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ABSTRACT 

MATTHEW T. MARTIN: Using High Throughput Screening For Predictive Modeling of 
Reproductive Toxicity 

(Under the direction of Dr. David J. Dix) 
 

Traditional reproductive toxicity testing is inefficient, animal intensive and expensive 

with under a thousand chemicals ever tested among the tens of thousands of chemicals in our 

environment. Screening hundreds of chemicals through hundreds high-throughput biological 

assays generated a validated model predictive of rodent reproductive toxicity with potential 

application toward large-scale chemical testing prioritization and chemical testing decision-

making. Chemical classification for model development began with the uniform capturing of 

the available animal reproductive toxicity test information utilizing an originally developed 

relational database and reproductive toxicity ontology. Similarly, quantitative high-

throughput screening data were consistently processed, analyzed and stored in a relational 

database with gene and pathway mapping information. Chemicals with high quality in vivo 

and in vitro data comprised the training, test, external and forward validation chemical sets 

used to develop and assess the predictive model based on eight selected features generally 

targeting known modes of reproductive toxicity action. In three case studies, the forward 

validated predictive model reduced the overall costs of reproductive toxicity testing by 

roughly twenty percent. The model provides a starting point for the future of reproductive 

toxicity testing. 
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CHAPTER 1 

INTRODUCTION 

Reproductive Physiology 

 Successful reproduction involves a complex orchestration of behavioral, 

physiological, biochemical, and molecular events requiring optimal timing and are driven 

primarily by the integration of signals along the hypothalamic-pituitary-gonadal (HPG) axis 

in both males and females (Perreault, 2008) (Figure 1.1). Normal male physiological 

processes revolve, primarily, around the testis which controls male development, sexual 

behavior, and reproductive capability. Specifically, the hypothalamus releases neuro-

hormones including gonadotropin-releasing hormone (GnRH), stimulating the release of 

follicle stimulating hormone (FSH) and lutenizing hormone (LH) from the pituitary to 

regulate functions of seminiferous tubules (via Sertoli cells) and the interstitium (via the 

Leydig cell) in the testis, respectively (Johnson et al., 2010). Leydig cells in the testis are 

then responsible for the excretion of testosterone and secondary metabolites including 

estrogen, which provide regulatory feedback to the hypothalamus and pituitary, androgen- 

and estrogen-mediated effects on target organs, and  regulate sexual development and 

function (Swerdloff et al., 2009). Spermatogenesis is one such biological process triggered 

by well orchestrated HPG signals as indicated by the balance of LH and testosterone in the 

serum. The mass balanced nature of the HPG axis, including both positive and negative 

feedback mechanisms, creates a compensatory system able to withstand ever changing 

dynamics from internal and external signals. However, chronic stressors and susceptible 
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developmental and life-stages can cause deleterious changes in sex hormone levels leading to 

sexual decrements. 

 Much of the same neuroendocrine control along the HPG axis regulates female 

reproduction and, in fact, the namesake for such hormones as FSH and LH were based on 

their function in the female reproductive system. The role of neuroendocrine function in 

females extends beyond that in males of reproductive tissue development, gametogenesis, 

and sexual behavior to also include menstrual cyclicity, offspring birthing and future 

development, and even milk production for lactation (Hoyer, 2010). Much like the testis, the 

ovary functions both as a gonad, developing and delivering oocytes, and as an endocrine 

gland producing important hormones such as inhibin, estradiol, and progesterone which 

allow the development of female secondary sexual characteristics and support pregnancy 

(McGee and Hsueh, 2000). Ovarian follicular development is induced by FSH followed by a 

surge of LH leading to the development of a mature follicle and release of the oocyte, but 

FSH is truly only indispensable to the final maturation process by rescuing a minority of 

follicles from atresia, or ovarian apoptosis (Chabbert Buffet et al., 1998;  Richards et al., 

1995). The majority of early ovarian follicular development have been shown to be 

independent of the larger HPG signaling processes with intra-ovarian paracrine signaling 

playing a major role (Richards and Pangas, 2010). Neuroendocrine regulation and ovarian 

function provide the necessary physiological environment with well choreographed processes 

to enable pregnancy, but the reproductive tract is the physical site of menstruation, 

implantation, pregnancy development and maintenance, and eventual birth. Alterations to the 

neuroendocrine system or reproductive tract can have profound effects on reproductive 

performance. 
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Chemically-induced Reproductive Toxicity 

The HPG axis provides the key controls and functions to normal reproductive 

development and performance, although altering the HPG axis is not the only means to 

reproductive impairment and toxicity, including neuromuscular and systemic target organ 

toxicities.  However, much of the research in molecular mechanism of reproductive toxicity 

in focused on the key molecular and hormonal targets within the HPG axis. Using animal 

models, a limited number of chemicals have well elucidated mechanisms of action in terms 

of effects on reproductive development or performance.  For example, vinclozolin is a 

dicarboximide fungicide and recognized to exert antiandrogenic activity (Gray et al., 1994). 

The ability of vinclozolin to displace the androgen receptor’s natural ligands, i.e., 

testosterone and dihydrotestosterone, leads to reduction in testosterone biosynthesis and 

disrupts androgen dependent mechanisms. The reduction in testosterone and disruption of 

androgen mediated mechanisms leads to reductions in sperm production, demasculinization, 

and sexual development, including delayed anogenital distance and preputial separation 

(Gray, et al., 1994;  Kubota et al., 2003). As with many environmental chemicals, the 

reproductive toxicity profile includes additional endpoints related and unrelated to its 

antiandrogenic mode of action. Additionally, vinclozolin’s antiandrogenic activity is not 

solely exerted in its parent form but generates metabolites with increased antiandrogenic 

potencies (Kelce et al., 1994). Vinclozolin provides a good example of the broad phenotypic 

consequences of disrupting key hormone levels that interact with many nodes in the HPG 

axis. 

Prochloraz, a conazole fungicide, causes relatively specific effects on steroidogenesis 

and malformations in androgen-dependent tissues. In contrast to vinclozolin that causes 



 4 

testosterone reduction via androgen receptor antagonism, prochloraz inhibits the conversion 

of progesterone to testosterone through the inhibition of CYP17, a key protein in the 

steroidogenic pathway (Blystone et al., 2007). Inhibition of CYP17 causes significant 

reductions in testosterone and prochloraz specifically inhibits steroidogenesis at the protein, 

not genomic, level (Laier et al., 2006;  Vinggaard et al., 2002). The complexity and 

compensatory nature of the HPG axis make identifying the specific mechanism of action for 

particular chemicals difficult purely from a phenotypic perspective. The adverse outcomes of 

vinclozolin and prochloraz appear similar but in fact are driven primarily by two distinct 

mechanisms, androgen receptor antagonism and CYP17 inhibition, respectively. Androgen 

receptor antagonism appears to cause more direct effects on sexual development and 

differentiation with secondary effects on steroidogenesis, while inhibition of CYP17 and 

other steroidogenic pathway proteins cause primary effects on sperm production and 

secondary effects on sexual development via reduced testosterone. 

Environmental chemicals have also been shown to cause male and female 

reproductive toxicity through direct cytotoxic actions in the reproductive tract. For example, 

4-vinylcyclohexene and its diepoxide metabolite cause ovarian toxicity by damaging ovarian 

follicles. Additionally, 4-vinylcyclohexene causes ovarian cancer in long-term rodent studies 

and has demonstrated increased risk in humans (IARC, 1994).  The primary mode of action 

for 4-vinylcyclohexene ovotoxicity is the induction of follicular apoptosis (Hoyer et al., 

2001). 4-vinylcyclohexene is an example of a chemical acting primarily at a physiological 

level within the HPG axis. However, the relative sensitivity of 4-vinylcyclohexene can be 

mitigated through changes in metabolism, e.g., differences between rat and mouse, and 

through specific molecular oxidative stress sensors such as nuclear factor erythroid 2-related 
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factor 2 (Nrf2) (Hu et al., 2006). The wide range of modes and mechanisms of action leading 

to reproductive toxicity demonstrate the complexity of developing alternative toxicity tests 

that can efficiently evaluate a chemical complete reproductive toxicity potential. However, 

the diverse set of phenotypes that arise from the potentially finite numbers of mechanisms 

may make it possible to develop a battery of more efficient tests that adequately cover the 

known modes of action. As opposed to pure animal tests observing gross phenotypes, a 

battery of tests evaluating modes of action would better enable the evaluation of a chemical’s 

human reproductive toxicity potential. 

Human Reproductive Impairment 

One in ten to one in six couples seek medical help due to subfertility with 20-25% of 

the problem being due to the male partner, 30-40% due to the female partner, roughly 30% 

due to potentially both partners, and roughly 15% with no specific factor identified  (De 

Kretser and Baker, 1999). Infertility throughout most literature is described or defined as a 

couple who have never been able to become pregnant after at least one year of unprotected 

intercourse. Infertility statistics may be skewed based on the research demonstrating that 

about 25% of all pregnancies are lost prior to clinical recognition and were only detectable 

through urinary concentrations of human chorionic gonadotropin (hCG) (Wilcox et al., 1999;  

Wilcox et al., 1988). Therefore, the combination of male infertility, female infertility, and 

impaired fecundity (e.g., miscarriage or pregnancy loss) are all components in assessing 

overall human reproductive health decrements, but have diverse etiologies spanning genetic, 

disease, age, lifestyle, and environmental factors.  

 Estimating environmental/chemical-exposure contributions to human reproductive 

impairment and infertility has been shown to be difficult to assess due to many confounding 
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factors (Sharpe, 2000). For instance, male infertility, as compared to female infertility, may 

appear to be the more straightforward assessment because one can simply measure sperm 

count and quality as a major indicator of male infertility. Unfortunately, humans are naturally 

inefficient at spermatogenesis and have high inter- and intra-individual variability forcing 

studies to require high sample sizes and other study design considerations which make these 

studies less feasible and desirable (Sharpe, 2010). Nonetheless, lifestyle-related and 

environmental factors, such as smoking, obesity, traffic exhaust, dioxins, and combustion 

products, appear to negatively affect the perinatal and adult testes while there is suggestive, 

but generally unconfirmed, evidence that pesticide, food additive, persistent pollutant, and 

polychlorinated biphenyl exposure affect spermatogenesis in the general population (Sharpe, 

2010). Many confounders, including age, lifestyle, and disease background must be 

accounted for in studying female fertility and fecundity levels due to environmental 

exposures. Recently a study of 1240 women found that environmental exposures to 

perfluorinated compounds significantly increased the time to pregnancy (Fei et al., 2009). 

These findings demonstrate that environmental relevant exposure levels to common 

industrial chemicals are linked to adverse reproductive performance in the general 

population. However, the ability to identify chemicals that affect human reproduction 

remains limited because of inadequate methodology spanning analytical chemistry to 

epidemiological measurements, small sample sizes, inappropriate endpoints, and the many 

confounders previously discussed and in many cases positive study findings are controversial 

and often are refuted in follow-up studies (Sharara et al., 1998). Epidemiological studies may 

be the most direct link to human relevant findings, but have shown limited success and only 

provide relevant information based on already exposed populations. The risk assessment 



 7 

process attempts to characterize human risk of chemical exposure and the primary tool for 

doing such assessments are laboratory animal studies.  

Reproductive Toxicity Testing 

The chemical risk assessment process differs across regulatory bodies and chemical 

use classes. In the case of most environmental chemicals, multiple studies are used to assess 

the reproductive cycle in full (Figure 1.2). Prenatal developmental toxicity studies generally 

evaluate systemic toxicities to the pregnant female and fetal malformations and survival. 

Chronic and cancer long –term bioassays have the capacity to evaluate post-reproductive 

health, specifically male and female reproductive organ cancers. Specific and primary to the 

assessment of reproductive toxicity potential, the multigeneration reproductive toxicity study 

used by USEPA in the pesticide registration process assesses the performance and integrity 

of the male and female reproductive systems in the rat (USEPA, 1996) including assessment 

of gonadal function, the estrous cycle, mating behavior, conception, gestation, parturition, 

lactation, weaning, and on the growth and development of the offspring (Figure 1.3). The 

multigeneration study also provides information about the effects of the test substance on 

neonatal morbidity, mortality, target organs in the offspring, and data on prenatal and 

postnatal developmental toxicity. Two historical test guidelines have been used for the 

multigeneration studies. Multigeneration studies according to the 1982 Reproductive and 

Fertility Effects guideline (USEPA, 1982) have been conducted on over 700 chemicals and 

submitted to EPA. Multigeneration studies according to the newer 1998 guideline (USEPA, 

1998) have been conducted on over 90 chemicals and submitted. Information on data 

submissions to EPA was drawn from the Office of Pesticide Programs (OPP) Information 

Network- the OPPIN database (Bouve, 2002). The 1998 guideline was harmonized by EPA’s 
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Office of Pollution Prevention & Toxic Substances (OPPTS) to meet testing requirements of 

the EPA’s Office of Pollution Prevention and Toxics (OPPT) and OPP, as well as 

international guidelines published by the Organization for Economic Cooperation and 

Development (OECD). Both of the guidelines call for a two-generation study in which 

continuously treated male and female rats are mated to produce first generation offspring, 

and in turn the adult offspring are mated to produce a second generation (Figure 1.3.A).  In 

the United States, only food-use pesticide active ingredients are run routinely through a two-

generation reproductive toxicity study. 

Industrial chemicals, regulated under Toxics Substance Control Act (TSCA), rarely 

have a reproductive toxicity test performed and most studies found for industrial chemicals 

have been performed independent of TSCA (Aso et al., 2005;  Fujii et al., 2005;  Tyl et al., 

2008;  York et al., 2010). The European Union’s Registration, Evaluation, Authorisation and 

Restriction of Chemicals (REACH) regulation and potential TSCA reform may change the 

amount of reproductive toxicity tests routinely run on industrial chemicals, but the efficiency, 

practicality, and capacity to run thousands of industrial chemicals through such time-

consuming and expensive tests has been questioned (Hartung and Rovida, 2009). The pre-

clinical chemical safety assessment of pharmaceuticals with respect to reproductive toxicity 

have been historically divided into three segments with segment one and three addressing 

fertility and pre-/post-natal toxicity, respectively (Lumley, 1991). The International 

Conference on Harmonisation of Technical Requirements for Registration of 

Pharmaceuticals for Human Use (ICH) has evaluated the three-segment strategy and 

numerous proposals for revised testing protocols (Barrow, 2009;  Lumley, 1991). A similar 

effort to revise the two-generation reproductive protocol used for most environmental 
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chemicals has been under evaluation and attempts to reduce animal use by going to an 

extended one-generation protocol and using cohorts to evaluate developmental neurotoxicity 

and immunotoxicity potential (Piersma et al., 2010). The two-generation study data has been 

used to retrospectively evaluate the ability of a one-generation protocol to adequately assess 

a chemical’s reproductive toxicity potential by comparing classes of effects across the first 

and second generations (Figure 1.3B). Adapting and progressing reproductive toxicity testing 

study designs will reduce, to some extent, animal use and provide additional toxicological 

information. However, these new study designs do not and will not address the chemical 

testing bottleneck. The United States Environmental Protection Agency (EPA) has identified 

roughly 10,000 environmentally relevant chemicals that have been or may need to be 

assessed for their human exposure and toxicity potential (Judson et al., 2009). Past and 

current traditional reproductive toxicity testing has tested roughly 1,000 environmental 

chemicals in forty years. This testing strategy trajectory cannot be maintained, while 

claiming to be protective of human health and is being recognized around the world with 

regulatory changes such as the European Union’s Registration, Evaluation, Authorisation and 

Restriction of Chemicals (REACH) regulation and research initiatives such as the 

interagency program called Tox21 (Collins et al., 2008). The basic premise is to have all 

chemicals evaluated for toxicity potential, but the methods for arriving at this goal is less 

well defined in the regulatory context. Research initiatives, such as Tox21 and the EPA’s 

ToxCast program, have proposed large scale high-throughput screening assays to probe 

biological pathways to ascertain a chemical’s toxicity potential using computational 

modeling. 
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Predictive Toxicology using Computational and Alternative Methods 

 The medical and health community have been in search for indicators of human 

disease since the dawn of medicine. From demons and bad omens, to fevers and rash, to key 

measurement devices like the blood pressure cuff or x-ray machine, to the heart attack 

decision tree, these indicators of disease range from being associative, symptomatic, 

diagnostic, or prognostic. Just as twentieth century medicine was not focused on prevention, 

human disease indicators were not generally predictive. Two key scientific advancements 

have begun to change this. Advancements in molecular biology and computer science 

provide physicians, scientists, and researchers the tools to become preventative and 

predictive. Much like what the blood pressure cuff did for accurate measurement of blood 

pressure and thus the ability to causally associate high blood pressure with increased risk of 

heart disease and other adverse health outcomes, the mapping of the human genome has 

produced an entire generation of biological assays that allow for the accurate measurement of 

gene, protein, and cellular changes. These advancements have changed all health research 

fields, including drug discovery, epidemiology and toxicology. 

 Toxicology has the appearance of being reluctant to incorporating advances in 

molecular biology and computer science into its everyday practice and from a regulatory 

perspective this may be the case. On the other hand, toxicology does not have the luxury of 

testing adverse chemicals effects to humans in most cases and highly observational animal 

studies have been the primary measurement tool of toxicologists. Therefore, species 

extrapolation and mechanistic understanding have been primary themes in toxicology leading 

to the use of advanced molecular biology tools including genomics. Additionally, there has 

been an emphasis on reducing animal use in testing and increasing testing efficiency, which 
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has led to the use of advanced computational tools such as machine learning in structure 

activity relationship (SAR) modeling. The major difference between toxicology and other 

medical science disciplines is that toxicology has not taken advantage of the combined power 

of molecular biology and computer science. The focus from observational and descriptive 

toxicology has changed to an emphasis on mechanistic, predictive and high-throughput 

toxicology. Incorporating information and lessons from the last fifty years of toxicology into 

modern computing and biological tools include traditional toxicology studies being captured 

in databases, mechanistic studies, dose response modeling, and structure-based modeling. 

Toxicity Databases 

 Therefore, computational toxicology is an emerging field that combines in vitro and 

computationally-generated data on chemicals, information on biological targets (genes, 

proteins), pathways and processes, and informatics methods to model and understand the 

mechanistic basis of chemical toxicity (Judson, 2011). One of the key informatics methods 

applied is relational database and knowledgebase creation capable of storing, aggregating and 

analyzing large previously unsearchable data and information. The amount of reference 

toxicity information on environmental chemicals, including primary studies, study reviews 

and summarized reports, quickly diminishes beyond pesticide active ingredients, Integrated 

Risk Information System (IRIS) chemicals, NTP nominated chemicals and a few other 

sources (Judson et al., 2008;  Judson, et al., 2009). Efforts to digitize and structure the vast 

stores of open literature and unpublished industry-submitted studies have provided the 

information in a context amenable to using the data as anchoring endpoints for predictive 

toxicology applications. The currently available chemical-induced toxicity databases vary 

widely in breadth and depth of information (Bitsch et al., 2006;  Knudsen et al., 2009;  
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Martin et al., 2009a;  Martin et al., 2009b;  Richard et al., 2008;  Yang et al., 2006). IRIS is a 

good example of a database that has large content, covering greater than 500 chemicals and 

multiple toxicities, but lacks the standardization and detailed relational structure to provide 

accurate and efficient read-across (USEPA, 2011). ToxML, and related Food and Drug 

Administration (FDA) databases, ToxRefDB (U.S. EPA’s Toxicity Reference Database), and 

REPDOSE are examples of relational formats that currently house hundreds of chemicals and 

multiple study types in a standardized format using controlled vocabularies (Bitsch, et al., 

2006;  Martin, et al., 2009a;  Yang, et al., 2006). Web accessible toxicological data sources 

have been previously characterized (Felsot, 2002;  Gold et al., 1991;  Russom, 2002;  

Wolfgang and Johnson, 2002). These internet resources range from food and drug toxicity to 

environmental and ecological toxicity. Some of the internet sources provide fairly detailed 

summaries from cancer-related and genotoxicity studies. However, the information from 

these various sources is dispersed across the internet and in a wide variety of formats. 

Systems such as TOXNET, DSSTox, ACToR and PUBCHEM have made many of these 

resources available in a compiled format able to be searched based on chemical structure 

(Judson, et al., 2008;  USEPA, 2007). The utility of chemical toxicity databases range from 

regulatory retrospective analyses (Piersma, et al., 2010), toxicity data gap analyses (Judson, 

et al., 2009), species concordance (Gold, et al., 1991), and toxicity classification modeling 

(Judson et al., 2010a;  Zhu et al., 2009). Chemical toxicity information from structured, 

relational and searchable databases has provided a renewable resource for previously 

unachievable, unrepeatable, or non-updatable analyses, as well as setting the stage for 

measurable impacts that computational toxicology can make on chemical toxicity testing. 
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Chemical Structure-based Modeling in Toxicology 

 In addition to and in conjunction with chemical toxicity database efforts, 

computational approaches using structure-based classification and regression methods, 

including quantitative structure activity relationship (QSAR) models, have pushed the 

boundary on the amount of data and information required to assess a chemical’s toxicity 

potential. Can a chemical’s toxicity potential be predicted only using chemical structure? 

Historically the answer has be ‘no’; QSAR and other structure-based modeling approaches 

have had limited success in gaining regulatory acceptance or application due to three primary 

reasons; a lack of well annotated reference chemical toxicity information, the complexity and 

multi-modality of toxicity endpoints, and limited focus on modeling best practices especially 

with regard to model quality and applicability metrics. Recently, efforts to develop modeling 

best practices and workflow have enabled appropriate evaluation of QSAR models before 

and after publication. QSAR modeling efforts have too often focused on “introspective” 

indicators of model accuracy and quality (Tropsha and Golbraikh, 2007) and in most cases 

were explanatory in nature.  

QSAR publications often internal measures of model accuracy and quality, but until 

recently, the “modern QSAR” era, little effort or emphasis has been placed on rigorous 

model validation, including external validation, determination of the domain of applicability, 

and targeted chemical selection (Golbraikh et al., 2003;  Golbraikh and Tropsha, 2002;  

Tropsha and Golbraikh, 2007). There are many potential reasons for the increased attention 

to external validation, including larger chemical sets, expanded applications and journal 

publication standards, but nonetheless modern QSAR model validation should and has begun 

to focus on external validation. In general, current practices generally include a clear 
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definition of the training and test set, external validation set, measures of accuracy at all 

levels of model development, and a clearly defined domain of applicability. 

Structure-activity relationships (SAR) have been used for a number of regulatory 

actions and decisions in the past, including but not limited to: chemical groupings (e.g., High 

Production Volume chemical categories), bridging of toxicity data (e.g., antimicrobial re-

registration; iodine and iodine complexes were all registered together with a single reference 

dose using data on representative compounds), supporting in vivo outcome calls (e.g., cancer 

assessment, using results of chemicals in same class to bolster argument for cancer 

classification), and study design requirements (e.g., organophosphates required to perform 

AChE testing). These applications of SAR have been fairly limited to simplistic analogy 

models or based solely on structure similarity and are not generalizable or externally 

predictive of biological or toxicological activity. QSAR models, alone, may never be broadly 

used for predictive toxicology, but the experiences gained from years of research in 

developing classification models of toxicity, developing best modeling practices and 

identifying data gaps where predictive toxicology is most needed has and will continue to 

push forward computational toxicology. 

Experimental Predictive Toxicology 

Approaches for predicting toxicity using computational methods and alternative test 

data has advanced our understanding of the molecular basis of toxicity. Iconix’s Drug 

Matrix® stored experimental information from genomic studies including detailed pathology 

and developed genomic signatures or classifiers predictive of toxicity (Fielden et al., 2005;  

Fielden and Kolaja, 2008;  Ganter et al., 2005) and showed promise in predicting toxicities of 

environmental chemicals (Martin et al., 2007). Importantly, the use of reference toxicity 
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information was used in the development of the classifiers in all studies. Similar 

governmental efforts to create the data management tools for storing genomic and phenotypic 

information has created the computational environments for the analysis of large genomic 

datasets with corresponding toxicity or phenotypic data. NIEHS’s Chemical Effects in 

Biological Systems (CEBS) has been developed to store diverse biological information 

resulting from various toxicity and biological studies (Waters et al., 2003;  Waters et al., 

2008;  Xirasagar et al., 2006). Systems-based toxicology in the world of drug discovery and 

drug safety assessment has begun to take hold and used as a viable approach both early in the 

discovery process and later in assessing toxicological information (Mayne et al., 2006). 

Additional informatics approaches including pathway-based analysis linking in vitro assay 

results to drug label information and adverse effect data provided mechanistic insight into 

purported toxicities and side-effects of drugs (Fliri et al., 2005). Similar system-based and 

pathway-based approaches for toxicity prediction to limit the high attrition rate of 

pharmaceuticals in the pipeline have produced other tools and products (Apic et al., 2005). 

These analytical tools required extensive curation of the biological literature, expensive 

laboratory-based data generation, and resulted in large databases for storing the information. 

Systems-biology approaches, including in vivo genomic studies, can provide detailed 

biological mechanistic information, but often lack in throughput and animal efficiency. In 

contrast, QSAR has nearly unlimited throughput and requires no animals, but lacks the 

mechanistic underpinnings often required for regulatory acceptance. To begin to obtain the 

advantages of both worlds, computational toxicology has elicited the use of high-throughput 

in vitro biological assays, previously used heavily in lead drug discovery within the 

pharmaceutical industry (Bleicher et al., 2003;  Mayr and Bojanic, 2009). The toxicological 
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community has turned the paradigm upside down by attempting to broadly profile the 

biological activity of a chemical to then develop fingerprints of activity predictive of 

toxicities and to better understand a chemical’s mechanism of action (Dix et al., 2007;  

Kavlock et al., 2008). Combining in vitro biological assay data into the QSAR modeling 

framework has shown improvement in predicting in vivo toxicological outcomes (Zhu et al., 

2008) and serves as a good example of integrating data across many domains.  

In Vitro Assays in Toxicology 

In vitro biological assays have existed for many years and have been run routinely in 

the toxicological testing process, including the Ames mutagenicity assay (Ames, 1973;  

Ames et al., 1973a;  Ames et al., 1973b). In vitro assay systems have advanced primarily due 

to innovations and advancements in gene/protein sequencing, computer /robotic systems, and 

cell culturing capacity. These innovations have enabled the creation of two focus areas of in 

vitro systems, high throughput screening (HTS) and high content screening (HCS). HTS 

generally focuses on techniques that efficiently measure chemical interactions with proteins 

or cells using 96-, 384-, or 1536-well plates in single concentration screening or 

concentration response formats. HTS assays can be characterized on being cell-free or cell-

based, the cell type when applicable, the intended target or targets, and the readout.  HTS is 

often intended to provide a specific response output covering a specific gene, protein, 

pathway or cell while testing hundreds to thousands of chemicals. The National Institutes of 

Health (NIH) Chemical Genomics Center (NCGC) took HTS one step further by created a 

robotic and assay platform system capable of screening thousands of chemicals in 12-15 

concentration response format, coined Quantitative HTS (qHTS) and using further analysis 

automation to process the outputted data (Inglese et al., 2006;  Inglese et al., 2007). In 
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contrast, HCS focuses on the dynamics (e.g., measurements over time and space) of the 

biological system and are almost exclusively cell-based or model organism-based (e.g., 

zebrafish) systems primarily using imaging techniques (Bullen, 2008;  Giuliano et al., 2005;  

Giuliano et al., 2006). As computational power and robotics systems become cheaper and 

better, HTS and HCS will continue to merge with HTS investigating highly dynamic systems 

across time and producing highly multiplexed results and HCS increasing the throughput 

capacity and the molecular specificity of the target readouts. In addition to running assays in 

concentration response, the U.S. EPA’s ToxCast research program has focused on covering 

as much biology as possible with commercially available assays and those assays available 

through internal and external collaborations (Judson, et al., 2010a). The product of running 

hundreds of diverse assays across thousands of chemicals in full concentration response 

format is millions of data points that require management, analysis and synthesis. 

The field of toxicology has specialized in dose response modeling and has 

characterized dose response relationships across many toxicities and chemicals (Andersen et 

al., 2005;  Cox, 1987;  Leroux et al., 1996;  Setzer et al., 2001;  Swenberg et al., 2008), but 

the vast amount of data generated in HTS and the need for generalizable and extensible 

approaches across datasets remains a challenge for the toxicological community. Limited 

information is available on HTS dose response modeling best practices and appropriate dose 

response modeling techniques to be used for large HTS datasets (Parham et al., 2009). The 

U.S. EPA ToxCast program has released the fifty-percent activity concentrations (AC50), 

full concentration response, and summary calls for over 500 assays and provided both 

detailed and summary data analysis methodologies (Judson et al., 2010b). Generally, a four-

parameter hill model can be fit to the data producing a model that estimates the baseline 
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response (B), maximal or top response (T), the slope of the response (W), and the AC50. Pre-

processing, parameter constraining, confounding, statistical and biological considerations all 

play a role into the final set of conditions used to define active or inactive concentrations of a 

particular chemical-assay combination. Specific considerations include, but are not limited 

to; data normalization methods, positive and negative control performance and availability, 

baseline response adjustments, plate or well variations, response saturation (e.g., full versus 

partial agonist), active concentration extrapolation, outlier detection and removal, response 

directionality, non-monotonic response detection, cytotoxicity filtering and interpretation, 

fluorescence and other artifact detection, and statistical versus biological significance. Taking 

into account many of these considerations enables summary statistical outputs to be 

compared appropriately across assays and assay technologies and to be used in downstream 

modeling applications. 

HTS and HCS, in the toxicological modeling context, requires the integration of 

results across a broad biological activity profile as compared to specific targeted HTS assay 

results. There have been limited efforts toward the development of models predictive of 

toxicity solely using bioactivity profiling data, primarily due to the fact that public research 

programs such as ToxCast and Tox21 programs are still in early stages of data generation 

and subsequent model development. Additionally, the assay coverage for specific biological 

pathways linked to toxicities, where known, varies when using commercially available 

vendors, because many of the assays were developed in the pharmaceutical industry and, for 

instance, have greater coverage of cancer pathways due to drug discovery efforts in cancer 

therapeutics. One focus area in environmental toxicology that helped progress assay 

development has been in the area of endocrine disruption, due in large part to the regulatory 
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creation of the Endocrine Disrupter Screening Program (EDSP) within the U.S. EPA based 

on the 1996 Food Quality and Protection Act (FQPA) and the Safe Drinking Water Act 

(SDWA). EDSP mandates environmental chemicals be evaluated for endocrine disruption 

and therefore a testing battery was developed resulting in large scale assay development and 

validation efforts spanning in vitro and in vivo tests (Goldman et al., 2000;  Harding et al., 

2006). Assay coverage of biological pathways is ever increasing and may enable 

computational modeling in areas that have either been understudied, such as immunotoxicity, 

or have proven to be difficult from a modeling perspective, such as reproductive toxicity.  

 

Reproductive Toxicity Alternative Testing Methods 

Reproductive toxicity is a prime example of a toxicity that has had limited effort and 

success in predictive toxicity, due in part to the lack of reference data in which to model and 

the physiological complexity of general reproductive impairment. One resource for 

predictive models have come from structure based methods (i.e., Quantitative Structure 

Activity Relationship (QSAR) models) and the accuracy and predictivity of the resultant 

models has been limited. A comprehensive effort toward the prediction of reproductive and 

developmental toxicity was undertaken by the FDA (Matthews et al., 2007). The resultant 

QSAR models were developed for endpoints such as sperm effects, female reproductive 

toxicity and male reproductive toxicity and were generally highly specific models with an 

average specificity across all generated models being 88%. Based on the summary statistics 

extracted from the publications, the average balanced accuracy across all models was 58%, 

with the maximum balanced accuracy for any single model being 68% for trans-species 

female reproductive toxicity. It is difficult to assess the true accuracy and forward 
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predictivity of the models based solely on the summary statistics. Most likely, the limitation 

lies in the physiological complexity of reproductive toxicity and structural diversity of 

reproductive toxicants. Additional international efforts are underway with the goal of using 

alternative testing approaches in the detection of reproductive toxicants and on limited 

chemical sets have shown promise (Schenk et al., 2010). Previous international efforts such 

as ReproTect have shed light on the need for alternative test methods and predictive models 

for reproductive toxicity (Hareng et al., 2005), which focuses both on developmental and 

reproductive toxicity. The following table summarizes alternative test methods for assessing 

reproductive toxicity, specifically areas of fertility and fecundity, male and female 

reproductive tract, and reproductive development, as is studied in the two-generation 

reproductive test most often used for environmental chemical reproductive toxicity 

assessment (Table 1.1). Currently, no in vitro test or set of tests would be considered an 

adequate alterative to the two-generation reproductive study and, in most cases, would not 

drastically increase testing efficiency. The goal of the following research is to develop a 

predictive model of general reproductive toxicity using bioactivity profiling data from HTS 

assays for applications towards chemical testing prioritization and with the eventual capacity 

to be used in an integrated testing strategy for reproductive toxicity testing.  
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Figures 

Figure 1.1 Overview of the key controls and functions of the hypothalamic-pituitary-gonadal 

axis, including gonadotropin-releasing hormone (GnRH), follicle stimulating hormone 

(FSH), and lutenizing hormone (LH) controls of testosterone (T), progesterone and estradiol 

production leading to gametogenesis in the female ovary and male testis. 

 

 

Figure 1.2. Schematic of the reproductive cycle in comparison to guideline toxicity studies 

performed most often for environmental chemical regulation. The multigeneration 

reproductive toxicity test spans portion of fetal development through juvenile development 

and back to the mating male and female and the pregnant female.  In contrast, the prenatal 

developmental toxicity test focuses on the pregnant female and fetal development, 

particularly malformations. The chronic/cancer bioassay does identify systemic and 

carcinogenic reproductive organ effects. 
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Figure 1.3. (A) Schematic of the two-generation reproductive study design mapped to terms 

used in ToxRefDB, in particular the definition and separation of parental, offspring and 

reproductive effects. (B) To simplify downstream analyses, terms were often binned based on 

the high level categories and compared across generations. 
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CHAPTER 2 

PROFILING PHENOTYPIC ACTIVITY OF CHEMICALS FROM MULTIGENERATION 
REPRODUCTION STUDIES IN TOXREFDB1

 
 

Abstract 

 Multigeneration reproduction studies are used to characterize parental and offspring 

systemic toxicity, as well as reproductive toxicity of pesticides, industrial chemicals and 

pharmaceuticals. Results from 329 multigeneration studies on 316 chemicals have been 

digitized into standardized and structured toxicity data within the Toxicity Reference 

Database (ToxRefDB). An initial assessment of data quality and consistency was performed 

prior to profiling these environmental chemicals based on reproductive toxicity potential and 

generated toxicity endpoints for predictive modeling within the EPA’s ToxCast™ research 

program. Unsupervised hierarchical clustering of the lowest effect levels for 75 effects 

generated chemical-phenotype relationships and provided chemical clusters for predictive 

modeling. Comparative analysis across the 329 studies identified chemicals with sensitive 

reproductive effects, based on comparisons to chronic and subchronic toxicity studies, as 

well as cross-generational comparisons within the multigeneration study. The unsupervised 

clustering and comparative analyses identified 19 parental, offspring and reproductive effects 

with a high enough incidence to serve as targets for predictive modeling in ToxCast. These 

                                                
1 Previously published as Martin, M. T., Mendez, E., Corum, D. G., Judson, R. S., Kavlock, R. J., Rotroff, D. 
M. and Dix, D. J. (2009b). Profiling the Reproductive Toxicity of Chemicals from Multigeneration Studies in 
the Toxicity Reference Database. Toxicol Sci 110, 181-190, DOI 10.1093/toxsci/kfp080. 
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toxicity endpoints included specific reproductive performance indices, male and female 

reproductive organ pathologies, offspring viability, and parental systemic toxicities. 

Capturing this reproductive toxicity data in ToxRefDB supports ongoing retrospective 

analyses, test guideline revisions, and computational toxicology research. 

Introduction 

 The U.S. Environmental Protection Agency (EPA) and other regulatory agencies are 

investigating novel approaches for predicting chemical toxicity, with the goal of rapidly 

screening the thousands of environmental chemicals with limited toxicity data (Judson et al., 

2008). Building predictive models of chemical toxicity requires high quality in vivo toxicity 

data, in order to develop and validate new in vitro and in silico approaches. In support of 

EPA’s ToxCast™ predictive toxicology effort (Dix et al., 2007), we have created the 

Toxicity Reference Database (ToxRefDB) for capturing information from in vivo toxicity 

studies. ToxRefDB includes endpoints from multiple study types, including chronic rat and 

mouse carcinogenicity two-year bioassays that have been previously reported and made 

publicly available (Martin et al., 2009;  USEPA, 2009b). ToxRefDB is being used to build 

computational models linking whole animal toxicity, and specific tissue and cellular 

phenotypes, to specific chemical-biological interactions detected by cellular, genomic and 

biochemical in vitro assays. The in vivo toxicity data captured in ToxRefDB is facilitating a 

transition to the National Research Council’s vision for “Toxicity Testing in the 21st Century: 

A Vision and a Strategy” (Collins et al., 2008;  Gibson, 2010), by linking toxicity endpoints 

from animal studies to molecular targets and pathways relevant to humans. 

 The multigeneration study data entered into ToxRefDB provides anchoring in vivo 

reproductive toxicity data for the EPA ToxCast™ research program (USEPA, 2009a). Within 
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the ToxCast program, bioactivity profiles for hundreds of environmental chemicals are being 

derived from hundreds of in vitro assays (Dix, et al., 2007;  Houck and Kavlock, 2008). 

Phase I of ToxCast is focused on chemicals with known in vivo toxicity data, supporting the 

development of in vitro data signatures predictive of these in vivo outcomes(Judson et al., 

2010). It is worth noting that for environmental chemicals, unlike pharmaceuticals, 

quantitative in vivo toxicity data is essentially restricted to animal species. Nearly all of the 

ToxCast Phase I chemicals are food-use pesticide active ingredients that have undergone 

numerous mammalian toxicity tests, including guideline multigeneration studies. This highly 

standardized dataset provided in ToxRefDB facilitates profiling ToxCast Phase I chemical 

toxicity based on parental, offspring and reproductive effects.  

 Traditional toxicity testing for the risk assessment of environmental compounds or 

groups of compounds can cost millions of dollars and take years of effort. Since 1970, EPA 

has accumulated a vast store of high quality regulatory toxicity information on hundreds of 

compounds, most of which has been inaccessible to computational analyses. The curation 

and structuring of this chemical toxicity information into ToxRefDB has created a valuable 

resource for both retrospective and prospective toxicological studies (Martin, et al., 2009). In 

addition to the chronic/cancer rat and cancer mouse studies and multigeneration studies 

reported here, we are also extracting developmental toxicity studies in the rat and rabbit. The 

multigeneration reproductive toxicity dataset- studies used by EPA in the pesticide 

registration process to assess the performance and integrity of the male and female 

reproductive systems (USEPA, 1996) include assessment of gonadal function, the estrous 

cycle, mating behavior, conception, gestation, parturition, lactation, weaning, and on the 

growth and development of the offspring. The multigeneration study also provides 
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information about the effects of the test substance on neonatal morbidity, mortality, target 

organs in the offspring, and data on prenatal and postnatal developmental toxicity.  

 Two historical test guidelines have been used for the multigeneration studies in 

ToxRefDB. Multigeneration studies according to the 1982 Reproductive and Fertility Effects 

guideline (USEPA, 1982) on over 700 chemicals have been conducted and submitted to 

EPA. Multigeneration studies according to the newer 1998 guideline (USEPA, 1998) on over 

90 chemicals have been conducted and submitted, including 40 studies extracted into 

ToxRefDB. Information on data submissions to EPA was drawn from the Office of Pesticide 

Programs (OPP) Information Network- the OPPIN database. The 1998 guideline was 

harmonized by EPA’s Office of Pollution Prevention & Toxic Substances (OPPTS) to meet 

testing requirements of the EPA’s Office of Pollution Prevention and Toxics (OPPT) and 

OPP, as well as international guidelines published by the Organization for Economic 

Cooperation and Development (OECD). Both of the guidelines call for a two-generation 

study in which continuously treated male and female rats are mated to produce first 

generation offspring, and in turn the adult offspring are mated to produce a second 

generation. 

 Methods 

Data Characteristics  

 Reviews of registrant-submitted multigeneration reproductive toxicity studies, known 

as Data Evaluation Records (DER), were collected for roughly 300 chemicals from EPA’s 

Office of Pesticide Programs (OPP). File types of DER include TIFF, Microsoft Word, Word 

Perfect and PDF formats, some of which are not directly text-readable. Approximately 500 

multigeneration reproductive toxicity DER were reviewed, and based on data quality a subset 
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of 329 were selected for curation into ToxRefDB. The first portion of the DER outlines the 

test substance, purity, lot/batch numbers, MRID (Master Record Identification), study 

citation, OPPTS test guideline (USEPA, 1982;  USEPA, 1998) and reviewers of the study. 

The executive summary captures all of the basic study design information, including species 

and strain, doses, number of animals per treatment group and any deficiencies in study 

protocol. All dose levels were stored in ToxRefDB as ‘mg/kg/day’ and, where possible, 

recorded or calculated from food consumption data as an average over the entire dosing 

period. The executive summary also describes treatment-related effects observed at various 

dose levels in the study. The body of the DER provides detailed test material and animal 

information, and full dose response data in text and tables for all measured and observed 

endpoints. All treatment-related effects were captured for each study in ToxRefDB.  

 Multigeneration study DER contain all the information necessary to infer Lowest 

Effect Level (LEL) values for all treatment-related effects that were statistically or 

biologically significant. Typically the DER also designated ‘critical’ effects for each study, 

and Lowest Observed Adverse Effect Level (LOAEL) and No Observed Adverse Effect 

Level (NOAEL) for each study. If provided by the DER, ToxRefDB captured these study-

level NOAEL, LOAEL and critical effect data. However, it is important to note that the 

critical effects used to establish NOAEL, LOAEL and a reference dose (RfD) for a 

conventional chemical pesticide active, and to make regulatory risk assessment and 

management decisions, are based on a toxicological review of multiple studies across many 

study types.  

 Treatment-related effects were further identified as either a ‘Parental’, ‘Offspring’, or 

‘Reproductive’ effect. Consistent with DER, ‘Parental’ endpoints were defined as systemic 
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toxicity observed in the male or female adult parents, and exclude effects directly related to 

reproduction (e.g., reproductive organ toxicity). ‘Offspring’ endpoints were defined as 

systemic toxicity observed in the pre-weaning and juvenile animals, and exclude birthing 

indices up to post-natal day (PND) four (e.g., litter size and live birth index). ‘Reproductive’ 

endpoints were defined as observed effects on the reproductive performance or capacity of 

the animals and included all reproductive organ toxicities, effects on estrous cyclicity, sperm 

parameters, fertility, and mating, and pre-natal and early post-natal viability. 

 A small number of ToxCast Phase I chemicals were not pesticide active chemicals, 

such as some perfluorinated compounds and phthalates. Though DER and pesticide 

registration studies were not available for these chemicals, there was often high quality, 

standardized reproductive toxicity studies available from the National Toxicology Program, 

peer-reviewed literature, or other sources. When data from such studies were available, it was 

curated into ToxRefDB consistent with information taken from DER.  

Data Model and Quality Control 

 The relational data model for ToxRefDB was previously described (Martin, et al., 

2009) in a diagram showing the data model and field-level. A Data Entry Tool was 

developed for database population, including a controlled vocabulary for reproductive and 

other test data (available for download at http://actor.epa.gov/toxrefdb/). Additional data 

entry and quality control procedures for ToxRefDB have been previously described (Martin, 

et al., 2009). 

 Full descriptions of the available data and conclusions as to the potential for the 

pesticides to cause harm to humans or the environment, risk mitigation measures, and the 

regulation of pesticides can be found at U.S. EPA Office of Pesticide Programs website 



 43 

(http://www.epa.gov/pesticides). The study-level critical effects captured in ToxRefDB and 

taken from individual DER and studies cannot be correlated directly to regulatory 

determinations or RfDs without additional information and analysis. 

Data Output and Analysis 

 The structured toxicity information stored within ToxRefDB can be extracted in 

various formats utilizing SQL™ queries. For the purpose of providing computable outputs, 

i.e. quantitative outputs amenable to statistical analysis, a consistent data output was used. 

The cross-tabulated data output consisted of rows of chemical information (e.g., Chemical 

Abstracts Service Registry Number, chemical name), by columns of toxicity endpoints with 

the value entered being the lowest dose at which the endpoint was observed (i.e., LEL) in 

‘mg/kg/day’. Even though NOAEL/LOAEL values for each study’s ‘Parental’, ‘Offspring’, 

or ‘Reproductive’ effect can be queried from the database, the current analyses for ToxCast 

only utilized LEL. Log transformed potency values were derived using –log2 of LEL. A 

constant value of 12 was then added to zero-center the data allowing for zero to represent no 

observed effect. Therefore, a value of 1 would be equivalent to an effect at 2048 mg/kg/day 

and 18 would be equivalent to 0.015625 mg/kg/day. The log transformed values are 

predominantly used in the current analysis. However, millimolar concentrations 

(mmol/kg/day) were calculated for each endpoint using the molecular weight of tested 

chemical and the LEL in mg/kg/day. The resulting data formats are highly amenable to 

statistical data analysis, including descriptive and predictive data mining algorithms. These 

data tables are available on the ToxRefDB homepage: http://www.epa.gov/ncct/toxrefdb/. 

 Unsupervised two-way hierarchical clustering across all the chemicals, of all effects 

with incidence greater than five, was carried out based on log transformed potency values 



 44 

and using Pearson’s dissimilarity measure for both chemicals and effects. This analysis used 

Ward’s method for linkage and the agglomerative clustering method and was implemented in 

R version 2.6.1 (Gentleman and Hornik, 2002). Clusters of chemicals were identified based 

on a distance height cutoff of five. The proportion of positive effects in each respective 

cluster to the proportion of effects out of the respective cluster was used as a measure of the 

weight of an endpoint in deriving the cluster classes.  

Results 

Summary Characterization of Multigeneration Study Results 

 This analysis focused on reproduction-related endpoints culled from 329 

multigeneration rat studies on 316 unique chemicals entered into ToxRefDB (Table 2.1). The 

vast majority of studies (294 of 329) were performed using a two-generation protocol. There 

were seven one-generation studies, for which four were supplementary studies to longer-term 

two- or three-generation studies. Of the 28 three-generation studies, only first and second 

generation effects were used in subsequent analyses while third generation effects were 

excluded. In total, there were 11 chemicals with more than one study in this dataset. Four 

chemicals had an additional study run to satisfy study guideline requirements. Two chemicals 

had an additional study to test at additional dose levels. Five chemicals had two studies 

performed at similar dose levels and the conclusions between each pair of studies were 

similar.  

 Across all studies and treatment groups 12,230 treatment-related effects were 

observed, corresponding to 458 different, unique types of effects. Nearly twice as many total 

effects were observed in the F1 generation compared to the P1 or F2 generations. However, 

the F1 generation includes both juvenile (i.e., offspring) and adult effects, whereas P1 and F2 
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generations only represent adult or juvenile life-stages, respectively. In order to enable cross-

generation comparisons, the count of chemicals and treatment-related effects across life-

stage, endpoint category, and generation are presented in Table 2.2. Parental effects were 

associated with 275 of the 316 chemicals for both the P1 and F1 generation, whereas 

reproductive effects were associated with only 100 or 129 chemicals in the P1 and F1 

generations, respectively. Besides more chemicals, there were 73% more adult effects within 

the reproductive endpoint category in the F1 generation, than in the P1. A similar number of 

chemicals and offspring category effects were observed in the F1 and F2 generation. 

Hierarchical Clustering for Identification of Chemical-Phenotype Classes 

 Identification of chemical clusters with similar profiles of phenotypic activity was 

achieved by unsupervised two-way hierarchical clustering of 75 target-level effects (Figure 

2.1). These 75 effects were selected based on an occurrence with greater than five of the 316 

chemicals. These were defined as target-level effects because specific descriptive terms were 

aggregated to the target organ (i.e., liver) or measured index (e.g., lactation index), rather 

than all possible outcomes for each target (e.g., hypertrophy, hyperplasia, degeneration, etc.). 

Six chemical clusters were identified based on a distance height cutoff of five. Each cluster 

description in Figure 2.1 is derived from the mostly heavily weighted endpoints in forming 

the respective chemical cluster and does not mean that every chemical in the cluster causes 

the endpoint. Cluster 1 consists of the 14 chemicals with no observed toxicities across the 75 

effects in this analysis. Cluster 2 contains 115 chemicals for which general systemic 

toxicities are driving the formation of the cluster. Interestingly, this cluster is also heavily 

weighted with endpoints relating to sperm counts and morphology, endocrine-related organ 

pathologies and weight changes, and delays in sexual maturation. Of the 115 chemicals, all 
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five phthalate compounds in ToxRefDB are found in this cluster. Cluster 3 contains 63 

chemicals with limited toxicity for which parental and offspring body weight changes are 

driving the formation of the cluster. Cluster 4 formation is heavily weighted with 

cholinesterase inhibition effects and is comprised of 12 organophosphorus compounds. 

Clusters 5 and 6 contain 48 and 64 chemicals, respectively, and the formation of these 

clusters are heavily weighted with reproductive toxicity endpoints, including testicular and 

epididymal pathologies in cluster 5 and offspring viability in cluster 6.  

 The complete listing of chemical clusters and endpoint weights for each cluster is 

available for download from the ToxRefDB homepage (USEPA, 2009b). The unsupervised 

approach clearly segmented the chemicals into distinct classes based on their profile of 

phenotypic activity and these cluster assignments are available as endpoints for predictive 

modeling. This analysis also guides the manual endpoint selection process by highlighting 

groups of chemical-phenotype relationships. Many of these associative differences are 

expected, but others are not. For instance, reproductive performance, reproductive organ and 

offspring viability effects were segregated slightly from each other and to a greater extent 

from parental systemic effects and even delays in sexual maturation.  

Comparative Analysis with Chronic and Subchronic Systemic Toxicity 

 Parental, reproductive and offspring potencies (i.e., inverse log transformed LEL) 

from the multigeneration studies were compared to potency values for systemic toxicity from 

two-year chronic and 90-day subchronic studies in the rat (Figure 2.2). For this comparison, 

data were available in ToxRefDB for 254 chemicals tested in both multigeneration and 2-

year chronic studies, and 207 chemicals tested in both multigeneration and 90-day 

subchronic studies. The potency values compared rarely correspond to the same treatment-
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related effect across study type. For the majority of chemicals, potency values between the 

multigeneration, chronic and subchronic studies were comparable, with a general linear 

relationship falling within ten-fold of each other. However, for four chemicals (bisphenol A, 

deltamethrin, flucycloxuron, flufenpyr-ethyl) that caused parental or reproductive effects in 

the multigeneration study, there was no systemic toxicity observed in either the chronic or 

subchronic studies. For another five chemicals (cyprodinil, diethyltoluamide, difenoconazole, 

ethametsulfuron methyl, thiamethoxam) potencies for the most sensitive multigeneration 

endpoints were more than 10-fold greater than for the most sensitive effects in chronic 

studies. Of these five chemicals only thiamethoxam was more potent based solely on 

reproductive endpoints, i.e., testicular atrophy. Decreasing the threshold from 10-fold to a 

two-fold increase in potency resulted in 37, 7 and 20 chemicals more potent for parental, 

reproductive, or offspring endpoints, respectively. Of the seven chemicals identified as two-

fold more potent reproductive toxicants, no reproductive organ toxicity was observed in the 

rat chronic/cancer or subchronic studies for these chemicals- the multigeneration test 

detected reproductive toxicity that could have been missed in chronic or subchronic studies. 

Under the conditions of the 2-year chronic studies, the vast majority of chemicals observed 

effects at lower doses than in the multigeneration reproductive study. However, even in these 

cases, the multigeneration test often identified selective reproductive toxicants and endpoints 

not detected in the chronic study.  

Comparative Analysis of Parental, Reproductive and Offspring Endpoints 

 Chemicals with increased potency in the second generation were identified by 

comparing P1 and F1, or F1 and F2 LEL across parental, reproductive and offspring endpoint 

categories for 316 chemicals (Figure 2.3). Specific second generation effects (i.e., F1 
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parental or reproductive, F2 offspring) not observed in the first generation (i.e., P1 parental 

or reproductive, F1 offspring), or sensitive effects occurring at a lower LEL in the second 

generation are provided for all 316 chemicals on the ToxRefDB homepage (USEPA, 2009b). 

For parental effects, 15 chemicals had specific effects in the F1 versus P1, and another 48 

were more sensitive in the F1 versus P1 based upon at least a two-fold difference in LEL. For 

reproductive toxicity endpoints, 52 chemicals had specific effects in the F1 versus P1, and 

another 14 were more sensitive in the F1 versus P1 based upon at least a two-fold difference 

in LEL. For offspring toxicity endpoints, 14 chemicals had specific effects in the F2 versus 

F1, and another 28 were more sensitive in the F2 versus F1 based upon at least a two-fold 

difference in LEL. Across all the effect categories, this came to a total of 137 chemicals that 

displayed specificity or sensitivity for one of the endpoint categories (i.e., parental, 

reproductive, or offspring) in the second generation. However, the F1 reproductive or F2 

offspring LEL was the most sensitive LEL across all endpoint categories for only 16 of these 

137 chemicals. This analysis in ToxRefDB has identified a subset of chemicals for ToxCast 

predictive modeling that may be more specific or potent reproductive toxicants. It is 

important to note that these values are LEL for all treatment related effects, and are not 

necessarily critical effects being used for determination of NOAEL/LOAEL. 

Selected Multigeneration Study Endpoints for Predictive Modeling 

 Figure 2.4 presents the incidence and distribution by generation of effects on 

reproductive performance, reproductive organs, offspring viability, and parental systemic 

toxicities selected for ToxCast predictive modeling. Toxicity profiles from multigeneration 

studies on 316 chemicals were based on a diverse set of 19 selected effects or effect 

aggregations distributed in various combinations across the P1, F1 and F2 generations. A 
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detailed table listing all 19 of these endpoints for the 316 chemicals, including endpoint 

descriptions and various transformations of LEL values, is available for download from the 

ToxRefDB homepage (USEPA, 2009b). Treatment-related changes to reproductive 

performance including fertility, mating, gestational interval, implantations, litter size, and 

live birth index demonstrated effects at different stages of the reproductive cycle. Besides 

effects of many chemicals on offspring viability at PND4 and PND21 (viability and lactation 

indices, respectively), pubertal delays were also recorded for some chemicals. Pubertal 

delays were not part of the ToxCast modeling dataset because only a small subset of 

chemicals and studies assessed these endpoints. Effects on reproductive performance and 

offspring viability were observed in 110 (35%) and 108 (34%) of the 316 tested chemicals, 

respectively. Effects on reproductive organs, both organ weight and pathology, were 

observed in 98 (31%) of the chemicals with roughly 50% of those chemicals causing the 

effect only in the second generation (F1 adult). Of the 98 chemicals, 31 caused both male and 

female reproductive organ effects, 43 male only, and 24 female only. Systemic target organ 

weight and pathology endpoints were also selected, including the liver, kidney and spleen, 

along with the endocrine related adrenal, pituitary and thyroid glands.  

Discussion 

 The objective of the ToxCast research program is to develop a cost-effective rapid 

approach for screening and prioritizing a large number of chemicals for toxicological testing 

(Dix, et al., 2007). Using data from high throughput screening (HTS) bioassays developed in 

the pharmaceutical industry, ToxCast is building computational models to forecast the 

potential human toxicity of chemicals. These hazard predictions should provide EPA 

regulatory programs, including OPP, with science based information helpful in prioritizing 



 50 

chemicals for more detailed toxicological evaluations, and therefore lead to using fewer 

animal tests. ToxCast is currently in the proof-of concept phase, wherein over 300 chemicals 

have been assayed in over 600 different HTS bioassays, creating bioactivity profiles being 

used to derive signatures predicting the known toxicity for these chemicals. The Phase I 

chemicals are primarily conventional pesticide actives that have been extensively evaluated 

using traditional mammalian toxicity testing, and hence have known properties representative 

of a number of toxicity outcomes (e.g., carcinogenicity; and developmental, reproductive and 

neural toxicity). Thus a critical component of ToxCast is ToxRefDB, which is being 

populated with data from OPP for pesticide active chemicals and being extracted from the 

evaluations on these studies conducted by OPP scientists. Comparable toxicity data from 

other toxicity sources (e.g., National Toxicology Program) are also being captured in 

ToxRefDB. A broader and more diverse set of complementary data on thousands of 

chemicals is being captured in EPA’s Aggregated Computational Toxicology Resource 

(Judson et al., 2008).  

 The underlying data represented in ToxRefDB has been evaluated by EPA in prior 

pesticide registration decisions, and the presence of effects in high-dose animal studies do not 

translate directly into significant human risk stemming from registered uses of the pesticide. 

It should be noted that the EPA uses animal toxicology studies, like those entered into 

ToxRefDB, as well as other sources of information such as effects on wildlife populations, 

mechanisms of action, use patterns, environmental fate and persistence, food residue levels, 

and human exposure potential in its determinations to register pesticides, and to establish 

acceptable levels of pesticide residues for uses in the United States. While pesticide toxicity 
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data currently predominates in ToxRefDB, the database is being expanded to a broader range 

of chemicals, both by category and use. 

 The toxicity data in ToxRefDB and the HTS data generated in ToxCast will be made 

publicly available through EPA websites. The first component of ToxRefDB was recently 

published (Martin, et al., 2009), presenting toxicity profiles from two-year rodent bioassays 

on 310 chemicals. Multigeneration reproduction study data for 316 chemicals was entered 

into ToxRefDB in order to uniformly assess the reproductive toxicity potential of the 

chemical set and to profile chemical toxicity across generation, life-stage, and different 

classes of endpoints. The unsupervised two-way hierarchical clustering by chemical and 

effect identified chemical-phenotype relationships for which to characterize the chemical set. 

In the current analysis six chemical clusters were identified along with the relative endpoint 

weights for each cluster providing an indication of the composition of each cluster with 

respect to chemicals and effects. For predictive modeling, the phenotypic profile of these 

chemicals and resulting cluster sets could be used to match up with HTS bioactivity profiles 

in much the same manner. In the meantime, the resulting cluster sets guided the organization 

of the manual analysis and corroborated the distinction between parental, offspring and 

reproductive effects in subsequent analyses. 

All 12,230 effects in the multigeneration study dataset were placed into three major 

classes of effects; parental, reproductive and offspring. The LEL for each class or category of 

effects were used to identify sensitive or specific reproductive toxicants based on 

comparisons to chronic and subchronic study data and cross-generational comparisons within 

the multigeneration reproductive test. In general, chemical exposures under conditions of the 

multigeneration reproduction study were less sensitive than under the conditions of the two-
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year chronic study and comparable to the 90-day subchronic study. The analysis did, 

however, identify a subset of chemicals with sensitive or specific reproductive or offspring 

toxicities when compared to systemic effects under longer continuous exposure periods. 

Similar insight can be gleamed from comparing endpoints occurring at a lower dose or only 

in the second generation, i.e., second generation sensitive or specific effects, respectively. 

Effects that occur in the first generation and are not corroborated in the second generation 

can be questioned as to its toxicological relevance. Conversely, effects with consistent 

increases in second generation sensitivity or specificity might reflect the need for 

reproductive or developmental exposure to occur. Comparisons across these broad classes of 

endpoints honed in on specific effects for which to characterize the chemical set. The 

primary set of effects selected as anchoring endpoints for ToxCast predictive modeling were 

reproductive indices, offspring viability, and male and female reproductive organ effects, 

along with a set of parental systemic organ toxicities. 

 The ToxRefDB multigeneration study dataset has also played a key role in 

retrospective analyses by providing uniformly captured legacy reproductive toxicity data and 

by expanding the scope of questions that can be asked of the data. Multigeneration 

reproductive toxicity studies traditionally involve assessment through two generations and 

the value of the second generation is now being assessed for its regulatory impact. The 

analysis may also influence study design changes in subsequent guideline studies (Janer et 

al., 2007). The current study focused on providing endpoints for predictive modeling as part 

of the ToxCast research program (Dix, et al., 2007), but also began to address the importance 

of specific study design parameters, including differences across generation, life-stage and 

various classes of endpoints. Additional analysis will be performed on this dataset in 
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collaboration with OPP and other international chemical regulatory agencies to expound 

upon the role of these and other study design parameters with respect to chemical regulation 

and potential guideline study design changes. This includes the potential to assess the ability 

of the current and previous multigeneration study guidelines to identify reproductive effects 

related to endocrine disruption. Fifty-three of the 73 chemicals proposed for screening in the 

Endocrine Disruptor Screening Program (EDSP; 

http://www.epa.gov/endo/pubs/prioritysetting/draftlist.htm) have multigeneration studies 

entered into ToxRefDB and are part of the ToxCast Phase I chemical set. Where available, 

multigeneration study data for the remaining chemicals are now being entered into 

ToxRefDB. A focused analysis of the EDSP chemical set would be just one example of the 

utility of ToxRefDB and the toxicity data stored within it. The use of ToxRefDB to address 

many research and regulatory science questions regarding in vivo mammalian toxicity not 

only provides transparency, but also assists in guiding the next set of questions.  

 The diverse utility of ToxRefDB as a reference database for research applications 

such as ToxCast demonstrates the power of curating toxicity information into a relational 

database. In the current analysis on the multigeneration reproductive toxicity test, six 

chemical clusters were derived using unsupervised methods, and subsequently nineteen 

specific endpoints were identified for anchoring endpoints in predictive modeling. These 

endpoints are further defined by life-stage or generation, and characterize the 316 chemicals 

with respect to their reproductive toxicity potential. Capturing this reproductive toxicity data 

in ToxRefDB supports ongoing retrospective analyses, test guideline revisions, and 

computational toxicology research. 
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Tables 

Table 2.1. Summary statistics for 329 multigeneration reproduction studies on 316 chemicals 

within ToxRefDB 

    
Treatment 

Groups 

Treatment 
Groups 

w/ Effects Effectsa 
Unique 
Effectsb 

Total 7,869 3,239 12,230 458 

G
en

er
at

io
n P1 2069 902 3331 322 

F1 2,775 1306 6,329 400 

F2 2,717 945 2,396 144 

F3 308 86 174 31 
(a) – Total No. of effects observed in any treatment group 
(b) - No. of distinct effects observed in at least one treatment group 

 
 
Table 2.2. Distribution of chemicals and effects across life-stage, endpoint category and 

generation for 316 chemicals in ToxRefDB with a multigeneration reproductive study 

 
Life-Stage Adult Adult Juvenile 
Endpoint 
Category Parentalc Reproductived Offspringe 

G
en

er
at

io
n 

P1 275a 
(2935)b 

100 
(376)   

F1 275 
(3265) 

129 
(648) 

255 
(2274) 

F2     247 
(1979) 

a - No. of chemicals with at least one effect observed at specified life-stage, 
endpoint category and generation 
b - No. of effects observed at specified life-stage, endpoint category and 
generation 
c - Parental endpoints include adult body weight, mortality, clinical signs and 
target-organ weight and pathology effects 
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d - Reproductive endpoints include reproductive organ weight and pathology 
and reproductive indices (e.g., fertility, mating, live birth index, etc.) 
e - Offspring endpoints include pup weight, offspring survival (e.g., viability 
and lactation index), and juvenile target-organ weight and pathology, and 
pubertal delay (e.g., PPS and VO) effects 

  
Figures 

Figure 2.1. Unsupervised two-way hierarchical clustering of 75 treatment-related effects 

from multigeneration reproduction tests on 316 chemicals in ToxRefDB. Six chemical 

clusters were identified based on a distance height cutoff of five. Each cluster description is 

derived from the mostly heavily weighted endpoints (see Results and 

http://www.epa.gov/ncct/toxrefdb/ for details) forming the respective chemical cluster and 

does not mean that every chemical in the cluster causes the endpoint. 
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Figure 2.2. Parental, reproductive and offspring lowest effect levels (LEL; inverse log 

transformed) from multigeneration rat studies were compared to systemic LEL from 

chronic/cancer and subchronic rat studies for 254 and 207 chemicals, respectively. Points 

within gold lines indicate less than 2-fold difference between multigeneration and chronic 

studies. Points within orange lines indicate less than 10-fold difference between 

multigeneration and chronic studies. ‘NE’ stands for not established. 
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Figure 2.3. Comparing lowest effect levels (LEL) across generation and endpoint category. 

Points within dark orange lines indicate less than 2-fold difference between generations. 

Points within light orange lines indicate less than 10-fold difference between generations. 

‘NE’ stands for not established. 
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Figure 2.4. Incidence and distribution, by generation, of the 19 endpoints selected for 

predictive modeling, including reproductive, offspring and systemic toxicity endpoints from 

the rat multigeneration reproduction study (see Results and 

http://www.epa.gov/ncct/toxrefdb/ for details). The light gray bar indicates chemicals 

observing the endpoint only in the first generation, either P1 adult or F1 juvenile. The 

medium gray bar indicates chemicals observing the endpoint in both first and second 

generation treatment groups. The dark gray bar indicates chemicals observing the endpoint 

only in the second generation, either F1 adult or F2 juvenile. 
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CHAPTER 3 

IMPACT OF ENVIRONMENTAL CHEMICALS ON KEY TRANSCRIPTION 
REGULATORS AND CORRELATION TO TOXICITY ENDPOINTS WITHIN EPA’S 

TOXCASTTM PROGRAM2

 
 

Abstract 

Exposure to environmental chemicals adds to the burden of disease in humans and 

wildlife to a degree that is difficult to estimate and, thus, mitigate. The ability to assess the 

impact of existing chemicals for which little to no toxicity data are available, or to foresee 

such effects during early stages of chemical development and use, and before potential 

exposure occurs, is a pressing need. However, the capacity of the current toxicity evaluation 

approaches to meet this demand is limited by low throughput and high costs. In the context 

of EPA’s ToxCast™ project, we have evaluated a novel cellular biosensor system 

(Factorial™) that enables rapid, high-content assessment of a compound’s impact on gene 

regulatory networks. The Factorial biosensors combined libraries of cis- and trans-regulated 

transcription factor reporter constructs with a highly homogeneous method of detection 

enabling simultaneous evaluation of multiplexed transcription factor activities. Here we 

demonstrate application of the technology towards determining bioactivity profiles by 

quantitatively evaluating the effects of 309 environmental chemicals on twenty-five nuclear 

receptors and forty-eight transcription factor response elements. We demonstrate coherent 

                                                
2 Previously published as Martin, M. T., Dix, D. J., Judson, R. S., Kavlock, R. J., Reif, D. M., Richard, A. M., 
Rotroff, D. M., Romanov, S., Medvedev, A., Poltoratskaya, N., Gambarian, M., Moeser, M., Makarov, S. S. and 
Houck, K. A. (2010). Impact of environmental chemicals on key transcription regulators and correlation to 
toxicity end points within EPA's ToxCast program. Chem Res Toxicol 23, 578-90, 10.1021/tx900325g. 
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transcription factor activity across nuclear receptors and their response elements and that 

Nrf2 activity, a marker of oxidative stress, is highly correlated to the overall promiscuity of a 

chemical. Additionally, as part of the ToxCast program, we identify molecular targets that 

associate with in vivo endpoints and represent modes of action that can serve as potential 

toxicity pathway biomarkers, and inputs for predictive modeling of in vivo toxicity. 

Introduction 

Estimating the toxicity of environmental chemicals is impeded by the sheer number 

of potential contaminants, the high costs of animal testing, and the poor prognostic power of 

traditional toxicity testing for assessing risks to humans. Relatively few predictive in vitro 

assays have been routinely used for screening, outside of those for genetic toxicology or 

specific molecular targets such as the steroid hormone receptors and the sodium channel 

hERG (Houck and Kavlock, 2008;  Wilson et al., 2004). The paradigm of traditional 

toxicology has been challenged to shift towards using predictive or pathway-based 

toxicology approaches to more efficiently and systematically evaluate large numbers of 

chemicals for a diversity of toxicity endpoints (NRC, 2007). The U.S. Environmental 

Protection Agency (EPA) and National Institutes of Health (NIH) have responded to this 

challenge with major new computational toxicology testing and research initiatives. EPA’s 

ToxCastTM program (USEPA, 2009b), and the affiliated Tox21 program (Collins et al., 

2008), the latter a collaboration between three U.S. government entities – EPA, NIH’s 

National Toxicology Program, and the NIH Chemical Genomics Center (NCGC) – are 

generating broad spectra of high-throughput/high-content biochemical and cell-based in vitro 

assays for a relatively large number of environmental chemicals (Collins, et al., 2008;  Dix et 

al., 2007). These data are being used to derive biological and chemical profiles predictive of 
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in vivo biological endpoints and to serve as the basis for new toxicity screening and 

prioritization approaches.  

One source of high-content, cellular data was obtained using a recently developed 

biological profiling technology, Factorial™ (Romanov et al., 2008), that enabled high-

content, functional assessment of core components of cellular gene regulatory networks. 

Assessment was accomplished by measuring activity of transcription factors (TFs), i.e., the 

specialized classes of DNA-binding proteins that recognize regulatory elements in gene 

promoters and control transcription. Originally designed for multiplexed detection of specific 

cis-regulatory response element constructs (CIS), the technology has been further developed 

to provide assessment of trans-activating potential of multiple nuclear hormone receptors, a 

super-family of ligand-activated TFs (TRANS). The current technology was utilized in Phase 

I of EPA’s ToxCast program to screen 320 environmental substances, the large majority of 

which are pesticide actives. We report here the results of that screening using forty-eight CIS 

and twenty-five TRANS assays chosen to place particular emphasis on factors and receptors 

that control toxicologically relevant cellular responses to xenobiotics, genotoxic stress, 

hypoxia, oxidative damage, immuno-modulation and endocrine disruption. Furthermore, we 

use these biological profiling results to identify perturbed gene regulatory networks and 

possible modes of action for the ToxCast 320 environmental substances. By introducing the 

plurality of CIS and TRANS assays into a human liver cell line, the biosensors enabled 

characterization of chemicals in the context of the cell’s gene regulatory networks. We show 

that HepG2 cells responded to many chemical compounds through changes at the level of 

transcription factor and nuclear receptor activities. The changes elicited by the chemicals 
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reflect well-understood interactions in some instances, whereas in others they provide new 

insights into possible modes of action for chemical specific toxicities. 

Methods 

Chemical Library 

The ToxCast 320 chemical library consists of 309 unique chemical structures meeting 

physicochemical property requirements for high-throughput screening (8,9). Five substances 

were tested in duplicate (separately sourced) and three chemicals were tested in triplicate 

(sample replicates) for internal quality control purposes. Most of the compounds are pesticide 

active ingredients associated with extensive in vivo toxicity data generated in support of their 

registration process with the EPA. These data were extracted from documents, standardized, 

and compiled in the EPA ToxRefDB relational database (Knudsen et al., 2009;  Martin et al., 

2009a;  Martin et al., 2009b). The derivation of the mammalian in vivo toxicity endpoints 

was focused on chronic/cancer, multigenerational reproductive, and prenatal developmental 

toxicity studies. For any given study type, roughly 250 of the 309 unique chemicals tested in 

this study have toxicity endpoint data in ToxRefDB. The full list of chemicals is available 

with quality reviewed structure-annotation from the EPA DSSTox website (USEPA, 2008). 

Chemicals samples were procured and plated by BioFocus DPI (San Diego, CA). Supplier-

provided certificates of analysis indicated purity >97% for the large majority of chemicals 

(87%), and >90% purity for all but a few instances of technical grade or known mixtures. 

Follow-up analysis of an original solution plate by BioFocus DPI using LC and GC/MS 

(liquid and gas chromatography mass spectrometry), subsequent to assay screening, has 

confirmed mass identification, stability, and purity in excess of 90% for over 87% of the 

chemical library, with follow-up analysis underway for the remaining compounds. Summary 
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QC information mapped to chemical sample and solution IDs will be provided on the 

ToxCast website as an auxiliary chemical file (USEPA, 2009b). Compounds were dissolved 

in dimethyl sulfoxide (DMSO) to a final target concentration of 20 mM, in almost all cases. 

For testing in concentration-response format, serial dilutions were performed in DMSO 

followed by aqueous dilution in cell culture medium. 

Assay Design and Implementation 

Attagene Inc. (RTP, NC), under contract to the U.S. EPA (Contract Number EP-W-

07-049), provided multiplexed reporter transcription unit (RTU) assays (Factorial™) 

consisting of forty-eight human transcription factor DNA binding sites transfected into the 

HepG2 human liver hepatoma cell line as previously described (Romanov, et al., 2008). In 

addition to the cis-acting reporter genes (CIS), a modification of the approach was used to 

generate a trans-system (TRANS) with a mammalian one-hybrid assay consisting of an 

additional twenty-five RTU library reporting the activity of nuclear receptor (NR) super-

family members (Martin et al., 2010). A schematic representation of both systems is 

illustrated (Figure 3.1). The human ligand-binding domain of each nuclear receptor was 

expressed as a chimera with the yeast GAL4 DNA-binding domain that activated in trans a 

5X-UAS-TATA promoter, which regulated transcription of a reporter sequence unique to 

each NR RTU. To ensure specificity of detection, each individual trans-RTU system 

including both receptor and reporter gene was separately transfected into suspended cells 

followed by pooling and plating of the transfected cells prior to screening. A major 

difference between the CIS and TRANS system is that in CIS activities of endogenous TFs 

are measured, whereas the TRANS assay evaluates changes in activities of exogenous, 
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chimeric NR-Gal4 proteins. Since the HepG2 cell line does not express some nuclear 

receptors the CIS assay cannot be used to evaluate these targets. 

Concentration Selection 

An initial cytotoxicity screen was performed to establish the maximum tolerated 

concentration (MTC) of the chemical library. The chemicals were tested for cytotoxicity 

against HepG2 cells in the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) tetrazolium assay (Mosmann, 1983) following 24 hour chemical exposure to five 

concentrations with an upper concentration of 50µM and 10-fold dilutions. All 

concentrations were run in triplicate. IC50 were determined based on fifty percent cell death, 

as measured by decreasing MTT conversion to formazan. The MTC was derived based on 

the one-third the calculated IC50 or, if no IC50 was determined, the MTC was set to 100µM. 

Results of cytotoxicity assessment are shown below. 

Chemicals were then tested in the CIS and TRANS assays at seven concentrations 

starting at the MTC and followed by three-fold serial dilutions. Following exposure to 

chemical for a twenty-four hour period, cells were harvested and RNA was isolated and 

reverse transcribed into cDNA using fluorescent-tagged primers. Digestion with HpaI 

resulted in unique reporter gene fragments that were resolved and quantitated by capillary 

electrophoresis as previously described (Romanov, et al., 2008). 

Statistical Analysis 

Changes in transcription factor activity were expressed as fold-change over DMSO 

control by dividing expression levels of treated by the average of control (DMSO) treatments 

from the same assay plate. Both induction and suppression can occur. However, only 16 out 

of >20,000 possible chemical-assay combinations had marked suppression and were 
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observed at no more than two chemicals per assay. Therefore, suppression values were 

filtered out and only induction levels were considered in subsequent analyses. An initial 

maximum fold-change value (Emax) was used to compare across assays. Hierarchal 

clustering was performed using log 2-transformed Emax and subjected to clustering by 

Pearson’s Dissimilarity using Ward’s Method. Analyses were carried out using R version 

2.8.1 (Gentleman et al., 2002). Emax values were also used to determine an optimal global 

cutoff as one criterion in establishing a hit, based on the agreement between replicates and 

stabilization of the overall hit rate as the Emax filter increases (Figure 3.2). Specifically, 

overall and hit concordances were calculated as is done in the final replicate analysis shown 

below, except solely using an Emax filter to establish hit calls. For each pair in the triplicate 

sets (comparing A with B, B with C and A with C), we asked if the chemicals were both hits, 

both non-hits or if they disagreed. Total concordance was defined as all 3 were hits or all 3 

were non-hits, and non-concordance as either 1 or 2 were hits and the remainder were non-

hits. The total overall concordance is the number of comparisons where the pair was either 

hits or both non-hits, divided by the total number of comparisons. The hit concordance is the 

number of cases where each of the pair was a hit divided by all cases where one or each of 

the pair was a hit. 

The pairwise correlation of Emax values between any two assays was represented by 

R-squared. The distribution of correlations across all pairwise combinations of assays, a total 

of 2628, determined the ninety-fifth and ninety-ninth percentile; R-squared of 0.27 and 0.51, 

respectively. These values help determine the relative significance of the correlation between 

any two assays in this dataset.  



 68 

A Hill function was fit to all fold-change data and an AC50 was derived, the 

concentration in which 50% of the maximal response, based on the fitted curve, is achieved. 

All assay-chemical combinations that did not achieve a fit with an R-squared >0.5 and an 

Emax greater than two were considered negative. A hit is considered anything that achieved 

an AC50 and met the criteria described above. A univariate analysis was conducted in order 

to test for associations, by way of relative risk (RR) values, between in vitro assays and 

mammalian in vivo toxicity endpoints. The mammalian in vivo toxicity endpoints, from 

chronic/cancer rat and mouse, multigeneration rat, and prenatal developmental rat and rabbit 

toxicity studies, were previously compiled and aggregated for use in predictive toxicology 

(Knudsen, et al., 2009;  Martin, et al., 2009a;  Martin, et al., 2009b). Each chemical-endpoint 

combination assessed in a toxicity study and captured in ToxRefDB were represented as the 

lowest effect level (LEL: mg/kg/day) if the endpoint was observed, thus defining a positive 

for an in vivo endpoint. RR values were calculated as:  

  RR = [TP / (TP+FP)] / [FN / (TN+FN)] 

TP and FP represent the numbers of true and false positive chemicals, respectively, and TN 

and FN represent the numbers of true and false negative chemicals, respectively. A 

permutation test was developed in order to identify significant RR values and was carried out 

for 10,000 permutations. If the RR fell within the upper 95th percentile (p<0.05) of the 

permuted data, then the corresponding association was regarded as statistically significant. 

The permuted RR percentile values for all in vitro assays by in vivo endpoints were subjected 

to clustering by Pearson’s Dissimilarity using Ward’s Method.  

Results 

Cytotoxicity Assessment 
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Prior to running the CIS and TRANS assays, cytotoxicity was assessed in an attempt 

to establish a MTC for each chemical for purposes of concentration selection. Of the 320 

total tested chemicals, 246 (77%) were not frankly cytotoxic under conditions of the assay 

and therefore a MTC of 100µM was used for subsequent testing. Sixty-four chemicals (20%) 

showed cytotoxicity at micromolar concentrations, whereas another ten chemicals (3%) 

displayed cytotoxicity at sub-micromolar concentrations.  

Summary Statistics 

In total, there were 23,360 chemical-assay observations with 1,923 (8.2%) showing 

significant responses. Of these hits, 78% of the AC50 were greater than 10μM with 4% being 

under 1µM. The median number of chemical hits across all assays was six, with a 

comparable hit rate across both CIS and TRANS formats. The pregnane X receptor response 

element (PXRE) was the most active of the assays with 234 significant chemical interactions 

(225 unique chemicals), consistent with the promiscuous nature of the receptor which is 

known to be activated by a wide range of pharmaceuticals, steroids, xenobiotics and natural 

products (Ekins et al., 2002). A complete listing of the assays with the number of hits per 

assay along with the maximal responder across the ToxCast 320 chemical library, and the 

Emax of the positive control, where available, is presented in Table 3.1. In the TRANS 

system, individual members of the TF family can be distinguished, for example PPARα, 

PPARγ and PPARδ, whereas the CIS system evaluates the integral activity of the entire 

PPAR family through use of the direct repeat (DR)-1 PPAR response element (PPRE) which 

does not show receptor isotype specificity (Lemay and Hwang, 2006). In total, 10 NR 

families across 16 TRANS assays were represented with their corresponding response 

elements. 
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Replicate Analysis 

Of the 320 chemicals tested for transcription factor modulation there are three 

triplicates and five duplicates imbedded into the blinded chemical set. The triplicates were 

from the same production lot and vendor, whereas the duplicates were sourced independently 

and therefore excluded from the replicate analysis. Pairwise assessments of the triplicates 

were performed for the 657 chemical-assay combinations with 58 total hits (Figure 3.3). 

Including both positive and negative combinations, the overall concordance was >99%. Of 

the 58 hits, there was 87% concordance between the triplicates with twenty-seven pairs 

agreeing and four disagreeing. This is equivalent to nine assay-triplicate combinations in 

complete agreement and two assay-triplicate combinations having only a single hit. It should 

be noted that any disagreement in the triplicates would be accounted for twice because every 

comparison is performed pairwise. Therefore, 87% hit concordance was considered high and 

permitted the aggregation of replicates for specific downstream analyses making the total 

number of chemicals 309. For each triplicate the average AC50 was used when all or the 

majority were in agreement, otherwise the results were considered negative. The overall 

concordance among the duplicates was >96%, but a conservative approach was used due to 

the independent sourcing of the chemicals requiring both to be a hit and the average AC50 

was then used, otherwise the results were considered negative. The complete data set is being 

made publicly available (USEPA, 2009b). 

In vitro Relationships 

Using Emax values, unsupervised hierarchal clustering of the 48 CIS and 25 TRANS 

assays demonstrated consistency across the chemical library (Figure 3.4). This was 

evidenced by co-clustering of the independently tested CIS and TRANS assays 
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corresponding to the same transcription factor function, including pregnane X receptor 

(PXR) with the PXR response element (PXRE), estrogen receptor alpha (ERα) with the 

estrogen response element (ERE), and peroxisome proliferator-activated receptor alpha and 

gamma (PPARα/γ) with the PPAR response element (PPRE). Such a response strongly 

suggests that the assay system is capable of detecting and reporting chemical perturbation of 

the cell, which is reflected in specific gene regulatory network alterations. Additional 

coherence in the dataset can be observed by the chemical-induced clustering of highly related 

nuclear receptors across their respective subtypes, including the retinoic acid receptors 

(RARα, RARβ, RARγ) and liver X receptor (LXRα and LXRβ). The corresponding 

response elements in the CIS assays, DR5 for RAR and DR4 for LXR co-clustered with the 

TRANS assays as expected. However, of the 10 NR families tested in both CIS and TRANS 

formats, 5 showed little evidence of co-clustering primarily due to a lack of significant 

activity in one of the assay systems, including farnesoid X receptor (FXR), glucocorticoid 

receptor (GR), vitamin D receptor (VDR), constitutive androstane receptor (CAR), and RAR-

related orphan receptor (ROR). A lack of activity was not unexpected for certain targets with 

few known ligands, including FXR, VDR, and GR. Whereas, CAR and ROR are 

constituitively active permitting the evaluation of antagonists, but not agonists. All 5 NR 

families with robust activity were specifically and significantly correlated across assays. 

PXR/PXRE 

The xenobiotic sensor, PXR, which regulates a diverse set of xenobiotic response 

genes including phase I, II and III metabolic enzymes (Gillam, 2002), responded to a large 

number of the chemicals in the library in both the CIS and TRANS format (Figure 3.5). 

While the TRANS assay used an exogenously expressed GAL4-PXR for activation of the 
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reporter gene, the CIS system used a 628 base-pair fragment (-7836 to -7208) of a PXR-

regulated gene, CYP3A4, previously identified as containing a PXRE (Goodwin et al., 1999) 

together with endogenous PXR. These assays showed a strong correlation with an R-squared 

of 0.67. As stated in the Methods section, the 95th and 99th R-squared percentile was 0.27 and 

0.51, respectively, thus demonstrating the significant correlation between the independently 

tested PXR_TRANS and PXRE_CIS assays. However, less robust responses were observed 

in the TRANS version across chemicals when compared to the CIS assay. Responses 

averaged approximately eight-fold lower in the TRANS assays, Sensitivity was thus lower in 

the TRANS version, resulting in the derived AC50 values of the TRANS assay being a 

nearly complete subset of the hits in the CIS assay. In addition, ~90% of the AC50s for 

TRANS hits fell within three-fold of the PXRE_CIS AC50 (R-squared of 0.56). This is 

evident among the top five most efficacious and most potent PXR agonists within the 

chemical library (Figures 3.5b and 3.5c). The qualitative and quantitative similarities 

between the PXRE_CIS and PXR_TRANS concentration response curves provide redundant 

and corroborating evidence of PXR agonism. The positive control and known human PXR 

ligand, rifampicin, was only run in the CIS format and showed comparable efficacy and 

potency with a number of the tested chemicals representative of diverse set of chemical 

classes, demonstrating the promiscuous nature of PXR and the suitability of the assay for 

detecting such agonists.  

RAR/DR5 

The endogenous ligands for the retinoid acid receptors, retinoids, control key 

components of development, differentiation and homeostasis (Chambon, 1996). The TRANS 

version of reporter for the retinoid receptor assays demonstrated increased sensitivity in 
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comparison to its response element, DR5, as shown with RARα in Figure 3.6a. While the 

reason for this is not apparent, it may be due to insufficient endogenous RAR levels in the 

HepG2 cells. Similar differences in sensitivity across other nuclear receptor families from 

CIS and TRANS versions may also be due to insufficient endogenous receptor in HepG2 

cells, which is required in the CIS assays. In general, RARα, RARβ and RARγ all showed 

activation by similar chemicals and were positively and significantly correlated to their 

response element, DR5, with R-squared values of 0.58, 0.36, 0.27, respectively. Trans-

retinoic acid, an endogenous RAR ligand, is teratogenic when developing animals are 

exposed experimentally. Hence, it is important to understand both the potency and efficacy 

of the chemicals identified as RAR activators. The top five most efficacious and potent RAR 

agonists, based on average RARα and DR5 results, were substantially less responsive than 

retinoic acid with respect to both potency and maximum efficacy (Figures 3.6b and 3.6c). 

The retinoic acid used as a positive control, tested only in the DR5_CIS assay, generated an 

Emax of 7.5 and an AC50 of 0.047μM compared to the highest Emax of 3.2 and the lowest 

AC50 of 0.76μM across the chemical library. 

ER/ERE 

Direct activation of the estrogen receptor (ER) is one mechanism for xenobiotic 

endocrine disruption through alteration of the physiological function of endogenous steroid 

hormone receptors (Witorsch, 2002). The TRANS ERα assay provides a measurement of 

receptor activation as does the ER response element (ERE) although the latter is less direct. 

The correlation between CIS and TRANS assays is above the 99th percentile with an R-

squared of 0.53 (Figure 3.7). Among the most potent and/or efficacious chemicals, several 

are well known estrogen receptor agonists including bisphenol A, methoxychlor and its 



 74 

metabolite, HPTE (Gaido et al., 2000;  Gould et al., 1998;  Gray et al., 1989). HPTE was the 

most potent in the chemical library, but showed low efficacy most likely due to limitations on 

the highest concentration tested coming out of the cytotoxicity pre-screen. Other chemicals 

showing significant activity in either the TRANS or CIS format have not been reported to be 

ERα agonists. Additionally, the ER TRANS assay generated 90 hits, higher than would be 

expected, demonstrating sensitivity but potentially lacking specificity. However, where there 

is good agreement across all assay types for novel findings, e.g. fludioxonil and flumetralin, 

strong consideration should be given to additional testing in other assay formats to confirm 

the activity of these chemicals as ER ligands. It should be pointed out that many of these 

chemicals primarily behave as partial agonists relative to a strong endogenous ligand such as 

17-β-estradiol (ERE_CIS: AC50 of 0.035nM and Emax of 9.3; ERα_TRANS: AC50 of 

0.87nM and Emax of 23) and this may impact their biological effects both quantitatively and 

qualitatively. 

PPAR/PPRE 

The PPRE binds the PPAR subfamily (α, β/δ, γ) to regulate genes associated with 

lipid metabolism (PPARα), fatty acid oxidation (PPARβ/δ) and adipocyte differentiation 

(PPARγ). In Figure 3.4, PPRE_CIS clusters with PPARα_TRANS and PPARγ_TRANS 

assays but not with PPARβ/δ_TRANS. The lack of significant activators of 

PPAR β/δ explains why it failed to cluster with the PPRE. In Figure 3.8a, the correlation of 

the PPRE and PPARγ is shown (R-squared = 0.53) with a subset of the chemicals (n=7) also 

displaying PPARα activity. These apparent PPARα/γ co-agonists and their involvement in 

rodent liver tumor formation is further investigated below. Rosiglitazone, a selective ligand 

of PPARγ used as the positive control, had roughly 30% greater efficacy and was five-fold 
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more potent than the rest of the chemicals, with the single exception of fentin in the 

PPRE_CIS assay (Figures8b and 8c). However, fentin demonstrated substantially depressed 

induction in PPARγ_TRANS and no activity in PPARα_TRANS. The PPRE_CIS response 

may be indicative of activation of the PPAR/RXR heterodimer signal-transduction pathway 

through RXR agonist activity (le Maire et al., 2009). This is supported by fentin’s strong 

RXR responses in the RXRβ_TRANS assay with an AC50 of 83nM. This behavior, termed 

permissive heterodimeric activity (Aranda and Pascual, 2001;  Bettoun et al., 2003), has been 

reported for other receptor pairs in the mammalian one-hybrid assay (Bettoun, et al., 2003). 

Rosiglitazone showed moderate induction of the PPARα_TRANS assay with an Emax of 3.6 

and an AC50 of 6µM reflecting partial agonist behavior at much higher concentrations than 

for PPARγ, consistent with previously reported results (Reifel-Miller et al., 2005). Similar to 

the situation with ERα, the biological significance of the relatively lower efficacy and 

potency of these chemicals compared to the positive control may impact high-dose animal 

toxicity as well as create additional uncertainty for implications for human disease. 

NRF2/ARE 

The nuclear-factor-E2-related factor (NRF)-2, a member of the bZIP transcription 

factor family, regulates cytoprotective enzymes in response to oxidants and electrophilic 

compounds through binding to the antioxidant response element (ARE) (Nguyen et al., 

2009). Regulated genes include γ-glutamylcysteine synthetase, NADPH:quinone reductase, 

and glutathione-S-transferase (Lee and Johnson, 2004). Many of the chemicals evaluated 

here produced significant induction of the NRF2/ARE reporter gene (Figure 3.9). Among the 

top ten activators are many pesticides known to cause oxidative damage in a variety of 

species. These include metolachlor (Stajner D., 2001), diquat dibromide (Wolfgang et al., 
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1991), trichlorfon (Karademir et al., 2007), oxyfluorfen (Peixoto et al., 2006), alachlor 

(Burman et al., 2003), and dichlorvos (Yarsan and Cakir, 2006). Other significant activators 

of NRF2 were compounds capable of reaction with sulfhydryl groups, e.g. methyl isocyanate 

(Emax = 3.5), a breakdown product of metam sodium (Emax = 6.0), dazomet (Emax = 3.6) 

and metiram-zinc (Emax = 3.2). As this is an adaptive response, the toxicological relevance 

may be very dependent on specific in vivo exposure scenarios. However, using the 

NRF2_ARE_CIS assay results as an indicator of oxidative or electrophilic damage, we 

observed a relationship between NRF2 response and the non-specific and promiscuous 

behavior of various chemicals and assays. In comparing the NRF2 activity and the average 

activity across all other assays, a significant relationship emerged (R-squared = 0.5) (Figure 

3.9). It should be noted that these values were log2-transformed in order to mitigate the 

impacts of averaging across assays with significant differences in dynamic range. This 

relationship cannot be attributed to assay conditions, because the positive control chemicals 

demonstrated very specific activity for their respective target with no evidence of NRF2 

activity at comparable concentrations.  

The phenomena of oxidative stress leading to promiscuous transcription factor 

activity may help explain the large number of active compounds in assays with fairly specific 

ligand binding domains, including ERα and PPARγ. For example, bisphenol A, a known ERα 

agonist, achieved an AC50 in 13 of the 73 assays, but only the AC50s for ERα_TRANS and 

ERE_CIS were significantly (>3-fold) more potent than the NRF2_ARE_CIS. Specifically, 

bisphenol A had AC50s of 1.1 and 0.64 μM in the ERα_TRANS and ERE_CIS assays, 

respectively, compared to an AC50 of 27 μM in the NRF2_ARE_CIS assay. An additional 

26 chemicals hit the two ER assays and the Nrf2 assay, but their ERα_TRANS or ERE_CIS 
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AC50s were all comparable to their respective NRF2_ARE_CIS AC50. In general, these 26 

chemicals showed promiscuous activity across both CIS and TRANS systems, averaging 

double the number of hits compared to the rest of the chemical library (11 versus 5.5). Thus, 

oxidative/electrophilic stress appears to elevate transcription factor activity non-selectively, 

and comparing potencies to NRF2 activity is therefore useful for putting compound activity 

into perspective and aiding interpretation of results. 

In vitro to In vivo Associations 

In comparing the 73 in vitro assay data to 77 in vivo endpoints from rodent chronic 

bioassays, rat multi-generational reproductive toxicity studies and rat and rabbit prenatal 

developmental toxicity studies, 133 significant univariate associations were established based 

on the methods described above. Various non-steroidal nuclear receptors involved in 

xenobiotic metabolism and/or lipid metabolism are specifically associated with target-organ 

pathologies and tumorigenesis, whereas steroidal and other nuclear receptors are specifically 

associated with endocrine-related organ pathologies, offspring survival and the developing 

system (Figure 3.10). Examples of these associations are detailed below.  

PPAR & Rat Liver Tumors 

Of the 309 chemicals, 256 have two-year rat cancer bioassay recorded in ToxRefDB. 

Of these, 101 were found to cause tumors at one or more target sites. Of those 101 chemicals, 

23 were found to cause liver tumors, specifically hepatocellular adenomas or carcinomas. 

These 23 chemicals were evaluated for genotoxicity throughout the pesticide registration and 

re-registration process and generally found to be negative (USEPA, 2009a), which suggests 

that these chemicals predominantly act through non-genotoxic mechanisms of action. In 

comparing the in vitro assay data to in vivo endpoints, only PPARα and PPARγ were 
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significantly associated with rat liver tumors. The PPAR mode of action has been a focus of 

toxicological research with special emphasis on assessing relevance to humans (Lai, 2004). 

Additionally, the prevalence of rodent liver and other tumors in chronic toxicity studies of 

PPARα agonists and PPARα/γ co-agonists has resulted in the U.S. Food and Drug 

Administration (FDA) issuing guidance for development and use of PPAR agonists that 

requires special consideration be given to the carcinogenic potential of these agents (USFDA, 

2008). In total, 143 chemicals activated PPARγ with seven of those chemicals also activating 

PPARα (Figure 3.11). Five out of these seven chemicals (diethylhexyl phthalate (DEHP), 

perfluorooctanoic acid (PFOA), imazalil, lactofen, and diclofop-methyl) are positive for rat 

liver tumorigenicity; while only bromoxynil and fenthion are not. PPARα assay results 

demonstrated the ability to independently classify chemicals as potential liver tumorigens. If 

a chemical was considered a hit for PPARα the relative risk for rat liver tumor induction is 

9.9 (p<0.01) with very high specificity (99%) and lower sensitivity. Additionally, PPARγ 

agonist chemicals were significantly associated with rat liver tumorigens with a relative risk 

of 6.6 (p<0.01), but with high sensitivity (83%) and lower specificity. One could postulate 

that these chemicals act predominantly through a non-genotoxic peroxisome proliferation-

mediated mode of action, and for a few chemicals there is data in the literature to support 

this, including PFOA (Lau et al., 2004), DEHP (Melnick, 2001), Lactofen (Butler et al., 

1988;  Lai, 2004), and Diclofop-methyl (Lai, 2004). It should be noted that oxadiazon and 

perfluorooctane sulfonic acid (PFOS) are purported to cause liver tumors via a PPARα 

mode-of-action (DeWitt et al., 2009;  Richert et al., 1996;  USEPA, 2003), but were not 

positive under the conditions of this assay, although both of these chemicals were PPARγ 

agonists. PFOS was tested at a top concentration of 14 µM and oxadiazon at 24.5 µM 
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because of cytotoxicity observed in the MTC determination. Two reports evaluating the in 

vitro activation of human PPARα by PFOS differed with one determining an AC50 of 13-15 

µM (Shipley et al., 2004) and the other reporting no significant activity up to 250 µM 

(Takacs and Abbott, 2007); therefore, the interpretation of the present results are difficult. 

For oxadiazon, direct activation of PPARα has not been reported in the literature although in 

vivo peroxisome proliferation was seen in rodents treated with high doses (≥ 100 mg/kg/day 

for 28 days) and significant peroxisomal enzyme induction measured in primary rat 

hepatocytes cultures required 50-100 µM (Richert, et al., 1996). 

Endocrine Pathology, Offspring Survival & the Developing System 

In total, 251 and 261 chemicals have rat multigenerational reproductive and prenatal 

developmental toxicity studies recorded into ToxRefDB, respectively, with 225 chemicals 

having both studies in ToxRefDB. Two groups of assays showed significant associations 

with specific reproductive and developmental processes or targets (Table 3.2). As shown 

above, RARα and DR5 were correlated to each other and RAR has direct biological links to 

the developing system (Chambon, 1996). Chemicals positive for RARα/DR5 have a 

significantly greater potential for effects in various developmental systems and at different 

stages of development, including orofacial defects (i.e., cleft lip/palate) and urogenital 

malformations (i.e., renal and ureteric). In contrast, the estrogen receptor alpha (ERα) and its 

response element (ERE), a known endrocrine disrupting target, were associated with 

reproductive effects, including reproductive performance (i.e., decreased fertility and 

implantation loss). In addition to their specific associations, RARα/DR5 and ERα/ERE 

appear to have similar impacts on early offspring survival as indicated by shared associations 

to litter size and live birth outcomes. Interestingly, RARα/DR5 and ERα/ERE activity is not 
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correlated with an R-squared of roughly zero, meaning there shared associations are 

independent and may reflect varying mechanisms leading to the same adverse outcome. In 

general, the predictive power of probing these molecular targets for tissue-specific 

observations such as testicular or adrenal effects is limited, whereas data on hormone or 

cholesterol levels would most likely provide direct links from molecular to phenotypic 

alterations, but are not available for sufficient numbers of compounds in this chemical 

library. 

Discussion 

Cells respond to changes in their environment through a variety of recognition 

systems and signaling pathways that are integrated at the level of transcription factors, which 

coordinate appropriate responses. The multiplexed reporter gene technology described here 

attempts to probe this biological response by generating profiles of individual chemicals 

acting against a large panel of transcription factors in two different assay systems. These 

profiles provide information on potential molecular interactions of the chemicals, as well as 

more generalized activity such as induction of oxidative and electrophilic stress. Quantitation 

of the effects of chemicals on specific transcription factor responses provides information 

that can be used to determine potential for toxicity. Characterizing the responses to known 

toxicants in these assays allows the magnitude and potency of responses for new chemicals to 

be put into an appropriate context for evaluation. Testing chemicals in both the CIS and 

TRANS systems revealed specific limitations of each system, as well as complementarity of 

the data from each system. Valuable insights for interpreting large screening datasets came 

from comparing CIS and TRANS data, especially when limitations of one system, e.g., lack 

of endogenous activity for a particular target, were attenuated by data from the other. In cases 
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where both complementary assays demonstrated robust responses, greater confidence 

resulted from associating a given chemical with a specific molecular activity. 

Chemicals can both directly and indirectly affect transcription factor activities. The 

nuclear receptor superfamily and the Ah receptor are examples of TFs that can bind 

xenobiotic chemicals directly through their ligand-binding domains, resulting in modulation 

of target gene activity. In some cases, receptors such as PXR appear to have evolved to 

recognize such xenobiotics and to control expression of a large series of Phase I, Phase II, 

and Phase III metabolizing enzymes and transporters (Kliewer et al., 2002). Whereas such 

interactions generally serve to help eliminate or detoxify a xenobiotic, they may also lead to 

undesirable consequences, resulting in a variety of toxicities when exposure is sufficiently 

high. For example, induction of the Phase I, II, and III activities can also cause effects on 

endogenous compounds, e.g., steroid hormone metabolism, altering normal physiology. In 

addition, such enzyme induction can cause interference with the expected metabolism of 

pharmaceuticals leading to side effects resulting from either too high or too low a dose of the 

drug (Wilkinson, 2005). Endocrine disruption is another example, whereby xenobiotics 

mimic natural ligands such as steroid hormones in binding to nuclear receptors, resulting in 

disruption of normal receptor signaling and potentially leading to reproductive toxicities 

(WHO, 2002). Outside the endocrine system, chemicals activating PPARα cause peroxisome 

proliferation in rodents and subsequent hepatocarcinogenesis, a cancer mode of action that 

does not seem to occur in humans (Lai, 2004). Thus screening environmental chemicals for 

the ability to affect ligand-activated transcription factors can provide a means to recognize 

the potential for the chemical to cause endocrine disruption and other toxicities. 
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Chemical effects on cells may also be detected though effects on non-ligand-activated 

TFs. Such TFs include those that respond to a wide variety of cellular stressors, including 

oxidative, electrophilic, hyperosmolarity, DNA damage, hypoxia, etc. These stress-response 

effects enable a cell to survive environmental changes by adapting through increasing levels 

of target gene products involved in reducing or buffering the stress, e.g. increasing 

glutathione levels to handle oxidative stress or heat-shock proteins to provide protection to 

newly synthesized proteins during heat or UV light stress (Lee and Johnson, 2004). When 

stress is beyond the tolerance of the adaptive systems, cell death occurs through necrosis or 

apoptosis, the latter allowing selective removal of irreparably damaged cells from the tissue. 

Examples of effects seen in the current study included many chemicals inducing 

oxidative/electrophilic stress (Nrf-2/ARE CIS) but few inducing DNA damage as measured 

by activation of the p53 CIS assay. The latter finding is consistent with the majority of the 

chemicals tested being food-use pesticides that would not be expected to have significant 

genotoxic effects. Because transcription factors of this general functional class are involved 

in adaptive responses, changes in their activation do not necessarily equate directly to 

toxicity. Rather, they suggest that the chemical inducing the response possesses a mode of 

action that may, under sufficient exposure conditions, lead to effects that can overwhelm the 

capacity of the adaptive response, resulting in toxicity. Evaluating the potential for toxicity of 

chemicals with such activity will require careful consideration of potency and exposure to 

properly inform estimations of risk. 

In contrast to the receptors involved in nuclear receptor signaling and stress response, 

many of the other transcription factors screened in this study are known to be involved with 

specific signaling pathways controlling growth and differentiation. For example, E2F, MYC, 
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and SMAD regulate growth in virtually all cells (Grandori et al., 2000), whereas OCT, PAX, 

SOX, GLI, and TCF are among the factors involved in specific aspects of cellular 

differentiation (Maeda et al., 2007). In general, the reporter genes for these response 

elements showed only marginal response to the chemical library. The reasons for this are not 

clear. One possibility is that the signaling pathway controlling the specific reporter gene 

response is not functional under the conditions used for the assay. Not every reporter gene 

response was evaluated with suitable positive controls and, thus, activity could only be 

inferred from the fact that some basal level of reporter gene product was present in the cell. 

Use of a different cell line may be one way to expand functional pathway coverage. In 

addition, by prescreening for cytotoxicity, we ensured that frankly cytotoxic concentrations 

of chemicals would not be used in the screen. It is possible that interference with many of the 

transcription factors required for growth and differentiation results in cytotoxicity and, thus, 

the screening strategy employed to avoid this biased the results against finding effects on 

these pathways. Future screening efforts will take both of these points into consideration. 

Relating effects observed with in vitro assays using transformed cell lines to in vivo 

toxicity remains a significant challenge. Here we evaluated statistical correlations between 

chemical effects on transcription factors and toxicity endpoints, the latter collated in a 

relational database derived from extensive animal testing in support of the U.S. pesticide 

registration process. The relatively few significant associations detected were plausible 

associations between peroxisome proliferator-activated receptors and liver toxicity, estrogen 

receptor activity correlating to reproductive toxicities and retinoic acid receptor toxicities 

associated with developmental defects. These results were confirmed by the co-clustering of 

specific targets across the CIS and TRANS systems, thus increasing confidence in the in vivo 
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associations. The application of in vitro screening to chemical prioritization is enhanced by 

multiple, complementary assays such as these for the same target. There are many possible 

explanations for the inability to discern more correlations. The associations between these 

selected groups of molecular targets and apical endpoints do not encompass all possible 

routes by which a chemical can induce an adverse effect or toxic outcome. Likewise, it may 

be that there are insufficient chemicals within the current library representing each possible 

route to enable detection of significant associations. It is also understood that there are 

significant uncertainties in drawing associations between high-dose laboratory animal 

toxicity studies and in vitro animal target activities, much less the further extrapolation from 

in vitro human molecular target activities, despite the greater relevance of the latter to 

potential human risk. Chemical in vivo effects in relation to in vitro effects also may be 

greatly affected by chemical ADME properties (adsorption, distribution, metabolism and 

elimination), with metabolic biotransformation, in particular, resulting in either much greater 

or reduced toxicity than might otherwise be predicted. Whereas the HepG2 cell line used 

here is derived from liver and maintains some metabolic capacity, it is much less than in the 

intact liver (Donato et al., 2008). Finally, many of the responses seen were statistically 

significant; however, the magnitude of the response was frequently much less than that seen 

with a positive control compound. Again, relating the level of efficacy observed in the in 

vitro assay to biological meaningful results in vivo poses significant challenges.  

The multiplexed RTU assay results evaluated in the present study encompass only a 

fraction of the full range of biological targets and assays, both cell-free and cell-based, being 

run against the ToxCast Phase I chemical library (USEPA, 2009b). However, the present 

assays are based on human transcription factors and, thus, are believed to have particular 
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potential relevance to humans and to informing in vivo extrapolations. The associations 

reported in this study, many of which are corroborated by results reported in the literature, 

demonstrate the biological relevance of several of the presently studied molecular targets for 

monitoring and probing toxicity pathways and for understanding mechanisms of action 

leading to specific chemical toxicities. Along with chemical properties and ADME 

considerations, combining these activity profiles with additional in vitro assay profiles 

having the potential to probe a broader range of biological responses in animals and humans, 

will offer greater opportunities to discern meaningful associations of in vitro profiles with in 

vivo effects. Ongoing efforts to enlarge the test chemical library will additionally enrich the 

chemical and biological information dimensions in relation to toxicity endpoints of 

regulatory interest and, in so doing, provide greater coverage of toxicity mechanisms and 

facilitate the development of robust methods suitable for prioritizing chemicals based on 

potential for toxicity.  

Tables 

Table 3.1.  The 73 CIS and TRANS assays listed with the number of hits per assay, the 

maximal responder out of the ToxCast_320 chemical library, and positive control (where 

available). Maximal efficacy values (Emax) are provided in parenthesis for each listed test or 

positive control chemical. 

Assay Name 
No Hits 
(n=320) 

ToxCast_320 
Max Responder 
(Emax) 

Positive Control 
(Emax) 

CIS/TRANS Related Assays 
ERE_CIS 39 Pyridaben (8.7) Estradiol (9.3) 

ERa_TRANS 90 Pendimethalin (27) Estradiol (23) 
6-Fluor-Test (23) 

IR1_CIS 3 Tebupirimfos (3.5)   
FXR_TRANS 1 Butachlor (2.3) CDCA (6.5) 
GRE_CIS 0 Spiroxamine (1.6) Dexamethazone (5.0) 
GR_TRANS 0 Butachlor (1.9)   
DR4_LXR_CIS 7 Tebupirimfos (3.8)   
LXRa_TRANS 23 Tebupirimfos (23) T9 (55) 
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LXRb_TRANS 21 Tebupirimfos (13) T9 (81) 
PPRE_CIS 125 Resmethrin (5.7) Rosiglitazone (6.7) 
PPARa_TRANS 9 Lactofen (11) GW7647 (11) 
PPARd_TRANS 1 Flusilazole (2) GW7647 (13) 

PPARg_TRANS 146 Resmethrin (22) GW7647 (39) 
Rosiglitazone (31) 

PXRE_CIS 234 Flufenacet (31) Rifampicin (29) 
PXR_TRANS 102 Fipronil (7.9)   
DR5_CIS 27 Imazalil (3.2) 9-cis-Retinoic Acid (7.5) 
RARa_TRANS 49 Lindane (5.9)   
RARb_TRANS 5 Oxadiazon (2.6)   
RARg_TRANS 4 Imazalil (2.2)   
RORE_CIS 35 Tetraconazole (3.3)   
RORb_TRANS 1 Tebufenozide (2.2)   
RORg_TRANS 1 Azoxystrobin (2.9)   
VDRE_CIS 134 Pyridaben (5.5)   
VDR_TRANS 0 Rotenone (1.9)   
PBREM_CIS 24 Prodiamine (2.8)   
CAR_TRANS 4 Phosalone (2.4)   
        
        
Remaining TRANS Assays 
ERRa_TRANS 3 Cyazofamid (2.1)   
ERRg_TRANS 13 Fenthion (2.5)   
RXRa_TRANS 0 Esfenvalerate (2.3)   
RXRb_TRANS 8 Fludioxonil (17)   
AR_TRANS 0 Butachlor (2.1) 6-Fluor-Test (6.3) 
Hpa5_TRANS 0 Rotenone (1.9)   
HNF4a_TRANS 16 Trichlorfon (3)   
NURR1_TRANS 9 Pirimiphos-methyl (5.6)   
THRa1_TRANS 18 (Z,E)-Fenpyroximate (3.2) T3 (11) 

Assay Name No Hits 
(n=320) 

ToxCast_320 
Max Responder 
(Emax) 

Positive Control 
(Emax) 

Remaining CIS Assays 
Ahr_CIS 54 Tetraconazole (72) FICZ (100) 

AP_1_CIS 52 Prochloraz (4.6)   

AP_2_CIS 0 Hexaconazole (1.7)   
NRF2_ARE_CIS 165 Dichlorvos (16)   
BRE_CIS 93 Fipronil (12)   
C_EBP_CIS 5 Cyazofamid (2.4)   
CMV_CIS 37 Tebupirimfos (3.4)   
CRE_CIS 52 Prallethrin (4.4) Forskolin (2.5) 
E2F_CIS 0 Triclosan (1.5)   
E_Box_CIS 1 Prallethrin (2.5)   
EGR_CIS 40 Prallethrin (8.1)   
Ets_CIS 0 Fluazinam (1.3)   
FoxA2_CIS 0 d-cis,trans-Allethrin (1.8)   
FoxO_CIS 0 Simazine (1.5)   
GATA_CIS 0 Rotenone (1.4)   
GLI_CIS 2 d-cis,trans-Allethrin (3)   
HIF1a_CIS 25 Tetraconazole (3.7)   
HNF6_CIS 0 Spiroxamine (1.5)   
HSE_CIS 22 Prallethrin (33) Geldanamycin (5.7) 
ISRE_CIS 0 Oxasulfuron (1.6)   
MRE_CIS 62 d-cis,trans-Allethrin (28)   
Myb_CIS 0 Hexaconazole (1.6)   
Myc_CIS 4 d-cis,trans-Allethrin (3.6)   
NFI_CIS 4 Prallethrin (2.6)   
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NF_kB_CIS 10 Dichloran (3.4)   
NRF1_CIS 0 Prohexadione-calcium (1.4)   
Oct_MLP_CIS 86 Prallethrin (12)   
p53_CIS 2 Dichlorvos (2.4)   
Pax6_CIS 14 Prallethrin (5.2)   
Sox_CIS 2 Cacodylic acid (2)   
Sp1_CIS 8 d-cis,trans-Allethrin (2.9)   
SREBP_CIS 6 d-cis,trans-Allethrin (2.5)   
STAT3_CIS 0 Dichloran (1.8)   
TA_CIS 4 Tribufos (2.5)   
TAL_CIS 1 Prallethrin (2.3)   
TCF_b_cat_CIS 0 Diphenylamine (1.7)   
TGFb_CIS 8 Oxamyl (9.6)   
Xbp1_CIS 12 Prallethrin (9.7)   
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Table 3.2. Two distinct molecular targets with known links to developmental and 

reproductive toxicities, retinoic acid receptor and estrogen receptor, demonstrate coherent 

associations to in vivo developmental and reproductive endpoints from ToxRefDB and are 

shown with their respective significant relative risk (RR) values (p<0.05).  
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Figures 

Figure 3.1. Evaluation of ToxCast compounds by using libraries of cis- and trans-reporter 

transcription units. Schematic representation. (a.) Detection of cis-RTUs. A mix of 51 

individual plasmids encoding cis-RTUs was co-transfected into suspension of HepG2 cells, 

cells were plated and stimulated with evaluated compound. At the end of incubation period, 

total RNA was isolated and detected as described previously (Romanov, et al., 2008). (b.) 

Detection of trans-RTUs. Twenty four trans-RTU plasmids were separately transfected into 

HepG2 cells, the transfected cells pooled, plated, and stimulated with evaluated compound. 

At the end of incubation, total RNA was isolated and detected as described previously 

(Romanov, et al., 2008). 
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Figure 3.2. Overall and hit concordances across technical replicates determine optimal cutoff 

as a primary summary call criteria. 

 

Figure 3.3. Replicate analysis performed on the technical replicates. For each pair in the 

triplicate sets (comparing A with B, B with C and A with C), we asked if the chemicals were 

both hits, both non-hits or if they disagreed. Total concordance was defined as all 3 were hits 

or all 3 were non-hits, and non-concordance as either 1 or 2 were hits and the remainder were 

non-hits. The total overall concordance is the number of comparisons where the pair was 



 91 

either hits or both non-hits, divided by the total number of comparisons. The hit concordance 

is the number of cases where each of the pair was a hit divided by all cases where one or each 

of the pair was a hit. 

 

Figure 3.4. Two-way hierarchical clustering of the 48 CIS and 25 TRANS assays 

demonstrating the relationship between families of nuclear receptors and their response 

elements, independently tested in either the CIS or TRANS format. 
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Figure 3.5. Comparison of pregnane X receptor (PXR) activity in the CIS (PXRE) and 

TRANS format characterizes both relative efficacy and potency across the chemical library. 

Maximum efficacy (Emax) plotted for both the CIS and TRANS assays across the chemical 

library (a). The colored circles represent the chemicals positive (AC50 derived) or negative 

for the assays on the x- and y-axis. (b. and c.) The top 5 most efficacious and top 5 most 

potent chemicals averaged across both assays demonstrate the relative response compared to 

the positive control and the representative chemicals. 

 

 

Figure 3.6. Comparison of retinoic acid receptor (RAR) activity in the CIS (DR5) and 

TRANS (RARα) format characterizes both relative efficacy and potency across the chemical 

library. Maximum efficacy (Emax) plotted for both the CIS and TRANS assays across the 

chemical library (a). The colored circles represent the chemicals positive (AC50 derived) or 

negative for the assays on the x- and y-axis. (b. and c.) The top 5 most efficacious and top 5 

most potent averaged across both assays demonstrate the relative response compared to the 

positive control and the representative chemicals. 
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Figure 3.7. Comparison of estrogen receptor (ER) activity in the CIS (ERE) and TRANS 

(ERα) format characterizes both relative efficacy and potency across the chemical library. 

Maximum efficacy (Emax) plotted for both the CIS and TRANS assays across the chemical 

library (a). The colored circles represent the chemicals positive (AC50 derived) or negative 

for the assays on the x- and y-axis. (b. and c.) The top 5 most efficacious and top 5 most 

potent averaged across both assays demonstrate the relative response compared to the 

positive control and the representative chemicals. 
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Figure 3.8. Comparison of peroxisome proliferator-activated receptor (PPAR) activity in the 

CIS (PPRE) and TRANS (PPARγ) format characterizes both relative efficacy and potency 

across the chemical library. Maximum efficacy (Emax) plotted for both the CIS and TRANS 

assays across the chemical library (a). The colored circles represent the chemicals positive 

(AC50 derived) or negative for the assays on the x- and y-axis. (b. and c.) The top 5 most 

efficacious and top 5 most potent averaged across both assays demonstrate the relative 

response compared to the positive control and the representative chemicals. 

 

Figure 3.9. Oxidative stress is a plausible explanation for non-specific activity of some 

chemicals. (a.) Nrf2, a marker of oxidative stress, explains fifty percent of the variability in 

the overall activity across the remaining 72 targets probed in this study, both CIS and 

TRANS, based on the log-transformed maximal efficacy values (Emax). Emax values were 

log-transformed to minimize the effect of varying dynamic ranges across the assays. (b.) 

Representative dose response curves of the 10 most efficacious chemicals demonstrate the 

relative dose-response across selected chemicals.   
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Figure 3.10. Two-way hierarchical clustering of the relative risk percentiles from the 

permutation test exhibits clustering of developmental and reproductive endpoints across 

species and study types and grouping of systemic endpoints across chronic and 

multigeneration studies. Of the 73 in vitro and 77 in vivo endpoints, 133 significant (p<0.05) 

assay/endpoint associations were established. 
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Figure 3.11. Associations were derived between PPAR activity, both alpha (a) and gamma 

(g), and rat liver tumorigenesis. In total, 5 of the 7 chemicals that significantly affected 
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PPARa and PPARg caused rat liver tumors in the chronic/cancer bioassay. Individual relative 

risks of 9.9 and 6.6 were established based on significant PPARa and PPARg activity, 

respectively. 
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CHAPTER 4 

PREDICTIVE MODEL OF RAT REPRODUCTIVE TOXICITY FROM TOXCAST HIGH 
THROUGHPUT SCREENING3

 
 

Abstract 

 The EPA ToxCast research program uses high throughput screening for bioactivity 

profiling and predicting the toxicity of large numbers of chemicals. ToxCast Phase I tested 

309 well-characterized chemicals in over 500 assays for a wide range of molecular targets 

and cellular responses. Of the 309 environmental chemicals in Phase I of ToxCast, 256 were 

linked to high quality rat multigeneration reproductive toxicity studies in the relational 

Toxicity Reference Database. Reproductive toxicants were defined here as having achieved a 

reproductive lowest observed adverse effect level less than 500 milligram per kilogram of 

body weight per day. 86 chemicals were identified as reproductive toxicants in rat; 68 of 

those with sufficient in vitro bioactivity to model. Each assay was assessed for univariate 

association with the identified reproductive toxicants. Significantly associated assays were 

linked to gene sets and used for the subsequent predictive modeling. Using linear 

discriminant analysis and five-fold cross-validation, a robust and stable predictive model was 

produced capable of identifying rodent reproductive toxicants with 77±2% and 74±5% 

training and test cross-validation balanced accuracies, respectively. With a 21 chemical 

external validation set the model was 76% accurate, further indicating the model’s potential 

                                                
3 Martin, M. T., Knudsen, T. B., Reif, D. M., Houck, K. A., Judson, R. S., Kavlock, R. J. and Dix, D. J. (2011). 
Predictive Model of Rat Reproductive Toxicity from ToxCast High Throughput Screening. Biol Reprod, 
biolreprod.111.090977 [pii] 10.1095/biolreprod.111.090977. 
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for prioritizing the many thousands of environmental chemicals with little to no hazard 

information. The biological features of the model include steroidal and non-steroidal nuclear 

receptors, cytochrome P450 enzyme inhibition, G protein-coupled receptors, and cell 

signaling pathway readouts- mechanistic information suggesting additional targeted, 

integrated testing strategies and potential applications of in vitro HTS to risk assessment. 

Introduction 

 Current chemical evaluations in the U.S. range from either little to no evidence of 

safety for most industrial chemicals, or an expensive battery of animal tests for food-use 

pesticides that offers little mechanistic insights. No in vivo toxicology test uses more animals 

than the rat multigeneration reproductive test. It has been estimated that 70% of the total cost 

and 90% of the animal use for compliance with REACH will be due to reproductive toxicity 

testing (Hartung and Rovida, 2009). Addressing the existing chemical evaluation bottleneck 

can only be achieved through progressive changes to the current animal testing paradigm. A 

promising resource for addressing this bottleneck is computational toxicology, a field that 

integrates tools from computer science, bio- and chemi-informatics, molecular biology, and 

high throughput screening. Currently prescribed in vivo tests for chemical toxicity are 

resource-intensive, particularly for multigenerational reproductive and prenatal 

developmental assessment. Policy directives such as the European Union’s (EU) Cosmetics 

Directive call for the elimination of animals for evaluating reproductive toxicity in 2013 for 

cosmetic products and development of alternative methods for safety evaluation. In the past, 

significantly less attention has been spent modeling or predicting chemical-induced 

reproductive toxicity, relative to efforts modeling cancer and other endpoints. Reasons for the 

meager effort in this area include a lack of reference animal toxicity data to model, as well as 
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the molecular and physiological complexity of maternal-fetal interactions, life-stages, and 

generational sensitivities (Cronin and Worth, 2008). Recent efforts capturing in vivo 

reproductive toxicity studies into databases, and in vitro bioactivity profiling have enabled 

the development of predictive, mechanistic and pathway-based models for these complex 

reproductive outcomes. 

 ToxRefDB, the Toxicity Reference Database, has been the primary tool for storing 

and accessing high quality toxicology studies and is available online for searching and 

download (USEPA, 2009). ToxRefDB has characterized thousands of studies using a 

standardized vocabulary, a uniform structure across study types, and a high level of internal 

and external quality control for the extraction of endpoints useful in developing predictive 

models (Martin et al., 2009a). The primary study for assessing reproductive effects of 

chemicals is the multigenerational reproductive test (OPPTS 870.3800 and OECD 416), and 

is typically conducted under continuous exposure to male and female rats from 10-weeks 

pre-mating through lactation in the second generation. From multigeneration reproductive 

studies in ToxRefDB we have the capacity to identify individual or aggregated endpoints for 

predictive modeling across hundreds of chemicals and have made comparisons across 

generations to identify adverse impacts on developmentally sensitive reproductive endpoints, 

based on the prevalence of specific endpoints at later generations compared to the first 

generation (Martin et al., 2009b). Generational comparisons using ToxRefDB have also been 

part of the OECD evaluation of the proposed Extended One-Generation Reproductive 

Toxicity Study (EOGRTS). ToxRefDB was the primary database used in the large scale 

retrospective analysis aimed at evaluating the impact of the second generation on risk 

assessments, and classification & labeling (C&L) in Europe (Piersma et al., 2010). However, 
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the acceptance of the EOGRTS in lieu of the existing two generation test will not alleviate 

the chemical testing bottleneck for the many thousands of chemicals in commerce. One set of 

solutions to this testing bottleneck are alternative methods for chemical prioritization and 

intelligent, targeted testing decisions. 

 The use of alternative methods as part of an integrated reproductive and 

developmental toxicity testing strategy is currently being developed as a battery of in silico, 

in vitro, and in vivo tests (Hareng et al., 2005;  Spielmann, 2009). One component of this 

toolbox is the large-scale bioactivity profiling of chemicals in high throughput screening 

(HTS) and high-content assays. EPA’s ToxCast™ research project has produced a substantial 

amount of HTS data on environmental chemicals for developing predictive models of 

toxicity (Dix et al., 2007). Phase I of ToxCast profiled 309 toxicologically well-characterized 

chemicals in over 500 assays using nine technologies, including cell-free HTS assays and 

cell-based assays. ToxCast HTS data and multigenerational reproductive toxicity data from 

ToxRefDB provides an effective dataset for developing predictive toxicology models. In this 

study, we present a robust and stable predictive model of chemically-induced reproductive 

toxicity that demonstrates external predictivity useful for targeted testing prioritizations and 

significantly advancing predictive and computational toxicology. 

Methods 

Chemical 

Phase I of the EPA ToxCast™ program employs a chemical library containing 320 

samples consisting of 309 unique structures, 5 duplicates that were differently sourced and 3 

triplicates as technical repeats for internal quality control. The rationale for chemical 

selection was based on several criteria: extensive chronic, cancer, multigenerational 
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reproductive, and developmental assay data available (95% of compounds meet this criteria); 

soluble in DMSO (-1 < logP < 6, i.e., log of the octanol/water partition coefficient; 97.5% 

meet this criteria); molecular weight range 250-1000 (90% meet this criteria); and 

commercially available with purity >90% (98% meet this criteria). These criteria were 

largely satisfied with a diverse set of pesticide active ingredients that have had guideline in 

vivo toxicology studies conducted as part of their registration process with the EPA. Several 

other miscellaneous chemicals of environmental concern meeting these criteria were also 

included in the library. Despite its large representation of pesticidal actives, the Phase I 

chemical library spans a wide range of property values and is quite structurally diverse, 

representing over 40 chemical functional classes (e.g., pyrazole, sulfonamide, 

organochlorine, pyrethroid, etc.) and over 24 known pesticidal mode-of-action classes (e.g., 

phenylurea herbicides, organophosphate insecticides, dinitroaniline herbicides, etc.). A 

complete listing of the quality reviewed and structure-annotated chemical library is available 

for download as a Structure Data Format (SDF) file at the DSSTox website (USEPA, 2008). 

Chemicals comprising the ToxCast™ Phase I library were commercially procured 

and plated by BioFocus DPI (South San Francisco, CA). Supplier-provided certificates of 

analysis indicated purity >97% for the large majority of chemicals (87%), and >90% purity 

for all but a few instances of technical grade or known mixtures. Follow-up analysis of an 

original solution plate by BioFocus DPI using LC/MS (liquid chromatography mass 

spectrometry), subsequent to assay screening, has confirmed mass identification, stability, 

and purity for over 83% of the chemical library. For the majority of the remaining chemicals, 

currently employed analysis methods are known or suspected to be inadequate for confirming 

sample purity and, for the remaining 8% of the chemicals, follow-up studies have provided 



 109 

some evidence of sample decomposition in DMSO over time. A QC summary result mapped 

to chemical solution sample is provided on the ToxCast™ website in association with assay 

results (U.S. EPA, 2008). All chemicals were included in the analysis regardless of analytics 

results, but were accounted for throughout the analysis process. 

In Vivo (Class Data) 

Multigenerational reproductive toxicity testing study design and treatment group 

information along with all treatment-related effects were manually collected into EPA’s 

Toxicity Reference Database (ToxRefDB). The database structure, standardized vocabulary 

and ontology, and quality control procedures have been described previously (Martin, et al., 

2009a). To date, ToxRefDB has captured 393 acceptable reproductive studies across 353 

chemicals equating to 14, 347, 32 one-, two- and three- generation studies, respectively. An 

acceptable study can be defined as any study that adequately followed the multigeneration 

testing guideline, primarily determined by regulatory toxicologists from EPA’s Office of 

Pesticide Programs, and that the review of the study contains sufficient information for 

complete entry into ToxRefDB. Of the 309 ToxCast chemicals, 256 chemicals have been 

linked to an acceptable reproductive study entered in ToxRefDB with 242 exact structural 

matches, 4 close structural matches presumed to be toxicological equivalents (e.g., parent-to-

salt, salt-to-parent, different isomeric forms) not already linked to a ToxCast chemical, 4 

close structural matches already linked to a ToxCast chemical (e.g., Fluazifop-butyl and 

Fluazifop-P-butyl), and 6 parent-to-metabolite pairs (e.g., Diethylhexyl phthalate and 

Phthalic acid, mono-2-ethylhexyl ester). An additional 39 chemicals have unacceptable 

reproductive studies while 14 chemicals have no data available in ToxRefDB.  
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In ToxRefDB, 650 unique effects were observed across the entire multigenerational 

reproductive toxicity study dataset, ranging from body weight decreases to organ weight 

changes to litter survival to fertility decrements. Each unique effect was mapped to one of 

three multigeneration study categories; parental (e.g., body weight, liver weight, and other 

systemic toxicities), reproductive (e.g., primarily fertility and early offspring survival), and 

offspring (e.g., offspring weight, longer-term offspring survival, and other systemic offspring 

toxicities during their juvenile period). Specifically, 120 effects were directly related to 

reproductive outcomes and another 175 effects indicated adverse offspring outcomes, with 

the remainder being systemic parental effects (Martin, et al., 2009b). Based on the review of 

each study, primarily by regulatory toxicologists from EPA’s Office of Pesticide Programs, 

parental, offspring, and reproductive lowest observed adverse effect levels (LOAEL) were 

established based on the weight of evidence and expert judgment of the reviewer. The 

reproductive LOAEL (rLOAEL) was used to delineate a positive and negative set for 

reproductive toxicity, based on a 500 mg/kg/day cutoff. This cutoff value approximates the 

testing limit of 1000 mg/kg/day in the reproductive test guideline and accounts for the large 

uncertainty around the dose intake measurements and standard conversions used in capturing 

the dosing information across hundreds of chemicals and over 30 years of toxicity testing. 

Any chemical with a rLOAEL less than or equal to the cutoff was considered a positive and 

any chemical with a rLOAEL greater than the cutoff or that was not assigned a rLOAEL by 

the study reviewer was considered to be negative for reproductive toxicity. Specific effects 

within this endpoint category include reproductive performance measures (e.g., fertility, 

mating, gestational interval), male and female reproductive tract effects (e.g., testis, 

epididymis, ovary, uterus pathology and weight along with sperm measures and 
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morphology), and sexual developmental landmarks (e.g., preputial separation, vaginal 

opening and anogenital distance). Teratogenic endpoints from prenatal toxicity testing were 

not included as part of the definition of a reproductive toxicant for the purposes of this 

modeling effort. Additional information regarding the treatment groups including the life-

stage and generation of the animals and the administered dose were captured in ToxRefDB to 

provide additional context for each chemical’s reproductive toxicity potential. 

In Vitro (Features) 

As part of the ToxCast research program, the chemical library was tested in over 500 

assays across 9 technologies, including high throughput cell-free assays and cell-based assays 

in multiple human and rodent primary and derived cell lines. A complete overview of the 

assays, assay selection, analysis methods, quality measures, and assay annotation have been 

previously published (Judson et al., 2010). In general, AC50 (concentration at half maximal 

efficacy) values or LEC (lowest effective concentrations) were derived for each assay and 

time-point, where applicable. The complete data set, including AC50/LEC values and 

corresponding concentration response data for all chemical-assay measurement pairs is 

available from the EPA ToxCast website (U.S. EPA, 2008). For the purpose of predictive 

modeling, assays form the input features and can be thought of as the right side of the 

equation where some linear combination of these assays or sets of assays is equal to the class 

data; the reference in vivo endpoint. 

AC50/LEC values were -log3 transformed (-log3 [AC50/1000]), and a value of 0 was 

given to all negative assay results. A log3 transformation and setting negatives to 1000µM 

was used over a log10 transformation and setting negatives to one molar, as has been done in 

previous publications of ToxCast results(Judson, et al., 2010), to enhance the scoring range 
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between high and low potency active chemicals and to decrease the distance between active 

and inactive chemicals. Therefore, the “assay score” where the AC50 was 100µM would 

have a value of roughly 2 while a 100nM AC50 would have a value of roughly 8. A “gene 

score” or “gene-set score” was derived based on the average assay score across a set of 

closely related assays, e.g., assays mapped to a single gene or gene family. Any chemical 

active in fewer than or equal to 10 assays (≤2% aggregate active) was removed from the 

initial model development due to the lack of information provided by the chemical’s 

bioactivity fingerprint to discern active and inactive for any toxicity. The rationale for 

excluding the chemicals with little or no in vitro activity is based on the following logic. 

Specific chemicals may lack activity in in vitro assays for a number of reasons including 

chemical degradation, aqueous insolubility, lack of metabolic activation, or volatility. Such 

chemicals would be characterized by little to no activity across a broad range of in vitro 

assays. Since this behavior is, at least to some extent, relevant only to the in vitro systems, 

they are not good candidates for including in a model predicting in vivo activity. They were 

thus excluded from the training set and their exclusion is making no statement of a 

chemical’s true reproductive toxicity potential. 

Model (Class ~ Features) 

The first step in the development of a predictive model was univariate feature 

selection. Each assay was compared to the training set of chemicals, positive and negative for 

reproductive toxicity, using continuous and dichotomous statistical methodology, including 

linear (Pearson’s) correlation test, chi-square test, and t-test with the level of significance 

returned as p-values. Each assay with a p-value of less than 0.1 from any method passed the 

initial feature selection filter. The resulting assays were then grouped by gene or assay 
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family, as described above, to form the input features for subsequent modeling. In some 

instances, assays that were not statistically significantly associated but provided orthogonal 

or complimentary readouts for the same target were included in model development. This 

was performed for various nuclear receptor targets in which cell-based transcription factor 

assays were significantly associated with reproductive toxicity, whereas the more specific 

cell-free binding assays were not due to the low number of active chemicals. The highly 

specific assays provide increased evidence that a chemical interacts with a particular target. 

Significantly associated assays that were part of a large assay family or that were highly 

correlated to other higher prioritized assays, based on relative p-value and correlation, were 

excluded to minimize the total number of assays moving into the model development phase. 

For example, as part of ToxCast, 54 GPCR (G protein-coupled receptor) binding assays were 

evaluated, with 18 being significantly associated with reproductive toxicity. Of those 18 

GPCR assays, 5 were selected based on having the greatest correlation collectively; adding 

further GPCR assays only lowered the overall association to reproductive toxicity.  

Based on the selection of a small and balanced feature set, the prediction of 

reproductive toxicity potential was performed using linear discriminant analysis (LDA). 

Five-fold cross-validation was used to explore the stability of the resultant model, a process 

of developing the model using 80% of the chemical set and testing the model accuracy with 

the remaining 20% and repeating five times until all data has been used as both training and 

test datasets. The resulting cross-validation statistics are presented as the average and 

standard deviation of the training and test set balanced accuracies across the five runs. In 

addition, a subset of chemicals with positive findings in unacceptable studies within 

ToxRefDB and chemicals with clear literature evidence of reproductive toxicity or not were 
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used to assess the forward predictivity of the resultant model and to serve as an initial 

external validation set. 

Results 

The quality and forward predictivity of any model is limited by the quality of the 

feature and class data being used in the model development process. Therefore, strict and 

transparent methods were used for identifying the training set used in the initial modeling 

effort from both in vivo (i.e., class) data and in vitro (i.e., feature) data perspectives. Of the 

256 chemicals linked to an acceptable reproductive study, 86 reported a reproductive 

LOAEL (rLOAEL) less than 500 mg/kg/day (Table 4.1). The additional 12 chemicals that 

reported an rLOAEL from an unacceptable reproductive study were not incorporated into the 

initial model development process, but were used for model assessment and external 

validation of the model. Six chemicals had rLOAEL above the 500 mg/kg/day cutoff and 

were considered negative for modeling purposes, including Fluoxastrobin (862 mg/kg/day), 

Trifloxysulfuron-sodium (631 mg/kg/day), Propoxycarbazone-sodium (1314 mg/kg/day), 

Oxasulfuron (1115 mg/kg/day), Isoxaben (1000 mg/kg/day), and Propamocarb hydrochloride 

(1000 mg/kg/day). The toxicity profile for these chemicals primarily consisted of high-dose 

systemic parental and offspring toxicities leading to confounding sexual developmental 

landmark findings and early offspring survival decrements. Of the total 98 chemicals 

identified as reproductive toxicants (i.e., 86 from acceptable and 12 from unacceptable 

studies), 49 chemicals observed treatment-related effects to the male and/or female 

reproductive tract, 51 chemicals caused decrements in reproductive performance, 67 

chemicals affected early offspring survival, and 18 chemicals altered sexual development. A 

combined model of reproductive toxicity is presented, as opposed to individual models of 
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each endpoint class, due to the large overlap in chemicals across these endpoint classes, the 

lack of gender-specific phenotypes, and no mechanistic information in the guideline 

multigeneration reproductive studies.   

A significant number of ToxCast chemicals had little to no in vitro activity across 

hundreds of assays. Aggregate activity for each chemical was calculated as the number of 

actives (i.e., achieving an AC50 and defined as a hit in the assay) divided by the total number 

of assays used in this analysis (n=512). A 2% activity cutoff was established based on the 

minimal impact of aggregate in vitro activity on the sensitivity and, to limited degree, 

specificity of resulting models. In total, 62 chemicals were identified as falling below the 2% 

cutoff and not used in the initial model development process. Table 4.2 summarizes the 

chemical counts for each chemical group based on in vivo reproductive study 

acceptability/availability and aggregate in vitro activity. The entire chemical library was split 

into these groups to identify a chemical set with the capacity to develop a stable and robust 

model without the negative impacts of low in vivo multigeneration study quality or potential 

limited amenability to in vitro screening. Thus, chemical group A was selected for the initial 

development of the predictive reproductive toxicity model, including internal cross-

validation. Groups B, C, and D were used to evaluate the stability and to identify current 

weaknesses, limitations and gaps of the model. Groups E and F have also provided insight 

into the forward predictivity of the model, based on available open-literature reproductive 

toxicity studies. In conjunction with Table 4.2, a schematic of the full decision process, 

including chemical groupings, class definitions (i.e., positive or negative for reproductive 

toxicity), and final summary model statistics is provided as an overview and guidepost to the 

remaining more detailed results (Figure 4.1). 
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 Of the 206 chemicals used in the initial development of the predictive reproductive 

toxicity model (i.e., chemical group A), 68 were identified as reproductive toxicants, roughly 

one third of the total. In relating the in vitro bioactivity to these reproductive toxicants, a set 

of assays and genes were identified as significant indicators of reproductive toxicity, based 

on their univariate association. In total, 36 out of over 500 assays were selected for model 

development and subsequently mapped to genes or gene sets (Table 4.3). The primary genes 

identified were nuclear receptors, both steroidal and non-steroidal, and included the androgen 

receptor (AR), estrogen receptor alpha (ERα; ESR1), peroxisome proliferator-activated 

receptors, alpha (PPARα) and gamma (PPARγ). These molecular targets have extensive 

literature detailing their role in normal reproductive function as well as reproductive and 

endocrine toxicity. A number of cytochrome P450 enzyme inhibition (CYP) assays, 

including aromatase (Cyp19a1), were also significantly associated with the reproductive 

toxicants. Interestingly, besides the human aromatase assay, rat CYP assays had increased 

association to the endpoint as compared to the human CYP assays. For the purposes of the 

model and based on the increase in overall statistical correlation, all associated rodent CYP 

assay scores, as well as aromatase, were averaged and used as a single feature, called ‘CYP’. 

In addition to these genes and assay sets, individual assays representing cell-based markers of 

growth factor stimulation and cell signaling, including epidermal growth factor 1 (EGFR1) , 

transforming growth factor beta 1 (TGF-β1), vesicular monoamine transporter 2 (VMAT2), 

and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were other 

positive indicators of reproductive toxicity potential. These assays were also averaged 

together as a miscellaneous set of assays and called ‘OTHER’. As part of ToxCast, 54 GPCR 

(G protein-coupled receptor) binding assays were evaluated, with 18 being significantly 
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associated with reproductive toxicity. Of those 18 GPCR assays, 5 were selected based on 

having the greatest correlation collectively; adding further GPCR assays only lowered the 

overall association to reproductive toxicity. Assays targeting the pregnane X receptor (PXR) 

were negatively correlated with reproductive toxicity potential and used in the model 

development process with the expectation of providing some indication of the metabolic 

clearance of the chemical or representing general nuclear receptor promiscuity. 

Using the combination of the selected gene/gene-set scores, a multivariate linear 

classifier was developed using linear discriminant analysis (LDA) and five-fold cross 

validation. The feature set included PPARα (average -log3(AC50/1000) across 3 assays), AR 

(average -log3(AC50/1000) across 3 assays), ERα (average -log3(AC50/1000) across 7 

assays), PPARγ (average -log3(AC50/1000) across 4 assays), CYP (average -

log3(AC50/1000) across 7 assays), GPCR (average -log3(AC50/1000) across 5 assays), 

OTHER (average -log3(AC50/1000) across 4 assays), and PXR (average -log3(AC50/1000) 

across 3 assays) for a total of eight features. Figure 4.2 demonstrates the relative impact on 

classification rates between individual assays, genes/gene-sets and the final model. In 

general, we find that aggregating multiple related assays into a single feature increased the 

classification rate and yielded a more balanced and stable model. Grouping the assays by 

gene and gene-sets also allows for assays with low hit prevalence that would otherwise not 

be included in the model to contribute to the overall assessment of whether or not a chemical 

interacts with a specific molecular target.  

Using the eight gene and gene-set features a robust (i.e., high predictivity with high 

balanced accuracy; >70%) and stable (i.e., high test cross-validation and external validation 

accuracies; >70%) classifier or predictive model was generated as shown by resulting model 
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statistics (Table 4.4). The cross-validation balanced accuracy (BA, equal to the average of 

sensitivity and specificity) for the training and test sets, averaged across all 5 runs, were 77% 

and 74% for both training and test sets with a standard deviation of 2% and 5%, respectively. 

Conversely, using the single most significantly associated assay per gene or gene-set resulted 

in training and test balanced accuracies of 71% and 64%, respectively, illustrating the loss in 

predictivity and model stability when relying on a single assay to represent a molecular target 

or pathway. After demonstrating stability across the cross-validation runs, a model generated 

using all 206 Group A chemicals was optimized resulting in a balanced accuracy of 80% (p-

value = 4.2E-17), indicating a highly predictive model for reproductive hazard. 

Chemical group B was not included in the initial model development due to the lack 

of in vitro bioactivity across hundreds of assays. Interestingly, a comparable prevalence of 

reproductive toxicants was observed in chemical group B with 18 of the 50 chemicals 

characterized as actives (36% active versus 64% inactive). Only 20 chemicals in group B 

were active across any of the 33 assays or 7 input features that positively indicated 

reproductive toxicity. If the model is applied to chemical group B only, the balanced 

accuracy is 54% with a very low sensitivity of 11%. If the model is applied to chemical 

groups A and B, balanced accuracy and sensitivity drop to 75% and 66%, respectively. The 

diminished model performance, especially in terms of sensitivity when including low in vitro 

activity chemicals provides justification for considering these chemicals outside the domain 

of in vitro biological applicability, akin to the domain analysis performed in structure activity 

studies, and provide no evidence as to the safety or toxicity of the chemical. In real-world 

applications of this reproductive toxicity model, chemicals could be identified for follow-up 

analysis ranging from traditional animal toxicity testing, to additional in vitro screening 
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attempting to address confounding issues such as chemical decomposition, aqueous 

insolubility, or volatility, to the application of purely in silico models. 

Chemical groups C and D are comprised of 39 chemicals that have been tested in 

guideline reproductive studies that were deemed unacceptable for a variety of reasons, 

including quality of the review, dose selection, and guideline adherence. It would not be 

expected that these studies were deemed unacceptable due to false positive findings; 

therefore, the 12 chemicals designated as reproductive toxicants were used to demonstrate 

external predictivity of the model. Examples of such chemicals include the putative anti-

androgen Prochloraz (Laier et al., 2006) and the possible endocrine disrupting chemical 

Fenitrothion (Okahashi et al., 2005), both of which were predicted to be positive for 

reproductive toxicity. In total, 7 of the 12 reproductive toxicants in chemicals groups C or D 

were predicted to be positive. The same presumption for the positive findings cannot be 

extended to the negative findings across studies flagged as unacceptable. For example, the 

male reproductive toxicant boric acid (Chapin and Ku, 1994) caused only limited 

reproductive effects in the unacceptable guideline multigeneration reproductive study and 

showed little in vitro activity (chemical group D), possibly due to limited amenability to 

HTS.  

Chemical groups E and F have no guideline-based multigeneration reproductive 

toxicity study entered into ToxRefDB and in most cases have never had such a study 

performed. However, of the 14 chemicals in groups E and F, 9 were linked to reproductive 

toxicity tests available in the open literature. Varying sources and degrees of evidence can be 

found for reproductive toxicity; Methoxychlor and its metabolite HPTE based on positive 

findings in numerous pubertal and other in vivo assays (Akingbemi et al., 2000;  Armenti et 
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al., 2008;  Chapin et al., 1997;  Uzumcu et al., 2006), Bromoxynil based on EU labeling as a 

reproductive toxicant (R62), and Methyl Cellusolve (2-Methoxyethanol) based on 

reproductive findings in multiple systemic repeat-dose and multigenerational studies 

(Canada, 1999), and Monocrotophos based on male and female reproductive toxicity across 

multiple studies (Rao and Kaliwal, 2002;  Ratnasooriya et al., 1996). Equivocal evidence of 

reproductive toxicity could be found for Alachlor (USEPA, 1998a), based on non-dose 

dependent effects on ovarian weight and pregnancy index effects, which did not result in a 

reproductive LOAEL being determined. Dimethyl phthalate (DMP) and its metabolite 

Methyl hydrogen phthalate (MHP) (Gray et al., 2000;  Kwack et al., 2009) as well as 

Butralin (USEPA, 1998b) were considered to be negative for reproductive toxicity based on 

the available studies. The model correctly divided this subset of chemicals as reproductive 

toxicants or not with the exception of Monocrotophos, which was in the low in vitro activity 

group (chemical group F). Interestingly, Alachlor, which showed limited evidence of 

reproductive toxicity, was predicted to be positive and was just above the cutoff or model 

intercept, which could readily be interpreted as an equivocal prediction. In summary, 5 of 6 

chemicals with literature evidence of reproductive or endocrine toxicity were accurately 

predicted while all 3 negative chemicals were accurately predicted. 

The remaining 5 chemicals have no reproductive toxicity information available in the 

literature and were candidates for forward predictions. Based on the model, Symclosene and 

Phenoxyethanol were predicted to be negative, but it should be noted that the chemicals had 

low confidence in their purity from the analytical QC and/or low in vitro activity. Three 

chemicals with no reproductive toxicity data were predicted to be positives, including 

Diniconazole, Niclosamide, and Clorophene. Diniconazole, similar to many of the other 
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conazoles, demonstrated CYP inhibition, which was highly associated with decrements in 

early offspring survival. Niclosamide displayed fairly potent PPARγ agonist activity in 

multiple assays (top 5 of 309 chemicals for aggregate PPARγ activity), which was associated 

most with male and female reproductive tract effects. Androgen receptor binding was 

observed for Clorophene at similar potencies to CYP inhibition findings, which were both 

associated with delays in sexual development and decrements in reproductive performance. 

These results provide examples of how in vitro screening leading to targeted testing could be 

used to identify chemicals as potential reproductive toxicants based on model predictions. 

Additionally, the components of the predictive model have increased associations with 

specific endpoints and can help make recommendations about study design, including 

incorporating more sensitive or mechanistic endpoints into the study. A summary of the 

external validation (i.e., chemicals not used in training or testing the model and that have 

sufficient ToxRefDB or literature data to confidently classify the chemical as a reproductive 

toxicant or not) and forward validation (i.e., chemicals in which a prediction has been made 

but have no available evidence of whether or not the chemical is a reproductive toxicant or 

not) chemical sets demonstrates the forward predictivity of the model and provides examples 

of predictions made on chemicals with no reproductive toxicity information available (Table 

4.5). Of the 21 external validation chemicals, 12 were accurately predicted as reproductive 

toxicants, 5 chemicals were incorrectly predicted as negative, and 4 were accurately 

predicted to be negative resulting in an external validation accuracy of 76% and a balanced 

accuracy of 85%.  

In practice, the use of a predictive reproductive toxicity model can assist in 

prioritizing further targeted testing. Using chemical group A, we demonstrate the utility of 
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this model in decision making and how it could assist in alleviating the current chemical 

testing bottleneck. Depending on prioritization goals, increasing or decreasing the optimal 

balanced cutoff would alter the specificity, sensitivity and predictivity of the applied model 

(Figure 4.3). Using a high cutoff, testing the top 30 scoring chemicals would yield 26 

reproductive toxicants. On the other hand, to identify the vast majority of reproductive 

toxicants (57 of the 66 total reproductive toxicants), one would have to test the top 136 of 

206 scoring chemicals. If the prioritization task was to follow-up with an expensive and time-

consuming multigeneration reproductive study in a short period of time, then a more specific 

approach (i.e., higher cutoff) may be more appropriate. If the prioritization task was to 

follow-up with a medium-throughput assay capable of testing many chemicals, then a more 

sensitive approach (i.e., lower cutoff) could be used, ensuring the testing strategy catches as 

many potential reproductive toxicants as possible. A maximum sensitivity of 86% and a 

maximum specificity of 97% are achieved dependent on the cutoff, which can be adjusted to 

the prioritization task. 

Beyond the accurate prediction of reproductive toxicants identified solely from 

animal studies, we have compiled the available European Union (EU) C&L for reproductive 

toxicity (R60&62 for fertility and R61&63 for developmental toxicity) in Table 4.6. Of the 

206 group A chemicals, 19 have been reviewed for EU classification with 7 being classified 

for fertility (R60&62), 8 classified for developmental toxicity (R61&63), and 4 classified for 

neither. In all, 14 of the 15 R60-63 classified chemicals were predicted by the current model 

to be positive. Only the metabolically activated Benomyl was a false negative using the 

predictive model (Lim and Miller, 1997). All 4 non-classified chemicals were predicted to be 

negative, but it should be noted that these chemicals could have been unclassified due to 
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insufficient data to assess C&L. As opposed to the risk assessment process where 

quantitative dose response information is needed, the C&L process evaluates the intrinsic 

hazard of a substance. The output of the predictive reproductive toxicity model appears well 

suited to C&L.  

Discussion 

The results of this analysis demonstrate that in vitro HTS data can be used to predict 

developmentally sensitive reproductive toxicity in the rat. The capacity to use ToxCast HTS 

data, costing roughly $20,000-$30,000 per chemical for over 500 assays, in predicting the 

reproductive toxicity of 100s to 1000s of chemicals could transform the way in which 

chemicals are prioritized and selected for targeted reproductive toxicity testing. Reproductive 

toxicity testing is animal intensive, time-consuming, and costly. Current testing requirements 

are expanding internationally beyond conventional pesticides to industrial chemicals and 

other chemical domains. Past, present and future multigenerational reproductive studies 

characterize reproductive toxicity through the integrated assessment of over 100 potential 

endpoints across varying life-stages and generations. Even with these large numbers of 

measured endpoints, the imprecise nature of many of the endpoints limits the ability to 

identify gender and life-stage specificity, let alone mechanisms of action. The complexity of 

the biology, physiology, and study design are primary reasons for using molecular and 

cellular markers to model reproductive toxicity, but these complexities are also the reasons 

previous modeling efforts have not shown dramatic success. Therefore, we have focused not 

only on the model development, but also on the detailed capture and uniform assessment of 

the reference in vivo reproductive toxicity information leading to a predictive and 
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biologically relevant model that can be applied not just to testing prioritization but also 

testing refinement or even replacement.  

The overall accuracy and predictivity of the current model based on the cross-

validation statistics and examples of forward predictivity demonstrates its potential for use in 

an integrated evaluation strategy for environmental chemicals. Additionally, the model has 

shown to be specific to reproductive toxicity and is not modeling general systemic toxicity as 

is evident with the lack of concordance with the systemic parental and offspring LOAEL. It 

should be noted that the ToxCast assay data is concurrently being used to develop 

independent predictive models of cancer, systemic and developmental toxicities. Once 

further model performance assessment has been performed on models developed using 

ToxCast data, the models could be combined into an integrated testing strategy. As a starting 

point in this process, the current reproductive toxicity model underwent performance-based 

assessment demonstrating its strengths and limitations. For example, chemicals that require 

metabolic activation such as Benomyl or Molinate will not be predicted as a reproductive 

toxicant by this model, at least not until HTS data using metabolically competent systems are 

available (Jewell et al., 1998;  Lim and Miller, 1997). Additionally, chemicals such as Boric 

Acid that likely causes its male reproductive toxicity through non-molecular interactions 

demonstrate limitations of the current model (Chapin and Ku, 1994;  Jewell, et al., 1998) and 

points to the larger issue of chemical domain of applicability. The ToxCast Phase I chemical 

set contains a large number of conventional pesticides. The ToxCast Phase II chemical 

library contains about 700 chemicals with more diverse structural and use characteristics, 

including on-the-market and failed pharmaceuticals, food additives, antimicrobials, and other 

industrial chemicals. ToxCast Phase II will provide a robust external validation set testing the 
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forward predictivity of the current model, and evaluating the model’s chemical domain of 

applicability. An advantage of developing predictive models using quantative HTS data 

linked to genes, proteins and pathways is the ability to identify gaps in the mechanisms 

covered by the model. There are also instances of chemicals predicted to be reproductive 

toxicants that caused minimal reproductive toxicity in the multigenerational study but have 

been shown to cause reproductive related effects in either chronic, developmental or other 

types of studies. Examples of reproductive related effects for Triclosan and Bensulide (Foran 

et al., 2000;  Zorrilla et al., 2009) from other study types demonstrate the difficulty in 

definitively calling training set chemicals ‘positive’ or ‘negative’ for reproductive toxicity. 

Among the chemicals selected for external validation, the model provided accurate 

predictions for 16 of the 21 chemicals. The five chemicals with inaccurate predictions 

provide valuable insight into potential limitations or gaps of the model. Interestingly, the 5 

chemicals had a common phenotypic profile with respect to reproductive toxicity. Tribufos, 

Spiroxamine, Tefluthris, Disulfoton, and Esfenvalerate all caused reduced early offspring 

survival, particularly litter size decrease with little to no accompanying effects on 

reproductive performance or reproductive tract pathology. The rLOAEL for all 5 chemicals 

was set at the high dose tested based on the early offspring survival effects and the parental 

and offspring LOAEL were set at the lower dose levels. Based on the inclusive definition 

used for defining a positive for reproductive toxicity for model development all 5 were 

considered positive, but lack evidence of specific fertility-related or developmentally 

sensitive reproductive outcomes. Nonetheless, a gap in model predictivity has been identified 

and could potentially be filled using additional assay technologies, physical chemical 

properties and structural descriptors, or acute or short-term in vivo studies. 
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The model development process identified biologically plausible features and 

pathways from over 500 assays mapped to 100s of genes and spanning many reproductive 

relevant modes-of-action. PPARα activity was clearly associated with reproductive toxicity, 

with all 10 PPARα agonists in the training set (chemical group A) causing reproductive 

toxicity. Putative PPARα agonists (Lactofen (Butler et al., 1988), Imazalil (Takeuchi et al., 

2006), Diclofop-methyl (Takeuchi, et al., 2006), DEHP (Klaunig et al., 2003), MEHP 

(Klaunig, et al., 2003), and PFOA (Klaunig, et al., 2003)) and environmental chemicals 

identified as potential PPARα agonists through the ToxCast research program (Fluazinam, 

Emamectin benzoate, Vinclozolin, and Fenthion) span many chemical classes yet share a 

relatively common reproductive toxicity profile; a decrease in reproductive performance (i.e., 

decreased fertility) in 8 out of the 10 chemicals. Although a mechanistic link between PPAR 

activity and fertility or other reproductive impairments remains unclear (Peraza et al., 2006), 

the role of PPAR in steroid metabolism and its activity in reproductive tissues infers that it is 

a plausible target for disruption of endocrine signaling and altered gametogenesis.  

AR and ERα activity was also associated with reproductive toxicity. The ToxCast 

receptor profiling identified most if not all the known anti-androgenic and estrogenic 

chemicals in the current dataset, including well studied chemicals such as Vinclozolin, 

Bisphenol A, Methoxychlor, HPTE and Clorophene. The role of potency in determining a 

chemical’s relative reproductive toxicity potential needs to be explored further, considering 5 

of the top 7 scoring ERα activators (i.e., active across multiple ERα assays and at relatively 

low concentrations) did not cause substantial reproductive toxicity in vivo, including 

Flumetralin, Fenhexamid, Fludioxonil, Pyridaben, and Endosulfan. Additionally, the impact 
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of weak or partial nuclear receptor agonists and antagonists on reproductive toxicity potential 

and other toxicities needs to be explored further.  

CYP enzyme inhibition, as compared to gene induction, was significantly more 

associated with reproductive toxicity. Alterations in steroid metabolism through CYP 

induction have been previously associated with reproductive impairment (Goetz et al., 2007), 

however the non-specific inhibition of CYPs may be a surrogate for a chemical’s capacity to 

disturb steroid metabolism including inhibition of key CYPs involved in steroidogenesis 

(e.g., Cyp19 and Cyp17). Related to CYP activity, PXR interestingly displayed a negative 

correlation/association with reproductive toxicity. In general, PXR lowered the false positive 

rate of the model by lowering the model score of chemicals with non-specific and low 

potency nuclear receptor activity. Robust PXR activity is an indication of potent xeno-

sensing and potentially rapid metabolism.  

The pyrethroid class of pesticides has shown limited reproductive toxicity in 

guideline toxicity studies, although there is limited evidence linking pyrethroid exposure to 

decreased human sperm quality (Meeker et al., 2008). Of the 10 pyrethroids in chemical 

group A, only Resmethrin was considered a reproductive toxicant based on the criteria 

described in this manuscript. All 10 pyrethroids displayed low potency activity across one or 

more of the selected features, including AR, ERα, and PPARγ, but not CYP. Without the 

down-weighting based on each of their PXR activities the pyrethroids would have all been 

predicted to be reproductive toxicants.  

A major component of the model not directly related to nuclear receptor biology and 

xenobiotic/steroid metabolism was GPCR binding. Numerous GPCR binding assays were 

significantly associated with reproductive toxicity. Those chosen to represent the GPCR 



 128 

family were selected for statistical, and not biological, reasons as there is limited literature 

information on their role in reproduction in contrast to their well characterized role in 

nervous system function. 

Platforms measuring EGFR, TGF-β1 and NF-κB activity were also associated with 

reproductive toxicity and make up the “OTHER” feature. All three gene products have been 

shown to modulate the relative sensitivity of developmental toxicants, especially aryl-

hydrocarbon receptor signaling (Abbott et al., 2003;  Tian et al., 1999) and may be indicative 

of altered xenobiotic metabolism, cellular proliferation, cell-cell signaling or potential 

epigenetic effects (Tian, 2009;  Tian et al., 2002). Overall the key targets in the model 

identify plausible modes of action leading to reproductive toxicity covering anti-androgenic, 

estrogenic, cholesterol/steroid metabolism, limited coverage of disruption of steroidogenesis, 

and altered xenobiotic metabolism modes of action. 

There have been limited efforts toward the development of models predictive of 

reproductive toxicity, due in part to the lack of reference data in which to model. One 

resource for predictive models have come from structure based methods (i.e., Quantitative 

Structure Activity Relationship (QSAR) models) and the accuracy and predictivity of the 

resultant models has been limited. A comprehensive effort toward the prediction of 

reproductive and developmental toxicity was undertaken by the FDA (Matthews et al., 

2007). The resultant QSAR models were developed for endpoints such as sperm effects, 

female reproductive toxicity and male reproductive toxicity and were generally highly 

specific models with an average specificity across all generated models being 88%. However, 

the average balanced accuracy across all models was 58%, with the maximum balanced 

accuracy for any single model being 68% for predictive trans-species female reproductive 
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toxicity. It is difficult to assess the true accuracy and forward predictivity of the models 

based solely on the summary statistics, but the balanced accuracy values provide the most 

direct and unbiased comparison to the current model. Most likely, the limitation lies in the 

physiological complexity of reproductive toxicity and structural diversity of reproductive 

toxicants. The current predictive model has improved accuracy over any published QSAR 

model of reproductive toxicity and provides additional mechanistic information and 

indications of specific reproductive effects. The model also can be extended to include new 

data either covering the gene targets in the current model or new gene targets of other 

potential reproductive toxicity modes-of-action. Additional international efforts are 

underway with the goal of using alternative testing approaches in the detection of 

reproductive toxicants and on limited chemical sets have shown promise (Schenk et al., 

2010). However, the current ToxCast-based approach utilizes hundreds of diverse biological-

chemical activities associated with many potential modes of action leading to reproductive 

toxicity. The output of the current model provides a binary classification. Applications 

beyond hazard identification and testing prioritization may require dose response and even 

mechanistic information. To accomplish this, research is underway incorporating 

toxicokinetic information into the modeling process using primary rodent and human 

hepatocytes, plasma protein binding, and pharmacokinetic modeling intended to reverse 

engineer expected oral dose required to achieve a particular in vitro bioactivity level (Rotroff 

et al., 2010). Experimentally and computationally deriving dosimetry relevant to in vivo 

exposures has the potential to provide quantitative dose response information that can be 

incorporated into the modeling process. For example, the in vitro constitutive androstane 

receptor (CAR) and PXR activity on a set of conazole fungicides in ToxCast Phase I 
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demonstrated the dose response relationship between the equivalent in vivo levels required to 

observe the CAR/PXR activity and the known dose levels causing rodent liver toxicity 

(Judson et al., 2011). Examples such as this provide a path toward incorporating in vitro 

assay data into the risk assessment process, but also demonstrate the amount of prior 

knowledge currently required to perform such an analysis. The vast majority of 

environmental chemicals have little to no prior toxicity data and those that do commonly lack 

information on potential modes-of-action or human relevance. The reality is that among the 

thousands of environmental chemicals few will ever have a multigeneration reproductive 

study run. Over the past 30 years, only, 500 chemicals have been run in multigeneration 

reproductive studies due to the high animal and financial burden for such large scale animal 

testing (Hartung and Rovida, 2009). A practical solution and pressing need, especially with 

regards to reproductive toxicity testing, is for prioritization tools such as the current model, to 

make more informed reproductive toxicity testing decisions. 

Cross-validation and external validation sets used to develop and assess the quality of 

the reproductive toxicity model helped identify strengths and weaknesses of the present 

model and will help focus future research. Using HTS assays as the input into the model 

provided mechanistic insights and helped further characterize the predicted chemicals beyond 

negative and positive prediction outcomes. However, a subset of chemicals were deemed 

outside the domain of applicability based on low in vitro activity due to physical chemical 

characteristics, biological gaps, chemical decomposition or volatility. Further research is 

needed to better characterize this chemical subset to expand the current model’s domain of 

applicability. A limited number of chemicals selected from the ToxCast Phase I chemical set 

were used for external validation and provided supporting evidence of the model quality. A 
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large set of chemicals from ToxCast Phase II will have a full complement of in vitro 

bioactivity data and rodent reproductive toxicity studies will be used to further evaluate, 

validate and expand the predictive model. Additionally, ToxCast Phase II contains a library 

of failed pharmaceuticals with pre-clinical and clinical toxicity outcomes as well as reference 

chemicals with known mechanisms of reproductive toxicity. In addition to diversifying the 

current chemical library these chemicals will aid in the expansion of predictive reproductive 

toxicity model development toward mechanistic and human reproductive toxicity models 

useful in risk assessment applications.   

The ability of this predictive reproductive toxicity model to externally predict 

numerous chemicals with biological and structural diversity demonstrates suitability for 

chemical testing prioritization. Although the model does not provide quantitative dose 

response information, it does provide accurate predictions of a chemical’s reproductive 

toxicity potential. Since the model is based on HTS data, it is amenable to screening and 

prioritizing thousands of chemicals. Additionally, the biological features of the model 

provide mechanistic insights into modes of action useful in developing an integrated testing 

strategy for reproductive toxicity. 

Tables 

Table 4.1. Ninety-eight chemicals, linked to 86 acceptable and 12 unacceptable studies in 

ToxRefDB, achieved a reproductive LOAEL (rLOAEL ≤ 500 mg/kg/day) and used as the 

positive class set for the training and testing of the predictive model. In enforcing the 

500/mg/day cutoff, rLOAEL were rounded to one significant figure due to the uncertainty of 

dose intake especially at high doses. 

CASRN Chemical Name 

rLOAEL 
(mg/kg 
/day) 

Acceptable 
Study? 
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71751-41-2 Abamectin 0.4 NO 
30560-19-1 Acephate 25 YES 
135410-20-7 Acetamiprid 51 YES 
33089-61-1 Amitraz 12 YES 
3337-71-1 Asulam 250 YES 
35575-96-3 Azamethiphos 50 YES 
1861-40-1 Benfluralin 401 YES 
17804-35-2 Benomyl 234 YES 
80-05-7 Bisphenol A 500 YES 
134605-64-4 Butafenacil 23.8 YES 
75-60-5 Cacodylic acid 17.9 YES 
63-25-2 Carbaryl 92.4 YES 
5234-68-4 Carboxin 20 YES 
101-21-3 Chlorpropham 150 YES 
64902-72-3 Chlorsulfuron 541 NO 
210880-92-5 Clothianidin 31.2 YES 
1134-23-2 Cycloate 50 YES 
94-75-7 2,4-D 80 YES 
94-82-6 2,4-DB 112 YES 
1596-84-5 Daminozide 500 YES 
117-81-7 DEHP 391 YES 
333-41-5 Diazinon 35.2 YES 
962-58-3 Diazoxon 35.2 YES 

84-74-2 Dibutyl 
phthalate 531 YES 

1918-00-9 Dicamba 419 YES 
99-30-9 Dichloran 102 YES 
120-36-5 Dichlorprop 220 YES 
62-73-7 Dichlorvos 7.2 YES 

51338-27-3 Diclofop-
methyl 7.3 YES 

115-32-2 Dicofol 2.4 YES 
141-66-2 Dicrotophos 0.56 YES 
60-51-5 Dimethoate 6.5 YES 
122-39-4 Diphenylamine 399 YES 
298-04-4 Disulfoton 0.12 NO 

155569-91-8 Emamectin 
benzoate 1.8 YES 

66230-04-4 Esfenvalerate 6.7 NO 
60168-88-9 Fenarimol 1.2 YES 
114369-43-6 Fenbuconazole 40 YES 
122-14-5 Fenitrothion 0.68 NO 
55-38-9 Fenthion 0.7 YES 
76-87-9 Fentin 1.4 YES 
120068-37-3 Fipronil 26.3 YES 
69806-50-4 Fluazifop-butyl 5.8 YES 
79241-46-6 Fluazifop-P- 5.8 YES 
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butyl 
79622-59-6 Fluazinam 47.3 YES 
103361-09-7 Flumioxazin 12.7 YES 
85509-19-9 Flusilazole 17.5 YES 
133-07-3 Folpet 180 YES 
68157-60-8 Forchlorfenuron 544 YES 
79983-71-4 Hexaconazole 50 YES 
35554-44-0 Imazalil 80 YES 

144550-36-7 Iodosulfuron-
methyl-na 346 YES 

55406-53-6 IPBC 37.5 YES 
77501-63-4 Lactofen 26.2 YES 
330-55-2 Linuron 54 YES 
12427-38-2 Maneb 106 YES 
94-74-6 MCPA 22.5 YES 
4376-20-9 MEHP 391 YES 
104206-82-8 Mesotrione 1.1 YES 
950-37-8 Methidathion 1.25 YES 
9006-42-2 Metiram-zinc 16 NO 
7786-34-7 Mevinphos 0.5 YES 
51596-11-3 Milbemectin 65.6 NO 
2212-67-1 Molinate 0.8 YES 

131-70-4 Monobutyl 
phthalate 531 YES 

88671-89-0 Myclobutanil 50 YES 
300-76-5 Naled 18 YES 
27314-13-2 Norflurazon 103 YES 
116714-46-6 Novaluron 298 YES 
42874-03-3 Oxyfluorfen 146 YES 
40487-42-1 Pendimethalin 215 YES 
335-67-1 PFOA 30 YES 
1763-23-1 PFOS 3.2 YES 
2310-17-0 Phosalone 29.4 YES 

86209-51-0 Primisulfuron-
methyl 250 YES 

67747-09-5 Prochloraz 31.3 NO 
709-98-8 Propanil 53 YES 
31218-83-4 Propetamphos 5.5 YES 
60207-90-1 Propiconazole 238 YES 
23950-58-5 Propyzamide 123 YES 
10453-86-8 Resmethrin 70.8 YES 
83-79-4 Rotenone 7 YES 
148477-71-8 Spirodiclofen 178 YES 
118134-30-8 Spiroxamine 44.8 NO 
122836-35-5 Sulfentrazone 33 YES 
119168-77-3 Tebufenpyrad 19.3 YES 
96182-53-5 Tebupirimfos 1.25 NO 
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79538-32-2 Tefluthrin 12.5 NO 
112281-77-3 Tetraconazole 6 YES 
153719-23-4 Thiamethoxam 1.84 YES 
43121-43-3 Triadimefon 90 YES 
55219-65-3 Triadimenol 25 YES 
2303-17-5 Tri-allate 30 YES 
78-48-8 Tribufos 15 NO 
52-68-6 Trichlorfon 175 YES 
68694-11-1 Triflumizole 1.5 YES 
131983-72-7 Triticonazole 250 YES 
50471-44-8 Vinclozolin 4.9 YES 

 
Table 4.2. Chemical groupings based on aggregate in vitro activity across the over 500 

ToxCast assays, and in vivo reproductive study acceptability/availability within ToxRefDB. 

  
In vitro 
Activity 

Little to No 
In vitro 
Activity 
(<2% 

Active) 

Total In vivo 
Chemical 
Counts 

Acceptable Reproductive Study 206 (A) 50 (B) 256 
Unacceptable Reproductive 
Study 31 (C) 8 (D) 39 
No Reproductive Study 
Available 10 (E) 4 (F) 14 
Total In vitro Chemical Counts 247 62 309 

 Parenthesis: Each chemical group identified by letter 
 
Table 4.3. Feature selection statistics based on univariate correlations and associations 

between individual assays or genes/gene-sets and reproductive toxicants in chemical group 

A, dichotomously represented (i.e., 1 for positive and 0 for negative). 

Individual Assay Correlation (p-value) 

Gene / 
Gene 
Set 

Correlation (p-
value) 

ATG_PPARα_TRANS 0.24 (6.6E-4) 
PPARα 0.30 (9.6E-6) NCGC_PPARα_Agonist 0.17 (1.7E-2) 

NVS_NR_hPPARα 0.17 (1.6E-2) 
NCGC_AR_Antagonist 0.18 (3.6E-3) 

AR 0.31 (4.8E-6) NVS_NR_hAR 0.28 (3.7E-5) 
NVS_NR_rAR 0.04 (NS) 
ATG_ERα_TRANS 0.17 (1.5E-2) ERα 0.15 (2.3E-2) 
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ATG_ERE_CIS 0.04 (NS) 
NCGC_ERalpha_Agonist 0.05 (NS) 
NCGC_ERalpha_Antagonist 0.11 (9.3E-2) 
NVS_NR_hER 0.10 (NS) 
NVS_NR_mERα 0.10 (NS) 
NVS_NR_bER 0.10 (NS) 
ATG_PPRE_CIS 0.10 (NS) 

PPARγ 0.14 (4.1E-2) ATG_PPARγ_TRANS 0.09 (NS) 
NCGC_PPARγ_Agonist 0.06 (NS) 
NVS_NR_hPPARγ 0.14 (4.1E-2) 
NVS_ADME_rCYP2A2 0.30 (1.5E-5) 

CYP 0.27 (1.1E-4) 

NVS_ADME_rCYP2B1 0.23 (7.2E-4) 
NVS_ADME_rCYP2C12 0.14 (4.9E-2) 
NVS_ADME_rCYP2C11 0.17 (1.5E-2) 
NVS_ADME_rCYP2A1 0.21 (2.4E-3) 
NVS_ADME_rCYP2C13 0.21 (2.3E-3) 
NVS_ADME_hCYP19A1 0.17 (1.3E-2) 
NVS_GPCR_hOpiate_mu 0.26 (1.8E-4) 

GPCR 0.34 (8.6E-7) 
NVS_GPCR_h5HT6 0.22 (1.3E-3) 
NVS_GPCR_hAdra2C 0.21 (2.0E-3) 
NVS_GPCR_hPY2 0.20 (3.3E-3) 
NVS_GPCR_gOpiateK 0.19 (7.3E-3) 
BSK_hDFCGF_EGFR_up 0.14 (4.5E-2) 

OTHER 0.28 (4.5E-5) BSK_BE3C_TGFb1_up 0.08 (NS) 
NVS_TR_rVMAT2 0.21 (2.7E-3) 
ATG_NF_kB_CIS 0.14 (4.9E-2) 
ATG_PXR_TRANS -0.14 (4.2E-2) 

PXR -0.14 (4.5E-2) ATG_PXRE_CIS -0.11 (NS) 
NCGC_PXR_Agonist_human -0.09 (NS) 

 (NS) – Not statistically significant (p-value>0.1) 
 
Table 4.4. Performance metrics for the predictive model of reproductive toxicity, including 

cross-validation and optimized model statistics and weighting of model input features. 

Cross-Validation 
Statistics Full Model Statistics Parameter 

Coefficients 
Learner LDA TP 55 F1 73% PPARα 1.37 

CV 5-fold FP 28 RR 6.3 AR 0.98 
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No. F 8 FN 13 OR 17 ERα 0.45 
Assays 36 TN 110 PPV 66% PPARγ 0.23 

BA 
Train 77% SENS 81% NPV 90% CYP 0.28 

SD 
Train 2% SPEC 80% Pred 78% GPCR 0.5 

BA Test 74% BA 80% P-Value 4.2E-17 OTHER 0.45 
SD Test 5% A 80% Cutoff 0.6 PXR -0.21 

CV = Cross Validation; No. F = Number of selected features; Assays=Number of assays comprising the selected features; BA = Balanced 
accuracy (Average of sensitivity and specificity); SD= Standard deviation of the Balanced Accuracy for each Fold; TP= True Positive 
Count; FP= False Positive Count; FN=False Negative Count; TN= True negative count; SENS= Sensitivity; SPEC= Specificity; A = 
Accuracy; P-Value = Chi-Square P-Value; Cutoff = LDA Model Intercept; F1=F-measure (harmonic mean of precision and recall); OR= 
Odds ratio; PPV=Positive predictive value; NPV=Negative predictive value; Pred=Predictivity (Average of PPV and NPV) 
 
Table 4.5. External validation chemical set used to test the forward predictivity of the model. 

Each chemical is associated with a chemical group based on reproductive study 

acceptability/availability and aggregate in vitro activity. Chemical group C showed evidence 

of reproductive toxicity based on positive findings in an unacceptable multigeneration study, 

while chemical groups E and F showed literature evidence of reproductive toxicity. 

Chemical 
Group CASRN Chemical Name 

Evidence of 
Reproductive 

Toxicity 

Predicted 
Reproductive 

Toxicant 
Model 
Score 

E 2971-36-0 HPTE Yes Yes 11.9 
C 122-14-5 Fenitrothion Yes Yes 5.5 
C 67747-09-5 Prochloraz Yes Yes 3.4 
E 1689-84-5 Bromoxynil Yes Yes 3.4 
E 72-43-5 Methoxychlor Yes Yes 2.7 
C 51596-11-3 Milbemectin Yes Yes 2.4 
C 9006-42-2 Metiram-zinc Yes Yes 1.6 
C 64902-72-3 Chlorsulfuron Yes Yes 0.8 
F 109-86-4 Methyl cellusolve Yes Yes 0.8 
C 71751-41-2 Abamectin Yes Yes 0.7 
C 96182-53-5 Tebupirimfos Yes Yes 0.7 
E 15972-60-8 Alachlor Yes Yes 0.7 
C 78-48-8 Tribufos Yes No 0.0 
C 118134-30-8 Spiroxamine Yes No -0.1 
C 79538-32-2 Tefluthrin Yes No -0.1 
C 298-04-4 Disulfoton Yes No -0.2 
C 66230-04-4 Esfenvalerate Yes No -0.5 
E 4376-18-5 Methyl hydrogen No No 0.0 
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phthalate 
F 6923-22-4 Monocrotophos No No 0.0 

F 131-11-3 
Dimethyl 
phthalate No No -0.2 

E 33629-47-9 Butralin No No -0.2 
E 120-32-1 Clorophene Unknown Yes 4.4 
E 83657-24-3 Diniconazole Unknown Yes 2.4 
E 50-65-7 Niclosamide Unknown Yes 1.6 
F 122-99-6 Phenoxyethanol Unknown No 0.0 
E 87-90-1 Symclosene Unknown No -0.2 

 
Table 4.6. Comparison of predictive model results to classification and labeling for 

reproductive toxicity. Repro C&L is the European Union classification and labeling for 

reproductive toxicity, with R60 and 62 referring to fertility impairment, and R61 and 63 to 

developmental toxicity. 

Chemical Name 

Predicted 
Positive 

Repro 
C&L 

Model 
Score 

Bisphenol A Yes R62 6.1 
Vinclozolin Yes R60&61 4.7 
Flusilazole Yes R61 4.6 
Linuron Yes R62&61 2.9 
Myclobutanil Yes R63 2.4 
Fenarimol Yes R62 2.5 
Fentin Yes R63 3.5 
Fluazifop-P-butyl Yes R63 1.7 
Flumioxazin Yes R61 0.9 
Cyproconazole Yes R63 1.2 
Diethylhexyl phthalate 
(DEHP) Yes R60&61 0.9 
Isoxaflutole Yes R63 0.6 
Fluazifop-butyl Yes R61 1.0 
Dibutyl phthalate Yes R62&61 0.8 
Benomyl No R60&61 0.0 
Diuron No --- 0.4 
Lindane No --- 0.0 
Propazine No --- -0.3 
Propargite No --- -0.5 
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Figures 

Figure 4.1. Decision tree diagram representing the process by which the 309 ToxCast 

chemicals were grouped, based on in vivo study acceptability/availability and in vitro 

aggregate bioactivity, and subsequently defined as positive or negative for reproductive 

toxicity based on having achieved a reproductive lowest observed adverse effect level 

(rLOAEL) less than 500 mg/kg/day. Applying the model developed using chemical group A 

to all other chemical groups, individual and combined balanced accuracy values (average of 

sensitivity and specificity) are summarizing the results across the entire chemical library and 

provides context and summary information as each chemical group is discussed in greater 

detail throughout the results and discussion sections. 
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Figure 4.2. Classification or predictivity rates increase from individual HTS assays, to 

aggregated genes or gene-sets, while misclassification rates proportionately decrease, 

demonstrating the advantage of combining assays for same genes in model development. 

Classification rate (blue line) was calculated as the proportion of true positives (greater than 

the mean assay/gene/gene-set/model and positive for in vivo reproductive toxicity) over the 

total number positives (n=68). The misclassification rate (red line) was calculated as the 

proportion of false positives (greater than the mean assay/gene/gene-set/model score but 

negative for reproductive toxicity) over the total number of chemicals negative for 

reproductive toxicity (n=138).  
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Figure 4.3. Chemicals ordered by their reproductive toxicity model score with the positive 

training set on the left and the negative training set on the right. The optimal cutoff was 

determined to be 0.6 (black line) and achieved a balanced accuracy of 80%. Depending on 

the prioritization goals, an increased or decreased cutoff could greatly alter your confidence 

in detecting a reproductive toxicant. Using an increased cutoff, one could test the top 32 

scoring chemicals and expect to have 27 be reproductive toxicants (cutoff of 1.8 in blue). On 

the other hand, to accurately predict 59 of the 68 total reproductive toxicants one would have 

to test the top scoring 137 of 206 chemicals (cutoff of >0 in red). 
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CHAPTER 5 

A PREDICTIVE MODEL OF REPRODUCTIVE TOXICITY: FORWARD VALIDATION 
AND APPLICATION 

 
Abstract 

 A predictive model of reproductive toxicity, as observed in rat multigeneration 

reproductive (MGR) studies, was previously developed using high throughput screening 

(HTS) data from 36 assays mapped to 8 gene or gene-sets from Phase I of the USEPA 

ToxCast research program. The model was capable of predicting rodent reproductive toxicity 

with over 75% balanced accuracy. In a forward validation study, the predictive model was 

applied to 77 chemicals from ToxCast Phase II with the full battery of HTS and rodent 

reproductive toxicity data. The model sustained accuracy levels above 70% and demonstrated 

the ability to maintain predictivity in light of real-world constraints. These constraints 

included a more diverse chemical library, a new and independent round of HTS testing, 

increased prevalence of positives in the forward validation chemical set, single point versus 

concentration response data in a subset of assays, as well as assay attrition and replacement. 

A second study was performed on 381 chemicals from all phases of model development and 

validation to test the flexibility and applicability of the model as a tool in chemical testing 

decision-making. Three case studies were derived representing different statutory contexts 

that represent real-world regulatory actions, including waiving study requirements, 

requesting studies, and classifying chemicals. For each case study, the predictive model was 

optimized to maximally increase testing efficiency in terms of accuracy and cost. In all three 
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case studies, total cost savings were roughly 15% with false classification rates below 15%. 

For example, applying the model under case study 1 resulted in the waiving of the MGR 

study requirement for 67 chemicals based on negative predictions with 8 chemicals being 

positive, a misclassification rate of 12%. However, the costs savings of not testing 67of 381 

chemicals when assessed purely from a testing efficiency viewpoint, i.e., cost of 

misclassification not accounted, would save close to $40 million dollars. The forward 

validated predictive model of reproductive toxicity will continue to evolve as new assays 

become available to fill recognized biological gaps and will be combined with other 

predictive models, particularly models of developmental toxicity, to form an initial tier to an 

overarching integrated testing strategy.   

Introduction 

 Predicting toxicity using high-throughput screening and computational approaches 

will inevitably alter the current toxicity testing paradigms, but the degree and pace to which 

these technologies and approaches affect toxicity testing will play out over time. Current 

efforts by the U.S. Environmental Protection Agency’s (EPA) National Center for 

Computational Toxicology in the ToxCast research program and the Tox21 interagency 

project between National Institutes of Health (NIH), Food and Drug Administration (FDA), 

and EPA are generating a wealth of biological pathway data on thousands of chemicals 

across hundreds of biological assays (Collins et al., 2008). To make incoming high 

throughput screening (HTS) data useful in terms of chemical toxicity evaluation, we have 

attempted to link in vitro screening data with increased risk of causing specific adverse 

outcomes (Judson et al., 2010). ToxCast Phase I produced and evaluated the largest 

publically available collection of HTS data on a chemical library. The Phase I chemical 
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library, of 309 chemicals, spanned many chemical classes but was over-enriched for food-use 

pesticides that were all designed to be bioactive. Moving into Phase II of ToxCast, the 

chemical library was ever increasing in diversity in terms of physical chemical property, 

structural, use, and class diversity. In order to fully evaluate predictive toxicity models from 

ToxCast Phase I, applying the model to chemicals with independently generated data is 

required. 

Historically, predicting toxicity relied largely on structure and inherent chemical 

property-based toxicity alerts or on single assay readouts that attempted to mimic whole 

animal toxicities. Many lessons have been learned from these approaches concerning their 

limited success either in terms of predictivity or increasing testing efficiency. One such 

lesson is the need for appropriate modeling best practices, including external and forward 

validation (Tropsha and Golbraikh, 2007). Any model can be developed given enough data, 

but the ability to blindly predict a structurally diverse set of chemicals is difficult but 

necessary to validate any model (Golbraikh et al., 2003;  Golbraikh and Tropsha, 2002;  Shen 

et al., 2004;  Tropsha and Golbraikh, 2007). Another lesson is that end-stage toxicity (e.g., 

cancer, malformations, infertility) is a complex manifestation of many events that cannot 

usually be modeled or predicted using a single property, feature, or assay. With the large 

amount of bioactivity data now available on hundreds of toxicologically well-characterized 

chemicals it is easy to ignore these lessons and throw hundreds of assays at a single endpoint 

and to expect robust models to emerge. This, not surprisingly, is not the case. Developing a 

predictive model of toxicity requires careful consideration in the methods used to analyze the 

screening data, annotate assays, identify training and test set chemicals, and model the data 

without over-fitting. 
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Developing a model for reproductive toxicity introduces additional considerations 

including life-stage and generational sensitivities, molecular versus physiological modes of 

action, and confounding systemic toxicities (Cronin and Worth, 2008;  Perreault, 2008). 

Using a suite of HTS bioactivity assays we were able to produce a stable (i.e., test set 

accuracy commensurate with training set accuracy) and robust (i.e., able to accurately predict 

a limited external validation set) model of rat reproductive toxicity (Martin et al., 2011). The 

model accurately predicts effects on adult reproductive performance, male and female 

reproductive tract effects, early offspring survival, and sexual developmental landmarks. The 

model does not cover developmental malformations or systemic parental or offspring 

toxicities. Providing mechanistic insight may be one of the biggest advantages of HTS-

derived models. In particular, this model of reproductive toxicity hones in on 8 genes or 

gene-sets that begin to characterize a chemical’s potential mode of action. A chemical with 

strong estrogen or androgen receptor activity may be leading to reproductive impairment 

through endocrine disrupting pathways (Witorsch and Thomas, 2010), whereas a chemical 

with strong cytochrome P450 inhibition or peroxisome proliferator-activated receptor activity 

may cause reproductive impairment through xenobiotic or steroid metabolism alterations 

(Toda et al., 2003). Identifying mechanisms of action also enables an evaluation of which 

mechanisms were not covered and for which new assays need to be developed. For example, 

steroidogenesis is recognized as a mode of reproductive toxicity for which we have only a 

single assay, a CYP19A1 inhibition assay, so clearly other assays need to be added to test for 

activity against this pathway in a high throughput manner (Hecker and Giesy, 2008). In 

summary, the model features were PPARA, PPARG, ESR1, AR, GPCR (collection of GPCR 

binding assays), CYP (collection of cytochrome P450 inhibition assays), PXR and OTHER 
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(collection of significantly associated assays not with limited to no redundant gene 

coverage). The weight of each feature was determined in the modeling process using linear 

discriminant analysis (LDA) and a model cutoff was derived to separate the positive and 

negatives based on an optimal balanced accuracy.  

 The current study aims to forward validate the HTS-derived predictive model of 

reproductive toxicity by applying the model to a new set of chemicals. Independently, 297 

chemicals were tested in the same or comparable HTS assays as the original 309 chemicals in 

Phase I of ToxCast (i.e., the chemical set used in model development). A subset of the 297 

chemicals has high quality reproductive toxicity study data and served as the forward 

validation chemical set. The predictive model of reproductive toxicity was applied to the 

forward validation chemical set to assess the model’s performance against this increasingly 

diverse set of chemicals, which included pharmaceuticals, industrial chemicals, 

antimicrobials, additional pesticides, and inert (i.e., other) ingredients. Case studies were then 

developed to assess the ability of the model to adapt to different regulatory conditions, e.g., 

waiving a testing requirement, requesting a study, or classifying chemicals in a data poor 

regulatory environment. Each case study was modeled after current regulations, but the 

model was assessed in isolation. Even though real-world testing decisions would be made 

using all available information, the goal of the case studies was to measure the impact of the 

current model on chemical testing decision-making. Testing the model across the various 

case studies ultimately demonstrated the acceptability and flexibility of the model as a tool 

for chemical testing decision-making. 

Methods 

Forward Validation Study 
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The EPA ToxCast™ program employs a chemical library containing 1011 samples 

consisting of 960 unique structures with 9 triplicates as technical repeats for internal quality 

control that are now incorporated into every phase of ToxCast. A summary of all in vitro and 

in vivo chemical libraries is graphically represented as well as the overlap between ToxCast, 

Tox21, and ToxRefDB, and the relationship between these testing efforts and the different 

phases of the predictive modeling effort (Figure 5.1). A large subset of the original Phase I 

library of 309 unique structures has now been re-procured for testing in new assays and 

currently consists of 293 unique structures, as 16 chemicals were removed from the initial 

library due to evidence of decomposition or sustained insolubility. The combined ToxCast 

chemical library of 960 chemicals contains 111 pharmaceuticals that failed in human clinical 

trials primarily due to toxicity, a large set of drug-like compounds, industrial chemicals, food 

additives, antimicrobials, additional ingredients in pesticide formulations, and pesticide 

active ingredients.  

Additionally, a library of 1462 samples equating to 1421 unique structures was 

previously run at the NIH Chemical Genomics Center (NCGC) across numerous nuclear 

receptor and oxidative stress pathway assays in quantitative high-throughput screening 

format. Of the 1421 chemicals, 583 chemicals are included in the ToxCast library. In total, 

297 chemicals have been tested as part of ToxCast Phase II, which were not tested in 

ToxCast Phase I (i.e., not included in the model development process), and tested at NCGC. 

Therefore, the 297chemical set has been tested across all assays used in the original 

predictive model of reproductive toxicity and can therefore be wholly evaluated by the 

model. 
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As the chemical library expanded beyond conventional pesticide actives the 

availability of guideline multigenerational reproductive toxicity (MGR) studies diminishes 

quickly. For the forward validation exercise, the available MGR studies were entered into 

EPA’s Toxicity Reference Database (ToxRefDB) as described previously (Martin et al., 

2009). Open literature studies were used to characterize the reproductive toxicity potential of 

drug or drug-like compounds and industrial chemicals. These studies included continuous 

breeding protocols and fertility and pre-/post-natal studies performed by the National 

Toxicology Program (NTP), academic and contract laboratories or pharmaceutical 

companies. In general, these studies were able to be successfully entered into ToxRefDB and 

a number were identified, for modeling purposes, as reproductive toxicants based on 

achieving a reproductive lowest observed adverse effect level (rLOAEL) less than or equal to 

500 mg/kg/day as previously described (Martin, et al., 2011). In some instances, clear 

evidence of reproductive toxicity, or not, was available in the literature, but the study design 

was not conducive for entry into ToxRefDB. In total, 77 chemicals were characterized as 

being reproductive toxicants or not for purposes of applying the predictive model to the 

chemical set to test the forward predictivity of the model. 

A complete overview of the ToxCast and NCGC assays including assay selection, 

analysis methods, quality measures, and assay annotation has been previously published 

(Huang et al., 2011;  Judson, et al., 2010). Due to the prospective nature of the forward 

validation effort, data tested as part of ToxCast Phase II have been analyzed in a manner as 

similar as possible to ToxCast Phase I. The transcription factor activation assays generated 

by Attagene™ Inc. and  indicated by “ATG” were analyzed across all ToxCast Phase II 

chemicals using the same procedure as previously described (Martin et al., 2010). The 
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ToxCast Phase II cell-free bioactivity profiling from Novascreen Biosciences was run in a 

single concentration screening mode in duplicate using the same protocol as ToxCast Phase I 

to select chemicals for concentration response testing. An analysis was performed using the 

single point screening and concentration response data from ToxCast Phase I to assess 

whether hit calling and active concentration estimations (e.g., AC50) could accurately be 

derived from single point data, which has been demonstrated before (Moody et al., 1999). 

Therefore, Novascreen assays, beginning with “NVS”, had AC50 values estimated based on 

single concentration screening values run in duplicate. Nuclear receptor data generated at the 

NCGC and cell-based cell signaling assays from BioSeek LLC, referred to as “BSK”, were 

generated and analyzed in the same manner as ToxCast Phase I.  

AC50/LEC values were -log3 transformed (-log3 [AC50/1000]), and a value of 0 was 

given to all negative assay results. A log3 transformation and setting negatives to 1000µM 

was used over a log10 transformation and setting negatives to one molar, as has been done in 

previous publications of ToxCast results (Judson, et al., 2010), to enhance the scoring range 

between high and low potency active chemicals and to decrease the distance between active 

and inactive chemicals. Therefore, the “assay score” where the AC50 was 100µM would 

have a value of roughly 2 while a 100nM AC50 would have a value of roughly 8. A “gene 

score” or “gene-set score” was derived based on the average assay score across a set of 

closely related assays, e.g., assays mapped to a single gene or gene family. The forward 

validation chemical set includes the 77 chemicals tested in a high quality reproductive study 

and tested across all assays in the mode. As previously described (Martin, et al., 2011), an in 

vitro activity filter of 2% (i.e., active in less than 2 out of every 100 assays) was applied to 

filter out those chemicals potentially confounded by insolubility, degradation or other issues 
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leading to a lack of HTS testing amenability. Of these 77 chemicals, 62 chemicals had 

greater than 2% in vitro activity and were used as the primary forward validation chemical 

set. The model was then applied to the full 77 chemical forward validation set and to the in 

vitro activity filtered 62 chemical forward validation set resulting in model predictions based 

on the parameters and model cutoffs (i.e., linear discriminant analysis (LDA) intercept) 

previously established (Martin, et al., 2011). The predicted outcomes were then compared to 

the known outcomes and performance metrics were reported, including balanced accuracy 

and predictivity. 

Model Application Case Studies 

Using the totality of chemicals with available reproductive toxicity studies used in all 

phases of model development (N=381), the model was applied in three case studies that test 

the models ability to be used under different statutory contexts. The three case studies 

involve applying the model to chemicals with:   

1. Statutory requirement to run MGR and ability to waive requirement  

2. Statutory authority to request MGR 

3. Limited to no statutory authority to request MGR 

To customize model outputs, the predictive model was tuned to optimize specific summary 

statistics, including sensitivity, specificity, balanced accuracy, positive and negative 

predictivity, and overall predictivity. Optimization was done by adjusting the percent in vitro 

activity filter and the model cutoff. The original filter and cutoff were chosen based on 

optimizing the balanced accuracy alone, whereas the case studies may weight certain output 

statistics higher than others. To assess the impact that incorporating the model into testing 

and decision-making, cost savings estimates were also calculated based on the increased 
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evaluation or testing efficiency. In the case of waiving study requirements, cost savings per 

chemical (N=381 chemicals) were calculated as the cost of the HTS battery and the cost of 

the MGR study times the percent of un-waived studies minus the total cost of a MGR study. 

In the cases of requesting studies, the cost savings per chemical were calculated assuming 

current reproductive testing prioritization schemes are equal to random chance. For example, 

if 40% of chemicals are positive (i.e., prevalence) then on average it would take 10 studies to 

identify 4 positive chemicals chosen at random. Therefore, cost estimates per chemical were 

calculated as the difference between percent of studies requested when chosen randomly and 

chosen based on the model predictions multiplied by the cost of a MGR study. 

Results 

 Forward Validation Study 

 The predictive model of reproductive toxicity was internally trained and tested using 

206 chemicals, primarily pesticide active ingredients. The model was preliminarily externally 

validated using a set of 26 chemicals with well-characterized reproductive toxicity 

information, but generally lacked chemical diversity from the training dataset and the HTS 

tested was performed at the same time (Martin, et al., 2011). The sustained model accuracy 

with the internal test and external validation chemical sets successfully evaluated the model 

as not being over-fit and having the potential to be applied to a more diverse chemical 

library. To fully assess the external predictivity of the model and the reproducibility and 

stability of the model inputs, the model was applied to a forward validation chemical set. The 

forward validation chemical set was generally tested in the same HTS assays, but roughly a 

year later, and is a diverse set of chemicals spanning pesticides, industrial chemicals, drug-

like compounds, antimicrobials, food-additives, and other formulation ingredients. To date, 
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297 chemicals out of 676 ToxCast Phase II chemicals have been tested in all assays required 

to apply the model. Of those 297 chemicals, reproductive toxicity information in ToxRefDB 

or from quality public (e.g. National Toxicology Program Continuous Breeding Studies) or 

open literature sources was obtained for 77 chemicals (Table 5.1). Based on observed 

reproductive LOAEL less than or equal to 500 mg/kg/day, 51 chemicals were considered 

positive and 26 negative. The high prevalence of positive chemicals in the forward validation 

set was expected due to the fact that the majority of the chemicals did not require a MGR 

study, but came from the open literature which may be biased towards positive findings. The 

77 chemicals were further filtered to 62 chemicals, 43 positive and 19 negative, using the in 

vitro activity cutoff filter, which removed 15 chemicals that were active in less than 2% of all 

tested assays. The model was applied to the filtered and unfiltered forward validation 

chemical sets to assess the overall accuracy of the model with or without the in vitro activity 

filter applied and to assess the relative impact of filtering on interpretation of model 

prediction results.  

 Before the model could be applied, large-scale data analysis was performed on all 

available ToxCast HTS assays, to date. Highly comparable or identical methods were applied 

to the ATG, NCGC, and BSK datasets (Huang, et al., 2011;  Judson, et al., 2010). The NVS 

dataset was only tested at a single concentration (10 micromolar for cytochrome P450 

inhibition assays and 25 micromolar for all others) in duplicate. In Phase I of ToxCast a 

single concentration screen was performed and a subset of chemical-assay combinations was 

selected to be run in concentration response format. Using the single point data from NVS 

Phase I, AC50 values were estimated and compared to the published AC50 values derived 

from concentration-response analysis (Knudsen et al., 2011) to evaluate the accuracy of the 



 157 

alternative approach as was previously published (Moody, et al., 1999). Using only the 16 

NVS assays in the model and the 963 chemical-assay combinations run in concentration 

response format, the hit calls and negative-log10of the AC50 were compared (Figure 5.2). 

The sensitivity and specificity in comparing hit calls were 85% and 88% respectively, 

resulting in a balanced accuracy of 87%. The correlation of the 305 true positives was 76% 

with only 31 single-point AC50 estimations having greater than an order of magnitude 

difference. The high accuracy level and relatively good correlation between single point and 

concentration response AC50 values support the preliminary use of the NVS ToxCast Phase 

II single point data in lieu of the concentration response data. Additionally, the ToxCast 

Phase II chemical library was only run against the human NVS cytochrome P450 inhibition 

(CYP) assays as opposed to rat and human in ToxCast Phase I, which when comparing the 

ToxCast Phase I human CYP profile to the rat CYP profile was highly correlated at 80%. 

The final forward validation assay set had the same number of assays as the published model, 

36 assays, covering the same 8 features. 

 The published predictive model of reproductive toxicity was applied to the forward 

validation chemical set, both in vitro activity filtered and not. The observed accuracy and 

balanced accuracy of the filtered forward validation chemical set was 77% and 72%, 

respectively, a value highly comparable with the published model accuracy values (Table 

5.2).  A 3% drop in balanced accuracy, to 69%, was observed when the unfiltered chemical 

set was tested, which was comparable to the drop in accuracy seen during the model 

development process. The model’s ability to maintain predictivity in light real-world 

constraints, including a more diverse chemical library, HTS data generation independent of 

the original dataset, increased prevalence of positives in the forward validation chemical set, 
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single point versus concentration response data, and assay attrition and replacement, has 

made application of the model for testing decision-making a possibility.  

Case Studies 

Using the totality of chemicals with available reproductive toxicity studies used in all 

phases of model development (N=381), the model was applied in three case studies that test 

the models ability to be used under different statutory contexts. The three case studies 

involve applying the model to chemicals with:   

1. Statutory requirement to run MGR and ability to waive requirement  

2. Statutory authority to request MGR 

3. Limited to no statutory authority to request MGR 

Of the 381 chemicals, 151 chemicals are considered positive for the purposes of the 

following case studies and 230 are considered to be negative. Two model parameters, the in 

vitro activity filter and the model cutoff, were used to customize the model performance 

based on the requirements on each case study. The in vitro activity for each chemical was 

calculated as the number of active calls (i.e., AC50 determined) over the total number of 

assays. The model was not applied to the chemicals that fell below the in vitro activity filter. 

As the model was developed using linear discriminant analysis (LDA), a model cutoff or 

intercept was established that best separated the positive training set from the negative 

training set. Using the published model in vitro activity filter, 2%, and model cutoff, 0.6, the 

predictive model of reproductive toxicity performs with a balanced accuracy of 78% and 

applies to 305 chemicals, while 76 chemicals fell below the in vitro activity filter. By 

removing the in vitro activity filter, the model’s balanced accuracy fell slightly to 74% but 

allowed the model to be applied to all 381 chemicals. It should be noted that the intention of 
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the case studies is not to provide a definitive mechanism for waiving or requesting studies 

but to demonstrate the customizability of the model as a tool in chemical testing decision-

making. However, each case study was devised with specific regulations in mind, including 

Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), Food Quality Protection Act 

(FQPA), and Toxics Substances Control Act (TSCA), to ensure the practicality and 

applicability of each case study. 

 Case study 1 involves applying the model to chemicals with the statutory requirement 

to run a MGR study but where the MGR testing requirement could be waived by the 

regulatory body to reduce the overall testing requirements for a given chemical. The overall 

goal of this case study is to maximally reduce the number of studies required by waiving 

MGR testing while maintaining the highest confidence that the chemicals waived would have 

little to no reproductive toxicity potential (Figure 5.3). Therefore, the applied model was 

tuned to have a high sensitivity and a high negative predictive rate. To reduce the false 

negative rate, an 8% in vitro activity cutoff filter was applied, meaning the chemical had to 

be positive in roughly 40 out of 500 assays. The model was then applied to the remaining 161 

chemicals using the optimal model cutoff of 0.6, as adjusting the cutoff did not improve the 

model sensitivity. This resulted in a balanced accuracy of 79% with high sensitivity and 

negative predictivity of 89% and 88%, respectively. The summary statistics translate into 67 

waivers being granted across all 381 chemicals, leading to a 17.6% reduction in required 

MGR studies. The 8 chemicals of the 67 total waived that showed any reproductive toxicity 

were Benfluralin, Pendimethalin, Tri-allate, Butafenacil, Dichlorvos, Dicofol, Spiroxamine 

and Tribufos, but all 8 had accompanying systemic parental toxicities at doses at or below the 

rLOAEL, which were predominantly driven by high dose litter size and reproductive organ 
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weight effects. A two-generation reproductive study in rats costs upwards of $750,000 

(Scialli, 2008), while the full battery of HTS data costs roughly $30,000. The average cost 

savings under conditions of case study 1 would be roughly $102,000 per chemical or $39 

million in total savings when 67 of 381 MGR studies were waived, a 14% reduction. Cost 

savings was calculated as the difference between the total cost of a MGR study and the cost 

of the HTS assay battery and the fractional cost of the MGR based on the percent of un-

waived studies. The cost savings estimate assumes that the HTS bioactivity profiling is only 

being used for reproductive testing decision-making, which is unlikely, but cost sharing 

estimates cannot be made at this time. Additionally, the cost savings estimates solely 

demonstrate the savings of increased testing efficiency and does not quantify the cost of 

misclassification. 

 Case study 2 involves applying the model to chemicals with the statutory authority to 

request a MGR study, but for which justification needs to be provided. The overall goal of 

this case study is to balance the time, animal, and financial costs of requesting a MGR study 

with the potential impact that a MGR study could have on regulating the chemical. 

Therefore, the applied model was tuned to have a high specificity and a high positive 

predictive rate (Figure 5.4). No in vitro activity cutoff filter was applied as this would not 

increase either the specificity or positive predictivity. The model was therefore applied to all 

381 chemicals using an adjusted model cutoff of 2.35 resulting in a specificity of 97% and 

positive predictivity of 88%. Under the conditions of case study 2, 52 chemicals would have 

MGR studies requested. Of the 52 chemicals with MGR study requests, 46 chemicals would 

cause reproductive toxicity in the MGR study and potentially impact the regulation of the 

chemical. For the cost savings estimation based solely on increased testing efficiency, we 
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calculated the number of studies that would need to be requested if selected by chance to 

identify 46 positive chemicals.  The positive prevalence in the reference dataset was roughly 

40%, which is expected to be high based on the positive reporting bias in the open literature 

but was used as a conservative estimate.  Therefore, 113 studies would have to be conducted 

to identify 46 positive chemicals if selected randomly, as opposed to 52 studies when 

selected based on the model prediction. The total cost savings would be over $34 million in 

comparing 113 MGR study requests versus 52 MGR study requests and accounting for the 

cost of the full HTS assay battery. The average costs savings per chemical would be roughly 

$90,000 across the entire chemical set.   

 Case study 3 involves applying the model to chemicals with limited to no statutory 

authority to request a MGR study, but where hazard assessments still need to be performed. 

As most chemicals currently fall under this statutory context, assessment and testing 

prioritization is needed. An assessment, in theory, can be performed on those chemicals most 

and least likely to cause reproductive toxicity based on the applied model. The remaining 

chemicals can then be prioritized based on their likelihood of being a reproductive toxicant, 

based on their model score. To identify chemicals most likely to be reproductive toxicants, a 

strict cutoff of 3 was used resulting in the identification of 28 chemicals, 27 of which 

demonstrated clear reproductive toxicity (Figure 5.5). Using the same model filters from 

Case Study 1, 67 chemicals were identified as being negative for reproductive toxicity.  In 

total, an initial assessment could be performed on 95 chemicals, a 25% reduction in the 

number of chemicals requiring an assessment. To produce similar reductions in the number 

of chemicals accurately assessed with chemicals selected randomly, 66 and 99 MGR studies 

would have to be performed to accurately identify 27 positive and 59 negative chemicals, 
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respectively. The average cost savings per chemical would be $80,000 if these chemicals 

were all being selected for follow-up MGR studies as calculated in case study 2. The need for 

safety assessment without long-term testing, the lack of statutory power to request studies, 

and the limited public resources to run MGR or similar studies would cost the $30,000 to run 

the entire battery of HTS assays and provide an initial assessment for 25% of the chemical 

library.  The three case studies provide perspective on the capacity of the predictive model to 

assess a large library of chemicals and estimates on the increased cost efficiency of 

incorporating the predictive model into the chemical testing decision making process. 

Discussion 

 We have developed a forward validated classification model of general reproductive 

toxicity capable of being optimized for a diverse set of applications regarding chemical 

testing decision-making. The published model of reproductive toxicity demonstrated a high 

level of accuracy and external predictivity, but was primarily trained and tested using 

conventional pesticide active ingredients (Martin, et al., 2011). The question remained 

whether a model trained and tested using such a narrow window of chemical space could be 

forward predictive across the broader chemical landscape. Using the available ToxCast Phase 

II chemical library and corresponding HTS data, a forward validation study was conducted 

using pharmaceuticals, other drug-like compounds, antimicrobials, food additives, pesticide 

formulation/inert ingredients, and additional pesticide active ingredients. The available in 

vivo reproductive toxicity study data quickly diminishes outside of the pesticide registration 

studies, yet 77 chemicals were characterized for the purposes of the forward validation study. 

The prevalence of positive chemicals within this set was inversely related to that of the 

original training and test dataset with roughly two-thirds being positive. We attribute this to 
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the number of chemicals for which only open literature studies were available, which has a 

recognized bias towards positive reporting. The published model’s cutoff parameter was 

established based on optimized balanced accuracy with the prevalence being roughly one-

third positive. Surprisingly, the cutoff of 0.6 remained optimal as did the in vitro activity 

filter of 2% or roughly 10 out of 500 assay actives. The in vitro activity filter removed 15 

chemicals which is comparable to the roughly 20% removed in the training dataset. The 77% 

(72% balanced accuracy) and 70% (69% balanced accuracy) accuracy levels with the model 

applied to the filter and unfiltered forward validation chemical set, respectively, quickly 

demonstrated the forward predictivity and stability of the model. 

 The ability of the model to be forward predictive and to maintain predictivity in light 

of replacing NVS rat CYP inhibition assays with human CYP assays and the use of the 

single-point AC50 estimates as opposed to full concentration response data, characterizes the 

model as highly practical, extensible, and flexible. Over time the model inputs, the individual 

HTS assays, will inevitably be modified due to changes in availability and advancements in 

assay technology. In addition to replacing assays over time, new assays will be developed 

with improved ability to assess perturbations of pathways and gene targets currently in the 

model and to fill data gaps. The data gaps that were previously discussed include 

steroidogenesis and metabolic activation across the targets (Martin, et al., 2011). A further 

recognized data gap identified from the forward validation chemical set is germ cell 

mutagenicity or clastogenicity. For example, acrylamide and a related chemical, N,N'-

methylenebisacrylamide, both cause dominant lethal effects on spermatids and other 

mutagenic/clastogenic effects to the spermatazoa (Sakamoto and Hashimoto, 1986;  

Sakamoto and Hashimoto, 1988) , but were false negatives in the forward validation study. 



 164 

Chemicals acting through increased reactivity or mutagenicity such as the acrylamide 

compounds or benzene containing chemicals like nitrobenzene have a limited in vitro 

bioactivity profile as many of these chemicals are confounded by cytotoxicity and the current 

assay set does not sufficiently address chemical reactivity or mutagenicity. Currently, efforts 

are underway to develop methods to fill this data gap, including ReProComet, and could be 

combined with models measuring receptor- and enzyme-based mechanisms of action 

(Cordelli et al., 2007). Additionally, QSAR models have shown limited success in the area of 

genotoxicity and mutagenicity. Models relevant to germ-cell mutagenicity have been 

developed and could be applied as part of an integrated reproductive testing strategy (Jensen 

et al., 2008;  Novic and Vracko, 2010).  

In addition to testing the forward predictivity and reproducibility of the model, the 

forward validation study also identified features that may have been over predictive in the 

original model. The only two features not maintaining a significant association with 

reproductive toxicity was PPARA and PPARG.  The features, AR, ESR1, CYP, GPCR, 

OTHER and PXR, showed similar or even increased correlation with the forward validation 

chemical set. The highly sensitive ATG_PPARa_TRANS and ATG_PPARg_TRANS drove 

the decrease in correlation as the PPARA and PPARG gene-sets with these assays removed 

remain significantly associated. Although a mechanistic link between PPAR activity and 

fertility or other reproductive impairments remains unclear (Peraza et al., 2006), the role of 

PPAR in steroid metabolism and its activity in reproductive tissues infers that it is a plausible 

target for disruption of endocrine signaling and altered gametogenesis. The addition of 

pharmaceutical compounds targeting PPAR, e.g., glitizars and glitazones, could provide 

evidence concerning whether or not potent and efficacious activators of PPAR cause effects 
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on reproduction. However, very limited information is publically available on these 

compounds in terms of reproductive toxicity. One hypothesis to test in the future is the 

relationship between the relative potency between PPAR activity and specific off-target 

activities with the reproductive toxicity profile of those chemicals. In general, the interactions 

between the gene targets and pathways incorporated into the current forward validated 

model, as well as other pathways, will be explored in a systems biology context, which will 

lead to a better understanding of concentration, dose and time relationships. 

 Rather than diving into the systems biological perspective, practical case studies were 

derived to explore the flexibility of the predictive reproductive toxicity model.  The large 

dataset spanning all phases of model development provided a substantial chemical library 

with which to test the different statutory scenarios. Each case study explored different 

statutory situations or contexts which exist today for the vast majority of environmental 

chemicals. However, the purpose of these case studies was not to provide the full statutory 

context or make definitive testing decisions as the real-world implementation of the existing 

and future regulations would take into account all available information, scientific and 

policy. For instance, case study 1 relates to chemicals with the statutory requirement to run a 

MGR study, but can be waived at the discretion of the regulatory authority. For 

environmental chemicals, this case study is most closely related to the regulation of 

pesticides active ingredients under FIFRA and FQPA, where MGR studies are generally 

required, yet study waiver requests are submitted by the registrants for various reasons. The 

application of the model would differ between food-use and non-food-use pesticides and 

would most likely take into account, at minimum, the available toxicity (e.g., sub-chronic or 

developmental studies) and exposure potential information. The application of the predictive 
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model may be just one piece of information used in the overall waiver or study request 

process. The evaluation of the case studies performed in this study focused on the 

optimization and customization of the model assuming the model was the only tool or 

information available.    

The requesting of study waivers in Case study 1 aimed to test the models ability to 

identify likely negative compounds through optimizing the model for negative predictivity 

and sensitivity. The in vitro activity filter was raised to 8% (i.e., at minimum 8 out of every 

100 assays were active for that particular chemical) increasing the probability that the 

chemical’s bioactivity fingerprint was adequately captured and that the chemical is not acting 

through a mechanism not covered in the current assay battery or that the chemical is not 

amenable to HTS. The outputs of case study 1 are not static as regulators could tune the 

model to further optimize based on different criteria as shown in the mock-up of the decision 

dashboard display (Figure 5.3). Case study 1 captured the application of the model for waiver 

requests which could substantially lower the testing burden of chemical companies and also 

lower the study evaluation process that the regulatory bodies must perform. A better 

understanding of the model’s uncertainties is needed to ensure studies are not waived that 

would have played a major role in the regulation of the chemical, i.e., identifying critical 

effects and dose levels of concern. The cost of even missing a single chemical that would 

have otherwise been identified through traditional testing is difficult to quantify. However, 

the cost of not increasing testing efficiency and maintaining the status quo inherently keeps 

thousands of chemicals on the market and in our environment with no understanding of their 

toxicity potential. 
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Case study 2 explored the situation where costly MGR studies or alternative studies 

could be requested given some prior relevant information. This case study relates to 

antimicrobials regulated under FIFRA and FQPA, loosely to new industrial chemicals under 

TSCA, and is akin to the decision processes in place for tier two testing in EDSP. However, 

the case study exclusively demonstrates the ability of the model to be customized for the 

purposes of efficiently requesting MGR studies based solely on model predictions. Ideally, 

the study request would yield detailed hazard information including mechanistic information 

as well as dose response characterization. This is as opposed to numerous negative findings 

that do not contribute to the risk assessment process. The increased efficiency over randomly 

selecting chemicals for further testing or for choosing chemicals based on use patterns or 

estimated exposure yields a greater return on the investment. In contrast to case study 1, case 

study 2 required optimizing the model to have high specificity and positive predictivity. The 

model cutoff was therefore increased from the original 0.6 level to 2.35 limiting the number 

of requests made to less than 15% of the total number of chemicals, which is a reasonable 

rate of request and would be expected to produce roughly 9 positive findings out of every 10 

tested chemicals. Depending on the statutory authority a greater or lesser percentage of 

chemicals could be requested.  

Case study 3 challenges the model in that there is little to no data or statutory 

authority to request data on the set of chemicals, and therefore any assessment or 

classification would have to be almost entirely based on the outputs of the model. Therefore, 

the model was optimized for nearly every performance metric. The in vitro activity filter and 

model cutoffs were constrained to the point that model predictions were made on only 25% 

of the chemicals. However, for these chemicals, one would currently have little to no 
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capacity to obtain reproductive toxicity assessments. The remaining 75% of chemicals could 

be prioritized for assessment based on their model scores. The 25% of chemicals the model 

was applied to has roughly 90% accuracy and predictivity approaching a level of confidence, 

especially when other characteristics are taken into consideration (e.g., use, exposure 

potential, and physical/chemical properties), that assessments or classifications could be 

based. The three cases studies presented cover the statutory context of the vast majority of 

chemicals, especially environmental chemicals. Application of the model to chemicals within 

each case study showed clear increases in testing efficiency, animal use efficiency, cost 

reduction, and the characterization of previously untested chemicals.  

Further developing the classification model predictive of reproductive toxicity toward 

quantitative predictions of dose, life-stage, and mechanistic relevancy will require a broader 

spectrum of assays and integration of the information into a systems modeling context. 

Progression of the model toward quantitative predictions may enable the complete 

replacement of the multigeneration reproductive study. In the meantime, the forward 

validated predictive model of reproductive toxicity requires a minimal investment per 

chemical to produce a signature of bioactivity capable of accurately identifying candidates 

for further reproductive testing. The predictive tool can immediately impact chemical testing 

decision making and set a course for ultimate replacement of high dose animal testing. 

Tables 

Table 5.1. Forward validation chemical set with associated reproductive LOAEL (rLOAEL) 

values in mg/kg/day and ‘NE” for chemicals that no rLOAEL was established based up to the 

highest dose tested. Percent active shows the number of assay for a given chemical that were 
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considered active over the total number of assays. A two percent in vitro activity filter was 

used to subset the chemicals for forward validation. 

CASRN Chemical Name rLOAEL 
(mg/kg/day) 

rLOAEL 
≤ 500 

mg/kg/day 

>2% 
In Vitro  
Active 

% 
In Vitro 
Active 

54965-24-1 Tamoxifen citrate 0.003 Yes Yes 18.8 
51-52-5 6-Propyl-2-thiouracil 0.1 Yes Yes 4.0 
57-74-9 Chlordane 0.125 Yes Yes 11.0 
50-28-2 17beta-Estradiol 0.17 Yes Yes 7.6 
1461-22-9 Tributyltin chloride 0.25 Yes Yes 32.9 
13311-84-7 Flutamide 0.4 Yes Yes 12.5 
79-94-7 3,3',5,5'-Tetrabromobisphenol 

A 
0.5 Yes Yes 9.1 

100-00-5 1-Chloro-4-nitrobenzene 0.7 Yes Yes 3.0 
131-18-0 Dipentyl phthalate 0.76 Yes Yes 7.0 
143-50-0 Kepone <1 Yes Yes 12.5 
50-55-5 Reserpine <1 Yes Yes 8.5 
59-05-2 Methotrexate <1 Yes Yes 11.2 
77-09-8 Phenolphthalein <1 Yes Yes 11.2 
4151-50-2 Sulfluramid 1.34 Yes Yes 25.6 
88-85-7 Dinoseb 2.33 Yes Yes 4.9 
5915-41-3 Terbuthylazin 2.5 Yes Yes 3.1 
79-06-1 Acrylamide 3.19 Yes Yes 3.0 
2795-39-3 Potassium 

perfluorooctanesulfonate 
3.2 Yes Yes 10.1 

732-11-6 Phosmet 6.1 Yes Yes 4.9 
119-61-9 Benzophenone 8.8 Yes Yes 2.7 
534-52-1 2-Methyl-4,6-dinitrophenol 10 Yes Yes 11.6 
84852-15-3 4-Nonylphenol, branched 10 Yes Yes 22.3 
69-09-0 Chlorpromazine hydrochloride 12.5 Yes Yes 19.5 
72178-02-0 Fomesafen 12.5 Yes Yes 2.1 
2921-88-2 Chlorpyrifos 15 Yes Yes 5.2 
59-87-0 5-Nitro-2-furaldehyde 

semicarbazone 
15 Yes Yes 2.1 

298-46-4 Carbamazepine 20 Yes Yes 2.7 
3825-26-1 Ammonium 

perfluorooctanoate 
30 Yes Yes 3.4 

10222-01-2 2,2-Dibromo-3-
nitrilopropionamide 

30 Yes Yes 5.2 

107534-96-3 Tebuconazole 30 Yes Yes 8.2 
120-83-2 2,4-Dichlorophenol 49.1 Yes Yes 3.0 
121-14-2 2,4-Dinitrotoluene 50 Yes Yes 4.0 
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446-72-0 Genistein 50 Yes Yes 9.5 
87-86-5 Pentachlorophenol 60 Yes Yes 12.2 
2634-33-5 1,2-Benzisothiazolin-3-one 75.1 Yes Yes 7.6 
140-66-9 4-(1,1,3,3-

Tetramethylbutyl)phenol 
100 Yes Yes 10.9 

85-68-7 Benzyl-butyl-phthalate 100 Yes Yes 5.2 
119-36-8 Methyl salicylate 150 Yes Yes 4.3 
52-51-7 Bronopol 200 Yes Yes 13.1 
65277-42-1 Ketoconazole 200 Yes Yes 8.2 
577-11-7 Docusate sodium 250 Yes Yes 16.8 
1806-26-4 4-Octylphenol 400 Yes Yes 5.5 
99-66-1 Valproic Acid 500 Yes Yes 15.2 
97-54-1 Isoeugenol 700 No Yes 4.9 
102-06-7 1,3-Diphenylguanidine NE No Yes 10.7 
1024-57-3 Heptachlor epoxide NE No Yes 3.7 
126-73-8 Tributyl phosphate NE No Yes 5.5 
137-30-4 Ziram NE No Yes 2.4 
149-30-4 2-Mercaptobenzothiazole NE No Yes 7.3 
151-21-3 Sodium dodecyl sulfate NE No Yes 22.9 
2058-46-0 Oxytetracycline hydrochloride NE No Yes 2.4 
2783-94-0 FD&C Yellow 6 NE No Yes 5.8 
29420-49-3 Perfluorobutane sulfonate, 

potassium 
NE No Yes 6.4 

298-02-2 Phorate NE No Yes 3.4 
307-24-4 Perfluorohexanoic acid NE No Yes 4.9 
319-85-7 beta-1,2,3,4,5,6-

Hexachlorocyclohexane 
NE No Yes 2.7 

34590-94-8 Propanol, 1(or 2)-(2-
methoxymethylethoxy)- 

NE No Yes 9.1 

50-29-3 p,p'-DDT NE No Yes 4.3 
59756-60-4 Fluridone NE No Yes 2.4 
6422-86-2 1,4-Benzenedicarboxylic acid, 

bis(2-ethylhexyl) ester 
NE No Yes 2.4 

88-06-2 2,4,6-Trichlorophenol NE No Yes 4.0 
91-53-2 Ethoxyquin NE No Yes 13.4 
98-95-3 Nitrobenzene 2 Yes No 1.5 
110-26-9 N,N'-methylenebisacrylamide 10 Yes No 0.6 
58-08-2 Caffeine 30 Yes No 1.5 
106-87-6 4-Vinyl-1-cyclohexene 

dioxide 
80 Yes No 0.6 

10605-21-7 Carbendazim 100 Yes No 1.5 
84-66-2 Diethyl phthalate 100 Yes No 0.6 
108-95-2 Phenol 318 Yes No 1.2 
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62-23-7 4-Nitrobenzoic acid 500 Yes No 0.9 
103-90-2 Acetaminophen 1430 No No 0.3 
117-84-0 Dioctyl phthalate NE No No 1.2 
1861-32-1 Chlorthal-dimethyl NE No No 1.8 
57-50-1 Sucrose NE No No 0.9 
80844-07-1 Etofenprox NE No No 1.8 
822-06-0 1,6-Diisocyanatohexane NE No No 1.2 
95-48-7 2-Methylphenol NE No No 0.3 

 
Table 5.2. Performance metrics for the predictive model of reproductive toxicity applied to 

the 77 or 62 chemical in vitro activity un-filtered or filtered forward validation set using the 

same model parameters as previously published (Martin, et al., 2011). The forward validation 

summary statistics were highly comparable to the internal and external validation summary 

statistics. 

Previously 
Published 

Model 
Statistics 

Previously 
Published 
Parameter 

Coefficients 

Forward Validation 
Model Statistics 

Activity Cutoff 
Filter Not 
Applied 

Activity Cutoff 
Filter Applied 

TP 55 PPARa 1.37 TP 37 TP 37 
FP 28 AR 0.98 FP 9 FP 8 
FN 13 ERa 0.45 FN 14 FN 6 
TN 110 PPARg 0.23 TN 17 TN 11 
BA 

Train 77±2% CYP 0.28 SENS 73% SENS 86% 

BA 
Test 74±5% GPCR 0.5 SPEC 65% SPEC 58% 

O-BA 80% OTHER 0.45 BA 69% BA 72% 
O-A 80% PXR -0.21 A 70% A 77% 

EV-A 76% Cutoff 0.6 OR 5 OR 8.5 
BA = Balanced accuracy (Average of sensitivity and specificity); Train=Five-fold cross-validation training set (average and standard 
deviation); Test=Five-fold cross-validation test set (average and standard deviation); O=Optimized or Full Model; EV-A=External 
Validation Accuracy; TP= True Positive Count; FP= False Positive Count; FN=False Negative Count; TN= True negative count; SENS= 
Sensitivity; SPEC= Specificity; A = Accuracy; Cutoff = LDA Model Intercept; OR= Odds ratio 
 
Figures 

Figure 5.1. Schematic representation of the chemical libraries, their overlap with each other, 

and their inclusion into or exclusion from the model development process is summarized. In 
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total, 304 of the 309 chemicals from Phase I of ToxCast were included in the model 

development or external validation process. Only a subset were used in the final model 

development or evaluation process due to filtering based on low quality of MGR or other 

reproductive study or low in vitro activity across all assays. Ultimately, 77 chemicals were 

tested in Phase II of ToxCast, not in Phase I, at the NCGC as part of Tox21, and that had 

quality reproductive study data.  This chemical set was used as the primary forward 

validation chemical set. 

 

Figure 5.2. Estimation of AC50 values and determining active calls across the cell-free 

assays used in the initial predictive model compare to the final AC50 values and hit calls 

using the full concentration response data from ToxCast Phase I. Comparing the hit calls 

resulted in a 87% balanced accuracy, while the negative log10 AC50 among all 305 true 
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positives resulted in a percent correlation of 76%.  Only 31of 305 chemical-assay 

combinations had estimated AC50 values that were greater than an order of magnitude from 

each other, demonstrating the ability to preliminarily use single concentration screening data 

from ToxCast Phase II in applying the predictive model of reproductive toxicity.  

 
 
Figure 5.3. Decision dashboard for case study 1 represents an application of the predictive 

model of reproductive toxicity to chemicals with the statutory requirement to perform a 

multigeneration reproductive study (MGR). The left side of the dashboard displays specific 
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parameters or decisions that can be tuned or chosen and the right side represents the model 

outputs, including model performance. True positive (TP), false positive (FP), false negative 

(FN), and true negative counts are provided based on the model performance and the number 

of chemicals the model was applied to, which in turn computes sensitivity (Sens), specificity 

(Spec), positive predictivity (PPV), negative predictivity (NPV), balanced accuracy (BA) and 

predictivity (Pred). 

 
 
Figure 5.4. Decision dashboard for case study 2 represents an application of the predictive 

model of reproductive toxicity to chemicals with the statutory capacity to request a 

multigeneration reproductive study (MGR). The left side of the dashboard displays specific 

parameters or decisions that can be tuned or chosen and the right side represents the model 

outputs, including model performance. True positive (TP), false positive (FP), false negative 
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(FN), and true negative counts are provided based on the model performance and the number 

of chemicals the model was applied to, which in turn computes sensitivity (Sens), specificity 

(Spec), positive predictivity (PPV), negative predictivity (NPV), balanced accuracy (BA) and 

predictivity (Pred). 

 
 
Figure 5.5. Decision dashboard for case study 3 represents an application of the predictive 

model of reproductive toxicity to chemicals with little to no statutory to request a 

multigeneration reproductive study (MGR). The left side of the dashboard displays specific 

parameters or decisions that can be tuned or chosen and the right side represents the model 

outputs, including model performance. True positive (TP), false positive (FP), false negative 

(FN), and true negative counts are provided based on the model performance and the number 

of chemicals the model was applied to, which in turn computes sensitivity (Sens), specificity 
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(Spec), positive predictivity (PPV), negative predictivity (NPV), balanced accuracy (BA) and 

predictivity (Pred). 
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CHAPTER 6 

GENERAL DISCUSSION 

The combined results of this research demonstrate that bioactivity profiling from high 

throughput screening (HTS) data can be used to accurately predict reproductive toxicity 

potential and be used to increase chemical testing efficiency. In arriving at a forward 

predictive model of reproductive toxicity with the capacity to change chemical testing 

decision making, foundational work had to be performed to ensure data quality, modeling 

transparency, and repeatability. The foundational methodologies employed included 

standardization of toxicological vocabularies, database development, HTS data analysis and 

informatics, classification modeling, and validation procedures.   

In Vivo – Capturing Traditional Reproductive Toxicity Information 

Reproductive toxicity, as defined in this research, is chemical effects on reproductive 

performance (i.e., fertility and fecundity), the reproductive tract, and/or sexual development. 

Reproductive toxicity has been routinely assessed, using laboratory animal studies, in the 

chemical risk assessment process for over forty years. For environmental chemicals, the 

multi-generation reproduction and fertility study in rats has been the primary tool for 

assessing reproductive toxicity potential in humans. Unfortunately, these expensive and 

animal intensive studies have only been conducted on a fraction of environmentally relevant 

chemicals and the studies have been dispersed across many filing cabinets, computers, and 

file management systems over the years. Limited efforts have been made to make these data 
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useful beyond individual chemical risk assessments and to normalize study design and effect 

nomenclature. Before advancements in reproductive toxicity testing decision-making could 

be made using computational modeling and alternative methods, the scientific community 

needed to fully understand the body of information that existed. The Toxicity Reference 

Database (ToxRefDB) was the first large-scale effort to capture and house the dispersed 

library of reproductive toxicity information in a consistent and transparent manner (as 

described in Chapter 2). 

The ToxRefDB reproductive toxicity study dataset has opened the doors to the broad 

evaluation of the multi-generation reproductive toxicity test with goals of refining the study 

design, reducing animal use with alternative methods, or replacing the study altogether. The 

emphasis on using an accepted controlled vocabulary for capturing the study and effect 

information permits the integration of analyses and the common interpretation of results 

across many laboratories, study authors, study reviewers, study designs, and over forty years 

of data. A retrospective analysis, primarily using ToxRefDB, comparing first and second 

generation relative sensitivity has helped push forward the adoption of an extended one-

generation protocol (Piersma et al., 2010), while a similar description of the data was used in 

defining reproductive toxicants for developing a predictive model (as described in Chapter 

4). In the past, these analyses would not have been connected or comparable in any way, thus 

hindering the ability to evaluate the impact of either analysis on refining toxicity testing 

strategies. As alternative test methods for reproductive toxicity continue to be developed 

(Schenk et al., 2010), transparent and consistent definition and use of chemical training sets 

need to be used in order to adequately and uniformly assess new methods and approaches.   



 182 

In Vitro – Analyzing and Interpreting High Throughput Screening Data 

High throughput screening (HTS) has the ability to tests thousands of chemicals in 

concentration response across hundreds of in vitro molecular and cellular assays for tens of 

thousands of dollars as compared to the hundreds of thousands of dollars to run a single two-

generation reproductive study. Much like structural features, HTS assays provide uniform 

data for which to characterize a large chemical library, but are anchored to molecular and 

cellular events often tied to known biological pathways. HTS, as often performed by the 

pharmaceutical industry, has its own unique challenges including the screening of millions of 

chemicals as opposed to thousands as is being done in HTS application toward toxicity 

testing. However, pharmaceutical screening is not typically performed in concentration 

response and aims to identify a select set of very potent and efficacious chemicals against a 

single molecular target as lead candidates for further evaluation. HTS application toward 

toxicity testing has generated and reinvigorated areas of research including performing broad 

spectrum biological activity profiling, routinely running HTS in concentration response 

mode, and discovering the appropriate informatics and analysis techniques to handle and 

interpret the large quantity of data (as described in Chapter 3). The U.S. EPA ToxCast 

research program has produced the largest publically available broad spectrum HTS dataset 

and a few unique themes and lessons have emerged from this diverse dataset, including the 

difference between statistical and biological relevance and the need for common but flexible 

data analysis workflows. 

Generally, a four-parameter hill model can be fit to the concentration response data 

producing a model that estimates the baseline or bottom response, maximal or top response, 

the slope of the response, and the 50% activity concentration or AC50. Data pre-processing, 
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parameter constraining, confounding, statistical and biological considerations all play a role 

into the final set of conditions used to define active or inactive concentrations of a particular 

chemical-assay combination. Specific considerations include, but are not limited to; data 

normalization methods, positive and negative control performance and availability, baseline 

response adjustments, plate or well variations, response saturation (e.g., full versus partial 

agonist), active concentration extrapolation, outlier detection and removal, response 

directionality, non-monotonic response detection, cytotoxicity filtering and interpretation, 

fluorescence and other artifact detection, statistical versus biological significance, and target 

specificity. Taking into account many of these considerations enables summary statistical 

outputs to be compared appropriately across assays and assay technologies and to be used in 

downstream modeling applications. These complex and often dependent confounders support 

the idea that no single assay is “truth” and that incorporating orthogonal or parallel assays 

provides much needed testing redundancy helping ensure an accurate characterization of a 

chemical’s potential to interact with a particular biological target or pathway. Obtaining 

accurate activity calls and accurately annotating the assays prepares the large data-set for 

integration. Pathway-based analysis has been the focus of many researchers in the genomic-

era. However, mapping roughly 500 assays to genes and then to pathways results in hundreds 

to thousands of potential pathways with high levels of redundancy. To lower the complexity 

of data integration, assays were mapped to gene or aggregated to related gene-sets (e.g., all 

cytochrome P450 inhibition assays) reducing the dataset down from over 500 unique assays 

to less than 100 gene or gene-sets. The result of this data reduction process creates an 

increasingly independent dataset, i.e., decreased correlation between input features, and 

assists in the practical long-term implementation of downstream models and tools. The 
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model’s features are genes or gene-sets and do not necessarily rely on a single assay to be 

available and allows for seamless upgrades to the system as new and improved assay 

technology becomes available. 

Model Development – Combing HTS and Animal Toxicity Data 

Computational modeling is an interface between reference in vivo reproductive 

toxicity data and in vitro assay (i.e. HTS) data. Reproductive toxicity is an aggregated multi-

modal and multi-effect outcome. No single assay has the ability to broadly identify 

reproductive toxicants. Computational modeling allows one to explore the complex 

relationships between in vivo observations and networks of in vitro activity. One of the more 

simplistic computational modeling approaches is the development of a classification model, 

which aims to accurately classify or predict an outcome based a training set with known 

outcomes. The training set for modeling reproductive toxicity was the set of chemicals in the 

ToxCast library with high quality reproductive toxicity data (as described in Chapter 4). The 

initial inputs into the model were the hundreds of ToxCast assays that were collectively 

mapped to genes and the aggregate activity across the assays per gene provided the 

quantitative inputs into the model. The assay-gene combinations were further filtered based 

on a feature selection process that evaluated the statistical association to the training set data. 

The filtered gene set was then weighted in a multivariate model using linear discriminate 

analysis (LDA) and five-fold cross-validation. Many other approaches and methods could 

have been deployed, but our observation has been that using complex machine learning 

algorithms have a tendency to over-fit the data lowering the outputted model’s ability to be 

externally predictive. The resulting internal model performance statistics were greater than or 
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equal to 75% balanced accuracy and there was no significant difference between the training 

and test set accuracies.  

For the purposes of clarity and in the context of the predictive reproductive toxicity 

model, the terms ‘external validation’ and ‘forward validation’ are distinguished from each 

other and defined. External validation is the testing of the predictive model’s performance 

using data generated alongside data used in the training of the model, but not used in the 

developing the initial model. Forward validation is the testing of the predictive model’s 

performance using data generated independent of the data used in the training of the model 

and for which the results were not previously known. Among the chemicals selected for 

external validation, the model provided accurate predictions for 16 of the 21 chemicals. The 

five chemicals with inaccurate predictions provide valuable insight into potential limitations 

or gaps of the model. Interestingly, the 5 chemicals had a common phenotypic profile with 

respect to reproductive toxicity causing reduced early offspring survival, particularly litter 

size decrease with little to no accompanying effects on reproductive performance or 

reproductive tract pathology. The rLOAEL for all 5 chemicals was set at the high dose tested 

based on the early offspring survival effects and the parental and offspring LOAEL were set 

at the lower dose levels. Based on the inclusive definition used for defining a positive for 

reproductive toxicity for model development all 5 were considered positive, but lack 

evidence of specific fertility-related or developmentally sensitive reproductive outcomes. 

Nonetheless, a gap in model predictivity has been identified and could potentially be filled 

using additional assay technologies, physical chemical properties and structural descriptors, 

or acute or short-term in vivo studies. 
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Biological Plausibility – Key Targets and Pathways Identified 

The model development process identified biologically plausible features and 

pathways from over 500 assays mapped to less than 100 genes or gene-sets and spanning 

many reproductive relevant modes-of-action. PPARα activity was clearly associated with 

reproductive toxicity, with all 10 PPARα agonists in the training set causing reproductive 

toxicity. Although a mechanistic link between PPAR activity and fertility or other 

reproductive impairments remains unclear (Peraza et al., 2006), the role of PPAR in steroid 

metabolism and its activity in reproductive tissues infers that it is a plausible target for 

disruption of endocrine signaling and altered gametogenesis. AR and ERα activity was also 

associated with reproductive toxicity. The ToxCast receptor profiling identified most if not 

all the known anti-androgenic and estrogenic chemicals in the current dataset, but the causal 

relationship between reproductive toxicity and steroid receptor activity, absolute and relative 

potency and efficacy, needs to be explored further. CYP enzyme inhibition, as compared to 

gene induction, was significantly more associated with reproductive toxicity. Alterations in 

steroid metabolism through CYP induction have been previously associated with 

reproductive impairment (Goetz et al., 2007), however the non-specific inhibition of CYPs 

may be a surrogate for a chemical’s capacity to disturb steroid metabolism including 

inhibition of key CYPs involved in steroidogenesis (e.g., Cyp19 and Cyp17). Related to CYP 

activity, PXR interestingly displayed a negative correlation/association with reproductive 

toxicity. In general, PXR lowered the false positive rate of the model by lowering the model 

score of chemicals with non-specific and low potency nuclear receptor activity. Robust PXR 

activity is an indication of potent xeno-sensing and potentially rapid metabolism. A major 

component of the model not directly related to nuclear receptor biology and 
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xenobiotic/steroid metabolism was GPCR binding. Numerous GPCR binding assays were 

significantly associated with reproductive toxicity. Those chosen to represent the GPCR 

family were selected for statistical, and not biological, reasons as there is limited literature 

information on their role in reproduction in contrast to their well characterized role in 

nervous system function. Platforms measuring EGFR, TGF-β1 and NF-κB activity were also 

associated with reproductive toxicity. All three gene products have been shown to modulate 

the relative sensitivity of developmental toxicants, especially aryl-hydrocarbon receptor 

signaling (Abbott et al., 2003;  Tian et al., 1999) and may be indicative of altered xenobiotic 

metabolism, cellular proliferation, cell-cell signaling or potential epigenetic effects (Tian, 

2009;  Tian et al., 2002). Overall the key targets in the model identify plausible modes of 

action leading to reproductive toxicity covering anti-androgenic, estrogenic, 

cholesterol/steroid metabolism, limited coverage of disruption of steroidogenesis, and altered 

xenobiotic metabolism modes of action. 

Validation – Evaluating the Developed Model 

Forward validation of the predictive reproductive toxicity model ultimately measures 

the stability of the entire system. The model was previously shown to be stable using cross-

validation (75% accuracy across the test sets) and robust using external validation (75% 

accuracy). Forward validation not only further tests the external predictivity of the model 

across an increasingly diverse chemical set, but also tests the reproducibility and overall 

quality of the input data (i.e., HTS data). The additional 297 chemicals run across the entire 

assay set used in developing the model produced 77 chemicals with high quality reproductive 

toxicity study data. Key differences between the external validation dataset and the forward 

validation dataset included the fact that the cell-free assays were all run in single-point versus 
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full concentration response and the rodent cytochrome P450 inhibition (CYP) assays were 

replaced with human assays due to cost reduction and testing efficiency. These real-world 

factors truly test the applicability of the predictive model and interesting appeared to have 

little impact on model performance. Using ToxCast Phase I data, the single-point activity 

calls were roughly 90% concordant with concentration response activity calls and the human 

CYP assays were roughly 70% correlated to the rodent. Additionally, applying the in vitro 

activity filter of 2% (i.e., 2 out of every 100 assays were active for a particular chemical) 

removed 15 of the 77 chemicals from the forward validation chemical set. In applying the 

model to the forward validation chemical set with and without the activity filter the model 

remained highly accurate with 77% accuracy (72% balanced accuracy) and 70% accuracy 

(69% balanced accuracy), respectively. The maintained high level of accuracy progressing 

from training, to testing, to external validation, and finally to forward validation 

demonstrates the applicability of the model to classify the reproductive toxicity potential of 

chemicals.  

Application – Developing a Tool for Chemical Testing 

There currently is great need for a tool that can inform chemical testing decisions 

especially with regards to reproductive toxicity testing due to heavy animal use, high cost, 

and increasing concern for chemicals effects on reproductive development (Scialli, 2008). 

The forward validated predictive model of reproductive toxicity would undoubtedly be 

improved by incorporation of other available models, alternative test methods and 

institutional knowledge, especially in regards to supplementing recognized weaknesses in the 

model including steroidogenesis and germ-cell mutagenicity (Cordelli et al., 2007;  Hareng et 

al., 2005). The validation status and transparency of the various alternative methods, tools or 
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models varies, but currently would be difficult to integrate due to discordant chemical 

coverage and a lack of data availability at this time. Nonetheless, evaluating the current 

model in isolation gives great insight into its potential impact on chemical testing decision-

making. Three case studies were derived varying the statutory context varying from requiring 

a MGR study, to requesting a MGR study, to no authority to request a study. Using the full 

chemical dataset with reproductive toxicity information (N=381chemicals), the first case 

study tested the ability of the model to accurately identify the most likely negative chemicals 

in order to apply a waiver to those chemicals. Based on optimized model sensitivity and 

negative predictivity, waivers could be applied to 67 chemicals out of the 381 total, a roughly 

20% reduction in reproductive testing and total cost. In contrast, case study 2 has the 

statutory authority to request studies when evidence suggests the need for a study. Therefore, 

the model was optimized to identify most likely positive chemicals resulting in 52 of the 381 

chemicals resulting in MGR study requests. Each study costs upwards of $750,000, but the 

increased efficiency in running studies that result in important positive findings potentially 

being used in chemical risk assessment would save roughly $90,000 per chemical across all 

chemicals that would fall under case study 2. Case study 3 provides the biggest challenge 

because of the limited authority to request studies and the current number of chemicals that 

fall into this category. In starting to tackle the need for assessing these chemicals the model 

was applied by attempting to optimize the confidence in both negative and positive 

predictions. Therefore, the model was applied to the lowest and highest scoring chemicals 

with a high in vitro activity filter resulting in 25% of the chemicals being classified as highly 

likely to be a reproductive toxicant (27 of 28 chemicals positive) or not (59 of 67chemicals 

negative). The remaining 75% of chemicals could be prioritized for further testing or 
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evaluation based on their model scores. The three cases studies cover the statutory context of 

the vast majority of chemicals, in particular environmental chemicals. Application of the 

model to chemicals within each case study showed clear increases in testing efficiency, 

animal use efficiency, cost reduction, and the characterization of previously untested 

chemicals. 

With the availability of a forward validated classification model predicting 

reproductive toxicity, the bottleneck of uncharacterized chemicals can be evaluated either 

through improvements in the overall statutory authority to request MGR studies or in the 

ability to quantitatively identify reproductive toxicants. If the statutory authority to request 

MGR studies were improved, then the current model in concert with other models, 

alternative methods and institutional knowledge could identify with fairly good accuracy and 

efficiency all chemicals that a MGR should be requested. If the latter were improved to the 

point of accurate adverse dose predictions, then the model could drastically decrease the need 

for MGR studies and be used in the assessment of the majority of environmental chemicals. 

To do this, improvements in HTS assay reproducibility, metabolic capacity, mode-of-action 

coverage, reverse toxicokinetics, and overall model accuracy would need to be made. Placing 

the classification model into a systems modeling context will begin to address these next 

generation of research questions. For now, the forward validated predictive model of 

reproductive toxicity can go a long way in improving reproductive chemical testing 

efficiency and decision-making. 
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CHAPTER 7 

FUTURE DIRECTIONS 

The development of a classification model predictive of rodent reproductive toxicity 

has provided the chemical testing community with a tool for prioritizing and targeting testing 

decisions for chemicals with unknown toxicities. Practical implementation of this tool 

requires large scale testing of thousands of chemicals across, at minimum, the assays used in 

the model. As additional models are generated and integrated with each other, hundreds of 

high throughput screening (HTS) assays will be required and be used to test, refine and add 

to the high throughput predictive toolbox. The cost to run over 500 assays in roughly 10 

distinct technologies is roughly $30,000 per chemical in contrast to the greater than twenty 

million dollars it costs to run the battery of animal toxicity studies used in pesticide 

registration.  The nominal costs to run such a large library of assays makes expansion of the 

current assay set reasonable, especially if data generation and analysis costs are shared or 

distributed among government regulatory agencies and chemical companies. The current 

predictive model of reproductive toxicity is a good example of how we will continue to 

refine and expand the model. 

Assay Development to Fill Biological Gaps 

 The predictive model has recognized data gaps in terms of known and unknown 

modes of toxic action, assay coverage, and pathway redundancy. The model contains non-

specific cytochrome P450 inhibition as a feature predictive of reproductive toxicity potential 
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yet provides little specific indication of a chemical’s potential to disrupt steroidogenesis. To 

cover the steroidogenic mode-of-action, multiple assays may be required but a good start 

would be the incorporation of the H295R steroidogenesis assay currently used in the 

Endocrine Disrupter Screening Program (EDSP) and that is currently being converted into a 

higher-throughput 96-well format (Hecker and Giesy, 2008;  Hecker et al., 2011). Another 

identified mode-of-action gap in the current model is the detection of germ-cell mutagens 

and clastogens. Currently, a number of assays are available, but lack throughput for testing 

thousands of chemicals (Cordelli et al., 2007). Future research in advancing the throughput 

and mechanistic coverage of assays or models targeting the identification of germ-cell 

damaging chemicals is needed and is an area in which structure-based modeling may be a 

useful tool (Grindon et al., 2008). The identification and filling of biological gaps in the 

model will only increase the understanding and relationships between features in the model 

and the resulting predictions. An initial step in relating the biological responses, predicted 

outcome and the actual adverse outcome is the use of pharmacokinetic information. The 

assumption would be that the biological features in the model would have to be activated at 

or below concentrations that cause the adverse reproductive outcome.  Currently, a concept 

of reverse pharmacokinetics, a combination of in vitro hepatic clearance, plasma protein 

binding and a simple pharmacokinetic model, is being used to estimate the administered dose 

required to achieve a steady-state concentration in the blood equivalent to the active 

concentrations observed in a particular HTS assay (Rotroff et al., 2010).  In short, one can 

convert micromolar active concentrations to milligram per kilogram of bodyweight per day 

(mg/kg/day). Early work has shown that relationship exist between HTS targets linked to a 

particular mode-of-action  and whole animal toxic outcomes for chemicals with a known 
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modes-of-action (Judson et al., 2011). However, additional research is needed to incorporate 

this reverse toxicokinetic information into the model development process and using the 

information to corroborate and link biological activity with toxicological activity. 

Neuroendocrine Systems Modeling 

 To advance the reproductive modeling effort being classification modeling, the effort 

will need to be put into a system modeling framework. One such approach is the 

development of virtual tissues or systems as is currently being done with the liver and 

embryo. Directly related to the prediction of reproductive outcomes, would be the modeling 

of the hypothalamic-pituitary (HP) axis, the primary initiator of the onset of puberty and key 

in the maintenance of gonadal (G), thyroid (T), and adrenal (A) function. Many of the key 

normal physiological events involved in pubertal onset, sexual maturation, steroidogenesis, 

and oogenesis have been well described based on observed hormonal, protein and gene 

changes (Hoyer, 2010;  Perreault, 2008). However, the exact sequence of these events and 

the ability of chemicals to perturb these well orchestrated feedback mechanisms have yet to 

be elucidated in full. Currently, a variety of in vivo and in vitro assays exist that explore 

chemical perturbations of the HP(GTA)-axis, including estrogenicity, androgenicity, 

aromatase, steroidogenesis, thyroid function, puberty, and sexual maturation and will 

continue to be refined, scaled-up, and validated. The majority of these mechanisms are 

covered in the current predictive model of reproductive toxicity, but dose- and time-

relationships can be explored further within the virtual HP(GTA)-axis. The ultimate goal 

would be to have a working model of the HP(GTA)-axis that would incorporate high-

throughput testing results and other data to make detailed predictions of an uncharacterized 
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chemical’s effect on reproduction and sexual development with life-stage, dose response, and 

mechanistic specificity. 

Extension to Predicting Human and Ecological Reproductive Toxicity 

 The systems modeling approaches also help progress from predicting animal toxicity 

to human toxicity and extrapolating to ecologically-relevant species. Very limited causal 

evidence exists pertaining to chemical effects on human reproduction, thus the inability to 

predict human reproductive toxicity directly, to date. However, through the EPA ToxCast 

research program marketed and failed pharmaceutical compounds have been included into 

the chemical library and the respective pharmaceutical companies have contributed pre-

clinical and clinical data. Efforts are underway to make the clinical data useful and to begin 

to bridge between HTS, pre-clinical, and clinical outcomes. The number of chemicals with 

high quality clinical fertility or other reproductive parameters tested will most likely be 

limited, but nonetheless may provide hints as to the human relevancy of some of the targets 

in the current or future models. In addition to predicting human toxicity, research efforts are 

needed to evaluate the challenges in extending models predictive of mammalian toxicity to 

ecologically-relevant species, including reptiles, amphibians, fish, and birds. Work similar to 

ToxRefDB has been performed for pesticide registration studies for ecological risk 

assessments (Russom, 2002). The data from ECOTOX could provide valuable bridging data 

by comparing, for example, avian reproduction study data to rat multigeneration reproductive 

study data, but additional work is needed to make these data comparable. Much attention has 

been placed on testing for endocrine disruption for both human and ecological risk 

assessments (Ankley et al., 2009). However, few ecologically-relevant species have been the 

target of endocrine screening especially for assays outside of estrogen and androgen receptor 
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activity. Assay development needs to be focused on these other species as well as expanding 

beyond estrogen and androgen assays into screening for HP(GTA) effects (Watanabe et al., 

2009).  Lessons learned from developing predictive reproductive toxicity models of 

ecological species, especially if done so from a population perspective, could have great 

impact on the use of predictive models towards human health risk assessment.  Likewise, 

performing systems modeling determining best practices for specific extrapolation from 

rodent to human in HTS predictive models will greatly impact approaches applied in 

environmental toxicology. Using computational toxicology as the interface between typically 

distinct risk assessment processes should help advance both regulatory sciences or even 

merge them into one with an eye toward full life-cycle assessments. 

Developing an Integrated Testing Strategy 

 An early step toward assessing chemicals in an integrated fashion is the combining of 

predictive toxicity models and alternative test methods as part of an overarching integrated 

testing strategy. Similar efforts to develop predictive models of prenatal developmental 

toxicity using HTS data have shown promise and the compatibility with the predictive model 

of reproductive toxicity will make the integration of the two models straightforward. These 

HTS-derived models will enable the evaluation of the vast majority of environmental 

chemicals with the initial capacity to prioritize chemical testing or make other simple 

chemical testing decisions. In addition to the systems modeling work that needs to be 

performed to add dose, time, and mechanistic relevance to the classification models, equal 

efforts in developing and validating alternative test methods for evaluating developmental 

and reproductive toxicity in alternative test species or medium throughput complex assay 

systems are required. Ideally, the systems modeling and the test method development will 
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feed off of each other with the systems modeling identifying molecular and cellular 

mechanisms to focus assay development and for the complex assay systems to provide data 

feeding systems modeling efforts. As the mechanisms leading to toxicity continue to be 

elucidated and the ability to assay those mechanisms becomes available, the need and 

reliance on animal testing will decline. The focus and usefulness of chemical-by-chemical 

risk assessment will diminish and the integrated evaluation of chemicals in the context of 

pathways, co-exposures, lifestyle and communities will be the drivers of chemical safety 

assessments. 
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