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DRUG METABOLIZING ENZYME INDUCTION 

 Induction of drug metabolizing enzymes is an adaptive defense mechanism that 

serves to protect the cell from accumulating toxicants (endogenous and exogenous) by 

enabling some xenobiotics to accelerate their own biotransformation (auto-induction) or the 

biotransformation and elimination of other drugs.  Often, xenobiotics can enter the cell with 

relative ease, due to their high degree of lipophilicity.  The first step in detoxification by the 

process of enzyme induction is generally to increase the expression of Phase I enzymes, for 

example cytochrome P450 enzymes (CYP), an enzyme system that sets the stage for 

elimination of xenobiotics, via oxidatative, peroxidative and reductive metabolism.  In 

general, Phase I metabolism introduces a polar functional group onto the non-polar target 

molecule.  Following biotransformation of xenobiotics by CYP, Phase II enzymes 

(glucuronidation, sulfation, glutathione conjugation, N-acetylation, or conjugation with 

amino acids) often function to conjugate the product to a more hydrophilic substance thereby 

increasing the likelihood of excretion from the organism.  Recently, a phase III component of 

biotransformation has been evoked which comprises transport proteins that regulate the 

access of xenobiotics and drugs to the drug metabolizing enzymes inside the cell.  While 

proteins from the Phase I, Phase II and Phase III class have been shown to be inducible, the 

magnitude of CYP (Phase I) enzyme induction is by far the greatest. 

 CYP induction occurs via nuclear receptor mediated transcriptional activation, with 

few exceptions (e.g., CYP2E1 and CYP2C11, which are induced by mRNA and/or protein 

stabilization and pulsitile growth hormone secretion in male rats, respectively).  Nuclear 

receptors are ligand activated transcription factors that include receptors for steroid 

hormones, thyroid hormone, active metabolites of vitamins A and D and orphan nuclear 
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receptors (receptors for which an endogenous ligand has not been identified) (Whitfield et 

al., 1999).  These receptors form a heterodimeric complex with other receptors and act in the 

nucleus to mediate gene transcription in response to an inducer or ligand.  Specifically, 

pregnane-X-receptor (PXR), constitutive androstane receptor (CAR), and peroxisome 

proliferator activated receptor alpha (PPAR ) form heterodimers with retinoid-X receptor 

(RXR) while the aryl hydrocarbon receptor (AhR) binds with AhR nuclear translocator 

protein (Arnt).  CYP1A, CYP2B, CYP3A and CYP4A gene transcription has been shown to 

be mediated via AhR, CAR, PXR and PPAR  respectively, in response to enzyme inducers.  

Cross-regulation of CYP2B and CYP3A genes has been suggested to occur, as these genes 

respond to both CAR- and PXR-agonists, such as PB and RIF (Moore et al., 2000; Xie et al., 

2000). 

 Activation of nuclear receptors triggered by ligand binding causes a series of events, 

including recruitment of transcription factors and binding of the nuclear receptor complex to 

DNA response and/or enhancer elements located within the promoter region proximal to the 

target gene.  These common response elements have been shown to contain the half-site 

AGGTCA and can be configured into a variety of motifs, including a direct repeat (DR), 

inverted repeat (IR) or everted repeat (ER) of the half site (Mangelsdorf and Evans, 1995).  A 

further degree of specificity for hormone responses is gained by the number of nucleotides 

spaced between the two half-sites.  Association of ligand-activated nuclear receptor and other 

transcription factors with the target response element, results in an increase in gene 

transcription, causing enzyme induction. 

 A number of P450 enzymes in human and/or rodent liver microsomes are inducible, 

including various members of the CYP1A, CYP2A, CYP2B, CYP2C, CYP2E, CYP3A, and 
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CYP4A subfamilies (Parkinson, 2001).  To date, nine P450 genes have been sequenced in the 

dog (compared with up to 60 sequenced genes in the rat) including CYP1A1, CYP1A2, 

CYP2B11, CYP2C21, CYP2C41, CYP2D15, CYP2E1, CYP3A12, and CYP3A26.  

However, for a species that is widely used by the pharmaceutical industry to assess the safety 

of drugs under development, relatively little information is available in the literature on the 

inducibility of P450 enzymes in the dog.  Several studies have been performed in which a 

particular P450 cDNA has been cloned and the sequence compared with related enzymes in 

other species (Ciaccio et al., 1991; Fraser et al., 1997; Graves et al., 1990; Lankford et al., 

2000; Ohta et al., 1989; Roussel et al., 1998; Sakamoto et al., 1995).  However, much 

remains to be elucidated about the structure, function, and regulation of dog P450 enzymes.  

Two CYP1A enzymes, P450 D2 and P450 D3, have been purified from the liver of 

polychlorinated biphenyl-treated female beagle dogs (Ohta et al., 1989).  Catalytic and 

structural properties of both proteins were shown to be similar to rat CYP1A2, although P450 

D3 exhibits spectral properties similar to those of rat CYP1A1.  It is not known whether 

either of these proteins is constitutively expressed in dog liver (Ohta et al., 1989). 

 Dog liver microsomes contain CYP2B11 (also called PBD-2), a constitutively 

expressed and phenobarbital-inducible enzyme with high metabolic activity toward 

2,4,5,2’,4’,5’-hexachlorobiphenyl (Duignan et al., 1988).  Like the rat CYP2B1, dog 

CYP2B11 (PDB-2) catalyzes both the 16 - and 16 -hydroxylation of testosterone.  Another 

testosterone 16 -hydroxylase has been purified from dog liver and identified as a member of 

the CYP2C subfamily (Uchida et al., 1990).  Whereas rat CYP2B1 catalyzes the 16 - and 

16 -hydroxylation of testosterone at roughly equal rates, dog CYP2B11 preferentially 

catalyzes the 16  -hydroxylation of testosterone at 13 to 15 times the rate of testosterone 
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16 -hydroxylation (Ohmori et al., 1993).  Another CYP2 protein, CYP2D15, has been 

cloned by Sakamoto et al. (Sakamoto et al., 1995).  Recently, CYP2E1 cDNA has been 

cloned from beagle dogs followed by characterization and expression of the encoded protein 

(Lankford et al., 2000).  Interestingly, the amino acid sequence of dog CYP2E1 exhibits 77% 

identity to the human ortholog, which is slightly higher than the identity to the rodent or 

rabbit sequence (75–76%).  Characterization of the expressed CYP2E1 protein indicated that 

dog CYP2E1 has a lower affinity for chlorzoxazone than does human CYP2E (Lankford et 

al., 2000). 

 Dog liver is thought to express multiple forms of CYP3A, as has been shown in rat 

and human.  PBD-1, a CYP3A enzyme, was purified from phenobarbital-treated dog liver but 

also appears to be expressed constitutively (Ciaccio and Halpert, 1989).  Molecular and 

immunochemical analyses indicate the presence of at least one other CYP3A enzyme in dog 

liver (Ciaccio et al., 1991; Ciaccio and Halpert, 1989).  In contrast to rats, there are no 

marked sex differences in CYP3A activity in dog liver microsomes.  Like the corresponding 

rat enzyme, the dog CYP3A enzyme, CYP3A12 catalyzes the 6 -hydroxylation of 

testosterone (Ciaccio and Halpert, 1989).  In addition, CYP3A12 catalyzes the 16 -

hydroxylation of testosterone, which is also catalyzed in part by CYP2B11.  Recently, a 

cDNA encoding a protein exhibiting 95.6% amino acid identity with CYP3A12 was isolated 

from phenobarbital-induced dogs (Fraser et al., 1997).  This enzyme, called CYP3A26, is not 

as prominent as CYP3A12 in hydroxylating steroids. 

 A CYP4A protein has yet to be identified in dog liver (Adas et al., 1999).  DUT-1, 

purified from liver microsomes of untreated male beagle dogs, catalyzes the 12-
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hydroxylation of lauric acid, but the N-terminal sequence of this protein is different from any 

other P450 characterized to date (Shiraga et al., 1994). 

 Induction of drug metabolizing enzymes is known to occur across species; however 

studies on regulation of this process have primarily focused on rodent and human CYPs.  

There is a species-specific induction profile for the CYP3A family.  For example, 

pregnenolone 16 -carbonitrile (PCN), a strong inducer of CYP3A in the rat, fails to induce 

CYP3A6 in the rabbit.  Rifampin, a strong inducer of CYP3A4 in the human and CYP3A6 in 

the rabbit, is not a CYP3A inducer in the rat (Wrighton et al., 1985).  Studies to determine 

the molecular basis of species differences in CYP3A inducibility showed that the differences 

were a result of an endogenous cellular transcription factor rather than gene structure 

(Barwick et al., 1996).  In these studies, rat, rabbit or human CYP3A response elements were 

transfected into primary cultures of rat or rabbit hepatocytes treated with dexamethasone, 

PCN or rifampin.  Interestingly, the activation of the CYP3A response element reporter gene 

acquired the induction characteristics of the cell type into which it was transfected.  In other 

words, rifampin was able to induce the rat CYP3A23 when the rat response element was 

expressed in primary cultures of rabbit hepatocytes.   

 A few years after the implication of an endogenous transcription factor to explain 

CYP3A species differences, the orphan nuclear receptor PXR was discovered and was 

subsequently shown to play a key role mediating CYP3A gene expression by xenobiotics.  

Cloning and characterization of PXR from human, rabbit, rat and mouse have shown that 

there is >95% sequence identity in the DNA binding domains (DBD), whereas the ligand 

binding domains (LBD) share only 75-80% amino acid identity and display different 

activation profiles in response to xenobiotics (Zhang et al., 1999; Jones et al., 2000).  These 
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studies suggested that sequence differences in the LBD and not the DBD, appear to serve as 

the molecular basis dictating the species differences in CYP3A induction (LeCluyse, 2001). 

 In addition to CYP3A, species differences also exist for other CYPs.  CYP1A 

induction has been shown to be species specific. Omeprazole is known to induce the 

expression of human CYP1A1/2 through transcriptional activation via the aryl hydrocarbon 

(Ah) receptor. Studies have shown that CYP1A induction by omeprazole is species specific 

(Lu and Li, 2001; Shih et al., 1999).  For example, treatment of cultured rabbit and human 

hepatocytes shows increased mRNA expression of CYP1A while treatment of rat 

hepatocytes yields no change in CYP1A expression. 

 An important species difference has been identified for induction of CYP4A.  Follow 

up studies of patients who have undergone fibrate drug therapy (Frick et al., 1987), as well as 

experiments with cultured human hepatocytes, have suggested that humans do not display the 

same CYP4A inductive effect as do rats and mice (Blaauboer et al., 1990; Richert et al., 

2003; Raucy et al., 2004).  Similarly, the guinea pig (Tugwood et al., 1998) appears to be 

refractory to the inductive effects peroxisome proliferators, compounds that markedly induce 

mouse, rat and rabbit CYP4A. 

PEROXISOME PROLIFERATION 

 Along with enzyme induction, a large number of chemically diverse compounds have 

been shown to cause hepatic hyperplasia and proliferation of the endoplasmic reticulum and 

peroxisomes in rodents (Figure 1.1).  Such compounds also cause liver tumors in rodents 

following chronic administration (Reddy and Rao, 1977; Reddy and Qureshi, 1979; 

Fitzgerald et al., 1981).  On the other hand, several non-rodent species (including dog) have 

been reported to be much less sensitive to peroxisome proliferation (Foxworthy et al., 1990). 
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 Peroxisomes are major sites of oxygen utilization within the cell.  They are 

surrounded by a single membrane and do not contain DNA or ribosomes.  Peroxisomes are 

thought to acquire their protein by selective import from the cytosol.  Peroxisomes resemble 

the endoplasmic reticulum in the sense that they are self-replicating, membrane enclosed 

organelles that exist without a genome of their own (Alberts B, 2002).  Peroxisomes are 

found in all eukaryotic cells and contain such oxidative enzymes as catalase and urate 

oxidase at high concentrations.  Peroxisomes contain one or more enzymes that use 

molecular oxygen to remove hydrogen from substrates resulting in the formation of hydrogen 

peroxide (H2O2).  One major function of reactions by peroxisomes is the metabolism of fatty 

acids.   -oxidation results in the alkyl chains of fatty acids being shortened sequentially by 

two carbon atoms, generating acetyl CoA.  Acetyl CoA is exported from the peroxisomes to 

the cytosol for use in biosynthetic reactions.  In mammals,  -oxidation occurs in both 

mitochondria and peroxisomes (Alberts B, 2002). 

 Synthetic peroxisome proliferators are compounds that consist of a broad spectrum of 

chemicals with little structural similarity other than the presence of an aromatic ring, 

carboxylic acid and aliphatic chain.  Fibrates have been shown to cause peroxisome 

proliferation, for example the hypolipidemic drug clofibric acid, prescribed for prevention of 

coronary heart disease in the United States and Europe.  Other examples of peroxisome 

proliferators are certain phthalate ester plasticizers, herbicides and some chlorinated 

hydrocarbons (Lalwani et al., 1983). 

 Compounds that cause peroxisome proliferation exert their effects on the liver and 

other tissues.  Peroxisome proliferation results in an increased potential for oxidative DNA 

damage and decreased gap junctional intercellular communication due to the abundance of 



 9

peroxidative enzymes (Bruckner, 2001).  Such agents activate the nuclear receptor protein 

peroxisome proliferator activated receptor alpha (PPAR ) which then stimulates the 

synthesis of several peroxisomal and lipid metabolizing enzymes (e.g., CYP4A), thereby 

increasing the number and size of peroxisomes in the liver and other susceptible tissues (Lash 

and Parker, 2001).  Following short-term treatment of rats and mice with peroxisome 

proliferators there is a pleiotropic response which appears to mainly affect the liver.  

Hepatocytes subsequently display a marked proliferation of peroxisomes and also the smooth 

endoplasmic reticulum (Latruffe, 1993).  In addition to the increase in peroxisomes there is a 

transcriptional increase in the fatty acid  -oxidation enzymes, including acyl coenzyme A 

oxidase (ACOX), bifunctional enzymes (BIEN), and 3-ketoacyl-CoA thiolase (thiolase), in 

the peroxisomal matrix, the CYP4A enzymes found in the endoplasmic reticulum and the 

cytosolic liver fatty acid-binding protein (L-FABP) (Besnard et al., 1993; Kaikaus et al., 

1993; Vanden Heuvel et al., 1993). 

 In contrast to their carcinogenic effects in rodents, peroxisome proliferators have not 

been shown to be carcinogenic in other animal species.  For example, clofibrate 

administration to marmosets for 6.5 years (up to 263 mg/kg body weight) did not cause an 

increase in tumor incidence (Tucker MJ, 1995).  Epidemiological studies on the carcinogenic 

effects of two hypolipidemic drugs administered to humans were suggestive but inconclusive 

(Bentley et al., 1993).  It has been noted, however, that the epidemiological studies were 

fairly small and therefore may not be sufficiently robust to detect slight increases in human 

liver carcinogenesis. 

 A full length cDNA encoding a functional PPAR  has been cloned from guinea pig 

and human (Sher et al., 1993; Mukherjee et al., 1994; Bell et al., 1998; Tugwood et al., 
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1998).  In reporter gene assays using the peroxisome proliferator response element (PPRE) 

from the rat ACOX promoter, human PPAR , guinea pig PPAR  and mouse PPAR  display 

comparable activity (Tugwood et al., 1998).  However, the livers of humans and guinea pigs 

contain approximately an order of magnitude lower PPAR  in comparison to rats and mice 

suggesting that absolute differences in nuclear receptor levels within the cell play a 

significant role in the observed species differences in PPAR  activation (Kliewer et al., 

1994; Tugwood et al., 1998).  Additionally, it has been suggested that active PPAR  in 

humans may be depleted due to expression of alternatively spliced PPAR  mRNA lacking 

exon 6 yielding a truncated, inactive PPAR  protein (Tugwood et al., 1996; Palmer et al., 

1998). 

 Compelling evidence for the role of PPAR  in peroxisome proliferation was put forth 

in a study with transgenic mice lacking PPAR  (Lee et al., 1995; Peters et al., 1997).  The 

targeted mutation resulted in a mutant mouse PPAR  allele that does not produce a 

functional PPAR  protein.  The knockout mice were viable, fertile, and healthy and lacked 

any observable gross defects, thus implying that mouse PPAR  is not essential in embryonic 

development.  Mice lacking PPAR  do not undergo hepatic peroxisome proliferation, liver 

enlargement, tumourigenesis, or induction of  -oxidation enzymes (ACOX, BIEN and 

thiolase),  -oxidation enzymes (CYP4A1 and CYP4A3) or the cytosolic L-FABP, in 

response to the peroxisome proliferators clofibrate or Wyeth-14,643 (Wy-14,643).  Thus, 

these data strongly implicate the involvement of PPAR  as a common regulatory mechanism 
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for controlling the transcriptional activation of the corresponding genes involved in lipid 

metabolism. 

 The coordinate induction of lipid-metabolizing enzymes and peroxisome proliferation 

is an adaptive response resulting in maintenance of homeostasis of cellular lipids, thereby 

implicating the role of peroxisome proliferation in the regulation of fatty acid metabolism 

(Lee et al., 1995).  A better understanding of the mechanisms regarding the species specific 

differences in target gene response and ultimately, peroxisome proliferation, could 

potentially better predict pleiotropic effects brought on by drugs. 

BIOLOGICAL ROLE OF CYP4A 

 CYP4A enzymes are fatty acid hydroxylases that are expressed in most mammalian 

tissues.  These enzymes are selective for the  -hydroxylation of saturated and unsaturated 

fatty acids (Hardwick et al., 1987; Kimura et al., 1989b; Stromstedt et al., 1990; Wang et al., 

1996; Helvig et al., 1998; Nguyen et al., 1999; Hoch et al., 2000), however CYP4A lacks 

known roles in drug metabolism (Cowart et al., 2002).  Metabolism of fatty acids is an 

important cellular function to facilitate the degradation and elimination of fatty acids that are 

present at levels in excess of the tissues need for energy production and lipid synthesis 

(Johnson et al., 2002).  Following the  -hydroxylation of long chain fatty acids by CYP4A, 

oxidation of the alcohol by cytosolic dehydrogenases occurs, leading to the formation of 

dicarboxylic acids, which are consequently more efficiently oxidized by peroxisomal  -

oxidation than by mitochondrial  -oxidation (Reddy and Mannaerts, 1994).  Energy 

conservation is achieved since  -oxidation in peroxisomes does not go to completion and the 

first step in the process is not linked to ATP production.  Also, medium chain fatty acids 
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released during peroxisomal  -oxidation can be  -hydroxylated.  Following formation of 

medium and short chain dicarboxylic acids, these compounds can be readily excreted in urine 

(Johnson et al., 2002). 

 Arachidonic acid can be metabolized by the classical cyclooxygenase and 

lipoxygenase pathways to well-characterized metabolites and their respective 

cardioprotective end products such as prostacyclin (PGI2) and 12-hydroxyeicosatetraenoic 

acid (12-HETE).  Major substrates of CYP4A are fatty acids but recent studies have shown 

that CYP4A can also metabolize other non-fatty acid substrates (Okita and Okita, 2001).  

CYP4A11 has been shown to partially regulate cell and/or organ physiology by conversion 

of arachidonic acid to the vasoactive and natriuretic eicosanoid 20-hydroxyeicosatetraenoic 

acid (20-HETE).  Other metabolites of arachidonic acid are the four regioisomeric 

epoxyeicosatrienoic acids (5,6-, 8,9-, 11,12-, and 14,15-EET).  The EETs are potent dilators 

of blood vessels resulting from activation of calcium activated potassium channels.  20-

HETE , on the other hand, is a potent vasoconstrictor that activates L-type calcium channels 

which leads to vasoconstriction of vascular smooth muscle (Gross et al., 2005). 

 Studies have shown that the metabolism of arachidonic acid to 20-HETE displays 

biphasic kinetics and that both CYP4F2 and CYP4A11 catalyze this reaction in human 

kidney (Lasker et al., 2000) and human liver (Powell et al., 1998).  Recently, animal studies 

have shown that inhibition of 20-HETE formation by treatment with selective CYP  -

hydroxylase inhibitors can (1) reduce the initial fall in cerebral blood flow after subarachnoid 

hemorrhage in the rat (Kehl et al., 2002) and (2) reduce myocardial infarct size following 

ischemia-reperfusion injury in dogs (Nithipatikom et al., 2004).  A recent review article 

suggests that the inhibition of selected CYPs as an approach to the treatment of myocardial 
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infarction should be further developed (Doggrell, 2004).  Due to the emerging importance of 

CYP4A in the regulation of key physiologic functions, it will be important to elucidate the 

molecular mechanisms that control the expression of this enzyme. 

CYP4A REGULATION 

 Numerous compounds or physiological conditions have been shown to regulate 

CYP4A expression in the liver and/or kidney as reviewed previously (Desvergne and Wahli, 

1999).  Some CYP4A isoforms have been shown to be an indicator of exposure to 

compounds that are classified as peroxisome proliferators.  In rodents, CYP4A enzymes are 

induced by fibrates and other peroxisome proliferators in liver and kidney.  Interestingly, the 

CYP4A induction response observed in rodents following treatment with peroxisome 

proliferators is not observed in guinea pig, dog, monkey or human. 

Molecular Basis for Species Difference in CYP4A Induction 

 The mechanism underlying the species specific lack of PPAR  mediated target gene 

response has been studied by a number of investigators; however there is still little evidence 

to explain the species difference in CYP4A induction.  Studies have shown that (1) while the 

DNA binding domain is highly conserved across species there are amino acid differences in 

the PPAR  LBD.  (2) PPAR  levels in cultured dog, guinea pig and human hepatocytes are 

an order of magnitude lower than in rodents.  (3) Whereas the rat ACOX (peroxisome 

proliferator-responsive gene) promoter contains an active PPRE, the human ACOX promoter 

lacks activity.  By analogy, it is plausible that the human (or other non-responsive species) 

CYP4A gene lacks a functional response element.  Another attractive hypothesis to explain 

the CYP4A species difference is that non-responsive species may lack an activator or have an 
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active repressor of PPAR  function.  Finally, recent studies have identified phosphorylation 

as a regulator of PPAR ; however, species differences have not been evaluated regarding 

this post translational modification (Rochette-Egly, 2003). 

 PPAR  Structure 

 Three PPAR isotypes exist, PPAR  (NR1C1), PPAR  (NR1C2; also called  ) and 

PPAR  (NR1C3).  This subfamily of nuclear receptors is involved in lipid homeostasis, 

regulation of body weight and food intake, control of inflammation and wound healing 

(Desvergne and Wahli, 1999; Escher and Wahli, 2000; Michalik et al., 2004).  PPAR  is 

expressed in cells with high catabolic rates of fatty acids and high peroxisome-dependent 

activities (hepatocytes, cardiomyocytes, proximal tubules of kidney cortex, intestinal mucosa 

and brown adipocytes).  PPAR  is ubiquitously expressed with a high concentration in 

skeletal muscle where it plays an important role in control of fatty acid oxidation (Grimaldi, 

2005).  Three PPARγ transcripts exist, resulting from alternate promoter usage and splicing: 

PPARγ 1, 2 and 3.  PPAR 1 is ubiquitously expressed with predominant expression in 

adipose tissues and macrophages.  PPAR 2 is highly expressed in white adipose tissue where 

it plays an important role in adipocyte differentiation.  PPAR 3 is primarily expressed in the 

large intestine (Diradourian et al., 2005). 

 PPARs share a common structure consisting of four major domains, namely, A/B, C, 

D and E/F (Figure 1.2) (Desvergne and Wahli, 1999).  The A/B domain (proximal to the N-

terminus) contains a ligand-independent transcriptional activating function (AF-1).  The C 

domain or DNA binding domain consists of two zinc finger-like motifs that can recognize a 

specific DNA sequence, the PPRE.  The D domain is a hinge region that can impact the DNA 
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binding ability of the receptor.  This region is also involved in cofactor interaction.  The E/F 

domain (ligand-binding domain) exhibits a strong ligand-dependent transcriptional activating 

function (AF-2) and is also involved in the dimerization with the binding partner nuclear 

receptor, 9-cis retinoic acid receptor (RXR) (Grimaldi, 2005). 

 PPAR  has been cloned from mouse (Issemann and Green, 1990), frog (Dreyer et al., 

1992), rat (Gottlicher et al., 1992), guinea pig (Bell et al., 1998), chicken (Takada et al., 

2000), rhesus monkey (Winegar et al., 2001), human (Sher et al., 1993) and most recently, 

beagle dog (Nagasawa et al., 2004).  Amino acid sequence analysis of the PPAR  LBD 

indicates a high degree of conservation across species (~90%).  While such a high degree of 

amino acid conservation might suggest similar ligand binding characteristics, it should be 

noted that a single amino acid change in PPAR  produces PPAR  character in response to 

agonists (Takada et al., 2000).  Furthermore, species differences exist in response to several 

PPAR  ligands, for example, GW9578, KRP-297, GI262570, L-796449, an effect that might 

be mediated by PPAR  affinity (Willson et al., 2000).  Interestingly, the LBD of dog PPAR  

was shown to be 97.0 and 92.4% identical to human and rat PPAR , respectively (Nagasawa 

et al., 2004).  Further studies revealed that a novel PPAR  agonist, KCL-1999000269 

(KCL), transactivated PPAR , modulated PPAR  target gene expression in hepatocytes, and 

decreased plasma triglyceride levels in a species dependent manner.  These results implicate 

the importance of the PPAR  LBD in response to PPAR  ligand. 
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 Expression Levels of PPAR  

 Several literature reports suggest that PPAR  levels are an order of magnitude lower 

in human hepatocyte cultures and human derived cell lines than are levels of the nuclear 

receptor in rodent hepatocyte cultures and cell lines.  Guinea pig , another non-CYP4A 

inducible species, was reported to have relatively low concentrations of hepatic PPAR  (Bell 

et al., 1998).  Interestingly, PPAR  levels in cultured dog and human hepatocytes were 

shown to be expressed at comparable levels to one another but an order of magnitude lower 

than rat PPAR  (Nagasawa et al., 2004).  It is intriguing to consider three species that are not 

responsive to CYP4A inducers express PPAR  at markedly reduced levels, relative to 

species in which CYP4A is highly inducible.  In fact, this straightforward correlation has 

been proposed to explain species differences in PPAR  target gene induction and 

peroxisome proliferation (Palmer et al., 1998); however, it is likely to be an 

oversimplification since non-CYP4A inducible species are clearly able to undergo some 

PPAR  target gene responses.  For example, 3-hydroxy-3-methylglutaryl-CoA synthase 

(HMG CoA synthase) and carnitine palmitoyl transferase-1A (CPT1A) have been shown to 

be markedly upregulated following treatment of human hepatocytes with Wy-14,643, 

suggesting that other cellular factors dictate the species specific CYP4A induction response 

(Ammerschlaeger et al., 2004). 

 Peroxisome Proliferator Response Elements 

 Peroxisome proliferators activate PPAR  which forms a heterodimeric complex with 

RXR  (Evans, 1988) and subsequently binds to DNA at the PPRE in the promoter region of 
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genes associated with the proliferative response, for example, ACOX, rat CYP4A1 and rabbit 

CYP4A6.  The PPREs are comprised of an imperfect direct repeat of a consensus sequence 

(AGGTCA) separated by one nucleotide (DR-1 element) (Kliewer et al., 1992) that is 

essential for PPAR  binding. 

 In rabbit, two imperfect DR-1 motifs were identified approximately 677bp upstream 

of the CYP4A6 gene, and these could be bound by PPAR .  Further study demonstrated the 

importance of the 5’- DR-1 flanking sequences in promoting binding of PPAR /RXR  

heterodimers and subsequent activation of CYP4A6 gene transcription (Palmer et al., 1995).  

Subsequently, studies of the DNA elements involved in regulation of rat CYP4A1 identified 

a PPRE approximately 4,300bp upstream of the gene (Aldridge et al., 1995).  Interestingly, a 

second element was located 35 nucleotides further upstream; however, this element failed to 

bind PPAR /RXR  heterodimers and was unresponsive to Wy-14,643 in gene transfection 

assays, suggesting that the more distal element was not active.  Later work showed that the 

nucleotides flanking the 5’- region of the DR-1 were essential for PPAR  binding, consistent 

with the rabbit CYP4A6 PPRE (Juge-Aubry et al., 1997).  Notably, no PPRE has been 

identified upstream of the guinea pig or human CYP4A gene (or any other non-responsive 

species, for that matter), suggesting a strong role for the PPRE in mediating species 

differences in CYP4A induction and susceptibility to peroxisome proliferation. 

 Post-translational Modification of PPAR  

 Recent insights into regulation of PPAR  have demonstrated that phosphorylation of 

this nuclear receptor protein is a key signaling step for several events affecting target gene 

transcription.  Phosphorylation of nuclear receptors occurs on all three major domains, the N-
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terminal activation function (AF-1), the ligand-binding and the DNA-binding domains.  

PPARs are phosphorylated by multiple kinases, including mitogen-activated protein kinase 

(MAPK), calcium-dependent protein kinase (PKC), cAMP-dependent protein kinase (PKA) 

and AMP-activated protein kinase (AMPK), reviewed previously (Rochette-Egly, 2003). 

 Several years ago, it was demonstrated, for the first time, that rat PPAR  can exist as 

a phosphoprotein in vivo and the phosphorylation can be mediated by insulin (Shalev et al., 

1996).  This important finding provided a new direction for the study of PPAR  regulation.  

Recent work in this area has shown that phosphorylation of nuclear receptors can enhance 

transcriptional activation by enhancing the recruitment and interaction with transcription 

factors and coactivators and by stabilization of PPAR  binding to DNA.  For example, using 

hepatocytes isolated from PPAR  knockout mice, it was demonstrated that cotreatment with 

the PPAR  ligand Wy-14,643 and the PKA activator, cholera toxin, resulted in a synergistic 

activation of ACOX gene expression (Lazennec et al., 2000).  In addition to phosphorylation 

of nuclear receptors, phosphorylation of coactivators (e.g., SRC-1 (Rowan et al., 2000), TIF2 

(Lopez et al., 2001), PCC-1 (Knutti et al., 2001), p/CIP (Font de Mora and Brown, 2000) and 

p300/CBP (Yuan and Gambee, 2000; Vo and Goodman, 2001)) and corepressors (e.g., 

SMRT (Hong and Privalsky, 2000)) can also control enhancement of transcriptional 

activation.  These results suggested that nuclear receptor phosphorylation might enhance the 

activity of other PPAR  target genes.  In contrast to activation, nuclear receptor 

phosphorylation can lead to dissociation from DNA response elements, thereby decreasing 

ligand affinity.  Phosphorylation can also lead to degradation of NUCLEAR RECEPTOR 

protein.   
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 Functioning as a key mediator in fatty acid metabolism and inflammatory response 

(Blanquart et al., 2003), suggests that PPAR  expression must be under tight control, 

enabling the receptor to react to acute conditions.  This hypothesis led to the discovery that 

PPAR  is an unstable protein that can be stabilized by ligand activation.  Further studies 

demonstrated that PPAR  is degraded via the ubiquitin proteosome pathway and ligand 

stabilization results from a decrease in the protein ubiquitination (Blanquart et al., 2002). 

 PPAR  Signal Transduction Pathway 

 While much is known about the basic mechanism of PPAR  mediated transcriptional 

activation, several recent studies have focused on the signal transduction pathway that 

controls upstream signaling events.  It is becoming apparent that protein-PPAR  interactions 

are a key signaling event that occurs prior to nuclear receptor binding to DNA response 

element.  Several proteins have been shown to regulate PPAR  activity, including the 

deoxyuridine triphosphatase (dUTPase) (Chu et al., 1996), heat shock protein 90 (hsp90) 

(Sumanasekera et al., 2003a; Sumanasekera et al., 2003b) and hepatitis X associated protein 

2 (XAP2).  dUTPase serves as a repressor of rat PPAR  by preventing formation of a 

PPAR /RXR  heterodimer.  PPAR  is inhibited by association with hsp90 in an isoform 

specific manner, whereas XAP2 is an inhibitor of all three PPAR subtypes (Sumanasekera et 

al., 2003b).  A recent finding suggests that the ribosomal protein L11 interaction with 

PPAR  can decrease binding to the PPRE, resulting in an inhibition of PPAR  target gene 

expression (Gray et al., 2006).  While the biological significance of PPAR-protein 

interactions is still unclear, it is becoming apparent that the well studied model of nuclear 

receptor mediated transcriptional activation (ligand activation of nuclear receptor followed 
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by binding specific sequences in the 5’ regulatory region of target genes) is an 

oversimplification of regulatory control (Figure 1.3).  Nuclear receptor-protein interactions as 

an emerging area of research should provide important mechanistic insights into species 

differences in the regulation of PPAR  target genes. 

RATIONALE AND OVERVIEW OF DISSERTATION PROJECT 

 Beagle dog continues to be a commonly used non-rodent species for toxicological, 

pharmacokinetic and pharmacological studies in the pharmaceutical industry.  Results of these 

studies are critical in establishing the preclinical efficacy and safety of a drug candidate.  

Moreover, high significance is placed on animal pharmacokinetic data and therefore 

autoinduction represents a major complication that must be addressed during drug discovery and 

development.  Compared to other animal species, including humans, our knowledge of the 

function and regulation of canine CYP enzymes remains incomplete.  Thus, an aim of the 

dissertation project is to evaluate the hypothesis that dog CYP enzymes respond to prototypical 

enzyme inducers in a manner similar to the corresponding human CYP enzymes (Chapter 2).  

We therefore propose to examine the induction profile of several CYP enzymes in cultured male 

dog hepatocytes (in vitro) and in microsomes prepared from the livers of male and female dogs 

that were treated with prototypical CYP inducers (ex vivo).  These inducers will include  -

naphthoflavone, 3-methylcholanthrene, phenobarbital, isoniazid, rifampin and clofibric acid.  In 

each case, several marker substrate reactions and Western immunoblotting will be used to assess 

CYP enzyme induction.  In order to use dog hepatocyte cultures as a model to study P450 

enzyme induction it is important to understand which dog P450s are inducible by prototypical 

rodent and human P450 inducers. 

 Information regarding the regulation of transcriptional CYP enzyme induction has been 
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lacking.  Indeed, to date, full length sequences of dog AhR, CAR or PXR have not been 

reported.  Graham et al. evaluated CYP2B11, CYP2C21, CYP2C41 and CYP3A12 mRNA 

expression in male and female dog liver (Graham et al., 2003).  While each of these CYP mRNA 

isoforms were detected in dog liver with no sex differences in expression, the authors did not 

evaluate the mRNA expression of other important CYPs in these studies (e.g., CYP1A1, 

CYP1A2 and CYP3A26).  Furthermore, at this time, studies have not been reported that discern 

time- and concentration-dependent changes in CYP mRNA and protein expression.  Therefore, 

studies evaluating the time- and concentration-dependent induction of CYP1A, CYP2B and 

CYP3A using primary cultures of canine hepatocytes treated with BNF, PB and RIF are 

presented (Chapter 3).  Determination of the concentration response profiles for CYP1A, 

CYP2B and CYP3A induction with BNF, PB and Rif, respectively, will provide insight into the 

similarities and differences in dog and human gene regulation.  In general, the outcome of the 

study is important, because relatively little is known about the induction of canine cytochrome 

P450 enzymes.  Furthermore, comparison of derived EC50 values for CYP induction across 

species should identify similar or disparate modes of enzyme regulation.  The proposed research 

should enhance our understanding of the similarities and differences in dog and human CYP 

regulation, thereby, resolving any uncertainties concerning the use of cultured dog hepatocytes 

as a surrogate model to predict human CYP induction. 

 Historically, CYP4A has been known as a selective fatty acid  -hydroxylase, 

however more recently, CYP4A has been shown to partially regulate cell and/or organ 

physiology by conversion of arachidonic acid to the vasoactive and natriuretic metabolite, 

20-HETE.  Due to the emerging importance of CYP4A in the regulation of key physiologic 

functions, it will be important to further characterize the factors that regulate this enzyme.  
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While CYP4A is presumed to be expressed in beagle dog, there has been no report 

confirming this assumption.  Determination of the dog CYP4A cDNA sequence allows for 

detection dog CYP4A mRNA using real-time PCR.  Studies were therefore designed to clone 

CYP4A from beagle dog liver.  Studies to evaluate the inducibility of dog liver CYP4A were 

initiated in order to evaluate species differences in the nuclear-receptor mediated regulation 

of this CYP subfamily.  Furthermore, studies are outlined to evaluate the tissue-specific 

mRNA expression of dog CYP4A isoforms (Chapter 4). 
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Table 1.1  Known Beagle Dog CYP Proteins 

 

 

 

 

 

 

 

 

 

aAbbreviations:  BNF ( -Naphthoflavone), PB (Phenobarbital), RIF (Rifampin) 

b(1) (McKillop et al., 1998); (2) (Nishibe and Hirata, 1993); (3) (Graves et al., 1990); (4) 
(Lankford et al., 2000b); (5) (Ciaccio and Halpert, 1989).

Protein Name Gene Symbol Known Inducera Referenceb 

CYP1A1 P56590 BNF 1,2 
CYP1A2 NP_001008720 BNF 1,2 
CYP2B11 P24460   PB 2,3 
CYP2C21 A37222 Not Tested  
CYP2C41 AAC08738 Not Tested  
CYP2D15 BAA04220 Not Tested  
CYP2E1 AAF88144 Not Inducible 4 
CYP3A12 P24463 PB, RIF 2,5 
CYP3A26 AAN47145 PB, RIF 2,5 
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Figure 1.1 Structures of select PPAR  ligands.  Arachidonic, linoleic and eicosapentaenoic 
acid are endogenous ligands, while Wy-14,643, clofibric acid, LY-171883, fenofibrate and 
GW7647X are synthetic ligands. 

Arachidonic Acid

Eicosapentaenoic Acid 

Linoleic Acid 

GW7647X

LY-171883

Wy-14,643 

Fenofibrate 

Clofibric Acid



 36

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.2  Structure of PPAR    AF1: activating function-1, DBD:  DNA binding 
domain, AF-2:  activating function-2, LBD:  ligand binding domain, RXR:  9-cis retinoic 
acid receptor, PPRE:  peroxisome proliferator response element. 
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Figure 1.3  Overview of the CYP4A transcriptional activation process controlled by PPAR    Ligand binding (1) causes 
displacement of constitutive PPAR /corepressor complex (2).  Ligand activated PPAR /RXR heterodimer binds to the PPRE 
upstream of the CYP4A gene causing recruitment of additional coactivators (CoAct) and transcription factors (3), including RNA 
polymerase (RNA Poly).  Subsequently, an increase in CYP4A RNA transcription is achieved (4).  Post-translational modification, 
including phosphorylation (5), has been shown to stabilize PPAR   thereby preventing degradation of the protein and/or activation 
complex. 
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CHAPTER 2 

 

IN VIVO AND IN VITRO INDUCTION OF CYTOCHROME  

P450 ENZYMES IN BEAGLE DOG 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on the following original publication: 

 

Graham RA, Downey A, Mudra D, Krueger L, Carroll K, Chengelis C, Madan A and 
Parkinson A (2002) In vivo and in vitro induction of cytochrome P450 enzymes in beagle 
dogs. Drug Metab Dispos 30:1206-13.
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ABSTRACT 

 The aim of this study was to determine the in vitro and in vivo effects of several 

prototypical inducers, namely  -naphthoflavone, 3-methylcholanthrene, phenobarbital, 

isoniazid, rifampin, and clofibric acid, on the expression of cytochrome P450 (P450) 

enzymes in beagle dogs.  For the in vitro induction study, primary cultures of dog 

hepatocytes were treated with enzyme inducers for 3 days, after which microsomes were 

prepared and analyzed for P450 activities.  For the in vivo induction study, male and female 

beagle dogs were treated with enzyme inducers for 4 days (with the exception of 

phenobarbital, which was given for 14 days), after which the livers were removed and 

microsomal P450 activities were determined ex vivo.  Treatment of male beagle dog 

hepatocyte cultures (n = 3) with  -naphthoflavone or 3-methlychloranthrene resulted in up to 

a 75-fold increase in microsomal 7-ethoxyresorufin O-dealkylase (CYP1A1/2) activity, 

whereas in vivo treatment of male and female beagle dogs with   -naphthoflavone followed 

by ex vivo analysis resulted in up to a 24-fold increase.  Phenobarbital caused a 13-fold 

increase in 7-benzyloxyresorufin O-dealkylase (CYP2B11) activity in vitro and up to a 9.9-

fold increase in vivo.  Isoniazid had little or no effect on 4-nitrophenol hydroxylase 

(CYP2E1) activity in vitro.  Rifampin caused a 13-fold induction of testosterone 6 -

hydroxylase (CYP3A12) activity in vitro and up to a 4.5-fold increase in vivo.  Treatment of 

dogs in vivo or dog hepatocytes in vitro with clofibric acid appeared to have no effect on 

CYP4A activity as determined by the 12-hydroxylation of lauric acid.  In general, the 

absolute rates (picomoles per minute per milligram of microsomal protein) of P450 reactions 

catalyzed by microsomes from cultured hepatocytes (i.e., in vitro rates) were considerably 

lower than those catalyzed by microsomes from dog liver (i.e., ex vivo rates).  These results 
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suggest that beagle dogs have CYP1A, CYP2B, CYP2E, and CYP3A enzymes and that the 

induction profile resembles the profile observed in humans more than in rats. 
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INTRODUCTION 

 Enzyme induction enables some xenobiotics to accelerate their own 

biotransformation (auto-induction) or the biotransformation and elimination of other drugs.  

Drugs and new molecular entities are often screened for their ability to induce cytochrome 

P450 (P450) and other phase I and phase II enzymes with the aim of predicting or explaining 

drug-drug interactions in humans, and increases in liver weight and/or proliferation of the 

endoplasmic reticulum or peroxisomes, pharmacokinetic tolerance, and/or formation of liver 

and thyroid tumors in rodents.  Enzyme induction is often evaluated by an ex vivo procedure 

whereby the xenobiotic is administered to rats and mice (or other laboratory animals) in vivo, 

followed by an evaluation of changes in the levels of liver microsomal P450 and other 

enzymes in vitro (Parkinson, 2001). 

 Beagle dog is widely used throughout drug discovery and development in the 

pharmaceutical industry.  However, surpringly little information is available on the 

regulation of P450 induction and regulation in this species.  In other species levels of P450 

enzymes are affected by age, gender and hormonal status as well as by exposure to drugs.  

For example, gender differences are pronounced in some species, such as rat, but not in 

others, such as monkey and human. 

 Due to the lack of information on the inducibility of P450 enzymes in the dog, we 

examined the induction profile of several P450 enzymes in cultured male dog hepatocytes (in 

vitro) and in microsomes prepared from the livers of male and female dogs that were treated 

with prototypical P450 inducers (in vivo).  These inducers included  -naphthoflavone, 3-

methylcholanthrene, phenobarbital, isoniazid, rifampin, and clofibric acid.  In each case, 
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several marker substrate reactions and Western immunoblotting were used to assess P450 

enzyme induction. 
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MATERIALS AND METHODS 

Chemicals and Reagents 

Insulin, Dulbecco’s modified Eagle’s medium, GlutaMAX-1 (dipeptide L-alanyl-L-

glutamine 200 mM supplied in 0.85% NaCl), modified Chee’s medium, minimal essential 

medium nonessential amino acids, and penicillin-streptomycin were purchased from 

Invitrogen (Carlsbad, CA).  Matrigel and ITS+ (insulin, transferrin, selenium) were purchased 

from Collaborative Biomedical Products (Bedford, MA).  Collagenase (type I) was 

purchased from Worthington Biochemicals (Freehold, NJ).  Vitrogen 100 was purchased 

from Celtrix (Santa Clara, CA).  Androstenedione, L-arginine, bovine serum albumin, 

clofibric acid, dexamethasone, DMSO, fetal bovine serum, EGTA, D-(+)-glucose, glucose 6-

phosphate, glucose-6-phosphate dehydrogenase, L-glutamine, 11 -hydroxytestosterone, 

lauric acid, NADP,  -naphthoflavone, 4-nitrophenol, 4-nitrocatechol, Percoll, phenobarbital, 

testosterone, thymidine, and trypan blue were purchased from Sigma-Aldrich (St. Louis, 

MO).  Bicinchoninic acid protein assay reagents were purchased as a kit from Pierce 

Chemical Co. (Rockford, IL).  NuPage gels and related electrophoresis reagents were 

purchased from Novex (San Diego, CA).  Polyvinylidene difluoride membranes were 

purchased from Bio-Rad (Hercules, CA).  BCIP/NBT phosphatase substrate was purchased 

from Kirkegaard and Perry Laboratories (Gaithersburg, MD).  7-Ethoxyresorufin, 7-

benzyloxyresorufin, and resorufin were purchased from Molecular Probes Inc. (Junction 

City, OR).  [14C]Lauric acid (58 Ci/mol) was purchased from ICN Radiochemicals (Irvine, 

CA). 6  -Hydroxytestosterone and 16  -hydroxytestosterone were purchased from 

Steraloids, Inc. (Wilton, NH).  Solvents were purchased either from Fisher Scientific 

(Pittsburgh, PA) or Aldrich Chemical Co. (Milwaukee, WI). 
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Hepatocyte Isolation and Culture 

Three male beagle dogs (Covance Research Products, Inc., Cumberland, VA) were 

euthanized, and the livers were perfused by a modification of the previously described two-

step collagenase digestion method (Seglen, 1976; Seglen et al., 1980; Quistorff et al., 1989; 

LeCluyse et al., 1996, Madan et al., 1999).  Hepatocytes were maintained in culture for 3 

days before treatment with P450 inducers.  On day 4, the medium was aspirated and replaced 

with 3 ml of supplemented modified Chee’s medium containing vehicle or the inducer.  

Cultures were treated daily for 3 consecutive days with either vehicle (0.1% DMSO or 0.1% 

saline),  -naphthoflavone (33 µM), 3-methylcholanthrene (10 µM), phenobarbital (250 µM), 

isoniazid (100 µM), rifampin (50 µM), or clofibric acid (100 µM).  (Prototypical inducers 

were dissolved in DMSO, except isoniazid, which was dissolved in saline.)  At the end of the 

treatment period, the hepatocytes were harvested, and microsomes were prepared as 

described previously (Madan et al., 1999).  The microsomal samples were stored at -80°C for 

later analysis of P450 activities.  The protein concentration in the microsomal samples was 

determined with a BCA Protein Assay Kit, according to Technical Bulletin 23225X from 

Pierce Chemical Co. (Smith et al., 1985; Wiechelman et al., 1988). 

 Treatment of Dogs in vivo and Preparation of Microsomes 

Male and female beagle dogs (7–18 months old; Ridglan Farms, Mt. Horeb, WI) were 

treated by subcutaneous injection with corn oil vehicle (two males and two females), saline 

vehicle (two males and two females), 10 mg/kg/day  -naphthoflavone (two males and one 

female), 10 mg/kg/day rifampin (two males and two females), 10 mg/kg/day clofibric acid 

(two males and one female), or phenobarbital (two males and two females).  Animals treated 

with phenobarbital were treated for 14 consecutive days with dosing escalations from 10 
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mg/kg/day (days 0 and 1) to 20 mg/kg/day (days 2 through 5) to 30 mg/kg/day (days 6 

through 13).  Dogs treated with vehicle or enzyme inducers (other than phenobarbital) were 

treated for 4 consecutive days.  After completion of the dosing regimen, the dogs were 

euthanized by intravenous injection with sodium pentobarbital (5 ml per dog) followed by 

excision of the livers, which were subsequently perfused with chilled saline.  After perfusion, 

the livers were snap-frozen in liquid nitrogen and stored at -70°C.  Microsomes were 

prepared as described previously (Pearce et al., 1996).  This experimental design was 

reviewed and approved by the Institutional Animal Care and Use Committee of WIL 

Research Laboratories, Inc. (Ashland, OH). 

 Enzyme Assays 

The O-dealkylation of 7-ethoxyresorufin and 7-benzyloxyresorufin, the 6 -, 16 -, and 

16 -hydroxylation of testosterone, the 4-hydroxylation of nitrophenol, and the 12-

hydroxylation of lauric acid were determined by methods described previously (Burke and 

Mayer, 1974; Wood et al., 1983; Koop, 1986; Sonderfan et al., 1987; Romano et al., 1988; 

Sonderfan and Parkinson, 1988; Giera and Van Lier, 1991; Tierney et al., 1992; Burke et al., 

1994; Pearce et al., 1996).  The incubation conditions for each of the assays are given in 

Table 2.1. 

 Western Immunoblotting 

Microsomal samples were analyzed by Western immunoblotting to determine levels of 

immunoreactive CYP1A, 2B, 3A, and 4A.  Microsomes were subjected to SDS-

polyacrylamide gel electrophoresis, based on the method originally described by Laemmli 

(1970).  Briefly, microsomes were mixed in a 1:1 ratio with NuPage sample dilution buffer 

(pH = 8.5) containing 1.09 M glycerol, 141 mM Tris-base, 106 mM Tris-HCl, 73 mM SDS, 
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0.51 mM EDTA, 0.22 mM Serva Blue G250, and 0.175 mM phenol red and heated at 100°C 

for 2 to 5 min.  The denatured proteins (up to 10 µg per lane, as specified in figure legends) 

were subjected to electrophoresis on precast 4 to 12% NuPage bis-Tris gels (pH 6.4 gels; 

constant voltage of 200 V; electrophoresis time ~55 min) (Novex).  Proteins were transferred 

electrophoretically to polyvinylidene difluoride membranes and subjected to 

immunoblotting, based on the method by Towbin et al. (1979), with a Blot Module from 

Novex.  Membranes were incubated in blocking buffer containing 10% (w/v) Carnation 

nonfat dry milk and 0.05% (v/v) Tween 20 in Tris-buffered saline (10 mM Tris-HCl and 150 

mM NaCl, pH = 7.4) and then probed with polyclonal antibodies raised against purified rat 

liver microsomal CYP1A1, CYP2B1, CYP3A1 (Parkinson and Gemzik, 1991), or CYP4A 

(Affinity Bioreagents, Golden, CO) at final concentrations ranging from 0.25 µg/ml to 10 

µg/ml.  The secondary antibody was affinity-purified goat-anti-rabbit IgG (H + L) conjugated 

with alkaline phosphatase from Kirkegaard and Perry Laboratories, which was diluted in 

blocking buffer to a final concentration of 0.25 µg/ml.  Membranes were washed three times 

with Tris-buffered saline, and the proteins were visualized by incubation with BCIP/NBT 

phosphatase substrate. 

 Statistical analysis 

For analysis of microsomes from the in vitro cultures, data are mean   standard deviation 

of three preparations. An asterisk (*) indicates a statistically significant (p < 0.05) difference 

from control as determined by a one-way repeated measures analysis of variance test 

followed by a Dunnett’s post hoc test.  For ex vivo analysis of microsomes, data are duplicate 

measurements of a pool of microsomes from two dog livers (with the exception of the  -
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naphthoflavone and clofibric acid females, in which case, only a single dog liver was 

available). 
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RESULTS AND DISCUSSION 

There are several reports on the cloning and sequencing of cDNAs encoding dog P450 

enzymes, and on the characterization of the catalytic activity of dog P450 enzymes (Gee et 

al., 1984; Duignan et al., 1987; Ciaccio and Halpert, 1989; Ciaccio et al., 1991; Graves et al., 

1990; Nicolas et al., 1995; Sakamoto et al., 1995; Ekins et al., 1996; Fraser et al., 1997; 

Nishibe et al., 1998; Roussel et al., 1998; Adas et al., 1999; Lankford et al., 2000; Hewitt et 

al., 2001).  Several studies have shown that a select compound can cause induction of one or 

more P450 enzymes in dog (McKillop and Pickup, 1991; Robertson et al., 1995; Nishibe and 

Hirata, 1995; McKillop et al., 1998; Mae et al., 1998).  However, little information is 

available on the profile of P450 enzymes induced by prototypical P450 enzyme inducers, 

namely, those that cause CYP1A, CYP2B, CYP2E, CYP3A, or CYP4A induction in other 

mammalian species (McKillop 1985; Nishibe and Hirata, 1993; Nishibe and Hirata, 1995; 

Nishibe et al., 1998).  Along with enzyme induction, a large number of chemically diverse 

compounds have been shown to cause hepatic hyperplasia and proliferation of the 

endoplasmic reticulum and peroxisomes in rodents.  Such compounds also cause formation 

of liver tumors in rodents after chronic administration (Reddy and Rao, 1977; Reddy and 

Qureshi, 1979; Fitzgerald et al., 1981).  On the other hand, nonrodent species, including dog, 

have been reported to be much less sensitive to peroxisome proliferation (Foxworthy et al., 

1990). 

Evaluation of Dog Hepatocytes 

Viability of the final preparation of hepatocytes (after Percoll gradient centrifugation) was 

greater than 70% for each of the three preparations of dog hepatocytes.  Dog hepatocytes 

attached to collagen-coated culture dishes.  After 6 days in culture, representative culture 
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dishes seeded with freshly isolated hepatocytes were photographed under light microscopy 

(Figure 2.1).  Hepatocytes exhibited morphology traits consistent with normal cells: the cells 

were cuboidal and contained granular cytoplasm with one or two centrally located nuclei 

(Figure 2.1). Interestingly, the cellular morphology of the cultured dog hepatocytes closely 

resembled that of cultured human hepatocytes but not rat hepatocytes (LeCluyse et al.,1999, 

2000).  Unlike rat hepatocyte cultures, dog hepatocyte cultures tended to be completely 

confluent, covering nearly 100% of the culture dish.  Even though the collagen substratum 

and Matrigel overlay caused cells to spread and flatten to a certain degree, the hepatocytes 

retained a high degree of three-dimensional architecture. 

Induction of cytochrome P450 content in dogs in vivo 

The effects of treating male and female dogs in vivo with  -naphthoflavone, 

phenobarbital, rifampin, or clofibric acid on total P450 content are shown in Table 2.2.  

Treatment with  -naphthoflavone resulted in up to a 1.5-fold increase in P450 content, 

whereas treatment with phenobarbital or rifampin resulted in up to 2.0- and 3.1-fold 

increases, respectively.  On the other hand, treatment with clofibric acid resulted in up to a 

32% decrease in P450 content.  The determination of total P450 content requires relatively 

large amounts of microsomal protein (approximately 1 mg per assay); therefore, this assay 

was not performed with microsomal samples from cultured hepatocytes. 

Induction of EROD (CYP1A1/2) Activity 

Although EROD activity has not been shown to be specific for dog CYP1A as it has for 

the rat, there is indirect evidence suggesting that dog CYP1A catalyzes EROD. McKillop 

(1985) reported that EROD activity increases 3- to 5-fold in dogs treated with the CYP1A 

inducer  -naphthoflavone but not with the CYP2B inducer phenobarbital.  CYP1A1 and 



 50

CYP1A2 mRNA are expressed at low levels in the liver of untreated dogs, but the levels 

increase after treatment with the polychlorinated biphenyl mixture, Kaneclor KC-500 

(Uchida et al., 1990).  Treatment of cultured dog hepatocytes with  -naphthoflavone has 

been shown to increase EROD activity by 25-fold (Nishibe and Hirata, 1993). 

The effects of treating dog hepatocyte cultures (n = 3) with  -naphthoflavone and 3-

methylcholanthrene, phenobarbital, isoniazid, rifampin, or clofibric acid on EROD activity 

are shown in Figure 2.2A.  Treatment of cultured hepatocytes with  -naphthoflavone or 3-

methylcholanthrene resulted in a 75-fold induction of EROD (CYP1A1/2) activity, whereas 

the other inducers had little or no effect (Figure 2.2A).  Both the absolute rates (expressed as 

picomoles per minute per milligram of microsomal protein) and fold induction of CYP1A1/2 

by  -naphthoflavone were reproducible (<25% relative standard deviation) among three 

preparations of cultured dog hepatocytes.  The effects of treating male or female beagle dogs 

in vivo with  -naphthoflavone, phenobarbital, rifampin, or clofibric acid, followed by ex 

vivo analysis of the liver microsomal samples, are shown in Figure 2.2B.  Treatment of dogs 

with  -naphthoflavone resulted in up to a 24-fold increase in EROD activity.  Western 

immunoblotting confirmed that treatment of male or female dogs in vivo or in vitro with  -

naphthoflavone (or 3-methylcholanthrene; in vitro only), but not phenobarbital, rifampin or 

clofibric acid, caused a marked increase in immunoreactive CYP1A1/2 (Figure 2.2C). 

There are two notable differences between the CYP1A induction in vitro and ex vivo.  

First, EROD activity (picomoles per minute per milligram of microsomal protein) in vitro 

was approximately one-tenth of that observed ex vivo.  Second, Western immunoblotting 

revealed two immunoreactive proteins (tentatively identified as CYP1A1 and CYP1A2) in 
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microsomal samples from dogs treated with  -naphthoflavone in vivo, whereas the same 

treatment in vitro appeared to induce a single immunoreactive protein (Figure 2.2C).  The 

exact identity of these immunoreactive proteins is not known; however, since the lower band 

appeared in untreated male and female dogs, it would seem, by analogy with most other 

species (with the exception of guinea pig), that the lower band is CYP1A2 (Thomas et al., 

1984).  By a similar comparison, it appears that only CYP1A1 induction was detected in 

vitro. 

Induction of BROD (CYP2B11) Activity 

7-Benzyloxyresorufin O-dealkylation has been shown to be a specific substrate for dog 

CYP2B11 (Klekotka and Halpert, 1995).  Like the corresponding rat enzyme, dog CYP2B11 

(PDB-2) catalyzes both the 16 - and 16 - hydroxylation of testosterone; however, dog 

CYP2B11 preferentially catalyzes the 16 -hydroxylation of testosterone at 13 to 15 times the 

rate of testosterone 16 -hydroxylation (Coulter et al., 1993; Ohmori et al., 1993). 

Treatment of cultured dog hepatocytes with phenobarbital resulted in a 13-fold induction 

of BROD (CYP2B11) activity, whereas the other inducers tested had little or no effect 

(Figure 2.3A).  Both the absolute rates (expressed as picomoles per minute per microgram of 

microsomal protein) and fold induction of BROD by phenobarbital were reproducible (<25% 

relative standard deviation) among three preparations of cultured dog hepatocytes.  

Treatment of dogs with phenobarbital resulted in up to a 9.9-fold increase in BROD activity 

(Figure 2.3B).  Western immunoblotting confirmed that treatment of male or female dogs 

with phenobarbital, but not  -naphthoflavone, rifampin, or clofibric acid, caused a marked 

increase in immunoreactive CYP2B11 (Figure 2.3C).  Induction of CYP2B11 in cultured 

hepatocytes was also measured by testosterone 16 -hydroxylase activity (Duignan et al., 
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1987).  The pattern of induction of testosterone 16 -hydroxylase activity (Table 2.2) was 

similar to that shown in Figure 2.3A and B, for BROD activity. 

It should be noted that the “induced” level of CYP2B11 (in vitro) on the Western 

immunoblot appeared to be the same as the “control” level in microsomes prepared from 

untreated male beagle dog, an observation that is consistent with the BROD results (Figure 

2.3A and B).  These data suggest a marked difference in the degree to which CYP2B11 is 

expressed in vitro versus ex vivo. 

Induction of 4-Nitrophenol Hydroxylase (CYP2E1) Activity 

Lankford et al. (2000) have isolated and characterized a full-length CYP2E1 cDNA from a 

beagle liver cDNA library.  The deduced amino acid sequence shares 77% identity to rat, 

rabbit, and human CYP2E1. In rodents, CYP2E1 catalyzes the hydroxylation of 4-

nitrophenol (Koop, 1986).  Treatment of cultured hepatocytes with the prototypical enzyme 

inducers had little or no effect on 4-nitrophenol hydroxylase activity (Figure 2.4).  Induction 

of CYP2E1 was also measured by chlorzoxazone 6-hydroxylase activity, a measure of 

human CYP2E1 activity.  In agreement with the data shown in Figure 2.4 for 4-nitrophenol 

hydroxylation, treatment with prototypical P450 inducers had little or no effect on 

chlorzoxazone 6-hydroxylase activity (data not shown).  Western immunoblotting for 

detection of the CYP2E1 isozyme was not performed.  Consistent with our results, Jayyosi et 

al. (1996) reported that treatment of dogs with isoniazid had only a slight effect on 

chlorzoxazone 6-hydroxylase activity and immunoreactive CYP2E1 levels. 

Induction of Testosterone 6 -Hydroxylase (CYP3A12) Activity 

Treatment of cultured hepatocytes with phenobarbital or rifampin resulted in a 7.3- and 

13-fold induction of testosterone 6 -hydroxylase (CYP3A12) activity, respectively, whereas 
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the other inducers examined had little or no effect (Figure 2.5A).  Western immunoblotting 

confirmed that treatment of cultured hepatocytes with phenobarbital and rifampin, but not  -

naphthoflavone or 3-methylcholanthrene, isoniazid, or clofibric acid, caused a marked 

increase in immunoreactive CYP3A12 (Figure 2.5C).  It should be noted that the induced 

levels of CYP3A12 on the Western immunoblot indicated a level of protein expression 

comparable with that observed in microsomes prepared from untreated male beagle dog, an 

observation that is consistent with the testosterone 6 -hydroxylase results (Figure 2.5A and 

B).  These data also suggest a marked difference in the degree to which CYP3A12 is 

expressed in vitro versus ex vivo. 

Treatment of dogs with phenobarbital or rifampin resulted in up to a 2.6- and 4.5-fold 

induction of testosterone 6 -hydroxylase (CYP3A12) activity, respectively, whereas the 

other inducers examined had little or no effect (Figure 2.5B).  Western immunoblotting 

confirmed that treatment of male or female dogs with phenobarbital or rifampin, but not  -

naphthoflavone or clofibric acid, caused a marked increase in immunoreactive CYP3A12 

(Figure 2.5C).  As noted previously for CYP1A and CYP2B, the CYP3A12 activity in vitro 

was substantially lower (~1/5) than that observed ex vivo.  However, in the case of 

CYP3A12, the fold induction was greater in vitro, which is attributable to the higher control 

CYP3A12 activity ex vivo.  These results are in agreement with a study that reported a 5-fold 

induction of testosterone 6 -hydroxylation in dog hepatocytes followed by treatment with 30 

µM rifampin (Nishibe and Hirata, 1995). 

Induction of Lauric Acid 12-Hydroxylase (CYP4A) Activity 

Treatment of freshly isolated hepatocytes with clofibric acid had little or no effect on 

lauric acid 12-hydroxyase activity (CYP4A); however, phenobarbital and rifampin appeared 
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to increase this activity by 2-fold (Figure 2.6A).  Treatment of dogs in vivo with the 

prototypical inducers examined had little or no effect on lauric acid 12-hydroxylase activity 

(Figure 2.6B).  The lack of CYP4A induction by clofibric acid was confirmed by Western 

immunoblotting (Figure 2.6C); however, the 2-fold increase in activity by phenobarbital and 

rifampin was not associated with a 2-fold increase in CYP4A levels.  As in other cases, the 

rate of lauric acid 12-hydroxylation was substantially lower in vitro compared with that 

observed ex vivo. 

Treatment of rats with the peroxisome proliferator, clofibric acid, results in induction of 

lauric acid 12-hydroxylase activity, a marker of CYP4A1–3.  In contrast to the rat, human 

CYP4A does not appear to be an inducible enzyme (Butterworth et al., 1989).  DUT-1, 

purified from liver microsomes of untreated male beagle dogs, catalyzes the 12-

hydroxylation of lauric acid, but the NH2-terminal sequence of this protein is different from 

that of any other P450 characterized to date (Shiraga et al., 1994).  Treatment of dog 

hepatocytes with clofibric acid and subcutaneous injection of male and female beagle dogs 

with clofibric acid had no effect on lauric acid 12-hydroxylase activity.  Consistent with this 

finding, clofibric acid did not induce immunoreactive CYP4A either in vitro or in vivo.  

Since DUT-1 does not bear amino acid sequence homology with CYP4A proteins (Shiraga et 

al., 1994), it is possible that DUT-1 (or another enzyme that catalyzes lauric acid 12-

hydroxylation) is inducible by rifampin and phenobarbital.  Assuming dogs do have a 

CYP4A enzyme(s) that catalyzes the 12-hydroxylation of lauric acid, the current data suggest 

that its lack of inducibility is similar to that of human CYP4A.  Additionally, similar to 

humans, dogs appear to be less sensitive to peroxisome proliferation, a phenomenon that is 

associated with CYP4A induction in rodent species only (Foxworthy et al., 1990). 
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CONCLUSION 

In the present study, we attempted to evaluate the effects of prototypical P450 enzyme 

inducers on the in vivo and in vitro expression of P450 enzymes in dogs.   -Naphthoflavone 

or 3-methlychloranthrene resulted in a large increase in microsomal 7-ethoxyresorufin O-

dealkylase (CYP1A1/2) activity in vitro and in vivo.  Phenobarbital caused up to a 13-fold 

increase in 7-benzyloxyresorufin O-dealkylase (CYP2B11) activity in vitro and in vivo.  

Isoniazid had little or no effect on 4-nitrophenol hydroxylase activity in vitro.  Rifampin 

caused up to a 13-fold induction of testosterone 6  -hydroxylase (CYP3A12) activity in vitro 

and in vivo.  Treatment of dogs in vivo or dog hepatocytes in vitro with clofibric acid 

appeared to have no effect on CYP4A activity as determined by the 12-hydroxylation of 

lauric acid.  In general, the absolute rates (picomoles per minute per milligram of microsomal 

protein) of P450 reactions catalyzed by microsomes from cultured hepatocytes (i.e., in vitro 

rates) were considerably lower than those catalyzed by microsomes from dog liver (i.e., ex 

vivo rates).  These results suggest that beagle dogs have CYP1A, CYP2B, CYP2E, 

and CYP3A enzymes and that the induction profile resembles the profile observed in humans 

more than in rats. 
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Table 2.1  Incubation conditions for microsomal P450 assays 

 
Incubation Conditions 

Assay [Protein] 
(mg/mL) 

Incubation Time 
(min) 

[Substrate] 
( M) 

In Vitro    
P450 content ND ND ND 
EROD 0.05 20 10 
BROD 0.05 20 10 
4-Nitrophenol hydroxylation 0.10 60 100 
Testosterone oxidation 0.05 32 250 
Lauric acid hydroxylation 0.10 40 100 

Ex vivo    
P450 content 1.0 N/A N/A 
EROD 0.10 10 10 
BROD  0.10 10 10 
4-Nitrophenol Hydroxylation ND ND ND 
Testosterone Oxidation 0.20 8 250 
Lauric Acid Hydroxylation 0.40 10 100 

ND, Not determined; N/A, Not applicable ; CYP, Cytochrome P450; EROD, 7-Ethoxyresorufin 
O-dealkylation;  BROD, 7-Benzyloxyresorufin O-dealkylation. 
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Table 2.2 The effect of treating dog hepatocytes or subcutaneous injection of dogs with 
prototypical CYP inducers on CYP content and testosterone 16 -hydroxylase (CYP2B) activity. 
 

Treatment CYP Content a 
(nmol/mg protein) 

Testosterone 16 -hydroxylation a 
(pmol/mg protein/min) 

In vitro b   
0.1% DMSO ND BLQ 
Saline ND BLQ 
 -Naphthoflavone ND BLQ 
3-
methylchloranthrene 

ND BLQ 

Phenobarbital ND 105 ± 36 
Isoniazid ND BLQ 
Rifampin ND 11.4 ± 4.0 
Clofibric acid ND BLQ 

Male Ex vivo c   
Corn oil 0.430 577 
Saline 0.376 530 
 -Naphthoflavone 0.585 196 
Phenobarbital 1.30 2710 
Rifampin 0.865 687 
Clofibric acid 0.259 363 

Female Ex vivo c   
Corn oil 0.383 753 
Saline 0.435 495 
 -Naphthoflavone 0.593 226 
Phenobarbital 1.20 3390 
Rifampin 0.650 605 
Clofibric acid 0.259 344 

ND, Not determined; BLQ, Below limit of quantification. 

aCytochrome P450 content and testosterone 16 -hydroxylation were determined as described 
under Materials and Methods.  The units for activity data are pmol/min/mg microsomal protein, 
and those for CYP content are pmol/mg microsomal protein. 
 
bData are mean   standard deviation of three preparations of dog hepatocytes, each analyzed in 
duplicate. 
 
cData are duplicate measurements of a pool of microsomes from two dog livers (with the 
exception of the  –naphthoflavone and clofibric acid females, in which case, only a single dog 
liver was available). 
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Figure 2.1 Photomicrograph of primary cultures of dog hepatocytes treated with 0.1% 
DMSO (vehicle control).  Freshly isolated dog hepatocytes were isolated and cultured for six 
days as described in Materials and Methods.  On day six, the cultures were photographed under a 
phase contrast microscope.  Magnification factor = 300. 
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Figure 2.2 The effect of treating dog hepatocytes or subcutaneous injection of dogs with prototypical CYP inducers on 7-
ethoxyresorufin O-dealkylase (CYP1A) activity. Freshly isolated dog hepatocytes were isolated and cultured for up to six days, and 
Beagle dogs were treated by subcutaneous injection as described in Materials and Methods.  (A) In vitro cultures treated with 
prototypical inducers.  (B) Male and female Beagle dogs were treated with prototypical inducers.  (C) Microsomes were analyzed by 
Western immunoblotting.  Gels were loaded with 10 µg/lane (except for Rat BNF samples, which were 0.05, 0.10 and 0.20  g/lane for 
ex vivo samples and 0.1  g/lane for in vitro samples).  Samples of rat liver microsomes prepared from rats treated with one of four 
prototypical inducers were also analyzed as reference standards. Asterisk (*) indicates p<0.05 as described in Materials and Methods. 
UT, untreated; DMSO, dimethylsulfoxide; BNF,  -naphthoflavone; 3MC, 3-methylcholanthrene; PB, phenobarbital; RIF, rifampin; 
INH, isoniazid; CLOF, clofibric acid; CO, corn oil. 
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Figure 2.3 The effect of treating dog hepatocytes or subcutaneous injection of dogs with prototypical CYP inducers on 7-
benzyloxyresorufin O-dealkylase (CYP2B) activity. Freshly isolated dog hepatocytes were isolated and cultured for up to six days, 
and Beagle dogs were treated by subcutaneous injection as described in Materials and Methods.  (A) In vitro cultures treated with 
prototypical inducers.  (B) Male and female Beagle dogs were treated with prototypical inducers.  (C) Microsomes were analyzed by 
Western immunoblotting.  Gels were loaded with 10 µg/lane (except for Rat PB samples, which were 0.05, 0.10 and 0.20  g/lane for 
ex vivo samples and 0.1  g/lane for in vitro samples).  Samples of rat liver microsomes prepared from rats treated with one of four 
prototypical inducers were also analyzed as reference standards. Asterisk (*) indicates p<0.05 as described in Materials and Methods.  
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UT, untreated; DMSO, dimethylsulfoxide; BNF,  -naphthoflavone; 3MC, 3-methylcholanthrene; PB, phenobarbital; RIF, rifampin; 
INH, isoniazid; CLOF, clofibric acid and CO, corn oil.
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Figure 2.4 The effect of treating dog hepatocytes with prototypical CYP inducers on 4-
nitrophenol hydroxylase (CYP2E) activity.  Freshly isolated dog hepatocytes were isolated and 
cultured for up to six days as described in Materials and Methods.  Cultures were treated with 
prototypical P450 enzyme inducers and analyzed for CYP2E activity as described in Materials 
and Methods.  UT, untreated; DMSO, dimethylsulfoxide; BNF,  -naphthoflavone; 3MC, 3-
methylcholanthrene; PB, phenobarbital; RIF, rifampin; INH, isoniazid; CLOF, clofibric acid and 
CO, corn oil. 
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Figure 2.5 The effect of treating dog hepatocytes or subcutaneous injection of dogs with prototypical CYP inducers on 
testosterone 6 -hydroxylase (CYP3A) activity.  Freshly isolated dog hepatocytes were isolated and cultured for up to six days, and 
Beagle dogs were treated by subcutaneous injection as described in Materials and Methods.  (A) In vitro cultures treated with 
prototypical inducers.  (B) Male and female Beagle dogs were treated with prototypical inducers.  (C) Microsomes were analyzed by 
Western immunoblotting.  Gels were loaded with 10 µg/lane (except for Rat DEX samples, which were 0.05, 0.10 and 0.20  g/lane 
for ex vivo samples and 0.1  g/lane for in vitro samples).  Samples of rat liver microsomes prepared from rats treated with one of four 
prototypical inducers were also analyzed as reference standards. Asterisk (*) indicates p<0.05 as described in Materials and Methods. 
UT, untreated; DMSO, dimethylsulfoxide; BNF,  -naphthoflavone; 3MC, 3-methylcholanthrene; PB, phenobarbital; RIF, rifampin; 
INH, isoniazid; CLOF, clofibric acid; CO, corn oil and DEX, dexamethasone. 
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Figure 2.6 The effect of treating dog hepatocytes or subcutaneous injection of dogs with prototypical CYP inducers on lauric acid 
12-hydroxylase (CYP4A) activity.  Freshly isolated dog hepatocytes were isolated and cultured for up to six days, and Beagle dogs 
were treated by subcutaneous injection as described in Materials and Methods.  (A) In vitro cultures treated with prototypical inducers.  
(B) Male and female Beagle dogs were treated with prototypical inducers.  (C) Microsomes were analyzed by Western 
immunoblotting.  Gels were loaded with 10 µg/lane (except for Rat CLOF samples, which were 0.05, 0.10 and 0.20  g/lane for ex 
vivo samples and 0.1  g/lane for in vitro samples).  Samples of rat liver microsomes prepared from rats treated with one of four 
prototypical inducers were also analyzed as reference standards. Asterisk (*) indicates p<0.05 as described in Materials and Methods. 
UT, untreated; DMSO, dimethylsulfoxide; BNF,  -naphthoflavone; 3MC, 3-methylcholanthrene; PB, phenobarbital; RIF, rifampin; 
INH, isoniazid; CLOF, clofibric acid and CO, corn oil.

*
* 

A

B

C

L
au

ri
c 

ac
id

 1
2-

hy
dr

ox
yl

at
io

n 
(p

m
ol

/m
g 

pr
ot

ei
n/

m
in

) 
L

au
ri

c 
ac

id
 1

2-
hy

dr
ox

yl
at

io
n 

 (p
m

ol
/m

g 
pr

ot
ei

n/
m

in
) 74



 

CHAPTER 3 

 

TEMPORAL KINETICS AND CONCENTRATION-RESPONSE RELATIONSHIPS 

FOR INDUCTION OF CYP1A, CYP2B AND CYP3A IN PRIMARY  

CULTURES OF BEAGLE DOG HEPATOCYTES 

 

 

 

 

 

 
 
 
 
 
 

This chapter is based on the following original publication: 

 

Graham RA, Tyler LO, Krol WL, Silver IS, Webster LO, Clark P, Chen L, Banks T and 
LeCluyse El (2006) Temporal Kinetics and Concentration-Response Relationships for 
Induction of CYP1A, CYP2B and CYP3A in Primary Cultures of Beagle Dog Hepatocytes. 
J. Biochemical and Molecular Toxicology 20(2): 69-78.
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ABSTRACT 

Compared to other species, little information is available on the xenobiotic-induced   

regulation of cytochrome P450 enzymes in the beagle dog.  Dogs are widely used in the   

pharmaceutical industry for many study types, including those that will impact decisions on 

compound progression.  The purpose of this study was 1) to determine the temporal kinetics 

of drug-induced changes in canine CYP1A, CYP2B, and CYP3A mRNA and enzymatic 

activity, and 2) to characterize concentration-response relationships for CYP1A2, 2B11 and 

3A12 using primary cultures of canine hepatocytes treated with  -naphthoflavone (BNF), 

Phenobarbital (PB) and Rifampin (RIF), respectively.  CYP1A1 and CYP1A2 mRNA 

exhibited maximal expression (12,700-fold and 206-fold, respectively) after 36 hr of 

treatment with BNF. PB treatment, but not RIF treatment, caused maximal induction of 

CYP2B11 mRNA (149-fold) after 48 hr of treatment.  CYP3A12 and CYP3A26 mRNA 

levels were increased maximally after 72 hr of treatment with PB and RIF (CYP3A12, 35-

fold and 18-fold, CYP3A26, 72-fold and 22-fold with PB and RIF treatment, respectively).  

Concentration-response relationships for BNF induced 7-ethoxyresorufin O-dealkylation 

(EROD) (EC50=7.8   4.2 µM), PB induced 7-benzyloxyresorufin O-dealkylation (BROD) 

(EC50=123   30 µM) and PB and RIF induced testosterone 6 -hydroxylation (EC50=132   28 

µM and EC50=0.98   0.16 µM) resembled the relationship for human CYP induction 

compared to that of rodent.  Interestingly, RIF had no effect on CYP2B11 expression, which 

represents a species difference overlooked in previous investigations.  Overall, the induction 

of dog CYP1A, CYP2B and CYP3A exhibits characteristics that are intermediate to those of 

rodent and human. 
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INTRODUCTION 

Beagle dog is a model species that is widely used in the pharmaceutical industry drug 

discovery and development.  Canine in vitro systems (e.g., cDNA expressed enzymes, 

microsomes, S9 and suspension and/or cultures of hepatocytes) are used to determine 

intrinsic clearance, to assess CYP induction and to identify metabolic pathways for new 

chemical entities.  Moreover, dogs are widely used for in vivo analysis of drug metabolism 

and disposition, in addition to their routine use in safety assessment studies.  Considering the 

degree to which the beagle dog is utilized throughout the drug development process, 

relatively little is known about the function and regulation of drug metabolizing enzymes in 

this species. 

To date, nine CYP genes have been sequenced in the dog including CYP1A1 and 

CYP1A2 (Uchida et al., 1990a), CYP2B11 (Graves et al., 1990), CYP2C21 (Uchida et al., 

1990a), CYP2C41 (Blaisdell et al., 1998a), CYP2D15 (Sakamoto K. et al., 1995), CYP2E1 

(Lankford et al., 2000a), CYP3A12 (Ciaccio et al., 1991), and CYP3A26 (Fraser et al., 

1997a).  Dog CYP1A1/2, CYP2B11 and CYP3A12 have been shown to be inducible by the 

prototypical human CYP inducers BNF, PB and RIF (Nishibe et al., 1998; Korytko et al., 

1999; Graham et al., 2002).  It has been established that species differences in CYP induction 

exist.  For example, pregnenolone 16α-carbonitrile (PCN) is an efficacious inducer of rodent 

but not human CYP3A, whereas RIF is an efficacious inducer of human but not rodent 

CYP3A.  Differences in the PXR ligand binding domain have been implicated as the basis 

for species differences in CYP3A induction (LeCluyse, 2001).  However, for the known 

beagle dog genes little more than cloning, expression and characterization of a few CYP 
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cDNAs has been completed.  To date, full length sequences of dog AhR, CAR or PXR have 

not been reported. 

Previously we reported the in vitro and ex vivo induction of CYP in the dog using 

prototypical human CYP inducers (Graham et al., 2002).  We found that beagle dog has 

CYP1A, CYP2B, and CYP3A and the in vitro and ex vivo induction responses elicited by the 

prototypical human CYP inducers BNF, PB and RIF (at a single concentration) were more 

similar to the response reported for human than rat.  The present study expands on our 

previous studies by determining the temporal kinetics and concentration-response 

relationship for the induction of CYP1A, CYP2B and CYP3A mRNA and enzyme activity 

following treatment of cultured dog hepatocytes with the prototypical inducers BNF, PB and 

RIF.  The purpose of this work is to provide further insight into the similarities and 

differences in dog and human CYP regulation. 
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MATERIALS AND METHODS 

Chemicals and Reagents 

Dulbecco’s modified Eagle’s medium and fetal bovine serum were purchased from 

Cambrex Bioscience (Walkersville, MD).  Insulin, GlutaMAX-1 (dipeptide L-alanyl-L-

glutamine 200 mM supplied in 0.85% NaCl), penicillin-streptomycin, SuperScript II, 

Reverse Transcriptase and TRIZOL
® Reagent were purchased from Invitrogen (Carlsbad, CA). 

Biocoat® plates, Matrigel and ITS+ (insulin, transferrin, selenium) were purchased from BD 

Biosciences (Bedford, MA).  Collagenase (type I), cortexolone, dexamethasone, DMSO, fetal 

bovine serum, EGTA, D-(+)-glucose, glucose 6-phosphate, glucose-6-phosphate 

dehydrogenase, L-glutamine, NADP,  -naphthoflavone, Percoll®, phenobarbital, 7-

Ethoxyresorufin, 7-benzyloxyresorufin, resorufin, testosterone, thymidine, and trypan blue 

were purchased from Sigma-Aldrich (St. Louis, MO). Bicinchoninic acid protein assay 

reagents were purchased as a kit from Pierce Chemical Co. (Rockford, IL).  6 -

Hydroxytestosterone was purchased from Steraloids, Inc. (Wilton, NH).  Genomic DNA and 

solvents were purchased from EMD Biosciences (Darmstadt, Germany).  RNeasy® 96 RNA 

extraction kit was purchased from Qiagen (Valencia, CA).  TaqMan® primers and probes 

were purchased from Biosource International (Camarillo CA).   qPCR MasterMix Plus® was 

purchased from Eurogentec (SanDiego, CA).  DNase was purchased from Ambion Inc. 

(Austin, TX).  Ribogreen RNA quantitation kit was purchased from Molecular Probes 

(Eugene, OR). 

Hepatocyte Isolation and Culture 

Male beagle dogs (GSK, RTP North Carolina) were euthanized and the livers were 

perfused by a modification of the previously described collagenase digestion method (Seglen, 
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1976; Seglen et al., 1980; LeCluyse et al., 1996; Madan et al., 1999).  Hepatocytes were 

maintained in culture for 48 hr before treatment with CYP inducers.  After the adaptation 

period, medium was replaced with 3 mL of Dulbecco’s modified Eagle’s medium (DMEM) 

containing vehicle or the inducer.  For temporal kinetic studies hepatocytes (n=1 dog) were 

cultured in 60-mm Biocoat® dishes and treated daily for up to 72 hr with vehicle (0.1% 

DMSO), BNF (50 µM), PB (1000 µM) or RIF (10 µM).  At the end of the treatment period, a 

single 60-mm Biocoat  dish per treatment group was harvested at t=0, 1.5, 3, 6, 12, 18, 24, 

36, 48 and 72 hr for mRNA or microsomal protein analysis.  Samples at each timepoint were 

tested in duplicate.  For concentration response studies, hepatocyte cultures (n=3 dogs) were 

treated daily for 3 consecutive days with vehicle (0.1% DMSO), BNF (0.1-100 µM), PB (10-

2000 µM), or Rif (0.1-50 µM).  At the end of the treatment period, hepatocytes were 

harvested, and microsomes were prepared from three 60-mm Biocoat® dishes per treatment 

group at t=72 hr, as described previously (Madan et al., 1999).  The microsomal samples 

were stored at -70°C for later analysis of CYP activities.  The protein concentration in 

microsomal samples was determined with a BCA Protein Assay Kit, according to Technical 

Bulletin 23225X from Pierce Chemical Co. (Smith et al., 1985).  Samples were tested in 

duplicate in all enzymatic activity assays. 

Enzymatic assays 

Microsomal samples were analyzed to determine EROD (CYP1A1/2), BROD 

(CYP2B11) and testosterone 6β-hydroxylase (CYP3A12) activities with modifications of 

previously described methods (Burke and Mayer, 1974; Sonderfan et al., 1987; Klekotka and 

Halpert, 1995).  Studies were conducted to demonstrate that metabolite formation was 

proportional to incubation time and microsomal protein concentration (data not shown).  
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Incubations were performed in duplicate in 96-deepwell plates on an Eppendorf Shaker 

(37°C/900 rpm) by a Tecan Genesis 150 automated liquid handling instrument.  Incubation 

mixtures (total volume = 250 µL) consisted of 25 µL dog liver microsomes (0.2 mg/mL final 

concentration), 200 µL substrate mix [potassium phosphate buffer (100 mM), EDTA (1.2 

mM), MgCl2 (3.2 mM) and 7-ethoxyresorufin (10 µM), 7-benzyloxyresorufin (10 µM) or 

testosterone (250 µM)].  Reactions were started with 25 µL of an NADPH-generating system 

(glucose-6-phosphate [5 mM], glucose-6-phosphate dehydrogenase [1 unit/mL] and NADP 

[1 mM]).  After 20 minutes, samples containing 7-ethoxy- or 7-benzyloxyresorufin were 

quenched with 250 µL chilled acetone.  After 30 minutes, samples containing testosterone 

were quenched with 500 µL chilled acetonitrile.  Samples were centrifuged for 15 minutes at 

3400 rpm (~2500 g) and transferred to a 96-well plate for analysis by fluorescence (535 

excitation/595 emission) (EROD and BROD) or a 96-deepwell plate for LC/MS/MS analysis 

(testosterone 6β-hydroxylation).  Eight-point standard curves containing resorufin (0 to 1250 

pmol) or 6β-hydroxytestosterone (0 to 5000 pmol) were treated in the same manner as 

experimental samples.  All samples fell within the range of the standard curve for each assay. 

EC50 Modeling 

Concentration-effect profiles were generated for induction of CYP1A, CYP2B and 

CYP3A by BNF, PB, and RIF.  Catalytic activities were converted to percentage of 

maximum effect (E(%)) according to equation 1 where Eobs is the observed activity, E0 is the 

baseline activity, and Emax is the maximum activity achieved (Faucette et al., 2004).  The 

relationship between E(%) for enzyme activity and inducer concentration (C) was fit with a 

standard Hill equation where 100% was substituted for Emax by nonlinear least-squares 
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regression (WinNonlin, Version 3.1) to recover estimates of the EC50 and sigmoidicity factor 

(γ) for each concentration-effect profile (equation 2). 

  

 

LC/MS/MS Analysis 

 The supernatant from the acetonitrile precipitation of incubations was analyzed for 

the presence of 6 -hydroxytestosterone and cortexolone (IS) by a LC-MS/MS method.  

Chromatographic separations were carried out using a Cohesive Technologies TX-2 HTLC 

system.  A 10  l aliquot of incubate was injected onto a 50 x 0.5 mm I.D., 60  m Cyclone 

column (Cohesive Technologies).  Samples were cleaned for 30 s at 2.0 ml/min with 9 mM 

acetic acid.  Samples were then back-flushed off the cleanup column onto the 50 x 2.0 mm 

I.D., 3.0  m YMC ODS-AQ analytical column (Waters).  The analytes were separated with a 

linear gradient, with mobile phase changing from 5% to 35% acetonitrile in 3.0 min and then 

rising linearly to 95% acetonitrile in 1.0 min.  Total run time was 9.7 min. Mass 

spectrometric analyses were performed using an Applied Biosystems API 3000 triple 

quadrupole mass spectrometer equipped with a TurboIonspray interface operated in the 

positive ionization mode.  The elution of 6 -hydroxytestosterone and cortexolone was 

monitored by multiple reaction monitoring (MRM) for the transition of precursor-to-product 

ions at m/z 305.1  269.1 and 347.0  269.3, respectively. 
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RNA analysis 

Total RNA was extracted from hepatocytes by column extraction using a Qiagen 

RNeasy® 96 RNA extraction kit (Qiagen, Valencia, CA).  Following extraction, samples 

were DNase treated and quantified using a Ribogreen® RNA quantitation kit (Molecular 

Probes, Eugene, OR), and cDNA was synthesized using Superscript II™ RNase H-reverse 

transcriptase (Invitrogen, Carlsbad, CA).  The resultant cDNA template was used to quantify 

the number of copies of mRNA for selected CYP genes using an ABI 7900 Sequence 

Detection System.  TaqMan primer and probe sequences are shown in Table 3.1.  Serially 

diluted dog genomic DNA was used as a standard for determining the relative copy number 

of each isoform.  Resulting copy numbers were normalized to the total RNA concentration, 

and the fold change of treated samples compared to vehicle control treated samples was 

calculated.  DNase-treated samples that were not reverse transcribed were also included to 

ensure complete removal of any contaminating genomic DNA. 
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RESULTS 

Dog Hepatocyte Culture Morphology 

Male beagle dog hepatocytes were cultured for 48 hr following isolation with a once 

daily change of medium (Figure 3.1).  Trypan blue viability of the final suspension of 

hepatocytes was ~90% for all hepatocyte preparations.  Three hours following plating of 

hepatocytes (Matrigel® overlay performed), approximately 75% confluency was observed, 

consisting of mostly small, round hepatocytes (Figure 3.1A).  At 6 hr after plating, some of 

the cells appeared to spread and take on a cuboidal shape (Figure 3.1B), continuing 

progressively for ~48 hr at which point the monolayer was 100% confluent (Figure 3.1F).  

After the initial 48 hr adaptation period, hepatocyte cultures were treated with solvent control 

(0.1% DMSO) or prototypical inducers for an additional 72 hr (Figure 3.1G-I).  Up to 72 hr 

after the initiation of treatment, cell morphology did not appear to change to an appreciable 

extent. 

Temporal Kinetics for Induction of CYP1A, CYP2B and 3A mRNA and Enzyme 

Activities 

Following 48 hr of acclimation to the culture conditions, dog hepatocytes were 

treated for 72 hr with 0.1% DMSO, 50 µM BNF, 1 mM PB or 10 µM RIF.  Under control 

conditions CYP mRNA levels increased over the initial 6 hrs after 0.1% DMSO treatment 

followed by a decline between 6 and 12 hr (most dramatic for CYP2B11) after which levels 

increased slightly through 72 hr (Figure 3.2A).  The induction of CYP mRNA in dog 

hepatocyte cultures over time following treatment with BNF, PB or RIF is shown in Figure 

3.2 (B-F).  CYP1A1 and CYP1A2 mRNA increased (12,700-fold and 206-fold, respectively) 

over 36 hr following treatment with BNF.  There was a decrease in CYP1A1 and CYP1A2 
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mRNA expression between 18 and 24 hr after treatment followed by a sharp spike between 

24 and 36 hr.  CYP1A1 and CYP1A2 mRNA levels were maximally induced after 36 hrs of 

treatment and decreased between 36 and 72 hr.  Microsomal EROD activity remained 

unchanged over the initial 12 hr after BNF treatment and increased between 12 and 72 hr 

(Figure 3.2B and C).  Maximal expression of CYP1A activity was observed after 72 hrs of 

BNF treatment. 

PB treatment increased CYP2B11 mRNA levels (up to 149-fold) over the initial 48 hr 

of treatment followed by a decline in mRNA expression between 48 and 72 hr.  Microsomal 

BROD activity remained unchanged up to 12 hr after PB treatment and increased between 12 

and 72 hr. By contrast, CYP2B11 mRNA and BROD activity were unchanged over the 72 hr 

treatment period with RIF (Figure 3.2D). 

CYP3A12 and CYP3A26 mRNA levels increased maximally over 72 hr of treatment 

with PB and RIF (CYP3A12, 35-fold and 18-fold; CYP3A26, 72-fold and 22-fold, 

respectively).  CYP3A12 and CYP3A26 mRNA levels appeared to level off between 24 and 

36 hr following treatment with PB or RIF followed by a sharp increase between 36 and 48 hr.  

After 72 hr of PB treatment, CYP3A26 mRNA expression was 2-fold greater than CYP3A12 

expression, whereas RIF treatment increased CYP3A12 and CYP3A26 expression to the 

same extent.  An increase in microsomal testosterone 6 -hydroxylation was observed as 

early as 3 hr after treatment with PB and RIF and continued to increase over the 72 treatment 

period (Figure 3.2E and F).  Enzyme induction kinetics resembled CYP3A12 (and 

incidentally, CYP3A26) mRNA kinetics following treatment with PB and RIF (Figure 3.2E).  

The rate of testosterone 6 -hydroxylation was approximately 2-fold higher with PB 

treatment than with RIF treatment. 
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Concentration-Response Relationship for CYP1A1/2, CYP2B11 and CYP3A12 

Induction 

Microsomal CYP1A1/2, CYP2B11 and CYP3A12 specific activities were determined 

from dog hepatocyte cultures (n=3) following 72 hr treatment with BNF, PB or RIF via 

EROD, BROD and testosterone 6 -hydroxylation.  As shown in Figure 3.3A, CYP1A 

control activities (0.1% DMSO) were similar for the three separate preparations of dog 

hepatocytes; however BNF-induced EROD activities varied (up to 6.5-fold at Emax) between 

animals (dog 2>3>1).  However, a concentration-dependent response was observed between 

0.1 and 100  M for all three hepatocyte preparations.  An EC50 of 7.8   4.2 µM was 

calculated from the converted data (equation 1) for BNF induction of CYP1A. 

Similar to CYP1A activities, CYP2B11 control activities were in good agreement 

across hepatocyte preparations; however, PB-induced CYP2B11 activities were variable (up 

to 2.2-fold at Emax) (Figure 3.4A).  The rank order for rate of BROD following PB treatment 

was dog 2>3>1.  The EC50 for PB induction of CYP2B11 was estimated to be 123   30 µM 

(Figure 3.4B).  In contrast to PB treatment, RIF treatment failed to induce CYP2B11 activity 

to an appreciable extent, and no EC50 value was obtainable (Figure 3.4A inset). 

The rank order of the hepatocyte preparations for PB and RIF induction of CYP3A 

was different than observed for CYP1A induction by BNF and CYP2B induction by PB (dog 

2>1>3, Figure 3.5A and 5C, respectively).  The EC50 for PB induction of CYP3A12 was 132 

  28 µM (Figure 3.5B).  The EC50 for RIF induction of CYP3A12 was 0.98   0.16 µM 

(Figure 3.5D).  Treatment of dog hepatocytes with either PB or RIF resulted in an increase in 

microsomal testosterone 6 -hydroxylation, however PB treatment resulted in a larger 

increase (Emax) than RIF treatment. 
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Experimental Design Limitations 

The concentration range of enzyme inducers was chosen based on concentration 

response profiles in other species reported in the literature.  Following evaluation of 

concentration response data from the first preparation of dog hepatocytes, the concentration 

range of PB and RIF were adjusted to include additional concentrations near or below the 

apparent EC50. Therefore 10 µM PB was only used for dogs 2 and 3 cultures and 25 and 50 

µM PB only for dog 3 cultures.  Hepatocytes from dogs 2 and 3, but not dog 1 were treated 

with 0.1 and 0.5 µM RIF. 



 88

DISCUSSION 

Beagle dogs (and associated pre-clinical models) are widely used in the 

pharmaceutical industry during drug discovery and development.  While much is known 

about the regulation of drug metabolizing enzymes in other model species (e.g., rat, mouse) 

little information is available on the regulation of dog drug metabolizing enzymes.  The 

purpose of the present study was two-fold: (1) to examine the temporal kinetics of CYP1A1, 

CYP1A2, CYP2B11, CYP3A12 and CYP3A26 mRNA induction and enzyme activity in 

cultured dog hepatocytes and (2) to determine a concentration-relationship of dog 

microsomal CYP1A1/2, CYP2B11 and CYP3A12 enzyme induction following treatment of 

hepatocyte cultures with BNF, PB and RIF. 

Previously we described the morphology of cultured dog hepatocytes as resembling 

human more than rat.  This observation was based on the tendency of dog hepatocytes to 

slowly form confluent monolayers over the course of a 5-day culture period (Graham et al., 

2002).  In the present study we show a representative time course to attain hepatocyte 

monolayer confluency in cultured dog hepatocytes (Figure 3.1).  While bile canaliculi seem 

to be apparent as early as 24 hr after plating, this observation has not been tested.  Few 

descriptions of dog hepatocyte morphology exist in the literature.  Foxworthy et al. noted that 

dog hepatocytes are smaller in size (thereby requiring higher cell seeding density) than rat or 

monkey and that dog hepatocytes required 20% FCS for optimal attachment in culture 

(Foxworthy et al., 1990).  In contrast to these observations, we found that a similar seeding 

density to rat or human hepatocytes and addition of 5% FBS to the seeding media was 

adequate for culture of dog hepatocytes.  These differences are likely related to differences in 

perfusion buffers and isolation techniques between the two laboratories. 
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It is generally considered appropriate to evaluate CYP induction after 48-72 hr of 

drug treatment in cultured hepatocytes from rat and human liver; however detailed 

investigations into the temporal kinetics of mRNA expression and enzyme activity have not 

been reported previously for cultured dog hepatocytes.  Likewise, several reports exist that 

show prototypical human CYP inducers also induce in the dog, however, concentration 

response relationships for these effects have not been compared.  For example, PB induces 

both rat and human CYP2B enzymes, although the concentration response profile in the two 

species are dramatically different, suggesting differences in the regulation of rat and human 

CYP2B expression (LeCluyse et al., 1999; Faucette et al., 2004). 

In our studies of CYP mRNA induction kinetics, several key observations were made 

during the time course of measurement.  Between 1.5 and 6 hr after treatment of dog 

hepatocyte cultures with solvent control (0.1% DMSO), there was an increase in CYP1A1, 

CYP1A2, CYP2B11, CYP3A12 and CYP3A26 mRNA levels, followed by a marked 

decrease between 6 and 12 hr.  From 12-72 hr after 0.1% DMSO treatment, an apparent 

steady state was achieved for all isozymes, although there was a slight trend toward 

increasing mRNA expression (most notably for CYP3A12 and CYP3A26).  This effect might 

be attributed to the presence of 100 nM dexamethasone in the culture medium, since 

dexamethasone has been shown to induce human CYP3A4, albeit at higher concentrations, 

e.g., 2 µM and above (McCune et al., 2000).  Following BNF treatment, there was a decrease 

in CYP1A1 and CYP1A2 mRNA expression between 18 and 24 hr, followed by a marked 

increase after the second BNF treatment at 24 hr (Figure 3.2 B and C).  The decrease in 

CYP1A mRNA before the second BNF treatment might be attributed to the metabolism of 

BNF in the hepatocyte culture.  It has been reported that the terminal half-life for BNF 
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disposition in the rat is 40 min (Adedoyin et al., 1993).  In addition, these authors report that 

BNF clearance in the rat was time dependent, presumably due to induction CYP1A enzymes. 

Interestingly, CYP1A enzyme induction first occurs at 18 hr (4-fold), the time point at which 

CYP1A mRNA levels begin to decline.  Following treatment with BNF or PB, increases in 

CYP1A1, CYP1A2 and CYP2B11 mRNA were apparent after only 1.5-3 hr, whereas 

increases in CYP1A and CYP2B enzyme activity were not apparent until 12 hr after 

treatment (Figure 3.2B-D).  In contrast, following treatment with PB or RIF, an increase in 

CYP3A enzyme activity was apparent after only 3 hr, an effect that might be attributed to 

isozyme differences in protein synthesis rates (Figure 3.2E and F).  Further investigation 

would be required to fully characterize these differences in induction kinetics.  Maximal 

induction of CYP1A1, CYP1A2, CYP2B11, CYP3A12 and CYP3A26 occur approximately 

48 hr after inducer treatment, suggesting that 48 hr is an appropriate endpoint to evaluate 

mRNA induction.  On the other hand, enzyme activity continued to increase 72 hr after 

inducer treatment for all isozymes evaluated, indicating that an endpoint of 72 hr (or longer) 

would be appropriate. 

We have shown that the concentration response relationship for CYP1A induction by 

BNF is similar across species.  For example the EC50 for induction of rat CYP1A by BNF 

was reported to be 1.5 µM (Madan et al., 1999), whereas we determined the EC50 for 

induction of dog CYP1A by BNF to be 7.8 µM.  Furthermore, using cultured human 

hepatocytes we determined the EC50 for induction of CYP1A by BNF to be 4.2 µM (data not 

shown), similar to the EC50 value of 4.0 µM reported by Smith et. al (Smith et al., 2005).  

These results suggest that regulation of CYP1A might be better conserved across species 

compared to that of CYP2B and CYP3A. 
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Treatment of dog hepatocytes with PB resulted in a marked induction of dog 

CYP2B11 mRNA expression and microsomal BROD activity.  The concentration response 

relationship for PB induction of dog CYP2B11 was similar to induction of human CYP2B6 

by PB (Faucette et al., 2004) but an order of magnitude different than induction of rat 

CYP2B1/2 by PB (LeCluyse et al., 1999).  Interestingly, up to 25 µM RIF treatment, which 

causes marked induction of CYP2B6 in primary human hepatocytes, did not cause an 

increase in dog CYP2B11 mRNA expression or enzymatic activity.  This is the first report 

highlighting a major species difference in CYP2B induction between dog and human, 

although lack of CYP2B11 induction by RIF has been observed by other investigators.  

Nishibe et. al., reported that treatment of dogs with RIF resulted in a slight increase (~1.4-

fold) in microsomal testosterone 16 -hydroxylation (a marker of CYP2B11 and CYP2C21), 

an effect that is substantially lower than what has been shown in human hepatocytes treated 

with RIF (Nishibe et al., 1998).  In our previous report on induction of dog CYP by 

prototypical inducers, we also observed a lack of CYP2B11 induction (in vitro and ex vivo) 

by RIF as measured by BROD and Western blot analysis (Graham et al., 2002).  This species 

difference suggests that there are fundamental differences in the regulation of CYP2B11 by 

activators of the nuclear receptor PXR (e.g., RIF) as compared to activators of CAR (e.g., 

PB).  As a result, our studies indicate that dog hepatocytes may not be a surrogate to predict 

human CYP2B induction by PXR activators. 

The concentration response relationships for CYP3A12 induction by PB was similar 

to that observed for induction of CYP3A4 by PB (Faucette et al., 2004).  While the rat 

CYP3A concentration response relationship by PB is somewhat higher compared to human, 

(rat EC50=500 µM, human EC50=142 µM), the dog EC50 was determined to be nearly identical 

to human (132 µM).  By contrast, Table 3.2 shows that the EC50 values for CYP3A induction 
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by PXR activators RIF and DEX are similar; however, it’s difficult to make a concentration 

response comparison across species since RIF does not induce rat CYP3A to an appreciable 

extent.  However, we have shown that dog CYP3A12 does respond to RIF and that the 

concentration response relationship is similar to human.  

It should be noted that while PB and RIF both induced dog CYP3A mRNA 

expression and enzymatic activity the magnitude of the maximum response was greater in 

each case (n=3) with PB treatment.  Interestingly, we have shown previously that RIF is 

more efficacious than PB at inducing dog CYP3A12 in ex vivo studies (Graham et al., 2002).  

Previous reports would suggest that PB and RIF treatment cause approximately equivalent 

maximal induction of CYP3A4 in cultures of human hepatocytes (Raucy, 2003).  For 

example, Hariparsad et. al. treated 3 separate cultures of human hepatocytes with 10 µM RIF 

or 2 mM PB and found that in 1 of the 3 cultures CYP3A4 activity was approximately equal.  

In a second culture, the PB response was about 20% less than the RIF response and in the 

third culture the RIF response was about 20% less than the PB response (Hariparsad et al., 

2004).  Taken together these observations suggest that there are several possibilities for the 

larger increase in CYP3A induction by PB over RIF in dog hepatocyte cultures.  First, there 

could be a difference in nuclear receptor binding to and activation of response elements 

controlling dog and human CYP3A induction.  Second, as RIF has been shown to be a 

substrate for OATP-C (SLC1B1) and OATP8 (SLC1B3) there could be differences in the 

affinity for the corresponding dog uptake transporters, or the expression of the transporter 

could vary in cultured dog and human hepatocytes (Vavricka et al., 2002).  Finally, 

differences could be attributed to differences in metabolism of PB and RIF in cultures of dog 

and human hepatocytes.  Each of these possibilities requires further investigation. 
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In summary, induction of dog CYP1A, CYP2B and CYP3A by prototypical inducers 

seems to be more similar to human than rodent.  However, important species differences do 

exist, e.g., lack of CYP2B11 induction by RIF.  Results of this study suggest that caution 

should be excercised when using primary cultures of dog hepatocytes to predict human CYP 

induction. 
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Table 3.1 Sequences of primers and probes used in the TaqMan assay. Each probe was synthesized with 5’-FAM and 3’-
TAMRA. GAPDH was used to monitor the integrity of the mRNA and the efficiency of the cDNA synthesis.  Data were not 
normalized to GAPDH. 

mRNA Forward Primer Probe Reverse Primer Accession 
Number 

CYP1A1 CCCTCTGGCACACTAAATTCCA 
 

AGGATGGCCAGAAAGAGAAAGACCTCCA 
 

GAAGTGCATCGGTGAGACCAT 
 

 
(AACN010067442 

& 
AACN010089968) 

 
CYP1A2 CGGCCAGAGCGATTCCT 

 
ACTGCAGATGGCACCGCCATCA 

 
AGCATCACCTTCTCACTCAAGGT 

 
 

(AACN010103563-
AACN010517076) 

 
CYP2B11 CTACAGTGATTGTGTTTTACAGACGAGTA 

 
CAAAGGCCAGGCACTGGCATCA 

 
TCCACTCCCAGCCATATGATC 

 
NM_001006652 

and  M92447 
 

CYP3A12 GGACTTCCTTTTGTTCTTCAAGAAA 
 

CTATCCCAGAACACCAGAGACCTCAATTTCCT CCTACATGAGTGAAACCACATAATCAA 
 

X54915 
 

CYP3A26 AACACAGATCTCCCTGAGAATAAATACTCG 
 

AGGGATTATTCAACCTGAAAAACCCGTTGTTC CACTCCCATCTCTTGGCTCAA AF547269 
 

GAPDH CGACATCAAGAAGGTAGTGAAGCA 
 

AGTGGGTGTCACTGTTGAAGTCA 
 

TCAAAGGCATCCTGGGCTACACTGAGG 
 

AB004358 
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Table 3.2 EC50 species comparisons. Rat and human EC50 values derived from cultured hepatocytes were obtained from the 
literature A(Madan et al., 1999), B(Courtois et al., 2002), CGraham, unpublished, D(Faucette et al., 2004). 
 

 
 

CYP Marker Activity Inducer Rat EC50 Dog EC50 Human EC50 
1A EROD BNF 1.5 µMA 7.8 µM 4.2 µMC 
2B PROD/BROD/Bupropion-hydroxylation PB 10 µMA 123 µM 238 µMD 

PB 500 µMB 132 µM 142 µMD 3A Testosterone 6 -hydroxylation 
Dex/Rif 1.3 µMA 0.98 µM 0.37 µMD 
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Figure 3.1 Photomicrograph of cultured dog hepatocytes.  Dog hepatocytes were plated and photographed at t=3 hr (A), t=6 hr 
(B), t=12 hr (C), t=18 hr (D) t=24 hr (E), and t=48 hr (F).  Following 48 hr of culture, cells were treated with inducer for an additional 
72 hr.  (G) 0.1% DMSO treatment, t=24 hr post dosing, (H) 0.1% DMSO treatment, t=48 hr post dosing, (I) 0.1% DMSO treatment, 
t=72 hr post dosing.
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Figure 3.2 Temporal kinetics of mRNA induction and enzymatic activity. After 2 days of adaptation, hepatocytes were harvested 
0, 1.5, 3, 6, 12, 18, 24, 36, 48 and 72 hr after treatment for mRNA expression and 0, 3, 6, 12, 18, 24, 36, 48 and 72 after treatment for 
evaluation of enzyme activity. (A) CYP1A1, CYP1A2, CYP2B11, CYP3A12 and CYP3A26 mRNA expression over time following 
treatment with 0.1% DMSO. (B) Time dependent CYP1A1 mRNA expression and enzymatic activity with 50 µM BNF treatment. (C) 
Time dependent CYP1A2 mRNA expression and enzymatic activity with 50 µM BNF treatment. (D) Time dependent CYP2B11 
mRNA expression and enzymatic activity with 1mM PB or 20 µM RIF treatment. (E) Time dependent CYP3A12 mRNA expression 
and enzymatic activity with 1mM PB or 20 µM RIF treatment. (F) Time dependent CYP3A26 mRNA expression with 1mM PB or 20 
µM RIF treatment. 
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Figure 3.3 Concentration response relationship for induction of beagle dog 
microsomal EROD activity following treatment of cultured hepatocytes with 50 µM BNF 
for 72 hr.  (A) 7-ethoxyresorufin O-dealkylation (CYP1A1/2) (B) Normalized 
concentration response relationship for CYP1A induction by BNF. 
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Figure 3.4 Concentration response relationship for induction of beagle dog 
microsomal BROD activity following treatment of cultured hepatocytes with 1mM PB or 
20 µM RIF (inset) for 72 hr.  (A) 7-benzyloxyresorufin O-dealkylation (CYP2B11) (B) 
Normalized concentration response relationship for CYP2B induction by PB. 
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Figure 3.5 Concentration response relationship for induction of beagle dog 
microsomal testosterone 6 -hydroxylation following treatment of cultured hepatocytes 
with 1 mM PB or 20 µM RIF for 72 hr.  (A and C) testosterone 6 -hydroxylation 
(CYP3A12) (B and D) Normalized concentration response relationship for CYP3A 
induction by PB and RIF. 
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ABSTRACT 

 In addition to its function as a fatty acid hydroxylase the peroxisome proliferator-

activated receptor   (PPAR ) target gene, CYP4A, has been shown to be important in 

conversion of arachidonic acid to the potent vasoconstrictor 20-hydroxyeicosatetraenoic acid 

(20-HETE), suggesting a role for this enzyme in mediating vascular tone.  In the present 

study the cDNA sequence of beagle dog CYP4A37, CYP4A38 and CYP4A39 from liver was 

determined.  Open reading frame analysis predicted that CYP4A37, CYP4A38 and 

CYP4A39 are each comprised of 510 amino acids with ~90% sequence homology, and ~71% 

and ~78% homology to rat CYP4A1 and human CYP4A11, respectively.  PCR analysis 

revealed that the three dog CYP4A isoforms are expressed in 

kidney>liver>>lung>>intestine>skeletal muscle>heart.  Treatment of primary dog 

hepatocytes with the PPAR  agonists GW7647X and clofibric acid resulted in an increase in 

CYP4A37, CYP4A38 and CYP4A39 mRNA expression (up to 4-fold), whereas HMG-CoA 

synthase mRNA expression was increased to a greater extent (up to 10-fold).  These results 

suggest that dog CYP4A37, CYP4A38 and CYP4A39 are expressed in a tissue dependent 

manner and that beagle dog CYP4A is not highly inducible by PPAR  agonists, similar to 

the human CYP4A11 gene. 
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INTRODUCTION 

Fatty acids are vital nutrients for the growth and development of all organisms. In 

addition to providing substrates for membrane synthesis and energy metabolism they are also 

components of multiple signaling cascades and directly regulate gene transcription through 

their activities on transcription factors such as peroxisome proliferator-activated receptor   

(PPAR ).  CYP4A enzymes are fatty acid hydroxylases that are expressed in most 

mammalian tissues and highly expressed in kidney, liver and lung.  These enzymes are 

selective for the  -hydroxylation of saturated and unsaturated fatty acids (Hardwick et al., 

1987; Kimura et al., 1989b; Stromstedt et al., 1990; Wang et al., 1996; Helvig et al., 1998; 

Nguyen et al., 1999; Hoch and Ortiz De Montellano, 2001), however, CYP4A lacks known 

roles in drug metabolism (Cowart et al., 2002; Johnson et al., 2002).  Although fatty acids 

represent the primary substrates for CYP4A enzymes it has also been shown that these 

enzymes can metabolize non-fatty acid substrates such as the potent vasodilator 20-

hydroxyeicosatetraenoic acid (20-HETE) (Harder et al., 1995; Okita and Okita, 2001).  It was 

recently shown that inhibition of CYP  -hydroxylase results in a reduction in infarct size in a 

dog model for cardiac injury (Nithipatikom et al., 2004; Nithipatikom et al., 2006) suggesting 

that CYP4A has a detrimental role in enhancing myocardial injury in canine heart. 

Across species, CYP4A is primarily expressed in liver and kidney, with lower 

expression levels in other tissues. CYP4A1, CYP4A2 and CYP4A3 mRNAs are 

constitutively expressed in rat liver (Kimura et al., 1989b).  In the male rat kidney, CYP4A1 

and CYP4A3 mRNAs are expressed at low levels, whereas CYP4A2 mRNA levels were 

found to be similar to those of maximally induced CYP4A2 mRNA levels in the liver 

(Kimura et al., 1989b).  CYP4A protein was not detected by immunoblot analysis in rat small 
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intestine (Patel et al., 1998) and was relatively low in rat brain, heart and lung (Zhang et al., 

2002).  Expression of CY4A11 mRNA in human tissues has been reported using real time 

PCR.  CYP4A11 was highly expressed in liver and kidney (liver to kidney ratio 2.4:1), 

whereas expression was relatively low (2-3 orders of magnitude less than liver) in small 

intestine, adrenal gland, lung, brain, prostate, testis, uterus and placenta (Nishimura et al., 

2003). 

 For many years it has been recognized that the transcriptional activity of the genes 

encoding various CYP4A subfamily members is dramatically increased by numerous 

structurally diverse xenochemicals, collectively referred to as peroxisome proliferators (PPs) 

(Okita and Okita, 2001).  In mouse (Bell et al., 1993), rat (Kimura et al., 1989b) and hamster 

(Choudhury et al., 2000) liver and kidney, CYP4A enzymes are induced by various PPAR  

activators including the fibrate class of lipid-lowering drugs.  It has been shown that in rat 

liver, CYP4A proteins represent 1-4% of total CYP, but increase to 16-30% following 

clofibrate administration (Sharma et al., 1989).  On the other hand, the CYP4A induction 

response is not observed in guinea pig (Bell et al., 1993) or in cultured human hepatocytes 

(Raucy et al., 2004) following treatment with PPs.  For example, while treatment of cultured 

rat hepatocytes with clofibrate elicited a large induction (14-fold) exposure of primary human 

hepatocytes to the same drug resulted in a modest induction of CYP4A11 mRNA (~2-fold) 

(Madan et al., 1999; Raucy et al., 2004). 

Beagle dog is a model species that is widely used in the pharmaceutical industry 

during the drug development process.  Previously we reported that clofibric acid 

administration to beagle dogs failed to induce dog liver CYP4A protein or microsomal lauric 

acid 12-hydroxylation, suggesting that CYP4A is not inducible in this species (Graham et al., 
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2002).  Results of our previous studies suggested that dog CYP4A might be regulated in a 

manner similar to CYP4A from other non-responsive species, such as human CYP4A11. 

 CYP4A enzymes have gained attention recently because they metabolize arachidonic 

acid to 20-HETE.  In fact, it has been suggested that targeting of CYPs in the heart and 

coronary circulation could be of therapeutic utility in coronary artery disease based in part on 

results from a dog model of cardiac injury (Doggrell, 2005).  Given the importance of 

various canine models in drug discovery efforts, it is important to characterize dog CYP4A 

isoform expression and regulation, yet little is known about the sequence homology and 

regulation of the individual dog CYP4A genes.  In the present study, we report on the cDNA 

cloning, tissue expression and regulation of dog CYP4A37, CYP4A38 and CYP4A39. 
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MATERIALS AND METHODS 

Chemicals and Reagents 

 Dulbecco’s modified Eagle’s medium and fetal bovine serum were purchased from 

Cambrex Bioscience (Walkersville, MD).  Insulin, GlutaMAX® (dipeptide L-alanyl-L-glutamine 

200 mM supplied in 0.85% NaCl), penicillin-streptomycin, NuPage® gels, polyvinylidene 

difluroide membranes and related electrophoresis reagents were purchased from Invitrogen 

(Carlsbad, CA).  ECL™ Western Blotting Analysis System was purchased from Amersham 

Biosciences (Buckinghamshire, England).  Biocoat® plates, Matrigel and ITS+ (insulin, 

transferrin, selenium) were purchased from BD Biosciences (Bedford, MA). Collagenase (type 

I), dexamethasone, DMSO, EGTA, D-(+)-glucose, L-glutamine, Percoll®, thymidine, and trypan 

blue were purchased from Sigma-Aldrich (St. Louis, MO).  Bicinchoninic acid protein assay 

reagents were purchased as a kit from Pierce Chemical Co. (Rockford, IL).  Oligonucleotides for 

cloning and sequencing were purchased from Sigma-Genosys (St. Louis, MO).  TaqMan® 

primers and probes and PCR master mix were purchased from Applied Biosystems (Foster City, 

CA).  Proteinase K and DNase were purchased from Qiagen Inc. (Valencia, CA).  Clofibric acid 

was obtained from ICN Biomedicals (Aurora, OH) and GW7647X was prepared in-house as 

previously described (Brown et al., 2001). 

PPAR  Transfection Assay 

Plasmids 

PCR primers containing KpnI and BamHI restriction sites were used to amplify 

PPAR  ligand binding domain (LBD) fragments from full-length human and dog clones.  

The LBD fragments were ligated into the multiple cloning site of pFA-CMV (Stratagene, La 



 111

Jolla, CA).  The resulting constructs (pFA-CMV-GAL4-hPPAR LBD and pFA-CMV-

GAL4-dogPPAR LBD) each carried a fusion of the LBD with the yeast-derived GAL4 

DNA-binding domain under the control of the CMV immediate early promoter.  The reporter 

construct UAS-tk-Luc carries a single 17 bp (5’-CGGAGTACTGTCCTCCG-3’) upstream 

activating sequence (UAS), the thymidine kinase (tk) minimal promoter, and the firefly 

luciferase gene. 

Cell-based luciferase assay 

African Green Monkey kidney cell line CV-1 (ATCC CCL-70) was maintained in 

Dulbecco’s Modified Eagle’s Medium (DMEM) containing 10% fetal bovine serum, 2mM 

glutamine, and 1% penicillin/streptomycin (pen/strep).  In preparation for luciferase assays, 

CV-1 cells were grown in charcoal-stripped cell medium containing DMEM/F-12 medium 

supplemented with 5% or 3% dextran-treated/charcoal-stripped (CS) fetal bovine serum, 

2mM glutamine, with or without 1% pen/strep, as described below.  CS fetal bovine serum 

was purchased from Hyclone; all other cell culture reagents were from Gibco. 

The luciferase protocol is a multi-day procedure.  On day 1, confluent cells in 

maintenance medium were subcultured 1:10 into T-175 cm2 flasks containing 50 mL of 3% 

CS medium with pen/strep.  These flasks were allowed to incubate at 5% CO2 and 37°C for 

72 hours. 

Cells were harvested by trypsinization and then transfected using FuGENE (Roche, 

Basel, Switzerland) according to the manufacturer’s specifications.  Briefly, each transfection 

contained 0.27 (PPAR ) or 0.55 (PPAR  and PPAR )  g pFA_CMV_GAL4_PPAR_LBD 

plasmid (human or dog), 10.9  g UAS-tk-Luc, and 24  g pBluescript (carrier DNA).  

Plasmid DNA was mixed with FuGENE in OptiMEM-1 (Invitrogen, Carlsbad, CA) medium 
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and incubated for 30 min at room temperature.  During this incubation, cells were harvested 

into 3% CS medium without pen-strep and dispensed at 14 million cells per T-175 cm2 flask.  

Transfection mixes were added to the flasks and incubated overnight at 5% CO2 and 37°C. 

Transfected cells were added to 384-well plates containing pharmacological agents. 

Stock solutions of test compounds were reconstituted in DMSO at a concentration of 1 mM.  

For 11-point dose-response experiments, the compounds were 3-fold serially diluted in 

DMSO and then transferred to 384-well assay plates (NUNC, catalog #164564) at 0.5 

 L/well using a Beckman FX.  DMSO and agonist control compound GI249820X (1 mM) 

were each transferred at 0.5  L/well to columns 23 and 24, respectively, of the 384-well 

plates.  Transfected cells were harvested in 5% CS medium with pen/strep and dispensed at 

10,000 cells/well (50  L) onto the prepared 384-well compound plates using a Titertek 

Multidrop.  Following overnight incubation at 5% CO2 and 37° C, Steady-Glo reagent 

(Promega, Madison, WI) was added to the assay plates using a Multidrop.  Plates were 

incubated for 10 min to ensure complete cell lysis and read in a ViewLux (PerkinElmer, 

Wellesley, MA). 

cDNA Cloning 

 Approximately 100 mg of frozen male beagle dog liver was ground to a fine 

powder using a mortar and pestle under liquid nitrogen. Total RNA was isolated using the 

Qiagen  RNeasy® Mini kit (Qiagen Inc., Valencia, CA).  RT-PCR was carried out in two 

steps using the Advantage™ RT-for PCR Kit followed by the BD Advantage™ 2 PCR Kit 

(BD Biosciences, Palo Alto, CA).  To determine whether a portion of the putative dog 

CYP4A cDNA could be amplified by PCR, oligonucleotides were designed based on the 

published human CYP4A11 cDNA sequence (Accession L04751) cloned from human 
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kidney.  Primer CYP4A-F1 (5’-CACCATGAGTGTCTCTGTGCTGAGCC-3’) was based on 

sequence approximately 100 bp from the 5’-end of the human CYP4A cDNA sequence while 

primer CYP4A-R1 (5’-CTCCTGAGACGCAGGTGGATTCCAT-3’) was approximately 

1600 bp from the 5’-end of the human CYP4A sequence, or about the midpoint of the 

complete transcript.  PCR was conducted using CYP4A-F1 and CYP4A-F2 primer pair 

described above and after agarose gel electrophoresis, a band of the expected size (~1.5 kb) 

was obtained.  The generated cDNA was gel purified using the QIAquick® gel extraction kit 

(Qiagen Inc., Valencia, CA).  Gel purified cDNA was subcloned using the TOPO TA 

cloning® kit for sequencing (Invitrogen, Carlsbad, CA).  cDNA isolated from subsequent 

clones using the QIAprep® 96 turbo miniprep kit (Qiagen Inc., Valencia, CA) and submitted 

for sequencing. 

The 5’-end of the dog CYP4A sequence determined using the GeneRacer™ kit from 

Invitrogen Corporation (Carlsbad, California), whereas determination of the 3’-end of the 

dog CYP4A sequence was accomplished using the SMART™ RACE cDNA Amplification 

Kit (BD Biosciences, Palo Alto, CA).  Gene specific primers were designed based on the 

internal sequencing information obtained from the 1.5 kb region described above.  

Sequencing of the 3’-RACE products revealed approximately 800 base pairs of untranslated 

sequence between the stop codon and the poly-A tail.  Sequencing of 5’-RACE products 

resulted in approximately 40 base pairs of untranslated sequence upstream of the open 

reading frame.  Sequence information from the 5’-RACE and 3’-RACE experiments as well 

as the open reading frame regions was assembled using Seqeuncher alignment software 

(version 4.0.5). 
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Hepatocyte Isolation and Culture 

Male beagle dogs (GSK, RTP North Carolina) were euthanized and the livers were 

perfused by a modification of the previously described collagenase digestion method (Seglen, 

1976; LeCluyse et al., 1996; Madan et al., 1999).  Dog hepatocytes were cultured as described 

previously (Graham, 2006, in press).  Hepatocytes (n=3 dog livers) were cultured in 6-well 

Biocoat® plates and treated daily for 48hr with vehicle (0.1% DMSO), GW7647X (0.01, 0.1, 1, 5 

and 10 µM), or clofibric acid (1, 10, 100, 500 and 1000 µM).  At the end of the treatment period, 

each treatment group was harvested for mRNA analysis.  Samples from each treatment group 

were tested in duplicate in subsequent TaqMan® assays. 

RNA Isolation and cDNA synthesis 

For absolute quantification experiments, total RNA was isolated from dog tissue by 

column extraction using a Qiagen RNeasy® Mini kit (Qiagen Inc., Valencia, CA).  RNA 

isolation from skeletal muscle and heart was accomplished using a proteinase K digestion 

step as recommended by the manufacturer.  Following RNA extraction, samples were DNase 

treated and quantified using a Ribogreen® RNA quantitation kit (Molecular Probes, Eugene, 

OR), and cDNA was synthesized using a cDNA Archive Kit (Applied Biosystems, Foster 

City, CA). 

For relative quantification experiments, total RNA was isolated from cultured dog 

hepatocytes using the Automated SV 96 Total RNA Isolation System (Promega, Madison, 

WI) and quantified using a Ribogreen® RNA quantitation kit (Molecular Probes, Eugene, 

OR), and cDNA was synthesized using a cDNA Archive Kit (Applied Biosystems, Foster 

City, CA). 
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Microsome Preparation and Western Blot 

 Microsomes were isolated from dog hepatocyte cultures followed by Western Blot 

analysis of CYP4A expression as described previously (Graham et al., 2002).  The protein 

concentration in the microsomal samples was determined with a BCA Protein Assay Kit, 

according to Technical Bulletin 23225X from Pierce Chemical Co. (Smith et al., 1985) 

(Wiechelman et al., 1988).  For Western blots, 10 µg of microsomal protein was loaded per well.  

The primary antibody was a human CYP4A anti-peptide antibody (Affinity Bioreagents, Golden, 

CO) at a dilution of 1:1000.  The secondary antibody was a peroxidase labeled anti-rabbit 

antibody included in the ECL™ Western Blotting Analysis System (Amersham Biosciences, 

Buckinghamshire, England) which was diluted 1:1000 in blocking buffer. 

TaqMan® Assays 

Custom TaqMan® gene expression assays were purchased from Applied Biosystems 

(Foster City, CA).  Briefly, a probe target site was identified at an exon-exon junction in the 

gene of interest and submitted to Applied Biosystems Global Assays by Design Department 

using File Builder software program.  Assays were supplied at 20  and consisted of primer 

(forward and reverse) and minor groove binder (MGM) probe.  Primer and probe sequences 

used in this study are listed in Table 4.1. 

Absolute quantification experiments were conducted to quantify the number of copies 

of mRNA for selected cytochrome target genes using an ABI 7500 Sequence Detection 

System (Applied Biosystems, Foster City, CA).  Plasmid DNA concentration was determined 

using a Quanti-iT™ PicoGreen dsDNA Assay Kit (Molecular Probes, Eugene, OR).  Five 

point standard curves were prepared from plasmid DNA for CYP4A37, CYP4A38 and 

CYP4A39 (30, 300, 3000, 30,000 and 300,000 copies).  The standard curve Ct values ranged 
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from 19 to 35.  For test samples, each reaction consisted of 100 ng cDNA, 2.5 µL 20X assay 

mix and 25 µL master mix in a total volume of 50 µL.  Standards and samples were 

evaluated in triplicate.  Thermocycling parameters were 50 C (2 min), 95 C (10 min), 

followed by 40 cycles of 95 C (15sec), 60 C (1 min). 

Relative quantification experiments were conducted to determine relative mRNA 

expression (treated versus control) of target genes using an ABI 7500 Sequence Detection 

System (Applied Biosystems, Foster City, CA).  For test samples, each reaction consisted of 

50 ng cDNA, 2.5 µL 20X assay mix and 25 µL master mix in a total volume of 50 µL.  

Target gene expression was normalized to the housekeeping gene cyclophilin.  Samples were 

evaluated in triplicate.  Thermocycling parameters were 50 C (2 min), 95 C (10 min), 

followed by 40 cycles of 95 C (15sec), 60 C (1 min). 

LC/MS Analysis 

GW7647X 

The media samples and supernatant from scraped cell homogenates were analyzed for 

the presence of GW7647X by a LC-MS/MS method.  Chromatographic separations were 

carried out using a Cohesive Technologies TX-2 HTLC system equipped with an 

autosampler, two quaternary pumps, two binary pumps and a valve module.  A 10  l aliquot 

of hepatocyte incubate was injected onto a 50 x 0.5 mm I.D., 60  m Cyclone column 

(Cohesive Technologies, Franklin, MA).  Samples were cleaned for 30 s at 2.0 ml/min with 

100% aqueous mobile phase (0.1% formic acid).  Samples were then back-flushed off the 

cleanup column onto the 30 x 2.1 mm I.D., 3.0  m Atlantis™ dC18 analytical column 

(Waters Corporation, Milford, MA) in 90 s at 0.1 ml/min with the 50% organic mobile phase 
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(50:50 acetonitrile / 0.1% formic acid).  The 0.1 ml/min flow was combined with a 0.4 

ml/min 95% 2.5 mM ammonium acetate, pH=5.5 / 5% acetonitrile flow from eluting pump 

and the analytes were re-focused on the analytical column.  After the transfer the analytical 

column was washed with 95% aqueous flow for 15 sec and then the analytes were eluted 

with a linear gradient from 5% to 95% organic in 45 s at 0.6 ml/min.  Total run time was 6.6 

min.  The temperature of the analytical column was maintained at 40 C.  The flow from 

analytical column was diverted to waste for the first 2.9 min, to MS detector for the next 1.2 

min, and to waste again for the remaining run time.  The make-up solvent (50:50 

acetonitrile/water) was infused into the MS source at 0.5 ml/min when the column effluent 

was diverted to waste.  The HPLC flow was split 50:50 before entering the source. 

Mass spectrometric analyses were performed using an Applied Biosystems API 3000 

triple quadrupole mass spectrometer equipped with a TurboIonspray interface operated in the 

positive ionization mode.  Nitrogen was used as both the sheath and drying gas at a pressure 

of 10 arbitrary units and a flow-rate 7 L/min, respectively.  The spray voltage was set at 5.5 

kV and the drying gas temperature was set at 425 C.  Declustering potential and focusing 

potential were optimized at 50 and 140 V, respectively.  The collision cell was filled with 

nitrogen at a pressure of 12 arbitrary units and the collision energy was set at 30 eV.  The 

elution of GW7647X was monitored by multiple reaction monitoring for the transition of 

precursor-to-product ions at m/z 503.2  378.4. 

Clofibric Acid 

The media samples and supernatant from scraped cell homogenates were analyzed for 

the presence of clofibric acid by a LC-MS/MS method.  Chromatographic separations were 

carried out using a Cohesive Technologies TX-2 HTLC system equipped with an 
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autosampler, two quaternary pumps, two binary pumps and a valve module.  A 10  l aliquot 

of hepatocyte incubate was injected onto a 50 x 0.5 mm I.D., 60  m Cyclone column 

(Cohesive Technologies).  Samples were cleaned for 30 s at 2.0 ml/min with 100% aqueous 

mobile phase (0.1% formic acid).  Samples were then back-flushed off the cleanup column 

onto the 30 x 2.1 mm I.D., 3.0  m Atlantis dC18 analytical column (Waters) in 90 s at 0.1 

ml/min with the 50% organic mobile phase (50:50 acetonitrile / 0.1% formic acid).  The 0.1 

ml/min flow was combined with a 0.4 ml/min 95% 0.025% formic acid / 5% acetonitrile 

flow from eluting pump and the analytes were re-focused on the analytical column.  After the 

transfer the analytical column was washed with 95% aqueous flow for 15 sec and then the 

analytes were eluted with a linear gradient from 5% to 95% organic in 45 s at 0.6 ml/min. 

Total run time was 6.6 min.  The temperature of the analytical column was maintained at 

40 C.  The flow from analytical column was diverted to waste for the first 2.9 min, to MS 

detector for the next 1.2 min, and to waste again for the remaining run time.  The make-up 

solvent (50:50 acetonitrile/water) was infused into the MS source at 0.5 ml/min when the 

column effluent was diverted to waste.  The HPLC flow was split 50:50 before entering the 

source. 

Mass spectrometric analyses were performed using an Applied Biosystems API 3000 

triple quadrupole mass spectrometer equipped with a TurboIonspray interface operated in the 

negative ionization mode.  Nitrogen was used as both the sheath and drying gas at a pressure 

of 10 arbitrary units and a flow-rate 7 L/min, respectively.  The spray voltage was set at -4.5 

kV and the drying gas temperature was set at 425 C.  Declustering potential and focusing 

potential were optimized at -40 and -130 V, respectively.  The collision cell was filled with 
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nitrogen at a pressure of 10 arbitrary units and the collision energy was set at -20 eV.  The 

elution of clofibric acid was monitored by multiple reaction monitoring for the transition of 

precursor-to-product ions at m/z 213.0  127.0. 

Statistical Analysis 

 To evaluate the statistical significance of differences between means, equal variance 

and normality tests were first conducted to determine whether the data were parametrically 

distributed.  For a parametrically distributed data set, a one-way repeated measures analysis 

of variance (ANOVA) was carried out to determine whether there were significant 

differences between the group means.  Statistically significant differences from the controls 

were identified by a Holm-Sidak post hoc test (p = 0.05 or 5% level of significance). 
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RESULTS 

Cloning of Dog CYP4A37, CYP4A38 and CYP4A39 

 Two primers (CYP4A-R1 and CYP4A-R2) were designed from the human 

CYP4A11 cDNA sequence (Accession number L04751) and used to amplify CYP4A from 

dog liver by RT-PCR.  5’- and 3’-RACE was utilized to determine the full-length cDNA 

sequence of dog CYP4A37, CYP4A38 and CYP4A39 (Figure 4.1-4.3).  The sequence of 

each isozyme was verified from multiple independent clones and has been submitted to 

GenBank with accession numbers DQ138950 (CYP4A37), DQ138951 (CYP4A38), and 

DQ138952 (CYP4A39).  The CYP4A37, CYP4A38 and CYP4A39 cDNA sequences are 

approximately 2,400-bp long and contain a 43, 53 and 40-nucleotide 5’-UTR, respectively, a 

1,515-bp open reading frame, and a 769, 763 and 876-bp 3’-UTR downstream from the TAA 

terminal codon. Each cDNA encodes a protein of 510 amino acids containing the CYP 

signature motif (FxxGxxxCxG) (444–453) which includes the invariant enzyme active site 

cysteine (Nelson et al., 1996).  The calculated molecular weight of dog CYP4A37, CYP4A38 

and CYP4A39 protein is ~59 kDa. 

Alignment of rat CYP4A1, dog CYP4A37, CYP4A38, CYP4A39 and human 

CYP4A11 amino acid sequences suggest a high degree of homology and conservation 

amongst isoforms (Figure 4.4). The deduced amino acid sequence of CYP4A37, CYP4A38 

and CYP4A39 share >90% identity to one another and are approximately 71% and 78% 

identical to rat CYP4A1 (Kimura et al., 1989a) and human CYP4A11 (Kawashima et al., 

2000), respectively (Table 4.2). 
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Tissue Expression of Dog CYP4A Isoforms 

Quantitation of CYP4A mRNA from dog tissues (n=3 dogs) using real time PCR 

indicated that CYP4A37, CYP4A38 and CYP4A39 are highly expressed in kidney and liver 

(Figure 4.5A).  CYP4A37, CYP4A38 and CYP4A39 mRNA was expressed to a similar 

extent in the liver, whereas kidney expression of CYP4A37 was higher than CYP4A38 and 

CYP4A39 (7.8-fold and 2.2-fold, respectively).  Expression of dog CYP4A37, CYP4A38 

and CYP4A39 mRNA was also notable in lung but was ~3% of liver expression.  In contrast, 

CYP4A expression was relatively low in the intestine, skeletal muscle and heart (Figure 

4.5B). 

Potency of PPAR  Agonists 

While clofibric acid is widely used as a tool to study PPAR  regulation, its potency is 

relatively weak against PPAR  compared to newer molecules.  For example GW7647X was 

shown to be a potent human PPAR  agonist with ~200-fold selectivity over PPAR  and 

PPAR  (Brown et al., 2001).  To evaluate the effect of GW7647X and clofibric acid on dog 

PPAR  activation (Figure 4.6), a transactivation assay using GAL4-PPAR  LBD was 

performed as described in Materials and Methods.  GW7647X was highly potent and 

efficacious against dog PPAR  (EC50=7.6 nM, maximum response=93% of agonist control), 

whereas clofibric acid showed little discernable activity against this receptor (EC50>10 µM, 

maximum response=14% of agonist control) (data not shown).  Similar results were obtained 

for activation of human PPAR  using GW7647X (EC50=6.5 nM, maximum response=90% 

of agonist control) and clofibric acid (EC50>10 µM, maximum response=13% of agonist 
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control).  Furthermore, we have shown that GW7647X demonstrates approximately 100 and 

4000-fold selectivity over PPAR  and PPAR   isoforms, respectively (data not shown)  

Induction of Dog CYP4A Isoforms 

To investigate whether dog CYP4A isoforms were inducible by PPAR  agonists, 

cultures of dog hepatocytes (n=3) were treated with GW7647X or clofibric acid, followed by 

real time PCR analysis of mRNA expression.  Treatment of dog hepatocytes with GW7647X 

(0.01-10 µM) or clofibric acid (1-1000 µM) resulted in a slight (up to 1.9-fold) but 

statistically significant induction of CYP4A37 and CYP4A38 at the highest concentrations 

tested (Figure 4.7A and B).  Notably, CYP4A39 was induced to the greatest extent (up to 4-

fold) compared with CYP4A37 and CYP4A38 and a concentration-dependent increase was 

observed between 0.1 and 10  M and 10 and 1000  M for GW7647X and clofibric acid, 

respectively (Figure 4.7C).  In contrast to the minor induction of dog CYP4A isoforms, the 

previously characterized PPAR  target gene HMG CoA synthase was induced by ~9.5- and 

6-fold by GW7647X and clofibric acid, respectively (Figure 4.7D) (Nagasawa et al., 2004).  

Western blot analysis indicated that CYP4A protein expression was consistent with mRNA 

levels following treatment with GW7647X and clofibric acid (Figure 4.7E). 

Metabolic Stability of Test Compounds in Cell Culture Studies 

Determination of the metabolic stability of GW7647X and clofibric acid in cell 

culture studies was conducted to understand the relationship between induction of dog 

CYP4A isoforms and in vitro metabolism.  Furthermore, these studies were conducted to 

understand whether or not drug had sufficient access to the interior of the hepatocytes or if 

permeability might be attenuating the induction response.  Following a 2-day adaptation 

period, cultured dog hepatocytes were treated with 1 µM GW7647X or 1 µM clofibric acid 
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for up to 72hr (changing media every 24hr).  As shown in Figure 4.8, the in vitro t1/2 of 

GW7647X was determined to be 2.4hr, whereas the t1/2 of clofibric acid was 52hr. 

To understand whether the in vitro metabolism of GW7647X was limiting the 

exposure of compound to the hepatocytes, medium containing GW7647X was replaced at 8-

hr intervals for a total of 48hr (multidose experiment).  Notably, there appeared to be a slight 

increase in CYP4A37, CYP4A38 and CYP4A39 induction compared to the standard 

treatment protocol; however, the control levels in the multidose experiment were lower than 

in the standard treatment giving rise to an apparent increase in CYP4A expression (Figure 

4.9). 
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DISCUSSION 

 Beagle dogs (and associated models) are widely used in the pharmaceutical industry 

during drug discovery and development.  While much is known about the regulation of CYP 

enzymes in other model species (e.g., rat, mouse) little information is available on the 

regulation of dog CYP enzymes.  In the present study the cDNA sequence of beagle dog 

CYP4A37, CYP4A38 and CYP4A39 from liver was determined and the relative tissue 

expression examined.  In addition, CYP4A induction was measured in cultured dog 

hepatocytes following treatment with the PPAR  agonists, GW7647X and clofibric acid. 

The deduced amino acid sequence of CYP4A37, CYP4A38 and CYP4A39 share 

>90% identity to one another and are approximately 71% and 78% identical to rat CYP4A1 

and human CYP4A11, respectively.  The beagle dog liver CYP4A37, CYP4A38 and 

CYP4A39 mRNA sequences were compared to the boxer genome using NCBI dog genome 

resources BLAST tool.  The high degree of identity between CYP4A37, CYP4A38 and 

CYP4A39 mRNA and separate boxer CYP4A genes suggested that each beagle CYP4A 

mRNA produces a single protein (i.e., separate isozymes).  There are only a few exceptions 

to this rule where differential splicing of the transcript results in an enzyme with a new 

catalytic activity (Nelson et al., 1996). 

Sequence analysis suggests that the original mammal CYP4 gene cluster was 

composed of CYP4X, CYP4A and CYP4B.  This set likely derived from the fish CYP4T 

gene, with the 4B sequence being most like the 4T sequence.  It is likely that two serial gene 

duplications occurred: 4B giving rise to 4A and 4A giving rise to 4X.  In humans and 

chimps, 4X gave rise to 4Z, however, 4Z does not seem to exist in any other species.  

Rodents have expanded on the basic CYP4 set by expanding the 4As.  Opossum doubled 4B 
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and 4X, but still have just one 4A.  Dogs have 4X1, 4A36, 4A37, 4A38, 4A39 and 4B1.  The 

CYP4A36 gene has a sequence gap that contains 5 exons (exons 5-9) so it is not complete 

(David R. Nelson, personal communication). 

Dog CYP4A37, CYP4A38 and CYP4A39 each contain the signature sequence of 10 

residues including the invariant active site cysteine residue.  It has been established that a 

heme is covalently bound in the CYP4A family via a conserved glutamic acid residue on the 

I-helix of the protein and amino acid context of this glutamic acid (EGHDTT) is highly 

conserved (Hoch and Ortiz De Montellano, 2001).  As expected, this active site heme 

binding motif is completely conserved in beagle dog CYP4A37, CYP4A38 and CYP4A39 

(positions 321-326).  Although the crystal structure of CYP4A has not been determined, 

Chang and Loew constructed a three-dimensional model of the human CYP4A11 and 

identified the location of active site residues (Chang and Loew, 1999).  Amino acids 

identified in the active site of CYP4A11 included tyrosine-120, leucine-132, tyrosine-317, 

phenylalanine-318, glutamate-321, glycine-322, tyrosine-325, and valine-386.  Each of these 

amino acids is completely conserved in beagle dog CYP4A37, CYP4A38 and CYP4A39.  

Interestingly, while pig CYP4A21 shares 74% homology with human CYP4A11, this 

enzyme lacks lauric acid hydroxylase activity, presumably due to amino acid differences 

identified in the active site region (Lundell et al., 2001).  Conservation of key amino acids 

that have been shown to be involved in substrate region-specificity suggests that dog 

CYP4A37, CYP4A38 and CYP4A39 enzymes might function as fatty acid   hydroxylases, 

however further studies are needed to demonstrate the catalytic properties of dog CYP4A 

enzymes. 
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 In the present work we show that beagle dog mRNA expression of CYP4A37, 

CYP4A38 and CYP4A39 was greatest in the liver and kidney, although there was also 

notable expression in the lung.  Expression levels in intestine, skeletal muscle and heart were 

low.  These results are in agreement with CYP4A tissue expression patterns in other species 

(e.g., rat and human) (Kimura et al., 1989b; Patel et al., 1998; Zhang et al., 2002; Nishimura 

et al., 2003).  Previous studies have described CYP4A isoform expression profiles and they 

suggest that rat CYP4A1, CYP4A2 and CYP4A3 are all constitutively expressed at similar 

levels in the liver.  Contrary to rat liver CYP4A expression, profiles in the kidney suggest 

that CYP4A1 and CYP4A3 are expressed at low levels compared to CYP4A2 (Kimura et al., 

1989b).  In fact, these studies showed that CYP4A2 expression levels in the kidney of 

untreated male rats were similar to induced CYP4A2 mRNA levels in the liver.  

Interestingly, like rat, dog has three CYP4A isoforms that likely encode enzymatically active 

protein.  Furthermore, beagle dog CYP4A37 mRNA expression was ~3-fold higher in kidney 

than in liver, while CYP4A38 and CYP4A39 kidney expression were comparable to liver 

expression.  The relevance of this differential expression pattern in kidney is unclear, 

however these results suggest that dog CYP4A37 mRNA expression in the kidney might be 

regulated in a manner similar to rat CYP4A2. 

Follow-up studies of patients who have undergone fibrate drug therapy (Frick et al., 

1987) and experiments with cultured human hepatocytes (Blaauboer et al., 1990; Richert et 

al., 2003) have suggested that humans do not display the same CYP4A inductive effect as 

that observed in rats and mice.  Similarly, the guinea pig (Tugwood et al., 1998) and dog 

(Graham et al., 2002) appear to be refractory to the CYP4A inductive effects of peroxisome 

proliferators.  While it is generally understood that CYP4A induction in the rodent is 
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mediated by PPAR , the mechanism for the observed species differences in CYP4A 

induction is unclear.  Several theories for this apparent lack of inducibility have been 

advanced.  Firstly, it has been suggested that species not responsive to peroxisome 

proliferators lack a functional peroxisome proliferator response element (PPRE) (Lambe et 

al., 1999; Woodyatt et al., 1999; Hasmall et al., 2000).  To date there has not been a 

functional PPRE identified in the promoter region of the human CYP4A11 gene, whereas rat 

CYP4A1 and rabbit CYP4A6 promoter regions contain functional elements (Muerhoff et al., 

1992; Aldridge et al., 1995).  Secondly, levels of PPAR  are an order of magnitude lower in 

non-responsive species (e.g., guinea pig, and human) in comparison to rodents (Holden and 

Tugwood, 1999).  Recently it was shown that dog PPAR  is expressed at levels similar to 

human PPAR  in cultured hepatocytes (Nagasawa et al., 2004)   A third possibility stems 

from the observation that there is a two amino acid difference in the PPAR  LBD between 

rat and human that is critical for the responsiveness to receptor activation (Miyachi and 

Uchiki, 2003; Uchiki and Miyachi, 2004).  Finally, another hypothesis to explain the CYP4A 

species difference is that non-responsive species may lack an activator or have an active 

repressor of PPAR  function.  While each of these theories have been investigated to some 

extent, there has not been a definitive study published to date that clearly demonstrates the 

mechanism for the observed species differences in CYP4A induction.  Further studies of 

CYP4A regulation in dog and other non-responsive species might help to elucidate the 

mechanism for species dependent induction of the CYP4A family. 

The results of the current studies suggest that dog CYP4A37, CYP4A38 and 

CYP4A39 are expressed in a tissue dependent manner and that beagle dog CYP4A is not 

highly inducible by PPAR  agonists.  Furthermore, we have clearly shown that the CYP4A 
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induction response in dog hepatocytes is similar to that observed for human CYP4A11, 

suggesting a similar mode of regulation.  However, further work is required to fully assess 

the species-specific regulation of the CYP4A induction response. 
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Table 4.1  Sequences of primers and MGB probes used in cloning and TaqMan assays. 
 

Primer Sequence (5’-3’) Orientation Purpose Target 
CYP4A-F1 5’-CACCATGAGTGTCTCTGTGCTGAGCC-3’ 

 
Forward PCR 

Cloning 
37, 38 and 39 

CYP4A-R1 5’-CTCCTGAGACGCAGGTGGATTCCAT-’3’ Reverse PCR 
Cloning 

37, 38 and 39 

CYP4A-R2 5’-CCAGGGCGCCAAAGCTAAGG-3’ Reverse 5’-RACE 37, 38 and 39 
d4A-gsp1(f) 5’-GGACAGAGAAATACCCTTGTGCCA-3’ Forward sequencing

/3’-RACE 
37 and 38 

d4A-gsp2(r) 5’-ATCAGTGAAGGTGATGGGCTTGCT-3’ Reverse sequencing 37, 38 and 39 
d4A-gsp3(f) 5’-ATGGAGAATGGGAAGGGCTTGTCTGA-

3’ 
Forward sequencing 37, 38 and 39 

d4A-gsp4(r) 5’-TGGTGTCCAAGGTCATCAAGGAGA-3’ Reverse Sequencin
g/5’-
RACE 

37, 38 and 39 

d4A-gsp5(f) 5’-AAACCCTACGTGAGACTCATGGCT-3’ Forward sequencing
/3’-RACE 

37, 38 and 39 

d4A-gsp6(f) 5’-ATGCCCTTCACCACAACCCAAATG-3’ Forward sequencing 39 
d4A-gsp7(f) 5’-TTGCCATGAACGAGTTGAAGGTGG-3’ Forward sequencing 37, 38 and 39 
d4A-gsp9(f) 5’TGTTCCTTGCTGCCTACTTGTCT-3’ Forward sequencing 37 and 38 
d4A-gsp11(f) 5’-TGCCAACTTACTCCAGTCTCAGTG-3’ Forward sequencing 39 
d4A-grp1&2 (r) 5’-AAGTGGACCAAAGGTGGACTGACA-3’ Reverse sequencing 37 and 38 
d4A-grp 3 (r) 5’-TGGGTACACAGGTAACACACAGGA-3’ Reverse sequencing 39 
GROUP1-AF ACCCAGACTACATGAAGATGATCCT Forward TaqMan 37 
GROUP1-AR AGGAGCAAACCATACCCTATCCA Reverse TaqMan 37 
GROUP1-AM1 CTGGTGGTTCCTACACATT Probe TaqMan 37 
GROUP2-AF GGCACAGGCAAGAGTTCCA Forward TaqMan 38 
GROUP2-AR GGCGCAAGGGTATTTCTCTGT Reverse TaqMan 38 
GROUP2-AM2 CAGCTCCCGACCCTTT Probe TaqMan 38 
GROUP3-AF GGCACAAGCGGGAGTTG Forward TaqMan 39 
GROUP3-AR TGGGAAGTCCTCTATCCATTTCAGT Reverse TaqMan 39 
GROUP3-AM2 CAGCTCGTCTCCTTTTT Probe TaqMan 39 
PPIA.4sF TGCACCGCCAAGACTGA Forward TaqMan Cyclophilin 
PPIA.4sR GACCTTGCCAAAGACCACATG Reverse TaqMan Cyclophilin 
PPIA.4sM1 CTTGCCGTCCAACCAC Probe TaqMan Cyclophilin 
HMGCoA-F GCCAACTGGGTGGAATCCA Forward TaqMan HMG CoA 

synthase 
HMGCoA-R GATACACTGCAATGTCTCCACAGA Reverse TaqMan HMG CoA 

synthase 
HMGCoA-M1 CCTGGGATGGTCGCTATG Probe TaqMan HMG CoA 

synthase 
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Table 4.2  Amino acid sequence identity of select CYP4A proteins. 

 
 CYP4A1 CYP4A37 CYP4A38 CYP4A39 CYP4A11 

CYP4A1      
CYP4A37 71.7     
CYP4A38 72.7 93.5    
CYP4A39 71.1 90.4 90.6   
CYP4A11 77.2 78.2 78.8 78.6  
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-43      agcaacactcagggagagtcagtgacccagcagcccctgaacc 
1 ATGAGTGTCTCTGTACTGAGCCTCACCAGACCCCTGGACACTGTGTCTGGGCTCCTGCAGCTGGCCTCCCTGCTA 
       M  S  V  S  V  L  S  L  T  R  P  L  D  T  V  S  G  L  L  Q  L  A  S  L  L   25 
76 GGCCTGGCTCTGCTGCTGCTCAAGGCAGCACAACTCTACCAGCGCAGGCAGTGGCTGCTGAAAGCTGTCCAGCAG 
       G  L  A  L  L  L  L  K  A  A  Q  L  Y  Q  R  R  Q  W  L  L  K  A  V  Q  Q   50 
151 TTCCCGTCCCCTCCTTCCCACTGGTTCTTCGGGCACAAGCAGGAGTTCCAAACGGGTCAGGAGCTGCAAGTGTTT 
       F  P  S  P  P  S  H  W  F  F  G  H  K  Q  E  F  Q  T  G  Q  E  L  Q  V  F   75 
226 CAGAAATGGACAGAGAAATACCCTTGTGCCAGTCCTCGTTGGCTATGGGGAAGCAGAGTTAGCCTCGTAGTCTAT 
       Q  K  W  T  E  K  Y  P  C  A  S  P  R  W  L  W  G  S  R  V  S  L  V  V  Y   100 
301 GACCCAGACTACATGAAGATGATCCTGGGGCGATCAGACCCAAAAGCTGGTGGTTCCTACACATTCATCACTCCC 
       D  P  D  Y  M  K  M  I  L  G  R  S  D  P  K  A  G  G  S  Y  T  F  I  T  P   125 
376 TGGATAGGGTATGGTTTGCTCCTGCTGCATGGAGAGGCATGGTTCCAGCACCGGAGGATGCTGACCCCAGCCTTC 
       W  I  G  Y  G  L  L  L  L  H  G  E  A  W  F  Q  H  R  R  M  L  T  P  A  F   150 
451 CACTATGACATCCTGAAGCCTTACGTGAGACTCATGGCTGACTCTGTCCAAGTGATGCTGGACAAGTGGGAGGAA 
       H  Y  D  I  L  K  P  Y  V  R  L  M  A  D  S  V  Q  V  M  L  D  K  W  E  E   175 
526 CTCCTCACCCAGAACTCACATCTAGAGATCTTTGAACACGTCTCCTTGATGACCTTGGACACCATTATGAAGTGT 
       L  L  T  Q  N  S  H  L  E  I  F  E  H  V  S  L  M  T  L  D  T  I  M  K  C   200 
601 GCCTTCAGCTACCAGGGCAACCACCAGGCAGACAGGAACTCCCAGGCCTACATTCAGGCCATTCGAGATATGAAC 
       A  F  S  Y  Q  G  N  H  Q  A  D  R  N  S  Q  A  Y  I  Q  A  I  R  D  M  N   225 
676 AACCTGGTGTTTGCCCGGGTGAGGAATGTTTTCTACCAGAAAGACATCTTCTACGGGCTGACCTCTGAAGGCCGC 
       N  L  V  F  A  R  V  R  N  V  F  Y  Q  K  D  I  F  Y  G  L  T  S  E  G  R   250 
751 AGGAACCACAAGGCCCGCCAGATTGCCCATCAACACACAGACCGAGTGATCAAGCTGAGGAAGGCACAGCTACAG 
       R  N  H  K  A  R  Q  I  A  H  Q  H  T  D  R  V  I  K  L  R  K  A  Q  L  Q   275 
826 GACGAGGGAGAGCTGGAGAAGGTCAGGAACAAGAGGCACTTGGACTTCCTGGACATCCTCCTCTTTGCCAAAATG 
       D  E  G  E  L  E  K  V  R  N  K  R  H  L  D  F  L  D  I  L  L  F  A  K  M 300 
901 GAGAATGGGAAGGGCTTGTCTGACAAGGACCTCCGTGCAGAAGTGGACACATTCATGTTTGAGGGGCATGACACC 
       E  N  G  K  G  L  S  D  K  D  L  R  A  E  V  D  T  F  M  F  E  G  H  D  T   325 
976 ACAGCGAGTGGCATCTCCTGGATCCTCTATGCTCTGGCCACACACCCCGAGCATCAGCAGAGATGCCGGGAGGAG 
       T  A  S  G  I  S  W  I  L  Y  A  L  A  T  H  P  E  H  Q  Q  R  C  R  E  E   350 
1051 ATCCAGAGCCTTCTGGGAGATGGTGCCTCCATCACCTGGGAGCACCTGGACCAGATGCCCTACACCACCATGTGC 
       I  Q  S  L  L  G  D  G  A  S  I  T  W  E  H  L  D  Q  M  P  Y  T  T  M  C   375 
1126 ATCAAGGAGGCATTGCGACTCTATCCACCAGTTCCAGGTGTTGGCAGAGAGCTCAGCAAGCCCATCACCTTCACT 
       I  K  E  A  L  R  L  Y  P  P  V  P  G  V  G  R  E  L  S  K  P  I  T  F  T   400 
1201 GATGGACGCTCCTTGCCCAAAGGATTCTTAGTCTCGCTCTCCTTTTATGCTCTTCACCACAACCCGAATGTGTGG 
       D  G  R  S  L  P  K  G  F  L  V  S  L  S  F  Y  A  L  H  H  N  P  N  V  W   425 
1276 CCAAACCCAGAGGTGTTCGACCCTTCCCGCTTTGCACCAGATGCCTCTCGACACAGCCATGCTTTCCTGCCCTTC 
       P  N  P  E  V  F  D  P  S  R  F  A  P  D  A  S  R  H  S  H  A  F  L  P  F   450 
1351 TCAGGAGGATCAAGGAACTGCATTGGGCAGCACTTTGCCATGAACGAGTTGAAGGTGGCGGTGGCCCTGACCCTG 
       S  G  G  S  R  N  C  I  G  Q  H  F  A  M  N  E  L  K  V  A  V  A  L  T  L   475 
1426 CTCCGCTTTGAGCTGGCACCAGATCCCTTCAAGATCCCTGTTCCAACTCCAAGAATTGTATTGATGTCCAAGAAT 
       L  R  F  E  L  A  P  D  P  F  K  I  P  V  P  T  P  R  I  V  L  M  S  K  N     500 
1501 GGGATCCACCTGCATCTCAGGAAGCTCCTCTAAcccttgtggggacaaggatgagtcccgagggcctcctgcctc 
       G  I  H  L  H  L  R  K  L  L  *      510 
1576 cctttctgtcttcctgtcagtctctcctgtctgctggcttctgctcacttcctgcttcccctctgcccacctgcc 
1651 agccttcctgctctcctgctctcctgttcttgcacttgagattgtgcttctgtgtctcacccttttccaagattc 
1726 cttcttgtttgtctgttaccaatctcctaccgaggtgtcactctgactgttgatgcaaattgtgatttcttgcct 
1801 gtccttcacgctgtctgttgtttccctgtcatggttccttgctgcctacttgtctgttcctataatgttttctct 
1876 tgctgctttaccaagttacacaaacttagttccttcaaagagcacaaatgggtaatcttgtgttttaggagatca 
1951 gaaatccaaaatgagtctcactgggtagcaatgaaggcatgtagatgctctaagggataatgtcttctcttgcat 
2026 tttctgccttctcagaatccactcttagggctatcaatgaggggactaagcatcctcatttatcatggaaataca 
2101 cttttcttcgcttcaactgagtcagatgttaaccataactatcaaatttttagcgtaatatctagacttgtttaa 
2176 ttaaacaagggtactccagccaatccaagtgcacccggaaaccaagacatgtcagtccacgtttggtctacttgg 
2251 cattcacacattcccttacaccatacttcgtccctaactaagtaaaataaagtcatgcttctaccaaaaaaaaaa 
2326 aaaaaaaaaaaaaaaaaaa(a)n 
 
 
Figure 4.1 Full-length cDNA and deduced amino acid sequence of beagle dog liver 
CYP4A37.  In the cDNA sequence, lowercase letters represent the 5′ and 3′ untranslated 
regions, and uppercase letters represent the coding region. The predicted amino acid 
sequence is shown beneath the coding sequence. The nucleotide sequence of beagle dog 
CYP4A37 mRNA has been submitted to the GenBank nucleotide database with accession 
number DQ138950. 
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-53                         agaggatttcagcaacagtcagggagagtcagcaaaccactggcccctgaacc 
1 ATGAGTGTCTCTGTACTGAGCCTCACCAGACCCCTGGACACTGTGTCTGGGCTCCTGCAGCTGGCCTCCCTGCTA 
       M  S  V  S  L  L  S  L  T  R  P  L  D  T  V  S  G  F  L  Q  V  A  S  L  L 25 
76 GGCCTGGCTCTGTTGCTGCTCAAGGCAGCACAGTTCTACTGGCACAGGCAGTGGCTGCTCAAAGCTATTCAGCAG 
       G  L  A  L  L  L  L  K  A  A  Q  F  Y  W  H  R  Q  W  L  L  K  A  I  Q  Q   50 
151 TTCCCGTCCCCTCCTTCCCACTGGTTCTTCGGGCACAGGCAAGAGTTCCAAAAGGGTCGGGAGCTGCAAGAGCTG 
       F  P  S  P  P  S  H  W  F  F  G  H  R  Q  E  F  Q  K  G  R  E  L  Q  E  L  75 
226 AAGAAAAGGACAGAGAAATACCCTTGCGCCAGTCCTCGTTGGCTATGGGGAAGCAGAGTTAGCCTCGTAGTCTAT 
       K  K  R  T  E  K  Y  P  C  A  S  P  R  W  L  W  G  S  R  V  S  L  V  V  Y   100 
301 GACCCAGACTACATGAGGATGATCCTGGGGCGATCAGACCCAAAATCTGATGGCTCCTACAGACTCATGGCTCCC 
       D  P  D  Y  M  R  M  I  L  G  R  S  D  P  K  S  D  G  S  Y  R  L  M  A  P   125 
376 TGGATAGGGTATGGTTTGCTCCTGCTGAATGGAGAGATATGGTTCCAGCACCGGCGGATGCTGACCCCAGCCTTC 
       W  I  G  Y  G  L  L  L  L  N  G  E  I  W  F  Q  H  R  R  M  L  T  P  A  F   150 
451 CACTATGACATCCTGAAGCCCTACGTGAGACTCATGGCTGACTCTGTCCAAGTGATGCTGGACAAGTGGGAGGAA 
       H  Y  D  I  L  K  P  Y  V  R  L  M  A  D  S  V  Q  V  M  L  D  K  W  E  E   175 
526 CTCCTCACCCAGAACTCACATCTAGAGATCTTTGAACACGTCTCCTTGATGACCTTGGACACCATTATGAAGTGT 
       L  L  T  Q  N  S  H  L  E  I  F  E  H  V  S  L  M  T  L  D  T  I  M  K  C   200 
601 GCCTTCAGCTACCAGGGCAACCACCAGGCAGACAGGAACTCCCAGGCCTACATTCAGGCCATTCGAGATCTGAAC 
       A  F  S  Y  Q  G  N  H  Q  A  D  R  N  S  Q  A  Y  I  Q  A  I  R  D  L  N   225 
676 AACCTGGTGTTTGCCCGGGTGAGGAACGTTTTCTACCAGAAAGACATCTTCTACGGGCTGACCTCTGAAGGCCGC 
       N  L  V  F  A  R  V  R  N  V  F  Y  Q  K  D  I  F  Y  G  L  T  S  E  G  R   250 
751 AGGAACCACAAGGCCTGCCAGCTTGCCCATGAACACACAGACCGAGTGATCAAGCTGAGGAAGGCTCAGCTACAG 
       R  N  H  K  A  C  Q  L  A  H  E  H  T  D  R  V  I  K  L  R  K  A  Q  L  Q   275 
826 GACGAGGGAGAGCTGGAGAAGATCAGGAACAAGAGGCACTTGGACTTCCTGGACATCCTCCTCTTTGCCAAAATG 
       D  E  G  E  L  E  K  I  R  N  K  R  H  L  D  F  L  D  I  L  L  F  A  K  M 300 
901 GAGAACGGGAGGGGCTTGTCTGACAAGGACCTGCGTGCAGAAGTGGACACATTCATGTTTGAGGGGCATGACACC 
       E  N  G  R  G  L  S  D  K  D  L  R  A  E  V  D  T  F  M  F  E  G  H  D  T   325 
976 ACAGCGAGTGGCATCTCCTGGATCCTCTATGCTCTGGCCACACACCCTGAGCATCAGCAGAGGTGCCGGGAGGAG 
       T  A  S  G  I  S  W  I  L  Y  A  L  A  T  H  P  E  H  Q  Q  R  C  R  E  E   350 
1051 ATCCAGAGCCTTCTGGGGGATGGTGCTTCCATCACATGGGAGCACCTGGACCAGATGCCCTACACCACCATGTGC 
       I  Q  S  L  L  G  D  G  A  S  I  T  W  E  H  L  D  Q  M  P  Y  T  T  M  C   375 
1126 ATCAAGGAGGCACTGCGACTCTATCCACCAGTTCCAGGTGTTGGCAGAGAGCTCAGCAAGCCCATCACCTTCCCT 
       I  K  E  A  L  R  L  Y  P  P  V  P  G  V  G  R  E  L  S  K  P  I  T  F  P   400 
1201 GATGGACGCTCCTTGCCCAGAGGATTCTTAGTCTTGCTCTCCTTTTATGCCCTTCACCACAACCCGAATGTGTGG 
       D  G  R  S  L  P  R  G  F  L  V  L  L  S  F  Y  A  L  H  H  N  P  N  V  W   425 
1276 CCAAACCCAGAGGTGTTTGACCCTTCCCGCTTTGCACCAGATGCCTCTCGACACAGCCATGCTTTCCTGCCCTTC 
       P  N  P  E  V  F  D  P  S  R  F  A  P  D  A  S  R  H  S  H  A  F  L  P  F   450 
1351 TCAGGAGGATCAAGGAACTGCATCGGGCAGCACTTTGCCATGAACGAGTTGAAGGTGGCGGTGGCCCTGACCCTG 
       S  G  G  S  R  N  C  I  G  Q  H  F  A  M  N  E  L  K  V  A  V  A  L  T  L   475 
1426 CTCCGCTTTGAGCTGGCACCAGATCCCTTCAGGATCCCTGTTCCAACTCCAAGAATTGTGTTGATGTCCAAGAAT 
       L  R  F  E  L  A  P  D  P  F  R  I  P  V  P  T  P  R  I  V  L  M  S  K  N   500 
1501 GGGATCCACCTGCATCTCAGGAAGCTCCTCTAAcccttgtggggacaaggatgagccctgagggcctcctgcctt 
       G  I  H  L  H  L  R  K  L  L  *      510 
1576 tctgtcttcctgtcagtctctcctgtctgctggtttctgctcacttcctgcttcccctctgcccacctgccagcc 
1651 ttcctgctctcctgctcttgcacatgagattgtctgcacttctctatctcacccttttccaagattccttctgtt 
1726 agtccgttatcatactccgccgagctgtcgctctgattgtccacgtaaattggcattagctacctgcccctcagg 
1801 ctgtgtgccctctccctgtcattgtttcttgttgcctgcttgtctgtccctataatgttttctcttgctgcttta 
1876 ccatattacacaaacttagctccttcaaagagcacaaattgataatcttgtgttttaggagatcagatatctaaa 
1951 atgagtctcactgggtcgcaacaaaggcacgtagatgctctaaggcataatctcttctcttgcattttccatctt 
2026 ctcagaatctactctcaaggctattcaatgaggggactaagcctcctcatttatcatggaaatacacttttcttc 
2101 aattcaactgagtcagatgttaacgatacctgtcaaatttttagtgcaacaactagacttttgtttaattgaaca 
2176 gaggtatgccagccaatctaagtgcacccataaagctagacatgtcagtccacctttggtccacttggcattcac 
2251 acattcccttacatcatacttcgtccctaactaagtaaaataaagtcatgcttctaccaaaaaaaaaaaaaaaaa 
2326 aaaaaaaaaaaaa(a)n 
 
 
Figure 4.2 Full-length cDNA and deduced amino acid sequence of beagle dog liver 
CYP4A38. In the cDNA sequence, lowercase letters represent the 5′ and 3′ untranslated 
regions, and uppercase letters represent the coding region. The predicted amino acid 
sequence is shown beneath the coding sequence. The nucleotide sequence of beagle dog 
CYP4A38 mRNA has been submitted to the GenBank nucleotide database with accession 
number DQ138951. 
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-40         aacactcagggagagtcagtgacccagcagcccctgaacc 
1 ATGAGTGTCTCTGTACTGAGCCTCACCAGACCCCTGGACACTGTGTCTGGGCTCCTGCAGCTGGCCTCCCTGCTA 
       M  S  V  S  V  L  S  L  T  R  P  L  D  T  V  S  G  L  L  Q  L  A  S  L  L   25 
76 GGCCTGGCTCTGCTGCTGCTCAAGGCAGCACAGCTCTACCAGCGCAGGCAGTGGCTGCTCAAAGCTGTCCAGCAG 
       G  L  A  L  L  L  L  K  A  A  Q  L  Y  Q  R  R  Q  W  L  L  K  A  V  Q  Q   50 
151 TTCCCGTCCCCTCCTTCCCACTGGCTCTTCGGGCACAAGCGGGAGTTGCAAAAAGGAGACGAGCTGCAGCTGCTA 
       F  P  S  P  P  S  H  W  L  F  G  H  K  R  E  L  Q  K  G  D  E  L  Q  L  L   75 
226 CTGAAATGGATAGAGGACTTCCCATGTGCATTTTCTCGCTGGATATGGGGCACAGAGGCAGAGATCATGATCTAT 
       L  K  W  I  E  D  F  P  C  A  F  S  R  W  I  W  G  T  E  A  E  I  M  I  Y   100 
301 GACCCTGACTACATGAAACTGATCCTGGGGCGATCTGACCCAAAACCAGATGGCTCCTACAAACTCATGGCTCCC 
       D  P  D  Y  M  K  L  I  L  G  R  S  D  P  K  P  D  G  S  Y  K  L  M  A  P   125 
376 TGGATAGGGTATGGTTTGCTCCTGCTGAATGGAGAGACATGGTCCCAGCACCGGCGGATGCTGACCCCGGCCTTC 
       W  I  G  Y  G  L  L  L  L  N  G  E  T  W  S  Q  H  R  R  M  L  T  P  A  F   150 
451 CACTATGACATCCTGAAACCCTACGTGAGACTCATGGCTGACTCTGTCCAAGTGATGCTGGACAAGTGGGAGGAA 
       H  Y  D  I  L  K  P  Y  V  R  L  M  A  D  S  V  Q  V  M  L  D  K  W  E  E   175 
526 CTCCTCAGTCAGAACTCACATCTGGAGATCTTTGACCATGTCTCCTTGATGACCTTGGACACCATTATGAAGTGT 
       L  L  S  Q  N  S  H  L  E  I  F  D  H  V  S  L  M  T  L  D  T  I  M  K  C   200 
601 GCCTTCAGCTACCAGGGCAACCACCAGGCAGACAGGAACTCCCAGGCCTACATTCAGGCCATTCGAGATCTGAAC 
       A  F  S  Y  Q  G  N  H  Q  A  D  R  N  S  Q  A  Y  I  Q  A  I  R  D  L  N   225 
676 AACCTGGTGTTTGCCCGGATGAGGAACGTTTTCTACCAGAAAGACATCTTCTACGGGCTGACCTCTGAAGGCCGC 
       N  L  V  F  A  R  M  R  N  V  F  Y  Q  K  D  I  F  Y  G  L  T  S  E  G  R   250 
751 AGGAACCACAAGGCCTGCCAGCTTGCCCATCAACACACAGACCGAGTGATCAAGCTGAGGAAGGCTCAGCTACAG 
       R  N  H  K  A  C  Q  L  A  H  Q  H  T  D  R  V  I  K  L  R  K  A  Q  L  Q   275 
826 GACAAGGGAGAGCTGGAGAAGGTCAGGAACAAGAGGCACTTGGACTTCCTGGACATCCTCCTCTTTGCCAAAGTG 
       D  K  G  E  L  E  K  V  R  N  K  R  H  L  D  F  L  D  I  L  L  F  A  K  V   300 
901 GAGAATGGGAGGGGCTTGTCTGACAAGGACCTCCGTGCAGAAGTGGACACATTCATGTTTGAGGGGCATGACACC 
       E  N  G  R  G  L  S  D  K  D  L  R  A  E  V  D  T  F  M  F  E  G  H  D  T   325 
976 ACAGCGAGTGGCATCTCCTGGATCCTCTATGCTCTGGCCACACATCCCGAGCATCAGCAGAGGTGCCGGGAGGAG 
       T  A  S  G  I  S  W  I  L  Y  A  L  A  T  H  P  E  H  Q  Q  R  C  R  E  E   350 
1051 ATCCAGAGCCTTCTGGGGGATGGTGCCTCCATCACCTGGGAGCACCTGGACCAGATGCCCTACACCACCATGTGC 
       I  Q  S  L  L  G  D  G  A  S  I  T  W  E  H  L  D  Q  M  P  Y  T  T  M  C   375 
1126 ATCAAGGAGGCATTGCGACTCTATCCACCAGTTCCAGGTGTTGGCAGAGAGCTCAGCAAGCCCATCACCTTCCCT 
       I  K  E  A  L  R  L  Y  P  P  V  P  G  V  G  R  E  L  S  K  P  I  T  F  P   400 
1201 GATGGACGCTCTTTGCCCAAAGGATTCTTAGTCTTGCTCTCCTTTTATGCCCTTCACCACAACCCAAATGTGTGG 
       D  G  R  S  L  P  K  G  F  L  V  L  L  S  F  Y  A  L  H  H  N  P  N  V  W   425 
1276 CCAAACCCAGAGGTGTTTGACCCTTCCCGGTTTGCACCAGGTGTCTCTCGACACAGCCATGCTTTCCTGCCCTTC 
       P  N  P  E  V  F  D  P  S  R  F  A  P  G  V  S  R  H  S  H  A  F  L  P  F   450 
1351 TCAGGAGGATCAAGGAACTGCATCGGGCAGCACTTTGCCATGAACGAGATGAAGGTGGCGGTGGCCCTGACCCTG 
       S  G  G  S  R  N  C  I  G  Q  H  F  A  M  N  E  M  K  V  A  V  A  L  T  L   475 
1426 CTCCGCTTTGAGCTGGCACCAGATCCCTTCAGGATCCCTGTCCCCACTCCAAAAATTGTGTTGATGTCCAAGAAT 
       L  R  F  E  L  A  P  D  P  F  R  I  P  V  P  T  P  K  I  V  L  M  S  K  N 500 
1501 GGGATCCACCTGCATCTCAGGAAGCTCCTCTAAcccttgtggggacaaggatgaaccccgagggcctcctgcctg 
       G  I  H  L  R  L  R  R  L  L  *      510 
1576 ccattctgtcttcctgtcagtctctcctgtctgctggtttctgctcacttcctgcttcctgtctgcccacctgcc 
1651 agccttcctgctctcctgctctcctgctcctgcgcatcagactgtctgtgcttctgtctcacccttttccaagat 
1726 tccttcttatttgcttattacaatctcccacccagctgtccctctgactgcccacttgatgctgtctgttccccc 
1801 aacctgcctgtcctctgcatgtctttccccttttgcgcctatttggttgtccctatattattttcctctgtctgc 
1876 tatgccaacttactccagtctcagtgacttagaacaacacaaacttgttctcttacattctggagctcaaagtct 
1951 aaaatggattttgttggaccacagccaagatattggcctggtcccactaactctaggccctaagggagaatccct 
2026 ctctgccttgtccagcatcaagctgcattctttccaatctttagctcctggagcctcctcttttcaaatgcaata 
2101 gcatctttcaatgtctttctgcttctgtcttcagatccccttgtcttccataaggagttttgtgattagacaggt 
2176 acgcttagagagaacagacatacttcagcttcgagacatatccctcctgctattcatgttttccctattagaagc 
2251 ccacagacctggaaggttggctccttggggagccaaaattcagcctgcttagtccttttgtgactcctattggtc 
2326 cttgcttctagctttctcctgtgtgttacctgtgtacccatttgatattcacataccctcttctttcctcctccc 
2401 acaaaaaaagttttaatgcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(a)n 
 
 
 
Figure 4.3 Full-length cDNA and deduced amino acid sequence of beagle dog liver 
CYP4A39.  In the cDNA sequence, lowercase letters represent the 5′ and 3′ untranslated 
regions, and uppercase letters represent the coding region.  The predicted amino acid 
sequence is shown beneath the coding sequence.  The nucleotide sequence of beagle dog 
CYP4A39 mRNA has been submitted to the GenBank nucleotide database with accession 
number DQ138952. 
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CYP4A1: MSVSALSSTRFTGSISGFLQVASVLGLLLLLVKAVQFYLQRQWLLKAFQQFPSPPFHWFF :60 
CYP4A37: MSVSVLSLTRPLDTVSGLLQLASLLGLALLLLKAAQLYQRRQWLLKAVQQFPSPPSHWFF :60 
CYP4A38: MSVSLLSLTRPLDTVSGFLQVASLLGLALLLLKAAQFYWHRQWLLKAIQQFPSPPSHWFF :60 
CYP4A39: MSVSVLSLTRPLDTVSGLLQLASLLGLALLLLKAAQLYQRRQWLLKAVQQFPSPPSHWLF :60 
CYP4A11: MSVSVLSPSRLLGDVSGILQAASLLILLLLLIKAVQLYLHRQWLLKALQQFPCPPSHWLF :60 
 
 
CYP4A1: GHK-QFQGDKELQQIMTCVENFPSAFPRWFWGSKAYLIVYDPDYMKVILGRSDPKANGVY :119 
CYP4A37: GHKQEFQTGQELQVFQKWTEKYPCASPRWLWGSRVSLVVYDPDYMKMILGRSDPKAGGSY :120 
CYP4A38: GHRQEFQKGRELQELKKRTEKYPCASPRWLWGSRVSLVVYDPDYMRMILGRSDPKSDGSY :120 
CYP4A39: GHKRELQKGDELQLLLKWIEDFPCAFSRWIWGTEAEIMIYDPDYMKLILGRSDPKPDGSY :120 
CYP4A11: GHIQELQQDQELQRIQKWVETFPSACPHWLWGGKVRVQLYDPDYMKVILGRSDPKSHGSY :120 
 
 
CYP4A1: RLLAPWIGYGLLLLNGQPWFQHRRMLTPAFHYDILKPYVKNMADSIRLMLDKWEQLAGQD :179 
CYP4A37: TFITPWIGYGLLLLHGEAWFQHRRMLTPAFHYDILKPYVRLMADSVQVMLDKWEELLTQN :180 
CYP4A38: RLMAPWIGYGLLLLNGEIWFQHRRMLTPAFHYDILKPYVRLMADSVQVMLDKWEELLTQN :180 
CYP4A39: KLMAPWIGYGLLLLNGETWSQHRRMLTPAFHYDILKPYVRLMADSVQVMLDKWEELLSQN :180 
CYP4A11: RFLAPWIGYGLLLLNGQTWFQHRRMLTPAFHYDILKPYVGLMADSVRVMLDKWEELLGQD :180 
 
 
CYP4A1: SSIEIFQHISLMTLDTVMKCAFSHNGSVQVDGNYKSYIQAIGNLNDLFHSRVRNIFHQND :239 
CYP4A37: SHLEIFEHVSLMTLDTIMKCAFSYQGNHQADRNSQAYIQAIRDMNNLVFARVRNVFYQKD :240 
CYP4A38: SHLEIFEHVSLMTLDTIMKCAFSYQGNHQADRNSQAYIQAIRDLNNLVFARVRNVFYQKD :240 
CYP4A39: SHLEIFDHVSLMTLDTIMKCAFSYQGNHQADRNSQAYIQAIRDLNNLVFARMRNVFYQKD :240 
CYP4A11: SPLEVFQHVSLMTLDTIMKCAFSHQGSIQVDRNSQSYIQAISDLNNLVFSRVRNAFHQND :240 
 
 
CYP4A1: TIYNFSSNGHLFNRACQLAHDHTDGVIKLRKDQLQNAGELEKVKKKRRLDFLDILLLARM :299 
CYP4A37: IFYGLTSEGRRNHKARQIAHQHTDRVIKLRKAQLQDEGELEKVRNKRHLDFLDILLFAKM :300 
CYP4A38: IFYGLTSEGRRNHKACQLAHEHTDRVIKLRKAQLQDEGELEKIRNKRHLDFLDILLFAKM :300 
CYP4A39: IFYGLTSEGRRNHKACQLAHQHTDRVIKLRKAQLQDKGELEKVRNKRHLDFLDILLFAKV :300 
CYP4A11: TIYSLTSAGRWTHRACQLAHQHTDQVIQLRKAQLQKEGELEKIKRKRHLDFLDILLLAKM :300 
 
 
CYP4A1: ENGDSLSDKDLRAEVDTFMFEGHDTTASGVSWIFYALATHPEHQQRCREEVQSVLGDGSS :359 
CYP4A37: ENGKGLSDKDLRAEVDTFMFEGHDTTASGISWILYALATHPEHQQRCREEIQSLLGDGAS :360 
CYP4A38: ENGRGLSDKDLRAEVDTFMFEGHDTTASGISWILYALATHPEHQQRCREEIQSLLGDGAS :360 
CYP4A39: ENGRGLSDKDLRAEVDTFMFEGHDTTASGISWILYALATHPEHQQRCREEIQSLLGDGAS :360 
CYP4A11: ENGSILSDKDLRAEVDTFMFEGHDTTASGISWILYALATHPKHQERCREEIHSLLGDGAS :360 
 
 
CYP4A1: ITWDHLDQIPYTTMCIKEALRLYPPVPGIVRELSTSVTFPDGRSLPKGIQVTLSIYGLHH :419 
CYP4A37: ITWEHLDQMPYTTMCIKEALRLYPPVPGVGRELSKPITFTDGRSLPKGFLVSLSFYALHH :420 
CYP4A38: ITWEHLDQMPYTTMCIKEALRLYPPVPGVGRELSKPITFPDGRSLPRGFLVLLSFYALHH :420 
CYP4A39: ITWEHLDQMPYTTMCIKEALRLYPPVPGVGRELSKPITFPDGRSLPKGFLVLLSFYALHH :420 
CYP4A11: ITWNHLDQMPYTTMCIKEALRLYPPVPGIGRELSTPVTFPDGRSLPKGIMVLLSIYGLHH :420 
 
 
CYP4A1: NPKVWPNPEVFDPSRFAPDSPRHSHSFLPFSGGARNCIGKQFAMSEMKVIVALTLLRFEL :479 
CYP4A37: NPNVWPNPEVFDPSRFAPDASRHSHAFLPFSGGSRNCIGQHFAMNELKVAVALTLLRFEL :480 
CYP4A38: NPNVWPNPEVFDPSRFAPDASRHSHAFLPFSGGSRNCIGQHFAMNELKVAVALTLLRFEL :480 
CYP4A39: NPNVWPNPEVFDPSRFAPGVSRHSHAFLPFSGGSRNCIGQHFAMNEMKVAVALTLLRFEL :480 
CYP4A11: NPKVWPNPEVFDPSRFAPGSAQHSHAFLPFSGGSRNCIGKQFAMNELKVATALTLLRFEL :480 
 
 
CYP4A1: LPDPTKVPIPLPRLVLKSKNGIYLYLKKLH         :509 
CYP4A37: APDPFKIPVPTPRIVLMSKNGIHLHLRKLL         :510 
CYP4A38: APDPFRIPVPTPRIVLMSKNGIHLHLRKLL         :510 
CYP4A39: APDPFRIPVPTPKIVLMSKNGIHLRLRRLL         :510 
CYP4A11: LPDPTRIPIPIARLVLKSKNGIHLRLRRLPNPCEDKDQL        :519 
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Figure 4.4 Multiple sequence alignment of the deduced amino acid sequence of dog 
CYP4A37, CYP4A38 and CYP4A39 with the sequences of rat CYP4A1 (M57718) and 
human CYP4A11 (L04751). The alignment was performed with the CLUSTAL W program 
(gap penalty 10). Residues with a black background represent absolutely conserved amino 
acids. 
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Figure 4.5 CYP4A37, CYP4A38 and CYP4A39 tissue expression.  CYP4A37, 
CYP4A38 and CYP4A39 expression in dog liver and kidney (A) and intestine, heart, skeletal 
muscle and lung (B).  Equal amounts of RNA were pooled from n=3 dog tissues and 
CYP4A37, CYP4A38 and CYP4A39 expression was determined using specific TaqMan 
assays.  Copy numbers of each isoform were determined from standard curves prepared from 
CYP4A37, CYP4A38 and CYP4A39 plasmid DNA. 
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Figure 4.6 Structure of the PPAR  agonist GW7647X (A) and clofibric acid (B). 
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Figure 4.7 Concentration response relationship for induction of beagle dog RNA following treatment of cultured hepatocytes with 
GW7647X or clofibric acid for 48hr. RNA expression from dog hepatocyte cultures was determined using specific TaqMan assays.  
Relative quantification of gene expression was conducted by normalizing target gene expression for each treatment group to 
cyclophilin. CYP4A37 (A), CYP4A38 (B), CYP4A39 (C), HMG CoA synthase (D). Data are expressed as mean (n=3 hepatocyte 
cultures) + SEM. *p < 0.05, **p < 0.01, and ***p < 0.001. (E) Representative Western blot of microsomes (10 µg/lane) isolated from 
cultured dog hepatocytes.
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Figure 4.8 Metabolic stability of GW7647X and clofibric acid in cultured dog 
hepatocytes. Metabolic stability was determined by monitoring the disappearance of 
compound over time (0, 4, 8, 12, and 24hr). The half-life of GW7647X and clofibric acid 
was estimated under the assumption that the disappearance followed a first-order linear 
kinetic process. Data points represent the average of two determinations. 
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Figure 4.9 Modulation of CYP4A expression in dog hepatocytes by multiple dosing of GW327647X. Dog hepatocytes were 
exposed to a single dose of 10 µM GW7647X or 0.1% DMSO, for 48 h (STD), with fresh drug added at 24hr. Parallel cultures 
received repeat doses of either 10 µM GW327647X or 0.1% DMSO in 8hr intervals for 48hr (MULTI).  All cells were collected at 
48hr, and CYP4A37, CYP4A38 and CYP4A39 mRNA levels were quantified by real-time PCR (TaqMan) normalized to cyclophilin 
mRNA, and expressed as fold induction over CTL.  Data are expressed as means ± S.D. of triplicate measurement.

CTL CTL-Multi 10 µM 647 10 µM 647-Multi

C
YP

4A
37

 m
R

N
A

 
(fo

ld
 o

ve
r C

TL
)

0.0

0.5

1.0

1.5

2.0

CTL CTL-Multi 10 µM 647 10 µM 647-Multi

C
YP

4A
38

 m
R

N
A

(fo
ld

 o
ve

r C
TL

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

CTL CTL-Multi 10 µM 647 10 µM 647-Multi

C
YP

4A
39

(fo
ld

 o
ve

r C
TL

)

0

2

4

6

8

10

146



 

CHAPTER 5 

 

CONCLUSIONS 
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 Prediction of drug-drug interactions is an important part of drug development.  

Currently, primary human hepatocytes are the preferred model system to predict the potential 

for one type of drug-drug interaction, namely enzyme induction.  However, the limited 

availability and cost of primary human hepatocytes represents a major barrier to the utility of 

this model system in early stage drug discovery.  Therefore, identification of a surrogate 

species to predict human CYP induction would be of considerable value. 

 Beagle dog is widely used as a model in the pharmaceutical industry, particularly in 

preclinical toxicology, pharmacology and drug metabolism/pharmacokinetic studies.  

Previous studies have identified various CYP proteins in the beagle dog (see Chapter 1 for a 

detailed review); however, little information was available on the inducibility of these 

enzymes in dog liver by prototypic CYP-inducing agents such as phenobarbital or rifampin.  

As a result, it has remained unclear how the regulation of dog CYP gene expression, both in 

vivo and in vitro, relates to that of human. 

 Consequently, a major aim of the current dissertation work was to investigate the 

hypothesis that dog liver CYP enzymes are inducible in a manner corresponding to the 

orthologous human CYP enzymes.  To this end, prototypical rat and human CYP inducers 

were tested for their ability to induce dog CYP in vitro and in vivo (Chapter 2).  Treatment of 

primary cultures of male beagle dog hepatocytes with CYP inducers revealed that beagle dog 

expressed CYP1A, CYP2B, CYP2E, CYP3A and CYP4A and that the regulation of dog 

CYP expression seems to be more similar to that observed in human than rat.  For example, 

the well-characterized human CYP3A inducer rifampin also activated dog CYP3A 

expression in primary canine hepatocytes.  Importantly, rifampin is not an inducer of rat 

CYP3A.  This species-specific divergence in CYP3A induction can be explained by the 
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pharmacology of PXR activation in humans, dogs, and rats.  Thus, while rifampin is capable 

of binding and activating dog and human PXR, it shows now activity on the rodent receptor. 

A detailed examination of PXR activation performed by Moore et al. (Moore et al., 2002) 

suggests that several compounds including the environmental pollutant trans-nonclor and the 

orphan drug SR12813 are capable of strongly activating dog and human PXR but exhibit no 

activity towards murine PXR.  These results, in conjunction with the studies presented in 

Chapter 2, suggest that primary cultures of dog hepatocytes might represent an alternate 

model system to predict human CYP induction.  An extended comparison of the 

pharmacology of dog and human PXR activation and induction of CYP3A gene expression 

should yield valuable insights into the utility of the dog hepatocyte culture system 

characterized in Chapter 2. 

 In order to further examine dog CYP gene regulation, the time- and concentration- 

dependence of CYP induction was examined (Chapter 3).  For this purpose, time and 

concentration-response relationships were derived following treatment of primary dog 

hepatocyte cultures with prototypical CYP1A, CYP2B and CYP3A inducers, namely  -

naphthoflavone, phenobarbital and rifampin, respectively.  The compounds are well-

documented activators of the aryl hydrocarbon receptor and the orphan nuclear receptors 

CAR and PXR, respectively.  It was apparent from these studies that 48 h and 72 h after drug 

treatment were appropriate time points to monitor both mRNA expression and CYP enzyme 

activity.  Furthermore, while concentration-response relationships for induction of dog 

CYP1A, CYP2B and CYP3A by these inducers exhibited characteristics closer to human 

than rat, rifampin did not induce dog CYP2B highlighting a major species difference for the 

first time.  This result was surprising since multiple studies have indicated crosstalk in the 
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regulation of CYP2B and CYP3A subfamily members by  PXR and CAR (Wang and 

Negishi, 2003).  As outlined above, it is unlikely that this difference is due to pharmacology 

of dog PXR since dog CYP3A was efficaciously induced by rifampin.  Since rifampin has 

previously been shown to be an activator of dog PXR, this observation suggests that the lack 

of dog CYP2B induction by this compound could be due to structural differences in the 

regulatory regions of the dog CYP2B gene, although this possibility remains to be 

investigated.  Importantly, the phenobarbital-dependent induction of CYP3A-mediated 

testosterone 6 -hydroxylation was observed in dog hepatocytes. Since this activity is most 

likely mediated by CAR, these data suggest that the complex interplay between CAR and 

PXR reported on the rodent and human CYP3A promoters is conserved in dogs.  Taken 

together, these data indicate that the primary dog hepatocyte model characterized in Chapter 

3 is capable of supporting the aryl-hydrocarbon-, CAR-, and PXR-dependent transactivation 

of CYP expression observed in vivo (Chapter 2).  Moreover, the cross-regulation of CYP3A, 

but not CYP2B, by CAR and PXR is intact in beagle dog.  The significance of this 

observation is unclear but warrants further investigation using additional chemical tools such 

as the PXR ligands outlined above. 

 Although CYP4A isoforms have been isolated and characterized in multiple 

vertebrates, to date, little is know about the expression and inducibility of dog CYP4A 

isoforms.  The cloning, tissue expression and regulation of beagle CYP4A genes is described 

in Chapter 4.  Sequence analysis revealed that at least three CYP4A isoforms, namely 

CYP4A37, CYP4A38 and CYP4A39 are expressed in beagle dog.  Conservation of key 

amino acid, particularly in the active site region of the enzyme, suggests that dog CYP4A 

mRNA encodes active enzyme.  Evaluation of tissue expression revealed that dog CYP4A 
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levels are tissue dependent with relatively high levels found in kidney and liver, with much 

lower levels in lung, intestine, skeletal muscle and heart.  These results are in agreement with 

CYP4A tissue expression patterns in other species (e.g., rat and human) (Kimura et al., 1989; 

Nishimura et al., 2003; Patel et al., 1998; Zhang et al., 2002).  It was evident following 

treatment of primary cultures of dog hepatocytes with a potent PPAR  agonist that the 

CYP4A isoforms were not induced to an appreciable extent.  Importantly, expression of a 

previously characterized PPAR  target gene, namely HMG-CoA Synthase (Nagasawa et al., 

2004) was retained, suggesting that the apparent lack of CYP4A responsiveness was not due 

to a loss of PPAR  activity in this culture system.  Treatment of rat and human hepatocytes 

with clofibric acid results in a strikingly different CYP4A response, whereby rat CYP4A is 

markedly induced and human CYP4A expression is barely increased (Figure 5.1).  Thus, the 

lack of CYP4A induction observed in human and dog hepatocytes suggests that dog and 

human CYP4A are regulated in a comparable manner. 

 For many years it has been understood that treatment of rodents with the 

hypolipidemic drug clofibrate causes marked hepatomegaly characterized by peroxisome 

proliferation, hyperplasia, hypertrophy and ultimately hepatocarcinogenesis.  Although this 

phenomenon is known to be mediated by PPAR  (these effects are lost in mice harboring a 

disrupted PPAR  gene) the precise molecular mechanism responsible for these effects has 

remained elusive.  Importantly, humans are relatively refractory to these effects and 

clofibrate has been used for decades for treatment of dyslipidemia.  Although the reason for 

this species divergence in response to PPAR  activators is unclear, a number of studies have 

implicated CYP4A in the pleiotropic response to peroxisome proliferators observed in 

rodents (Simpson, 1997).  Furthermore, CYP4A has been shown to play a role in 
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maintenance of vascular tone via metabolism of arachidonic acid to the potent 

vasoconstrictor, 20-HETE.  Recently, animal studies have shown that inhibition of 20-HETE 

formation by treatment with selective CYP  -hydroxylase inhibitors can (1) reduce the initial 

fall in cerebral blood flow after subarachnoid hemorrhage in the rat (Kehl et al., 2002) and 

(2) reduce myocardial infarct size following ischemia-reperfusion injury in dogs 

(Nithipatikom et al., 2004).  A recent review article suggests that inhibition of selected CYPs 

as an approach to the treatment of myocardial infarction should be further developed 

(Doggrell, 2004). 

 Several plausible theories have been put forth to explain species differences in 

peroxisome proliferation, and thus, CYP4A induction.  Firstly, studies have shown that while 

the PPAR  DBD is highly conserved across species, there are amino acid differences in the 

PPAR  LBD that might confer species differences, analogous to the mechanism put forth to 

explain species differences in CYP3A induction (LeCluyse, 2001).  A second supposition to 

explain species differences in target gene induction is the observation that PPAR  levels in 

dog, guinea pig and human hepatocytes are an order of magnitude lower than in rodents 

(Choudhury et al., 2000; Nagasawa et al., 2004).  Thirdly, it is possible that the CYP4A gene 

of non-inducible species lacks a functional response element, in contrast to rat CYP4A1 and 

rabbit CYP4A6, for which a functional element has been reported (Aldridge et al., 1995; 

Palmer et al., 1995).  Another hypothesis to explain the CYP4A species difference is that 

non-responsive species may lack an activator or have an active repressor of PPAR  function.  

Finally, recent studies have identified phosphorylation as a regulator of PPAR ; however, 

species differences have not been evaluated regarding this post translational modification. 
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 Recent cloning and characterization of dog PPAR  revealed the LBD is 97% 

identical to that of human and 92.4% identical to that of rat  (Nagasawa et al., 2004).  

Nagasawa et al. demonstrated that another PPAR  target gene, HMG CoA synthase, was 

markedly induced to an equivalent extent in rat and dog hepatocytes following treatment with 

a potent PPAR  agonist, KPL, whereas treatment with fenofibrate and Wy,14643 induced 

this target gene in rat, but not in dog hepatocytes.  Interestingly, KPL was demonstrated to be 

more potent against dog than rat PPAR  with EC50 values of 0.48 and 10.01 µM, 

respectively (Nagasawa et al., 2004).  If PPAR  LBD differences were responsible for 

species differences in target gene response, the rat HMG CoA synthase response would not 

be expected after treatment with KPL.  Furthermore, studies have shown that PPAR  ligands 

have differential effects on PPAR  target genes in other non-responsive species.  For 

example, while CYP4A induction does not occur to an appreciable extent in human 

hepatocytes after treatment with PPAR  ligand, the PPAR  target genes CPT1A and HMG 

CoA synthase are markedly upregulated (Napal et al., 2005) (Lawrence et al., 2001) (Figure 

5.2).  The most compelling evidence suggesting the PPAR  LBD does not mediate species-

specific CYP4A induction was presented in a study utilizing a PPAR  humanized mouse 

model (expressing human PPAR  but not mouse PPAR  in the liver) (Cheung et al., 2004).  

Treatment of PPAR  humanized mice with Wy-14,643 and fenofibrate resulted in a robust 

induction of mouse CYP4A (equivalent to wild type mice), an outcome that would not be 

expected if ligand affinity was different between mouse and human PPAR .  Taken together, 

these results suggest that other factors besides PPAR  structure dictate species differences in 

CYP4A induction. 
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 One theory suggests that species differences in PPAR  target gene induction result 

from differences in hepatic PPAR  expression.  For example, it has been established that 

mouse and rat has much higher levels of expression of the receptor in the liver than does 

human (Palmer et al., 1998).  CYP4A is highly inducible in hamster even though hamster 

PPAR  levels are intermediate compared to human and rat, discounting the importance of 

absolute nuclear receptor levels to elicit a robust CYP4A induction response (Choudhury et 

al., 2004).  A difference in PPAR  expression levels is likely to be an oversimplification for 

species differences in CYP4A induction since non-CYP4A inducible species are clearly able 

to undergo some PPAR  target gene responses.  For example, HMG CoA synthase and 

CPT1A have been shown to be markedly upregulated following treatment of human 

hepatocytes with Wy14,643, suggesting that other cellular factors dictate the species specific 

CYP4A induction response (Ammerschlaeger et al., 2004). 

 In rabbit, two imperfect DR-1 motifs were identified approximately 677bp upstream 

of the CYP4A6 gene, and these could be bound by PPAR  (Palmer et al., 1995).  Further 

work demonstrated that the DR-1 motif is required for the transcriptional activation of the 

CYP4A6 gene by peroxisome proliferators.  Subsequently, characterization of rat CYP4A1 

regulation by PPAR  revealed a functional PPRE approximately 4,300bp upstream of the 

gene (Aldridge et al., 1995).  Interestingly, a second element was located 35 nucleotides 

further upstream; however this element failed to bind PPAR /RXR  heterodimers and was 

unresponsive to Wy-14,643 in gene transfection assays, suggesting that the more distal 

element was not active. 
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 More recently, the gene encoding human CYP4A11 was isolated and its complete 

genomic sequence determined.  Inspection of the genomic sequence revealed there was no 

PPRE within the 5'-promoter  region flanking the CYP4A11 gene (Kawashima et al., 2000).  

It should be noted however, that these authors only searched ~2300bp upstream of the 

CYP4A11 transcription start site, presumably due to the lack of any additional sequence 

information at the time.  With the conclusion of the human genome project, detailed 

sequence information from thousands of genes is readily available.  Examination of ~10kb of 

sequence upstream of CYP4A11 transcription start site revealed the presence of two putative 

PPREs, one of which was nearly identical in location to the previously identified rat PPREs 

(Figure 5.3).  As part of the work for this dissertation, electromobility shift assays were 

conducted to determine whether either of these novel response elements could interact with 

PPAR    Interestingly, neither of the putative CYP4A11 PPREs bound PPAR  in these 

experiments, whereas strong binding was observed with the previously characterized rat 

CYP4A1 PPRE (Figure 5.4).  Notably, a PPRE has not been identified from a species that 

lacks inducible CYP4A, strongly suggesting a role for the PPRE in mediating species 

differences in CYP4A induction. 

 Speculation as to how some species adapted an inducible form of CYP4A, or 

alternatively, how some species adapted a non-inducible form of CYP4A through evolution, 

is a fascinating exercise.  There are well documented studies proving that mouse, rat, hamster 

and rabbit CYP4A is highly inducible, whereas guinea pig, monkey and human CYP4A is 

weakly inducible, at best.  Most recently, the work presented in this dissertation clearly 

shows that dog CYP4A is not inducible, relative to the rodent CYP4A (Chapter 4).  

Preliminary studies indicate that CYP4A is not inducible by clofibrate in fish or the 
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American alligator (Emblidge and Delorenzo, 2006; Ertl et al., 1999), suggesting the 

primitive species did not have an inducible form of this enzyme.  It has been suggested that 

all P450s evolved from a common ancestral P450 gene, likely to have first evolved 

approximately 3.5 billion years ago (Loomis, 1988). 

 Throughout its evolutionary history, the CYP superfamily is thought to have 

undergone repeated rounds of gene and genome duplication.  CYP4 is thought to be one of 

the oldest CYP families, having evolved about 1.25 billion years ago as a way to maintain the 

membrane integrity of early eukaryotic cells (Nebert and Gonzalez, 1985).  Phylogenetic 

analysis of CYPs supports the notion that a dramatic expansion of several gene families 

seems to have occurred approximately 400 million years ago.  It has also been suggested that 

CYPs represent one of the most rapidly evolving gene families, presumably due to 

continuously changing exposure to toxic compounds produced by plants (Danielson, 2002).  

Most multigene families exist in a continuous state of flux, often times diverging by gene 

duplication events.  After such an event, the resulting gene copy (or copies) will 

spontaneously mutate subject to pressure of natural selection, as long as one copy maintains 

its original function.  The duplicated copy, free to drift genetically, becomes a pseudogene, 

and in some cases takes on a novel function to enhance the sustainability of the organism 

(Danielson, 2002). 

 Human has two CYP4A isoforms, CYP4A11 and CYP4A22, that appear to have 

duplicated recently which suggests that the ancestor of rodent and human had a single, likely 

non-inducible, CYP4A gene (Nelson et al., 2004).  It seems possible that rodents (with the 

exception of guinea pig) attained an inducible CYP4A due to gene duplication events, 

potentially by expanding upon the PPRE-like sequence identified upstream of the human 
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CYP4A11 gene as part of work conducted for this dissertation (Figure 5.3).  Four CYP4A 

forms have been identified in rat, namely, CYP4A1, CYP4A2, CYP4A3 and CYP4A8.  

While CYP4A1 is the most studied of the four rat CYP4A isoforms, sequence analysis 

indicates that rat CYP4A1 gave rise to CYP4A2 and CYP4A3, all three of which are 

inducible isoforms.  Although not well characterized, rat CYP4A8 has not been shown to be 

inducible and it differs considerably in sequence from the other rat CYP4A isoforms.  It is 

interesting to theorize that rat CYP4A8 exists as a remnant of a non-inducible ancestral rat 

CYP4A isoform that may have given rise to the three inducible CYP4A isoforms in this 

species.  While it seems feasible that a gene duplication event gave rise to inducible CYP4A 

in certain rodent species, it is unclear as to why this event might have occurred. 

 One of the most perplexing species differences in CYP4A response to peroxisome 

proliferators is the lack of induction in guinea pig.  Guinea pig, like mouse, rat, hamster and 

rabbit, belongs to the Phylum Chordata, Subphylum Vertabrata, Class Mammalia, Order 

Rodentia, although the classification of guinea pig as a rodent has been debated (Graur et al., 

1991).  Since these species are closely related, it seems likely that guinea pig was not 

susceptible to the same environmental pressure as other rodents that invoked inducible 

CYP4A.  Diet is a logical culprit for evolution of CYP4A species differences; however, on 

the surface its role is unclear since like mouse, hamster and rabbit, guinea pig is a vegetarian 

species, whereas rat is omnivorous.  However, guinea pig might not have faced the same 

environmental pressure as other rodents, suggesting that regional dietary differences could 

have caused evolution of inducible CYP4A in rodents.  Interestingly, mouse, rat and hamster 

seem to have evolved in Asia, whereas guinea pig is indigenous to South America. 
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 Interestingly, guinea pig, like human and other primates are not able to synthesize 

ascorbic acid and therefore must attain vitamin C from the diet.  While this commonality 

between species that lack a CYP4A induction response is intriguing, it is not likely correlated 

since dog is able to synthesize ascorbic acid but is not responsive to CYP4A inducers.  There 

are numerous biochemical, environmental, geographical, etc. connections that can be drawn 

between inducible and non-inducible species; however, there is no clear answer as to why the 

CYP4A gene family evolved inducible isoforms. 
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Figure 5.1 CYP4A induction in cultured rat (A) and human (B) hepatocytes after 
treatment with clofibric acid.  Inset (B): human CYP4A11 induction with different scale 
highlighting a concentration response relationship for clofibric acid induction of CYP4A.  
Data are presented as mean   SD of triplicate measurements in a single hepatocyte culture.  
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Figure 5.2  Induction of the PPAR  target genes CYP4A11 and carnitine palmitoyl acyl-
CoA transferase 1 (CPT1A) in cultured human hepatocytes following treatment with PPAR  
ligand, GW327647X.  Horizontal line represents control level (0.1% DMSO) for each target 
gene.  Data are presented as mean   SD of triplicate measurements in a single hepatocyte 
culture.  
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Figure 5.3 Putative PPAR  response elements identified from the 5-‘flanking region of 
the human CYP4A11 gene (NM_000778) using the nuclear receptor binding site algorithm 
NUBIScan.v2.1. 
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Figure 5.4  Electromobility shift analysis was performed using radiolabeled, double-
stranded oligonucleotides that correspond to the rat DR1 containing element identified 
previously or the two putative human DR1 elements at -4.4kb and -7.2 kb upstream of a 
transcription start site.  PPAR  and RXR protein was translated in vitro prior to use in 
binding assays.  Numbers above figure indicate volume of each component added in µL.  
Arrow indicates position of PPAR /RXR/DR-1 oligonucleotide complex. 
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