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ABSTRACT 
As the North Carolina Triangle region experiences rapid growth and development, water quality 
becomes an increasingly pertinent issue. Increased nutrient loading in the Jordan Lake drinking 
reservoir causes toxic cyanobacterial blooms that pose public health concerns. The Jordan Lake 
Nutrient Study seeks to determine how land use within this region affects the transport of 
nutrients and other contaminants. Over the course of two years, our team collected water level, 
streamflow, and specific conductance observations at five-minute intervals using automated 
sensors. Specific conductance indicates the concentration of dissolved ions present in water in 
µS/cm. Typically, this metric is high in ground water and discharge yet almost absent in rainfall, 
providing a measurement of contaminants traveling over the landscape that excludes 
contaminants added by rainfall. We examined changes in contaminant concentrations under 
changing flow conditions. Storm events are one such change because they cause a sharp increase 
in flow followed by a gradual recession. Specific conductance exhibits a delayed response to 
these changing flow conditions that we characterized as dilution (decreased specific 
conductance) or enrichment (increased specific conductance). We used a hidden Markov model 
to iteratively filter out storm behavior from intermittent flow conditions. This model, paired with 
a peak identification function in R, allowed us to distinguish single storm events in large flow 
datasets. For each storm, we performed hysteresis analyses by plotting flow versus specific 
conductance and assessing the response of specific conductance. Our preliminary results suggest 
distinct behaviors of specific conductance between sites. During storms, landscapes with more 
intense development and flashier (lower duration and higher change in flow) storms often 
showed dilution, while forested, less developed sites exhibited either enrichment or dilution. 
These findings support land use as a driving factor of contaminant transport and prompt further 
investigation into this relationship using a wider range of land uses. 

INTRODUCTION 
Eutrophication is the process by which excess nutrients in a body of water lead to prolific growth 
of algae. When the algae die, much of the dissolved oxygen is depleted during decomposition, 
leading to hypoxia and massive death of aquatic organisms (US EPA 1996a). In addition to 
ecological impacts, toxins released by cyanobacteria in these algal blooms may negatively 
impact human health (Codd, 2000); remediation steps taken by municipalities to reduce and 
counteract the negative consequences of eutrophication pose economic challenges to the 
impacted communities (Carpenter et al., 1998). Due to these ecological, public health, and 
economic concerns, eutrophication has been the focus of many studies since the 1960s 
(Vollenweider; 1970; Schindler, 1974; Carpenter et al., 1999; Smith, 2003; Søndergaard et al., 
2003; Conley et al., 2009). National organizations in countries such as Australia and the United 
States as well as international organizations including the Organization for Economic 
Cooperation and Development and the World Health Organization recognize and address 
eutrophication as a crucial issue (OECD, 1982; US EPA 1996a; WHO, 1997; Smith et al., 1999; 
Codd, 2000). Such studies and organizational bodies seek to explain driving mechanisms behind 
eutrophication in an effort to devise more effective prevention and mitigation strategies. 

The primary nutrients responsible for eutrophication are excess Nitrogen (N) and Phosphorus (P) 
(Smith et al., 1999). N and P are limiting factors of biological productivity in both aquatic and 
terrestrial ecosystems and are introduced into streams via industrial processes in the form of 



wastewater, fertilizers from agriculture, and runoff from urban environments (Carpenter et al., 
1998; Smith et al., 1999; Codd, 2000). While both point and nonpoint sources contribute to 
nutrient runoff, varying land use practices on the nonpoint scale are the primary contributor 
(Smith et al., 1999). Headwater streams are the origin for just under half of the Nitrogen in larger 
order streams in the United States (Royer et al., 2004; Alexander et al., 2007). These nutrients 
mobilize via discharge during precipitation events (Sharpley et al., 1994; Hessen et al., 1997; 
Paerl, 2006). Storms in particular cause a major flux in runoff that moves nutrients across the 
landscape and into streams to varying degrees depending on storm intensity and duration (US 
Army, 1977; Rimer et al., 1978; Jarvie et al., 2006). All of these studies, however, sampled 
streams ranging from an hourly to weekly rate. As most storms last only a few hours, the 
resolution at which they characterized stream behavior during storms was limited to just a few 
measurements per storm. While these studies did find that storm discharge was responsible for 
transport of heavy nutrient loads, they could not determine the mechanisms of that transport. 
Historically, discharge carrying heavy nutrient loads were attributed to agricultural land use 
practices (Sharpley et al., 1994; Hessen et al., 1997). While agriculture remains a major culprit in 
the transport of nutrients, other land use practices have since been linked to eutrophication. 
Human activities such as urban development and population growth have also been connected to 
the mobilization of nutrients into streams (Jarvie et al., 2006; Paerl, 2006; Mörth et al., 2007; 
Savage et al., 2010). 

There have been many studies of land use and eutrophication of major rivers and coastal 
drainage areas (Ning et al., 2002; Paerl, 2006; Mörth et al., 2007; Savage et al., 2010). Many 
such studies attempt to model nutrient loading in watersheds to give better insight into effective 
mitigation strategies, yet a common limitation exists (Mörth et al., 2007)—how do nutrients 
travel from their points of origin? Due to the important role that headwaters play as a source of 
nutrients, understanding how nutrients move from headwaters over a variety of landscapes would 
allow us to better model nutrient loading from origin to sink. While various studies have worked 
to characterize nutrient flux over a single land use such as agricultural fields or urban areas 
(Lawler et al., 2006; Alexander et al., 2007), little research details the effects of different land 
use practices on nutrient transport in headwater streams. 

The Piedmont region of North Carolina offers a unique landscape to study eutrophication 
because the region sits at the headwaters of multiple drainage basins leading to the Atlantic 
Ocean including the Catawba, Broad, and Yadkin Pee-Dee River Basins. The Piedmont is 
actively undergoing rapid population growth and development, which takes place adjacent to still 
undeveloped, forested land. Chapel Hill, North Carolina is one such city in the Piedmont that 
possesses a wide gradient of land uses within and around the growing city’s limits. This includes 
urban and residential land use within the city, with ample forested lands just outside the town. 
Chapel Hill contains headwater streams that make up the Jordan Lake watershed. The North 
Carolina government continues to combat water quality threats from eutrophication at Jordan 
Lake, and an effective mitigation strategy has yet to be achieved (NC DEQ, 2009). 

The UNC Nutrient Management Study is a multi-year, cross-disciplinary study that aims to 
determine effective strategies for combating eutrophication in Jordan Lake. The primary goals of 
this study are to characterize nutrient transport across varying land uses in the Jordan Lake 
watershed and to gain a better understanding of nutrient transport from nonpoint sources across 
the landscape. These goals not only involve assessing movement of nutrients across a variety of 
landscapes, but also during a variety of flow conditions. For data collection, the study uses in-



situ sensors that measure water-level, streamflow, and specific conductance in 5-minute 
intervals. Data collection began in the summer of 2017 and will continue through the summer of 
2019. With 10 study sites spread across Chapel Hill and Durham, the dataset has quickly grown 
to include roughly 120,000 points per site in one year. 

In this thesis, I focused on storm events: when flow conditions changed and nutrients were more 
likely to mobilize. Elevated flow caused by storm events has been linked to the transportation of 
nutrients throughout the watershed (Jarvie et al., 2006; Butturini et al., 2008; Vaughan et al., 
2017). Most studies analyzing stream behavior during storm events do so with fewer events 
and/or fewer sites (Kobayashi et al., 1999; Lawler et al., 2006; Vaughan et al., 2017). Because 
the Jordan Lake Nutrient Management Study includes two years of high-resolution data at ten 
sites, I developed an automated method to extract hundreds of storms from hundreds of 
thousands of points worth of data. This storm isolation method was designed for general use that 
may be applied to large flow datasets beyond this study. Once I isolated storms, I characterized 
the relationship between flow and specific conductance during storm events across landscapes 
with varying degrees of urban development. Through this study, I aim to develop methodology 
that improves our use of high temporal resolution data, and improve understanding of how urban 
landscapes alter transport and nutrient loading. 

METHODS 

Site Description 

Land use was characterized for headwater watersheds in the Jordan Lake Watershed. Four study 
watersheds where selected for this study, spanning a gradient in land uses, which were assessed 
using the 2011 National Land Cover Database (Figure 1 & Table 1). Each sampling site is 
located at the pour (drainage) point of the watershed. The Tallyhoe watershed was mostly 
forested, with low road density and low development. Rogers Road was moderately developed 
with higher road density, and was the only site where the majority of residents used septic 
systems for waste management. The Burlage watershed was more developed with a moderate to 
high road density and was connected to sanitary sewer pipelines. Of the four sites, Booker Trib 
was the most intensely developed watershed, with the highest road density and impervious 
surface cover. 



	

Figure	1.	The	four	study	sites	are	all	sub-watersheds	of	the	larger	Jordan	Lake	Watershed	
(bottom-left).	Each	map	illustrates	the	land	uses	within	each	watershed,	with	a	star	
representing	the	location	of	the	sampling	site.	



	
Watershed Site 
Name 

Area 
(𝐤𝐦𝟐) ISC 

Road Density 
(𝐦/𝐤𝐦𝟐) 

Parcel Density 
(per 𝐤𝐦𝟐) 

Sewer Density 
(𝐦/𝐤𝐦𝟐) 

Tallyhoe .95 2.6% 4543 41 0 
Rogers Road .99 9.0% 5778 243 1750 
Burlage 1.53 20% 7870 167 5598 
Booker Trib .98 24% 9557 307 7178 

Table 1. Four study sites with varying land use practices. ISC stands for impervious surface 
cover. 

Date Collection 

Data collection at these sites started in June, July, and September of 2017 using in-situ sensors, 
and continued in 5-minute intervals to present day. We used a HOBO U24 probe to measure 
specific conductance, using temperature and electrical conductivity, and a HOBO U20 for water 
level (Onset, Cape Cod, Massachusetts). These water level measurements were used in 
combination with velocity profiling by electromagnetic velocity sensors (Marsh-McBirney Flo-
Mate, Frederick, Maryland), dilution gauging, and acoustic doppler profiling (SonTek IQ+, San 
Diego, California) to develop level-discharge rating curves. These rating curves gave us 
estimates of flow in 5-minute intervals. 

Storm Isolation 

I isolated storm events from our dataset using streamflow observations. Storm events generate a 
unique spike followed by a gradual decline in flow that can be isolated from non-storm behavior. 
Previous studies have automated some parts of the isolation process (Hammond & Han, 2006; 
Vaughan et al., 2017), yet delimitation of the storm’s end has posed major challenges since the 
recession is often gradual, and, thus, difficult to pick out from base flow conditions. The high-
resolution data also proved difficult to process due to the large amount of noise generated by 5-
minute interval measurements. 

The statistical software R was used to process data and build a repeatable and automated filter 
for delineating peaks in flow as storm events. I first reduced noise using locally weighted 
smoothing (LOESS, stats package), and performed an estimated baseflow-quickflow separation 
(EcoHydRology package). Isolating quickflow allowed storm detection to be more sensitive to 
changes in flow due to discharge as opposed to other processes such as diurnal fluctuations 
brought on by evapotranspiration or sensor error. Peaks were identified in quickflow, using the 
peakpick function (peakPick package), which outputs local maximums and ignores short spikes 
that could be attributed to noise. To prevent flashy storms from being classified as noise, I 
normalized quickflow down to values between 0 and 1 by dividing each point by the maximum 
flow. Two quickflow peaks needed to be to be at least 48 points (4 hours) apart to be considered 
separate storms. A point also needed to be at least three standard deviations above the mean of 
the surrounding 20 data points to be a peak. To prevent noise from being detected as peaks, I set 
a threshold for discharge, below which a peak could not be considered a storm. The discharge 
threshold was set at three times the mean of all discharge values at a given site. Thresholds 



below this value resulted in an exponential increase in peak detection at all sites, which were 
attributed to noise. 

From the identified storm peaks, I used a hidden Markov model to identify the start and end of 
each storm. The hidden Markov model has been used to evaluate rainfall occurrence (Gabriel & 
Neumann, 1962; Hughes et al., 1999); however, we are among the first to apply the model to 
measurements of flow to find storm events. When implementing the model, I differentiated 
between non-storm, storm, and flux states, where flux marked fluctuation in quickflow that was 
not necessarily a storm. At each point, the model predicted the probability of transitioning from 
one state to another. For example, during quickflow fluctuation the model predicted the 
probability that each measurement of flow would transition from a flux to a storm point, 
providing an estimation of the point at which the storm began. Each storm event was, thus, 
padded on either side with the flux state—the period of fluctuation in quickflow before and after 
the storm. I marked the first flux state point as the beginning of the storm and final flux point as 
the end of each storm (Figure 2). Sites with less impervious surface cover, however, generated 
less distinct changes in flow during storms. Tallyhoe, especially demonstrated smaller changes in 
quickflow during storms, so I adjusted the method at Tallyhoe to only mark storm states as 
storms. Altogether, the four study sites generated 189 storm events. 

	

Figure	2.	Time	series	of	quickflow	in	cubic	meters/second	at	Burlage.	Each	shaded	region	
marks	an	individual	storm	outputted	by	the	model.	



Date Analysis 

The start and end times for each storm were used to isolate storm data for analysis of flow versus 
specific conductance. Flow and specific conductance variables exhibit a hysteretic relationship 
because specific conductance shows a delayed response to changes in flow (Kobayashi et al., 
1999; Clark et al., 2016). To characterize the relationship between the two variables, specific 
conductance was plotted against flow for each storm event to generate the even hysteresis curve. 
For each hysteresis, I determined the height—range between the maximum and minimum 
specific conductance—and the width—range between maximum and minimum flow. I then used 
the width and height to calculate the normalized width and height magnitude of each storm using 
the following equations: 

Normalized Flow (Q): %&'(	*%&+,
%&'(

 

Normalized Specific Conductance (SC): -.&'(*-.&+,
-.&'(

 

To evaluated the behavior of each storm hysteresis, I computationally determined between 
enrichment and dilution. Enrichment (increase in specific conductance) took place if the third 
quartile value of specific conductance during a storm was greater than the specific conductance 
at the start of the storm. Dilution (decrease in specific conductance) took place if the third 
quartile specific conductance value during the storm was lower than at the start of the storm. I 
verified this method by looking at five hystereses from each site and assessing the direction by 
visual inspection. If a hysteresis demonstrated anticlockwise directionality, it was considered to 
be enriching, and clockwise behavior was labeled as dilution (Vaughan et al., 2017). Four out of 
five storms at Burlage and Booker Trib showed agreement between the computationally 
determined response with the visual verification, three of five agreed at Rogers Road, and all 
storms at Tallyhoe were a match. The computational method was effective for single peak storms 
that yielded a circular hysteresis. Hystereses with more complex shapes and multiple peaks 
confounded the results. Rogers Road especially, produced more of these complex storms that 
proved difficult to analyze. 

Many storm events during the winter had highly variable measurements of specific conductance 
as a result of salts and brines laid out on roads to improve driving conditions. Runoff from roads 
carried these salts and caused major spikes in specific conductance measurements. I did not 
account for road salts in my analysis of nutrient movement; thus, storms that demonstrated these 
irregular spikes in specific conductance during the winter months were removed. I identified 
storms to remove by visually choosing a threshold at each study site above which specific 
conductance was attributed to road salts. Sites needed different thresholds because they showed 
different average specific conductance measurements. Forested sites, for instance, exhibited 
much lower specific conductance measurements during storms, and received fewer road salt 
inputs. Therefore, these sites needed a lower specific conductance threshold to catch and 
eliminate winter storms impacted by road salts. I also removed two non-winter storms from both 
Burlage and Rogers Road that showed extraordinarily high specific conductance measurements. 
By removing these outliers, I reduced my dataset by 17.4% to a total of 162 storms. 



RESULTS 
During storms, specific conductance exhibited a hysteretic response to changes in flow that were 
characterized as enrichment (increase followed by a slow decline) or dilution (decrease followed 
by a gradual climb). The normalized width and height from the storm hystereses were plotted, 
and grouped by specific conductance response (Figure 3) and relative storm flashiness, which 
describes the intensity of change in flow (e.g. flashier storms have a higher change in flow over a 
shorter period of time) (Figure 4). Boxplots were also generated illustrating magnitude of flow 
(Figure 5) and magnitude of specific conductance (Figure 6) grouped into different boxplots by 
relative flashiness. The maximum specific conductance of each storm was also plotted in 
chronological order of occurrence, and each storm was grouped into the season in which it 
occurred (Figure 7). Last, the same plot was generated without excluding outlier storms (Figure 
8). 

Plots of normalized magnitudes of storms (Figure 3) suggested a strong relationship between 
change in flow and specific conductance during storms. Change in specific conductance and flow 
at the two most developed sites–Booker Trib and Burlage–was highly correlated, but the 
variance in specific conductance explained by flow became much less significant at less 
developed sites. Linear regression between these two variables yielded an R-squared of .732 at 
Booker Trib and .773 at Burlage, and p-values less than .001 at both sites. At the less developed 
Rogers Road, the R-squared fell to .132, with a p-value less than .01. The least developed site—
Tallyhoe—showed an even smaller R-squared of .094 and p-value less than .05. Specific 
conductance and flow did not exhibit a linear relationship at these sites with less urban 
development. While all sites demonstrated statistically significant p-values from linear 
regression, only Burlage and Booker Trib generated R-squared values supporting a linear 
relationship between the two variables. 



	

Figure	3.	Normalized	flow	magnitude	versus	normalized	specific	conductance	magnitude	of	
each	storm	at	each	study	site.	Shaded	region	indicates	a	95%	confidence	interval.	Color	of	
each	storm	is	determined	by	whether	dilution	or	enrichment	occurred	during	that	storm.	

Discrepancy amongst sites also appears when grouping storms according to specific conductance 
response—less developed sites exhibited dilution more than enrichment, while more developed 
sites diluted more often (Figure 3). Burlage consistently exhibited dilution during its 37 storms. 
Booker Trib, on the other hand, exhibited enrichment in 25.8% of storms (n=31) and dilution in 
74.2%. Tallyhoe and Rogers Road exhibited enrichment most frequently. Tallyhoe enriched 
during 30.4% of storms (n=46) and diluted in 69.6%, and Rogers Road exhibited enrichment in 
35.4% (n=48) and dilution in 64.6%. At Booker Trib and Rogers Road enrichment mostly 
occurred during storms with little change in flow and specific conductance. Tallyhoe mostly 
enriched during storms with little variation in specific conductance. 

Storms at more developed sites with higher flow and specific conductance magnitudes also 
exhibited a faster and more drastic change in flow (higher flashiness) (Figure 4). Less developed 
sites demonstrated no apparent relationship between flashiness and variation in flow. This 
discrepancy amongst sites was supported by boxplot representations that compared relative 
flashiness to normalized specific conductance and flow magnitude (Figures 5&6). In both 



boxplots, flow and specific conductance magnitude increased with relative flashiness at Booker 
Trib and, more weakly, at Burlage. Less urbanized sites showed no apparent relationship 
between flashiness and specific conductance or flow. 

	

Figure	4.	Normalized	flow	magnitude	versus	normalized	specific	conductance	magnitude	
with	a	regression	line.	The	shaded	region	marks	a	95%	confidence	interval.	The	color	of	each	
storm	is	determined	by	the	quartile	of	flashiness	it	falls	under	for	that	study	site	(e.g.	first	
quartile	storms	were	the	least	flashy	at	that	site).	



	

Figure	5.	Magnitude	of	flow	of	each	storm	grouped	into	boxplots	by	relative	flashiness.	

	

Figure	6.	Magnitude	of	specific	conductance	of	each	storm	grouped	into	boxplots	by	relative	
flashiness.	



Plotting the maximum specific conductance for each storm (Figure 7) indicated that Booker Trib 
and Burlage had storms with higher specific conductance maximums ranging from 150-400 
µS/cm. Storms at Rogers Road and Tallyhoe varied less and showed lower measurements of 
specific conductance, ranging from 50-250 µS/cm. Including outlier storms revealed that winter 
storms especially showed high specific conductance measurements (Figure 8). Winter storms at 
both Burlage and Booker Trib showed maximum specific conductance measurements at least 
several hundred µS/cm above almost all other storms at that site. Rogers Road and Tallyhoe also 
showed several winter storms with higher maximum specific conductance measurements than 
other storms, but only 100-200 µS/cm greater. 

	

Figure	7.	Maximum	specific	conductance	measurement	from	each	storm.	Storms	are	plotted	
in	chronological	order	from	left	to	right.	Color	is	based	off	of	the	season	in	which	that	storm	
took	place.	



	

Figure	8.	Maximum	specific	conductance	measurements	from	all	observed	storms.	Storms	
inside	black	circles	were	excluded	from	analyses	due	to	abnormally	high	specific	conductance	
measurements.	

DISCUSSION 
These findings suggest that during small, low-intensity storms, enrichment of dissolved ions 
tends to occur, while during large, flashier storms dilution of dissolved ions tends to occur. These 
patterns apply most strongly to the most developed site (Booker Trib), and apply less well to the 
less developed sites (Rogers Road and Tallyhoe) where flashier storms still showed enrichment. 
This lack of consistency between sites is likely due to higher potential for infiltration across 
landscapes draining into less developed sites. As water drains over the surface of a landscape 
into the stream, it transports contaminants on the surface into streams, but water that infiltrates 
also carries subsurface pollutants (Pitt et al., 1999). If sites with high potential for infiltration 
received significant inputs from groundwater sources, then streams at those sites may exhibit 
increased enrichment due to inputs from underground sources. In particular, Rogers Road may 
have exhibited this behavior because septic systems are the primary sewage treatment of 
residents in that drainage area, and contaminants likely leached from those systems into the 
groundwater (Swartz et al., 2006). The stream at Rogers Roads also enriched most often—35.4% 
of storms—which supports the theory that the site received contaminant input from surrounding 
septic systems. Landscapes draining into Booker Trib and Burlage, on the other hand, have 
greater impervious surface cover, suggesting that stormwater primarily came from surface 
runoff, leading to dilution. Several studies have connected stormwater infiltration to 
contamination of groundwater (Ku & Simmons, 1986; Pitt et al., 1999; Fischer et al., 2003), and 
interactions between surface and subsurface water also lead to exchange of contaminants 
(Sophocleous, 2002). While these surface-groundwater interactions are complex and difficult to 



quantify, the results of this study make clear the need to further investigate those relationships 
during storms for watersheds with higher infiltration potential. Landscapes with more impervious 
surfaces, however, seem to mostly receive surface inputs during storms. 

Specific conductance and flow exhibit a more direct relationship in sites with higher 
development. At Booker Trib and Burlage, the magnitude of specific conductance and flow 
exhibited a strong linear relationship, indicating that storms with higher ranges of flow would be 
more likely to have higher ranges in specific conductance. Again, this discrepancy is likely due 
to a more direct transport of contaminants over the surface of the landscape at sites with higher 
impervious surface cover than sites with more potential for infiltration. This discrepancy, too, 
prompts further investigation on interactions between groundwater and surface water, and 
supports that streams in watersheds with more impervious surfaces are more dependent on 
stormwater inputs from the surface. 

The higher specific conductance measurements during storms indicate that nutrients mobilize in 
surface discharge over more developed landscapes. Sites with more urban development 
contribute more contaminants as indicated by the higher specific conductance measurements. 
These findings are consistent with other studies investigating stormflow discharge across varying 
land uses (Rimer et al., 1978; Lee & Bang, 2000). While streams in developed watersheds may 
receive some nutrient inputs from groundwater, the higher impervious surface cover supports 
that most nutrients enter the stream as surface runoff. As storms result in surface runoff, they 
serve as the primary contributor of nutrient transport in urban watersheds (Lee & Bang, 2000; 
Lawler et al., 2006; Butturini et al., 2008; Vaughan et al., 2017). The Jordan Lake Nutrient Study 
should continue investigation into storm events as a major transporter of nutrients, and the larger 
study will analyze movement of specific contaminants during storm events. By determining the 
flow paths of specific nutrients throughout the landscape, the larger study will provide a better 
picture of nutrient transport across the larger watershed, and contribute information needed for 
development of effective mitigation strategies. 

Winter storms impacted by roads salts and brine introduced new variables that were not covered 
in this study, but generated significant specific conductance responses, especially at more 
developed sites. The large change in specific conductance at sites with more urban development 
compared to noticeable but less drastic changes at more forested sites merits attention. Booker 
Trib and Burlage are both more likely to receive direct inputs from roads treated with road salts 
and brine, and their higher degree of impervious surface cover could also facilitate transport of 
those salts. While it is possible that Rogers Road and Booker Trib also receive salt inputs, fewer 
impervious surfaces and fewer treated roads within those sub-watersheds are likely to reduce 
transport and volume of salts reaching the streams. It has been shown that as percent of 
impervious surfaces increases, up to half of applied salts can enter surface water discharge 
(Marsalek, 2003). While road salts were not the focus of this study, the impacts of large amounts 
of salt inputs applied across urban to rural transition landscapes, including contamination of 
groundwater, reduced biodiversity, and poorer drinking water quality, may warrant further 
examination (Crowther & Hynes, 1977; EC & HC, 2001; Marsalek, 2003). 

Further analyses could be performed on the specific conductance and flow hystereses to obtain 
more information. Other studies have utilized a new hysteresis index for interpreting hysteresis 
of flow versus a response variable such as turbidity or nitrate yield during storms (Lloyd et al., 
2016; Vaughan et al., 2017). This index can be used to determine the direction of a hysteresis, 



which would help to validate and/or improve the accuracy of my results. Other studies have also 
used a flush index that compares the initial contaminant concentration with the contamination 
during peak discharge of the storm (Butturini et al., 2008; Vaughan et al., 2017). While this flush 
index is fairly similar to my own, it could also be used to improve and/or validate my results. 
Future studies could also improve upon the storm isolation method developed in this study. 
Currently, more forested sites challenge the storm isolation method because storms at those sites 
generate less distinct changes in quickflow. More parameters could be added to the hidden 
Markov model to dictate necessary probabilities for transitions between different states. For 
instance, the model could be set to 90% confidence needed for a state to change from non-storm 
to flux state. By introducing these parameters, the storm isolation method could be made more 
sensitive to smaller changes in flow that indicate storm events at sites with less urban 
development. 

CONCLUSION 
I sought to improve understanding of nutrient transport over urban landscapes. My findings 
support that different landscapes transport nutrients in different ways with the greatest 
determining factors being amount of urban development and degree of impervious surface cover. 
The higher specific conductance measurments from more developed sites indicate that more 
development leads to higher contributions of contaminants. The different responses in specific 
conductance among the study sites begs the question–what causes streams to enrich versus dilute 
during storms? My results show that streams surrounded by urban development tend to dilute 
more often than enrich, but the downstream effects of this response are still unclear. My results 
leave unanswered questions about the mechanisms causing eutrophication in Jordan Lake. The 
UNC Nutrient Study, however, will continue to conduct analyses using many more sites and 
several other variables including individual nutrient concentrations which will be better informed 
by this work. Although imperfect, the storm isolation method will prove useful for future 
analyses carried out on storms in the larger project and in future studies. 
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 APPENDIX 

Storm Isolation 
#Isolates storms from flow dataset and outputs csv with start and end times o
f storms	
#Will Hamilton	
#wamilton@ad.unc.edu	
#February 18, 2019	
	
library(pacman)	
p_load(tidyverse, EcoHydRology, magrittr,	
       lubridate, peakPick, depmixS4, colorspace)	
	
#run one site at a time	
	
data <- read.csv("Data/BG_10_19_18.csv")	
#data <- read.csv("Data/BT_10_19_18.csv")	
#data <- read.csv("Data/RR_10_19_18.csv")	
#data <- read.csv("Data/TH_12_9_18.csv")	
	
#Format the Timestamp	
data$TIMESTAMP <- ymd_hms(data$TIMESTAMP)	
num.time <- as.numeric(as.POSIXct(data$TIMESTAMP, tz="UTC"))	
	
#loess smoothing	
Sm <- loess(data$Q~ num.time, span = 0.00025, Data=data,na.rm=TRUE)	
Sm.predict <- predict(Sm , Data=Data)	
	
#copy data into dataCopy, supplies Baseflow with timestamps	
dataCopy <- c()	



dataCopy$Q <- data$Q	
dataCopy$Lvl_m <- data$Lvl_m	
dataCopy$TIMESTAMP <- data$TIMESTAMP	
dataCopy <- as.data.frame(dataCopy)	
dataCopy <- na.omit(dataCopy)	
	
	
#loess baseflow separation	
loessBaseflow <- BaseflowSeparation(Sm.predict, filter_parameter = .91, passe
s = 3)	
loessBaseflow$TIMESTAMP <- dataCopy$TIMESTAMP	
	
#FIND PEAKS	
	
#eliminate quickflow low peaks and find storm peaks	
quickFlow <- loessBaseflow$qft	
quickFlow <- pmax(quickFlow, 3*mean(loessBaseflow$qft))	
#scale so we capture huge spikes (only changes result for BT b/c captures hug
e peaks)	
quickFlow <- quickFlow/max(quickFlow)	
peaks <- peakpick(quickFlow, 48, peak.min.sd=3)	
stormEvents <- c()	
stormEvents$peakFlow <- loessBaseflow$qft[which(peaks)]	
stormEvents$peakTime <- loessBaseflow$TIMESTAMP[which(peaks)]	
	
	
#HIDDEN MARKOV	
	
#we will run the model by month	
num.month <- as.character(month(loessBaseflow$TIMESTAMP))	
	
loessBaseflow$TIMESTAMP <- ymd_hms(loessBaseflow$TIMESTAMP)	
dataCopy$TIMESTAMP <- ymd_hms(dataCopy$TIMESTAMP)	
	
#delete any month where the stream was dry	
sub <- unique(num.month)	
for (k in sub){	
  if(max(dataCopy$Q[num.month==k]) == 0){	
    sub <- sub[sub != k]	
  }	
}	
	
loessBaseflow$num.month <- as.character(month(loessBaseflow$TIMESTAMP))	
	
#copy loessBaseflow into master for months that we want to use in model	
master <- loessBaseflow	
master$num.month <- as.character(month(master$TIMESTAMP))	
master <- master[master$num.month %in% sub,]	
master$qft.cut <- master$qft	



master$qft.cut[master$qft.cut>quantile(master$qft.cut,0.999)] <- quantile(mas
ter$qft.cut,0.999) #brings points down to 99.9 percentile	
	
	
n <- length(sub)	
	
#Run Hideen Markov Model	
hmm <- depmix(response=qft.cut~num.month, 	
              data=master, 	
              nstates=3,	
              family=gaussian("log"),	
              respstart=c(0,rep(0,n-1),0, #interecept, month #, sd 	
                          0,rep(0,n-1),.01,	
                          0,rep(0,n-1),1))	
summary(hmm)	
	
fm <- fit(hmm,emcontrol=em.control(random.start=TRUE))	
	
out <- summary(fm)	
	
loessBaseflow$state <- NA	
loessBaseflow$state[loessBaseflow$num.month %in% sub] <- posterior(fm)[,1]	
	
#formats storm state into asscending order based on quickflow (nonstorms will 
be lowest state)	
loessCopy <- loessBaseflow	
loessCopy <- loessCopy[!is.na(loessCopy$state),]	
grouped <- loessCopy %>% group_by(state) %>% 	
  summarise(qftVal = mean(qft)) 	
grouped <- grouped[order(grouped$qftVal, decreasing=F),]	
loessBaseflow$state <- match(loessBaseflow$state, grouped$state)	
	
	
#plot HMM	
plot(loessBaseflow$TIMESTAMP,loessBaseflow$qft,col="grey80",main="HMM CUT Lab
els",type="l")	
points(loessBaseflow$TIMESTAMP,loessBaseflow$qft,col=loessBaseflow$state,pch=
20,cex=0.6)	
	
#END TIMES	
	
#for each peak time go forward and find timestamp of the first nonstorm state	
endTimes <- c()	
findEndTime <- function(peakTime){	
  tempTime <- loessBaseflow$TIMESTAMP[match(peakTime, loessBaseflow$TIMESTAMP
):length(loessBaseflow$state)]	
  endTimes <- c(endTimes, tempTime[match(1, loessBaseflow$state[match(peakTim
e, loessBaseflow$TIMESTAMP):length(loessBaseflow$state)])])	
}	



	
#save results in endTimes, then properly format the timestamps	
endTimes <- sapply(stormEvents$peakTime, findEndTime)	
endTimes <- loessBaseflow$TIMESTAMP[match(endTimes, loessBaseflow$TIMESTAMP)]	
	
#save results in stormEvents	
stormEvents$endTime <- c()	
stormEvents$endFlow <- c()	
stormEvents$endTime <- endTimes	
stormEvents$endFlow <- loessBaseflow$qft[match(endTimes, loessBaseflow$TIMEST
AMP)]	
	
#get rid of duplicate endTimes b/c those will be the same storm	
stormEvents <- as.data.frame(stormEvents)	
stormEvents <- stormEvents %>% group_by(endTime) %>% dplyr::filter(peakFlow =
= max(peakFlow))	
	
#START TIMES	
	
#for each peak time go backward and find timestamp of last nonstorm state	
startTimes <- c()	
findStartTime <- function(peakTime){	
  tempTime <- loessBaseflow$TIMESTAMP[match(peakTime, loessBaseflow$TIMESTAMP
):1]	
  startTimes <- c(startTimes, tempTime[match(1, loessBaseflow$state[match(pea
kTime, loessBaseflow$TIMESTAMP):1])])	
}	
	
#save results in startTimes, then properly format the timestamps	
startTimes <- sapply(stormEvents$peakTime, findStartTime)	
startTimes <- loessBaseflow$TIMESTAMP[match(startTimes, loessBaseflow$TIMESTA
MP)]	
	
#save results in stormEvents	
stormEvents$startTime <- c()	
stormEvents$startFlow <- c()	
stormEvents$startTime <- startTimes	
stormEvents$startFlow <- loessBaseflow$qft[match(startTimes, loessBaseflow$TI
MESTAMP)]	
	
#get rid of duplicate startTimes b/c those will be the same storm	
stormEvents <- as.data.frame(stormEvents)	
stormEvents <- stormEvents %>% group_by(startTime) %>% dplyr::filter(peakFlow 
== max(peakFlow))	
	
#VISUALIZATION	
#color palette comes out weird the first time, so I run points twice the firs
t time to get the colors right	
plot(loessBaseflow$TIMESTAMP[50000:55000], loessBaseflow$qft[50000:55000], "l



")	
points(stormEvents$startTime, stormEvents$startFlow, col=palette(rainbow(6)))	
points(stormEvents$startTime, stormEvents$startFlow, col=palette(rainbow(6)))	
points(stormEvents$endTime, stormEvents$endFlow, col=palette(rainbow(6)))	
points(stormEvents$peakTime, stormEvents$peakFlow, col=palette(rainbow(6)))	
	
#plot example of storm isolation	
print(ggplot(stormEvents[35:39,])+	
        ggtitle("Isolated Storms at Burlage")+	
        geom_line(data=loessBaseflow[51850:55000,], aes(x=TIMESTAMP, y=qft))+	
        geom_point(aes(x=peakTime, y=peakFlow, color=as.factor(peakTime)), sh
ape=1, size=2)+	
        geom_point(aes(x=startTime, y=startFlow, color=as.factor(peakTime)), 
shape=1, size=2)+	
        geom_point(aes(x=endTime, y=endFlow, color=as.factor(peakTime)), shap
e=1, size=2)+	
        geom_text(aes(x=peakTime, y=peakFlow, label="Peak", color=factor(peak
Time)), nudge_y = .05)+	
        theme(panel.grid = element_blank(), legend.position = "none")+	
        labs(x="Time", y="Quickflow (cu m/s)"))	
	
	
#OUTPUT	
# write_csv(stormEvents, "Data/stormsBG.csv")	
# write_csv(stormEvents, "Data/stormsBT.csv")	
# write_csv(stormEvents, "Data/stormsRR.csv")	
# write_csv(stormEvents, "Data/stormsTH.csv")	

Data Concatenation 
#Pulls in flow and specific conductance data for each storm; outputs result i
n csv	
#Will Hamilton	
#wamilton@ad.unc.edu	
#February 18, 2019	
	
library(pacman)	
p_load(tidyverse, EcoHydRology, magrittr, animation,	
       lubridate, peakPick, depmixS4, colorspace, RColorBrewer)	
	
#determines approximate season given month	
season <- function(month){	
  if(month >= 3 && month <= 5){	
    return("spring")	
  }	
  if(month >= 6 && month <= 8){	
    return("summer")	
  } 	
  if(month >= 9 && month <= 11){	
    return("fall")	



  }	
  return("winter")	
}	
	
#BG	
{	
  stormsBG <- read_csv("Data/stormsBG.csv")	
  flowData <- read.csv("Data/BG_10_19_18.csv")	
  flowData$TIMESTAMP <- ymd_hms(flowData$TIMESTAMP)	
  storms <- stormsBG	
  initials <- "BG"	
  dataEC <- read.csv("Data/BG_WL_EC_2019-2-13_DLScor.csv")	
  dataEC$Date_Time <- ymd_hms(dataEC$Date_Time)	
  num.time <- as.numeric(as.POSIXct(dataEC$Date_Time, tz="UTC"))	
  winterCond <- 500	
  #remove specific conductivity outliers	
  remEC <- c(81467)	
  dataEC <- dataEC[-remEC,]	
}	
	
#BT	
{	
  stormsBT <- read_csv("Data/stormsBT.csv")	
  flowData <- read.csv("Data/BT_10_19_18.csv")	
  flowData$TIMESTAMP <- ymd_hms(flowData$TIMESTAMP)	
  storms <- stormsBT	
  initials <- "BT"	
  dataEC <- read.csv("Data/BT_WL_EC_2019-2-13_DLScor.csv")	
  dataEC$Date_Time <- ymd_hms(dataEC$Date_Time)	
  num.time <- as.numeric(as.POSIXct(dataEC$Date_Time, tz="UTC"))	
  winterCond <- 600	
  #remove flow outliers	
  remFlow <- c(38218, 63895, 86525, 47123, 65523)	
  flowData <- flowData[-remFlow,]	
  #remove specific conductivity outliers	
  remEC <- c(79163, 96321, 96467)	
  dataEC <- dataEC[-remEC,]	
}	
	
#RR	
{	
  stormsRR <- read_csv("Data/stormsRR.csv")	
  flowData <- read.csv("Data/RR_10_19_18.csv")	
  flowData$TIMESTAMP <- ymd_hms(flowData$TIMESTAMP)	
  storms <- stormsRR	
  initials <- "RR"	
  dataEC <- read.csv("Data/RR_WL_EC_2019-2-13_DLScor.csv")	
  dataEC$Date_Time <- ymd_hms(dataEC$Date_Time)	
  num.time <- as.numeric(as.POSIXct(dataEC$Date_Time, tz="UTC"))	
  winterCond <- 350	



}	
	
#TH	
{	
  stormsTH <- read_csv("Data/stormsTH.csv")	
  flowData <- read.csv("Data/TH_12_9_18.csv")	
  flowData$TIMESTAMP <- ymd_hms(flowData$TIMESTAMP)	
  storms <- stormsTH	
  initials <- "TH"	
  dataEC <- read.csv("Data/TH_WL_EC_2019-2-13_DLScor.csv")	
  dataEC$Date_Time <- ymd_hms(dataEC$Date_Time)	
  num.time <- as.numeric(as.POSIXct(dataEC$Date_Time, tz="UTC"))	
  winterCond <- 275	
}	
	
	
#PLOT ALL STORMS	
	
{	
  IDX <- 1	
  allStorms <- c()	
  allStorms$flow <- c()	
  allStorms$specCond <- c()	
  allStorms$TIMESTAMP <- c()	
  allStorms$Num <- c()	
  allStorms$season <- c()	
  allStorms <- as.data.frame(allStorms)	
  thisStorm <- c()	
}	
	
while(IDX<= length(storms$peakFlow)){	
  hyst <- c()	
  #obtain flow data and timestamps	
  hyst$flowTIME <- flowData$TIMESTAMP[match(storms$startTime[IDX], flowData$T
IMESTAMP):match(storms$endTime[IDX], flowData$TIMESTAMP)]	
  hyst$flowTIME <- unique(hyst$flowTIME)#get rid of duplicates	
  hyst$flow <- flowData$Q[match(hyst$flowTIME, flowData$TIMESTAMP)]	
  	
  #obtain conductivity data and timestamps	
  hyst$condTIME <- dataEC$Date_Time[match(storms$startTime[IDX], dataEC$Date_
Time):match(storms$endTime[IDX], dataEC$Date_Time)]	
  hyst$condTIME <- unique(hyst$condTIME)#get rid of duplicates	
  hyst$specCond <- dataEC$EC_SpecCond[match(hyst$condTIME, dataEC$Date_Time)]	
  	
  #in case timestamps differ (only takes data where the timestamps are the sa
me)	
  intersect <- intersect(hyst$flowTIME, hyst$condTIME)	
  hyst$flow <- hyst$flow[hyst$flowTIME %in% intersect]	
  hyst$flowTIME <- hyst$flowTIME[hyst$flowTIME %in% intersect] 	



  hyst$specCond <- hyst$specCond[hyst$condTIME %in% intersect]	
  	
  hyst$Num[1:length(hyst$specCond)] <- IDX	
  	
  #remove winter salt storms	
  if(max(hyst$specCond, na.rm = TRUE) > winterCond){	
    print(paste("removed storm:", as.character(IDX), " at month:", as.charact
er(month(hyst$flowTIME[1])), sep= " "))	
    IDX <- IDX + 1	
    next	
  }	
  	
  #obtain desired data from this storm	
  thisStorm$flow <- hyst$flow	
  thisStorm$specCond <- hyst$specCond	
  thisStorm$TIMESTAMP <- hyst$flowTIME	
  thisStorm$Num <- thisStorm$flow	
  thisStorm$season <- thisStorm$flow	
  thisStorm$Num[1:length(thisStorm$Num)] <- IDX	
  thisStorm$season[1:length(thisStorm$season)] <- season(as.numeric(month(hys
t$flowTIME[1])))	
	
  #concatenate into larger dataframe with all storms	
  thisStorm <- as.data.frame(thisStorm)	
  allStorms <- rbind(allStorms, thisStorm)	
  thisStorm <- as.list(thisStorm)	
  	
   IDX <- IDX+1	
}	
	
	
write_csv(allStorms, paste("Data/", "combined", initials, ".csv", sep=""))	

#Combines site storm data and outputs combined dataframe as csv	
#Will Hamilton	
#wamilton@ad.unc.edu	
#February 18, 2019	
	
library(pacman)	
p_load(tidyverse, EcoHydRology, magrittr, animation,	
       lubridate, peakPick, depmixS4, colorspace, RColorBrewer)	
	
	
stormsBG <- read_csv("Data/combinedBG.csv")	
stormsBG$site <- "Burlage"	
	
	
stormsBT <- read_csv("Data/combinedBT.csv")	
stormsBT$site <- "Booker Trib"	



	
stormsRR <- read_csv("Data/combinedRR.csv")	
stormsRR$site <- "Rogers Road"	
	
	
stormsTH <- read_csv("Data/combinedTH.csv")	
stormsTH$site <- "Tallyhoe"	
	
allSites <- rbind(stormsBG, stormsBT, stormsRR, stormsTH)	
	
write_csv(allSites, "Data/allSiteStorms.csv")	

Data Visualization and Cleaning 
#Plots flow and specific conductance of different storms	
#Will Hamilton	
#wamilton@ad.unc.edu	
#February 18, 2019	
	
library(pacman)	
p_load(tidyverse, EcoHydRology, magrittr,	
       lubridate, peakPick, depmixS4, colorspace, RColorBrewer)	
	
#BG	
allStorms <- read_csv("Data/combinedBG.csv")	
site <- "Burlage"	
	
#BT	
allStorms <- read_csv("Data/combinedBT.csv")	
site <- "BookerTrib"	
	
#RR	
allStorms <- read_csv("Data/combinedRR.csv")	
site <- "RogersRoad"	
	
#TH	
allStorms <- read_csv("Data/combinedTH.csv")	
site <- "TallyHo"	
	
	
#plot flow vs spec cond hystereses by season	
{	
  seasonalStorms <- allStorms %>% filter(season == "summer")	
  stormCount <- length(unique(seasonalStorms$Num))	
  getPalette <- colorRampPalette(brewer.pal(8, "Accent"))	
  g <- ggplot(seasonalStorms, mapping = aes(x=flow, y=specCond, color=as.fact
or(Num))) +	
    geom_point(size=3) +	
    scale_color_manual(values=getPalette(stormCount))+	
    ggtitle(paste(site, "storm number:", "\n", "month:", as.character(month(a



llStorms$TIMESTAMP[1])), sep=" ")) +	
    labs(x="Flow", y ="Specific Conductance")+	
    facet_wrap(~season, nrow=2)	
  plot(g)	
}	
	
#plot hysteresis of single storm	
{	
  singleStorm <- allStorms %>% filter(Num == 44)	
  g <- ggplot(singleStorm) +	
    scale_colour_gradient(low="blue", high="yellow")+	
    geom_point(aes(x=flow, y = specCond, color=TIMESTAMP), size=3) +	
    ggtitle(paste(site, "storm", "\n", "month:", as.character(month(singleSto
rm$TIMESTAMP[1])), sep=" ")) +	
    labs(x="Flow", y ="Specific Conductance")	
  plot(g)	
}	
	
	
	
#spec cond and flow plotted separately for that storm	
{ 	
  g2 <- ggplot(singleStorm) +	
    geom_line(aes(x=TIMESTAMP, y=specCond, color = "Specific Conductance"))+	
    geom_line(aes(x=TIMESTAMP, y=flow*mean(specCond, na.rm=T)*2, color = "Flo
w"))+	
    scale_y_continuous(sec.axis = sec_axis(~./(2*mean(singleStorm$specCond, n
a.rm=T)), name="Flow"))+	
    ggtitle(paste(site, "storm number:", "\n", "month:", as.character(month(s
ingleStorm$TIMESTAMP[1])), sep=" ")) +	
    labs(x="Time", y ="Specific Conductance")	
  plot(g2)	
}	
	
	
#all storms at once	
{ 	
  g <- ggplot(allStorms, mapping = aes(x=flow, y=specCond, color=Num)) +	
    geom_point(size=3) +	
    scale_color_gradient(low="blue", high="yellow")+	
    ggtitle(paste(site, "storm number:", "\n", "month:", as.character(month(a
llStorms$TIMESTAMP[1])), sep=" ")) +	
    labs(x="Flow", y ="Specific Conductance")+	
    facet_wrap(~season, nrow=2)	
  plot(g)	
}	

#Finds index of outlier points to be deleted	
#once a point is found, write the index in remove list in EC_Data.R	



#Will Hamilton	
#wamilton@ad.unc.edu	
#February 18, 2019	
	
library(pacman)	
p_load(tidyverse, EcoHydRology, magrittr, pracma,	
       lubridate, peakPick, depmixS4, colorspace, RColorBrewer)	
	
#choose site	
flowData <- read.csv("Data/BG_10_19_18.csv")	
# flowData <- read.csv("Data/BT_10_19_18.csv")	
# flowData <- read.csv("Data/RR_10_19_18.csv")	
# flowData <- read.csv("Data/TH_12_9_18.csv")	
	
#**look for outliers visually in dataVis.R**	
	
#flow outliers	
View(singleStorm) #create singleStorm in dataVis.R	
match(singleStorm$flow[88], flowData$Q)	
	
#EC outliers	
View(singleStorm)	
match(singleStorm$specCond[13], dataEC$EC_SpecCond)	

Result Statistics 
#Calculates and plots statistics of all storms for all sites	
#Will Hamilton	
#wamilton@ad.unc.edu	
#February 18, 2019	
	
library(pacman)	
p_load(tidyverse, EcoHydRology, magrittr, pracma,	
       lubridate, peakPick, depmixS4, colorspace, RColorBrewer)	
	
#get rid rows with na flow and spec cond values	
{ 	
  allSites <- read_csv("Data/allSiteStorms.csv")	
  allSites <- allSites[!is.na(allSites$flow),]	
  allSites <- allSites[!is.na(allSites$specCond),]	
}	
	
#Finds number of storms at each site and the average duration 	
#(in points with each point being 5 minutes) of storms at each site	
stormLength <- allSites %>% group_by(site, season, Num) %>%	
  summarize(duration = length(Num))	
print(ggplot(stormLength, aes(x=Num, y=duration/12, color=season))+	
        ggtitle("Duration of Storms by Site")+	
        labs(y="Duration(hours)", x="Storm Index Number")+	
        geom_point(size=3)+	



        facet_wrap(~site, nrow=2))	
print(allSites %>% group_by(site, Num) %>%	
  summarize(duration = length(Num)) %>% 	
  summarize(avgDuration = mean(duration), numStorms = length(unique(Num))))	
	
	
#Determine and plot maximum specific conductance of each storm	
peakSC <- allSites %>% group_by(site, season, Num) %>% 	
  summarize(maxSC = max(specCond, na.rm=T))	
print(ggplot(peakSC, aes(x=Num, y=maxSC, color=season))+	
        ggtitle("Maximum Specific Conductance for Storms by Site")+	
        labs(y=expression(paste("Maximum Specific Conductance (", mu, "S/cm)"
, sep="")), x="Storm Index Number")+	
        geom_point(size=2)+	
        facet_wrap(~site, nrow=2)+	
        scale_color_discrete(name="Season")+	
        theme(panel.grid = element_blank(), 	
        plot.background = element_rect(fill = "lightcyan1"), legend.backgroun
d = element_rect(fill="lightcyan1")))	
	
#Outlier storm comparison for maximum specific conductance	
peakSC <- allSites %>% group_by(site, season, Num) %>% 	
  summarize(maxSC = max(specCond, na.rm=T))	
print(ggplot(peakSC, aes(x=Num, y=maxSC, color=season))+	
        ggtitle("Maximum Specific Conductance for Storms by Site")+	
        labs(y=expression(paste("Maximum Specific Conductance (", mu, "S/cm)"
, sep="")), x="Storm Index Number")+	
        geom_point(size=2)+	
        ylim(c(0,3000))+	
        facet_wrap(~site, nrow=2)+	
        scale_color_discrete(name="Season")+	
        theme(panel.grid = element_blank()))	
{ 	
  allWinterSites <- read_csv("Data/allSiteWinterStorms.csv")	
  allWinterSites <- allWinterSites[!is.na(allWinterSites$flow),]	
  allWinterSites <- allWinterSites[!is.na(allWinterSites$specCond),]	
}	
peakWinterSC <- allWinterSites %>% group_by(site, season, Num) %>% 	
  summarize(maxSC = max(specCond, na.rm=T))	
print(ggplot(peakWinterSC, aes(x=Num, y=maxSC, color=season))+	
        ggtitle("Outlier Storms Included")+	
        labs(y=expression(paste("Maximum Specific Conductance (", mu, "S/cm)"
, sep="")), x="Storm Index Number")+	
        geom_point(size=2)+	
        ylim(c(0,3000))+	
        facet_wrap(~site, nrow=2)+	
        scale_color_discrete(name="Season")+	
        theme(panel.grid = element_blank()))	
	



	
#Determine direction, flashiness, and magnitude of hysteresis for each storm	
	
#takes two SC values and outputs direction of hysteresis depending on which i
s greater	
scBehav <- function(firstSC, secondSC){	
    if(is.na(firstSC) || is.na(secondSC)){return(NA_character_)} #don't want 
to consider NAs	
    if(firstSC > secondSC){return("Enrichment")} #min first (these are enrich
ing)	
    if(firstSC < secondSC){return("Dilution")} #max comes first (dilution)	
    else{return(0)} #this should never happen	
}	
	
#intakes values and values of each quartile. Outputs quartile that value fall 
inside	
quartiles <- function(value, fstQuart, sndQuart, thrdQuart, fthQuart){	
  if(is.na(value)){return(NA_character_)}	
  if(value <= fstQuart){return("First")}	
  if(value <= sndQuart){return("Second")}	
  if(value <= thrdQuart){return("Third")}	
  if(value <= fthQuart){return("Fourth")}	
}	
	
thirdQuartile <- allSites %>% group_by(site,Num, season) %>% 	
  summarize(startTime = TIMESTAMP[1],	
            endTime = TIMESTAMP[length(TIMESTAMP)],	
            maxSC = max(specCond, na.rm=T),	
            maxSCTime = TIMESTAMP[match(maxSC, specCond)],	
            minSC = min(specCond, na.rm=T),	
            minSCTime = TIMESTAMP[match(minSC, specCond)],	
            totQ = trapz(as.numeric(TIMESTAMP)/1000, flow), #finds total flow	
            maxQ = max(flow, na.rm=T),	
            flash = maxQ/totQ, #determine flashiness	
            maxQTime = TIMESTAMP[match(maxQ, flow)],	
            minQ = min(flow, na.rm=T),	
            minQTime = TIMESTAMP[match(minQ, flow)],	
            width =(maxQ-minQ)/(maxQ), # normalize width	
            height = (maxSC-minSC)/(maxSC), #normalize height	
            thirdQuartTIME = round_date(quantile(TIMESTAMP, .75), "5 minutes"
), #start time of last quarter of storm	
            thirdQuartSC = specCond[TIMESTAMP == thirdQuartTIME], #SC at the 
beginning of the last quarter of the storm	
            startSC = specCond[1], #first SC measurement of each storm	
            Direction = scBehav(thirdQuartSC, startSC)) #if start SC is great
er then marked as dilution	
	
#determine quartile of flashiness of each storm relative to other storms at t
hat site	



{	
  thirdQuartile <- thirdQuartile %>% group_by(site) %>% 	
    mutate(fstQuart = quantile(flash, .25, na.rm = T),	
           sndQuart = quantile(flash, .50, na.rm = T), 	
           thrdQuart = quantile(flash, .75, na.rm = T),	
           fthQuart = quantile(flash, 1.0, na.rm = T),	
           rSquared = summary(lm(height~width))$adj.r.squared)	
  thirdQuartile <- thirdQuartile %>% group_by(site, Num) %>% 	
    mutate(Quartile = quartiles(flash, fstQuart, sndQuart, thrdQuart, fthQuar
t))	
  thirdQuartile$Quartile <- factor(thirdQuartile$Quartile, c("First", "Second
", "Third", "Fourth"))	
  }	
	
	
	
#normalized magnitude with coloring by direction	
print(ggplot(thirdQuartile, aes(x=width, y=height, color=Direction))+	
        ggtitle("Normalized Storm Magnitude Grouped by SC Response")+	
        labs(x=expression((Q[max]-Q[min])/Q[max]), y=expression((SC[max]-SC[m
in])/SC[max]))+	
        geom_point(size=2)+	
        facet_wrap(~site, nrow=2)+	
        geom_smooth(method="lm", aes(x=width, y=height, color=NULL), color="b
lack", linetype="dashed", size=.6)+	
        theme(panel.grid = element_blank()))	
	
#normalized magnitude with coloring by flashiness	
print(ggplot(thirdQuartile, aes(x=width, y=height, color=Quartile))+	
        ggtitle("Normalized Storm Magnitude Grouped by Flashiness")+	
        labs(x=expression((Q[max]-Q[min])/Q[max]), y=expression((SC[max]-SC[m
in])/SC[max]))+	
        geom_point(size=2)+	
        facet_wrap(~site, nrow=2)+	
        geom_smooth(method="lm", aes(x=width, y=height, color=NULL), color="b
lack", linetype="dashed", size=.6)+	
        theme(panel.grid = element_blank()))	
	
#flash vs SC mag	
print(ggplot(thirdQuartile, aes(x=Quartile, y=height, color=Quartile))+	
        ggtitle("Specific Conductance Magnitude Grouped by Flashiness")+	
        labs(x="Relative Flashiness", y=expression((SC[max]-SC[min])/SC[max])
)+	
        geom_boxplot()+	
        facet_wrap(~site, nrow=2)+	
        theme(panel.grid = element_blank()))	
	
#flash vs flow mag	
print(ggplot(thirdQuartile, aes(x=Quartile, y=width, color=Quartile))+	



        ggtitle("Flow Magnitude Grouped by Flashiness")+	
        labs(x="Relative Flashiness", y=expression((Q[max]-Q[min])/Q[max]))+	
        geom_boxplot()+	
        facet_wrap(~site, nrow=2)+	
        theme(panel.grid = element_blank()))	


