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Abstract

Background: Mediation is an important issue considered in the behavioral, medical, and social sciences. It addresses
situations where the effect of a predictor variable X on an outcome variable Y is explained to some extent by an
intervening, mediator variable M. Methods for addressing mediation have been available for some time. While these
methods continue to undergo refinement, the relationships underlying mediation are commonly treated as linear in the
outcome Y, the predictor X, and the mediator M. These relationships, however, can be nonlinear. Methods are needed for
assessing when mediation relationships can be treated as linear and for estimating them when they are nonlinear.

Methods: Existing adaptive regression methods based on fractional polynomials are extended here to address
nonlinearity in mediation relationships, but assuming those relationships are monotonic as would be consistent with
theories about directionality of such relationships.

Results: Example monotonic mediation analyses are provided assessing linear and monotonic mediation of the effect
of family functioning (X) on a child’s adaptation (Y) to a chronic condition by the difficulty (M) for the family in
managing the child's condition. Example moderated monotonic mediation and simulation analyses are also presented.

Conclusions: Adaptive methods provide an effective way to incorporate possibly nonlinear monotonicity into
mediation relationships.

Keywords: Adaptive regression, Childhood chronic conditions, Fractional polynomials, Mediation, Moderated
mediation, Nonlinearity

Background
Mediation is an important issue considered in the behavioral,
medical, and social sciences, addressing situations where the
effect of a predictor variable X on an outcome (or dependent
or response) variable Y is explained to some extent by an
intervening, mediator variable M. Methods for addressing
mediation have existed for some time [1–3]. Since then, they
have undergone a variety of refinements [4–28].
Relationships underlying mediation are commonly

treated as linear in Y, X, and M. Mediating relationships,
however, can be nonlinear. A few authors have addressed
nonlinearity in the mediation context [29–32]. Pearl [30,
31] has developed a general approach for quantifying direct,
indirect, and total effects allowing for nonlinearity as well
as for categorical variables. Standard polynomials some-
times can be effectively used to address nonlinearity in

predictors, but not in general [33]. To fully address nonline-
arity requires more complex methods like nonparametric
regression. Methods are needed to assess linearity of medi-
ation relationships and to conduct mediation analyses when
the underlying relationships are nonlinear.
The purpose of this paper is 1. To present an approach

for assessing linearity of mediation relationships and for
conducting nonlinear mediation analyses, based on the
adaptive regression methods of Knafl and Ding [34], and
2. To provide example analyses using these methods.
Adaptive methods were originally developed for nonlinear
modeling in the Poisson regression context with Poisson
distributed count outcomes [35], but the methods extend
to linear regression with continuous outcomes treated as
normally distributed, as often used in mediation analyses,
as well as logistic regression with discrete outcomes [36].
SAS® (SAS Institute, Inc., Cary, NC) macros have been
developed to support adaptive regression. Knafl [37]
presents examples of the use of one of these macros for
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nonlinear growth curve modeling. These methods address
not only nonlinearity in predictors but also nonlinearity in
outcomes when those outcomes are continuous and posi-
tive valued. They also allow for correlated outcomes and/
or non-constant variances.
Behavioral, medical, and social science theories usually

do not hypothesize that relationships are nonlinear but
implicitly assume they are linear. However, Hayes and
Preacher [29] provide a variety of examples of behavioral
theories that incorporate nonlinearity. In any case, hy-
pothesized relationships are usually stated in terms of
directionality: as X increases, Y increases or decreases.
Such statements are not inherently linear but can be
represented more generally by possibly nonlinear mono-
tonic relationships. Monotonicity is operationalized in
this paper with single power transforms. Moderated
monotonic mediation is also addressed in the paper.

Methods
This section starts by formulating standard linear medi-
ation relationships, then nonlinear mediation relationships
followed by monotonic mediation relationships. Adaptive
regression methods are described next along with how
they can be used to assess monotonic mediation and
moderated monotonic mediation. The section ends with a
description of the two data sets used in example analyses.

Linear mediation relationships
As commonly considered, regression models underlying
mediation are formulated as linear in Y, X, and M. As an
example, work pressure X could result in increased work
stress M leading to increased alcohol consumption Y.
The following models are considered relating Y to X
(e.g., alcohol consumption to work pressure), M to X
(e.g., work stress to work pressure), and Y to M and X
(e.g., alcohol consumption to work pressure controlling
for work stress), respectively (Fig. 1).

Y ¼ iY ;1 þ c⋅X þUY ;1 ð1Þ

M ¼ iM þ a⋅X þ UM ð2Þ
Y ¼ iY ;2 þ c 0⋅X þ b⋅M þUY ;2 ð3Þ

The random variables UY,1, UM, and UY,2 are assumed
to have mean zero. They can be thought of as omitted
factors (as in [31]) or as random errors.
The slope c for X in model (1) is the total effect of X

on Y (e.g., of work pressure on alcohol consumption)
while the slope c ' for X in model (3) is the direct effect
of X on Y controlling for M (e.g., of work pressure on
alcohol consumption controlling for work stress). The
indirect effect Δ satisfies

Δ ¼ c−c 0 ¼ a⋅b

as demonstrated by substituting model (2) for the medi-
ator M into model (3), and so the total effect is the sum
of the direct and indirect effects. In the Baron and
Kenny [1] approach, a significant total effect c was con-
sidered necessary for mediation to hold. However, this
no longer is considered necessary [11]. There can be a
nonzero indirect effect even when the total effect is non-
significant [38]. However, model (1) is often investigated
in practice. In any case, a crucial issue for mediation to
hold is a significantly nonzero indirect effect Δ.
A variety of tests for a zero indirect effect are available.

Sobel’s test [21, 39] is the best known, but MacKinnon
et al. [14] considered 14 alternatives including Sobel’s
test. Difference in coefficients approaches capitalize on
the first equality for Δ while product of coefficients ap-
proaches including Sobel’s test capitalize on the second
equality. The assumptions underlying these tests can be
questionable, and so the test based on the bootstrapped
confidence interval (CI) for Δ has been proposed as a ro-
bust alternative [21, 29, 40, 41], especially when bias-
corrected [42]. However, bias-corrected bootstrapped
CIs can generate inflated Type I errors [43].The strength
of the indirect effect [21] can be measured by the rela-

tive indirect effect Δ
0 ¼ Δ

c= (often denoted as PM).
Since mediation addresses causality, temporal prece-

dence is an important issue. This can be addressed by
measuring X before measuring M and that before measur-
ing Y [44]. However, mediation sometimes is addressed
using cross-sectional data. Equations (1)-(3) are the same
for these two cases. Random assignment of the settings of
X provides support for causality for the X to Y relationship
and the X to M relationship, but the M to Y relationship
can still be confounded, and even when X, M, and Y have
been measured longitudinally [45]. Nonexperimental or
observational studies need theoretical justification for

Fig. 1 Linear mediation relationships
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hypothesized causal relationships [21]. Pearl [31] has pro-
vided sufficient conditions for identifying direct, indirect,
and total effects for observational studies.

Nonlinear mediation relationships
General approach for addressing nonlinearity
Nonlinear mediation involves the following two regres-
sion models (4)-(5) generalizing the linear regression
models (2)-(3) while no longer considering model (1).

M ¼ iM þ TM;X Xð Þ þ UM ð4Þ
Y ¼ iY þ TY ;X Xð Þ þ TY ;M Mð Þ þ UY ð5Þ

TM,X(X) and TY,X(X) are possibly nonlinear transforms of
the predictor X while TY,M(M) is a possibly nonlinear
transform of the mediator M. The parameters iM and iY
are standard intercepts. When one of the variables X or
M is discrete, only its identity transform is considered.
As an example, Hayes and Preacher [29] considered

the special case with

TM;XðXÞ ¼ a⋅logX;
TY ;XðXÞ ¼ c 0⋅X; and
TY ;MðMÞ ¼ b1⋅M þ b2⋅M2

ð6Þ

where log denotes the natural log transform. Following
Stolzenberg [32], they defined the instantaneous indirect
effect, generalizing the product of coefficients approach,
as the product of the derivatives ∂M

∂X and ∂Y
∂M replacing M

by model (4) and assuming UM and UY have no impact
on these derivatives. For their example (6), this equals

b1 þ 2⋅b2⋅ iM þ a⋅ logXð Þð Þ⋅ a
X

ð7Þ

(as also reported in their eq. (10)).

Pearl’s more general approach
Pearl [31] provided the following general model for ad-
dressing nonlinearity in the mediation context, also
allowing for categorical variables,

m ¼ f M x; uMð Þ and y ¼ f Y x;m;uy
� � ð8Þ

where x, m, y, uM, and uY are possible values for the random
variables X, M, Y, UM, and UY while fM and fY are general
transforms. For example, the values m of work stress M
could depend nonlinearly on the values x of work pressure X
and the values uM of the omitted factor or error variable UM

while the values y of alcohol consumption Y could depend
nonlinearly on the values x of work pressure X, the values m
of work stress M, and the values uy of the omitted factor or
error variable UY. Pearl also included the relationship x=
fX(uX), but that is not needed in what follows. He assumed
that variables have been standardized, but that is not as-
sumed here. He provided definitions of total, natural direct,

and natural indirect effects under model (8), which generalize
those effects for the linear case of models (1)-(3).
The natural direct effect for a change in value of X

from x to x ' is defined as the expected value NDE(x ', x)
= E(nde(x ', x)) where

nde x0; xð Þ ¼ f Y x0; f M x; uMð Þ; uYð Þ−f Y x; f M x; uMð Þ; uYð Þ:

In other words, nde(x ', x) is the change in y when x changes
to x ' while m is held fixed at its value for the initial value x.
Expectations, here and in what follows, are with respect to
UM and UY. The natural indirect effect for a change in value
of x to x ' is the expected value NIE(x ', x) = E(nie(x ', x))
where

nie x0; xð Þ ¼ f Y x; f M x0;uMð Þ; uYð Þ−f Y x; f M x; uMð Þ;uYð Þ:

In other words, nie(x ', x) is the change in y when x is held
fixed at its initial value while m changes from its value for x
to its value for x '. The total effect for a change in value of x
to x ' is the expected value TE(x ', x) = E(te(x ', x)) where

te x0; xð Þ ¼ f Y x0; f M x0; uMð Þ; uYð Þ−f Y x; f M x; uMð Þ; uYð Þ:

In other words, te(x ', x) is the change in y when x changes
to x ' and m changes from its value for x to its value for x '.
Adding and subtracting fY(x ', fM(x, uM), uY) to te(x ', x)

gives that

TE x0; xð Þ ¼ NDE x0; xð Þ−NIE x; x0ð Þ

(also eq. (14) of [31]). Thus, the total effect is only the
sum of the natural direct and natural indirect effects in
the special case that NIE(x ', x) = −NIE(x, x '), which holds
for the linear mediation case of models (1)-(3). This result
indicates the shortcoming of trying to generalize the indir-
ect effect using a difference of coefficients approach.
The definitions of NDE(x ', x), NIE(x ', x), and TE(x ', x)

are sufficient for handling categorical predictors X. For
the case of continuous predictors X, they can be used to
define instantaneous natural direct, natural indirect, and
total effects using limits as follows:

dNDE xð Þ
dx

¼ lim
x0→x

NDE x0; xð Þ
x0−x

;

dNIE xð Þ
dx

¼ lim
x0→x

NIE x0; xð Þ
x0−x

;

and

dTE xð Þ
dx

¼ lim
x0→x

TE x0; xð Þ
x0−x

:

The relative instantaneous natural indirect effect func-
tion can be computed as
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Δ0 ¼
dNIE xð Þ

dx

,
dTE xð Þ

dx
:

Examples
For the Hayes and Preacher [29] nonlinear example, m =
fM(x, uM) and y = fY(x,m, uY) are determined by eqs. (4)-(5)
evaluated at (6). Thus,

nde x0; xð Þ ¼ c0⋅ x0−xð Þ ¼ NDE x0; xð Þ
so that dNDE xð Þ

dx ¼ c0 as would be expected for a linear
model for Y in X. Also,

nie x0; xð Þ ¼ b1⋅f M x0; uMð Þ þ b2⋅f
2
M x0; uMð Þ

−b1⋅f M x; uMð Þ−b2⋅f 2M x; uMð Þ
¼ b1⋅a⋅ logx0− logxð Þ þ b2⋅ð iM þ a⋅ logx0 þ uMð Þ2

− iM þ a⋅ logxþ uMð Þ2Þ
¼ b1⋅a⋅ logx0− logxð Þ þ b2⋅ð2⋅ iM þ uMð Þ

þ a⋅ logx0 þ logxð ÞÞ⋅a⋅ð logx0− logxÞ
so that

dNIE xð Þ
dx

¼ b1 þ 2⋅b2⋅ iM þ a⋅ logxð Þð Þ⋅ a
x
;

which agrees with result (7).
As a second example, consider the following case with

M =X +UM (i.e., the linear model (2) with im = 0 and a = 1)
and Y = iY + c ' ⋅X + b ⋅M3 +UY. Since ∂M

∂X ¼ 1 and ∂Y
∂M ¼ b⋅

3⋅M2; the instantaneous indirect effect for a fixed value x
of X using the product of coefficients approach of Hayes
and Preacher [29] would be b ⋅ 3 ⋅ x2 (i.e., substituting x for
M based on the relationship M =X +UM and ignoring the
associated value uM for UM). On the other hand, the
general approach of Pearl [31] gives

nie x0; xð Þ ¼ b⋅f 3M x0;uMð Þ−b⋅f 3M x; uMð Þ
¼ b⋅ x0 þ uMð Þ3− xþ uMð Þ3

� �
so that

lim
x0→x

nie x0; xð Þ
x0− x

¼ b⋅3⋅ xþ uMð Þ2

¼ b⋅3⋅ x2 þ 2⋅x⋅uM þ u2M
� �

:

Since E(uM) = 0, the instantaneous natural indirect effect
satisfies

dNIE xð Þ
dx

¼ b⋅3⋅ x2 þ E U2
M

� �� �
:

The expected value E(UM
2 ) > 0 except in trivial cases.

Consequently, this is not the same value as obtained by
the Hayes-Preacher product of coefficients approach.
The problem with that approach is that UM cannot

always be ignored in computing indirect effects. Similar
problems could occur if fY is nonlinear in uY. This result
indicates the shortcoming of trying to generalize the
indirect effect using a product of coefficients approach.

Monotonic mediation
Theorized relationships are reasonably operationalized
as monotonic relationships. Monotonic mediation can
be formulated with models (9)-(10).

Mq ¼ iM þ a⋅Xq0 þ UM ð9Þ
Yp ¼ iY þ c0⋅Xp0 þ b⋅Mq⋅p0 0 þUY ð10Þ

For example, transformed work stress Mq could depend
nonlinearly on transformed work pressure Xq ' in model
(9) while transformed alcohol consumption Yp could de-
pend nonlinearly on transformed work pressure Xp ' con-
trolling for transformed work stress Mq ⋅ p" in model
(10). When Y > 0, M > 0, and X > 0, the power trans-
forms Yp, Xp ', Xq ', Mq, and Mq" are well-defined for arbi-
trary real valued powers p, p ', q, q ', and q" = q ⋅ p ". An
approach for extending this to arbitrary valued variables
is presented later. The power p = 0 represents the nat-
ural log transform rather than the constant transform.
These are Box-Tidwell transformations [46], although
Box and Tidwell considered them only for predictors.
Models (9)-(10) provide for transformation of outcomes
as well as predictors as opposed to just predictors as in
models (4)-(5) and (8). Fractional polynomials of degree
1 in X, M, and Y have been used in (9)-(10) to guarantee
that relationships are monotonic.
Models (9)-(10) can be represented in the general form

of model (8) replacing m and y by mq and yp giving

mq ¼ f M x; uMð Þ ¼ iM þ a⋅xq
0 þ uM

and

yp ¼ f Y x;m; uYð Þ ¼ iY þ c0∙xp
0 þ b⋅mq⋅p0 0 þ uM:

Hence, nde(x ', x) = c ' ⋅ ((x ')p ' − xp) =NDE(x ', x) so that
the instantaneous natural direct effect satisfies

dNDE xð Þ
dx

¼ c0⋅p0⋅xp
0
−1

for p' ≠ 0 while dNDE xð Þ
dx ¼ c0⋅x−1 for p' = 0. Also,

nie x0; xð Þ ¼ b⋅f p
00

M
x0;uMð Þ−b⋅f p 00

M x; uMð Þ

¼ b⋅
�

iM þ a⋅ x0ð Þq
0
þ uM

� �p
00

− iM þ a⋅ xð Þq0 þ uM
� �p

00�
:

Note that nie(x, x ') = − nie(x ', x) so that te(x ', x) = nde(x ',
x) + nie(x ', x), and so the total effect is the sum of the
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natural direct and natural indirect effects as for the lin-
ear mediation case of models (1)-(3).

Examples
For the special case with p'' = 1,

nie x0; xð Þ ¼ b⋅a⋅ x0ð Þq0−xq0
� �

¼ NIE x0; xð Þ

so that

dNIE xð Þ
dx

¼ b⋅a⋅q0⋅xq
0−1

for q ' ≠ 0 while dNIE xð Þ
dx ¼ b⋅a⋅x−1 for q ' = 0. Figure 2 repre-

sents this model (assuming q ' ≠ 0 and p ' ≠ 0). The paths
are labeled with derivatives of expected values for Mq and
Yp relative to X or to Mq generalizing the slopes used in
Figure 1. Note that as in the linear case of Figure 1, the in-
stantaneous natural indirect effect equals the product b ⋅
a ⋅ q ' ⋅ xq ' − 1 of the labels for the two upper paths and the
instantaneous natural direct effect equals the label c ' ⋅ p ' ⋅
xp ' − 1 for the lower path.
For the special case with p" = 2 and q " ≠ 0,

nie x0; xð Þ ¼ b⋅ iM þ a⋅ x0ð Þq0 þ uM
� �2

− iM þ a⋅xq
0 þ uM

� �2� �

¼ b⋅ 2⋅ iM þ uMð Þ þ a⋅ x0ð Þq0 þ a⋅xq
0

� �
⋅a⋅ x0ð Þq0−xq0

� �

so that

dNIE xð Þ
dx

¼ b⋅2⋅ iM þ a⋅xq
0

� �
⋅a⋅q0⋅xq

0−1:

For the special case with p" = 3 and q ≠ 0,

nie x0; xð Þ ¼ b⋅ iM þ a⋅ x0ð Þq0 þ uM
� �3

− iM þ a⋅xq
0 þ uM

� �3
� �

so that

lim
x0→x

nie x0; xð Þ
x0− x

¼ b⋅3⋅ iM þ a⋅xq
0 þ uM

� �2
⋅a⋅q0⋅xq

0−1

¼ b⋅3⋅ iM þ a⋅xq
0

� �2 þ 2⋅ iM þ a⋅xq
0

� �
⋅uM þ u2M

� �
⋅a⋅q0⋅xq

0−1:

Hence, the instantaneous natural indirect effect satisfies

dNIE xð Þ
dx

¼ b⋅3⋅ iM þ a⋅xq
0

� �2
þ E U2

M

� �� �
⋅a⋅q0⋅xq

0−1:

We recommend using the special case with p " = 1 due to
its desirable properties. It provides a natural generalization of
the linear case of models (1)-(3) to account for monotonicity.
In what follows, p " = 1 is assumed unless otherwise stated.

Adaptive regression
Methods are needed for estimating the relationships of
models (4)-(5) and (9)-(10) and for assessing whether those
relationships are non-constant in X or M and whether they
are reasonably treated as linear in Y, X, and/or M or are
distinctly nonlinear in any of those variables. We use
adaptive regression modeling [34] for these purposes.
Methods are needed as well for assessing whether the

instantaneous natural indirect effect dNIE xð Þ
dx is nonzero. This

can be addressed as in linear mediation with bootstrapped
CIs, but now computed for a grid of possible values x for X.
Knafl et al. [35] developed adaptive regression methods

for nonlinear modeling of Poisson distributed count out-
come variables Y. Knafl et al. [36] extended this to gener-
alized linear modeling including adaptive linear regression
with outcomes treated as normally distributed, as often
used in mediation analyses (but they used these methods
to address modeling of electronically monitored medica-
tion adherence data rather than mediation). How adaptive
regression analyses are conducted is described next.
Adaptive regression methods use likelihood cross-

validation (LCV) scores (as defined later) to evaluate and
compare models. These scores generalize to contexts where
estimation is based on maximizing likelihood-like functions
such as extended quasi-likelihood functions [47]. Heuristic
(i.e., rule-based) search techniques guided by LCV scores
are used to identify effective fractional polynomial models
[33] in primary predictor variables including predictorsX
and mediators M as needed for mediation. Fractional
polynomials generalize standard polynomials, which use
only nonnegative integer powers, to allow for the possibility
of negative and fractional powers. Fractional polynomial
models for continuous outcomes are linear in associated
parameter vectors (consisting of the intercept and slopes
for power transforms of predictors), and so they are linear
models estimated using linear regression methods. How-
ever, these models are based on relationships that are in
general nonlinear (or curvilinear) in the predictor X for
models (4)-(5) and (9)-(10) as well as in the mediator M for
models (5) and (10).
Power transforms f(X, p) are defined for arbitrary real

valued primary predictors X and powers p by setting f(X,
p) to Xp when X > 0, to 0 when X = 0, and to cos(π ⋅ p)
⋅ |X|p when X < 0 where cos denotes the standard cosine
function, π is the usual constant, and |X| denotes the

Fig. 2 Monotonic mediation relationships (assuming q′≠0 and p′≠0).
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absolute value of X. Note that for X < 0, the sign of f(X, p)
oscillates between ±1 as the power p varies. For simplicity
of notation, f(X, p) is denoted as Xp.

Likelihood cross-validation
LCV scores are computed by randomly partitioning
observations into k disjoint sets called folds, calculating
likelihoods for folds using parameter estimates computed
from the remaining data in the complement of the fold,
and combining these deleted likelihoods into a geometric
mean deleted likelihood score. Formally, let S = {s : 1 ≤ s ≤ n}
denote the index set for the n subjects (or observations or
cases) in the data set under analysis, θ the vector of model
parameters, and L(⋅; θ) a likelihood function or a likelihood-
like function (e.g., the extended quasi-likelihood function
used with generalized linear models [47]). Randomly parti-
tion S into k > 1 disjoint nonempty subsets S(h), called folds,
for h ∈H = {h : 1 ≤ h ≤ k}. The LCV score is defined as

LCV ¼
Y
h∈H

L1=n S hð Þ; θ S S hð ÞÞðð

where L(S(h); θ(S\S(h))) denotes the joint likelihood for
the observations with indexes in S(h) using the max-
imum likelihood estimate θ(S\S(h)) of the parameter
vector θ computed using the data in the complement
S\S(h) of the fold S(h). For a given data set, the same
random fold assignment is used for all models so that
the LCV scores for those models are comparable. LCV
scores for multivariate data are normalized by the num-
ber of outcome measurements for all subjects rather
than by the number of subjects.
Larger LCV scores indicate better models, but not ne-

cessarily substantially better models. This issue is assessed
with LCV ratio tests, analogous to likelihood ratio tests in
being based on the χ2 distribution. LCV ratio tests are
expressed in terms of a cutoff for a substantial (or distinct
or significant) percent decrease in the LCV score, chan-
ging with the sample size. The formula for the cutoff is
provided in Section 4.4.2 of Knafl and Ding [34] and in eq.
(6) of Knafl et al. [36]. LCV ratio tests are more conserva-
tive than standard tests for zero coefficients (examples are
provided in [48–50]) in the sense that removal from the
model of a predictor with a significant slope does not al-
ways generate a substantial percent decrease in the LCV
score. Consequently, LCV ratio tests are similar in effect
to adjustments for multiple comparisons.
As an example, suppose that a modelM1 generates a

score LCV M1ð Þ smaller than the score LCV M2ð Þ for an-
other model M2 . If the percent decrease in these LCV
scores, that is,

LCV M2ð Þ−LCV M1ð Þ
LCV M2ð Þ ⋅100%;

is larger than the cutoff for a substantial percent decrease,

then model M2 substantially improves on model M1. On
the other hand, if the percent decrease is less than or
equal to the cutoff, model M1 is a competitive alternative
to model M2. If model M1 is also simpler (e.g., based on
fewer parameters or containing no versus some interac-
tions) than model M2, then it would be preferable to
model M2 as a parsimonious, competitive alternative.

Overview of the adaptive modeling process for a fixed
outcome
Adaptive fractional polynomial models for a fixed outcome
in terms of primary predictors are identified using a heuris-
tic search process beginning with an expansion phase, sys-
tematically adding power transforms of those primary
predictors into the model, followed by a contraction phase,
systematically removing any extraneous power transforms
and adjusting the powers of the remaining transforms to
improve the LCV score. The search process is controlled by
tolerance parameters indicating the change in LCV scores
that can be tolerated for each step in the search process.
For example, the contraction stopping tolerance parameter
setting is based on a LCV ratio test so that the final selected
model is parsimonious. The tolerance parameter settings
change with the number of measurements in the sample,
thereby adjusting the search process by the sample size.
The full adaptive modeling process is formulated in Chap-
ter 20 of [34]. That full process is needed for estimating
models (4)-(5) with arbitrary nonlinearity. Estimation of the
monotonic models of (9)-(10) requires a simpler search
process as addressed later.
The adaptive modeling process can generate adaptive

models for variances (or more generally dispersions [47]) as
well as for means. For example, when M and/or Y are con-
tinuous, the omitted factors or errors UM and UY can be
treated as normally distributed (or at least approximately
so) with non-constant variances that are functions of X, M,
and/or some other primary predictors. The log of the vari-
ances is modeled as linear in the coefficient parameters for
possibly power transformed primary predictors. Coefficient
parameters for the means and variances are estimated
jointly using maximum likelihood with likelihoods based
on the normal distribution. For correlated continuous out-
comes, for example, outcomes measured over clusters such
as family members or patients of the same provider, likeli-
hoods are based on the multivariate normal distribution.
Adaptive nonlinear moderation can be addressed simply

by including interactions as primary predictors. More
generally, the adaptive modeling process can automatically
generate geometric combinations of two or more primary
predictors, that is, products of power transforms of
distinct subsets of the primary predictors using possibly
different powers to transform those primary predictors.
The subset of transforms in the geometric combinations
and their powers are generated adaptively.

\
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Searching for power transforms
A base model M0 is expanded to include a transform of a
predictor X as follows. Let M0(p) denote the model M0 with
the power transform Xp added to it. A grid search is
conducted first to maximize LCV(M0(p)) over an initial set of
powers. By default, the initial powers p =
−3, −2.5, ⋯, −0.5, 0.5, ⋯, 2.5, 3 are used, but this set
can be adjusted if desired. The power 0 is purposely not
considered. For the case with X > 0, the effect of p = 0 on
M0 depends on whether or not M0 includes an intercept.
When there is an intercept, the power 0 corresponds to the
natural log transform (demonstrated by taking the limit as
p→ 0); otherwise it corresponds to the constant transform
adding in an intercept parameter to M0. When X has zero
or negative values, the effect is more complex. Not consid-
ering the power 0 avoids slowing the adaptive modeling
process to check M0 to see what the effect of that power is.
In any case, powers p close to 0 approximate the appropri-
ate case without having to check to see which one it is. By
default, the smallest powers in absolute value that are con-
sidered are ±0.0001, but this can be adjusted.
Let p0 denote the power which maximizes LCV(M0(p))

for this initial set of powers. When p0 = −3, a search is
conducted over powers p = p0 + i ⋅ δ for integer multiples
i of δ = −1 until

LCV M0 p0 þ iþ 1ð Þ⋅δð Þð Þ < LCV M0 p0 þ i⋅δð Þð Þ
> LCV M0 p0 þ i−1ð Þ⋅δð Þð Þ

ð11Þ

When p0 = 3, δ is set to +1 instead. These produce powers
p1 = p0 + i ⋅ δ with i ≥ 0 for these two cases. For −3 < p0 < 3,
p1 = p0. The choice of an initial power for X is given by p1.
Next the choice of a power p2 for changes in powers of

δ = ±0.1 is identified through a similar search on either
side of p1. Then, this is iterated searching around p2 over
changes δ = ±0.01, then δ = ±0.001, and so on. By default,
changes of at most δ = ±0.0001 are considered, but this
can be adjusted. At any stage of this process, if the smal-
lest of the three LCV scores analogous to those of inequal-
ity (11) compared to the largest of those three scores
generates a percent decrease greater than the associated
tolerance parameter (indicating these three LCV scores
are not close to each other), continue the search with one
more decimal digit; otherwise stop the process. When the
process stops at the jth stage, the selected model is M0(pj).
By default, the expansion stopping tolerance is set gener-

ously to 2.5 times the cutoff for a LCV ratio test, and so it
is likely a transform of X would be added to the base model.
However, it is also possible that the expansion might not
add a transform of X to the base model, supporting the
conclusion that X does not have an effect on the outcome
Y after controlling for the transforms of the base model.
Identification of a transform of a predictor to add to a

base model is a small part of the full adaptive modeling

process. Multiple predictors need to be considered as part
of the expansion; the best transform to remove from a base
model needs to be determined as part of the contraction.
With each such removal, the powers of the remaining
transforms need to be adjusted to improve the LCV score.
However, models (9)-(10) with p " = 1 and p and q fixed re-
quire identification of only the single power q ' for X in (9)
and the single power p ' for X in (10). An algorithm for
identifying choices for these two powers is defined later.
For the general adaptive modeling process, tests for zero

coefficients for transforms in selected models are inappro-
priate to conduct since these tests are usually significant.
Due to the contraction heuristics, the removal of each
transform of the selected model generates a substantial
percent decrease in the LCV score. However, this is not
the case for models (9)-(10) based on single transforms of
X. While the selected power transform for X in one of
these models generates an optimal LCV score, the LCV
score for the associated constant base model might not
generate a substantial percent decrease in the LCV score,
and so the slope for that selected power transform might
not always be significantly nonzero. However, a LCV ratio
test can also be used to assess the impact of including X
in the model versus not including it and is likely to be
more conservative than the test for a zero slope for X.

Setting the number of folds
Knafl et al. [35] used 10 folds for estimating nonlinear
individual-subject medication adherence curves on the
recommendation of Kohavi [51]. However, the data sets
they used had limited sample sizes at most 100: The
choice of the number k of folds may need to be adjusted
for different sample sizes. Knafl and Grey [52] investigated
this issue for exploratory factor analysis models. They
found that for three different sets of items the same num-
ber of factors was selected by maximizing LCV scores as
long as the value of k was not too small. Consequently,
they recommended using the first local maximum in k
over multiples of 5 folds for some benchmark analysis, in
their case the selection of the number of factors extracted
through maximum likelihood. This choice balances the
need for a sufficiently large number of folds while limiting
the amount of computation. Section 2.8 of [34] provides a
more complete assessment of this issue.

The composite mediation model
Models (9)-(10) with p " = 1 can be combined into a single
bivariate outcome model as follows. With superscript T
denoting the transpose operator, let Y ' = (Mq Yp)T, I1
= (1 0)T, I2 = (0 1)T, X1 = (X 0)T, X2 = (0 X)T, M = (0 M)T,
and U = (UM UY)

T. The model

Y
0 ¼ β1⋅I1 þ β2⋅I2 þ β3⋅X

q0
1 þ β4⋅X

p0
2 þ β5⋅M

q þU ; ð12Þ
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where a power transform of a vector is the vector of its
entries transformed by that power, satisfies β1 = iM, β2 =
iY, β3 = a, β4 = c ', and β5 = b, and so provides a single
model for the five coefficient parameters for the means
of models (9)-(10). Assume that U is bivariate normally
distributed with covariance matrix Σ, thereby allowing
for possibly correlated omitted factors or errors. Model
(12) is a path model nonlinear in the outcome Y, the
mediator M, and the predictor X with Y and M
measured with error and X measured without error.
Let θ be the vector of model parameters, including

βj 1 ≤ j ≤ 5 and all the parameters for modeling the co-
variance matrix Σ. Using subscripts s for s ∈ S as defined

earlier, the likelihood L(S; θ) satisfies logL S; θð Þ ¼
Y
s∈S

ℓs

where

ℓs ¼ −1
2⋅uT

s ⋅Σ
−1
s ⋅us−1

2⋅ log Σsj jð Þ−1
2⋅2⋅ log 2⋅πð Þ;=

��

μs ¼ β1⋅I1 þ β2⋅I2 þ β3⋅X
q
0

1;s þ β4⋅X
p
0

2;s þ β5⋅M
q
s ;

Σs is the covariance matrix for the sth observation, |Σs|
its determinant, and us = Y ' s − μs the associated residual
vector. For model (12), there is only one correlation
parameter ρ that is the same for all s, but each of the
variances for UM,s and for UY,s might change with s or
be the same for all s.
When the omitted factors or errors are independent,

that is, when ρ = 0,

L S; θð Þ ¼ LM S; θð Þ⋅LY S; θð Þ

separates into two terms corresponding to the likelihoods
LM(S; θ) and LY(S; θ) for models (9) and (10), respectively.
The LCV score for model (12) also separates, but into

LCV ¼ LCV
1=2
M⋅LCV

1
2=

Y

where LCVM and LCVY are LCV scores for models (9)
and (10), respectively. This holds because the LCV score
for model (12) is normalized by the number 2 ⋅ n of out-
come measurements while LCVM and LCVY each are nor-
malized by the number n of subjects. If q is fixed (e.g.,
with q = 1 so models (9)-(10) are linear in M), maximum
likelihood estimation and adaptive modeling of models (9)
and (10) separately generate the same results as for mod-
eling them in combination using model (12), assuming
consistent fold assignments for these two cases. However,
this only holds when q is fixed and ρ = 0. Even when ρ = 0,
identification of an appropriate value for q requires com-
paring LCV scores for the composite model (12) since the
same value of q is used in its submodels (9)-(10).

Identifying power transforms for X in the composite model
For fixed choices for the powers p and q, the adaptive
expansion process is constrained to generate a single
transform for X1 and for X2 as follows. Let M0 be the
base model with means based only on I1 and I2 along
with a fixed choice for the covariance matrix of UM and
UY. Let M0(q ' 1) be this base model expanded to include
a power transform of X1 with selected power q ' 1 and
M0(p ' 1) expanded to include a power transform of X2

with selected power p '1. If

LCV M0 p01ð Þð Þ > LCV M0 q01ð Þð Þ;

then expand M0(p ' 1) to include a power transform of X1

with power q ' 2, possibly different than q ' 1. Otherwise,
expand M0(q ' 1) to include a power transform of X2 with
power p ' 2, possibly different than p ' 1. This is the stand-
ard adaptive expansion process constrained to include a
single power transform of primary predictors X1 and X2

for the means.
Since power transforms are added to the model with-

out adjusting the powers of previously added transforms,
there might be an improvement if these powers are ad-
justed. The formal power transform process is defined in
Section 20.4.4 of [34]. Informally, each power is adjusted
using the power adjustment process described earlier
but starting at its current value holding the other powers
fixed. Stop if no adjusted powers provide an improve-
ment in the LCV score. Otherwise, continue the process
using the adjusted power generating the best improve-
ment in the LCV score. However, since the generated
model (12) for fixed p and q has only two transforms,
the improvement if any is unlikely to be substantial. Con-
sequently, power adjustment is treated as an optional fea-
ture of the adaptive monotonic mediation process.
The model for the variances (technically, the model

for the log of the variances) based on I1 and I2 results in
separate but constant variances for UM and UY. The as-
sociated covariance matrix also allowing for the single
general correlation ρ is called compound symmetry het-
erogeneous (CSH). Non-constant variances can be gen-
erated by considering X1, X2, and/or M as primary
predictors for modeling the variances. The full adaptive
modeling process can be used for modeling the vari-
ances since these need not be monotonic. This is
achieved by including I1 and I2 in the base model for the
variances, not restricting the expansion of the model for
the variances, and restricting the contraction to contract
only transforms from the model for the variances. By de-
fault, the contraction considers removal of the intercepts
corresponding to I1 and I2 in the model for the vari-
ances, but this can be overridden.
Covariates can be included in model (12). For each co-

variate Z, include Z1 = (Z 0)T and Z2 = (0 Z)T as primary
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predictors for the means and/or variances, respectively,
addressing models (9)-(10). The full adaptive modeling
process can be used to generate power transforms of Z1

and Z2 for modeling the means and/or variances.

Power-adjusted likelihood cross-validation
Assume that Y > 0 so that transforms Yp are well-defined
for all p. Model (10) for Yp for a fixed power p can be
estimated using existing adaptive regression methods as
described above. Standard LCV scores for these models,
not accounting for the power p, as defined earlier are based
on the normal density function. The power p can be chosen
by maximizing an alternative power-adjusted LCV score
that also accounts for power transformation of the outcome
Y using the power-adjusted likelihood function as defined
next.
If Yp is normally distributed for p > 0, the distribution

function F(y; p, θ) for Y satisfies

F y; p; θð Þ ¼ P Y≤y; p; θð Þ ¼ P Yp≤yp; θð Þ
where θ is the vector of model parameters. Consequently,
the power-adjusted density function f(y; p, θ) for Y satisfies

f y; p; θð Þ ¼ dP Y≤y; p; θð Þ
dy

¼ p⋅yp−1
dP Yp≤yp; θð Þ

dy

where dP Yp≤yp;θð Þ
dy is the usual univariate normal density

function φ(v, θ) evaluated at v = yp with mean and vari-
ance based on the parameter vector θ. When p < 0,

F y; p; θð Þ ¼ P Y≤y; p; θð Þ ¼ P Yp≥yp; θð Þ
and the power-adjusted density function f(y; p, θ) for
Y satisfies

f y; p; θð Þ ¼ dP Y≤y; p; θð Þ
dy

¼ −p⋅yp−1⋅φ yp; θð Þ:

Thus, for p ≠ 0,

f y; p; θð Þ ¼ pj j⋅yp−1⋅φ yp; θð Þ:
A similar argument for p = 0 corresponding to the
natural log transform gives

f y; p; θð Þ ¼ y−1⋅φ logy; θð Þ:
The power-adjusted LCV score is defined as

LCV pð Þ ¼
Y
h∈H

f 1=n S hð Þ; p; θ S S hð Þ; pð Þð Þ

where f(S(h); p, θ(S\S(h); p)) denotes the joint power-adjusted
likelihood for the subjects with indexes in fold S(h) computed
with estimates θ(S\S(h); p) of the parameter vector θ gener-
ated using the data in the complement S\S(h) of the fold S(h)
and with the outcome Y transformed to Yp. The LCV(p)

score can be maximized in the power p using a grid search
to choose an appropriate power transform for the outcome.
The assumption that Y > 0 can be relaxed by extending

Yp in the same way as for Xp given earlier, that is, by setting
it to 0 when Y = 0 and to cos(π ⋅ p) ⋅ |Y|p when Y < 0. Then,
the sign is not always reversed for the case Y < 0, affecting
the computation of f(y; p, θ). However, the derivative f(0;
p, θ) is not always well-defined. For example, when p < 1
and y > 0,

f y; p; θð Þ ¼ p⋅yp−1⋅φ yp; θð Þ↑∞ as y↓0:

It seems better to add a constant to Y to make it positive
valued, which is the approach recommended by Royston
and Altman [33] for transforming non-positive predictors.
The univariate outcome transformation process can be

applied as well to model (9). The formulation also extends
readily to multivariate data. When those data are based on
repeatedly measuring the same outcome Y at different
times or over different conditions (such as members of
the same family or patients of the same provider), it is rea-
sonable to transform each such outcome measurement
with the same power p. However, model (12) requires
consideration of different powers p and q for Y and M
with associated power-adjusted LCV scores LCV(p, q).
Identification of appropriate choices for p and q can be

achieved by starting with p = q = 1 and using grid searches
to adjust p with q = 1 fixed giving LCV(p1, 1) and to adjust
q with p = 1 fixed giving LCV(1, q1). If LCV(p1, 1) >
LCV(1, q1), use a grid search in q with p = p1; otherwise
use a grid search in p with q = q1. This generates powers
p2 and q2. In example analyses, the grid searches are first
conducted over changes of ±0.5 generating the pow-
ers p2 and q2, then over changes of ±0.1 starting at
the powers p2 and q2 generating the powers p3 and
q3, and then stops identifying powers for Y and M to
within one decimal digit.

Monotonic mediation analysis
In what follows, unless otherwise stated, base models for
means and covariances are based on the predictors I1 and
I2, and so with only intercepts iM and iY for the means
along with CSH covariance structure. Also assume p " = 1
unless otherwise indicated.

1. Selecting the number k of folds.
The benchmark analysis is the generation of model
(12) constrained so that p = q = 1, that is, with
untransformed M and Y, by adaptively expanding the
model for the means in X1 and X2 limiting the number
of power transforms for each of these predictors to
one. The number of folds to use in all subsequent
analyses is the one generating the first local maximum
in the standard LCV score over multiples of 5.

\
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2. Selecting the powers p and q.
Use the search through alternative values for p and
q based on power-adjusted LCV scores LCV(p,q)
described earlier to generate the full model (12)
without changing the CSH covariance structure.
Use the selected powers p and q in subsequent
analyses unless otherwise indicated.

3. Assessing the need for transforming M and Y.
Use a LCV ratio test to compare LCV(1,1)
(the same as its standard LCV score) generated
in Step 1 to LCV(p,q) generated in Step 2.

4. Assessing the need for transforming X.
For given values of p and q, use a LCV ratio test to
compare LCV(p,q) as generated in Step 2, with X1

and X2 adaptively transformed, to the LCV(p,q)
score for the associated model linear in X1 and X2.
When the power q ' = 1, the instantaneous natural
indirect effect dNIE xð Þ

dx ¼ a⋅b is constant. Whether the
instantaneous natural indirect effect is reasonably
treated as constant can be assessed with a LCV ratio
test comparing a given model with q ' ≠ 1 to that
model adjusted to satisfy q ' = 1.

5. Assessing mediation relationships.
In the linear mediation case of models (1)-(3),
mediation requires significantly nonzero slopes a
and b. In the monotonic mediation context of model
(12), these issues can be addressed with LCV ratio
tests. To assess for a dependence of Mq on X in the
component model (9), compare the LCV(p,q) score
for the full model (12) to the associated model with
X1 removed (or with a = 0) and the transform for X2

adaptively generated. To assess the dependence of Yp

on Mq in the component model (10) with p " = 1,
compare the LCV(p,q) score for the full model (12) to
the associated model with Mq removed (or with b = 0)
and the transforms for X1 and X2 adaptively
generated. It is also possible to assess the dependence
of Yq on X in the component model (10) by
comparing the LCV(p,q) score for the full model
(12) to the associated model with X2 removed (or
with c ' = 0) and the transform for X1 adaptively
generated.

6. Considering non-constant variances.
With base model the adaptive model (12) with CSH
covariance structure generated in Step 2 with initial
powers p ' and q ' for X1 and X2, adaptively expand
and then contract the model for the variances in X1,
X2, and M, allowing for possible adjustment of the
powers p ' and q ' of the base model as part of the
contraction, but leaving Mq in the base model
untransformed (so that p " = 1).

7. Considering covariates.
Covariates can be considered for inclusion in the
component models (9)-(10) of model (12). With base

model the adaptive model of Step 2, adaptively expand
and then contract the model for the means and the
variances in Z1 and Z2 for all covariates Z. As part of
the contraction, allow for possible adjustment of the
powers p ' and q ' of the base model, leave Mq in the
base model untransformed (so that p " = 1), and only
contract transforms of covariates from the model for
the means. This can be combined with Step 6 to allow
the variances to depend as well on X1, X2, and M.

8. Assessing ρ = 0.
For any model generated earlier, compare its LCV
score using a LCV ratio test to the associated model
constrained to satisfy ρ = 0.

9. Assessing p " = 1
With base model the adaptive model of Step 2,
adaptively retransform the model allowing the
powers of the single transforms of X1, X2, and Mq to
be changed to improve the LCV score. The
assumption p " = 1 is supported if the associated
model generated with p " = 1 in Step 2 is a
competitive alternative to this latter model.
Similar assessments can be conducted allowing
for non-constant variances as in Step 6, for
covariates as in Step 7, and/or ρ = 0 as in Step 8.

10. Assessment of Model Assumptions
Yuan and MacKinnon [26] provide a detailed
discussion of the impact of violations of the constant
variances and normality assumptions of standard
regression models. Modeling of variances can
address the first problem. Data transformation,
applied to outcomes and/or predictors, as
considered here can sometimes resolve normality
problems, but not always. Consequently, model
assumption assessments are important to conduct in
general regression contexts including the special
case of mediation analyses, whether treated as linear
or nonlinear. Should data transformation not resolve
such problems, then quantile regression methods as
described by Yuan and MacKinnon [26] are more
appropriate to use. However, if data transformation
resolves model assumption problems, then
normality-based methods are optimal [26] when
applied to the transformed data and so would likely
generate more efficient and powerful estimates.
In the case of mediation analyses, the use of
bootstrapped CIs on indirect effects circumvents
distributional assumption problems for parametric
estimates of those effects. However, as demonstrated
by the simulations of [26], bootstrap methods cannot
fully address distributional assumption problems for
the data. Moreover, bootstrapped CIs are likely to be
relatively narrower, and so more precise, when data
are transformed to be as close as possible to normal,
than when untransformed. The example analyses
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reported later provide two examples supporting this
conclusion. This, of course, assumes that the indirect
effect has been consistently estimated so that the true
value is in the confidence interval.

For composite model (12), the constant variances
assumption can be addressed with a LCV ratio test
comparing constant and non-constant variances models
to assess whether variances are reasonably close to con-
stant or are distinctly non-constant. If a sufficiently broad
set of primary predictors for the variances are consid-
ered, the associated non-constant variances model
should provide an appropriate depiction of the variances,
thereby relaxing the constant variances assumption if ne-
cessary. These variances estimates combined with the es-
timated correlation provide estimates Σs(S) of the
covariance matrices for observed outcome vectors Y 0

s
for subjects with indexes s in the set S. Associated re-
sidual vectors are us(S) =Y

0
s −μs(S) where μs(S) are esti-

mated mean vectors for subjects s based on X1s, X2s,Ms,
and possibly covariates. Associated standardized or scaled
residuals are given by stdus(S) = (Vs

T(S))− 1 · us(S) where
Vs(S) is the square root of Σs(S) determined by its Cho-
lesky decomposition. The combined standardized
residuals over all s can be used to assess the nor-
mality assumption by visually checking for linear-
ity in the associated normal (probability) plot and
with the Shapiro-Wilk test for normality of the
standardized residuals.

11. Assessing natural indirect effects
Once an appropriate choice for composite model (12)
with p " = 1 has been identified, possibly including non-
constant variances and/or covariates, the assessment of
whether the instantaneous natural indirect effect function
dNIE xð Þ

dx for this model is nonzero needs to be assessed.
This can be addressed with bootstrapped CIs [21, 29, 40,
41], but computed for a grid of possible values x for the
predictor X. For models with a constant instantaneous
natural indirect effect (i.e., with q ' = 1), only one value for
X need be considered. The bias-corrected version [42] is
recommended by MacKinnon et al. [40], and so is
used in example analyses unless otherwise indi-
cated. All reported CIs are based on 1,000
resamples.
The powers p, q, p ', and q ' for a composite model (12)
as well as powers for all covariate predictors and
variance predictors are held fixed with associated slope
parameters estimated for resamples of the composite
data. The generated 95% CI for the instantaneous natural
indirect effect function at each nonzero value of x has
lower and upper bounds

L xð Þ ¼ bL⋅aL⋅q0⋅xq
0−1 < U xð Þ ¼ bU ⋅aU ⋅q0⋅xq

0−1:

Define the normalized width W of these intervals as

W ¼ max L xð Þj j; U xð Þj jð Þ−min L xð Þj j; U xð Þj jð Þ
max L xð Þj j; U xð Þj jð Þ

¼ 1−
min bL⋅aLj j; bU ⋅aUj jð Þ
max bL⋅aLj j; bU ⋅aUj jð Þ ;

which is constant in nonzero x with a value between
0 and 1. Models for the data generating smaller
values for W provide more precise predictions of the
instantaneous natural indirect effect function.

Moderated monotonic mediation
One of the covariates Z might be considered as a moderator.
There are a variety of ways that models (9)-(10) can be ad-
justed to accommodate moderation. For example, Preacher,
Rucker, and Hayes [53] propose five alternatives. Under their
fifth alternative, Z moderates the effect of X on M, X on Y,
andM on Y. Under this alternative, models (9)-(10) become

ð13Þ

ð14Þ

possibly with other covariates included where is the set of
all possible values z for Z and I(Z= z) the indicator for Z= z
(i.e., it equals 1 when Z= z and 0 otherwise). The depend-
ence of M on X and Y on X and M have been defined separ-
ately for the values z of Z taking an analysis of variance
approach. This formulation allows associated intercepts,
slopes, and powers to change with the values z of Z while
preserving monotonicity. However, it requires estimation of
model parameters for each value z of Z. This requirement is
reasonable for moderators Z with discrete numbers of pos-
sible values, but problematic for continuous moderators Z
with many possible values z but sparse numbers of observa-
tions for some values z. In this latter case, the moderator Z
could be replaced by a split based on its tertiles, quartiles,
etc.
Under (13)-(14), the instantaneous natural direct effect

c 0ðzÞ⋅p 0ðzÞ⋅Xp
0 ðzÞ−1 (assuming for simplicity that p ' (z) ≠ 0)

changes with the values z of Z. When p " (z)≡1, the instant-
aneous natural indirect effect b(z) ⋅ a(z) ⋅ q′(z) ⋅X(q ' (z) − 1)

(assuming for simplicity that q′(z) ≠ 0) also changes with
the values z of Z. The associated normalized widths W(z)
change with z as well.
Model (12) generalizes to

ð15Þ

where

HðzÞ ¼ β1ðzÞ⋅I1 þ β2ðzÞ⋅I2 þ β3ðzÞ⋅Xq′ðzÞ
1

þ β4ðzÞ⋅Xp′ðzÞ
2 þ β5ðzÞ⋅Mq:
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The adaptive modeling process can be used to identify
the powers q ' (z) and p ' (z) for all z combined.
The individual moderation components of model (15)

can be assessed by comparing model (15) to the model
with each of those moderation component removed using
LCV ratio tests. Specifically, moderation of the effect of X
on M in model (13) can be assessed by replacing

in (15) with β3 ⋅X1
q '. Moderation

of the effect of X on Y in model (14) can be assessed by re-
placing in (15) with β4 ⋅X2

p '.
Moderation of the effect of M on Y in model (14) can be
assessed by replacing in (15) with
β5 ⋅M

q.
It is also possible to test effects for specific values

z ' of Z. Specifically, the effect of X on M in model
(13) for the value z′ of Z can be assessed by re-
placing in (15) with

. The effect of X on Y in
model (14) for the value z′ of Z can be assessed by
replacing in (15) with

. The effect of M on Y in
model (14) for the value z′ of Z can be assessed by
replacing in (15) with

.

Data on family management of childhood chronic conditions
Example analyses are reported later using a subset of
data from a cross-sectional study on family management
of childhood chronic conditions [54] reported by 187
partnered mothers. General family functioning is mea-
sured using the General Functioning Scale of the
McMaster Family Assessment Device [55], coded so that
larger values indicate better family functioning with
range 1–4. Difficulty managing the child’s condition is
measured by the family life difficulty scale of the Family
Management Measure [54], coded so that larger scores
mean more difficulty. This scale measures the extent to
which having a child with a chronic condition makes
family life more difficult. Child adaptation, in terms of
the intensity of the child’s conduct-disordered behavior,
is measured using the Eyberg Child Behavior Inventory
[56], coded so that larger values indicate better child
adaptation or less conduct-disordered behavior.
Example analyses use these family management data

to demonstrate nonlinear mediation analyses by consid-
ering mediation of the impact of family functioning X on
child adaptation Y by difficulty M in managing the con-
dition. The cutoff for a substantial percent decrease for
these data using models (12) and (15) with 374 = 2 ⋅ 187
measurements is 0.51%. Example analyses assume p " = 1
or p " (z) = 1 for all values z of a moderator Z unless
otherwise stated.

The proposed mediation relationships for these observa-
tional data can be justified on the following basis. General
family functioning would be developed by a family prior
to the diagnosis of the child’s chronic condition, which
would affect how difficult that chronic condition makes
family life which would then affect the child’s adaption to
the condition. However, the purpose of these analyses is
to provide example mediation analyses not to establish
mediation in this context.

Simulated mediation data
Data were simulated for 101 observations with equally
spaced values for the predictor Xsim between 1 and 10
(i.e., 0.09 units apart) with mediator Msim = 1 + Xsim +
UM, outcome Ysim = Y ' sim

0.4 , and

Y 0
sim ¼ 5þ Xsim þMsim þ UY

25
;

where UM and UY are independent standard normal
random variables. Ysim was computed by raising Y ' sim to
the power 2.5; the normalizing value 25 used in computing
Y ' sim was chosen to be the smallest integer value larger
than the maximum generated value for the unnormalized
Y ' sim values. Normalizing the values of Y ' sim avoids gener-
ating very large values for Ysim. The true values for the pow-
ers are p = 0.4, q = 1, p ' = 1, and q ' = 1 with true constant
instantaneous natural indirect effect a⋅b ¼ 1⋅1 25 ¼ 0:04= .
The cutoff for a substantial percent decrease for these data
using model (12) with 202 = 2 ⋅ 101 measurements is 0.95%.

Results
Analyses at the beginning of this section consider mediation
of the effect of family functioning on child adaptation to a
childhood chronic condition by the difficulty in managing
that condition. Intercept parameters for the means and vari-
ances are constrained in all analyses not to be removed as
part of contractions. In computing LCV scores, Yp and Mq

measurements for the same mother are randomly assigned
to the same fold. Analyses are also conducted at the end of
this section using the simulated mediation data.

Selecting the number of folds
For model (12) applied to the family management data
with p = q = 1 and CSH covariance structure, the adaptive
model in X1 and X2 generates a first local maximum at k
= 10 with 10-fold LCV score 0:015024 and selected pow-
ers p ' = −3 and q ' = 2. Using k = 5, the selected powers are
p ' = 3 and q ' = 1.5 with 10-fold LCV 0:015018 and
insubstantial percent decrease in the LCV score compared
to the model selected with k = 10 of 0.04% (i.e., less than
the cutoff of 0.51% for the data). Using k = 15, the selected
powers are p ' =−1 and q ' = 1.5 with 10-fold LCV 0:015005
and insubstantial percent decrease in the LCV score of
0.13%. Consequently, the generated model is reasonably
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robust to the choice of the number of folds. Subsequent
analyses all use k = 10 folds for computing standard as well
as power-adjusted LCV scores.
Using10 folds, the number of measurements per fold

ranges from 26 to 56 for 13 to 28 mothers. Consequently,
fold complements contain at least 318 or 85:0% of the
374 available measurements, and so deleted parameter
estimates should be reasonably reliable.

Selecting the powers p and q for Y and M
For model (12) with CSH covariance structure, the adaptive
search for models in X1 and X2 with varying choices for p
and q , first selects the powers p = 1 and q = 0 (i.e., the log
transform) over changes in these powers of ±0.5 with
LCV(1, 0) = 0.015683 and then the powers p = 1.3 and q = 0
over changes in these powers of ±0.1 with LCV(1.3,0) =
0.015776. For untransformed Y and M with p = q = 1,
LCV(1, 1) = 0.015024 (the same as its standard LCV score
reported above), and so the percent decrease is substantial
at 4:77% . Consequently, the mediation relationships are
distinctly nonlinear in Y and M. Model (12) for the
standard linear mediation model with p = q = p ' = q ' = 1
has even smaller LCV(1,1) score 0.014958, and so is sub-
stantially improved upon by consideration of monotonicity.
Furthermore, the adaptively generated model withY trans-

formed and M held untransformed, that is, with q= 1, gener-
ates the powers p= 1.4, p ' =−5, and q ' = 2 with LCV(1.4,1)
score 0.015143 and substantial percent decrease compared to
the model with p= 1.3 and q= 0 of 4.01%. Consequently, re-
lationships (9)-(10) are distinctly nonlinear in M . Moreover,
the adaptively generated model with Y untransformed, that
is, with p= 1, generates the powers q= 0, p ' =−2, and q ' =
2.4 with LCV(1,0) score 0.15683 and substantial percent de-
crease compared to the model with p= 1.3 and q= 0 of
0.59%. Hence, relationship (10) is distinctly nonlinear in Y.

Assessing ρ = 0
Using p = 1.3, q = 0, p ' = −2.5, and q ' = 3.5 as selected with
the CSH covariance structure, the estimated correlation is
−0.08. Rerunning this model with ρ = 0, the LCV(1.3,0)
score is 0.015804. Using p = 1.3 and q = 0 as selected with
CSH covariance structure, but with ρ = 0, the adaptively
generated model (12) has somewhat different powers p ' =
−3 and q ' = 3 and LCV(1.3,0) score that also rounds to
0.015804. Since this score is larger than the LCV(1.3,0)
score under CSH, the omitted variables or errors UM and
UY are reasonably treated as independent. Using the values
of p and q selected under CSH reduces the computations
compared to identifying adaptive values for p and q under
ρ = 0. However, in this case, the same powers p = 1.3 and q
= 0 are adaptively identified with ρ = 0 starting from p = q =
1. An alternative approach would be to start the search for
p and q with ρ = 0 at the values generated for CSH while

searching over grids of �0:1 to reduce the computations.
This also generates the same solution p ¼ 1:3 and q ¼ 0.
For the case p ¼ q ¼ 1 with selected powers p0 ¼ �3

and q0 ¼ 2, a similar result holds. The estimated correlation
is �0:05 and the model with ρ ¼ 0 has LCV score
0:015043, larger than the score 0:015024 reported earlier
for the associated model with CSH covariance structure.
Subsequent analyses use ρ ¼ 0 since it provides an im-
provement in these two cases.

Assessing a = 0
The adaptively generated model with p ¼ 1:3, q ¼ 0,
ρ ¼ 0, and constrained not to include a transform of
X1 in the model for the means has model for the
means depending on X2 transformed by the power
p' = −3 with LCV(1.3,0) score 0:015077 and substan-
tial percent decrease 4:60% compared to the model
also including a transform of X1: Consequently,
transformed difficulty logM in model (9) is reason-
ably assumed to depend substantially on family func-
tioning X .

Assessing b ¼ 0
The adaptively generated model with p ¼ 1:3 , q ¼ 0 , ρ
¼ 0, and constrained not to include the transform Mq in
the model for the means has model for the means depend-
ing on X1 and X2 transformed by the powers p′ = −0.4
and q′ = 3, respectively, with LCV(1.3,0) and substantial
percent decrease 1:07% compared to the model also in-
cluding the transform of Mq. Consequently, transformed
adaptation Y 1:3 in model (10) is reasonably assumed to
depend substantially on transformed difficulty logM cor-
responding to q ¼ 0.

Assessing c ' = 0
The adaptively generated model with p ¼ 1:3, q ¼ 0, ρ ¼ 0,
and constrained not to include a transform of X2 in the
model for the means has model for the means depending
on X1 transformed by the power q' = 3 with LCV(1.3,0) and
substantial percent decrease 0:57% compared to the model
also including a transform of X2 . Consequently, in model
(10), transformed adaptation Y 1:3 is reasonably assumed to
depend substantially on family functioning X, and so the in-
stantaneous natural direct effect is substantial.

Assessing p " = 1
Using the model (12) selected with p ¼ 1:3, q ¼ 0, and ρ
¼ 0 (i.e., with p' = −3 and q' = 3), an adaptive transform-
ation of this model allowing for p" ≠ 1 (and also possible ad-
justments to p' and q') is the same model generated with p"
= 1. Consequently, the simplifying assumption p" = 1 is rea-
sonable in this case.
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Assessing non-constant variances
As described earlier, adaptive models can be generated
allowing for variances of the omitted factors or errors
UM and UY to depend on transforms of X1, X2, and M.
Starting from the adaptively generated model for p ¼ 1:3
and q ¼ 0 with ρ ¼ 0 (i.e., with p' = −3 and q' = 3), the
expansion adds in transforms of these predictors to the
model for the variances, but the contraction removes all
of them, leaving the base constant variances model. This
result indicates that the variances are reasonably treated
as constant in X1, X2, and M.

Also considering a covariate
The family management study enrolled parents of chil-
dren with a variety of chronic conditions. One childhood
chronic condition type was Crohn’s disease or a bowel
disorder with 54 (28:9%) children having this condition.
The indicator Z for having this condition can be consid-
ered as a possible covariate for models (9)-(10). Adaptive
modeling starts with the adaptively generated model for
p ¼ 1:3, q ¼ 0 , and ρ ¼ 0 (i.e., with p' = −3 and q' = 3)
along with constant variances (and so based on I1 and I2).
The model for the means is expanded considering the in-
dicators Z1 and Z2 (as defined similarly to X1 and X2 )
while the model for the variances is expanded considering
arbitrary transforms of X1 , X2 , and M along with Z1 and
Z2. The contraction is constrained so that Mq is not
retransformed in the model for the means (so p0 0 ¼ 1 )
while X1 and X2 are not removed from the model for the
means, but associated powers are allowed to be changed.
The generated model has the same powers p' =−3 and q'

= 3 as without consideration of Z1 and Z2 along with the
covariate Z2 added to both models for the means and the
variances and no transforms of X1, X2, and M in the model
for the variances. The LCV(1.3,0) score is 0:016062, which is
a substantial improvement on the score 0:015804 for the as-
sociated model not considering covariates with percent de-
crease 1:61%. Consequently, the indicator for having Crohn’s
disease or a bowel disorder substantially influences the means

and variances for model (10), but not for model (9) (since
only Z2 is included in the generated model and not Z1).

Model assumptions
A standard linear mediation analysis, that is, with model
(12) based on p = q = p' = q' = 1 and ρ ¼ 0 , generates the
standardized residuals plotted in Fig. 3. While this plot is
reasonably close to linear for most of the data, there are
exceptions at the low and high ends of the plot. There are
also three outliers (i.e., with values outside of �3Þ with
standardized residual values of �3:44, 3:03, and 3:07. The
Shapiro-Wilk test for normality of the standardized resid-
uals is significant at p ¼ 0:037. Consequently, the normality
assumption is questionable for the linear mediation model.
The corresponding adaptive non-constant variances model
with no changes to the model for the means but possible
inclusion of transforms of X1 , X2 , and M in the model for
the variances contains the single transform X19

1 in the
model for the variances. The LCV(1,1) score for this
adjusted model is 0:015046 with substantial improvement
over the score 0:014958 for the associated constant vari-
ances model (as reported earlier) with percent decrease
0:58% . Consequently, the constant variance assumption is
questionable for the component model (2) of the standard
linear moderation model.
Figure 4 contains the normal plot generated by the

monotonic mediation model (with p ¼ 1:3, q ¼ 0, p' = −3,
q' = 3, and ρ ¼ 0) adjusted for the covariate having Crohn’s
disease or a bowel disorder with the best power-adjusted
LCV score generated so far. This plot is reasonably close to
linear, the standardized residuals range for �3:01 to 2:51
with only one observation having a value �3:01 outside of
�3 , but very close to the boundary value of �3 . The
Shapiro-Wilk test for normality is now non-significant (p
¼ 0:475), and so the normality assumption seems reason-
able for this case. Figure 5 contains the plot of the stan-
dardized residuals in terms of family functioning. The

Fig. 3 Normal plot for the linear mediation model for child
adaptation as a function of family functioning as mediated by
difficulty with independent omitted factors or errors

Fig. 4 Normal plot for the monotonic mediation model for child
adaptation as a function of family functioning as mediated by
difficulty controlling for having Crohn’s disease or a bowel disorder
with independent omitted factors or errors
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assumption of constant variances is reasonable at least for
all but a few exceptional, low family functioning values,
suggesting that the standardized residuals are reasonable
close to having constant variances. These results indicate
that monotonic transformation can resolve distributional
assumption problems for mediation models with continu-
ous positive valued outcomes and mediators.

Results for the selected model
Using this monotonic mediation model with the best LCV
score so far, estimated instantaneous total, natural direct,
natural indirect, and relative natural indirect effects are
presented in Table 1 for the grid of family functioning
values 1, 2, 3, and 4 (1 is the smallest possible value while 4
is the largest possible value for the scale). The instantan-
eous natural indirect effect of family functioning on child
adaptation increases with increasing or improving family
functioning values while the instantaneous natural direct
effect of family functioning on child adaptation decreases
in such a way that the relative instantaneous natural
indirect effect of family functioning on child adaptation in-
creases. Family functioning needs to be relatively high in
order for the relative instantaneous natural indirect effect
to be relatively strong; in other words, mediation in this
case is quite weak for values of family functioning between
1 and 2 In contrast, the standard linear mediation model
(i.e., with p = q = p' = q' = 1 and ρ ¼ 0Þ generates a total

effect of 18.5, a natural direct effect of 12.3, a natural indir-
ect effect of 6.2, and a relative natural indirect effect of
0.34, quite different results.

Bootstrapped CIs
The standard linear mediation model (i.e., with p = q = p' =
q' = 1 and ρ ¼ 0 ) generates the same bootstrapped CI of
2:00 – 11:96 for the instantaneous natural indirect effect at
each value of family functioning. The normalized width W
for this CI is 0:83.
Table 2 contains bias-corrected bootstrapped 95% CIs

for the natural indirect effect at a range of values of fam-
ily functioning under the monotonic mediation model
with the best LCV score so far, that is, model (12) with
powers p ¼ 1:3, q ¼ 0, p' = −3, and q' = 3, controlling for
the covariate having Crohn’s disease or a bowel disorder
with independent omitted factors or errors (i.e., ρ ¼ 0).
The lower and upper bounds on the instantaneous
natural indirect effects of family functioning on child
adaptation increase with increasing values of family
functioning. The normalized width W for these CIs is
0:72. Since this is smaller than the value 0:83 (about
13% smaller) for the standard linear mediation model,
the monotonic mediation model generates more pre-
cise estimates of the instantaneous natural indirect
effects.
The bootstrapped CI of 2:00 – 11:96 for the linear

moderation model (as reported earlier) overlaps with the

Fig. 5 Standardized residual plot for the monotonic mediation
model for child adaptation as a function of family functioning as
mediated by difficulty controlling for having Crohn’s disease or a
bowel disorder with independent omitted factors or errors

Table 1 Estimated instantaneous total, natural direct, natural indirect, and relative natural indirect effects for the monotonic
mediation model for child adaptation as a function of family functioning as mediated by difficulty controlling for having Crohn’s
disease or a bowel disorder with independent omitted factors or errors

Family functioning Instantaneous total effect Instantaneous
natural direct effect

Instantaneous
natural indirect effect

Relative instantaneous
natural indirect effect

1 3092.9 3087.9 4.9 0.002

2 212.6 193.0 19.6 0.092

3 82.3 38.1 44.1 0.536

4 90.5 12.1 78.5 0.867

Table 2 Bias-corrected bootstrapped 95% confidence intervals
for the monotonic mediation model for child adaptation as a
function of family functioning as mediated by difficulty controlling
for having Crohn’s disease or a bowel disorder with independent
omitted factors or errors

Family
functioning x

Lower bound
L xð Þ on natural
indirect effecta

Upper bound
U xð Þ on natural
indirect effecta

Normalized width
W of the
confidence intervalb

1 2.28 8.19 0.72

2 9.14 32.76 0.72

3 20.56 73.72 0.72

4 36.55 130.05 0.72
aUsing 1,000 resamples
bW = (U(x) − L(x))/U(x), which is constant in x
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bootstrapped CIs for x ¼ 1 and x ¼ 2 , but is entirely
below the bootstrapped CIs for x ¼ 3 and x ¼ 4 , sug-
gesting that the linear moderation model in this case
generates biased estimates of natural indirect effects for
larger values of family functioning.

Moderated monotonic mediation
Another childhood chronic condition type for the family
management study was diabetes with 51 (27:3% ) chil-
dren having this condition. The indicator Z for having
this condition can be considered as a possible moderator
for models (13)-(15). As before, the indicator for the
child having Crohn’s disease or a bowel disorder is con-
sidered as a covariate to include in both the models for
the means and the variances as well as the model for the
variances to depend on transforms of X1, X2, and M.
The generated model for the case of children with a

chronic condition other than diabetes (Z ¼ 0) has pow-
ers p'(0) = −1.7 and q'(0) = 6. The generated model for
the case of children with diabetes (Z ¼ 1) has the power
q′(1) = 0.5 with no transform of family functioning (so a
missing p′(1) power). As before the covariate Crohn’s
disease or a bowel disorder is included in the model for
the means and variances, but only in the component of
model (15) addressing the outcome variable, that is, sub-
model (14). The LCV(1.3,0) score is 0:016215, which is a
substantial improvement on the score 0:016062 for the
associated model not considering moderation with per-
cent decrease 0:94%: Consequently there is distinct
moderated mediation.
The linear moderated mediation model (i.e., with p =

q = 1, p'(0) = q(0) = 1, p'(1) = q(1) = 1, and ρ ¼ 0) allowing
for effects of the covariate having Crohn’s disease or a
bowel disorder on the means and variances as well as
possibly nonlinear effects of X1, X2, and M on the vari-
ances has means and variances depending on the covari-
ate having Crohn’s disease of a bowel disorder for only
the submodel (14) as for the moderated monotonic
mediation model. Its LCV(1,1) score is 0:015460 with
substantial percent decrease 4:66% . Consequently, the
moderated mediation is distinctly nonlinear.
Model (15) adjusted to remove moderation of the ef-

fect of transformed X on transformed M in submodel

(13) has LCV(1.3,0) score 0:016112 with substantial per-
cent decrease 0:64% compared to the full model (15).
Moreover, model (15) adjusted to remove moderation of
the effect of transformed X on transformed Y in submo-
del (14) has LCV(1.3,0) score 0:016112 (same score as
above but a different model) with substantial percent de-
crease 0:64% compared to the full model (15). Conse-
quently, there is distinct moderation of both effects of
the predictor X in model (15).
On the other hand, model (15) adjusted to remove

moderation of the effect of transformed M on trans-
formed Y in submodel (14) has LCV(1.3,0) score
0:016155 with insubstantial percent decrease 0:37%
compared to the full model (15). Consequently, this is a
parsimonious, competitive alternative model, and the ef-
fect of transformed M on transformed Y is reasonably
considered not to be moderated by having diabetes.
Model (15) with the term β3(0) ⋅ X1

q ' (0) ⋅ I(Z = 0)
removed has powers q ' (1) = 0.5 and p ' (0) = −1 with
LCV(1.3,0) score 0:015846 and substantial percent
decrease 2:28% . Thus, there is a distinct effect of
transformed X on transformed M for children with a
chronic condition other than diabetes in submodel
(13). With the term β5(0) ⋅M

q ⋅ I(Z = 0) removed, the
model has powers q'(0) = 6, q ' (1) = 0.5, and p ' (0) = 0.5
with LCV(1.3,0) score 0:015949 and substantial per-
cent decrease 1:64% . Thus, there is a distinct effect
of transformed M on transformed Y for children
with a chronic condition other than diabetes in sub-
model (14).
Model (15) with the term β3(1) ⋅X1

q ' (1) ⋅ I(Z = 1) removed
has powers q'(0) = 6 and p'(0) = −1 with LCV(1.3,0) score
0:015674 and substantial percent decrease 3:34% . Thus,
there is a distinct effect of transformed X on transformed
M for children with diabetes in submodel (13). On the
other hand, with the term β5(1) ⋅M

q ⋅ I(Z = 1) removed, the
model has powers q'(0) = 6, q'(1) = 0.5, and p'(0) = −1 with
LCV(1.3,0) score 0:016137 and insubstantial percent
decrease 0:48% . Thus, the effect of transformed M on
transformed Y for children with diabetes in submodel (14)
is not distinct. This latter result indicates that the effect of
transformed X on transformed Y is not distinctly mediated
by transformed M for children with diabetes.

Table 3 Estimated instantaneous total, natural direct, natural indirect, and relative natural indirect effects for the monotonic
mediation model for child adaptation as a function of family functioning as mediated by difficulty controlling for having Crohn’s
disease or a bowel disorder and as moderated by having diabetes with independent omitted factors or errors

Diabetesa Family functioning Instantaneous
total effect

Instantaneous natural
direct effect

Instantaneous natural
indirect effect

Relative instantaneous
natural indirect effect

no 1 931.5 931.4 0.1 <0.001

no 2 235.8 232.8 3.0 0.013

no 3 126.3 103.5 22.8 0.181

no 4 154.4 58.2 96.1 0.623
aThere was no mediation for the diabetes = yes case
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With the term β4 0ð Þ⋅Xp
0
0ð Þ

2 ⋅I Z ¼ 0ð Þ removed, the model
has powers q'(0) = 6 and q'(1) = 0.5 with LCV(1.3,0) score
0:016058 and substantial percent decrease 0:97% . This
result indicates that there is a distinct effect of transformed
X on transformed Y for children with a chronic condition
other than diabetes in submodel (14). On the other hand,
the fact that β4 1ð Þ⋅Xp

0
1ð Þ

2 ⋅I Z ¼ 0ð Þ is not in the generated
model indicates that the effect of transformed X on
transformed Y for children with diabetes in submodel (14)
is not distinct.
Using the parsimonious, competitive model with the

term β5(1) ⋅M
q ⋅ I(Z = 1) removed, the standardized re-

siduals range from �2:89 to 2:48 with nonsignificant
( p ¼ 0:430 ) Shapiro-Wilk normality test and normal
plot reasonably close to linear (not displayed). Table 3
contains the associated estimated instantaneous total, nat-
ural direct, natural indirect, and relative natural indirect
effects for the grid of family functioning values 1, 2, 3, and
4, but just for families having children with chronic condi-
tions other than diabetes. The instantaneous natural indir-
ect effect of family functioning on child adaptation
increases with increasing or improving family functioning
values while the instantaneous natural direct effect of fam-
ily functioning on child adaptation decreases in such a
way that the relative instantaneous natural indirect effect
of family functioning on child adaptation increases. Com-
pared to Table 1, instantaneous natural indirect effects
and instantaneous total effects are smaller for low values
of family functioning (1–3Þ and larger than for the highest
value of family functioning (4). Relative instantaneous nat-
ural indirect effects are all smaller.
Table 4 contains bias-corrected bootstrapped 95% CIs

for associated estimated instantaneous natural indirect ef-
fects of family functioning on child adaptation for the grid
of family functioning values 1, 2, 3, and 4, also just for fam-
ilies having children with chronic conditions other than dia-
betes. Values for the lower and upper bounds increase with
family functioning. Compared to Table 2, widths of the CIs
are wider in absolute value for the highest value for family

functioning (4) and narrower in absolute value otherwise
(1–3Þ. However, the relative width W is larger, 0:84 versus
0:72: In contrast, the associated linear model (i.e., with
powers p = q = 1 and p'(0) = q'(0) = 1, ρ ¼ 0 , and having
Crohn’s disease or a bowel disorder covariate effects on the
means and variances for submodel (14)) has estimated
constant instantaneous natural indirect effect 5:5 with
bias-corrected bootstrapped 95% CI 1:4 – 11:7 and nor-
malized width W 0:88 . Hence, the moderated monotonic
mediation model generates more precise bootstrapped CIs
than the standard moderated linear mediation model.
In summary, moderated mediation for the family man-

agement data is distinctly nonlinearly monotonic. How-
ever, mediation only occurs for mothers of children with
a chronic condition other than diabetes and not for
mothers of children with diabetes.

Example analyses of the simulated mediation data
Using the CSH covariance structure with p ¼ q ¼ 1,
the first local maximum in the LCV score occurs at
k ¼ 15 with LCV(1,1) ¼ 0:41542, and so k ¼ 15 folds
are used to compute subsequent LCV scores for the simu-
lated data. The generated CSH model allowing for arbi-
trary p and q has p ¼ 0 and q ¼ 0:3 with distinctly
improved LCV 0; 0:3ð Þ ¼ 0:93577 (i.e., the percent de-
crease for the p ¼ q ¼ 1 model is 55.6%, much larger than
the cutoff of 0.95% for the data). Also, the estimated cor-
relation for this model is the substantial value 0:92, sug-
gesting highly dependent omitted factors or errors UM

and UY : However, the generated model allowing for
arbitrary p and q with uncorrelated omitted factors or
errors (i.e.., with ρ ¼ 0), has p ¼ 0:4 and q ¼ 1 (i.e., the
true values for these powers) with distinctly improved
LCV(0.4,1)¼ 1:08555 (i.e., the percent decrease for the
model with p ¼ 0 and q ¼ 0:3 is 13.8%), indicating
that the omitted factors or errors are reasonably
treated as independent as simulated. Under this
model, p' = 1.1 and q' = 1.2, close to their simulated
values of p' = q' = 1.

Table 4 Bias-corrected bootstrapped 95% confidence intervals for the monotonic mediation model for child adaptation as a function of
family functioning as mediated by difficulty controlling for having Crohn’s disease or a bowel disorder and as moderated by having
diabetes with independent omitted factors or errors

Diabetesa Family functioning x Lower bound L xð Þ on natural
indirect effectb

Upper bound U xð Þ on natural
indirect effectb

Normalized width W of
the confidence intervalc

no 1 0.029 0.18 0.84

no 2 0.93 5.72 0.84

no 3 7.09 43.43 0.84

no 4 29.88 183.00 0.84
aThere was no mediation for the diabetes = yes case
bUsing 1,000 resamples
cW = (U(x) − L(x))/U(x), which is constant in x
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The constant instantaneous indirect effect model
associated with this latter model (i.e., with q′ = 1) has
LCV(0.4,1) ¼ 1:08074 and insubstantial percent de-
crease 0:44%. Consequently, the instantaneous natural
indirect effect is reasonably considered to be constant
as simulated. Also, the true model as simulated (i.e.,
also setting p0 ¼ 1Þ, has LCV(0.4,1) ¼ 1:07928 and
insubstantial percent decrease 0:58% , indicating that
the true model is a competitive alternative for the
simulated data.
Using the constant instantaneous natural indirect effect

model (i.e., with p ¼ 0:4, q ¼ 1, p' = 1.1, and q' = 1), the
95% bootstrapped CI with bias correction for that ef-
fect is 0:0358 – 0:0563, and so contains the true con-
stant instantaneous natural indirect effect 0:04. The
associated 95% bootstrapped CI without bias correction
is 0:0363 – 0:0567, and so is quite similar, suggesting
that bias correction has not inflated the Type I error in
this case.
Using the standard linear mediation model (i.e., with p

¼ 1 , q ¼ 1 , p' = 1, q' = 1, and ρ ¼ 0 ), the 95% boot-
strapped CI with bias correction for the constant in-
stantaneous indirect effect is 0:0480 – 0:0974 , and so
does not contain the true constant instantaneous natural
indirect effect 0:04. The associated 95% bootstrapped CI
without bias correction is 0:0481 – 0:0986 , and so is
quite similar and also does not contain the true value.

Discussion
We formulated and demonstrated an approach for con-
ducting possibly moderated monotonic mediation ana-
lyses based on adaptively selected fractional polynomial
models. This formulation considers transformation of
outcomes, predictors, and mediators, not just predictors
and mediators as previously considered [29–32]. Results
of the example analyses of the family management data
indicated that transformation of positive valued continu-
ous outcomes can provide distinct improvements over
leaving those outcomes untransformed and can resolve
problems with model assumptions.
Other nonlinear regression methods could have been

used instead to estimate relationships. An advantage of
fractional polynomial models is that they are based on lin-
ear regression models and so have no more limitations,
assumptions, and requirements than models used in linear
mediation analyses. Associated derivatives are also readily
computed as needed for estimating monotonic instantan-
eous natural indirect, natural direct, and total effects.
The example analyses used likelihood cross-validation

(LCV) for evaluating models, both unadjusted and adjusted
for transformation of the outcome. By assessing how a
model performs on randomly selected subsets, model evalu-
ation using LCV scores is robust to effects of chance

variation compared to using likelihoods based on the
complete data. LCV ratio tests, generalizing likelihood ratio
tests, can be used to assess whether mediation relationships
are constant, linear, or nonlinear as well as a variety of other
issues.
The example analyses of the family management data

demonstrated the need to address nonlinearity in the con-
text of mediation. Relationships considered in mediation
analyses can be distinctly nonlinear. Even when mediation
relationships are reasonably treated as linear, consideration
of nonlinear alternatives is needed to determine that this
assumption holds. It is conventional to treat mediation rela-
tionships as linear without checking this assumption. How-
ever, like any assumption, it should be checked.
While the example analyses of the family management

data demonstrated that distinct nonlinear monotonic me-
diation can be identified using composite model (12), lin-
ear mediation also held. However, the normality
assumption was questionable for the linear mediation case
and also the constant variances assumption. There are
likely to be data sets where mediation can be identified
only by consideration of monotonicity. However, there are
also likely to be data sets where consideration of monoton-
icity does not resolve problems related to the normality
and constant variances assumptions. Quantile regression
methods [26] can be used in such cases.
The example data analyses of the family management data

also demonstrated that standard linear mediation analyses
can provide a misleading impression that the natural indirect
effect is constant in the predictor X when the indirect effect
can actually vary quite a bit from this constant value. More-
over, the single 95% bootstrapped CI generated by the linear
moderation analysis can be less precise than the CIs gener-
ated by a monotonic mediation analysis and can even not
overlap for some values of the predictor X, suggesting that a
linear approach can generate biased indirect effects. Further-
more, the example analyses of the family management data
demonstrated that moderated mediation analyses are import-
ant to consider because mediation may be weaker for some
subpopulations than others and even not hold for some sub-
populations (e.g., mothers of children with diabetes compared
to mothers of children with other chronic conditions).
The example analyses of the simulated mediation data

support the effectiveness of adaptive mediation modeling
since the true model was a competitive alternative to the
adaptively selected model and since bootstrapped 95%
CIs for the constant instantaneous indirect effect con-
tained the true value. However, these analyses also dem-
onstrate that allowing for correlated omitted factors or
errors when in fact they are independent can generate
models quite different from the true model, indicating
the importance of conducting analyses of both cases.
These analyses also demonstrate that conducting a
standard linear mediation analysis when in fact the
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relationship (9) is nonlinear in the outcome (i.e., p≠1) but
when the true instantaneous natural indirect effect is con-
stant (i.e., q′ ¼ 1) can result in a biased 95% CI for that
constant effect. This is also likely to hold when relation-
ships (8)-(9) are nonlinear in the mediator (i.e., q≠1).

Limitations
The example mediation analyses of the family management
data were limited since they were based on cross-sectional
data, and so the timing of measurements for predictors,
mediators, and outcomes could not be controlled to reflect
precedence as needed to support causality [11, 44]. These
analyses were also limited by the absence of control over
the predictor variable given the non-experimental design of
the study [21]. However, the primary purpose of those ana-
lyses was to demonstrate nonlinear mediation and the need
for such analyses. This purpose was effectively achieved by
the example analyses. Further work, though, is needed to
address monotonic mediation in situations where the tim-
ing of measurement of variables has been controlled and
where the predictor is experimentally controlled. An advan-
tage of an experimentally controlled predictor is that it
would be categorical and hence not require transformation.
However, the outcome Y and the mediatorM might benefit
from transformation. There is also a need to replicate these
analyses using a wider variety of data sets.
Nonlinearity was addressed here for mediation involv-

ing univariate outcomes. However, mediation is also
conducted using repeated measurements, either over
clusters or longitudinally over time, analyzed with multi-
level modeling, linear mixed modeling, or structural
equation modeling [6, 13, 57–61]. However, linear rela-
tionships are usually assumed in these analyses. Further
research is needed to extend monotonic mediation to
these cases. The example analyses used a continuous
outcome and mediator, but outcomes and mediators can
sometimes be categorical [13]. Further research is
needed to extend monotonic mediation to address cat-
egorical mediators and/or outcomes. The analyses also
only addressed the case with a single mediator. An ex-
tension to monotonic mediation is needed that accounts
for multiple mediators.

Conclusions
Mediation relationships are commonly assumed to be
linear without assessing the validity of this assumption.
Reported example analyses demonstrate that mediation
relationships can be nonlinear. Moreover, standard linear
mediation analyses can generate models that violate model
assumptions and generate biased estimates of indirect ef-
fects, but this can in some cases be resolved through more
general monotonic mediation analyses. Adaptive methods
as extended here to the monotonic mediation and moder-
ated monotonic mediation contexts can effectively

account for nonlinearity in mediation relationships. The
advantage of restricting to monotonic relationships is that
no adjustments are needed to underlying theory about
directionality between changes in pairs of variables.
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