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ABSTRACT 

Adam Curry: The role of shear heating in producing crystal-poor obsidian 
(Under the direction of Allen F. Glazner) 

 
The reasons for obsidian’s lack of phenocrysts (<1 vol%) are poorly understood. 

Modal analyses of obsidian from the Long Valley and Coso volcanic areas in California were 

completed to better understand the crystallization history of obsidian. Crystal-poor samples 

(< 2 vol%) contain plagioclase but lack sanidine and often quartz, whereas crystal-rich 

samples (>2 vol%) contain plagioclase and sanidine but sometimes lack quartz. Crystal-poor 

samples contain dominantly rounded phenocrysts indicative of resorption, whereas 

phenocrysts in crystal-rich samples contain sharp, defined corners. Thermal models of 

ascending, high-silica magma were run using COMSOL Multiphysics to assess temperature 

increases caused by shear heating, which could potentially resorb crystals. Models show 

large (>300 K) temperature increases at the conduit edges capable of resorbing crystals. 

Though model dike geometry is unrealistic, obsidian mineralogy and thermal modeling are 

consistent with shear heating-induced resorption during ascent of high-silica magmas.  
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1. INTRODUCTION 

Obsidian is unusual because of its dearth of phenocrysts, typically <1 vol% (e.g., 

Bacon et al., 1981), and little is known about its formation. Magmas that erupt have usually 

experienced some crystallization, and most volcanic rocks contain 15-35 vol% phenocrysts 

(Williams et al., 1954; Ewart, 1976). The few phenocrysts in obsidian are evidence for some 

crystallization, but the relative paucity reflects conditions in which crystallization was 

inhibited or existing crystals were resorbed during ascent. The causes of these conditions and 

their effect on the mineralogy of obsidian are poorly understood.  

Most rhyolites contain quartz, alkali feldspar, and plagioclase ± hornblende, biotite, 

and pyroxene (e.g., Lipman et al., 1978; Johnson and Lipman, 1988; Christiansen, 2001). 

Rhyolites typically plot near the haplogranite ternary cotectic (Tuttle and Bowen, 1958), and 

the equilibrium cotectic mineral assemblage is quartz and one or two alkali feldspars. 

However, many obsidian flows in eastern California lack either quartz or sanidine (Bailey et 

al., 1976; Kelleher, 1986; Metz and Mahood, 1991; Manley and Bacon, 2000). The lack of 

this cotectic mineral assemblage means either 1) quartz and sanidine never crystallized in 

equilibrium at this cotectic or 2) equilibrium conditions were subsequently disrupted, causing 

resorption of existing crystals.  

One way to inhibit crystallization and resorb crystals is to increase temperature. 

Temperature increase is usually associated with heat from external sources, such as magma 

mixing or ponding of mafic magma (e.g., Stimac and Wark, 1992), but it can also be 

produced within a system by viscous heating. Viscous heating is the production of thermal 
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energy from shear stress in a moving fluid (Gruntfest, 1963; Batchelor, 1967). Because of 

their high viscosities (106-1012 Pa s, Figure 1), rhyolites are more susceptible to this effect 

than less viscous magmas, and it is potentially an important factor in the thermal budget of 

ascending high-silica magmas. Even though viscous heating has been studied theoretically 

for 50 years or more (Gruntfest, 1963; Fujii and Uyeda, 1974), its application to volcanology 

is relatively recent (e.g., Polacci et al., 2001; Mastin, 2005; Kendrick et al., 2012).  

 
Figure 1. Viscosity (Pa s) as a function of temperature (° C) for crystal-free, high-silica 
rhyolite (77 wt% SiO2) with 0 and 2 wt% H2O. The highlighted portion shows that viscosity 
ranges from ~106-1012 Pa s at temperatures relevant to rhyolite melts (~750-850° C). 
Viscosity values were calculated using Giordano et al. (2008). 

Recent studies documented the effects of viscous heating in experimental, numerical, 

and physical volcanology. Numerical models of magmatic conduit flow calculated 

temperature increases of 100-350 K at the conduit edge (Mastin, 2005; Costa et al., 2007; 

Hale et al., 2007). Lavallee et al. (2012) experimentally produced viscous melt by shearing 

an andesite to explore the movement of andesitic plugs, and Kendrick et al. (2012) attributed 
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rounded crystals in high-shear zones of volcanic spines extruded at Mount St. Helens to 

viscous heating. The role of shear heating in volcanic systems is increasingly being explored, 

but its application to magma crystallization and resorption is still poorly studied. 

This study merges numerical models with mineralogical observations to investigate 

the importance of shear heating in the generation of crystal-poor obsidian. Models of 

ascending, high-silica magma were built in COMSOL Multiphysics to assess temperature 

increases within volcanic conduits. Obsidian from the Long Valley and Coso volcanic areas 

in eastern California was collected for modal analysis to understand the crystallization 

history of obsidian. This combination of mineralogy and numerical modeling provides 

insight into whether obsidian mineralogy is consistent with a temperature increase caused by 

shear heating. 
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2. BACKGROUND  

2.1 Geologic background 

The Long Valley and Coso volcanic areas are located east of the Sierra Nevada in 

California. Long Valley is ~25 km south of Mono Lake, and the Coso volcanic field lies 

between the southern Sierra Nevada and the Argus Range. Both are located at the western 

edge of the Basin and Range extensional province in eastern California (Figure 2).  

The elliptical Long Valley caldera is 32 km by 17 km, and formed 0.767 Ma with 

eruption of the Bishop Tuff (Bailey et al., 1976; Crowley et al., 2007). Intra-caldera rhyolites 

(74-75 wt% SiO2) comprising the resurgent dome erupted during the 0.1 million years 

following the Bishop Tuff eruption (K-Ar ages of 0.73-0.63 Ma, Bailey et al., 1976). 

Phenocryst contents for each study site are listed in Table 1 and range from 0-8 vol%.  

Glass Mountain, on the northeast rim of the caldera, earned its name from the 

presence of abundant glassy, aphyric rhyolite. It contains over 50 rhyolite lava flows totaling 

~50 km3 which erupted between 2.1-0.79 Ma (Figure 2a; Metz and Mahood, 1991). Metz and 

Mahood (1991) distinguished older (2.1-1.2 Ma) and younger (1.2-0.79 Ma) lavas based on 

their eruptive frequency, physical character, and chemistry. Younger lavas have fewer 

phenocrysts than older lavas. Biotite is present in all but 2 older lavas, but only half of the 

younger lavas. Sanidine is present in all older lavas, but it is sparse in some younger lavas 

and absent in one (Metz and Mahood, 1991; Table 1). 
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Figure 2. Geologic maps of sample sites (black dots). (a). Long Valley map adapted from 
Bailey (1989). Sites sampled include Panum Crater, Dome 8, and Punch Bowl in the Mono 
chain; Obsidian Dome and Glass Creek Dome in the Inyo chain; Lookout Mountain and Casa 
Diablo in the resurgent dome; and Glass Mountain. (b) Coso map adopted from Duffield and 
Bacon (1981). Domes 4 and 16 were sampled. Dome numbers taken from Bacon et al. 
(1981).  

The Mono-Inyo chain of volcanic domes and craters extends north from the western 

part of Long Valley caldera (Figure 2a). Mono-Inyo volcanism started between 0.3 and 0.2 

Ma, and the youngest features are 200 years old (Sieh and Bursik, 1986). The Mono chain 

consists of 27 high-silica domes and one dacitic dome (Kelleher and Cameron, 1990). The 
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high-silica rhyolites are divided into 3 groups: 1) aphyric with few to no phenocrysts, 2) 

sparsely porphyritic with ≤ 3 vol% phenocrysts, and 3) porphyritic with 3-8 vol% 

phenocrysts (Kelleher and Cameron, 1990). Kelleher and Cameron (1990) reported only the 

mineralogy of groups 2 and 3 due to the crystal-poor nature of the first group (Table 1). This 

study sampled one dome from each category. 

Obsidian Dome and Glass Creek Dome, in the Inyo chain, formed 600 years ago 

(Figure 2a; Miller, 1985). These domes contain 71-74 wt% SiO2 and consist of two units: 1) 

finely porphyritic obsidian with 2-6 vol% phenocrysts and 2) coarsely porphyritic rhyolite 

with over 18 vol% phenocrysts (Miller, 1985; Sampson and Cameron, 1987; Higgins and 

Meilleur, 2009). Only the finely porphyritic obsidian was analyzed in this study (Table 1).  

Pleistocene volcanic rocks in the Coso volcanic field are bi-modal, predominantly 

either rhyolite or basalt (Figure 2b; Bacon, 1982). Pleistocene rhyolites contain 74-77 wt% 

SiO2 and most contain <0.001–1 wt% crystals (Bacon et al., 1981; Table 1).  

Table 1. Sample Site Mineral Assemblages  

Location 
Vol% 

phenocrysts Phases present Age (Ma) Source 
Glass Mountain 
(younger lavas) 

<3 (2 units 
contain ~7) plg, qz, ± san, bt, ap, zr, al 1.2-0.79 8 

Resurgent Dome <3 qz, plg, bt, opx ± ap, zr, pyr 0.75-0.65 1, 3 
Mono-

porphyritic 3-8 
plg, san, qz, hb, mt ± fay, 

opx, bt 0.035-0.0007 4, 7 
Inyo-finely 
porphyritic 2-6 plg, san ± bt, opx, mt, qz 0.006-0.0006 2, 5, 6 

Coso Dome 4 1 qz, san, plg, mt, bt 0.06* 9 
Coso Dome 16 <0.001 plg 0.1 9 

Table 1. Mineral assemblages for sample sites in eastern California. Mineral abbreviations: 
plg=plagioclase, qz=quartz, bt=biotite, ap=apatite, zr=zircon, al=allanite, 
opx=orthopyroxene, pyr=pyrrhotite, hb=hornblende, mt=magnetite, and fay=fayalite. 
Sources: 1, Bailey et al. (1976); 2, Miller (1985); 3, Mankinen et al. (1986); 4, Sieh and 
Bursik (1986); 5, Sampson and Cameron (1987); 6, Vogel et al. (1989); 7, Kelleher and 
Cameron (1990); 8, Metz and Mahood (1991); 9, Manley and Bacon (2000). 
*Weighted mean age based on Group 4 of Manley and Bacon (2000).  
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2.2 Thermal modeling background 

Thermal modeling of volcanic systems is inherently complicated because as magma 

ascends, it undergoes changes in temperature, pressure, crystal content, and gas content. 

Viscosity is affected by each of these changes and dominates the rheology of ascending 

magmas (Giordano et al., 2008). High-viscosity magmas such as rhyolites are more 

susceptible to viscous (or shear) heating (Nelson, 1981).  

Even though many studies have numerically modeled volcanic conduits (e.g., Melnik 

and Sparks, 1999; Mastin, 2002; Melnik and Sparks, 2005; Massol and Jaupart, 2009), few 

incorporated viscous heating (e.g., Mastin, 2005; Costa et al., 2007; Hale et al., 2007). 

Mastin (2005), Costa et al. (2007), and Hale et al. (2007) presented models of 

incompressible, laminar, viscous flow in cylindrical conduits with 15-25 m radii and 5-8 km 

lengths. The models presented in these studies used crystal contents ranging from 0-75 vol% 

and water contents ranging from 1-4.9 wt%. Under these conditions, modeled temperatures 

increased 100-350 K above original magmatic temperature (Mastin, 2005; Costa et al., 2007; 

Hale et al., 2007). Similar to these studies, I model an incompressible, laminar, viscous 

magma. However, instead of a large-diameter, cylindrical dike, I model a 5-m wide, planar 

dike because this geometry is more realistic for silicic dike ascent (Petford et al., 1993).  
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3. METHODS 

3.1 Sample collection 

Samples were collected from the Long Valley and Coso volcanic areas in eastern 

California (Figure 2; Table 2). Of the Mono domes sampled, Panum Crater (01PAN12A) is 

classified as aphyric, Dome 8 (01D812A) is sparsely porphyritic, and Punch Bowl (01PB12) 

is porphyritic and fayalite-bearing (Kelleher and Cameron, 1990). All samples are obsidian 

except for 01PB12, which is a gray high-silica rhyolite. 

Table 2. Sample Site Summary 

Sample Site/Dome UTM (E,N)* 
02CD11 Resurgent Dome/Casa Diablo 333128, 4168032 
01LM12 Resurgent Dome/Lookout Mountain 328417, 4177444 
04GM11 Glass Mountain 349775, 4181707 

02AGM11 Glass Mountain 349234, 4181857 
9-8-9 Coso/Dome 4 429200, 3994000 

05COSO12A Coso/Dome 16 427038, 3988840 
01D812A Mono/Dome 8 320718, 4197969 

01PAN12A Mono/Panum Crater 320145, 4199723 
01PB12 Mono/Punch Bowl 322037, 4187309 

02GC12A Inyo/Glass Creek 321699, 4179418 
02OD11 Inyo/Obsidian Dome 321684, 4180037 

Table 2. Sample names and locations. *UTM Zone 11S, NAD83 datum. 

3.2 Whole-rock geochemistry 

Whole-rock chemical analyses were performed using wavelength-dispersive X-ray 

fluorescence at the University of North Carolina at Chapel Hill (UNC-CH) on a Rigaku 

Supermini X-ray fluorescence spectrometer. Fresh rock chips were powdered in a ceramic 

shatterbox. Loss on ignition was determined for each sample by heating ~2 g of rock powder 
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to 950° C for 1.5 hours. Ignited sample (0.9 ± 0.001 g) and flux (8.1 ± 0.001 g) consisting of 

64.7 % lithium tetraborate, 35.3 % lithium metaborate, and 0.5 % lithium bromide were 

fused into a glass bead using a platinum crucible.   

3.4 Petrography 

Modal analyses were conducted by making a montage of images of a singly polished 

51 mm x 75 mm thin section using an Olympus IX 81 microscope at the Microscopy 

Services Laboratory at UNC-CH. Images were collected on a 4x lens with unpolarized light 

on a motorized LEP Bioprecision Stage and stitched together using the software Metamorph. 

Total phenocryst percent was calculated by digitizing phenocrysts and using ImageJ 

(http://imagej.nih.gov/ij) to determine areal abundances. Samples were then analyzed using a 

Tescan Vega TS 5136 scanning electron microscope at UNC-CH with a 15 kV accelerating 

voltage and an absorption current of 5-10 nA. Backscattered electron images were collected 

from each sample to assess crystal morphology.  

Quantitative mineral analyses were performed using wavelength-dispersive 

spectrometry on a JEOL JXA-8530F field emission electron probe microanalyzer at the 

Southeastern North Carolina Regional Microanalytical and Imaging Consortium at 

Fayetteville State University.  Minerals were analyzed with a 15 kV accelerating voltage 

using a 10 nA probe current with a circular spot size of 1-5 μm. Matrix corrections were 

applied using the ZAF correction scheme.  The Astimex standard mount was used for 

standardization of silicate minerals.  

3.5 Thermal modeling 

Previous studies described the potential for significant shear heating in viscous fluids 

with a strong temperature-dependent viscosity, such as magma, using the Gruntfest number, 
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G (Gruntfest, 1963; Fujii and Uyeda, 1974; Nelson, 1981). These models used an Arrhenius 

viscosity-temperature relationship,  

 
( )0

0
TTae −−=ηη , (1) 

in which η is the viscosity (Pa s), T is the temperature (K), a is a pre-exponential constant  

(K-1), and η0 and T0 are initial values of the magma (Table 3). More sophisticated viscosity 

models exist (e.g., Hess and Dingwell, 1996; Giordano et al., 2008) which more accurately 

replicate the behavior of silicate melts over a wide range of compositions, volatile contents, 

and temperatures. However, Arrhenian models accurately reproduce behavior at magmatic 

temperatures of interest in this study.   

The Gruntfest number, G, is given as (Gruntfest, 1963),  

 
0

22

η
σ
k

la
t
tG c ==
∞

, (2) 

in which σ is constant shear stress, l is the half-thickness of a lava flow, and k is the thermal 

conductivity (W m-1 K-1; Table 3). G is the ratio of the time it takes a lava flow to cool by 

conduction in the absence of shear heating, tc, to the time it takes a lava flow to reach 

extremely high temperatures with shear heating and no heat loss by conduction, t∞ (Gruntfest, 

1963). If tc is short (i.e. heat is conducted away quickly) compared to t∞, then heat can be 

transferred away from the lava so that shear heating does not produce large temperature 

increases within the lava. If tc is long compared to t∞, then significant temperature increases 

due to shear heating are possible. Gruntfest (1963) found that for G>1, temperatures in a lava 

flow can theoretically increase without bound for a given period of time, a situation known as 

thermal runaway. 
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Table 3. Variables 
Symbol Description Range This Study Equation Source 

h half-width of planar conduit (m) 1-18 2.5 3, 10 7, 10, 11 
L conduit length (m)   1000 4, 9   

ΔP 
overpressure; P0(inlet)-P1(outlet) 

(MPa) 10-80 10-30 4, 5 13-15 

dP/dy 
pressure change over conduit 

length (Pa m-1) 10-107 10000-30000 3, 4, 10 6 

km 
magma thermal conductivity (W 

m-1 K-1) 1.3-4.2 1.5 3 3, 16 

kh 
host rock thermal conductivity (W 

m-1 K-1) 1.5-3 2.25 
 

12 
Cp specific heat (J kg-1 K-1) 1150-1250 1200 6 16 
η0 viscosity at T0 (Pa s) 104-1014 105-107 1-3, 10 2, 3  
T0 initial magma temperature (K) 973-1198 1123.15 1, 9 2, 8 
Ts surface temperature (K)   293.15 9   

Tgrad host rock temperature (K)   see Equation 9 9   
ρm magma density (kg m-3) 2200-2350 2300   3, 16 
ρh host rock density (kg m-3) 2550-2730 2600   5, 9 
a pre-exponential constant (K-1) 

 
0.015-0.025 1-3 2, 6 

l half-thickness of lava flow 
  

2 1 
G Gruntfest number 

  
2 1 

G'' modified Gruntfest number   4-4690 3 4 

tc 
time needed to cool via 

conduction (s) 
  

2 1 

t∞ 
time needed to reach large 

temperatures via shear heating (s) 
  

2 1 
σ constant shear stress 

  
2 1 

t time (s)     6, 7   
u velocity (m s-1)     6, 7   
ε shear heating (W m-3)     6, 8   
I identity tensor     7   
τ viscous stress (Pa)     7   
F  volume force (N m-3)     7   
γ shear rate (s-1)     8   

Table 3. Variables used in this paper. Sources for given ranges include: 1, Gruntfest (1963); 
2, Shaw (1963); 3, Murase and McBirney (1973); 4, Fujii and Uyeda (1974); 5, Plouff et al. 
(1980); 6, Nelson (1981); 7, Eichelberger et al. (1985); 8, Hausback (1987); 9, Carle (1988); 
10, Vogel et al. (1989); 11, Petford et al. (1993); 12, Spear (1993); 13, Melnik et al. (2005); 
14, Costa et al. (2007); 15, Mastin et al. (2008);16, Romine et al. (2012). 
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Fujii and Uyeda (1974) modified G for applications to planar conduit flow (dikes), 

adapted here as 

 
0

42

''
ηmk

ah
dy
dPG 








= , (3) 

in which h is the half-width of a planar conduit and  

 
L
P

dy
dP ∆

= . (4) 

In Equation 4, L is the length of the conduit and  

 10 PPP −=∆ , (5) 

in which P0 is the pressure at the conduit inlet (Pa) and P1 is the pressure at the outlet (Pa). 

Fujii and Uyeda (1974) found G”= 6 to be the critical value above which thermal runaway is 

possible. Equation 3 is the relevant version of the Gruntfest number for this study.  

To understand the role of shear heating, this study varied 3 parameters in Equations 

1-5: a, η0, and ΔP. The pre-exponential constant in Equation 1, a, controls the sensitivity of 

viscosity to temperature changes. The range of a values for this study was determined by 

fitting Equation 1 to measured viscosity data for rhyolitic compositions with 0 to 6 wt% H2O 

and an andesite with 2 wt% H2O for comparison (Figure 3). Calculated a values range from 

0.018-0.025 for rhyolites. Nelson (1981) used a=0.015 K-1 based on obsidian viscosity data 

of Shaw (1963). To analyze conditions relevant to rhyolite compositions, this study chose 

a=0.015, 0.020, and 0.025 K-1. 

Initial magma viscosity, η0, was chosen based on experimentally derived viscosity 

values covering a wide range of temperatures and volatile contents (Shaw, 1963, 1972; 

Murase and McBirney, 1973). Rhyolite viscosity (104-1012 Pa s) depends on water content, 
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crystal content, and composition. To account for some water in the magma at depth, this 

study used a range of viscosities on the lower end of measured and calculated viscosities: 

105, 106, and 107 Pa s.  

 
Figure 3. Regression lines for measured viscosity data of granites (a1-a5) and an andesite (a6) 
with different water contents: a1=0.02 wt%, a2<1 wt%, a3=1-1.5, a4=1.8-3 wt%, a5=6-8 wt%, 
and a6=2 wt%. R2=0.97, 0.68, 0.98, 0.84, 0.77, and 0.99, respectively. Data sources include 
Baker and Vaillancourt (1995), Hess and Dingwell (1996), Richet et al. (1996), and Dingwell 
et al. (1998).  

The overpressure, ΔP, is the pressure difference between the inlet (P0) and the outlet 

(P1) of the conduit driving magma flow. Using geodetic models, Mastin et al. (2008) 

calculated magmatic overpressures of <30 MPa for the 2004-2006 Mount St. Helens 

eruption. Numerical models of Massol and Jaupart (1999) and Costa et al. (2007) used ΔP 

values ranging from 10-80 MPa to model volcanic conduit flow. Based on these studies, this 

study chose ΔP=10, 20, and 30 MPa. 

Each combination of a (0.015, 0.020, and 0.025 K-1), η0 (105, 106, 107 Pa s), and ΔP 

(10, 20, and 30 MPa) values was run except for the combination a=0.025 K-1, η0=105 Pa s, 
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and ΔP=30 MPa due to lack of convergence in the numerical model. Twenty-six models 

were run, each having a specific G” value shown in Table 4. Most models are well above the 

critical G”=6 value defined by Fujii and Uyeda (1974), with the exception of 2 models with 

η0=107 Pa s. 

Table 4. G" Values 
η0=105 Pa s η0=106 Pa s η0=107 Pa s 

ΔP (MPa) 10 20 30 ΔP  10  20 30  ΔP 10 20 30 
a (K-1) 

   
a 

   
a 

   0.02 391 1560 3520 0.02 39 156 352 0.02 4 16 35 
0.02 521 2080 4690 0.02 52 208 469 0.02 5 21 47 
0.03 651 2600 

 
0.03 65 260 586 0.03 7 26 59 

 Table 4. G” values for each thermal model run in this study.  

The finite-element numerical solver COMSOL Multiphysics was used to run thermal 

models of high-silica magma ascending due to an overpressure at the conduit base. A planar 

conduit within a host rock was modeled in a symmetric half-space (Figure 4). Magma flow 

was modeled as an incompressible, homogenous fluid described by the following equations 

for conservation of energy (6) and mass (7):  

 
ερρ +∇⋅∇=∇⋅+

∂
∂ )( TkTuC

t
TC pp

  (6) 

and 

 
[ ] FPIuu

t
u

++−⋅∇=∇⋅+
∂
∂ ))( τρρ

,  (7) 

in which shear heating is defined as (Batchelor, 1967) 

 𝜀 = 2𝜂𝛾2. (8) 

In Equations 6-8, ρ is density (kg m-3), Cp is heat capacity (J kg-1 K-1), T is temperature (K), t 

is time (s), u is velocity (m s-1), k is thermal conductivity (W m-1 K-1), P is pressure (Pa), I is 

the identity tensor, τ is viscous stress (Pa), F is the volume force (N m-3), and γ is the shear 
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rate (s-1). COMSOL was benchmarked against analytical solutions of Equations 6-7 

(Appendix A). 

In this study, I modeled a 5-m wide, 1000-m long rhyolite dike moving through a host 

rock with the thermal gradient (Tgrad),  

 
y

L
TTTyT s

sgrad 





 −

−= 0)(
, (9) 

in which Ts is the surface temperature (K), T0 is the initial magma temperature (K), and L is 

the conduit length in meters (Figure 4). The bottom edge of the entire model was kept at a 

constant T0 to simulate a heat source at depth. The host rock changes along a linear 

geothermal gradient according to Equation 9 from T0 to Ts at the surface. The host rock edge 

was built far (97.5 m on each side) from the conduit-host rock boundary to minimize thermal 

edge effects (Figure 4). I ran models for 1 year based on extrusion periods at silicic 

volcanoes such as Mount St. Helens and Santiaguito. Eruptions tend to be cyclic, changing in 

duration and intensity over periods ranging from months to years (Swanson et al., 1987; 

Harris et al., 2003). 
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Figure 4. General setup of two-dimensional thermal model in COMSOL. A planar dike is 
intruded into a host rock. The bottom edge is kept at T0 to simulate a heat source at depth, 
and Equation 9 describes the geothermal gradient in the host rock. This study used a 
symmetric half-space (symmetry line shown). Schematic parabolic velocity profile is for 
Poiseuille flow.
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4. RESULTS 

4.1 Geochemistry and modal analysis 

Analyzed samples range from 72.1-78.2 wt% SiO2 (Figure 5; Appendix B) and agree 

with previously published data (Rinehart and Ross, 1964; Bacon et al., 1981; Sampson and 

Cameron, 1987; Kelleher and Cameron, 1990; Metz and Mahood, 1991). The Inyo domes 

range from 70.0-75.8 wt% SiO2, and all other sites range from 73.8-78.2 wt% SiO2. Of the 

higher-silica rhyolites, Coso rhyolites have the widest range of silica values (73.8-77.5 wt% 

SiO2). The resurgent dome (74.1-75.7 wt% SiO2), Glass Mountain (76.7- 78.2 wt% SiO2), 

and the Mono domes (75.4-77.0 wt% SiO2) each have a more restricted silica range.  

The oxides Al2O3, MgO, Fe2O3, TiO2, and CaO generally decrease with increasing 

SiO2. Coso samples deviate from this trend, having lower Al2O3 content at a given SiO2 

value than those from the Long Valley region (Figure 5). K2O peaks at ~74 wt% SiO2, 

whereas Na2O and MnO are scattered.  

Normative minerals were calculated from these analyses using the CIPW norm 

algorithm. Each sample contains > 90 % normative orthoclase, albite, and quartz, which are 

plotted in the haplogranite system in Figure 6 (Tuttle and Bowen, 1958; Brugger et al., 

2003). Samples form a tight cluster except for one sample from Obsidian Dome, which is 

slightly poorer in quartz. 
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Figure 5. Geochemical data of samples from this study (circles) are consistent with 
previously published data (fields). Previous data are taken from Rinehart and Ross (1964), 
Bacon et al. (1981), Sampson and Cameron (1987), Kelleher and Cameron (1990), and Metz 
and Mahood (1991).  
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Qualitatively, obsidian can be categorized as crystal-poor (CP) or crystal-rich (CR). 

CP obsidian contains few to no crystals visible to the naked eye, whereas CR obsidian 

contains many crystals visible to the naked eye. Analyzed CP samples range from 0-1.12 

vol% phenocrysts (Table 5; Figures 7-8), and analyzed CR samples range from 2.4-9.4 vol% 

phenocrysts (Table 5; Appendix C). Quantitatively, the cutoff for CP versus CR is ~2 vol% 

phenocrysts. CR data in Figure 7 are taken from Kelleher (1986) and Higgins and Meilleur 

(2009), and CP data collected in this study are in agreement. Only major phases are taken 

into account in this study.  

Compositional data displayed in Figures 9 and 10  and described in this paragraph are 

quantitative data from a JEOL JXA-8530F field emission electron probe microanalyzer 

(Appendix D). CP samples contain plagioclase (An7-46) with some quartz and orthopyroxene 

(Table 5; Figures 7-10). Orthopyroxene in the Casa Diablo sample is restricted to 

hypersthene (En55-57). Plagioclase varies the most in Casa Diablo samples (An21-46). Glass 

Mountain and Mono Dome 8 contain oligoclase (An13-17) and a few anorthoclase, and Coso 

Dome 4 contains anorthoclase (An7-11, Or7-11). CR samples contain oligoclase (An10-27), 

sanidine (Or53-68), and quartz (Figures 7 and 10). In addition to the presence of sanidine, CR 

samples show a much more restricted range of plagioclase when compared to CP samples.  
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Table 5. Modal Analyses 

Site 
Vol% 

phenocrysts 
Crystal-rich (CR) or 

crystal-poor (CP) Phases present 
02CD11 0.4 CP 92 % plg, 8 % opx* 
01LM12 0 CP - 
04GM11 0.3 CP plg 

02AGM11 0.2 CP plg 
9-8-9 1.1 CP 59 % an, 41% qz 

05COSO12A 0 CP - 
01D812A 0.1 CP 54 % qz, 46 % plg 

01PAN12A 0 CP - 
01PB12 5.1 CR see Table 1 

02GC12A 2.4 CR see Table 1 
02OD11 9.4 CR see Table 1 

Table 5. Modal analyses of samples. Abbreviations: an=anorthoclase, opx=orthopyroxene, 
plg=plagioclase, and qz=quartz. See Appendix C for detailed modal analyses.  
*analyzed opx is hypersthene (En55-En57). 

 
Figure 6. Samples plotted in the haplogranite system modified by Brugger et al. (2003). 300-
100 MPa lines from Tuttle and Bowen (1958), and 1-atm line from Brugger et al. (2003). All 
samples plot fairly close on the feldspar side of the 1-atm cotectic except for a sample from 
Obsidian Dome which plots closer to the feldspar side.  
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Figure 7. Modal analyses for CP and CR samples. CR data are taken from Kelleher (1986) 
and Higgins and Meilleur (2009). No sanidine was found in CP samples, and quartz was only 
found in 2 samples (Coso Dome 4 and Mono Dome 8). Anorthoclase is considered 
plagioclase in this figure. See Figure 8 for CP data. 

 
Figure 8. Modal analyses for 8 CP samples analyzed. 3 CP samples contained no 
phenocrysts. Plagioclase is the dominant mineral with some quartz and hypersthene (En55-
En57) also present. Anorthoclase is considered plagioclase in this figure.  
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Figure 9. Feldspar compositions of CP samples. Plagioclase ranges from An7-46, with Casa 
Diablo having the greatest range. Glass Mountain and Mono Dome 8 plot in the oligoclase 
field (except a few anorthoclase in Mono Dome 8), and Coso Dome 4 plots in the 
anorthoclase field.   

 
Figure 10. Feldspar compositions of CR samples. Oligoclase (An10-27) and sanidine (Or53-
Or68) compositions of CR samples from Glass Creek, Obsidian Dome, and Punch Bowl. 



 

23 
 

4.2 Crystal morphology 

Phenocrysts in CP obsidian are consistently rounder than those in CR obsidian. In CP 

samples, hypersthene is elliptical to circular in shape, and plagioclase displays rounded 

corners (Figure 11). In contrast, plagioclase and alkali feldspar crystals in CR samples 

display planar crystal faces and sharp corners (Figure 12). Sieved plagioclase is present but 

not common in CP samples, but sieving is mostly absent in CR feldspars. Quartz crystals in 

both CP and CR samples display rounded textures, and embayments are common (Figure 

13). Crystals shown in Figures 11-13 are representative of analyzed samples, and an 

extensive gallery of backscattered electron images is given in Appendix E. All backscattered 

electron images shown in this study were collected on a JEOL JXA-8530F field emission 

electron probe microanalyzer. 

 
Figure 11. Backscattered electron images of CP phenocrysts, plagioclase and hypersthene. 
Plagioclase tends to be elongate and rounded at the corners, and hypersthene can be almost 
circular. These round shapes do not form during crystallization. 
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Figure 12. Backscattered electron images of CR feldspars, plagioclase and sanidine. Note the 
better-defined crystal shape, with sharper corners.  

 
Figure 13. Backscattered electron images of quartz phenocrysts from both CP and CR 
samples. Unlike feldspars and pyroxene, quartz tends to show rounding and embayments in 
both CP and CR samples. A-B are CP, and C-D are CR. 
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4.3 Thermal model 

 In general, models behave as physically expected, meaning that increasing ΔP 

increases velocity, flux, and temperature rise (due to increased shear rate) for a given set of 

models (e.g., Table 6; Figures 14-17a). Furthermore, a is directly related to velocity and flux, 

but it is both directly and inversely related to temperature rise depending on ΔP and η0 (Table 

6). All models experience heat loss to the host rock via conduction, heat production via shear 

heating, and advection of hotter magma from the base of the conduit. These pathways of heat 

are the main competing factors which control model behavior.  

4.3.1 Velocity 

Velocity profiles (Figure 14) were calculated at the top of the conduit at t=1 yr for 

each model. Maximum velocities at the conduit center range from 0.003-3.35 m s-1. Most 

velocity profiles evolve into plug-like shapes because of shear heating, which is most intense 

at the conduit edges due to higher shear rates. This increase in temperature reduces viscosity 

and allows for faster velocities.  

This effect is shown in Figure 15, which shows data from Figure 14 normalized to the 

Poiseuille solution for velocity given by 

  
0

22
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Shear heating produces edge velocities much higher than would be allowed with the 

Poiseuille solution. Profiles in Figure 15 stop at the last mesh point before the conduit wall. 

Table 6c lists the maximum normalized velocity from the profiles in Figure 15. 
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Figure 14. Velocity profiles within the conduit for all 26 models. Models in (i) are not 
flowing (i.e., u=0 m s-1). Profiles were calculated at t=1 yr at the top of the conduit. Most 
models develop into plug-like shapes with high gradients at the edge and small gradients at 
the center due to shear heating at the edges.  
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Figure 15. Normalized velocity profiles within the conduit. Velocity values from Figure 14 
are normalized to the Poiseuille solution (Equation 10) to show the effect of shear heating on 
the edges compared to the center. Shear strain is highest near the edge, so shear heating is 
more prominent. This increase in temperature decreases viscosity which allows for higher 
velocities than the Poiseuille solution.  

4.3.2 Flux 

Flux was calculated by integrating the velocity over the top of the conduit, yielding 

units of m2s-1 for this geometry (Figure 16). This calculation was made at 500 time 

increments in the model run time (1 yr). Figure 16 plots these discrete measurements versus 

the course of the 1 yr run time for the entire conduit area (not just the half-conduit).  
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Models can be categorized into 3 main types based on flux behavior through time: 1) 

models that reach a steady state of flux in <1 yr (e.g., all models with η0=105 and 106 Pa s), 

2) models whose flux is still increasing at t=1 yr (e.g., Figure 16g), and 3) models which shut 

down to a flux of 0 m2 s-1 (e.g., Figure 16i). Several Type 1 and 2 models reach a flux 

minimum before again increasing, owing to initial heat loss by conduction. Higher viscosity 

(e.g., η0=107 Pa s) models are more susceptible to conductive heat loss because it is harder to 

move magma with higher viscosities. This means that advected heat from below and viscous 

heating are either 1) not able to overcome conductive heat loss, causing the magma to lose 

heat and shut down (Type 3) or 2) able to overcome conductive heat loss after a period of 

time (e.g., Figure 16g models).   

4.3.3 Temperature 

Temperature profiles (Figure 17) were calculated at the top of the conduit at t=1 yr. 

They are plotted across the 2.5 m half-conduit and 0.5 m into the host rock (x-axis). Initial 

temperature profiles are shown for reference.  

Temperature changes range from ΔT =-592 K in which the dike is cooling to ΔT=313 

K in which shear heating is prominent (ΔT=Tmax-T0). The highest temperatures occur in the 

outer 0.5 m of the conduit and are typically accompanied by significant temperature increases 

in the first 0.5 m of host rock (Figure 17). Figure 18 shows ΔT plotted within the parameter 

space. For a=0.015 K-1, models with lower η0 values (104 and 103 Pa s) were run in order to 

ensure that the model was acting realistically and to estimate the optimal viscosity for 

maximum shear heating. Decreasing from η0=107 Pa s to η0=105 Pa s, ΔT increases at each 

ΔP for a=0.015 K-1 (Figure 18a), but ΔT should not continue to increase with decreasing η0 

indefinitely because shear heating depends on both shear rate and viscosity. Indeed, ΔT does 
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decrease from η0=104 Pa s to η0=103 Pa s for a=0.015 K-1. For a=0.015 K-1, maximum ΔT 

occurs at the parameter combinations of η0=105 and 104 Pa s with ΔP=30 MPa. The lower η0 

limits of the maximum ΔT zone were not found for a=0.02 and 0.025 K-1. 

 
Figure 16. Flux (y-axis, m2 s-1) through time (x-axis, yr) for all 26 models. Models in (i) go to 
0 m2 s-1 almost immediately. Flux was calculated by integrating the velocity over the conduit 
exit for 500 time steps in the 1 yr model run time. Models either reach a steady state 
immediately, decrease to a flux minimum before increasing, or decrease to 0 immediately.  
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Figure 17. Temperature profiles within the 2.5 m half-conduit and 0.5 m into the host rock. 
Initial temperature profiles are shown for reference. Temperature profiles are shown for t=1 
yr at the top of the conduit. Initial temperature profiles are shown for reference. 
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Figure 18. ΔT (K) contours plotted in the parameter space of η0 (y-axis), ΔP (x-axis), and a 
values. Each point is the ΔT (ΔT= Tmax-T0) for that model run. (a) Models with a= 0.015 K-1. 
Models with lower η0 values were run to ensure physical accuracy of model runs. At lower 
viscosities (104-103 Pa s), ΔT decreases as expected. (b) Models with a=0.02 K-1. (c) Models 
with a=0.025 K-1. Higher ΔT occurs at 106-104 Pa s and ΔP=30 MPa. Note that at η0=107 Pa 
s, ΔT gets lower with higher a.   
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Table 6. Thermal Model Summary 
Table 6a. ΔT (K) Table 6b. Qfinal (m2 s-1)  Table 6c. u/upois (max) 

η0=105 Pa s η0=105 Pa s η0=105 Pa s 
ΔP (MPa) 10 20 30 ΔP 10 20 30 ΔP 10 20 30 

a (K-1) 
  

  a 
  

  a 
   0.015 107 220 305 0.015 1.46 4.31 9.64 0.015 2.81 5.68 9.97 

0.02 106 206 284 0.02 1.65 5.58 15.00 0.02 3.55 8.25 17.15 
0.025 105 196   0.025 1.87 7.38   0.025 4.42 11.85 

 η0=106 Pa s η0=106 Pa s η0=106 Pa s 
ΔP (MPa) 10 20 30 ΔP 10 20 30 ΔP 10 20 30 

a (K-1) 
  

  a 
  

  a 
   0.015 38 145 258 0.015 0.13 0.39 0.91 0.015 1.83 4.26 8.75 

0.02 38 153 256 0.02 0.14 0.51 1.42 0.02 2.11 6.54 15.64 
0.025 40 158 253 0.025 0.16 0.68 2.35 0.025 2.46 9.87 28.19 

η0=107 Pa s η0=107 Pa s η0=107 Pa s 
ΔP (MPa) 10 20 30 ΔP 10 20 30 ΔP 10 20 30 

a (K-1) 
  

  a 
  

  a 
   0.015 5 41 107 0.015 0.01 0.03 0.07 0.015 0.93 1.73 3.95 

0.02 581 41 126 0.02 0 0.03 0.10 0.02 0 1.85 7.14 
0.025 592 578 463 0.025 0 0 0 0.025 0 0 0 

Table 6. Summary of Figures 14-18. (a) Lists ΔT= Tmax-T0 in which Tmax is the maximum 
temperature plotted in Figure 17. (b) Lists Qfinal, the flux value at t= 1 yr (Figure 16). (c) Lists 
the maximum u/upois value from Figure 15. 

4.3.4 Model behavior through time 

To understand model behavior through time, 2 models are examined: 1) a model that 

reached a steady flux (Type 1; Figure 19) and 2) a model whose flux was still increasing at 

t=1 yr (Type 2; Figure 20). A closer look at temperature and velocity behavior through time 

is important to give a clearer picture of the dynamics of model behavior. The Type 1 model 

examined is the ΔP=10 MPa, η0=105 Pa s, and a=0.015 K-1 run (Figure 16a; Figure 19). The 

Type 2 model examined is the ΔP=20 MPa, η0=107 Pa s, and a=0.015 K-1 run (Figure 16g; 

Figure 20).  

Temperature (Figure 19a) and velocity (Figure 19b) profiles of the Type 1 model 

develop towards the final state almost immediately. There is little initial cooling of the dike, 

even at this top part of the conduit. One interesting feature of this result is the time delay 
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between the velocity profile reaching its final state and the temperature profile reaching its 

final state. The velocity profile is fully developed after 36 days, but the temperature profile is 

still developing after 145 days (Figure 19). Thus, fully developed velocity (and by extension 

flux) values do not necessarily correspond in time to fully developed temperature profiles.  

In contrast, temperature (Figure 20a) and velocity (Figure 20b) profiles of a Type 2 

model decrease significantly before increasing to their final state. The top of the dike 

undergoes significant cooling during the first 36 days, and this temperature decrease is 

reflected in both the velocity (Figure 20b) and the flux (Figure 16g). At t=1 yr, the model 

evolved to a certain state, but the flux is still increasing, so Type 2 models require t>1 yr to 

reach a steady state.  

 
Figure 19. Temperature (a) and velocity (b) profiles for a Type 1 model which reaches a 
steady flux state (see Figure 16a). Parameters are η0 =105 Pa s, ΔP=10 MPa, and a=0.015    
K-1. Arrows show behavior through time. Note that even though the velocity reached its 
approximate final state after only 36 days, the temperature is still increasing in the host rock 
after 145 days.  
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Figure 20. Temperature (a) and velocity (b) profiles of a Type 2 model. Parameters are 
η0=107 Pa s, ΔP=20 MPa, and a=0.015 K-1. The initial cooling in (a) for at least 36 days is 
reflected in the velocity (b) and the flux (see Figure 16g). The dike overcomes this by 
advection of hotter material from below and shear heating of the conduit edges. Arrows show 
behavior through time. 

Temperature changes with depth in the conduit yield another perspective on the 

thermal evolution through time. Figures 21 and 22 show temperature-depth profiles through 

time for the same models as Figures 19 and 20, respectively, at horizontal distances of x=1 m 

and 2.4 m from the center of the conduit. Initial time profiles t=0.73, 1.46, 2.19, and 2.92 d 

are more jagged than later time steps in Figures 21b and 22b. This change from intense 

temperature swings in the first time steps to more stable temperature profiles shows the 

model numerically stabilizing. Temperatures in Figure 21a vary within 5° of T0, so the 

profiles are actually somewhat stable during the entire model run. The general shape of each 

profile is due to the set temperature at the bottom of the conduit (T0) and the combined 

effects of advection of hot material from below, shear heating, and cooling by conduction in 

the rest of the conduit.  

For the Type 1 model, the temperature does not change significantly at x=1 m, but 

does change significantly at x=2.4 m (Figure 19a). This is reflected in Figure 21a (x=1 m), in 

which temperature does not vary significantly with depth during the duration of the model (< 



 

35 
 

5 K). This is also reflected in Figure 21b, which shows the initial cooling at this horizontal 

distance. By t=35.8 d, the temperature profile has exceeded T0 due to shear heating.  

For the Type 2 model, the temperature changes significantly at both x=1 and x=2.4 m 

(Figure 20a) due to the increased viscosity. At x=1 m (Figure 22a), the dike temperature 

increases slightly at the initial time steps (< 15 K) and then cools significantly by t=35.8 d. 

The temperature then increases significantly by t=145.4 d before slightly decreasing to t=1 

yr. At x=2.4 m (Figure 22b), the dike undergoes a much more significant temperature 

decrease, to < 800 K before rebounding and reaching a final temperature higher than T0. This 

shows how a dike thermally recovers from initially intense cooling.  

 
Figure 21. Type 1 model with η0=105

 Pa s, ΔP=10 MPa, and a=0.015 K-1 (same as Figure 
19). Temperature (x-axis, K) is plotted with depth in the conduit (y-axis, m) for 1 m (a) and 
2.4 m (b) from the conduit center. The large temperature irregularities in the initial time steps 
(t=0.7, 1.5, 2.2, 2.9 d) disappear by t=35.8 d in (b). Profiles in (a) look irregular, but the dike 
experiences little temperature variation (~5 K), which makes sense based on Figure 19a. The 
general shape of each profile is due to the set temperature at the base (T0) and the combined 
effects of advection, shear heating, and conductive cooling in the rest of the dike.  
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Figure 22. Type 2 model with η0=107, ΔP=20MPa, and a=0.015 K-1 (same as Figure 20). 
Temperature (x-axis, K) is plotted with depth in the conduit (y-axis, m) for x=1 m (a) and 2.4 
m (b) from the conduit center. In contrast to Figure 21, the x=1 m profiles (a) show 
significant cooling by t=35.8 d. Severe cooling near the conduit edge at x=2.4 m (b) is 
overcome and eventually experiences temperatures >T0. The general shape of each profile is 
due to the set temperature at the base (T0) and the combined effects of advection, shear 
heating, and conductive cooling in the rest of the dike.  
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5. DISCUSSION 

5.1 Thermal modeling 

5.1.1 Shear heating 

Velocity, flux, and temperature variation in the current study behave much like the 

numerical models of Costa et al. (2007) and Mastin (2005): 1) shear heating increases the 

temperature near the conduit edges but has little effect on the center of the conduit, 2) 

velocity profiles develop into more of a plug-like flow due to temperature increases at the 

edges, and 3) flux was able to reach values higher than the Poiseuille solution allows. Model 

temperatures in Mastin (2005) increased by 100 K in 600 s, whereas those in Costa et al. 

(2007) increased 150 K in 5 yrs.  This study examined timescales intermediate to these 

studies and reached temperatures over 300 K higher than T0 in less than a year. Host rock 

temperatures just outside the conduit also increase significantly in the 1 yr run time (Figure 

17), indicating possible melting of wall rock. To what degree this actually melts the wall rock 

depends on kinetics and the duration of temperature increase. The same is true for crystal 

dissolution within the conduit.  

Over the period of 1 yr, maximum temperatures in most models reached a steady 

state, meaning that thermal runaway defined as unbounded temperature increase did not 

occur despite extremely high G” values (see Table 4). For the wide range of G” values 

examined, ΔT remains below ~300 K (Figure 23a). In Figure 23, models group according to 

ΔP and η0 in clusters of 3. Within each cluster, ΔT slightly decreases or increases with 
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increasing a. For models with G”<300, ΔT increases, whereas for G”>300, ΔT decreases 

with increasing a.  

The lack of expected thermal runaway in this study is due to the fact that velocity and 

flux do not increase indefinitely in numerical models. Theoretical studies of thermal runaway 

(Gruntfest, 1963; Nelson, 1981) calculated ever-increasing velocities and fluxes at constant  

 
Figure 23. ΔT (K) plotted against modified Gruntfest number, G”. Models group according 
to ΔP and η0. Within each cluster of 3, increasing a slightly decreases ΔT for G”>300. For 
G”<300, increasing a increases ΔT.   

pressures because conduction away from the conduit could not keep up with viscous heat 

production. Higher temperatures within the conduit mean lower viscosities, higher velocities, 

and higher fluxes. The numerical models in this study show that for chosen parameters, 

which are consistent with these theoretical studies in addition to experimental and empirical 

data, velocity and flux do not increase indefinitely. Instead, a steady-state velocity and flux 

were reached, producing no thermal runaway. 

5.1.2 Velocity and flux comparison 

To compare flux values given in Figure 14 to observed volcanic eruptions, a third dimension, 

the horizontal dike length, is required. Dikes have high aspect ratios (e.g., Thomson et al., 
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1995; Poland et al., 2004), and the dike inferred to connect the Inyo chain (Eichelberger et 

al., 1985) would need to be >1 km long (horizontally) to connect Obsidian Dome and Glass 

Creek. Using 3 representative fluxes from Figure 14 (m2 s-1), volumetric fluxes (m3 s-1) were 

calculated for horizontal lengths up to 1 km (Figure 24). A high (10 m2 s-1), medium (2 m2 s-

1), and low (0.1 m2 s-1) flux were chosen (Figure 14). The dike in the present study is 5 m 

wide, yielding an aspect ratio of 200 with a 1 km horizontal length. Even at this somewhat 

low aspect ratio, model fluxes are extremely large compared to estimated fluxes at Mount St. 

Helens and Santiaguito (Figure 24a). Dome growth at Mount St. Helens from 1980-1983 was 

~4 x 104 m3 d-1 (Swanson et al., 1987), whereas flux at Santiaguito ranged from ~2 x 104 to 2 

x 105 m3 d-1 since 1922 (Harris et al., 2003). For a 1 km horizontal dike length, chosen model 

fluxes range from 8.6 x 106 to 8.6 x 108 m3 d-1, at least one order of magnitude larger than 

observed fluxes (Figure 24). 

However, viscous magmas like those erupted from the Inyo chain or Mount St. 

Helens do not erupt along fissures that are kilometers in length. Instead, they erupt at 

centralized points owing to focusing of magma flow (MacDonald, 1943; Foshag and Reyna, 

1956; Vogel et al., 1989). The Inyo Drilling Program reported a conduit 34.2 m across below 

Obsidian Dome interpreted to be a localization of magma connecting the feeder dike to the 

surface (Eichelberger et al., 1985; Vogel et al., 1987). From this measurement alone, the 

exact geometry of the conduit cannot be known. However, because it is a localization of 

magma flow, it can be assumed that each horizontal dimension is much smaller than 

horizontal length of the feeder dike (>1 km). Taking the Obsidian Dome conduit 

measurement into consideration, flux measurements calculated with ≤50 m as the long 

horizontal dimension (still 5 m wide) are closer to observed fluxes (Figure 24b).  
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Figure 24. Flux (m3 d-1) as a function of horizontal dike length using high, medium, and low 
model fluxes (m2 s-1). Calculated fluxes are compared to observed fluxes at Mount St. Helens 
and Santiaguito (Swanson et al., 1987; Harris et al., 2003). Only at low horizontal dike 
lengths do these fluxes agree (b). Note that flux values for Mount St. Helens and Santiaguito 
are not functions of the horizontal dike length-they are estimates based on observations.  

Velocity reaches maximum values of 3.3 m s-1 for η0=105 Pa s models, 0.52 m s-1 for 

η0=106  models, and 0.023 m s-1 for η0=107 Pa s models. All except 5 models move at < 1 m 

s-1 (Figure 14). Most velocities fall between 10-2-10-1 m s-1 (Figure 14), which is comparable 

to mean ascent rates of granitic magmas estimated with fluid dynamics (10-2 m s-1; Petford et 

al, 1993). Other numerical models of magma ascent reported a wide range of values: 10-40 m 
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s-1 (Mastin, 2005) and 0.01-0.06 m s-1 (Costa et al., 2007). The large velocities in this study 

result from large overpressures (ΔP=30 MPa) and low viscosity (η0=105 Pa s).  

One reason for high velocities and fluxes in thermal models might be the lack of 

material building up at the top of the conduit as it would in an actual eruption. Lava 

accumulation at the conduit exit during volcanic eruptions increases the pressure at the top of 

the conduit, thereby decreasing ΔP given a constant inlet pressure (P0). This decrease in ΔP 

means decreased velocity and flux. In models in this study, inlet and outlet pressure do not 

change based on what happens at the top of the conduit. Taking a realistic buildup of the 

volcanic edifice into account in thermal models might yield more realistic velocity and flux 

values.  

5.2 Modal Mineralogy 

Several differences exist between modal analyses in this study (Table 5) and previous 

studies (Table 1). Samples 01LM12 and 05COSO12A contain no phenocrysts instead of the 

reported phenocrysts from Table 1. Of samples containing phenocrysts, differences include: 

1) Glass Mountain samples contain no quartz, sanidine, or biotite, 2) resurgent dome samples 

contain no quartz or biotite, and 3) Coso Dome 4 contains no sanidine or biotite. These 

differences are the product of the inherent difficulty of conducting modal analyses of 

obsidian.  

The primary difficulty is the lack of crystals in obsidian. Some studies used mineral 

separates to assess mineral assemblages (e.g., Manley and Bacon, 2000), whereas others used 

thin sections (e.g., Kelleher, 1986). This inherent difficulty led to a dearth of quantitative 

modal data of crystal-poor obsidian in the literature. The modal mineralogy of individual 
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domes or flows was either qualitatively described (Metz and Mahood, 1991) or not reported 

(Bailey et al., 1976). 

Despite these difficulties and discrepancies amongst data, the phenocryst data 

reported here, which show a lack of quartz and sanidine in CP obsidian (Table 5; Figures 7 

and 8), reflect a broader theme across eastern California obsidian: quartz and sanidine are 

sparse to absent. In the Coso rhyolites, quartz is absent in 23 of 39 domes, and sanidine is 

absent in 10 domes (Manley and Bacon, 2000). At Glass Mountain, sanidine is sparse in 

some and absent in one of the younger, crystal-poor rhyolites (Metz and Mahood, 1991). In 

the resurgent dome, sanidine is absent altogether (Bailey et al., 1976). This regional lack of 

quartz and sanidine in crystal-poor obsidian is unusual because more crystal-rich, high-silica 

rhyolites contain these phases (e.g., Lipman et al., 1978; Johnson and Lipman, 1988; 

Christiansen, 2001).  

Quartz and alkali feldspar comprise the equilibrium cotectic mineral assemblage for 

the haplogranite system (Figure 6). Assuming that an obsidian magma crystallized at this 

cotectic during its history, the absence of either quartz or sanidine indicates subsequent 

disequilibrium and resorption, or physical removal of the crystals. Rounded minerals are 

indicative of resorption processes (Donaldson, 1985; Streck, 2008), and CP obsidian contains 

dominantly rounded minerals compared to the few rounded minerals in CR obsidian. Causes 

of resorption include increased water content, higher temperatures, and changes in pressure 

(Tuttle and Bowen, 1958; Johannes and Holtz, 1996).  

Increasing water content lowers the solidus, making it easier to melt phases at a given 

temperature and pressure (Johannes and Holtz, 1996, their Figure 2.13). However, this study 

found no evidence that obsidian was water-rich based on LOI (0.23-0.85 wt% except 
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01PB12, 1.9 wt%; Appendix B). Decompression generally induces crystallization in magmas 

(e.g. Figure 2.13 in Johannes and Holtz, 1996), but during decompression-driven 

crystallization in the haplogranite system (Figure 6), quartz becomes unstable and can resorb 

as the cotectic shifts towards the quartz apex (Blundy and Cashman, 2001). This can explain 

the presence of alkali feldspar without quartz in obsidian (e.g. some Coso domes, Manley 

and Bacon, 2000), but it cannot explain the lack of alkali feldspar (sanidine) in many 

obsidian domes and flows.  

The thermal models in this study indicate that shear heating can produce large 

temperature increases in high-silica magmas. The ability of this temperature increase to 

resorb phenocrysts is discussed below. 

5.3 Crystal resorption by shear heating 

The amount of time a crystal experiences elevated temperature is important to 

understanding the possibility of crystal resorption. Models in this study have a wide range of 

velocity profiles that vary through time and along the x-axis, but the important velocities are 

in the outer 0.5 m of the conduit where the temperature increase is taking place (Figure 17). 

The term ‘edge velocity’ is used here to denote the range of velocities in the outer 0.5 m of 

the conduit. With specific velocities in this range of velocities, a residence time in the 

conduit can be calculated to get a first-order understanding of the time crystals could be 

subjected to increased temperatures. Residence times represent the minimum time it takes a 

crystal to move through the conduit edge because each model started with slower velocities.  

This study used a 1 km conduit, but residence times were also calculated for longer 

conduits because magmas travel from deeper levels (e.g., Manley and Bacon, 2000). Of the 

23 models with non-zero velocities, only 4 models have edge velocities >1 m s-1. For these 
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19 models with <1 m s-1 edge velocities, the residence time in a 1 km conduit ranges from 

~1000 s (16.7 minutes) to 5 x 106 s (~58 days). Residence time increases as the crystal gets 

closer to the edge of the conduit (decreasing velocity) and as the conduit length increases 

(Figure 25).  In Figure 25, the entire range of model edge velocities was used to calculate the 

residence time (y-axis). 

 
Figure 25. Residence time as a function of velocity (m s-1) for crystals travelling in 1, 5, and 
10 km conduits. For most models, edge velocities are <1 m s-1, yielding minimum residence 
times of 16.7 minutes.  

The temperatures experienced during conduit travel are important when considering 

crystal resorption. In Figure 26, residence time (x-axis) was calculated with specific 

velocities at x=2.3 m (from center) and t=1 yr in each model for a 1 km conduit. For 

simplicity, maximum temperatures at t=1 yr were used in Figure 26, meaning that part of the 

residence time was spent at lower temperatures. Figure 26 shows that as residence time 

increases, the maximum temperature reached decreases because of the relationship between 
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velocity, shear rate, and shear heating. Faster magma means more shear heating and shorter 

residence times. Crystal resorption is favored by high temperatures and longer residence 

time. 

 
Figure 26. Residence time calculated with velocities at x=2.3 m and t=1 yr for a 1 km conduit 
plotted with Tmax at t=1 yr. Different symbols represent different a values, and different 
colors represent each ΔP value. Polygons are drawn around models with equivalent η0.  

The pre-eruptive magmatic conditions of the Coso system range from 1013 K and 

270 MPa (~10 km) to 1043 K and 140 MPa (~5.5 km) over the previous 0.6 Ma (Manley and 

Bacon, 2000). During this pre-eruptive period, sanidine and plagioclase are interpreted as 

being in equilibrium with the liquid, similar to many other rhyolites (e.g., Metz and Mahood, 

1991). However, the notable lack of quartz and/or sanidine in eruptive deposits was not 

addressed by these authors. Somewhere between pre-eruptive storage and eruption, sanidine 

and/or quartz were lost.  
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Experimental studies of silicic systems combined with thermal modeling results 

presented in this study can shed some light on this discrepancy. Brugger et al., (2003) 

conducted experiments using compositions similar to obsidian (74-78 wt% SiO2) at 1 atm 

(and therefore essentially water-free) to investigate phase relations. These authors found the 

equilibrium mineral assemblage to be plagioclase, quartz, orthopyroxene, and oxides at 1263-

1523 K (990-1250° C) and 1 atm. This means that sanidine is unstable in high-silica magmas 

at near-surface pressures and high temperatures for these bulk compositions. Thus, if an 

ascending, silicic magma experiences thermal disequilibrium near the surface potentially 

caused by shear heating (Figures 17 and 26), sanidine could be resorbed. Whether or not an 

ascending magma experiences quartz resorption as discussed earlier (section 5.2), sanidine 

resorption, or some of both depends on the intensity of decompression versus shear heating 

during ascent. The equilibrium mineral assemblage given by Brugger et al. (2003) is from an 

experimental run, so rapid decompression of magma is not a factor and cannot cause quartz 

resorption.  

Even though temperature increases of 200-300 K (Figure 26) are significant, their 

short duration and limited extent within the conduit seem to make crystal resorption 

implausible as a significant process. To resorb all of the sanidine in an ascending magma, 

which is necessary to produce an entire dome lacking in sanidine, heat needs to be transferred 

to the center of the conduit as well. Models in this study show high temperatures only in the 

margins of the dike. Furthermore, resorption of crystals depends upon not only reaching high 

temperatures, but upon the kinetics of crystal dissolution once high temperatures are reached. 

In the absence of kinetic data on rates of crystal dissolution during heating of silicic magmas, 
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it is unclear whether or not minerals could melt in the high-temperature margins of the model 

dike.  

Natural systems, however, are much more complex. The ‘balloon-and-straw’ version 

of a magma chamber and dike leading to the surface is not realistic for the majority of 

volcanic or plutonic systems. Instead, a complex network of discrete dikes transfers magma 

to the surface (e.g., Donnelly-Nolan, 1988; Benz et al., 1996). Complexities in dike geometry 

can lead to separation of laminar flow (Taneda, 1979), which could be a possible mechanism 

for high-temperature flow lines to effectively transfer heat to other parts of the dike. Taking 

into account longer travel distances also increases chances for crystal resorption (Figure 25).  
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 6. CONCLUSIONS 

Modal analyses of crystal-poor obsidian reveal a lack of sanidine and quartz. Thermal 

disequilibrium caused by shear heating during ascent could explain the lack of sanidine and 

the rounded crystals present in crystal-poor obsidian. Thermal models do not experience 

thermal runaway but do increase >300 K from T0 at the conduit edge due to shear heating.  

Models with higher ΔP, lower a, and 104-105 Pa s viscosities produced larger temperature 

increases. Model fluxes approach observed eruption fluxes at low horizontal lengths (<50 m), 

and most model velocities are < 1 m s-1. Residence time in heated magma at the conduit edge 

is inversely related to the maximum temperature reached because higher temperature 

decreases viscosity and increases velocity in the conduit. Resorption is favored by high 

temperatures and longer residence times. Producing whole obsidian domes lacking in 

sanidine requires increased temperatures throughout the dike, not just the edges. Complex 

dike geometries in natural systems could help distribute high temperatures to magma 

throughout the dike, and longer travel distances would increase residence time in hotter 

magma. Though more complex dike geometries and longer dike lengths need to be examined 

in COMSOL, results indicate that shear heating can have a significant effect on the thermal 

budget of ascending silicic magma and could be the cause for the observed mineralogy of 

obsidian. 
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APPENDIX A. COMSOL BENCHMARKING 

Analytical solutions of Equations 6-7 were used to benchmark COMSOL 

Multiphysics. Heat flow (Equation 6) in COMSOL was tested against the 1-dimensional heat 

flow equation given by Spear (1993, Equation 3-10),  
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in which A is internal heat production (W m-3) and κ is thermal diffusivity (k Cp
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solution to Equation A1 for conduction only is (Spear, 1993, Equation 3-29), 
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in which Ts is the host rock temperature and erf is the error function. 

Figure A1 compares the analytical solution (A) with the COMSOL solution (B), and 

Table A1 compares the maximum dimensionless temperature (T’) values at each time step. 

COMSOL handles heat conduction with precision when compared to the analytical solution. 

 
Figure A1. Comparison of the analytical (a) and COMSOL (b) solutions to the 1-D heat 
equation for conduction only. COMSOL replicates the analytical solution almost exactly. See 
Equations A1-A2 for the analytical solution. 
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Table A1. Heat Benchmark  
Time (days) T’max (Equation A2) T’max (COMSOL) 

72 1 0.995 
289 0.84 0.84 
1157 0.52 0.52 
4630 0.28 0.28 

Table A1. Maximum dimensionless temperature, T’ (see Equation A2), for the analytical 
solution and the COMSOL solution at each time step.  

Analytical solutions of Equation 7 for velocity and flux are, respectively,  
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for flow through a planar dike, adapted from Equations 2.8 and 2.9 of Tritton (1988 ). Using 

a 100 m long, 5 m wide dike with a magma viscosity of 7.78 x 104 Pa s, flux and velocity 

were computed with Equations A3-A4 for different ΔP values. Table A2 compares these 

analytical solutions to those calculated by COMSOL. COMSOL slightly underestimates flux 

and velocity, but is accurate to within 0.9 m s-1 and 0.5 m2 s-1. 

Table A2. Fluid Flow Benchmark 
ΔP  (MPa) Predicted Q 

(m2 s-1) 
COMSOL Q  

(m2 s-1) 
Predicted velocity 

(m s-1) 
COMSOL 

velocity (m s-1) 
80 107.11 106.6 32.1332631 31.2 
30 40.17 40.04 12.0501285 11.87 
10 13.39 13.3 4.01670951 3.96 

Table A2. Comparison of predicted velocity and flux from Equations A3-A4 using a 100 m 
long, 5 m wide conduit with a constant viscosity of 7.78 x 104 Pa s.  

 



 

 
 

APPENDIX B. WHOLE ROCK DATA 

Sample Location  
UTM 
(E,N)*  SiO2    TiO2    Al2O3  Fe2O3

T 
 
MnO     MgO     CaO     Na2O    K2O     P2O5   Total 

LOI 
(wt%) 

01LM12           
Resurgent Dome/ 
Lookout Mountain 

328417, 
4177444 74.632 0.166 13.642 1.359 0.039 0.125 0.72 3.873 5.17 0.005 99.731 0.4 

01CD11           
Resurgent Dome/ 
Casa Diablo 

332863, 
4167655 75.034 0.189 13.649 1.384 0.035 0.196 0.874 3.817 5.237 0.028 100.443 0.54 

01ACD11          
Resurgent Dome/ 
Casa Diablo 

332863, 
4167655 74.131 0.222 13.69 1.392 0.038 0.197 0.852 3.673 5.168 0.003 99.366 0.62 

02CD11           
Resurgent Dome/ 
Casa Diablo 

333128, 
4168032 74.713 0.183 13.709 1.375 0.038 0.183 0.875 3.75 5.195 -0.015 100.006 0.24 

 
 
MAMM-1 

Resurgent Dome/ 
Casa Diablo 

 
74.692 0.195 13.907 1.405 0.038 0.197 0.874 3.784 5.176 -0.018 100.25 0.42 

04GM11           Glass Mountain 
349775, 
4181707 77.267 0.09 12.703 0.796 0.036 0.033 0.405 3.963 4.774 -0.014 100.053 0.5 

02AGM11       Glass Mountain 
349234, 
4181857 78.2 0.067 12.711 0.808 0.033 0.055 0.442 4.046 4.765 0.007 101.134 0.68 

02GM11           Glass Mountain 
349234, 
4181857 77.659 0.062 12.704 0.8 0.033 0.038 0.434 3.981 4.813 0.005 100.529 0.85 

03GM11           Glass Mountain 
349159, 
4181846 77.712 0.073 12.711 0.799 0.034 0.03 0.428 3.871 4.799 0.007 100.464 0.79 

01PAN12A         
Mono/ Panum 
Crater 

320145, 
4199723 76.378 0.084 12.88 1.17 0.049 0.03 0.507 4.043 4.723 -0.001 99.863 0.5 

01D812A          Mono/ Dome 8 
320718, 
4197969 75.516 0.084 12.727 1.168 0.049 0.053 0.513 4.009 4.705 -0.016 98.808 0.38 

01PB12           Mono/Punch Bowl 
322037, 
4187309 76.626 0.08 12.778 1.174 0.05 0.046 0.513 3.942 4.669 -0.015 99.863 1.93 

02OD11           
Inyo/ Obsidian 
Dome 

321684, 
4180037 75.207 0.189 13.75 1.369 0.035 0.172 0.859 3.795 5.216 0.027 100.619 0.59 

01OD11           
Inyo/Obsidian 
Dome 

321659, 
4180889 73.633 0.151 14.355 1.778 0.058 0.117 0.721 4.351 5.358 -0.002 100.52 0.6 
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APPENDIX B. WHOLE ROCK DATA (CONT.) 

Sample Location  
UTM 
(E,N)*  SiO2    TiO2    Al2O3  Fe2O3

T 
 
MnO     MgO     CaO     Na2O    K2O     P2O5   Total 

LOI 
(wt%) 

02GC12A          Inyo/Glass Creek 
321699, 
4179418 72.067 0.197 14.957 2.078 0.068 0.251 0.941 4.569 5.177 0.001 100.306 0.24 

9-8-9 Coso/Dome 4 
429200, 
3994000 76.666 0.076 12.754 1.01 0.036 0.035 0.387 4.333 4.475 -0.019 99.753 0.41 

05COSO12A        Coso/ Dome 16 
427038, 
3988840 76.593 0.078 12.691 1.121 0.034 0.008 0.39 4.346 4.577 -0.005 99.833 0.56 

Note: Oxide values are in wt%. All Fe is reported as Fe2O3. LOI is loss on ignition. *Positions reported in UTM Zone 11, NAD83. 
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APPENDIX C. MODAL ANALYSES 

Sample Location  
Obsidian 
(Y or N) 

CP or 
CR 

Area analyzed 
(cm2) 

Area % 
phenocrysts Phases present* 

01LM12           
Resurgent Dome/ 
Lookout Mountain Y CP 26 0 NA (± ap, oxides) 

02CD11           
Resurgent Dome/ 
Casa Diablo Y CP 24 0.4 

plg (92 %), opx (8%) ± bt, ap, pyr, zr, 
oxides  

04GM11           Glass Mountain Y CP 20 0.2 plg ± bt, ap, zr, pyr, oxides 
02AGM11          Glass Mountain Y CP 26 0.2 plg 
01PAN12A         Mono/ Panum Crater Y CP 26 0 NA (± ap, oxides) 
01D812A          Mono/ Dome 8 Y CP 26 0.1 qz (54 %), plg (46 %) 
01PB12 Mono/Punch Bowl N CR 24 5.1 See Table 1 
02OD11 Inyo/ Obsidian Dome Y CR 25 9.4 See Table 1 
02GC12A       Inyo/Glass Creek Y CR 24 2.4 See Table 1 
05COSO12A        Coso/ Dome 16 Y CP 29 0 NA 
9-8-9 Coso/Dome 4 Y CP 26 1.1 plg (59 %), qz (41 %) ± zr, ap, oxides 

*Percent of dominant minerals given in parentheses.  
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APPENDIX D. QUANTITATIVE MINERAL DATA 

This electronic appendix contains one Excel spreadsheet with quantitative mineral 

data used in this study collected on the JEOL JXA-8530F field emission electron probe 

microanalyzer at the Southeastern North Carolina Regional Microanalytical and Imaging 

Consortium at Fayetteville State University with the help of Nick Foster. In addition to 

mineral data used in this study, points collected on the volcanic glass in some samples are 

also tabulated. Each separate sheet within this spreadsheet contains data from one sample and 

type of mineral (e.g., 02CD11_feldspar or MAMM-1_pyroxene). Data collected on different 

dates are given within each sheet if data was collected on different dates. Standardization 

procedures were completed and tested each day of operation. Crystal names (i.e. ‘feldspar1’) 

within each sample are specific to the date under which they appear. In other words, 

‘feldspar1’ from 02/07/13 is not necessarily the same crystal as ‘feldspar1’ from 02/21/13. 

For feldspar analyses used in this study, complete cation totals range from 4.98-5.02, and 

K+Na+Ca cation totals range from 0.98-1.02. For pyroxene analyses used in this study, 

complete cation totals range from 3.98-4.02, and Fe+Mg+Ca totals range from 1.97-2.02. 
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APPENDIX E. CRYSTAL IMAGE GALLERY 

 
Figure D1. Backscattered electron images of plagioclase from CP obsidian. Scales are in 
micrometers. A-C are from 02AGM11, Glass Mountain; D-E are from MAMM-1 and F-H 
are from 02CD11, both from the resurgent dome. Images were collected on a JEOL JXA-
8530F field emission electron probe microanalyzer. 
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Figure D2. Backscattered electron images of plagioclase from CP obsidian. Scales are in 
micrometers. A-F are from 9-8-9, Coso Dome 4; G-H are from 01D812A, Mono Dome 8. 
Images were collected on a JEOL JXA-8530F field emission electron probe microanalyzer. 
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Figure D3. Backscattered electron images of hypersthene (A-D) and quartz (E-H) from CP 
obsidian. Scales are in micrometers. A-D are from either MAMM-1 or 02CD11, the 
resurgent dome; E-F are from 01D812A, Mono Dome 8; and G-H are from 9-8-9, Coso 
Dome 4. Images were collected on a JEOL JXA-8530F field emission electron probe 
microanalyzer. 
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Figure D4. Backscattered electron images of plagioclase and sanidine from CR obsidian. 
Scales are in micrometers. A is from 02OD11, Obsidian Dome (Inyo); B-E are from 
02GC12A, Glass Creek dome (Inyo); and F-H are from 01P B12, Punch Bowl (Mono). 
Images were collected on a JEOL JXA-8530F field emission electron probe microanalyzer. 
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