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Abstract

Heterotrimeric G-proteins are molecular switches integral to a panoply of different physiological responses that many
organisms make to environmental cues. The switch from inactive to active Gabc heterotrimer relies on nucleotide cycling by
the Ga subunit: exchange of GTP for GDP activates Ga, whereas its intrinsic enzymatic activity catalyzes GTP hydrolysis to
GDP and inorganic phosphate, thereby reverting Ga to its inactive state. In several genetic studies of filamentous fungi, such
as the rice blast fungus Magnaporthe oryzae, a G42R mutation in the phosphate-binding loop of Ga subunits is assumed to
be GTPase-deficient and thus constitutively active. Here, we demonstrate that Ga(G42R) mutants are not GTPase deficient,
but rather incapable of achieving the activated conformation. Two crystal structure models suggest that Arg-42 prevents a
typical switch region conformational change upon Gai1(G42R) binding to GDP?AlF4

2 or GTP, but rotameric flexibility at this
locus allows for unperturbed GTP hydrolysis. Ga(G42R) mutants do not engage the active state-selective peptide KB-1753
nor RGS domains with high affinity, but instead favor interaction with Gbc and GoLoco motifs in any nucleotide state. The
corresponding Gaq(G48R) mutant is not constitutively active in cells and responds poorly to aluminum tetrafluoride
activation. Comparative analyses of M. oryzae strains harboring either G42R or GTPase-deficient Q/L mutations in the Ga
subunits MagA or MagB illustrate functional differences in environmental cue processing and intracellular signaling
outcomes between these two Ga mutants, thus demonstrating the in vivo functional divergence of G42R and activating G-
protein mutants.
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Introduction

G protein-coupled receptors (GPCRs) convert extracellular

signals to intracellular responses, primarily by stimulating guanine

nucleotide exchange on heterotrimeric G-protein Ga subunits [1].

Upon receptor-stimulated exchange of GTP for GDP, Ga
subunits undergo a conformational change, dominated by three

mobile switch regions, resulting in separation of Ga from the

obligate Gbc heterodimer [2]. Switches one and two directly

contact the bound guanine nucleotide and include residues critical

for catalyzing GTP hydrolysis, while switch three contacts switch

two in the activated conformation [3]. The nucleotide-dependent

conformational shift of Ga subunits can be monitored biochem-

ically by differential resistance to proteolysis by trypsin or altered

tryptophan fluorescence spectra [4,5]. The switch mechanism of

activation is highly conserved among the mammalian Ga subunit

family members, as well as in those found in fungi [6,7]. The

activated Ga and free Gbc subunits propagate signals through

numerous effectors, including adenylyl cyclases, phospholipases,

ion channels, and phosphodiesterases [8]. Mammals express

multiple Ga subunits which can be classified into subfamilies

according to function. For example, members the Gai/o subfamily

have inhibitory effects on adenylyl cylase and stimulatory effects

on cGMP-phosphodiesterase, while Gaq subfamily members

stimulate phospholipase C isoforms, promoting hydrolysis of

phosphatidylinositol bisphosphate to produce diacylglycerol and

inositol triphosphate [9,10]. Ga signaling is terminated by intrinsic

hydrolysis of bound GTP to GDP, a reaction accelerated by

‘regulators of G-protein signaling’ (RGS proteins), and reversion of

the Ga switch conformation to the inactive, GDP-bound state

[9,11]. Ga?GDP can then re-assemble a heterotrimer with Gbc
or, in the case of the Gai/o subfamily, engage GoLoco motif

PLoS Pathogens | www.plospathogens.org 1 February 2012 | Volume 8 | Issue 2 | e1002553



proteins that are also selective for the inactive Ga state [12]. In

addition to naturally occurring conformationally selective binding

partners, phage display peptides have also been engineered to

discriminate between Ga?GDP and Ga?GTP. For example, the

peptides KB-752 and KB-1753 selectively interact with the

inactive GDP-bound and active GTP-bound states of Gai1,

respectively [13].

Heterotrimeric G-protein signaling components are well-

characterized regulators of mammalian biology and are also

utilized as sensors for extracellular cues in non-mammalian

organisms, such as fungi, plants, and yeast [7,14,15]. The rice

blast fungus, Magnaporthe oryzae, forms infection structures known

as appressoria in response to specific environmental surface signals

[16]. For example, hydrophobic, but not hydrophilic surfaces,

promote appressorium formation [17–19]. Genetic studies have

implicated a number of G-protein signaling pathway components

in the regulation of M. oryzae pathogenesis, including a Gb subunit

(MGB1) [20], adenylyl cyclase (Mac1 or MAC) [21], cAMP

phosphodiesterase (PdeH) [22], and cAMP-dependent protein

kinase A (cPKA) [23]. M. oryzae also possesses three Ga subunits

(MagA, MagB, and MagC) with sequence similarity to the Gas,

Gai, and the fungal-specific GaII subfamilies, respectively

[19,24,25]. Previous studies on Ga subunit deletion strains and

magB mutants suggest a role for heterotrimeric G-protein

signaling in M. oryzae growth, sexual reproduction, and appresso-

rium formation [24,26]. Additionally, an RGS protein (Rgs1)

negatively modulates all three M. oryzae Ga subunits [19].

Among the most stringently conserved motifs of Ga subunits is

the phosphate-binding loop (P-loop) (Figure S1). Very little

variation in the P-loop sequence is seen across Ga subunits in

distantly related species, including plants, fungi, and metazoans

[27]. In fact, the P-loop is also conserved as a key phosphoryl

group-interacting motif in ATP-binding kinases and members of

the Ras GTPase superfamily [28].

A P-loop mutation to human Ras isoforms, Gly-12 to valine, is

frequently found in human cancers. Ras G12V mutants are

GTPase deficient, and thus constitutively active, leading to

aberrant signaling and oncogenesis [29]. In fact, mutation of H-

Ras Gly-12 to any residue other than proline results in constitutive

activity [30]. Mutation of the corresponding P-loop residue in

Gai1, Gly-42 to valine, also drastically reduces its GTPase activity

[31]. Structural studies of Gai1(G42V) suggest that the introduced

valine side chain sterically prevents appropriate positioning of Gln-

204, a residue that coordinates a nucleophilic water molecule

during GTP hydrolysis [31]. This glutamine is highly conserved

and critical for GTPase activity; its mutation to leucine (‘‘Q/L’’) in

Ras GTPases or Ga subunits also leads to constitutive activity

[11,29].

Genetic studies of heterotrimeric G-protein function in fungal

species have used GTPase deficient Ga Q204L mutants (referred

to as Q/L mutants). Additionally, a Ga subunit P-loop mutation,

G42R, has been utilized in a similar context. Given that

Gai1(G42V) is GTPase-deficient and mutation of the correspond-

ing glycine in Ras to any amino acid other than proline results in

constitutive activation, it has been assumed that G42R mutants

would be dominant and constitutively active [32]. Although the

biochemical mechanism of the Ga G42R mutant has not

previously been characterized, we and others have utilized it to

probe the G-protein mediated biology of many fungal species

(Table S1) [19,26,32–41].

The phosphate-binding P-loop and switch mechanism of

activation are both stringently conserved among Ga subunits

from mammals to fungi [6,7] (Figure S1). For example, human

RGS2 recognizes the highly similar GTP hydrolysis transition

state conformations of both human Gaq and a yeast Ga subunit

(GPA1), such that RGS2 expression complements the deletion of

an RGS protein gene in S. cerevisiae [42,43]. Furthermore,

chimeras of GPA1 and human Ga subunits can function in the

yeast pheromone signaling pathway [44]. The residue position

corresponding to Gly-42 in Gai1 is within potential contact

distance of residues in the switch regions of the structurally

conserved Ga subfamily members [3,10,45–47]. The switch

region sequences are highly conserved across mammalian Ga
subfamilies, as well as in other species, including M. oryzae, A.

nidulans, and S. cerevisiae (Figure S1). Given the sequence and

structural conservation of these regions in Ga subunits, as well as

the demonstrated consistent behavior of other point mutations in

these regions across multiple Ga subunits (e.g. the GTPase-

deficient Gai1(Q204L) and the RGS-insensitive Gai1(G184S)

[48]), the behavior of the G42R mutation is expected to be

consistent in MagA, MagB, and the mammalian Ga subunits.

Since we were unable to obtain properly folded recombinant

MagA or MagB proteins and no direct cellular assays of MagA or

MagB activity are currently available, we utilized three mamma-

lian Ga subunits to investigate the behavior of G42R mutants.

Here, we determine through structural, biochemical, genetic,

and cellular approaches that Ga subunit G42R mutants are

neither GTPase deficient nor constitutively active. Rather, the

mutant arginine side chain prevents transition to the activated

state upon Ga binding to GTP. Direct phenotypic analyses of M.

oryzae strains harboring either Ga G42R mutants or the GTPase-

deficient Ga Q204L suggests that a re-evaluation of previous

fungal genetic data generated with the G42R mutation is required.

Results

The G42R mutation minimally perturbs the inactive
conformation of Ga

To understand how the G42R P-loop substitution affects Ga
subunit structure and function, we obtained a 3.0 Å resolution

crystal structure model of Gai1(G42R) bound to GDP using the

Author Summary

Heterotrimeric G-proteins function as molecular switches
to convey cellular signals. When a G-protein coupled
receptor encounters its ligand at the cellular membrane, it
catalyzes guanine nucleotide exchange on the Ga subunit,
resulting in a shift from an inactive to an active
conformation. G-protein signaling pathways are conserved
from mammals to plants and fungi, including the rice blast
fungus Magnaporthe oryzae. A mutation in the Ga subunit
(G42R), previously thought to eliminate its GTPase activity,
leading to constitutive activation, has been utilized to
investigate roles of heterotrimeric G-protein signaling
pathways in multiple species of filamentous fungi. Here,
we demonstrate through structural, biochemical, and
cellular approaches that G42R mutants are neither GTPase
deficient nor constitutively active, but rather are unable to
transition to the activated conformation. A direct compar-
ison of M. oryzae fungal strains harboring either G42R or
truly constitutively activating mutations in two Ga
subunits, MagA and MagB, revealed markedly different
phenotypes. Our results suggest that activation of MagB is
critical for pathogenic development of M. oryzae in
response to hydrophobic surfaces, such as plant leaves.
Furthermore, the lack of constitutive activity by Ga(G42R)
mutants prompts a re-evaluation of its use in previous
genetic experiments in multiple fungal species.

Ga(G42R) Fails to Attain an Active Conformation
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inactive state-selective phage display peptide KB-752 as a

crystallography tool [49]. The asymmetric unit contained three

Gai1(G42R) subunits bound to GDP and Mg2+; two of three

monomers were bound to the KB-752 peptide, while the third

(chain C) lacked electron density for the peptide and instead

displayed switch region disorder characteristic of free, GDP-bound

Ga subunits [31]. For data collection and refinement statistics, see

Table S1. A comparison of our model with that of wild type

Gai1?GDP/KB-752 (PDB id 1Y3A) revealed minor perturbations

to the inactive state upon introduction of Arg-42 (Figure 1A). The

side chain of Arg-42 projects away from the nucleotide-binding

pocket, making no direct contacts with other Gai1(G42R) residues.

Switch 1 and the adjacent b2 strand adopt slightly different

conformations in the mutant Gai1 (Ca atoms r.m.s.d. 1.3 Å), likely

Figure 1. A crystal structure of Gai1(G42R)?GDP in complex with the phage display peptide KB-752. (A) The overall structure of Gai1

(cyan) with switch regions in dark blue, bound to KB-752 (red) (current study; PDB 3QE0), is overlaid on the wild type Gai1?GDP/KB-752 complex
(wheat/red transparency) (PDB 1Y3A). GDP is represented by green sticks and magnesium by an orange sphere. (B) The Arg-42 side chain extends
from the P-loop, making no polar contacts with other Gai1(G42R) residues, but preventing the wild type (transparent) switch conformation.
Gai1(G42R) residues Arg-178 and Lys-180 are displaced relative to wild type due to steric and electrostatic repulsion by Arg-42. The G42R b2 strand
and switch 2 also adopt slightly different conformations. For crystallographic data collection and refinement statistics, see Table S2.
doi:10.1371/journal.ppat.1002553.g001

Ga(G42R) Fails to Attain an Active Conformation
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because the basic residues Arg-178 and Lys-180 are electrostat-

ically and sterically repelled from their wild type orientations by

the positively charged Arg-42 side chain (Figure 1B). Arg-178 is

known to stabilize the leaving phosphate group during GTP

hydrolysis [11]; its perturbation in the Gai1(G42R) structure

model is consistent with the previously assumed GTPase deficiency

of G42R mutants.

Ga(G42R) is not GTPase deficient
Substitution of the corresponding Gly-12 in H-Ras for any

amino acid other than proline yields GTPase deficiency and

constitutive activity [30]. Thus it was previously reasoned that

Ga(G42R) mutants were also incapable of GTP hydrolysis [26].

Binding of GTP by purified Ga subunits can be assessed with the

non-hydrolyzable GTP analog, the radionucleotide GTPc[35S].

Similarly, GTPase activity can be quantified by tracking release of

radioactive inorganic phosphate from [c-32P]GTP-loaded Ga
subunits during a single round of hydrolysis [15]. GTPc[35S]

radionucleotide binding and [c-32P]GTP single turnover hydro-

lysis assays indicated that the kinetics of GTP binding and

hydrolysis by the equivalent G42R mutant GaoA(G42R), in the

most frequent splice variant of the mammalian adenylyl cyclase

inhibitory Gao1, are not significantly different from wild type GaoA

(Figure 2A,B). Since the nucleotide binding and hydrolysis rate of

this G42R mutant was unexpectedly not perturbed, we further

examined the effect of the G42R mutation on Ga interactions with

known protein binding partners.

The G42R mutation disrupts Ga interactions with RGS
domains

RGS proteins accelerate the intrinsic GTPase activity of Ga
subunits by stabilizing the transition state for GTP hydrolysis, a

conformation mimicked by Ga binding to GDP, AlF4
2, and Mg2+

[11]. Surface plasmon resonance (SPR) was utilized to detect

optical changes upon injection of wild type or G42R mutant GaoA

over a surface coated with immobilized GST-RGS12 in the

presence of either GDP, GTP, the non-hydrolyzable GTP analog

GTPcS, or the hydrolysis transition state-mimetic GDP?AlF4
2

[50]. The RGS domain of RGS12 bound selectively to wild type

GaoA in its GDP?AlF4
2-bound state (KD = 1.2760.06 mM), as

measured by surface plasmon resonance (SPR) [50]. However,

GaoA(G42R) did not engage the RGS domain in any nucleotide

state at concentrations up to 25 mM (Figure 2C,D), suggesting that

G42R mutants do not adopt a typical GTP hydrolysis transition

Figure 2. GaoA(G42R) is not GTPase deficient, but retains a normal nucleotide cycle and does not interact with RGS domain. (A) A
comparison of radiolabeled GTPcS binding by wild type GaoA (kon = 0.08760.020 min21 (s.e.m.)) and GaoA(G42R) (kon = 0.06260.010 min21 (s.e.m.))
identified no significant difference in the rate of GDP release and subsequent GTP analog binding. (B) GaoA(G42R) retained the ability to hydrolyze
GTP (kcat = 0.1860.05 min21 (s.e.m.)) at a rate indistinguishable from wild type GaoA (kcat = 0.1960.02 min21 (s.e.m.)), as determined by single
turnover hydrolysis assays. (C) Surface plasmon resonance (SPR) experiments demonstrated selective binding of the transition state-mimetic,
GDP?AlF4

2-bound form of GaoA to the RGS domain of RGS12. GaoA(G42R) did not interact with the RGS12 RGS domain in any nucleotide state at
concentrations up to 25 mM (D). An equilibrium binding isotherm allowed quantification of wild type GaoA affinity for RGS12 (KD = 1.2760.06 mM
(s.e.m.)).
doi:10.1371/journal.ppat.1002553.g002

Ga(G42R) Fails to Attain an Active Conformation
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state in the presence of AlF4
2 and Mg2+ (AMF), or alternatively

that Arg-42 directly interferes with RGS domain binding. A

superimposition of Gai1(G42R)/KB-752 and the Gai1/RGS4

complex (PDB 1AGR; not shown) indicated that the mutant

arginine side chain likely directly perturbs the RGS-binding

surface. To further characterize nucleotide state-dependent

interactions of Ga(G42R), we measured binding affinity toward

three additional state-selective Ga-binding partners: Gbc subunits,

a GoLoco motif, and a phage display peptide, KB-1753 [13].

Ga(G42R) preferentially engages inactive conformation-
selective binding partners in any nucleotide state

Ga subunits in their GDP-bound, inactive conformations form

heterotrimers with Gbc subunits [6], and the interaction is

disrupted by AlF4
2 or GTP binding to the Ga subunit. As

expected, wild type Gai1?GDP bound Gb1c1 as measured by SPR,

but activation of the Ga subunit with GDP?AlF4
2 prevented

association with Gbc (Figure 3A). However, Gai1(G42R) engaged

Gb1c1 in both nucleotide states. Interaction of Ga subunits with

fluorophore-labeled peptides was assessed by detecting differences

in fluorescence polarization between low molecular weight free

peptide and the higher molecular weight Ga/peptide complex

[51]. Similar to Gbc, the GoLoco motif of RGS14 was highly

selective for binding the GDP-bound, inactive state of wild type

Gai1 (KD = 9.061.1 nM) over the activated GDP?AlF4
2-bound

form, as determined by fluorescence polarization (Figure 3B).

Gai1(G42R) displayed a much reduced selectivity for RGS14

GoLoco motif binding between the GDP and AlF4
2 nucleotide

states, being only 3-fold selective for the GDP form, whereas wild

type Gai1 is .1000-fold selective. Finally, we tested two G42R

mutant nucleotide states for interaction with the active conforma-

tion-selective phage display peptide KB-1753 using fluorescence

polarization [13]. As expected, KB-1753 selectively interacted

with wild type Gai1?GDP?AlF4
2 (KD = 470640 nM) relative to

GDP-bound Gai1 (Figure 3C). In contrast, Gai1(G42R) displayed

only weak affinity for KB-1753 in either nucleotide state, as

measured by fluorescence polarization. Together these data

indicate that Ga(G42R) mutants preferentially engage inactive

conformation-selective binding partners regardless of the bound

nucleotide. To assess the conformational shift of Ga(G42R)

mutants upon activation with AlF4
2 or a non-hydrolyzable GTP

analog, we utilized intrinsic tryptophan fluorescence and limited

trypsin proteolysis.

Ga(G42R) cannot assume the transition state-mimetic or
activated conformations

Upon binding GDP?AlF4
2 or GTP analogs, Ga subunits

undergo conformational changes dominated by the three switch

regions [52]. A tryptophan residue (Trp-211 in Gai1) within switch

2 is shifted from a solvent-exposed to a buried orientation,

resulting in a reduced efficiency of tryptophan fluorescence

quenching that can be detected upon excitation of the Ga protein

with light at 284 nm wavelength [5]. Wild-type Gai1 displayed a

large increase in tryptophan fluorescence upon exposure to AlF4
2,

indicative of a shift to the activated conformation. In contrast, the

shift in tryptophan fluorescence of Gai1(G42R) at the same

concentration was blunted relative to wild type and occurred with

faster kinetics (kobs = 0.1960.01 s21 [95% C.I.], compared to

kobs = 0.0560.01 s21 for wild type Gai1; Figure 4A).

The active and inactive states of Ga subunits are also

differentially sensitive to proteolysis by trypsin; the more flexible

loop conformations of Ga?GDP promote cleavage [4]. While the

flexible N-terminus of wild type Gai1 was cleaved in all three

nucleotide states, the resulting ,38 kDa fragment was resistant to

limited trypsin proteolysis in the GDP?AlF4
2 or GTP-bound

conformations relative to the inactive, GDP-bound form

(Figure 4B). Gai1(G42R), however, was readily proteolyzed in

any nucleotide state. Addition of AlF4
2 had no detectable effect on

Gai1(G42R) resistance to trypsin proteolysis, while GTPcS

provided only mild protection of the ,38 kDa species compared

to that of wild type Gai1. These data further support the

hypothesis that the switch regions of Ga(G42R) mutants do not

assume appropriate transition state-mimetic or activated state

conformations in the presence of AlF4
2 and GTPcS, respectively.

The Arg-42 side chain prevents transition of the switch
regions to an active conformation

We next sought a structural explanation for the disrupted

conformational switch of Ga(G42R) mutants. As previously

mentioned, the Arg-42 side chain conformation, as modeled in

the free GDP-bound Gai1(G42R), would not allow glutamine-204

to assume its critical position for orienting the nucleophilic water

required for GTP hydrolysis (Figure 1). However, unlike the G42V

mutant of Ga subunits, the G42R mutant retains normal GTP

hydrolysis kinetics (Figure 2). Positioning of Gln-204 for hydrolysis

may be possible if the Arg-42 side chain adopts an alternate

rotamer. We also crystallized Gai1(G42R)?GDP in complex with

the GoLoco motif from RGS14 and derived an independent

structural model at 2.8 Å resolution (Table S2). In one of the two

monomers of the asymmetric unit, Arg-42 adopts such an

alternative rotamer that would allow Gln-204 to orient the

nucleophilic water for hydrolysis (Figures 4C and S2).

Since we are presently unable to crystallize Gai1(G42R) in

either its GDP?AlF4
2 or GTP analog-bound states, we superim-

posed our structural model of Gai1(G42R)?GDP (excluding the

RGS14 GoLoco peptide) with the previously described, wild type

Gai1?GTPcS (PDB id 1GIA) (Figure 4C,D). In the activated,

GTPcS-bound state of wild type Gai1, switches 1 and 2 converge

on the nucleotide c-phosphoryl group, while Glu-236 of switch 3

forms a new polar contact with the backbone of switch 2 [3]. The

result is a convergence of the three switch regions near the P-loop

to form a stable interface recognized by effector molecules.

Superposition of Gai1(G42R)?GDP suggests that the bulky Arg-

42 side chain would not be easily accommodated by the active

switch conformations observed in wild type Gai1?GTPcS

(Figure 4C,D). The arginine as modeled would sterically prevent

the positioning of switch 3 residues Leu-234 and Glu-236 as seen

in the wild type, activated state. Thus, the Arg side chain likely

sterically prevents a normal activated conformation of the switch

regions.

These data suggest that Arg-42 hinders attainment of the

activated switch conformations seen in wild-type Ga subunits, but

rotameric flexibility of the mutant side chain allows critical switch

residues to effect GTP hydrolysis. Although the G42R mutants of

Ga subunits have been shown to favor the inactive conformation

despite retaining the ability to bind and hydrolyze GTP, we also

sought to investigate their behavior in a cellular context.

The G42R mutant is not constitutively active and displays
a blunted response to stimulation by AlF4

2

To investigate the effects of G42R mutants in a signaling

pathway context, we introduced the corresponding P-loop

mutation into the phospholipase C stimulating mammalian Ga
subunit, Gaq(G48R). Wild-type Gaq?GTP activates phospholipase

Cb (PLCb), which in turn hydrolyzes phosphatidylinositol-4,5-

bisphosphate (PIP2) to yield diacyl glycerol (DAG) and inositol

Ga(G42R) Fails to Attain an Active Conformation
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triphosphate (IP3) [10]. Phospholipase C activity can be quantified

by measuring accumulation of radioactive IP3 in cells pre-treated

with tritiated inositol. Overexpression of wild type Gaq in COS-7

cells had little effect on inositol phosphate accumulation, while the

GTPase-deficient and constitutively active Gaq(Q209L) markedly

stimulated PLCb activity in a dose-dependent fashion

(Figure 5A,B). Gaq(G48R), however, had no significant effect on

PLCb activity when overexpressed, confirming its lack of

constitutive activity. Activation of PLCb by endogenous and

overexpressed Gaq can be stimulated by exposure to AlF4
2, since

Gaq?GDP?AlF4
2 has high affinity for PLCb [53]. As expected,

endogenous Gaq was activated by AlF4
2, and the effect was

enhanced by overexpression of wild type Gaq. However,

overexpressed Gaq(G48R) did not respond to AlF4
2 stimulation

to the same extent as wild type Gaq, reflecting its inability to

assume a fully-activated conformation (Figure 5C,D).

Figure 3. Gai1(G42R) engages inactive conformation-selective binding partners in two nucleotide states. (A) Wild type Gai1 binds Gb1c1

only in the GDP-bound state, as determined by SPR, while Gai1(G42R) displayed no nucleotide state-selectivity of Gb1c1 binding when liganded with
either GDP or GDP?AlF4

2. (B) Similarly, fluorescence polarization experiments showed highly nucleotide state-selective binding of the RGS14 GoLoco
motif to wild-type Gai1?GDP (KD = 9.061.1 nM (s.e.m.)) compared to the AlF4

2-bound form (KD = 8.761.0 mM (s.e.m.)), but both nucleotide states of
Gai1(G42R) interacted with the GoLoco motif peptide, with affinity constants of 4567 nM (s.e.m.) and 168627 nM (s.e.m.) for GDP and AlF4

2,
respectively. (C) The activated state-selective peptide KB-1753 preferentially bound the AlF4

2-bound form of wild-type Gai1 (KD = 470640 nM (s.e.m.))
compared to the GDP-bound form (KD = 6.760.4 mM (s.e.m.)), but had low affinity for Gai1(G42R) in both nucleotide states.
doi:10.1371/journal.ppat.1002553.g003

Ga(G42R) Fails to Attain an Active Conformation
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The Ga(G42R) mutant utilized in genetic studies of fungal

species, such as Aspergillus nidulans and the rice blast fungus

Magnaporthe oryzae, was assumed to be GTPase deficient and thus

constitutively active [26,32], and has been used extensively to

understand the biology of fungal G-protein signaling [19,26,32–

41]. Since the biochemical and structural characterization of such

G42R mutants (Figures 1–4 above) indicate intact GTPase activity

and, instead of constitutive activity, an inability to assume the

activated conformation, we sought to clarify the behavior of G42R

mutations in the Ga subunits of M. oryzae.

G42R and Q204L mutants of M. oryzae Ga subunits
exhibit different effects on appressorium formation

We directly compared strains of M. oryzae harboring mutations

in the Ga subunits MagA or MagB. Since both Ga subunits are

known to regulate appressorium formation in response to

inductive, hydrophobic surfaces [24], we assessed appressorium

formation by GTPase-deficient Q/L and non-activatable G42R

mutant strains on both hydrophobic and hydrophilic surfaces. The

magA(G45R) mutant formed slightly fewer appressoria on

hydrophobic, inductive surfaces than wild-type M. oryzae, but

maintained the differential response to surface hydrophobicity

(Figure 6A,B). In contrast, approximately 35% of magA(Q208L)

conidia formed highly pigmented appressoria, albeit aberrant,

after 16 hours, regardless of surface hydrophobicity. The

magB(G42R) mutant strain resembled magA(Q208L), with

,30% appressorium formation independent of surface hydropho-

bicity (Figure 6C,D). The magB(Q204L) strain, however, formed

very few appressoria on either surface.

To further characterize differences between magA and magB

G42R and Q/L mutant strains of M. oryzae, we compared colony

Figure 4. The G42R point mutation prevents Gai1 from assuming the activated conformation. Upon binding GDP?AlF4
2, the switch

regions of Gai1 undergo a conformational change, burying the switch 2 Trp-211 in a hydrophobic cleft [5]. As a result, the intrinsic tryptophan
fluorescence of Gai1 increases, and the activated switch conformation is protected from trypsin proteolysis, relative to the GDP-bound state. (A) The
intrinsic tryptophan fluorescence of wild type Gai1 increased upon injection of AlF4

2, while the response of Gai1(G42R) was blunted. (B) Gai1 was
relatively resistant to trypsin proteolysis upon loading with either GDP?AlF4

2 or GTPcS. In contrast, Gai1(G42R) was efficiently proteolyzed in any
nucleotide state. (C) The Gai1(G42R)?GDP/RGS14 GoLoco crystal structure model of this study (PDB 3QI2) is shown in cyan with the Arg-42 side chain
in magenta sticks. GDP and magnesium are represented as green sticks and an orange sphere, respectively. The GoLoco motif peptide is excluded for
clarity. For a complete model, see Figure S2. (D) The activated, GTPcS-bound form of wild type Gai1 (PDB 1GIA) is shown in gray. Upon binding to the
GTP analog, the switch regions (SI-III) of wild type Gai1 converge on the phosphoryl groups of the nucleotide, resulting in a conformation recognized
by effector molecules. However, the mutant Arg-42 side chain extending from the P-loop (superposed in magenta) is not sterically accommodated in
a wild type-like activation state; switch 3 residues Leu-234 and Glu-236 would clash with the mutant residue. Thus, Arg-42 does not allow Gai1(G42R)
to assume a typical active conformation, although the critical residues Glu-204 and Arg-178 apparently can be positioned for efficient GTP hydrolysis
(see Fig. 2).
doi:10.1371/journal.ppat.1002553.g004
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and conidia morphology, as well as conidiation, to the wild type

fungus. Both the magA and magB G42R mutants displayed

different overall morphology from the corresponding Q/L

mutants (Figure S3). In the case of magA(G45R), morphology

was indistinguishable from the wild type. Upon exposure to light,

the magA(G45R) also produced slightly fewer conidia when

compared to the wild-type M. oryzae, but magA(Q208L) formed

very few heavily pigmented, aberrant conidia (Figure 6A, inset and

S4A). Both magB(G42R) and magB(Q204L) displayed enhanced

conidiation relative to wild type, but those of magB(Q204L) were

of a distinct morphology, with longer and thinner dimensions than

either magB(G42R) or wild type (Figure S4B, C).

These data indicate that fungal Ga G42R mutants exhibit

markedly different phenotypes from truly GTPase-deficient Q/L

mutants, consistent with aforementioned structural, biochemical,

and cellular experiments that indicate an intact GTPase activity,

but a marked inability to achieve an activated conformation.

M. oryzae expressing either G42R or Q204L mutant Ga
subunits have differential effects on pathogenesis

We next determined what effect the introduction of the non-

activatable G42R mutant Ga subunits has on fungal infection of

barley leaves compared to constitutively active Q/L mutants. As

expected, barley leaves inoculated with wild type M. oryzae showed

the characteristic dose-dependent formation of disease lesions

(Figure 7). The magA(G45R) strain showed similar pathogenicity

as the wild type, consistent with intact surface-inducible appres-

sorium formation (Figure 6B). magB(G42R) displayed a reduced

ability to cause disease, although small lesions were observed

at the highest inoculations tested. Both magA(Q208L) and

magB(Q204L) showed drastically reduced lesion formation relative

to wild type and the corresponding G42R mutants. These data

indicate that constitutive activity of either MagA or MagB can

suppress the ability of M. oryzae to penetrate and infect the plant

tissue. Additionally, we conclude that the ability of MagB to

achieve its activated conformation is critical for Magnaporthe

pathogenesis.

Discussion

Mutant Ga subunit strains have provided excellent tools for

probing the functions of heterotrimeric G-proteins in many

fungal species, including Aspergillus nidulans and Magnaporthe oryzae

(Table S1) [19,26,32–41]. Here, we have demonstrated that the

P-loop mutant, G42R, is neither GTPase deficient nor constitu-

tively active as assumed in previous studies. Rather, Ga(G42R) is

unable to undergo a typical conformational change upon binding

GTP, reflected by its inability to engage RGS domains or

effector-like molecules. Consistent behavior of Ga(G42R) muta-

Figure 5. Gaq G48R is not constitutively active in a cellular context. The analogous P-loop mutation in human Gaq, G48R, did not yield
constitutive activity in contrast to the GTPase-deficient Gaq(Q209L) (A,B). Transfection of increasing amounts of Gaq(Q209L) markedly stimulated
phospholipase C (PLC) activity in COS-7 cells, indicated by increased inositol phosphates (IPx) accumulation. Like wild type Gaq, G48R overexpression
did not alter PLC activity. (C,D) Endogenous and overexpressed KT3 epitope-tagged wild type Gaq stimulated PLC activity upon treatment with
AlF4

2. The response of cells expressing Gaq(G42R) was blunted relative to wild type Gaq.
doi:10.1371/journal.ppat.1002553.g005
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tions was observed in three mammalian Ga subunit family

members: Gai1, GaoA, and Gaq. This finding, together with high

sequence conservation surrounding the mutant residue (Figure

S1) and distinct phenotypes of M. oryzae harboring either

Ga(G42R) or truly GTPase-deficient Q/L mutants strongly

support our hypothesis that MagA(G45R) and MagB(G42R) are

structurally and biochemically similar to the corresponding

mammalian Ga mutants. Our crystal structure models of

Gai1(G42R) indicates that this perturbed conformational flexibil-

ity is likely due to steric hindrance and electrostatic repulsion

between the mutant Arg-42 side chain and residues of the switch

regions. The preserved GTPase activity of Ga(G42R) mutants

implies that Gln-204 is still able to orient a nucleophilic water

during GTP hydrolysis. The structural model of

Gai1(G42R)?GDP bound to the GoLoco motif of RGS14 has

provided a snapshot of an alternative Arg-42 rotamer that would

indeed allow Gln-204 to access the orientation necessary for GTP

hydrolysis. However, this rotamer still is expected to perturb the

activated conformation of switch 3. We conclude that rotameric

flexibility at Arg-42 allows the G42R mutant to retain GTPase

activity while preventing appropriate active state switch confor-

mations. Interestingly, previous work has identified another Gai1

point mutation, K180P, that uncouples GTP hydrolysis from

nucleotide-dependent conformational change [54]. Gai1(K180P)

is capable of hydrolyzing GTP when not in a fully activated

conformation, as also seen for Gai1(G42R).

Despite the retained ability of Ga(G42R) mutants to exchange

and hydrolyze nucleotide, they favor an inactive state-like

conformation, likely forming a less-dissociable heterotrimer with

Gbc in a cellular context, thereby reducing Gbc/effector

interactions. Since Ga(G42R) does not engage effectors with high

affinity, it may be expected to behave as a dominant negative

mutation; the Ga(G42R)/Gbc heterotrimer may serve as a

substrate for receptor-stimulated exchange but fail to activate

downstream signaling pathways. In Magnaporthe oryzae, it was

previously unclear why strains with magB deleted or expressing

the assumedly constitutively active magBG42R exhibited similar

phenotypes regarding conidiation, sexual reproduction, and

virulence on plant leaves [26]. The present study resolves this

issue by demonstrating that the G42R mutant is not constitutively

active, but likely exerts a dominant negative effect. The distinct

behaviors of Ga(G42R) mutants are highlighted by a direct

comparison to the truly GTPase-deficient and constitutively active

Q/L mutants.

Although the magAG45R and magBG42R mutant strains do not

reflect constitutive Ga subunit activity, as previously assumed

[26,32], they do provide insight into fungal pathogenic develop-

ment. A phenotypic deficiency upon expression of a Ga(G42R)

mutant suggests that specific activation of the Ga of interest and

subsequent engagement of its downstream effectors is necessary for

a particular function of a cell or organism. For instance, both

magB deletion [24] and magBG42R mutant strains display

Figure 6. M. oryzae strains expressing G42R or GTPase-deficient Q204L mutant Ga subunits show disparity in appressoria
formation. (A) Conidia harvested from the magAG45R, magAQ208L and WT strains were inoculated on inductive (plastic cover slips) or non-inductive
surfaces (GelBond membrane) and assessed for the ability to form appressoria after 16 hpi (hours post inoculation). The 2-celled conidia (white arrow)
of the magAQ208L produced aberrant appressorium (white asterisk) on both inductive and non-inductive surfaces. Insets represent the highly
pigmented structures (black arrowhead) made by the magAQ208L strain. Scale bars = 10 mm. (B) Bar graph illustrating the efficiency of appressorium
formation in the magAG45R, magAQ208L and wild type strains on inductive (black bar) or non-inductive surfaces (gray bar) respectively. Values represent
mean 6 S.E from three independent replicates involving 300 conidia per sample. (C) Identical experiments were conducted on the corresponding
magB wild type and mutant strains. Unlike the wild type, the majority of conidia from the magBG42R strain failed to produce melanized appressoria
efficiently on inductive surfaces. A small proportion of the magBG42R conidia produced mature appressoria on the non-inductive surface (indicated by
the white arrow). Conidia from the magBQ204L failed to produce appressoria on both inductive and non-inductive surfaces. (D) Bar graph showing
quantification of appressorium formation, as in (B).
doi:10.1371/journal.ppat.1002553.g006
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drastically reduced induction of appressoria by hydrophobic

surfaces, while magA deletion [24] and magAG45R mutations

each have minimal effects. Thus, it is likely that MagB transduces

an external surface hydrophobicity signal, presumably through a

GPCR. Use of the magBG42R mutant suggests that the

conformational change accompanying MagB activation is neces-

sary for the selective development of appressoria on hydrophobic

surfaces (Figure S6). It remains to be determined whether the Ga
or Gbc subunits or both propagate signals required for

appressorium formation and disease lesion formation in M. oryzae.

Direct evidence of interactions between Magnaporthe heterotrimeric

G-protein subunits and effector molecules is currently lacking.

However, phenotypic similarities between the Ga subunit mutant

and deletion strains [20,24,26], Gb subunit (MGB1) deletion [20],

adenylyl cylase (Mac1) deletion [21], and cAMP phosphodiester-

ase (PdeH) deletion [22], suggest that MagA and MagB may

modulate cellular cAMP level through mechanisms similar to

those of mammalian Gas and Gai/o.

In conclusion, Ga(G42R) mutants are incapable of assuming a

typical activated conformation, but their retained ability to

hydrolyze GTP indicates an uncoupling of conformational change

and enzymatic activity. Since G42R mutants are unable to

separate from Gbc or to activate effectors, they provide tools for

dissecting the functions of Ga subunits in cellular contexts.

Utilizing both G42R and constitutively active Q/L mutants of two

Ga subunits, we postulate a critical role for MagB activation in

response to growth on hydrophobic surfaces, leading to appres-

sorium formation in the rice blast fungus, M. oryzae.

Materials and Methods

Chemicals and other assay materials
Unless otherwise noted, all chemicals were the highest grade

available from Sigma or Fisher Scientific. Peptides were

synthesized by Fmoc (N-(9-fluorenyl)methoxycarbonyl) group

protection, purified by HPLC, and confirmed using mass

spectrometry by the Tufts University Core Facility (Medford,

MA). Peptides used for crystallography and biophysical studies

have been previously reported: FITC-RGS14 GoLoco [55],

RGS14 GoLoco [56], FITC-KB-1753 [13], and KB-752 [49].

Figure 7. Expression of non-activatable (G42R) or GTPase-deficient (Q204L) Ga subunits differentially affects M. oryzae
pathogenicity. Barley leaf explants were spot inoculated in triplicate with the specified number of conidia (500, 100 and 2000 per inoculation
site) from the magAG45R, magAQ208L, magBG42R, magBQ208L and wild type strains and the disease symptoms scored 7d post inoculation. The magAG45R

caused typical disease lesions comparable to the wild type. The magAQ208L failed to cause typical blast lesions even at high spore counts. The
magBG42R caused mild disease lesions on barley leaf explants inoculated with higher concentration of spores. Under comparable conditions, conidia
from the magBQ208L were incapable of causing disease.
doi:10.1371/journal.ppat.1002553.g007
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Protein purification
Although we were unable to obtain properly folded, purified M.

oryzae Ga subunits, the P-loop and surrounding switch regions are

highly conserved from mammals to fungi (Figures S1). Thus, we

utilized the readily available purified Gai1 and GaoA and

corresponding G42R mutants. For biochemical experiments,

full-length, hexahistidine-tagged Gai1 and GaoA, and G42R

mutants thereof, were purified from E. coli by NTA affinity and

gel filtration chromatography as previously described [57] (see

Figure S5). A GST fusion of the RGS12 RGS domain (aa 664–

885) was purified as described [58]. Biotinylated Gb1c1 was

purified as described [59]. For crystallization, an N-terminally

truncated (DN30) Gai1(G42R) was expressed and purified by NTA

affinity chromatography; the hexahistidine tag was cleaved by

TEV protease, and the Ga subunit further purified by ion

exchange (SourceQ, GE Healthcare) and gel filtration chroma-

tography. Purified Gai1(G42R) was loaded with excess GppNHp

or GDP for 3 hours at room temperature and concentrated to

15 mg/mL in GppNHp crystallization buffer (50 mM HEPES

pH 8.0, 10 mM MgCl2, 10 mM GppNHp, 1 mM EDTA, 5 mM

DTT) or GDP crystallization buffer (10 mM Tris pH 7.5, 1 mM

MgCl2, 5% v/v glycerol, 5 mM DTT).

Crystallization and structure determination
The complex of Gai1(G42R) and synthetic KB-752 peptide was

obtained by mixing a 1:1.5 molar ratio of protein to peptide in

GppNHp crystallization buffer. Despite loading of Gai1(G42R)

and crystallization in the presence of GppNHp, the crystal lattice

contained Gai1(G42R) liganded with GDP and bound to KB-752.

The selectivity of KB-752 for the GDP bound state [49] may

account for the apparent absence of GppNHp. Crystals of

Gai1(G42R)?GDP/KB-752 were obtained by vapor diffusion from

hanging drops containing a 1:1 (v/v) ratio of protein/peptide

solution to well solution (17% (w/v) PEG MME 5000, 200 mM

MgCl2, 100 mM HEPES pH 7.0). Hexagonal rod crystals

(,30061006100 mm) formed in 5 days at 18uC exhibited the

symmetry of space group P6122 (a = b = 106.6, c = 455.1, and

a= b= 90u, c= 120u) and contained two Gai1(G42R)?GDP/KB-

752 dimers and one Gai1(G42R)?GDP monomer in the asym-

metric unit. For data collection at 100K, crystals were serially

transferred into well solution supplemented with 30% saturated

sucrose in 10% increments for ,30 s, followed by plunging into

liquid nitrogen. A native data set was collected at the SER-CAT

22-ID beamline at the Advanced Photon Source (Argonne

National Laboratory). Data were processed using the HKL-2000

program [60]. The crystal structure of the wild type Gai1/KB-752

heterodimer (PDB 1Y3A [49]), excluding the KB-752 peptide,

nucleotide, and waters was used as a search model for molecular

replacement using the Phaser program [61]. Refinement was

carried out using phenix.refine [62], consisting of conjugate

gradient minimization and refinement of individual atomic

displacement and translation-libration-screw parameters, inter-

spersed with manual revisions of the model using the Coot

program [63]. For data collection and refinement statistics and a

list of residues that could not be located in the electron density, see

Table S2.

The complex of Gai1(G42R) and the RGS14 GoLoco motif

peptide was generated by mixing a 1:1.5 molar ratio of protein to

peptide in GDP crystallization buffer. Crystals of the complex

were obtained by vapor diffusion from hanging drops containing a

1:1 ratio of protein/peptide solution to well solution (1.7 M

ammonium sulfate, 100 mM sodium acetate pH 5.0, 200 mM

MgCl2, 10% (w/v) glycerol). Crystals (,2006200650 mm) formed

in 2–5 days at 18uC and exhibited the symmetry of space group

C2221 (a = 70.0, b = 131.0, c = 203.3, and a= b= c= 90u) and

contained two Gai1(G42R)/GoLoco motif heterodimers in the

asymmetric unit. Diffraction data were collected and processed,

and the model refined as described for Gai1(G42R)/KB-752,

above. The crystal structure of Gai1(Q147L)/RGS14 GoLoco

motif (PDB 2OM2 [51]), excluding the peptide, nucleotide and

waters was used as a molecular replacement search model. All

structural images were made with PyMOL (Schrödinger LLC,

Portland, OR).

Nucleotide binding and hydrolysis assays
The [35S]GTPcS filter-binding assay used to measure rates of

spontaneous GDP release from wild type and mutant GaoA was

conducted as described previously [64]. Intrinsic GTP hydrolysis

rates of GaoA and mutants were assessed by monitoring 32P-

labeled inorganic phosphate production during a single round of

GTP hydrolysis as described previously [65].

Surface plasmon resonance assays
Optical detection of protein/protein interactions by surface

plasmon resonance was performed using a Biacore 3000 (GE

Healthcare). Carboxymethylated dextran (CM5) sensor chips (GE

Healthcare) with covalently bound anti-GST antibody surfaces

were created as described previously [50]. The GST-RGS12 RGS

domain protein and GST alone (serving as a negative control)

were separately immobilized on SPR chip surfaces. Biotinylated

Gb1c1 and mNOTCH peptide (serving as a negative control) were

separately immobilized on a streptavidin (SA) sensor chip (GE

Healthcare) as described previously [50].

Fluorescence polarization measurements
All polarization experiments were conducted using a PHER-

Astar microplate reader (BMG Labtech, Offenburg, Germany),

essentially as described previously [51].

Intrinsic tryptophan fluorescence measurements of Ga
activation

Changes in tryptophan fluorescence of Gai1 subunits were

measured to assess activation by GDP?AlF4
2, as described

previously [51]. Activation of Ga subunits results in translocation

of a conserved switch 2 tryptophan into a hydrophobic pocket,

increasing the quantum yield of tryptophan fluorescence [5].

Fluorescence intensity traces shown are representative of triplicate

experiments.

Limited trypsin proteolysis
Ga subunits are relatively protected from trypsin-mediated

proteolysis in the GDP?AlF4
2 and GTP analog-bound, activated

states [4]. Ten mg of wild type or mutant Gai1 in 50 mM HEPES

(pH 8.0), 1 mM EDTA, 5 mM DTT, 0.05% C12E10, and 10 mM

MgCl2 were incubated for three hours at room temperature with

either 100 mM GDP, 100 mM GTPcS, or 100 mM GDP, 20 mM

NaF, and 60 mM AlCl3. Five hundred ng of N-Tosyl-L-

phenylalanine chloromethyl ketone (TPCK)-treated trypsin was

added to each reaction, followed by a 10-minute incubation at

room temperature. Proteolysis was stopped by addition of SDS-

PAGE sample buffer and boiling. Samples were subjected to SDS-

PAGE and stained with Coomassie Blue.

Quantitation of phospholipase C (PLC) activity
COS-7 cells in 12-well culture dishes were transfected with

KT3-tagged wild type or mutant Gaq, metabolically labeled with

1 mCi of [3H]inositol/well and assayed for inositol phosphate
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accumulation using Dowex chromatography as described previ-

ously [66]. For AlF4
2 stimulation experiments, final concentra-

tions of 10 mM NaF and 30 mM AlCl3 were added to cell media.

To determine wild type and mutant Gaq expression levels, cells

were lysed in SDS-PAGE sample buffer. Proteins separated by

electrophoresis were immunoblotted with anti-KT3 antibody

(Covance) or anti-actin antibody (Sigma).

Fungal strains, growth, and culture conditions
The M. oryzae wild-type strain B157 was obtained from the

Directorate of Rice Research (Hyderabad, India). Magnaporthe

strains carrying individual point mutations in the Ga subunits,

namely: magAG45R, magAQ208L, magBG42R, magBQ208L have been

described previously together with the rgs1D mutant [19]. Wild

type and mutant strains cultures were maintained at 28uC in the

dark on Prune Agar medium plates (PA; per L: 40 mL prune juice,

5 g lactose, 5 g Sucrose, 1 g yeast extract and 20 g agar, pH 6.5).

Assessment of the radial growth, aerial hyphae and colony

characteristics was carried out as previously described [22].

Conidiation was induced in the Magnaporthe colonies through

exposure to continuous incandescent light at room temperature for

6 days.

Evaluation of conidiation status
Conidia were harvested by scraping the surface growth in water

with an inoculation loop. The suspension was filtered through two

layers of Miracloth (Calbiochem, San Diego, USA), collected in

Falcon tubes (BD Biosciences, USA), vortexed for a minute to

ensure complete detachment of conidia from the mycelia, and

then pelleted by centrifugation at 3,000 rpm for 15 minutes. The

conidia were washed twice and re-suspended in a fixed volume of

sterile water. Prior to harvesting the spores, the radius of each

colony was measured to calculate the surface area of the colony.

Conidia produced by a given colony were quantified using a

hemocytometer and reported as the total number of conidia

present per unit area of the colony.

Appressoria formation assays
Droplets (20 ml containing 500 conidia) of conidial suspension

were placed on plastic cover slips (hydrophobic surface) or

hydrophilic side of GelBond membrane (Lonza Walkersville

Inc., USA) and incubated in a humid chamber at room

temperature. The total number of appressoria formed by each

strain on either surface was quantified at 16 hpi (hours post

inoculation).

Evaluation of pathogenicity in Magnaporthe strains
For pathogenicity assays, leaves from two week old barley

seedlings were cut into smaller pieces (2–3 cm long) and washed in

sterile water, following which the leaf bits were rinsed for

45 seconds in 40% ethanol. The leaf pieces were then washed

twice with sterile antibiotic-containing distilled water. The washed

leaves were placed on kinetin agar plates (2 mg/mL kinetin, 1%

agar). Conidia were quantified and a dilution series of the conidial

suspension was inoculated on detached barley leaves at the

required concentrations. The samples were incubated in a

humidified growth chamber with a 16 h light/8 h dark cycle at

22uC. Disease symptoms were assessed 5–7 days post inoculation.

Microscopic analysis
Samples were observed on a BX51 (Olympus, Japan) micro-

scope equipped with UPlan FL N 60X/1.25 Oil objective with

appropriate filter sets. Bright field images were captured using a

Cool SNAP HQ camera (Photometrics, USA) and processed using

Image J (National Institutes of Health, USA), MetaVue (Universal

Imaging, USA) and Adobe Photoshop 7.0 (Adobe Inc, USA).

Supporting Information

Figure S1 The Ga subunit P-loop is highly conserved in
fungi and mammals. The b1 strands, a1 helices, and

intervening P-loops (gray), as well as the three switch regions of

selected Ga subunits from humans and fungi are aligned.

Nucleotide contacting residues are highlighted by black circles,

and the mutated glycine by an arrowhead.

(EPS)

Figure S2 Arg-42 adopts an alternate rotamer in the
crystal structure model of Gai1(G42R)?GDP/RGS14
GoLoco motif. Gai1(G42R) is shown in cyan with switch regions

in dark blue and selected side chains in sticks. GDP is represented

as green sticks, and a portion of the RGS14 GoLoco motif is

orange. GoLoco motif residues 511 and 512 were disordered in

the crystal structure; the cartoon shown is truncated at residue 510

(PDB 3QI2). The side chain of Arg-42 adopts a different rotamer

than that seen in Gai1(G42R)?GDP/KB-752 (magenta sticks).

Instead, the Arg side chain forms direct polar contacts with Glu-

245 of Gai1(G42R) and the backbone carbonyl group of Val-507

from the RGS14 GoLoco motif. Arg-42 also coordinates a well-

ordered water molecule (yellow sphere) with Arg-242 and Gln-147

of Gai1(G42R). This Arg-42 rotamer would sterically prevent

switch 3 from approaching the nucleotide upon binding to GTP.

However, there is room for Arg-178 and Gln-204 to potentially

assume their critical positions for GTP hydrolysis, providing a

possible rationale for the normal GTPase activity of Gai1(G42R).

(EPS)

Figure S3 M. oryzae colony and growth characteristics.
Morphology of the magAG45R, magAQ208L, magBG42R, magBQ208L,

WT (wild-type) and rgs1D colonies. The indicated strains were

grown in the dark on prune agar medium for a week and

photographed (upper panels). The magBQ208L mutation lead to

reduced rate radial growth. The radius of the magBQ208L colony

was 2.2460.03 cm compared to 2.5260.03 cm in the magBG42R or

the WT strain, when grown under identical conditions for a period

of seven days at 28uC in the dark. Values represent the mean 6

SE (n = 5 colonies per strain; p,0.001). The lower panels

represent cross sections at near-median planes. The magAQ208L

showed dramatic reduction in aerial hyphal growth, compared to

the magAG45R and WT. The magBG42R and magBQ208L mutants

showed reduced aerial hyphal growth compared to the WT strain.

(EPS)

Figure S4 M. oryzae conidiation defects and conidial
morphology. Comparative quantitative analysis of conidiation

in the magAG45R, magAQ208L, magBG42R magBQ208L and wild type

strains. The indicated strains were initially grown in the dark for a

day and then exposed to constant illumination for 6 days. Data

represents mean 6 SE based on three independent replicates. (A)

Conidia per surface area unit were quantified for all five strains.

Both magAG45R and magAQ208L produced fewer conidia than wild

type fungi, although magAQ208L produced statistically significantly

few conidia than magAG45R. The asterisk indicates the heavily

pigmented aberrant structures and conidia with a single septum

produced predominantly by the magAQ208L mutant. magBG42R and

magBQ208L both displayed an increased number of conidia

compared to wild type. (B) Conidia from magBQ208L displayed a

thin, elongated morphology, while those of magBG42R were similar

to wild type. (C) The dimensions (length and width) of conidia
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from the indicated strains were quantified. Values represent the

mean 6 SE (n = 200 conidia per strain).

(EPS)

Figure S5 Purification of Gai1 and Gao G42R mutants.
Wild type and G42R Gai1 and Gao were purified from E. coli by

affinity chromatography, separated by SDS PAGE, and stained

with Coomassie blue.

(EPS)

Figure S6 Activation of the Ga subunit MagB is required
for selective appressorium formation on hydrophobic
surfaces. Based on genetic data from the present and previous

studies, a model of MagB-mediated regulation of appressorium

formation in M. oryzae is hypothesized. Rgs1 was previously shown

to modulate appressorium formation by negatively regulating

MagA and MagB [19]. Experiments involving G42R and Q/L

mutants of Ga subunits, from the present study, implicate MagB

activation as a vital component of surface hydrophobicity sensing,

putatively through a heptahelical GPCR.

(EPS)

Table S1 Previous studies utilizing G42R mutations in
fungal Ga subunits. Investigations into Ga subunit function in

multiple species have included G42R point mutations. In each

case, the G42R mutant was assumed to be GTPase-deficient and

constitutively active.

(PDF)

Table S2 Data collection and refinement statistics for
Gai1(G42R) complexes.

(PDF)
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