d prior to the beach visit

Vomiting 49 (1.4) 22 (1.7) 66 (1.4) 5 (2.4)

Other GI symptoms 99 (2.8) 30 (2.3) 125 (2.7) 4 (1.9)

Sore throat 153 (4.4) 80 (6.0) 223 (4.8) 10 (4.7)

Rash 77 (2.2) 49 (3.7) 114 (2.5) 12 (5.7)

Sunburn 159 (4.5) 40 (3.0) 195 (4.2) 4 (1.9)

Infected cut 185 (5.3) 139 (10.5) 204 (6.6) 20 (9.5)

Eye irritation 20 (<1) 9 (<1) 29 (<1) 0 (0)

Earache 48 (1.4) 19 (1.4) 64 (1.4) 3 (1.4)

History of chronic respiratory problems or

asthma 237 (6.8) 87 (6.6) 313 (6.8) 11 (5.2)

History of allergies 606 (17.3) 197 (14.9) 779 (16.8) 24 (11.4)

History of chronic GI illness 124 (3.5) 21 (1.6) 145 (3.1) 0 (0)

Any history of chronic GI illness, asthma, or

allergies 606 (17.3) 197 (14.9) 779 (16.8) 24 (11.4)

Water contact status

No water contact 2117 (60.3) 254 (19.2) 2347 (50.7) 24 (11.4)

Water contact 1395 (39.7) 1072 (80.8) 2280 (49.3) 187 (88.6)

Contact with animals 48 h prior to or after

beach visit, or between beach visit and

phone interview 2160 (61.5) 945 (71.3) 2960 (63.9) 145 (68.7)

Consumption of raw meat 48 h prior to beach

visit or between beach visit and phone

interview 506 (14.4) 111 (8.4) 603 (13.0) 14 (6.6)

Beach

Fairhope Beach 1242 (35.4) 752 (56.7) 1884 (40.7) 110 (52.1)

Goddard Beach 2270 (64.6) 574 (43.3) 2743 (59.3) 101 (47.9)
a
Excludes those with missing information on age, sex, race/ethnicity, water contact status, and beach.

Digging in the Sand Body Buried in the Sand
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TABLE 2. Descriptive Statistics of Fecal Indicator Measures in Sand by Beach.

25th 75th Below lower DL

Beach No. Mean (SD) Min Percentile Median Percentile Max No. (%) 

All beaches 123 0.0345 (0.1563) 0 0 0 0 1.5406 102 (82.9)

Fairhope Beach 51 0.0143 (0.0284) 0 0 0 0 0.14 39 (76.5)

Goddard Beach 72 0.0488 (0.2022) 0 0 0 0 1.5406 63 (87.5)

25th 75th Below lower DL

Beach No. Mean (SD) Min Percentile Median Percentile Max No. (%) 

All beaches 144 59.8 (368.2) 0 0 3.2 16.8 4160 40 (27.8)

Fairhope Beach 72 87.4 (493.3) 0 1.6 7.2 20.4 4160 13 (18.1)

Goddard Beach 72 32.2 (167.8) 0 0 1.6 6.4 1408 27 (37.5)

25th 75th Below lower DL

Beach No. Mean (SD) Min Percentile Median Percentile Max No. (%) 

All beaches 133 405.9 (2161) 0.03 4.4 24.7 73.4 20586 40 (27.8)

Fairhope Beach 61 239.7 (1617) 0.03 0.4 8.8 46.7 12658 13 (18.1)

Goddard Beach 72 546.8 (2535) 0.1 17.2 39.8 90.4 20586 27 (37.5)

25th 75th Below lower DL

Beach No. Mean (SD) Min Percentile Median Percentile Max No. (%) 

All beaches 133 477.3 (1820) 0.03 0.6 1.5 179.7 15457 70 (52.6)

Fairhope Beach 61 249.9 (903.9) 0.03 0.5 0.9 94.1 5206 38 (62.3)

Goddard Beach 72 669.9 (2321) 0.3 0.8 16.4 296.7 15457 32 (44.4)

25th 75th Below lower DL

Beach No. Mean (SD) Min Percentile Median Percentile Max No. (%) 

All beaches 132 1207 (5329) 0.1 0.8 182.1 689.3 56829 48 (36.4)

Fairhope Beach 60 279.5 (588.5) 0.1 0.6 55.4 386 3702.6 26 (43.3)

Goddard Beach 72 1980 (7127) 0.3 1.3 436.6 1323.6 56829 22 (30.6)

Enterococcus (CFU/g)

 F
+
-Specific Coliphage (PFU/g)

Enterococcus (QPCR CCE/g)

Bacteroides (QPCR CCE/g)

B. thetaiotaomicron (QPCR CCE/g)
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Transect 1 Transect 2 Transect 3 Transect 1 Transect 2 Transect 3

Indicator No. + (%) No. + (%) No. + (%) No. + (%) No. + (%) No. + (%)

F+-specific coliphage (Method 1601) 4 (23.5) 1 (5.9) 7 (41.2) 2 (8.3) 2 (8.3) 5 (20.8)

Enterococcus (Method 1600) 19 (26.4) 19 (26.4) 21 (29.2) 18 (25) 15 (20.8) 12 (16.7)

Enterococcus (QPCR CCE Method) 13 (68.4) 13 (65.0) 15 (68.2) 22 (91.7) 23 (95.8) 23 (95.8)

Bacteroides (QPCR CCE Method) 6 (31.6) 8 (40.0) 9 (40.9) 15 (62.5) 16 (66.7) 9 (37.5)

B. thetaiotaomicron (QPCR CCE Method) 13 (68.4) 9 (45.0) 12 (57.1) 16 (75.0) 17 (70.8) 15 (62.5)

TABLE 3. Spatial Variability of Fecal Indicator-Positive Samples at Each Collection Transect by Beach.

Goddard BeachFairhope Beach
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TABLE 4. Relationship Between F
+
-Specific Coliphage (PFU/g) in Sand and GI Illness by Status of Sand Contact and

by Categorical Classification.

No Yes

Digging Status (Classification) No. (%) No. (%) aOR (95% CI)
a

aOR (95% CI)
a

No 2772 (95.13) 142 (4.87) 1.00
b

N/A

Yes (F
+
-specific coliphage (F

+
) absent) 586 (91.14) 57 (8.86) 1.57 (1.02-2.41) 1.00

c

Yes (F
+ 

-specific coliphage (F
+
) present) 289 (91.75) 26 (8.25) 1.25 (0.72-2.16) 0.73 (0.38-1.41)

Yes (1 or 2 of 3 samples F
+
 positive) 257 (92.45) 21 (7.55) 1.10 (0.60-2.03) 0.63 (0.31-1.29)

Yes (3 of 3 samples F
+
 positive) 32 (86.49) 5 (13.51) 2.44 (0.87-6.87) 1.64 (0.56-4.78)

Yes (F
+ 
! median of 0.0124 PFU/g) 171 (91.94) 15 (8.06) 1.30 (0.68-2.51) 0.81 (0.38-1.69)

Yes (F
+
 > median of 0.0124 PFU/g) 118 (91.47) 11 (8.53) 1.17 (0.49-2.81) 0.64 (0.24-1.67)

No Yes

Buried Status (Classification) No. (%) No. (%) aOR (95% CI)
a

aOR (95% CI)
a

No 3508 (94.4) 208 (5.6) 1.00
b

N/A

Yes (F
+
-specific coliphage (F

+
) absent) 100 (91.74) 9 (8.26) 1.55 (0.70-3.43) 1.00

c

Yes (F
+ 

-specific coliphage (F
+
) present) 42 (84) 8 (16) 2.41 (0.78-7.42) 1.58 (0.49-5.03)

Yes (1 or 2 of 3 samples F
+
 positive) 42 (84) 8 (16) 2.41 (0.78-7.42) 1.58 (0.49-5.03)

Yes (3 of 3 samples F
+
 positive) 0 (0) 0 (0) - -

Yes (F
+ 
! median of 0.0124 PFU/g) 35 (87.5) 5 (12.5) 1.91 (0.56-6.50) 1.24 (0.35-4.35)

Yes (F
+
 > median of 0.0124 PFU/g) 7 (70) 3 (30) 4.49 (0.36-55.76) 3.72 (0.29-48.30)

race/ethnicity, beach, and anycontact swimming.

GI Illness

buried) are the reference category.  
c
Those who reported the sand contact activity (digging; buried) with F

+
-specific

coliphage absent are the reference category.  aOR estimated from logistic regression model adjusted for age, sex,

a
Robust variance estimates clustering on household. 

b
Those who did not report the sand contact activity (digging;

GI Illness
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TABLE 5. Relationship Between Enterococcus (CFU/g) in Sand and GI Illness by Status of Sand Contact

and by Categorical Classification.

No Yes

Digging Status (Categorical Classification) No. (%) No. (%) aOR (95% CI)
a

aOR (95% CI)
a

No 3247 (94.69) 182 (5.31) 1.00
b

N/A

Yes (Enterococcus (ENT) absent) 85 (97.7) 2 (2.3) 0.48 (0.12-2.00) 1.00
c

Yes (Enterococcus (ENT) present) 1084 (90.79) 110 (9.21) 1.50 (1.08-2.07) 3.14 (0.72-13.69)

Yes (ENT
 
! median of 11.23 CFU/g) 670 (93.18) 49 (6.82) 1.26 (0.85-1.87) 1.00

d

Yes (ENT > median of 11.23 CFU/g) 499 (88.79) 63 (11.21) 1.64 (1.08-2.48) 1.31 (0.81-2.11)

Yes (ENT tertile 1: >0 - 4.26 CFU/g) 383 (93.19) 28 (6.81) 1.35 (0.84-2.17) 1.00
d

Yes (ENT
 
tertile 2: >4.26 - 22.4 CFU/g) 408 (90.87) 41 (9.13) 1.40 (0.87-2.27) 0.99 (0.50-1.98)

Yes (ENT
 
tertile 3: >22.4 - 1390.4 CFU/g) 378 (89.79) 43 (10.21) 1.53 (0.97-2.42) 1.14 (0.60-2.15)

Yes (ENT quartile 1: >0 - 2.96 CFU/g) 309 (93.35) 22 (6.65) 1.36 (0.79-2.32) 1.00
d

Yes (ENT quartile 2: >2.96 - 11.23 CFU/g) 318 (92.71) 25 (7.29) 1.34 (0.68-1.89) 0.79 (0.36-1.73)

Yes (ENT quartile 3: >11.23 - 35.46 CFU/g) 242 (91.67) 22 (8.33) 1.20 (0.61-2.35) 0.79 (0.32-1.91)

Yes (ENT quartile 4: > 35.46- 1390.4 CFU/g) 300 (87.46) 43 (12.54) 2.00 (1.28-3.12) 1.45 (0.73-2.87)

No Yes

Buried Status (Categorical Classification) No. (%) No. (%) aOR (95% CI)
a

aOR (95% CI)
a

No 4229 (93.92) 274 (6.08) 1.00
b

N/A

Yes (Enterococcus (ENT) absent) 21 (87.5) 3 (12.5) 3.06 (0.81-11.52) 1.00
c

Yes (Enterococcus (ENT) present) 169 (90.86) 17 (9.14) 1.33 (0.67-2.61) 0.37 (0.07-2.07)

Yes (ENT
 
! median of 11.23 CFU/g) 116 (92.06) 10 (7.94) 1.40 (0.68-2.87) 1.00

d

Yes (ENT > median of 11.23 CFU/g) 74 (88.10) 10 (11.90) 1.52 (0.58-4.03) 1.39 (0.44-4.37)

Yes (ENT tertile 1: >0 - 4.26 CFU/g) 72 (92.31) 6 (7.69) 1.38 (0.57-3.37) 1.00
d

Yes (ENT
 
tertile 2: >4.26 - 22.4 CFU/g) 61 (91.04) 6 (8.96) 1.20 (0.37-3.87) 0.91 (0.22-3.77)

Yes (ENT
 
tertile 3: >22.4 - 1390.4 CFU/g) 53 (87.69) 8 (12.31) 1.81 (0.66-4.97) 1.56 (0.36-6.73)

Yes (ENT quartile 1: >0 - 2.96 CFU/g) 34 (94.44) 2 (5.56) 0.96 (0.23-3.99) 1.00
d

Yes (ENT quartile 2: >2.96 - 11.23 CFU/g) 43 (97.73) 1 (2.27) 0.34 (0.05-2.61) 0.12 (0.01-1.87)

Yes (ENT quartile 3: >11.23 - 35.46 CFU/g) 38 (86.36) 6 (13.64) 1.65 (0.49-5.53) 0.70 (0.58-8.44)

Yes (ENT quartile 4: > 35.46- 1390.4 CFU/g) 54 (87.10) 8 (12.90) 1.93 (0.70-5.31) 0.84 (0.12-6.06)

GI Illness

GI Illness

race/ethnicity, beach, and anycontact swimming.

a
Robust variance estimates clustering on household. 

b
Those who did not report the sand contact activity (digging; buried) 

are the reference category.  
c
Those who reported the sand contact activity (digging; buried) with Enterococcus absent are the

reference category.  
d
Those who reported the sand contact activity (digging; buried) with Enterococcus present at the lowest 

concentration category are the reference category.  aOR estimated from logistic regression model adjusted for age, sex, 
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TABLE 6. Relationship Between Enterococcus (QPCR CCE/g) in Sand and GI Illness by Status of Sand Contact and by

Categorical Classification.

No Yes

Digging Status  (Categorical Classification) No. (%) No. (%) aOR (95% CI)
a

aOR (95% CI)
a

No 3127 (94.67) 176 (5.33) 1.00
b

N/A

Yes (Enterococcus (ENT) absent) 174 (90.63) 18 (9.38) 1.15 (0.62-2.13) 1.00
c

Yes (Enterococcus (ENT) present) 907 (90.79) 92 (9.21) 1.55 (1.10-2.18) 1.40 (0.72-2.71)

Yes (ENT
 
! median of 40.5 QPCR CCE/g) 549 (90.44) 58 (9.56) 1.31 (0.85-1.99) 1.00

d

Yes (ENT > median of 40.5 QPCR CCE/g) 532 (91.10 52 (8.90) 1.68 (1.10-2.55) 1.45 (0.76-2.77)

Yes (ENT tertile 1: >0 - 28.04 QPCR CCE/g) 378 (92.20) 32 (7.80) 0.99 (0.59-1.66) 1.00
d

Yes (ENT
 
tertile 2: >28.04 - 48.87 QPCR CCE/g) 371 (90.49) 39 (9.51) 1.63 (1.02-2.60) 1.71 (0.90-3.26)

Yes (ENT
 
tertile 3: >48.87 - 8981.69 QPCR CCE/g) 332 (89.49) 39 (10.51) 1.95 (1.23-3.09) 2.20 (1.09-4.44)

Yes (ENT quartile 1: >0 - 16.87 QPCR CCE/g) 261 (94.64) 22 (7.77) 0.85 (0.48-1.52) 1.00
d

Yes (ENT quartile 2: >16.87 - 40.5 QPCR CCE/g) 331 (91.69) 30 (8.31) 1.37 (0.83-2.26) 1.75 (0.88-3.47)

Yes (ENT quartile 3: >40.5 - 115.86 QPCR CCE/g) 203 (87.88) 28 (12.12) 2.21 (1.24-3.94) 2.86 (1.29-6.34)

Yes (ENT quartile 4: >115.86 - 8981.69 QPCR CCE/g) 286 (90.51) 30 (9.49) 1.82 (1.10-3.00) 2.61 (1.20-5.67)

No Yes

Buried Status (Categorical Classification) No. (%) No. (%) aOR (95% CI)
a

aOR (95% CI)
a

No 4038 (93.82) 266 (6.18) 1.00
b

N/A

Yes (Enterococcus (ENT) absent) 31 (96.88) 1 (3.13) 0.29 (0.39-2.11) 1.00
c

Yes (Enterococcus (ENT) present) 142 (88.2) 19 (11.8) 2.02 (1.08-3.76) 9.46 (1.02-88.12)

Yes (ENT
 
! median of 40.5 QPCR CCE/g) 82 (94.25) 5 (5.71) 0.66 (0.27-1.64) 1.00

d

Yes (ENT > median of 40.5 QPCR CCE/g) 91 (85.85) 15 (14.15) 2.77 (1.33-5.76) 7.22 (1.46-35.71)

Yes (ENT tertile 1: >0 - 28.04 QPCR CCE/g) 60 (93.75) 4 (6.25) 0.69 (0.25-1.94) 1.00
d

Yes (ENT
 
tertile 2: >28.04 - 48.87 QPCR CCE/g) 63 (92.65) 5 (7.35) 1.24 (0.49-3.11) 2.41 (0.49-11.97)

Yes (ENT
 
tertile 3: >48.87 - 8981.69 QPCR CCE/g) 50 (81.97) 11 (18.03) 3.49 (1.43-8.50) 9.11 (1.47-56.35)

Yes (ENT quartile 1: >0 - 16.87 QPCR CCE/g) 40 (93.02) 3 (6.98) 0.68 (0.22-2.14) 1.00
d

Yes (ENT quartile 2: >16.87 - 40.5 QPCR CCE/g) 57 (90.48) 6 (9.52) 1.53 (0.62-3.77) 3.22 (0.73-14.07)

Yes (ENT quartile 3: >40.5 - 115.86 QPCR CCE/g) 28 (90.32) 3 (9.68) 1.79 (0.24-13.31) 3.78 (0.27-53.91)

Yes (ENT quartile 4: >115.86 - 8981.69 QPCR CCE/g) 48 (85.71) 8 (14.29) 2.71 (1.06-6.94) 9.14 (1.22-68.70)

d
Those who reported the sand contact activity (digging; buried) with Enterococcus present at the lowest concentration category are the 

reference category.  aOR estimated from logistic regression model adjusted for age, sex, race/ethnicity, beach, and anycontact

swimming.

GI Illness

GI Illness

a
Robust variance estimates clustering on household. 

b
Those who did not report the sand contact activity (digging; buried) are the 

reference category.  
c
Those who reported the sand contact activity (digging; buried) with Enterococcus absent are the reference category.  
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TABLE 7. Relationship Between Bacteroides (QPCR CCE/g) in Sand and GI Illness by Status of Sand Contact and by

Categorical Classification.

No Yes

Digging Status (Categorical Classification) No. (%) No. (%) aOR (95% CI)
a

aOR (95% CI)
a

No 3127 (94.67) 176 (5.33) 1.00
b

N/A

Yes (Bacteroides (BACT) absent) 269 (89.07) 33 (10.93) 1.58 (0.97-2.56) 1.00
c

Yes (Bacteroides (BACT) present) 812 (91.34) 77 (8.66) 1.43 (1.00-2.06) 0.92 (0.53-1.60)

Yes (BACT ! median of 104.40 QPCR CCE/g) 561 (91.67) 51 (8.33) 1.17 (0.77-1.78) 1.00
d

Yes (BACT > median of 104.40 QPCR CCE/g) 520 (89.81) 59 (10.19) 1.80 (1.21-2.69) 1.57 (0.93-2.66)

Yes (BACT tertile 1: >0 - 32.52 QPCR CCE/g) 393 (90.55) 41 (9.45) 1.47 (0.95-2.28) 1.00
d

Yes (BACT
 
tertile 2: >32.52 - 192.42 QPCR CCE/g) 328 (90.86) 33 (9.14) 1.35 (0.81-2.25) 0.91 (0.50-1.66)

Yes (BACT
 
tertile 3: >192.42 - 6020.26 QPCR CCE/g) 360 (90.91) 36 (9.09) 1.57 (0.96-2.57) 1.06 (0.58-1.96)

Yes (BACT quartile 1: >0 - 10.57 QPCR CCE/g) 312 (90.96) 31 (9.04) 1.37 (0.84-2.21) 1.00
d

Yes (BACT quartile 2: >10.57 - 104.40 QPCR CCE/g) 278 (91.15) 27 (8.85) 1.45 (0.87-2.43) 1.07 (0.56-2.03)

Yes (BACT quartile 3: >104.40 - 241.31 QPCR CCE/g) 186 (85.71) 31 (14.29) 2.11 (1.16-3.82) 1.51 (0.75-3.06)

Yes (BACT quartile 4: >241.31 - 6020.26 QPCR CCE/g) 305 (93.56) 21 (6.44) 1.17 (0.67-2.07) 0.86 (0.43-1.74)

No Yes

Buried Status (Categorical Classification) No. (%) No. (%) aOR (95% CI)
a

aOR (95% CI)
a

No 4038 (93.82) 266 (6.18) 1.00
b

N/A

Yes (Bacteroides (BACT) absent) 39 (92.86) 3 (7.14) 0.75 (0.24-2.30) 1.00
c

Yes (Bacteroides (BACT) present) 134 (88.74) 17 (11.26) 1.92 (0.97-3.81) 3.05 (0.71-12.93)

Yes (BACT ! median of 104.40 QPCR CCE/g) 89 (95.70) 4 (4.30) 0.54 (0.21-1.43) 1.00
d

Yes (BACT > median of 104.40 QPCR CCE/g) 84 (84) 16 (16) 2.90 (1.40-6.00) 6.26 (1.74-22.47)

Yes (BACT tertile 1: >0 - 32.52 QPCR CCE/g) 65 (95.59) 3 (4.41) 0.58 (0.18-1.83) 1.00
d

Yes (BACT
 
tertile 2: >32.52 - 192.42 QPCR CCE/g) 49 (85.96) 8 (14.04) 2.36 (0.89-6.27) 4.03 (0.87-18.65)

Yes (BACT
 
tertile 3: >192.42 - 6020.26 QPCR CCE/g) 59 (86.76) 9 (13.24) 2.13 (0.85-5.34) 4.10 (0.93-18.06)

Yes (BACT quartile 1: >0 - 10.57 QPCR CCE/g) 46 (95.83) 2 (4.17) 0.50 (0.13-1.97) 1.00
d

Yes (BACT quartile 2: >10.57 - 104.40 QPCR CCE/g) 56 (90.32) 6 (9.68) 1.54 (0.66-3.61) 2.80 (0.53-14.66)

Yes (BACT quartile 3: >104.40 - 241.31 QPCR CCE/g) 17 (70.83) 7 (29.17) 5.16 (1.55-17.12) 11.89 (1.93-73.10)

Yes (BACT quartile 4: >241.31 - 6020.26 QPCR CCE/g) 54 (91.53) 5 (8.47) 1.39 (0.45-4.32) 2.94 (0.58-14.78)
a
Robust variance estimates clustering on household. 

b
Those who did not report the sand contact activity (digging; buried) are the  

reference category.  
c
Those who reported the sand contact activity (digging; buried) with Bacteroides absent are the reference category. 

d
Those who reported the sand contact activity (digging; buried) with Bacteroides present at the lowest concentration category are the 

reference category.  aOR estimated from logistic regression model adjusted for age, sex, race/ethnicity, beach, and anycontact swimming.

GI Illness

GI Illness
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TABLE 8. Relationship Between B. thetaiotaomicron (QPCR CCE/g) in Sand and GI Illness by Status of Sand Contact and by

 Classification Category.

No Yes

 Digging Status (Classification Category) No. (%) No. (%) aOR (95% CI)
a

aOR (95% CI)
a

No 3060 (94.62) 174 (5.38) 1.00
b

N/A

Yes (B. thetaiotaomicron (THETA) absent) 270 (91.53) 25 (8.49) 1.16 (0.70-1.93) 1.00
c

Yes (B. thetaiotaomicron (THETA) present) 764 (90.95) 76 (9.05) 1.45 (0.99-2.11) 1.25 (0.69-2.26)

Yes (THETA ! median of 315.12 QPCR CCE/g) 586 (89.88) 66 (10.12) 1.54 (1.05-2.26) 1.00
d

Yes (THETA > median of 315.12 QPCR CCE/g) 448 (92.75) 35 (7.25) 1.11 (0.68-1.80) 0.71 (0.41-1.24)

Yes (THETA tertile 1: >0 - <48.34 QPCR CCE/g) 436 (91.79) 39 (8.21) 1.14 (0.71-1.82) 1.00
d

Yes (THETA
 
tertile 2: !48.34 - <485.47 QPCR CCE/g) 323 (88.98) 40 (11.02) 1.75 (1.08-2.82) 1.57 (0.87-2.86)

Yes (THETA
 
tertile 3: "485.47 - 21046.29 QPCR CCE/g) 275 (92.59) 22 (7.41) 1.29 (0.75-2.24) 1.16 (0.58-2.33)

Yes (THETA quartile 1: >0 - <25.88 QPCR CCE/g) 355 (90.33) 38 (9.67) 1.39 (0.87-2.22) 1.00
d

Yes (THETA quartile 2: !25.88 - <315.12 QPCR CCE/g) 169 (88.02) 23 (11.98) 1.42 (0.74-2.72) 1.05 (0.50-2.20)

Yes (THETA quartile 3: !315.12 - <808.26 QPCR CCE/g) 287 (92.88) 22 (7.12) 1.27 (0.71-2.27) 0.92 (0.47-1.80)

Yes (THETA quartile 4: !808.26 - 21046.29 QPCR CCE/g) 223 (92.53) 18 (7.47) 1.40 (0.77-2.53) 1.03 (0.48-2.20)

No Yes

Body Buried Status (Classification Category) No. (%) No. (%) aOR (95% CI)
a

aOR (95% CI)
a

No 3932 (93.89) 256 (6.11) 1.00
b

N/A

Yes (B. thetaiotaomicron (THETA) absent) 49 (92.45) 4 (7.55) 0.96 (0.33-2.77) 1.00
c

Yes (B. thetaiotaomicron (THETA) present) 116 (88.55) 15 (11.45) 1.90 (0.91-3.96) 2.20 (0.56-8.67)

Yes (THETA ! median of 315.12 QPCR CCE/g) 92 (88.46) 12 (11.54) 1.71 (0.79-3.69) 1.00
d

Yes (THETA > median of 315.12 QPCR CCE/g) 73 (91.25) 7 (8.75) 1.41 (0.48-4.11) 0.72 (0.20-2.55)

Yes (THETA tertile 1: >0 - <48.34 QPCR CCE/g) 62 (92.54) 5 (7.46) 0.97 (0.87-2.52) 1.00
d

Yes (THETA
 
tertile 2: !48.34 - <485.47 QPCR CCE/g) 54 (88.52) 7 (11.48) 1.98 (0.71-5.52) 2.24 (0.51-9.72)

Yes (THETA
 
tertile 3: "485.47 - 21046.29 QPCR CCE/g) 49 (87.50) 7 (12.50) 2.08 (0.69-6.30) 2.07 (0.46-9.31)

Yes (THETA quartile 1: >0 - <25.88 QPCR CCE/g) 55 (91.67) 5 (8.33) 1.11 (0.42-2.90) 1.00
d

Yes (THETA quartile 2: !25.88 - <315.12 QPCR CCE/g) 18 (78.26) 5 (21.74) 2.74 (0.77-9.69) 4.98 (0.84-29.42)

Yes (THETA quartile 3: !315.12 - <808.26 QPCR CCE/g) 50 (96.15) 2 (3.85) 0.64 (0.09-4.81) 0.51 (0.08-3.24)

Yes (THETA quartile 4: !808.26 - 21046.29 QPCR CCE/g) 42 (85.71) 7 (14.29) 2.70 (0.94-7.75) 1.85 (0.40-8.63)

reference category.  aOR estimated from logistic regression model adjusted for age, sex, race/ethnicity, beach, and anycontact swimming.

GI Illness

GI Illness

a
Robust variance estimates clustering on household. 

b
Those who did not report the sand contact activity (digging; buried) are the reference

category.  
c
Those who reported the sand contact activity (digging; buried) with B. thetaiotaomicron absent are the reference category.  

d
Those

who reported the sand contact activity (digging; buried) with B. thetaiotaomicron present at the lowest concentration category are the 
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TABLE 9. Relationship Between Continuous Fecal Indicator Measures and Risk of GI Illness by 

Sand Exposure Type.

Digging Body Buried Digging Body Buried

aOR aOR aOR aOR

Fecal Indicator (95% CI)
a

(95% CI)
a

(95% CI)
a

(95% CI)
a

Enterococcus (CFU/g)

Per 1 log10 -unit increase 1.33 1.65 1.16 1.14

(0.86-2.05) (0.43-6.34) (1.04-1.28) (0.92-1.41)

Enterococcus (QPCR CCE/g)

Per 1 log10 -unit increase 1.45 3.12 1.11 1.13

(1.05-2.01) (1.08-9.05) (1.03-1.18) (0.98-1.30)

Bacteroides (QPCR CCE/g)

Per 1 log10 -unit increase 1.14 1.53 1.07 1.11

(0.87-1.48) (0.89-2.63) (1.00-1.15) (0.98-1.26)

B. thetaiotaomicron (QPCR CCE/g)

Per 1 log10 -unit increase 0.95 1.11 1.06 1.11

(0.79-1.14) (0.73-1.68) (0.99-1.13) (0.97-1.26)
a
Robust variance estimates clustering on household.  aOR estimated from logistic regression model 

adjusted for age, sex,  race/ethnicity, beach, and anycontact swimming.

GI Illness

Uniformly low exposure

 assigned to those 

without sand contact

Restricted to

those with

sand contact
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TABLE 10. Relationship Between a Presence-Absence Index of All Five Fecal Indicators in Sand and GI Illness 

by Status of Sand Contact.

No Yes

Digging Status (Categorical Classification) No. (%) No. (%) aOR (95% CI)
a

aOR (95% CI)
a

No 3247 (94.69) 182 (5.31) 1.00
b

N/A

Yes (Sum fecal index: 0-4 present) 299 (91.16) 29 (8.84) 1.19 (0.72-1.97) 1.00
c

Yes (Sum fecal index: 5-9 present) 580 (91.77) 52 (8.23) 1.43 (0.93-2.21) 1.32 (0.69-2.52)

Yes (Sum fecal index: 10-15 present) 290 (90.34) 31 (9.66) 1.69 (1.03-2.78) 1.50 (0.76-2.98)

P for trend 0.02 0.245

No Yes

Buried Status (Categorical Classification) No. (%) No. (%) aOR (95% CI)
a

aOR (95% CI)
a

No 4229 (93.92) 274 (6.08) 1.00
b

N/A

Yes (Sum fecal index: 0-4 present) 48 (94.12) 3 (5.88) 0.60 (0.20-1.85) 1.00
c

Yes (Sum fecal index: 5-9 present) 100 (92.59) 8 (7.41) 1.41 (0.61-3.24) 2.83 (0.64-12.54)

Yes (Sum fecal index: 10-15 present) 42 (82.35) 9 (17.65) 2.84 (1.01-7.97) 5.48 (1.09-27.56)

P for trend 0.02 0.04
a
Robust variance estimates clustering on household.  

b
Those not in contact with sand (digging; buried) are the reference 

category.  
c
Those in contact with sand (digging; buried) at the lowest fecal index category are the reference category.  aOR 

estimated from logistic regression model adjusted for age, sex, race/ethnicity, beach, and anycontact swimming.

GI Illness

GI Illness



 
 
 

VI.   CONCLUSIONS 

A. Recapitulation of overall study aims and findings 

The aim of the first phase of this study was to evaluate associations between two 

types of sand exposure with enteric (gastrointestinal GI illness and diarrhea) and nonenteric 

illnesses (upper respiratory illness [URI], skin rash, eye ailments, earache, and infected cuts) 

among participants at 7 beaches (4 freshwater and 3 marine).  Comparison of the risk 

(incidence proportion) among beachgoers in contact with beach sand to the risk among 

beachgoers not in contact with beach sand was made (including among a sub-group of 

children ≤10 years).  The risk of GI illness among those digging in the sand was 1.14 times 

the risk of GI illness among those who did not dig in the sand (95% CI = 1.02-1.26).  A 

stronger association was observed among those buried in the sand, which was observed to be 

a more intense sand contact exposure.  The risk of GI illness among those buried in the sand 

was 1.22 times the risk of GI illness among those not buried in the sand (95% CI = 1.05-

1.36).  A slight elevation in the risk of GI illness was observed in a sub-group of children ≤10 

years who dug in the sand (aIPR = 1.21; 95% CI = 0.97-1.51) and who were buried in the 

sand (aIPR = 1.21; 95% CI = 0.94-1.63).  We observed a stronger positive association 

between sand contact activities and a more narrow/specific definition of enteric illness 

(diarrhea).  The adjusted risk of diarrhea among those digging in the sand was 1.20 times the 

adjusted risk of diarrhea among those not digging in the sand (95% CI = 1.05-1.36).  This 

association with diarrhea was elevated for those buried in the sand (aIPR = 1.23; 95% CI = 

1.01-1.51) and among children ≤10 years who dug in the sand (aIPR = 1.45; 95% CI = 1.01-
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2.09) and buried in the sand (aIPR = 1.23; 95% CI = 0.94-1.63).  Associations with 

nonenteric illnesses were not strong or consistent for both the sand exposures.  The results of 

the first phase of this research are supported by a recent finding that time spent in contact 

with wet sand was associated with an increased risk of GI illness.41   

Given the consistently positive associations observed between sand contact activities 

and enteric illnesses, it was hypothesized that fecal indicators of microbial sand quality may 

be associated with enteric illness (specifically GI illness).  The aim of the second phase of 

research was to evaluate associations between 5 fecal indicator measures of beach sand 

quality (Enterococcus [CFU/g], F+-specific coliphage [PFU/g] Enterococcus [qPCR CCE/g], 

Bacteroides [qPCR CCE/g], B. thetaiotaomicron [qPCR CCE/g]) collected at 3 transects at 2 

marine beaches, 2 types of sand contact (digging in sand; buried in sand), and GI illness.  A 

consistently positive association was observed between a novel molecular Enterococcus 

measure and GI illness for both sand quality exposures.. The risk (odds) of GI illness among 

those digging in sand in the highest tertile of Enterococcus exposure (>48.87 qPCR CCE/g) 

was 1.95 times the risk (odds) of GI illness among those not digging in the sand (95% CI = 

1.23-3.09).  This association with GI illness was stronger among those who buried their body 

in the sand (aOR = 3.49; 95% CI = 1.43-8.50).  This association with GI illness was also 

robust to various categorical classifications of the Enterococcus qPCR CCE measure 

suggesting validity of an assumption of linearity.  Overall, there was no strong or consistent 

association with GI illness for the other fecal indicator measures using categorical 

classifications.   

Results of continuous classification showed that among participants who reported 

digging in the sand, a 1 log10 increase in the daily Enterococcus qPCR CCE average resulted 
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in a 1.45 increase in the risk (odds) of GI illness (95% CI = 1.05-2.01).  The relationship was 

stronger among participants buried in the sand (aOR = 3.12; 95% CI = 1.08-9.05).  This 

association was robust to re-assignment of a uniformly low value to those not in contact with 

sand (i.e., not digging; not buried) which resulted in a substantial improvement in precision 

(but a decrease in the magnitude of the association).   

Overall the results of the second phase of research suggest a consistently positive 

association between Enterococcus qPCR CCE levels in sand and GI illness among 

participants engaged in sand contact activities.  Use of an index of the presence/absence of all 

5 fecal indicators summed across the 3 transects also showed a consistent positive association 

with GI illness.   

B. Strengths 

This research combined a first phase that permitted the evaluation of associations 

between both types of reported sand contact activities with a number of health endpoints 

among a large cohort of beach-goers (n=26,339 individuals).  The first phase elucidated 

consistently positive associations between both sand contact activities and enteric illness (GI 

illness and diarrhea).  These findings informed the second phase of research which was to 

determine whether continuous measures of microbial sand quality were associated with 

enteric illness (specifically GI illness) for the same two sand contact activities.  The 

traditional and novel fecal indicator measures studied included one considered to be able to 

re-grow in sand (Enterococcus) and 3 others considered to be more human-specific indicators 

of fecal contamination (F+-specific coliphage, Bacteroides, and B. thetaiotaomicron).  The 

quantification methods included traditional culture-based methods (EPA Method 1600, EPA 

Method 1601) and a novel, rapid (2-4 hours) quantitative molecular method (qPCR CCE).  
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The positive association observed between Enterococcus qPCR CCE and GI illness was 

consistent across sand exposures and estimation approaches.  To the best of our knowledge, 

this is the first study to demonstrate an association between sand contact activities and GI 

illness as a function of microbial sand quality.   

C. Limitations 

Although the first phase of research represents the largest and most comprehensive 

investigation of associations between sand contact and risk of illness (26,339 individuals at 4 

freshwater beaches and 3 marine beaches), the analysis of the less frequent sand exposure 

(buried in sand), less frequent outcomes (non-enteric illnesses), and the analysis among a 

sub-group of children ≤ 10 years old (and other age sub-groups) was limited by small sample 

sizes.  The second phase of research (of 4,838 individuals at 2 marine beaches) was also 

limited by small sample sizes in sand exposure groups (especially among those buried in 

sand).  This limited our ability to examine variation in effect estimates by sand exposure, 

sub-groups of age (and other covariates such as beach and swimming status) and also limited 

the number of covariates that could be considered as confounders in multivariate regression 

models.  The smaller sample size of the second phase of research led to instability of log-

linear binomial regression models and limited our ability to estimate the incidence proportion 

as a measure of risk.  We therefore used logistic regression models to estimate odds ratios, 

adjusted for critical covariates.  The health endpoints examined during both phases of this 

research were broad and in some cases non-specific and could have been affected by recall 

bias.  However, we expected that recall of illness would have been nondifferential with 

respect to sand exposure status given that the NEEAR Water Study was focused on illness 

related to swimming exposure.  Nondifferential recall of this kind likely resulted in unbiased 
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estimates, although there could have been a loss of precision if there was under-recall (or 

reporting) of illness among participants exposed to sand.   

D. Future directions 

It is not clear whether the relationships observed at these beaches can be extended to 

beaches affected primarily by non-point sources of fecal contamination. Future studies 

should be conducted at beaches influenced by diffuse sources of fecal contamination (i.e., 

urban run-off, wild birds, other animal populations, human bathers).  Evaluating relationships 

at beaches impacted by diffuse pollution sources and also at freshwater beaches may help 

clarify the extent to which specific sand quality indicators are associated with GI illness and 

nonenteric illnesses among those with sand contact.   

Microbial source tracking methods may help discern the predominant sources of fecal 

contamination in beach sand and lead to a better understanding of relationships between 

microbial sand exposure and health effects.  One novel fecal indicator measure, Clostridium 

perfringens, is considered to be a more specific indicator of fecal contamination in sand, and 

its inclusion in future recreational water studies may be advisable.  A goal of future studies 

should be to improve the ability to determine/type specific sources of fecal contamination in 

beach sand.  This could lead to more refined exposure classification of participants in contact 

with sand on days when human-specific microbial pollution is detected.  Several novel 

methods of fecal indicator measurement show promise, including a culture, latex 

agglutination, and typing assay as well as reverse transcriptase and reverse line blot 

hybridization assays (which have been applied to F+-specific coliphage in recreational water 

samples).  These methods could be used to serogroup F+-specific coliphage isolated from 

beach sand into human vs. non-human types.  The incorporation of typing information with 
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quantitative fecal indicator measures could lead to a more refined sand exposure 

classification than was possible in the present study.   

It is unknown whether the relationships we observed between Enterococcus qPCR 

CCE and GI illness can be extended to more specific definitions of GI illness (diarrhea, 

vomiting) or nonenteric illnesses (upper respiratory illness, eye irritation, skin rash, earache, 

and infected cuts/wounds).  It appears advisable to continue to investigate the relationship 

between microbial sand quality and a more diverse number of health endpoints among those 

in contact with sand.  Given the broad nature of some of the health endpoints considered 

during this research, improvements in outcome classification could be made by incorporating 

a salivary antibody test (multiplex LuminexTM immunoassay; Enzyme-Linked 

ImmunoSorbent Assay [ELISA]) of seroprevalence for specific viral, bacterial, and parasitic 

infections considered to cause the majority of enteric illness (including Norovirus, Rotavirus, 

Giardia lamblia, Cryptosporidium, and Helicobacter pylori).  Collection of saliva samples 

offers a non-invasive method that may be practical to incorporate into future recreational 

water and sand quality studies.   

Replicating our investigation of microbial sand quality at beaches influenced by non-

point sources and at freshwater beaches as well as improving exposure and outcome 

measurement and classification in future studies could clarify relationships between 

microbial sand quality and illness among those in contact with sand.  These improvements 

could help elucidate whether development of sand quality guidelines protective of public 

health is necessary.  
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