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ABSTRACT 
 

Claire Reisig Hall: Annotation of the Understudied Kinome and  
Preliminary Testing of Kinase Inhibitor Combinations  

(Under the direction of Shawn Gomez) 
 

 A technique utilizing multiplexed inhibitor beads and mass spectrometry (MIB/MS) 

detects functional protein kinases in breast cancer cell lines.  Data from this technique was used to shed 

light on the understudied kinome, a portion of which is captured by the MIB/MS method. Regression 

analysis was performed to find correlations in kinase activity.  The functional linkages were then used to 

annotate the understudied kinases.  Annotations revealed new possible functions and disease relations 

for many understudied kinases. 

 Kinase inhibitor combinations were suggested by principle components analysis (PCA) results 

performed on MIB/MS data from treated breast cancer cell lines.   The combinations were preliminarily 

tested for signs of effectiveness.  Dose curves and growth assays were performed to compare drug 

combinations in the SKBR3 cell line. The interpretation of in vitro experiment results was impeded 

because of poor accuracy and reproducibility. Possible designs for in vitro experiments producing 

interpretable results are presented.  
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INTRODUCTION 

Cancer and treatment 

Cancer, a widespread and destructive disease with over 100 different types, is the second 

highest cause of death in the United States [1].  Breast cancer is the most common type of cancer, and is 

predicted to occur in over 250,000 new cases throughout the year 2017 [1].  For women, breast cancer 

has the second highest death rate behind lung cancer, meriting further research for understanding and 

treating the disease [1].  Breast cancer is separated into subgroups, emphasizing the heterogeneity of 

this type of cancer.  Subsequently, treatment is also heterogeneous, depending on the subtype and 

progression of the disease. From a clinical standpoint the subtypes are divided into luminal (further 

subdivided into luminal A and luminal B), HER2-enriched, and triple-negative [2]. These three major 

subtypes are classified via the presence or absence of three receptors, estrogen (ER), progesterone (PR) 

and human epidermal growth factor receptor 2 (HER2) [2]. Localized treatments include surgery and 

radiation therapy.  Systemic treatments are composed of drugs which circulate throughout the body via 

the bloodstream.  These treatments include chemotherapy, hormone therapy, or targeted therapy, and 

are often dependent on subtype.  Commonly, a combination of localized treatments and systemic 

treatments is used for combating breast cancer.    

 Chemotherapy consists of drugs which cause apoptosis by damaging DNA or inhibiting cell 

division.  Chemotherapy drugs generally target quickly dividing cells, a characteristic of cancer cells, thus 

enhancing the effectiveness of these drugs against cancer.  However, as these drugs are not selective to 

only cancer cells, they also may target quickly dividing non-cancerous cells, causing degenerative and 

severe side effects associated with current cancer treatment.  Drugs that can be targeted specifically to 
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the cancer cells thus minimize the side effects, but the available targets are dependent on the presence 

of receptors, and consequently, the subtype of breast cancer.  The luminal subgroup of cancer has at 

least one of the ER or PR receptors present and therefore hormone therapy is an effective form of 

treatment.  Hormone therapy inhibits the production or reception of hormone molecules, resulting in 

signal cascades within the cell causing cell cycle arrest or apoptosis.  The luminal subtype has the most 

optimistic prognosis [2].  HER2-enriched subtypes are also able to be targeted.  Drugs that target the 

HER2-enriched subtype, in most cases, competitively inhibit the binding site or activation site on the 

HER2 receptor. [3].  This again causes signaling within the cell to halt cell growth and/or begin apoptosis.  

The HER2-enriched subtype has a somewhat poorer prognosis than the luminal subtype primarily due to 

higher rates of recurrence [2].  Triple-negative breast cancers do not express the ER, PR, or HER2 

receptors.  Due to the lack of these receptors, no targeted therapies are currently FDA approved for 

triple-negative types of breast cancer, contributing to the very poor prognosis for this subgroup [3,2].   

Protein kinases and inhibitors 

One approach to targeted therapy of HER2-enriched breast cancer is through the use of a HER2 

kinase inhibitor.  HER2, also known as ERBB2, is a receptor tyrosine kinase [3].  Kinases are proteins 

heavily involved in signal transduction by means of phosphorylating substrate proteins. By 

phosphorylation, protein kinases are involved in activating, deactivating, and directing other proteins, 

along with orchestrating more complex cellular activity [4].  HER2 is part of the kinome, which consists 

of over 500 protein kinases [4].  The kinome makes up a vast, complex, signaling network and is essential 

in regular function and disease states within the cell.  The kinome controls cellular functions such as 

growth, proliferation, motility, and gene transcription.  Many kinases are abnormally regulated in 

cancers and are integral to the success of the disease [4].  Consequently, they can also be an integral 

part of treatment and successful remission of cancers.  Kinases are highly druggable due to presence of 

activation and phosphorylation sites.  By using targeted therapies, kinases’ functions may be suppressed 
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by inhibition.  Kinase inhibitors can affect a large range of kinases, spanning from very selective, 

targeting only a select few kinases, to broadly inhibiting many kinases.   Those which hit broadly are 

known to be more toxic in clinical settings, while those having a limited set of targets are generally more 

tolerable.   Despite these treatment options, the cell can redirect signaling through the kinome to 

circumvent the effects of the drug, referred to as reprogramming, and can result in drug resistant 

cancers [5].  Resistance can occur through different mechanisms, those that involve the kinome are 

generally a signaling pathway being reactivated via bypassing, parallel signaling, feedback reactivation or 

loss of negative feedback [6].  Other forms of resistance stem from the heterogeneity of cancers, not all 

cells in a tumor express the same proteins or kinases making it more difficult to kill all cancer cells with 

only one type of drug.  Chemotherapies and targeted therapies that work initially may lose effectiveness 

due to heterogeneity or reprogramming of the kinome.  Drugs with multiple targets, or drugs used in 

unison to attack multiple targets, may also fail due to the kinome’s ability to reprogram.  

Understudied kinases 

Of over 500 known protein kinases, up to half could be considered understudied depending on 

the set of criteria used.  Multiple elements are used in defining a kinase as having an understudied, or 

untargeted, status.  A definition set by Dr. Gary Johnson and collaborators at UNC-Chapel Hill designates 

229 protein kinases as being understudied due to lack of confirmed function, lack of disease and 

pharmacology association, and absence of direct biological tools to explore the kinase’s function 

experimentally [7].  Figure 1 depicts an overlay of the understudied kinases on a phylogenetic tree of the 

kinome.  This gives a visualization of how the understudied kinases are spread throughout the kinome, 

spanning all different kinase families.  

The NIH Illuminating the Druggable Genome (IDG) program has created a specific classification 

system for druggable proteins in the GPCR, nuclear receptor, ion channel and kinase families.  The target 

developmental level by the IDG organizes protein kinases into Tclin, Tchem, Tbio, and Tdark, all having 
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different criteria, some of which correspond with understudied kinases.  IDG classifies 31 kinases as 

Tdark due to the limited information available about them, including lack of publication, small molecule 

inhibitors, and gene references to functionality [8].  The program labels 163 kinases as Tbio, which 

means these kinases have more known of their function or phenotype than Tdark proteins but still do 

not have small molecules or drugs that adequately target them [8].  Tclin is composed of kinases known 

to be involved in disease and that are targeted by at least one FDA approved drug.  Tchem kinases have 

small molecule inhibitors available which target them and have documented functional studies 

concerning involvement in diseases [8]. The Tdark and Tbio categories along with the 229 understudied 

kinases defined by the Johnson lab will be explored further in this study as more needs to be understood 

about their function in the kinome and in disease states.    

Multiplexed inhibitor beads/mass spectrometry 

Commonly, protein presence is determined from gene expression profiling. However, this 

method can be misleading in the context of functioning or activated proteins, as is the case for kinases 

[9]. In this case, characterization of the level and activation state of proteins in the cell through 

proteomic techniques may prove more informative than genomic approaches.  A gene’s level of 

expression can be measured by the amount of messenger RNA (mRNA) found corresponding to the 

gene, where mRNA is transcribed from genes and then translated into proteins.  Because mRNA is an 

intermediate step, it is a poor representation of functional protein levels as there are many post-

translational modifications made to proteins [9]. Similarly, a high level of mRNA for a specific gene does 

not ensure a corresponding high level of the protein [10].  When examining protein kinase’s function, it 

is desirable to have a way of measuring the active protein in the cell rather than mRNA.  A method of 

depicting the functional kinases in breast cancer was generated by Dr. Gary Johnson and Dr. Lee Graves 

[11].   Samples can be composed of cell lines or patient tumor samples.  These samples are run via 

gravity-flow affinity chromatography over Sepharose beads each covalently linked with one of six 
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different kinase inhibitors.  The system, called multiplexed inhibitor beads (MIB), extract functional 

kinases by binding them to the specific inhibitors, which are then distinguished using mass spectrometry 

(MS) [11].  By utilizing a specific combination of kinase inhibitors, over 360 different kinases are 

captured by the beads.    

Goals  

The aim of this investigation was to uncover functional linkages and associated annotation 

between understudied kinases from data acquired though MIB/MS.  In this work, the MIB/MS method 

gives a picture of the functional kinases present in normally cultured breast cancer cells, unperturbed by 

drugs, with a portion being kinases whose roles in the kinome are not fully known.  To utilize this data and 

shed light on the understudied kinome, regression analysis was performed to find correlations in kinase 

activity. Regression correlations were used to provide annotations for understudied, Tdark, and Tbio 

kinases.  Annotations revealed new possible functions for many kinases and also matched previously 

known annotations for some kinases. 

Secondly, kinase inhibitor combinations suggested by principle components analysis (PCA) 

results performed on MIB/MS data from treated breast cancer cell lines were preliminarily tested for 

signs of effectiveness.  This would be an improvement on current methods of choosing kinase inhibitor 

combinations, which show promise for cancer treatment.  Dose curves and growth assays were 

performed to compare drug combinations in the SKBR3 cell line. The interpretation of in vitro 

experiment results was impeded because of poor accuracy and reproducibility. Possible designs for in 

vitro experiments producing more clear results will be presented.  
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CHAPTER 1: REGRESSION AND ANNOTATION 

Introduction 

To investigate the function and disease relation of understudied kinases, the MIB/MS method 

was used to collect functional kinase data from 15 different breast cancer cell lines, with 2 or 3 replicate 

samples of each.  These cell lines were untreated and covered the three subtypes of breast cancer, 

luminal, HER2-enriched, and triple-negative. Of the 360 kinases detected by MIB/MS, 254 passed 

filtering for adequate presence in samples.  This represents approximately 70% of the kinases expressed 

in breast cancer, with 89 of the captured kinases being understudied, Tbio, and/or Tdark [7].  A small 

portion of this raw data can be seen in Table 1, with each column being a specific cell line and the rows 

being the MIB/MS value for the corresponding kinase.  A full representation of this data is portrayed in 

Figure 2 as a heat map, showing the data after normalization.  Each column is an average of the 

replicates of the 15 different breast cancer cell lines.  Each row is one of the 254 kinases which passed 

filtering.  The color represents the relative MIB/MS value for each specific kinase in each cell line with 

blue being minimum values and red maximum values.   

A key part of understanding all kinases’ functions is to learn the interactions connecting them in 

the signaling network.  Although not all kinase interactions are known, those documented in online 

databases were collected [7].  Protein-protein interactions involving kinases were acquired from HIPPIE, 

I2D, PhosphoSitePlus, and Reactome.  From the compiled data, 53 of the understudied kinases have zero 

reported known interactions, and almost two-thirds have less than five known interactions.   

Regression was performed using the MIB/MS data to find functional correlations between 

kinases throughout the breast cancer cell line samples.  These correlations along with the known kinase 
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interactions were used to annotate the understudied kinases, uncovering possible functions and 

relations to disease.   

Regression 

Regression analysis is used to create a model which estimates relations between variables.  In 

this case, a single kinase’s MIB/MS data represents the dependent variable (response vector), while the 

remaining kinase data composes the independent variables (input matrix).  The goal of estimating the 

relationship between kinases is to find the kinases associated by similar functional presence as 

portrayed through the MIB/MS data.  With a large set of data more than one viable relationship 

between the variables may exist.  Therefore, regression models can lead to over or under-fitted 

equations that do not accurately portray associations between variables [12].  Another difficulty is the 

presence of multicollinearity, or a high correlation between a subset of independent variables [12].   

Regression models have been developed to address the problems of multicollinearity and over-

fitting by penalizing the coefficient sizes and regularization [12].  Common models include lasso, elastic 

net, and ridge regression.  Differences lie in the penalties used by each model.  Lasso (Least Absolute 

Shrinkage and Selection Operator) regression adds an L1 penalty, also referred to as L1 norm, which 

limits the coefficient sizes.  The L1 penalty reduces some coefficients to zero, eliminating variables [13].  

Ridge regression adds an L2 penalty reducing all coefficients by the same scale [13].  Elastic net 

regression uses a linear combination of the L1 and L2 penalties, reducing some coefficients to zero (and 

eliminating variables) [13].  Because lasso and elastic net models reduce the number of variables used in 

the regression relationship these can be used as feature selection tools. Feature selection tools are 

models used to define the relevant independent variables in relation to the dependent variable [14]. 

They are commonly applied to data with many features and comparatively few samples, as in the data 

used here.  The models for lasso and elastic net assume independent samples, as is true for the MIB/MS 

data.  Although the problems of multicollinearity and over-fitting are not completely eliminated, the 
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significance of those pose a greater issue when creating a regression model primarily for its predictive 

power.  In this case, the primary goal of the regression model is to apply feature selection.   

Using the glmnet package in R software, elastic net and lasso were tested on normalized 

MIBs/MS data.  For both cases, the following equation was solved: 

  𝑚𝑖𝑛𝛽0,𝛽  
1

𝑁
∑ 𝑙𝑁

𝑖=1 𝑤𝑙(𝑦𝑖, 𝛽0 + 𝛽𝑇𝑥𝑖) + 𝜆[
(1−𝛼)||𝛽||2

2

2
+ 𝛼||𝛽||1]   Equation 1. [13] 

Where 𝑦𝑖  represents the vector of dependent variable data.  Figure 3A contains an example array of 

MIB/MS data, with the response vector, or 𝑦𝑖   highlighted in red.  The matrix of independent variables 

data forms 𝑥𝑖 and is highlighted in green in Figure 3A. In equation 1, the variable β is the result matrix of 

coefficients, highlighted yellow in Figure 3B.  The equation is solved for a set of values for λ, the tuning 

parameter which controls the overall strength of the penalty [13].  The penalty appears in the brackets 

to the right of λ.  The variable α controls the penalty in that an α of 1 performs a lasso regression while 

an α of 0 performs a ridge regression [13].  An α of 1 imposes a penalty equal to the absolute value of 

the magnitude of the coefficients.  An α of 0 introduces a penalty equaling the square of the magnitude 

of the coefficients. All values of α between 0 and 1 create a combination of both penalties for elastic net 

regression.  𝑙(𝑦, 𝜂) is the log-likelihood function, Gaussian by default, 
1

2
(𝑦 − 𝜂)2 [13].   

For testing, an alpha of 0.5 was used for elastic net regression as it is suitable for grouping 

closely correlated features into or out of the regression results together [13].  In contrast, lasso tends to 

have one coefficient out of a group remain in the results while all others in the group are reduced to 

zero [14].  A value of λ corresponding to 50% of the null deviance being explained was chosen for each 

run of the glmnet package.  The package has an option to run the algorithm using cross-validation to 

specify an optimal value of lambda creating the best predictive model.  Instead, lambda was chosen by 

consistency in null deviance explained because predictive accuracy of the model was not needed.  After 

testing, the number of resulting features with nonzero coefficients for each kinase was on average 14 ±

11 and 3 ± 2 for elastic net and lasso methods respectively.  Complete overlap between lasso and 
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elastic net was observed as expected, meaning all features in the lasso regression results were included 

in the elastic net regression results for each kinase.  Because lasso regression produces the most concise 

number of features, it was executed on each of the 254 kinases in the dataset by iteration as depicted in 

Figure 3C.   

Annotation 

After finding the features for all kinases, annotation was desired for the understudied kinases as 

detailed previously. To evaluate functional enrichment of a specific kinase, a group around the kinase 

was created using the results of the regression correlations.  The group for an understudied kinase 

consists of two parts.  The first portion is the regression features of the focus kinase, an example can be 

seen in Figure 3D.  By unifying regression results, the kinases in which the focus kinase was found as a 

regression feature are also included, portrayed in Figure 3E.  These together are referred to as primary 

features.  The second portion is composed of the primary feature kinases’ respective regression 

features, referred to as secondary features, seen in Figure 3F.  The group, formed of both primary and 

secondary features, was then entered into g:Profiler, an online server designed for analyzing sets of 

genes and providing gene ontology and pathway analysis/enrichment [15].  From the g:Profiler server, 

g:GOSt was used for evaluating enrichment tests.  Databases used are GO, KEGG, Reactome, miRBase, 

TRANSFAC, CORUM, BioGRID, HPA, HPO, and OMIM [15].  Collectively, these resources represent 

molecular pathways, target sites of miRNAs, target sites of transcription factors, protein complexes, 

protein-protein interaction networks, protein expression data, and physiological and disease 

phenotypes [15].   Enrichments are determined by applying hypergeometric distribution to calculate 

significant p-values for the molecular and functional representations above [15]. To reduce false 

positives with large backgrounds such as the whole genome, the g:SCS (Set Counts and Sizes) multiple 

testing correction threshold is used [15].   The g:SCS imposes a stronger threshold on each individual 

significance test in order to keep the collective p-value equal to 0.05.  To reduce the immense 
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background g:GOSt allows for the user to enter a unique background list of genes.  This was tested by 

entering the full list of kinase protein genes. The relatively small groups being analyzed for each kinase 

against the full list of kinases resulted in very few significantly enriched functions.  Instead, the default 

list of all human genes was used.  This did produce redundant and non-specific enrichments pertaining 

to general kinase function, such as signal transduction.  To avoid the majority of these non-helpful 

enrichments, only those found in the KEGG and Reactome pathways were further examined.   

In a final step, protein-protein interactions were added to the primary features of the networks 

created for Tdark kinases, example in Figure 3G.  The primary and secondary features along with any 

additional kinases associated by protein-protein interactions were entered into Panther for annotation.  

A list of 570 human kinase genes was used as a background list compared to the subnetworks of the 

Tdark kinases to find statistically overrepresented GO biological processes via Panther.  Panther is based 

on a cumulation of phylogenetic trees which allows useful annotations to be made for inquiry genes 

based on functions of other associated genes [16].  The gene set overrepresentation tool utilizes these 

annotations made from phylogenetics along with functional annotations available from the Gene 

Ontology Consortium [17].  A binomial test is applied to determine statistical over or under 

representation.      

Results and discussion 

The results of each 254 kinase’s lasso regression can be found in the Supplemental Data File S5 

link in the online preprint from Collins, et al [7].   A link to the full annotation results for each of the 89 

understudied kinases can be found within the Supplemental Data File S5, along with the abbreviated list 

of enriched functional pathways from KEGG and Reactome.  Also in the Supplemental Data File S5 is the 

protein-protein interactions found to be associated with the Tdark kinase subnetworks and their 

Panther annotation.  By evaluating the comprehensive list of g:Profiler annotations made for all 89 

understudied kinases, overarching observations were analyzed.  There were 363 unique annotations 
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from KEGG and Reactome found in all of the results.  These varied in regards to specificity of molecular 

function, pathways, or broad associations with disease.  Six kinases had no statistically enriched pathway 

annotations, and 23 had five or fewer annotations.  Many of these kinases had groups of regression 

features saturated with other understudied kinases; therefore the g:Profiler annotation tool was unable 

to recognize enough kinases to achieve statistical significance in annotations.  The average number of 

annotations per kinase was 41.  The most number of annotations for any kinase was 193 for CDK14.   

Annotations occurring for more than 25 kinases are shown in Figure 4, for example the common MAPK 

signaling pathway was an annotation result in 43 of the 89 kinases.  A brief portrayal of the range of 

annotations associated with many of the kinases can be viewed in Figure 4.  Although it only represents 

10% of the 363 different annotations, the combined frequencies, or total occurrence explained in Figure 

4, cover almost 30% of the total annotations across all understudied kinases.   

Despite the addition of kinases associated by protein-protein interactions to the Tdark 

subnetworks, the Panther annotation resulted in fewer statistically overrepresented functions due to 

the use of a kinase specific background list.  There were 34 different annotations in the results for the 

four Tdark kinases.  With ADCK1 having no annotations and SG196 having 24.  To illustrate more in-

depth results, four kinases from the Tdark category, present in the MIB/MS data, will be explored here. 

ADCK1 

Aarf domain containing kinase 1, ADCK1, is an understudied and Tdark kinase. 

 Current Knowledge 

ADCK1 has no confirmed kinase connections from the compiled network of protein-protein 

interactions.  ADCK1 has previously been associated with protein serine/threonine kinase activity and 

transferring phosphorous-containing groups by annotation as described by genecards [18].  No other 

information regarding the protein is available on databases such as Entrez, Uniprot or Panther.   
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 Annotations via regression 

ADCK1 had four primary regression features, shown in Table 2, along with 16 second order 

regression correlations.  This list of kinases was submitted to g:Profiler to uncover possible functional 

enrichment as discussed previously in the section.  From GO’s biological process and molecular function 

sources both protein serine/threonine kinase activity and transferring phosphorous-containing groups 

were annotated matching those previously known from genecards.  A visual of the connections for 

ADCK1 can be seen in Figure 5.  This subnetwork includes the list of regression linkages for ADCK1 from 

Table 2 and the protein-protein interactions of ADCK1’s primary regression features.  Additional 

statistically enriched annotations were neurotrophin signaling, insulin signaling, ErbB signaling pathway, 

FCER1 signaling pathway, colorectal cancer, endometrial cancer, prostate cancer, and the M phase of 

the cell cycle.  Panther annotation was performed on the full subnetwork list compared against the 

background list of 570 human protein kinases.  No statistically enriched annotations were uncovered. 

ADCK1’s subnetwork illustrates the sparse knowledge of kinase interactions. Many of the regression 

correlations are with other understudied kinases.  This demonstrates the difficulty in annotating kinases 

when so little is known about them and the kinases they are linked to.   

SG196 

Another Tdark kinase also falling in the understudied category is SG196, Sugen kinase 196 or 

Protein O-mannose kinase.  

 Current Knowledge 

The functional relevance proposed for this gene involves an association with alpha-dystroglycan 

protein, which establishes connections between the extracellular matrix and the exoskeleton [18].   

Experiments concerning SG196 divulged that mice with SG196 gene deficiency developed misplaced 

neurons in the brain [18]. It has also been related to several muscle dystrophy diseases [18].  As is 

typical for kinases SG196 also has annotations for transferase activity.  The kinase has two known 
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interactions with proteins TGFR1 and BMR1B.  

 Annotations via regression 

 This kinase had seven primary regression features and 30 second order correlations, listed in 

Table 2.  These linkages can be seen in Figure 6, along with known interactions of SG196 and its primary 

regression features.  Significantly enriched in the regression features g:Profiler annotation were 

different aspects of metabolism, and various signaling pathways, such as: toll-like receptor, insulin, 

AMPK, IGF1R,PKB-mediated, and PI3K-Akt.  In agreement, ERBB2, a SG196 regression feature, dimerizes 

with other ERBB kinase proteins to form receptors involved in the PI3K-Akt pathway.  SG196 has only 

two known interactions, which in turn have known interactions with ERBB2.  Overlap of a known 

protein-protein interaction and a regression linkage between the same kinases, such as between K6PP 

and K6PL, is seen in SG196’s subnetwork (Figure 6).  Both of these proteins are involved in glycolysis 

[18].  Entrez suggests K6PP has a role in cancer via metabolic reprogramming [18].  A specific g:Profiler 

annotation for SG196 is central carbon metabolism in cancer.   

Panther annotation was performed on the list of regression features and protein-protein 

interactions involved in SG196’s subnetwork.  The resulting statistically overrepresented biological 

processes include ERBB signaling, MAPK signaling, and cellular response to stimulus.  

CSK23 

Also seen in Table 2 is Tdark kinase CSK23, Casein kinase II subunit alpha 3.  

 Current Knowledge 

CSK23 is known to be a part of the catalyzing subunit in a serine and threonine protein kinase 

complex of the casein kinase, which phosphorylates multiple substrates and is involved in Wnt signaling 

and DNA repair/cell cycle [18].  CSK23 is suspected to be associated with influenza A and lung cancer, by 

down-regulating the expression of PML, a tumor suppressor protein [18].  It has no known protein 

interactions in the compiled data.  
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 Annotations via regression 

 The kinase’s four primary regression linkages and 22 secondary feature linkages are listed in 

Table 2.  Although CSK23 had no direct known interactions, an additional 80 proteins were added to its 

subnetwork seen in Figure 7 via protein interactions with primary regression features. Through 

regression features, Wnt signaling was statistically overrepresented for CSK23 as was mentioned in its 

current knowledge above.  Other annotations were toll-like receptor, Ras, PI3K-Akt, and TNF signaling 

pathways.  Genecards reports the paralog gene for CSK23 to be CSK21, which is also a primary 

regression feature.  Both g:Profiler and Panther annotations showed NF-kappa B signaling as 

overrepresented along with immune related functions.  Both methods also had statistical 

overrepresentation in regulation of gene expression and condensation of prometaphase chromosomes 

which correlate to casein kinase’s involvement with DNA repair and cell cycle.   

M3KL4 

M3KL4 is a Tdark kinase, also known as MLK4, MAP3K21, or Mitogen-activated protein kinase 

kinase kinase 21.   

 Current Knowledge 

M3KL4 has only one known protein interaction with M3K10 and is reported via Genecards to be 

a paralog of M3K9.  The only annotations associated with M3KL4 currently are negative regulation of 

TLR4 signaling and non-activation of Jnk1/MAPK8 pathway, p38/MAPK14, or ERK2/MAPK21 [18].   

 Annotations via regression 

The regression features include six primary, 18 secondary connections, and 25 protein-protein 

interactions.  The regression features of M3KL4 are seen in Table 2 and its subnetwork is shown in 

Figure 8.   Panther and g:Profiler annotations revealed connections with MAPK pathways and immune 

system functions.  Other regression feature annotations were insulin signaling and synthesis of 

phosphatidylinositol phosphates (PIPs).   M3K9 is a primary regression feature of M3KL4 through lasso 
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regression, relating to the paralog connection stated from Genecards.   

Conclusions 

The ability to effectively understand and then perturb the kinome via targeted therapies is a 

promising and favorable route for cancer treatment.  To do this, more information concerning 

understudied kinases and the intricate signaling pathways of the kinome is necessary. Functional 

presence of kinases involved in breast cancer was measured via MIB/MS methods for 32 samples of cell 

lines.  Lasso regression was performed on these data as a succinct feature selection tool to find 

functional linkages between kinases.  These linkages were then used in an online annotation tool, 

g:Profiler, to find statistically overrepresented functions, pathways, and involvement in disease for 

understudied kinases present in the data.  The annotations were compiled to give better understanding 

and access to the results.  Additionally, known protein-protein interactions were added to the functional 

networks of four Tdark kinases.  The list of kinases in the subnetworks was used for annotation in 

Panther, compared against a list of 570 human kinases, to uncover statistically overrepresented GO 

biological functions.  This method showed correlation with annotations made from g:Profiler and with 

the few previously reported functions and annotations for the Tdark kinases.   

Overall the associated gene ontology annotations previously known for understudied kinases, 

concerning serine, threonine, or tyrosine kinase activity and transferase activity were consistently 

matched by the annotations performed with regression features. After examining details of four Tdark 

kinases’ results and comparing known interactions, functions and previously made annotations, there 

are positive indications that the regression linkages and annotations are functionally relevant and can be 

valuable in further exploration.  Commonalities also existed when considering known protein 

interactions associated with the Tdark kinases’ regression features.  New statistically significant 

annotations were made for many kinases, suggesting novel relevant functions and areas of possible 

investigation. 



 16 

 

 

 

CHAPTER 2: KINASE INHIBITOR COMBINATIONS 

 Introduction 

 Targeting cancers with drug combinations using kinase inhibitors is thought to increase efficacy 

of treatment and reduce likelihood of reprogramming of the kinome.  Current methods of choosing drug 

combinations select a second drug based in its ability to target the upregulated kinases after 

perturbation from an initial drug [19].  This trial and error method of choosing drug combinations is 

inefficient and can be improved upon by using a more direct approach along with proteomic data 

instead of genomic data.   

Preliminary data was collected from samples of a breast cancer cell line treated with different 

kinase inhibitors.  MIB/MS protocol was used to find the change in kinase presence after perturbation 

compared to untreated control samples.  PCA analysis of the MIB/MS data resulted in drug treatment 

samples showing a shift in different sets of kinases.  Figure 9 shows the PCA plot of all samples.  Each 

PCA axis represents a different combination of kinases, therefore certain inhibitors alter the functioning 

kinases in different ways.  The sample of 100 nM Lapatinib moves the kinome response farthest on the 

PC3 axis.  Lapatinib is generally a low toxicity drug targeted primarily to ErbB2 (HER2) and ErbB1 (EGFR).  

The drug also hits ERK1, ERK2, and AKT kinases [20].  Lapatinib is an approved treatment for breast 

cancer.  The sample of 30 nM Dasatinib also moves the kinome response along the PC3 axis but to a 

lesser degree than Lapatinib.  Dasatinib causes some toxicity and broadly hits targets in the SRC family 

protein tyrosine kinases with a goal of primarily targeting BCR-ABL kinase [20].  It is an approved 

treatment for certain leukemias.  On the PC1 axis, the 100nM sample of BEZ235 causes a large 

difference in kinase expression compared to control samples.  Other chemical names for BEZ235 are 
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NVP-BEZ235 and Dactolisib.  BEZ235 has been reported as a highly toxic and non-effective drug in renal 

cell carcinoma, but has been indicated by research as a possible combination treatment breast cancer 

[21, 22].  BEZ235 targets PI3K and mTOR kinases [20].  GSK1120212 (Trametinib) altered a similar set of 

kinases to BEZ235, albeit less strongly, on the PC1 axis.  Trametinib is a low toxicity drug, targeting MEK1 

(MAP2K1) and MEK2 (MAP2K2) [20].  It is an approved treatment for melanoma and non-small cell lung 

cancer.  These four drugs were focused on to provide a proof of concept experiment as they portrayed 

the clearest changes in kinome signatures compared to control samples.   

Using MIB/MS and then PCA on treated samples could reveal optimal drug combinations by 

highlighting which inhibitors change the functional kinome in the strongest and most dynamic way.  In 

this case Lapatinib and BEZ235 are thought to be an effective drug combination based on results in 

Figure 9.  Experiments were performed using the same breast cancer cell line, HER2-enriched SKBR3, 

and kinase inhibitors Lapatinib, Dasatinib, BEZ235, and Trametinib.  Dose curves and growth curves were 

performed to evaluate the possible combinations of these drugs on SKBR3 cells.   

Methods  

 Dose curves were completed to find the dose of each drug which caused 30% inhibition in 

growth of the cells compared to a control sample.  This dose is referred to as the IC30.  Dose curves 

were completed in 96 well plates, SKBR3 cells were plated at 2000 cells/well with biological replicates of 

six for each sample.  Doses ranged on a logarithmic scale from 10 uM down to 1 nM.  The control 

samples were treated with 1% dimethyl sulfoxide (DMSO).  The cells were treated on Day 0 and Day 2, 

then imaged and counted on Day 4.  Ideal drug response curves follow a sigmoidal shape with percent 

affected versus the dose of drug.  However, in this case most dose curves do not follow a perfect shape, 

a more realistic result is shown in Figure 10A formatted to convey the % growth versus drug dose used 

in these experiments.  The IC30 is then calculated from the curve by reverting to a linear logarithmic 

scale, finding the dose which causes 70% growth compared to the DMSO control.  The growth assay is 
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performed after IC30’s for each drug has been found.   

 Growth assays were completed to compare the growth of cells after treatment with different 

drug combinations giving preliminary assessment as to whether the MIB/MS and PCA method will be an 

improvement in determining optimal drug combinations.  Growth curves were completed in 96 well 

plates, SKBR3 cells were plated at 1000 cells/well with biological replicates of three for each sample.  

Samples consisted of each drug by itself and pairings of Lapatinib with each of the three other drugs.  

The IC30 dose for each drug was used in an individual sample and added to the IC30 of another drug for 

all combination samples.  The cells were treated, imaged and counted on Days 0, 2, 4, and 6.  Then the 

cells were imaged and counted on the final day, Day 8.  The ideal result for a growth curve using the 

drugs previously mentioned, can be seen in Figure 10B.  Percent growth, calculated by the average 

number of cells for a sample divided by the average number of cells for that sample on Day 0, is tracked 

every two days.  The key components of this ideal graph are that the single drug samples all grow 

approximately at the same pace and are close to 30% less than the DMSO sample on Day 4, expected 

due to the IC30 at day 4 from dose curves.  Secondly, the goal of the growth assay is to observe 

noticeable differences in drug combination samples, so as to determine if any of the combinations are 

more efficient at inhibiting growth than others.  Based on the PCA results of kinome changes in SKBR3 

cells after treatment with the four drugs (Figure 9) the combination of Lapatinib and BEZ235 is expected 

to inhibit growth the most, specifically compared to Lapatinib and Dasatinib which had similar kinases 

upregulated to a different degree, in contrast to Lapatinib and BEZ235 which alter different kinases.  If 

the Lapatinib and BEZ235 combination causes more efficient inhibition and therefore less growth, the 

methodology of using MIB/MS and PCA for choosing drug combinations may be a promising 

improvement on current trial and error methods.   

Results and discussion 

The first dose curves with appropriate shapes and IC30 dose results can be seen in Figure 11A-D.  
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The IC30 doses are displayed in the titles for each graph and were used for the first growth curve.  The 

growth curves produced using these IC30 doses are shown in Figure 12.  Although the individual drug 

samples of Lapatinib, Trametinib and Dasatinib did not inhibit growth to 70% exactly on Day 4, the 

growth trends were similar and comparable.  The individual drug sample for BEZ235 caused significantly 

more inhibition in the growth of the cells, causing the comparisons of drug combinations to be 

inaccurate.  Although the Lapatinib and BEZ235 combination did inhibit growth more than the other 

combinations, this observance is non-conclusive as the dose for BEZ235 caused similar inhibition by 

itself.  Because the IC30’s acquired from the previous dose curves did not produce the expected growth 

inhibition in the growth assay, the dose curve experiments were repeated.   

The earlier dose curves along with repetitions performed after the first growth assay, revealed 

flaws in the consistency and reproducibility of this technique in finding an IC30.  The dose curve for 

Lapatinib was performed only once (Figure 11A), the same IC30 dose of 9 nM was used two times in 

different growth assays with growth percent corresponding to 82% (Figure 12) and 62% (Figure 14).  

Compilation graphs of the dose curves completed for BEZ235, Dasatinib and Trametinib can be seen in 

Figure 13A-C.  The dose curve for BEZ235 was performed four times, with resulting IC30 doses ranging 

from 17 nM to 9 uM.  Two general trends of curve can be seen in Figure 13A.  The first two dose curves 

completed showed only 5 to 10% inhibition until much higher doses, giving IC30 doses of 6.5 uM and 9 

uM.  Due to these odd results, a new aliquot of BEZ235 was ordered and used in subsequent dose curves 

and growth assays.  The remaining two dose curves showed a more realistic shape and produced IC30’s 

from 17 nM to 50 nM.  The IC30 dose of 50 nM was used in the first growth curve, causing too much 

inhibition, only 50% at Day 4 (Figure 10), preventing accurate comparisons of combinations.  In a second 

growth assay a lower IC30 dose of 17 nM was used, causing similar inhibition at 53% on Day 4 (Figure 

14), again preventing comparison of combinations.  This is a prime example of how the discrepancy of 

IC30 doses between the dose curve to growth assays disrupted the results of the latter experiments.  
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Figure 13B illustrates the six repetitions of the dose curve for Dasatinib.  The IC30 doses ranged from 

230 nM to 2 uM.  Contrary to the case of BEZ235’s dose curves, all of Dasatinib’s dose curves follow a 

similar shape.  An initial IC30 dose of 600 nM was used which caused an appropriate growth of 65% on 

Day 4 (Figure 12).  In a following growth assay the same dose was used again causing growth of 88% on 

Day 4 (Figure 14).  Two of the five dose curves performed for Trametinib did not cause enough inhibition 

at the highest dose to calculate an IC30, shown in Figure 13C.  The first growth assay used an IC30 of 30 

nM for Trametinib, causing 86% growth at Day 4 (Figure 12).  The second assay used 50 nM, causing 83% 

growth at Day 4 (Figure 14).  These doses are appropriate but are in stark contrast to results of 10 uM 

causing over 70% growth in previous dose curves.   

The second growth assay performed can be seen in Figure 14.  Again, the Lapatinib and BEZ235 

combination inhibited growth by the most percentage as is expected, but comparisons of the drug 

combinations are inexact due to low growth of BEZ235, and the high growth of Dasatinib and 

Trametinib.  The discrepancy between inhibition caused by IC30 doses in dose curves versus growth 

assays could stem from experimental errors in preparing drug solutions or the difference in plating 

concentration and length of the experiments.   

Conclusions 

The kinome is a complex network of signaling which is an integral part of all cell survival.  Kinase 

inhibitors cause disruption to the signaling but due to pathway redundancies the kinome can reprogram, 

allowing the cell to carry on normal function.  Therefore, kinase inhibitors alone are not effective long 

term in treating cancers.  Inhibitors are given in combination to combat reprogramming.  Current 

methods of choosing combinations consist of finding kinase genes which are upregulated after 

treatment with an initial kinase inhibitor.  The combination kinase inhibitor is then chosen based on 

ability to target the upregulated kinases.  This is commonly a trial and error procedure and an inefficient 

process.   A possible new method of choosing drug combinations was investigated by performing in vitro 
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experiments in order to compare the suggested combinations.   

PCA was performed on MIB/MS data consisting of SKBR3 cells treated with various kinase 

inhibitors.  The resulting changes in the functional kinome produced differences in the samples in PCA, 

showing that Lapatinib and BEZ235 had different sets of kinases upregulated.  This suggests that the 

combination of Lapatinib and BEZ235 would inhibit growth of SKBR3 cells more than other combinations 

such as Lapatinib and Dasatinib which, to varying degrees, had a similar set of kinases changed.  To 

explore these drug combinations, dose curves and growth assays were performed.  Dose curves were 

used to compare a range of doses to percent growth measured against a DMSO control sample.  From 

this curve, IC30, a dose inhibiting growth by 30%, was calculated.  The IC30 doses were then used for 

individual drug samples and in combination samples for growth assays.  With all individual drug samples 

causing similar inhibition of growth the drug combinations can be compared by growth percent.  

Because of inaccurate and inconsistent inhibition by IC30 doses, directly comparing the growth of drug 

combinations was not possible.   

Possible remedies to the difficulties previously faced in performing experiments suggesting 

whether or not the MIB/MS and PCA method of choosing drug combinations is valuable is to perform 

dose curves and growth assays in the same experiment.  This would consist of a matrix of doses for each 

drug, and a matrix of combinations of all doses.  An inhibition of similar percentage would be found in 

the single drug doses, then that designated combination would be chosen to compare to another set of 

drugs combination.  This new protocol would eliminate the discrepancy in IC30 doses causing different 

inhibition and allow the combinations to be directly compared.   
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FIGURES AND TABLES 

 

Figure 1.   Overlay of understudied kinases, shown in red, on the phylogenetic kinome tree [23].  This 

depicts the span of understudied kinases across all kinase families and reiterates the importance of 

understanding their function in order to understand the kinome network as a whole.   
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Figure 2.  Heat map of the normalized MIB/MS data used for regression.  Columns are an average of 2 or 

3 samples of each different breast cancer cell line.  Rows represent each of the 254 kinases which 

passed filtering.  The colors represent the specific MIB/MS value for the corresponding kinase in the 

corresponding cell sample, with red as a maximum and blue as a minimum.   
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Figure 3 (A-C).  Flowchart of methods for lasso regression and annotations.  (A) Example of normalized 

MIB/MS data for five kinase readings from five cell line samples.  The first iteration of lasso regression is 

performed with Kinase 1 (highlighted red) as the response vector and all other data as the input matrix 

(highlighted green).  (B) Example of resulting coefficient matrix after performing lasso, Kinase 1 is a 

function of regression features Kinase 3 and Kinase 4 with coefficients corresponding to the non-zero 

numbers in the area highlighted yellow.  (C)  The second iteration of lasso regression is performed with 

Kinase 2 (highlighted red) as the response vector and all other data (highlighted green) as the input 

matrix.   
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Figure 3 (D-G).  Flowchart of methods for lasso regression and annotations.  (D) Matrix of direct 

regression results, list of kinases which had non-zero coefficients for each kinase’s regression results.  (E) 

Matrix of primary regression results, representing each regression result in both regression lists of the 

two kinases involved.  (F) Matrix of full regression results, primary plus secondary which are the 

primary’s own regression features. (G) Example of network with primary and secondary regression 

correlations along with known protein-protein interactions.   
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Figure 4.  List of annotations occurring most frequently in throughout annotations of all understudied 

kinases, includes those which occurred in over 25 kinase annotations.  After compiling all KEGG and 

Reactome annotations from g:Profiler for 89 understudied kinases, the MAPK and PI3K-Akt signaling 

pathways occurred most often, in 43 and 39 different kinase annotations respectively.   
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Figure 5.  Subnetwork of regression features and protein interactions for ADCK1.  Well-studied kinases, 

16, are shown in gray and understudied, 9 including ADCK1, in green.  Known interactions are portrayed 

via a gray connecting line and regression linkages with red lines.  ADCK1 has no confirmed protein-

protein interactions and little known concerning its molecular or biological function other than its 

classification as a kinase.  By utilizing the regression linkages, signaling such as insulin and ErbB were 

found to be statistically over represented in kegg pathways.  Involvement in colorectal, endometrial, 

prostate cancer and M phase of the cell cycle were also results of the annotations.    
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Figure 6.  Subnetwork of regression features and protein interactions for SG196.  SG196 has 37 

regression correlations, shown in red, and an additional 91 kinases in its subnetwork pictured above in 

grey, from known protein-protein interactions.  A linkage between the same kinases by regression and 

protein-protein interactions is shown in pink.  Previously documented annotations for SG196 show 

involvement with muscle dystrophy diseases, abnormal neuron generation, and a connective protein 

alpha-dystroglycan.   SG196’s annotations via regression linkages and protein interactions include ErbB2 

signaling, PI3K-Akt signaling, IGF1R signaling, and mechanisms in metabolism.   
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Figure 7. Subnetwork of regression features and protein interactions for CSK23.  CSK23’s subnetwork 

consists of 26 regression linkages and 80 known interactions.  Known functions of CSK23 relate the 

protein to Wnt signaling, DNA repair in the cell cycle, and development of influenza A and lung cancer.  

Annotations using the subnetwork shown above reveal statistically overrepresentations in Ras, PI3K-Akt 

signaling, gene expression and condensation of prometaphase chromosomes, relating to the previously 

mentioned involvement in cell cycle.   
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Figure 8.  Subnetwork of regression features and protein interactions for M3KL4.  This subnetwork is 

composed of 24 regression linkages and 25 additional known interactions.  M3KL4 has been shown to 

negatively regulate TLR4 signaling, and does not activate specific pathways within the MAPK system.  

Annotations statistically overrepresented for M3KL4 were function in immune system, insulin signaling, 

and synthesis of PIPs.   
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Figure 9.  PCA plot of functional kinome changes in MIB/MS data of breast cancer cell lines after 

treatment with kinase inhibitors (Figure produced by Dr. Shawn Gomez). The three axes represent 

different sets of functional kinases present after perturbation.  The sample of 100 nM Lapatinib is 

pushed farthest along the PC3 axis while the sample of 100 nM BEZ235 is pushed farthest along the PC1 

axis.  These two treated samples have different sets of kinases being expressed and to the furthest 

degree compared to control samples.  The sample of 30 nM Dasatinib has a similar change in the 

functional kinome after treatment as 100 nM Lapatinib, to a lesser degree.  Similarly, 100 nM 

GSK1120212 (Trametinib) has shifted on the PC1 axis to a lesser degree than 110 nM BEZ235.  A 

combination of Lapatinib and BEZ235 is thought to be more efficient than combinations between 

Lapatinib, Dasatinib and Trametinib. 
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Figure 10 (A-B).  (A) Ideal dose curve for a kinase inhibitor.  Average growth of samples treated with 

different doses on a log scale are compared against the growth of a DMSO control sample.  The log 

curve can then be reverted to a linear equation to predict a dose causing 30% inhibition (IC30) for use in 

growth assays.  (B) Ideal growth assay for combinations between Lapatinib, Dasatinib, Trametinib and 

BEZ235.  All single drug samples show similar percent growth.  Lapatinib and BEZ235 combination 

expected to cause most inhibition or least percentage growth compared to a DMSO control.   
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Figure 11 (A-D).  Dose curves used for calculating IC30’s for each drug used in the first growth assay.  

Dose curve experiments were repeated until a reasonable shape and dose resulted.  (A) Lapatinib, IC30 

of 9 nM.  (B) BEZ235, IC30 of 50 nM.  (C) Trametinib, IC30 of 30 nM.  (D) Dasatinib, IC30 of 600 nM.   
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Figure 12.  First growth assay for Lapatinib, Dasatinib, Trametinib and BEZ235.  Because of the low 

growth of BEZ235 (starred), the drug combinations concerning Lapatinib and BEZ235 were unable to be 

directly compared.  Although the most inhibitive was the combination of Lapatinib and BEZ235 this 

result was inconclusive as not all single dose samples caused similar growth.   
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Figure 13 (A-B).  Compilation of dose curves which were repeated for each of the drugs.  Each dose 

curve is represented by a separate line/color, with the legend detailing the date the curve was 

performed and its resulting IC30 dose.  (A) Compilation of dose curves completed for BEZ235.  (B) 

Compilation of dose curves completed for Dasatinib.  
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Figure 13 (C).  Compilation of dose curves which were repeated for each of the drugs.  Each dose curve is 

represented by a separate line/color, with the legend detailing the date the curve was performed and its 

resulting IC30 dose.  (C) Compilation of dose curves for Trametinib.   
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Figure 14.  Second growth assay performed for Lapatinib, Trametinib, BEZ235 and Dasatinib after dose 

curves were repeated for more accurate IC30 doses.  Despite repetition of dose curves for improved 

IC30 dose, drug combinations remained incapable of comparison due low growth of BEZ235 and high 

growth of Trametinib and Dasatinib (starred). Again, the combination of Lapatinib and BEZ235 did 

produce the most growth inhibition but was not a significant result.   
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Table 1.  Example matrix of raw MIB/MS data from four cell lines and only 30 out of the 254 kinases.  

The uniprot name of each kinase is located in the left column with each other column being a different 

cell line sample.  Each subtype of cancer is represented here including triple-negative (tnbc), HER2-

enriched, and luminals.   

 

 

 

claudin basal her2 luminal

tnbc tnbc her2/luminal her2/luminal

Uniprot SUM159_1 HCC1806_1 SKBR3_1 MCF7_1

AAK1 4626000000 1217000000 2230000000 13230000000

AAPK1 3446000000 981500000 2708000000 23970000000

AAPK2 891300000 348800000 2262000000 8639000000

ABL1 421400000 55820000 176400000 2271000000

ABL2 452800000 72080000 173400000 1638000000

ACK1 307100000 50920000 156200000 753500000

ACV1B 78780000 34060000 733200000 727000000

ACVR1 1405000000 39050000 0 2002000000

ADCK1 0 0 28790000 252700000

ADCK4 0 0 0 0

ADCK5 0 0 0 0

ADK 1050000000 319400000 1891000000 4209000000

AGK 49460000 0 0 355000000

AKT1 224000000 70780000 95020000 1631000000

AKT2 172800000 18600000 0 1516000000

AKT3 0 21180000 0 0

ARAF 369600000 78680000 222700000 1051000000

ATM 25470000 0 16870000 0

ATR 17570000 0 0 0

AURKB 485700000 121600000 614900000 289600000

AVR2A 46520000 13690000 0 0

BCKD 295400000 88940000 0 0

BLK 0 0 0 0

BMP2K 2460000000 384900000 528100000 3530000000

BMPR2 80890000 60040000 56590000 497200000

BMR1A 453100000 54480000 47360000 0

BMR1B 115100000 0 0 0

BRAF 407600000 103100000 339900000 2643000000

BRD2 11450000 0 0 0

BRD3 21350000 0 0 0
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Table 2.  Gene name, classification, and regression features of four Tdark kinases: ADCK1, CSK23, 

M3KL4, and SG196.  Information for the kinases listed is located in the Supplemental Data File S5 from 

Collins, et al, columns C, T, AM, and BK respectively [7]. 

Name 
AarF domain 

containing kinase 1 
Casein kinase II 
subunit alpha 3 

Mitogen-activated 
protein kinase 
kinase kinase 

Protein O-mannose 
kinase 

Uniprot ID ADCK1 CSK23 M3KL4 SG196 

Gene Name ADCK1 CSNK2A3 MAP3K21 POMK 

Classification Tdark/Understudied Tdark Tdark Tdark/Understudied 

Primary MRCKG   CSK21   CLK4 SIK3 NEK1 ERBB2 

Regression DMPK   IKKA   E2AK1 TYK2 PI3R4 K6PP 

Features KITM   PAK4   M3K9   PKN3 TIF1B 

  STK16   CSK22   PK3C3   STRAA   

2nd Order BRAF TESK1 ACVR1 MK13 BRAF STK11 AKT1 NEK1 

Regression CDK1   CDK14 MLTK CDK1 TAOK3 AVR2A P4K2B 

Features CSK22   CDK3 MP2K4 CHK1 TESK1 BMPR2 PDXK 

  DMPK   EGFR MRCKB DYR1A   BUB1 PI3R4 

  EPHB2   EPHB2 ST38L DYR1B   CLK3 PI51C 

  GSK3B   FER STK16 HYKK   E2AK4 PK3C3 

  HYKK   FGFR4 STK24 JAK1   ERN1 PKN3 

  IPMK   INSR   M3K1   IRAK4 PLK4 

  KITM   JAK1   M3K11   K6PL ST17A 

  M3K1   KAPCA   MLTK   K6PP ST32C 

  MK08   KT3K   PI3R4   KKCC2 STK11 

  PDPK1   LYN   PKN2   KSYK TESK1 

  PI4KA   M3K11   PLK4   KT3K TIF1B 

  PI51C   MARK2   SIK1   M3K1 TNIK 

  STK16   MK11   SIK2   M3K4 VRK2 
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