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ABSTRACT 

Samira A. Brooks: The regulation of gene expression profiles in clear cell Renal Cell 
Carcinoma by tumor heterogeneity and environmental exposure 

(Under the direction of W. Kimryn Rathmell) 
 

 Currently, the disease management and therapeutic strategies for renal cell carcinoma 

(RCC) have arisen from cancer biology discoveries, but have evolved fairly independently of 

individual tumor biology. Thus, a gap has emerged in our understanding of the fundamental 

paradigms of what core molecular features are important for tissue based biomarker research 

today. Although extensive effort has been placed on identifying molecular biomarkers for 

RCC, remarkably, there are few validated biomarkers with substantive impact on managing 

disease prognosis. The emergence of high-throughput molecular profiling technologies 

provides the opportunity to explore the underlying molecular features of RCC that will 

warrant the enhanced understanding of its biology and shed light on future therapeutic 

methods to treat the disease.  

Identifying molecular biomarkers that provide insight towards biological processes, 

pathogenesis, and response to therapeutics has been at the forefront of current research.  The 

cancer biology field has focused especially on this area in hopes of further understanding the 

molecular aberrations that contribute to disease development and progression. Prognostic 

biomarkers are also needed for making personalized treatment decisions, particularly at a 

time when adjuvant and neoadjuvant options are becoming the mainstay of therapy for many 

cancers, including Renal Cell Carcinoma (RCC) [1, 2]. Exploiting the genome to uncover 
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biomarkers that are indicative of disease progression and aggressiveness can improve patient 

treatment and survival.  

In this dissertation, novel gene expression signatures for the predominant subtype of 

RCC, clear cell Renal Cell Carcinoma (ccRCC), are validated as imperative prognostic 

signatures, whose underlying biology is driven by distinct metabolic pathways. Furthermore, 

environmental exposures to the heavy metal Cadmium, alters the kidney genome and 

epigenome that may influence the kidney to develop into these ccRCC subtypes and thus 

impact patient prognosis. These biomarkers of ccRCC have the potential to have an 

impression on the clinical arena and can be used for assessing prognostic and predictive 

outcomes. 
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CHAPTER 11,2: INTRODUCTION 

Clear cell Renal Cell Carcinoma  

The incidence of adult Renal Cell Carcinoma (RCC), or kidney cancer, is on a steady 

rise in the western world.  In the U.S, kidney cancer is the sixth leading cause of cancer 

among men and the eighth among women[3]. There are multiple subtypes of this disease, 

however, over 70% of patients with renal tumors have the clear cell (ccRCC) subtype, a 

tumor postulated to arise in the proximal tubules and is associated with chromosome 3p 

deletions and inactivation of the Von Hippel-Lindau (VHL) tumor suppressor[4].  VHL 

mutations lead to the stabilization of hypoxia-inducible factors (HIFs) and thus the activation 

of the hypoxia pathway, a response that promotes cancer cell survival through increases in 

angiogenic growth factor production and metabolic reprograming of cellular glucose and 

energy metabolism [5]. Even with advances in elucidating the underlying molecular biology 

of ccRCC, the metastatic setting of this disease remains with no curative therapy options; 

leaving patients with a median survival range of 10-26 months, even using the best 

therapies[6].  Exploring the underlying molecular features of ccRCC will warrant the 

enhanced understanding of its biology. Thus, a novel clinically applicable classification and 

prognostic tool to identify two subtypes of ccRCC, clear cell A (ccA) and clear cell B (ccB), 

was elucidated and validated[7]. This 34-gene expression signature (ClearCode34) is 
                                                             
1 Adapted from Brooks, S.A. & Rathmell, W.K. (2014) Uniting Molecular Biomarkers to Advance the Science 
and Care of Clear Cell Renal Cell Carcinoma. The Journal of OncoPathology 1, 45-54.  
2 Adapted from Halifax Project. (2014) Assessing the carcinogenic effects of low dose exposures to chemical 
mixtures in the environment. Carcinogenesis, In press. 
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expounded on in Chapter 2 and can be used as a prognostic tool to assess progression risk for 

this cancer that has no optimal treatment for metastatic disease.  

The majority of ccRCC patients presents with localized Stage I-III disease, with partial 

or complete nephrectomy being efficient for tumor removal[8].  However, around 17% of 

ccRCC patients will have metastatic disease and one-third will recur within the first five 

years following surgery. ccRCC metastases usually develop in the bone, brain, and lungs[9], 

all having variable survival outcomes. Few therapeutic options are available for these 

patients due to disease resistance to chemotherapy and radiation, so targeted treatment to the 

vascular endothelial growth factor receptor (VEGFR) is the predominate treatment option[8]. 

Some metastatic patients can also be treated through metastasectomy, surveillance, and high 

dosing of interleukin-2. Nonetheless, primary tumor features have little to no application 

towards the prognostics of metastatic disease and accurate tools are increasingly needed that 

predict response to therapy, progression-free and overall survival.    

 VEGFR inhibitors Sunitinib, Bevacizumab, and Sorafenib have been used 

independently, as well as in combination with interferon-alpha to treat metastatic ccRCC, but 

changes in tumor response and survival are not strong enough to make this the mainstay of 

therapy[9]. Interestingly, these treatments are recommended as first-line therapy options in 

international treatment guidelines for metastatic patients. Temsirolimus and Everolimus, two 

mTOR kinase pathway inhibitors, are also recommended as first and second-line treatment 

options to combat the deregulated metabolic activity of the disease[9]. Further research and 

clinical trials are ongoing to determine which therapeutic options and timing of 

administration is best for treating ccRCC.  Elucidating prognostic biomarkers of ccRCC will 
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facilitate the development of more efficient therapeutics and clinicians with determining the 

optimal treatment for their patients to improve prognostics.  

ccRCC Prognostic Biomarkers  

Increasingly, genetic markers and signatures of cancer are being explored to define 

changes to the transcriptome that expand the knowledge of tumor state, progression 

characteristics, and response to therapy[10]. The oldest prognostic variables for ccRCC are 

pathologic stage, lymph nodes status, and histologic grade. While the most established 

biomarker is inactive VHL, which allows HIF stabilization, with tumors expressing HIF2A 

associated with a poor prognosis compared to tumors expressing both HIF1A and 2A[11] 

[12], however, this effect is modest, and has not found clinical traction. In addition to 

individual markers, gene signatures have been revealed through whole genome expression 

profiling to identify discrete and global changes in transcript expression.  Recently, two 

subtypes of ccRCC, ccA and ccB, were identified, and these biologically defined tumors 

were associated with a striking difference in overall and cancer specific survival[13, 14]. In 

my work, I adapted the signature to a core set of genes measurable in crude lysates prepared 

from formalin-fixed paraffin embedded (FFPE) tissue, as well as high-throughput mRNA 

transcriptomic data, verifying the two predominant gene expression patterns, and creating a 

prognostic algorithm that can be applied widely to clinical specimens[7]. Although the new 

recognition of intratumoral heterogeneity of ccRCC raises a challenge for identifying and 

validating genetic biomarkers, my data shows stable core gene expression patterns across 

tumors suggests expression profiles could be instrumental for personalized disease 

management and elucidating new strategies for individualized therapy. 
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VHL and HIFs 

The gene mutation events most commonly associated with a cancer type often provide 

the most clear-cut molecular tools for discriminating between heterogeneous disease subsets.  

In ccRCC, this event is the loss of function of the von Hippel-Lindau (VHL) tumor 

suppressor gene through deletion, mutation, or hypermethylation and is the oldest and most 

frequent hallmark of clear cell RCC (ccRCC)[15] [16]. Evidence of VHL gene perturbation 

can be identified in as many as 92% of renal tumors [17]. It has been postulated that VHL 

loss is an initiating event for ccRCC, however, sufficient data is still lacking to associate 

VHL status to prognostic outcomes. There are conflicting studies that show the clinical 

implications of VHL mutation or loss, and this potential biomarker is challenged by the 

diversity of mutant alleles, challenges in it’s analysis owing to a highly GC-rich region in 

exon 1, as well as the high frequency of association with this event with ccRCC tumors. 

However, downstream factors that are dysregulated as a result of VHL loss, such as the 

hypoxia inducible factors (HIFs) and their targets have been shown promise as biomarkers. 

The HIF family of transcription factors (notably, HIF1A and HIF2A) are stabilized 

following the inactivation of VHL, which allows these proteins to engage a co-factor HIF1B 

(also known as the aryl hydrocarbon nuclear transporter, ARNT) for translocation to the 

nucleus.  Here, these transcription factors avidly promote the expression of genes involved in 

numerous cancer promoting activities, such as angiogenesis, invasion, and metastasis [18-

22]. It has been established that HIF1A and HIF2A both play a role in ccRCC pathogenesis 

through these mechanisms, but by inducing the expression of distinct target genes [23]. In 

vitro studies using HCT116 and 786-0 cells that overexpress HIF1A and HIF2A, 

respectively, revealed that HIF2A inhibited HIF1A-promoted cell cycle activity while 

increasing HIF2A induced cell cycle progression and c-Myc gene expression [24]. It was 
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further observed that ccRCC tumors expressing HIF2A alone had c-myc-dependent 

proliferation, compared to tumors wild type for VHL or expressed both HIF1A and HIF2A 

that exhibited enhanced MAPK and mTOR signaling, with decreased levels of 

phosphorylated histone H2AX [25]. The strict observation that tumors could be categorized 

into three groups based on features of HIF expression (wild type VHL tumors, which lack 

HIF overexpression, H1H2 indicating expression of both HIF1A and HIF2A, and H2 for 

tumors expressing only HIF2A) paved the way for these profiles to serve as molecular 

biomarkers for classification of primary renal tumors.    

How tumors harboring a VHL mutation come to express only one or both factors is still 

under investigation.  HIF1A is located on chromosome 14q, in a region that is frequently lost 

in ccRCC. Recently, it has been observed through high-density single-nucleotide 

polymorphism arrays that kidney cancer has a higher frequency of 14q deletions compared to 

other cancers and includes focal deletions located within the HIF-1a locus [26]. This same 

group further demonstrated that expressing HIF1A in HIF1A null renal cell carcinoma cell 

lines inhibited cell proliferation, while suppression of HIF1A by shRNAs in lines known to 

express HIF1A and HIF2A increased proliferation and xenograft growth.  In all, these results 

implicate the reverse roles of HIF1/2A: the novel characterization of HIF1A as a tumor 

suppressor in ccRCC and HIF2A as the oncogenic tumor promoter. Additional studies are 

needed to establish the prognostic value of HIF profiling and therapeutic potential of 

rendering this classification.     
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Figure 1.1: Examples of interaction of tumor angiogenesis with tumor microenvironment. 
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CAIX 

CAIX (cG250), a downstream marker of inactive VHL, is transcriptionally regulated 

by HIF1A. CAIX is not expressed in normal kidney, but is highly expressed in the majority 

of ccRCC tumors, where this marker has been associated with improved outcomes [27]. To 

evaluate the prognostic value of CAIX expression in RCC, a tissue microarray of 228 RCC 

patients was examined for protein levels of CAIX. Significantly higher expression of CAIX 

(p<0.001) was measured in ccRCC compared to papillary and chromophobe RCC [27]. 

Stratified groups of patients with higher CAIX expression had more favorable prognosis 

compared to patients with low CAIX expression. CAIX has also been examined in 

correlation with VHL status [28].  Increased CAIX expression was found in tumors with 

VHL mutations compared to those without VHL mutations (p=0.02). In addition, longer 

progression-free (p=0.037) and disease specific (p=0.001) survival was associated with high 

CAIX expression and mutated VHL. Furthermore, univariate analysis of Ki67 (high staining) 

and carbonic anhydrase IX (CAIX) (low staining) revealed significant association with 

overall survival [29]. Multivariate analysis revealed that high Ki67 (p=0.014) and low CAIX 

(p=0.009) were significant predictors of disease specific survival and when combined into a 

single parameter could stratify tumors into risk groups. Finally, this tumor feature has been 

examined in a clinical trial testing the utility of a cG250 antibody adjuvant therapy. Only 

patients with the highest level of CAIX staining showed benefits to treatment, indicating the 

novel use of this marker to provide prognostic or predictive information is on the horizon 

[30].  
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VEGF and PDGF 

Tumor growth and metastasis require angiogenesis to increase blood supply and recruit 

activating cells. Angiogenesis is tightly controlled by diverse subsets of ligands and 

receptors. Enrichment of ligands including growth factors, chemokines, cytokines, and 

endogenous angiogenesis inhibitors has been extensively observed in extracellular matrix 

(ECM) during vascularization. As tumor enlarges, hypoxia and nutrient deprivation occur 

and upregulate the expression of hypoxia inducible factor 1 alpha (HIF1A), VEGF-A, 

VEGFR-1, angiopoeitin-2 (Ang2), fibroblast growth factor-3 (FGF-3), nitric oxide synthase 

(NOS), and transforming growth factors (TGF-α, TGF-β1, TGF-β3) [31].  

The vascular endothelial growth factor (VEGF) and its receptors, as well as platelet-

derived growth factor (PDGF) has been established as key promoters of vascular bed 

expansion [32] and are aberrantly expressed in RCC. Sunitinib, a potent tyrosine kinase 

inhibitor of VEGFR 1-3 and PDGF-a/b, has shown strong antitumor properties [33], which 

have been validated in phase I, II, and III clinical studies [34].  A 2003 phase II study 

involving sixty-three RCC patients that received prior cytokine therapy of either interferon-

alpha alone, interleukin-2 alone, or both interferon alpha and interleukin-2 revealed a partial 

response and stable disease for three or more months in 40% (95% CI, 28-53%) and 27% of 

patients following administration of sunitinib, respectively [35]. A complete or partial 

response was observed in 6% of patients treated with cytokine therapy only. A subsequent 

phase III study revealed the efficacy and safety of sunitinib as a first-line therapy for 

metastatic RCC compared to interferon alfa [36].  750 metastatic RCC patients without prior 

systemic treatment received either repeated 6-week cycles of sunitinib or interferon alfa.  

Patients administered sunitinib had significantly longer progression-free survival (PFS) 

compared to the interferon alfa group (HR, 0.42; 95% CI, 0.32 to 0.54; p<0.001).  Moreover, 
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a higher objective response rate (31% vs. 6%, p<0.001) and better quality of life (p<0.001) 

was associated with sunitinib compared to interferon alfa, validating that sunitinib is an 

effective therapeutic strategy for the treatment of metastatic RCC.  Studies are ongoing to 

identify predictive markers to assess clinical outcomes for sunitinib treatment [37, 38].   

Predictive biomarkers for sorafenib and pazopanib, two additional tyrosine kinase 

inhibitors that target VEGFR and PDGF, have been effective in determining outcomes in 

metastatic cancer.  Univariate and multivariate analysis confirmed serum VEGF levels were 

prognostic for overall survival (OS) and progression-free survival (PFS) in second-line 

treatment of sorafenib in 903 patients from the Treatment Approaches in Renal Cancer 

Global Evaluation Trial (TARGET) study [39].  However, no direct link was established 

between sorafenib treatment and VEGF levels for OS since significant correlation between 

VEGF and overall survival for patients that received sorafenib were only revealed after 

censoring post-cross-over placebo patients. Recently, chromosome copy number variations 

were significantly associated with clinical outcomes in metastatic ccRCC patients treated 

with sorafenib, sunitinib, or bavacisumab [38]. In addition, a phase II and phase III trial was 

used to evaluate cytokine and angiogenic factors (CAFs) as prognostic biomarkers for 

pazopanib treatment [40]. Interleukin 6, interleukin 8, hepatocyte growth factor, tissue 

inhibitor of metalloproteinases (TIMP)-1, and E-selectin were identified as candidate 

markers in a screen of 129 pazopanib-treated patients from a phase II trial with the greatest or 

least tumor shrinkage and confirmed to be associated with tumor response and PFS in 215 

patients from the same trial. Furthermore, interleukin 6, interleukin 8, osteopontin, 

hepatocyte growth factor, and TIMP-1 were validated as prognostic markers for PFS in 344  
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patients from a randomized, placebo-controlled, pazopanib phase III study.  These studies 

provide potential predictive markers beyond established clinical parameters for assessing 

response of targeted treatment with advanced RCC.  
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Figure 1.2: VEGFR/VEGF and TF/fVII signaling pathways as prioritized targets in tumor 
angiogenesis.  
The diagram shows VEGF produced by tumor cells binds to VEGFR on vascular endothelial cells to 
activate VEGF signaling pathways in tumor angiogenesis. In addition, VEGF binding to endothelial 
cells can induce TF expression, an angiogenic specific endothelial receptor in pathological 
neovasculature. After its ligand fVII binding, TF could contribute to tumor angiogenesis via 
proteolysis-dependent pathways through PARs or proteolysis-independent pathway through its 
cytoplasmic domain. VEGF/VEGFR: Vascular endothelial growth factor/receptor; TF: Tissue factor; 
fVII: Coagulation factor VII; PAR: Protease-activated receptors. 
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mTOR  

 The P13k/Akt pathway plays an essential role in regulating translation, protein 

degradation, protein signaling, and angiogenesis [41]. This pathway is deregulated in several 

cancers, including ccRCC [42]. mTOR, a serine/threonine protein kinase, is a downstream 

component of the P13k/Akt pathway and has been targeted to treat this cancer.  A phase II 

clinical study revealed the mTOR inhibitor temsirolimus produced an objective response rate 

and minor response rate in 7% and 26% of 111 advanced RCC patients, respectively [43].  

Median time to progression was 5.8 months and median survival was 15 months. 

Temsirolimus, in combination with interferon alfa, displayed antitumor activity in 71 patients 

with advanced RCC from a phase I/II ascending dose study [44].  The recommended dose 

resulted in 8% partial responses and 36% stable disease for at lease 24 weeks.  A phase III 

trial further examined the treatment of temsirolimus alone and in combination with interferon 

alfa as first-line treatments for advanced RCC [41]. In this 626 patient study, a longer median 

survival was observed in the group that received temsirolimus alone (10.9 months) compared 

to interferon alfa alone (7.3 months) and temsirolimus with interferon alfa (8.4 months). 

Furthermore, survival was enhanced in the temsirolimus group compared to the interferon 

alfa group (HR, 0.73; p=0.0069). Serum levels of LDH have been evaluated as a possible 

predictive biomarker for temsirolimus-treated patients with metastatic RCC [45]. However, 

additional studies are needed to validate these findings, as well as determine if temsirolimus 

is effective with other targeted treatments.  

IMP3 and Survivin – Factors Implicated with Poor Prognosis 

A variety of factors have been identified through studies specifically screening for 

features associated with metastasis or very poor outcomes.  IMP3 is a member of the insulin-
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like growth factor (IGF-II) mRNA binding protein family that’s important for biological 

processes during early stages of embryogenesis, such as RNA trafficking, cell growth, and 

cell migration [46]. IMP3 was interrogated as a predictor for RCC metastasis and poor 

prognosis after the association was discovered through a primary screen for factors 

associated with metastasis [47]. Immunohistochemistry analysis of 501 primary and 

metastatic RCC tumors revealed stronger expression of IMP3 in metastatic tumors and 

primary tumors with enhanced metastatic potential. Not only was a shorter metastasis-free 

survival and overall survival found among patients with primary tumors expressing IMP3 

compared to those without IMP3 expression (p<0.0001), but patients with IMP3-positive 

primary tumors had lower 5-year overall and metastasis-free survival than those negative for 

IMP3. IMP3 was validated as a prognostic marker for ccRCC in an independent dataset of 

716 patient samples, showing that IMP3 expression was significantly associated with a 42% 

increase of disease specific death after multivariate adjustment for known clinical variables 

(HR, 4.71; p=0.024) [48]. These results suggest that IMP3 could potentially be used as a 

marker to identify patients at risk for metastatic disease. 

Survivin or BIRC5 is apart of a gene family of inhibitors of apoptosis (IAP) and is 

expressed in numerous malignancies, but not in normal adult tissues [49], and is important 

for cell proliferation in RCC [50]. In a cohort of 49 ccRCC tumors, survivin expression, 

analyzed by immunohistochemistry, was found to be significantly associated with poor 

differentiation, advanced stages, and aggressive tumors (p<0.05) [49]. Patients with 

moderate-fair and strong expression had poor survival rates compared to patients with weak 

positivity (p=0.0157).  After adjusting for tumor stage, patients with high expression of 

survivin had increased risk of dying from ccRCC than patients with low expression. Higher 
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transcript levels of survivin were also detected by RT-PCR analysis in 20 RCC tumors 

compared to normal renal tissue (p<0.05) [51].  Significant correlations between survivin 

expression and stage (p=0.028), grade (p=0.004), and lymph node metastasis (p=0.017) were 

identified. Kaplan-Meier analysis revealed that patients with high survivin expression had 

lower overall survival compared to patients with low expression (p<.001).  Furthermore, 

attenuation of survivin in the human RCC cell line ACHN by shRNA resulted in decreased 

cell proliferation, increased apoptotic rate, and enhanced radiosensitivity, suggesting survivin 

may be a prospective target for treating RCC.  

Chromatin Modifiers 

In recent years, three new putative tumor suppressor genes, PBRM1, BAP1, and 

SETD2, have been identified in ccRCC as the next most frequently mutated genes in this 

cancer after VHL [52, 53]. The implications of these mutations to tumor outcomes or 

algorithms to stratify patients according to mutational status are ongoing. BAP1, a nuclear 

deubiquitinase, was discovered through whole-genome and exome sequencing of seven 

primary tumors to identify two-hit tumor suppressor genes in ccRCC [54]. An analysis of 

176 ccRCC tumors revealed that BAP1 loss highly correlated with Fuhrman nuclear grade 

(q=0.0005).  Interestingly, BAP1 mutation was anticorrelated to PBRM1 expression 

(p=7x10-4), suggesting that these two genes may participate in related functions or signaling 

in cancer cells.  The prognostic significance of both BAP1 and PBRM1 were investigated in 

a retrospective cohort of 145 patients with primary ccRCC that underwent nephrectomy at 

the University of Texas Southwestern Medical Center (UTSW) and an independent cohort of 

327 ccRCC patients from The Cancer Genome Atlas (TCGA) [55].  Median overall survival 

was decreased for UTSW patients with BAP1 mutations (4.6 years) compared to patients 
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with PBRM1 mutations (10.6 years).  Overall survival were reduced in the TCGA cohort, 

with patients with BAP1-mutant tumors having a median of 1.9 years and PBRM1-mutant 

patients having a median of 5.4 years. In addition, a TMA of more than 300 RCC tumor 

samples found significant correlation of PBRM1 loss with advanced tumor stage (p<0.0001), 

low differentiation grade (p=0.0002), and worse outcome (p=0.025) [56]. 

Another study utilized targeted sequencing in 185 ccRCC tumors and matched normal 

to examine the relationships of these genes to clinical outcomes [57].  Tumors with BAP1, 

PBRM1, or SETD2 (a H3K36 trimethyltransferase) mutations were found to be more likely 

stage III or higher. BAP1 mutations were found to be associated with poor cancer specific 

survival (p=0.01) and were present exclusively in Fuhrman grade III-IV tumors.   The same 

group strengthened these results in a subsequent study [58]. PBRM1, SETD2, and BAP1 

were frequently mutated in a cohort of 188 ccRCC patients who underwent resection at the 

Memorial Sloan-Kettering Cancer Center (MSKCC) and in 421 primary ccRCC patients 

from TCGA. Again, BAP1 was associated with worse cancer specific survival (CSS), with a 

hazard ratio of 7.71 in the MSKCC cohort (p=0.002) and 2.21 in TCGA (p=0.002). SETD2 

was found to be significantly associated with CSS only in the TCGA cohort (p=0.036, HR 

1.68). However, PBRM1 was not associated with cancer specific survival in either cohort. 

These studies present the use of ccRCC subtypes, based on mutational status, as potential 

markers that can be used to better understand RCC pathogenesis.   

Moreover, a novel study elucidated that SETD2 mutations in a cohort of 42 ccRCC 

primary tumor samples were found to be associated with open chromatin regions in gene 

bodies by formaldehyde-assisted isolation of regulatory elements (FAIRE) sequencing[59].  

Transcriptionally active genes in samples harboring SETD2 mutations expressed RNA 
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processing defects that involved aberrant splicing, exon skipping, intron retention, and 

alternative transcription start and termination sites. This study sheds light on the impact 

chromatin modifier mutations have on the ccRCC genomic landscape.    

Clear cell A and clear cell B gene signatures    

In addition to individual markers, gene signatures have been revealed through genome 

expression profiling to identify discrete and global changes in transcript expression. 

Recently, two subtypes of clear cell RCC, clear cell A (ccA) and clear cell B (ccB), were 

identified using gene expression consensus clustering to identify complex biological patterns 

[14]. Using a data set of 177 ccRCC tumors, it was found that tumors displaying the ccA 

signature were associated with an 8.6-year cancer specific survival as compared to only 2 

years for ccB (p=0.0002).  This relationship is not unexpected, as ccB tumors expression 

includes panels of genes associated with cell differentiation, mitotic cell cycle, transforming 

growth factor beta, and Wnt signaling. In contrast, ccA tumors expressed genes associated 

with angiogenesis, beta-oxidation, and fatty acid and pyruvate metabolism [14]. Moreover, 

the ccA/ccB signature was robust in a meta-analysis of 480 ccRCC tumors [13]. 

Unsupervised consensus clustering in this large group revealed an additional cluster that 

comprised tumors phenotypically wild type for VHL that displayed histological features of a 

rare supbtype of RCC defined as clear cell-papillary-typed tumors, demonstrating this profile 

was stable across ccRCC and that expression profiling provided a potential clinical tool for 

personalized disease management to elucidate rare subgroups.  

Furthermore, a 34-gene subtype predictor was developed to classify clear cell tumors 

according to ccA or ccB subtype[7].  The predictor was developed from a panel of genes 

significantly expressed in ccA and ccB tumors and associated with prognosis.  The 
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prognostic value of the algorithm was corroborated in RNA-sequencing data from 380 

ccRCC samples from The Cancer Genome Atlas (TCGA) and further validated using the 

NanoString platform with a cohort of 157 fixed archival samples collected at the University 

of North Carolina.  The intrinsic subtypes, ccA and ccB, were classified in the TCGA and 

NanoString cohorts.  Subtype classification showed significant prognostic outcomes for 

overall survival, cancer-specific survival, and recurrence-free survival and remained 

significant in multivariate analyses that included pathologic stage and histologic grade. A 

prognostic model was built for recurrence-free survival for non-metastatic ccRCC patients 

within the context of subtype and clinical characteristics, which outperformed established 

algorithms. Moreover, the ccA/ccB signature was found to be the only independent 

prognostic biomarker in multivariate analysis, establishing the molecular tool adds 

prognostic value for clinical assessment[60].   

Chromosomes 9q and 14q deletions 

Cytogenetic abnormalities provide a high level indication of tumor genomics, and can 

be very valuable in making tumor classifications. In addition to the characteristic 

chromosome 3p deletion that is a hallmark of this cancer, deletions of chromosomes 9q and 

14q have emerged as high frequency copy number changes and as potential prognostic 

factors for RCC. Fluorescence in situ hybridization and cytogenetics were used with 703 

ccRCC tumors to analyze whether chromosome 9p deletions could predict disease-specific 

survival and recurrence-free survival, as well as associating deletion of 9q with an aggressive 

tumor phenotype [61]. 13.8% of the tumors had chromosome 9p deletions, and these tumors 

presented larger, with higher grade and stage, and with lymph node or distant metastases.  
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Since the HIF1A locus resides within 14q and loss of 14q had also previously been 

associated with poor outcome, loss of chromosome 14 and corresponding decreased 

expression of HIF1A were investigated for prognostic potential [62]. Utilizing 112 ccRCC 

tumor specimens with 250K SNP microarrays, qPCR, and immunohistochemical methods, 

significant associations were observed between loss of chromosome 14q and high stage 

(p=0.001), recurrence risk (p=0.002), and reduced overall survival (p=0.030) in non-

metastatic patients. However, multivariate analysis revealed that 14q loss was not 

independent of stage as a prognostic tool in patients with localized disease. In contrast with 

previous studies, loss of 9p was not associated with overall survival in this cohort of patients 

with localized or metastatic ccRCC, indicating the prognostic influence of this aberration 

may be specific to smaller, less aggressive renal tumors. Further research is needed to better 

understand the effects of these chromosomal aberrations on the molecular architecture of 

RCC and to validate the prognostic potential of these markers.     

 ccRCC displays marked variability in risk for developing metastatic disease, and 

although numerous clinical algorithms exist that can accurately assess risk for disease death 

using clinical stage-based metrics [63], within the large group of intermediate staged tumors, 

tissue-based prognostic biomarkers are urgently needed. Furthermore, molecular 

stratification will most likely add the most value for predictive biomarker algorithms going 

forward, which can also facilitate the understanding of imperative influences, such as the 

environment, on the molecular profiles of this disease.  

 

 

 

 



19 

Table 1.1: Prognostic and predictive markers in ccRCC 
Prognostic 

Markers 

    

Biomarker Type of study Patients 

(n) 

Results References 

HIF1A and 

HIF2A 

Basic Research In vitro 786-0s expressing HIF2A inhibited 

HIF1A-promoted cell cycle and induced cell cycle 

progression in combination with c-Myc gene 

expression.  

Gordan et al. [24] 

 Basic Research In vivo HIF2A-expression ccRCC tumors exhibited c-myc-

dependent proliferation compared to tumors wild type 

for VHL and expressed both HIF1a and HIF2A. 

 

Tumors expressing HIF1A and HIF2A 

had enhanced MAPK and mTOR signaling,  

with decreased phosphoryalated H2AX. 

Gordon et al. [25] 

 Basic Research In vitro 

and in 

vivo 

HIF1A expression in RCC cell lines inhibited cell 

proliferation. 

 

HIF1A-shRNA increased proliferation in xenografts 

and cell lines expressing HIF1A and HIF2A. 

Shen et al. [26] 

CAIX Retrospective 288 Tissue microarray analysis revealed higher expression 

of CAIX is significantly associated with ccRCC 

(p<0.001) and a favorable prognosis.  

Sandlund et al. [27] 

 Retrospective 224 Tumors with mutated VHL had enhanced CAIX 

expression and were associated with longer 

progression-free (p=0.037) and disease specific 

survival (p=0.001).  

Patard et al. [28] 

 Prospective 864 cG250 antibody adjuvant therapy benefited only ccRCC 

patients with the highest CAIX staining in the primary 

tumor. 

Belldegrun et al. [30] 

IMP3 Retrospective 501 Patients with IMP3-positive primary tumors had shorter 

metastasis-free and overall survival (p<0.0001). 

 

Primary tumors expressing IMP3 were associated with 

a lower 5-year overall and metastasis-free survival 

compared to IMP3 negative tumors. 

Jiang et al. [47] 
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 Retrospective 716 A 42% risk increase of disease specific death was 

significantly associated with IMP3 expression (HR, 

4.71; p=0.024). 

 

IMP3-positivity was associated with a 5-fold increased 

risk of distant metastases.  

Hoffman et al. [48] 

Survivin Retrospective 49 Immunohistochemistry analysis revealed significant 

association of survivin expression with poor 

differentiation, advanced stages, and aggressive 

tumors (p<0.05). 

 

Patients with high survivin expression had increased 

risk of dying from ccRCC compared to patients with low 

expression after adjusting for tumor stage. 

Zamparese et al. [49] 

 Retrospective 

and basic 

research  

20, in 

vitro 

High survivin expression was correlated with lower 

overall survival compared to low expression 

(p<0.001). 

 

Reduction of survivin expression by shRNA in ACHN 

cells decreased cell proliferation, increased apoptotic 

rate, and enhanced radiosensitivity.  

Lei et al. [51] 

B7-H1 Retrospective 196 Tumors expressing high levels of B7-H1 were 

associated with increased risk of death from RCC, 

with patients with high B7-H1 tumor expression having 

4.5 times the risk of death of RCC compared to those 

with low levels (RR, 4.53; 95% CI 1.94 to 10.56; 

p<0.001).  

Thompson et al. [64] 

 Retrospective 306 Immunohistochemistry analysis showed 41.9% and 

82.9% 5-year cancer-specific survival rates for 

patients with and without B7-H1 expression, 

respectively.  

After adjusting for standard clinical variables, B7-H1 

tumor expression remained associated with cancer-

specific death (RR, 2.00; p=0.0003).  

Thompson et al. [65] 

 Retrospective 259 Fresh-frozen specimens expressing B7-H4 staining 

from RCC patients associated with adverse clinical 

and pathological features. 

Krambeck et al. [66] 
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Patients expressing B7-H4 were three times more 

likely to die from RCC compared to patients that didn’t 

express B7-H4 (RR, 3.05; 95% CI, 1.51 to 6.14; 

p=0.002).  

BAP1 and 

PBRM1 

Retrospective  145, 327 Median overall survival was 4.6 and 1.9 years for 

patients with BAP1 mutations compared to 10.6 and 

5.4 years for those with PBRM1 mutations in the 145 

and 327 cohorts, respectively. 

Kapur et al. [55] 

 Retrospective 300 Tissue microarray analysis revealed significant 

association between PBRM1 loss with advanced 

tumor stage (p<0.0001), low differentiation grade 

(p=0.0002), and worse outcome (p=0.025). 

Palowski et al. [56] 

 Retrospective 188, 421 Patients with BAP1 mutations were associated with a 

7.71 (p=0.002) and 2.21 (p=0.002) hazard ratio for 

cancer specific survival in the 188 and 421 cohorts, 

respectively.  

Hakimi et al. [58] 

ccA and ccB Genomic, 

Retrospective 

177 Genome expression profiling of ccRCC tumors 

revealed the ccA and ccB subtypes, which have 

distinct gene signatures.  

ccB-typed patients presented with lower  cancer 

specific survival (2 years) compared to patients 

displaying the ccB signature (8.6 years) (p=0.0002).  

Brannon et al. [14] 

 Genomic 480 Meta analysis revealed the ccA/ccB gene signature is 

stable across a large group of samples.    

Brannon et al. [13] 

Chromosome 

9q deletions 

Genomic 703 Cytogenetic and survival analysis revealed patients 

with 9q deletions had decreased median disease 

specific (37 vs 82 months) and recurrence free 

survival (53 months vs not reached) compared to 

patients without mutations.  

La Rochelle et al. 

[61] 

Chromosome 

14q deletions 

Genomic 112 Loss of chromosome 14q was significantly associated 

with high stage (p=0.001), recurrence risk (p=0.002), 

and reduced overall survival (p=0.030) using SNP 

microarray, qPCR, and immunohistochemical 

analysis, but failed to be independent after adjusting 

for stage.   

Monzon et al. [62] 

Predictive 
Markers 
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VEGF and 

PDGF 

Prospective 63 RCC patients who received prior cytokine therapy 

from a phase II study had a partial (40%; 95% CI, 28-

53%) response and stable disease for ≥ 3 months 

(27%) following sunitinib treatment.  

Motzer et al. [41] 

 Prospective 750 Metastatic RCC patients experienced longer 

progression-free survival following sunitinib treatment 

compared to patients treated with interferon alfa (HR, 

0.42; 95% CI, 0.32 to 0.54; p<0.001). 

 

A higher objective response rate (31% vs. 6%, 

p<0.001) and better quality of life (p<0.001) was 

associated with sunitinib treatment compared to 

interfon alfa.  

Motzer et al. [36] 

 Prospective 903 Serum VEGF levels significantly associated with 

overall survival (17.8 v 14.3 months; HR, 0.78; 

p=0.029) and progression-free survival in patients that 

received second-line treatment of sorafenib compared 

to placebo following censoring of post-cross-over 

placebo patients.     

Escudier et al. [39] 

 Genomic, 

Retrospective 

215, 344 Candidate cytokine and angiogenic factors (CAFs) 

were identified from a screen of 129 patients with the 

greatest or least tumor shrinkage from a trial of 215 

RCC patients treated with pazopanib, which were 

associated with continuous tumor shrinkage or 

progression-free survival.   

 

A cohort of 344 RCC patients were used to validate 

selected CAFs and revealed patients treated with 

pazopanib that had high concentrations of interleukin 

8 (p<0.0001), osteopontin (p=0.0004), HGF (p=0.010), 

and TIMP-1 (p=0.006) were associated with shorter 

progression-free survival compared to those with low 

levels. 

Tran et al. [40] 

mTOR Prospective 111 A phase II study of advanced RCC patients produced 

a 7% objective response rate and 26% minor 

response rate following treatment of temsirolimus.  

 

Atkins et al. [43] 



23 

Patients who received treatment had a median time to 

progression of 5.8 months and median survival of 15 

months.  

 Prospective 71 Advanced RCC patients receiving the recommended 

dose of temsirolimus and interferon alfa in a phase I/II 

study resulted in 8% partial responses and 36% stable 

disease for at least 24 weeks.  

Motzer et al. [44] 

 Prospective 626 A longer median survival was observed in advanced 

RCC patients from a phase III study that received first-

line treatment of temsirolimus alone (10.9 months) 

compared to inferno alone (7.3 months) or in 

combination with temsirlimus (8.4 months). 

 

Increased survival was observed in the patients 

treated with temsirolimus compared to the interferon 

alfa group (HR, 0.73; p=0.0069). 

Armstrong et al. [45] 
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ccRCC Heterogeneity 

Even within a single subtype of the disease, ccRCC, this cancer can present with 

variable histopathogical and clinical patterns, which significantly impairs accurate clinical 

prognostication for an individual patient[67].  Moreover, it has recently been reported that 

these tumors can display significant intratumoral genomic heterogeneity, which further 

complicates tissue based biomarker development. Tumor Fuhrman grade, one of the key 

features used to determine the pathology of a tumor and the risk for metastasis, has long been 

recognized to have regional variation among and within renal tumors[68].  Recent large-scale 

sequencing analyses, however, have identified that individual tumors have a heightened 

amount of genomic heterogeneity[53]. Moreover, ccRCC has been observed to be composed 

of diverse cell populations and to display intratumoral heterogeneous DNA content[69, 70].  

Exome sequencing of multiple ccRCC intratumoral biopsies revealed a high level of DNA 

aneuploidy amongst the samples and that the majority of the somatic mutations were sample-

specific[71]. Our own work sampling across tumors has also shown this pattern of mutational 

heterogeneity in large tumors:  however, we also observed that the gene expression features 

of the sampled sublocations were more generally stable, and that sublocations from a single 

tumor preferentially clustered together when compared across a larger group of tumors. The 

recent discovery of intratumoral heterogeneity in ccRCC has substantially altered cancer 

researchers and clinicians’ perspective of this cancer. However, there remains a substantial 

deficit of information regarding the affects tumor heterogeneity has on driving biological and 

molecular features of ccRCC tumorigenesis, which is examined in Chapter 2 and 3. 

Furthermore, understanding the extent of tumor heterogeneity has the potential to facilitate 

discoveries related to tumor development and extrinsic forces inducing disease progression. 
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Environmental exposure and RCC 

The kidney is a structurally and functionally complex organ that has a significant role 

of detoxifying blood and excreting chemical compounds to maintain homeostasis, making it 

vulnerable to chemical insults. Cellular damage due to nephrotoxicity results in acute kidney 

injury (AKI)[72, 73], and can be worsened if untreated to cause chronic kidney damage or 

promote or exacerbate tumorigenesis[74-76]. In fact, chronic damage is the leading risk 

factor for development of renal cancer[76]. Toxicogenomics has been instrumental in 

revealing early changes in gene expression in response to compounds and environmental 

factors[77, 78].  These genomic mechanisms have elucidated unique gene patterns from 

toxicant exposure. While it’s known that RCC can be influenced by chemical exposure, we 

are largely unaware of the sustaining effects exposures have on distinct gene signatures of 

this disease, and how these exposures relate to tumor heterogeneity and molecular patterns. 

Thus, in Chapter 4 I investigate the influence cadmium exposure has on core gene expression 

patterns in clear cell renal cancer, prioritizing the focus to genes in Clearcode34.  

Environmental Sources of Cadmium 

Cigarette smoke (CS) is one of the oldest environmental exposures linked to cancer 

[79]  and contains numerous carcinogenic compounds, such as Cadmium. Smoking is the 

predominant source of Cd exposure and the smoking populations experience higher levels of 

cadmium exposure, as one cigarette may contain 1-2 ug cadmium[80, 81].  Cigarette and 

second hand smoke have both been shown to induce or be associated with angiogenesis by a 

variety of mechanisms, although separating angiogenic effects from other carcinogenic 

activities is a challenge.  Mouse models of chronic colitis were found to have increased blood 

vessel formation following exposure to CS (P>0.01) compared to control[82]. Increased 
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angiogenesis in these models were found to be dose-dependent.  In addition, bcl-2 and VEGF 

protein expression was significantly increased (p>0.05) after CS exposure. However, CS in 

absence of ulcerative colitis failed to induce these pathologic alterations.  Tumor growth, 

capillary density, plasma VEGF levels, and circulating endothelial progenitor cells were 

significantly increased in mice subcutaneously injected with Lewis lung cancer cells after a 

17 days exposure to second hand smoke compared to mice exposed to clean room air [83]. 

Furthermore, a hospital-based case-control study consisting of 730 urothelial carcinoma 

cases, 470 bladder cancers, 260 upper urinary tract urothelial carcinomas, and 850 age-

matched controls found significant correlations between bladder and upper urinary tract 

urothelial carcinomas (UUTUC) and both cigarette smoking and arsenic exposure.[84]  

Patients that smoked and had high arsenic exposure, another RCC risk factor, were found to 

have increased risk of developing bladder cancer and UUTUC. The risk for both bladder 

cancer (6.6; 95% cI, 3.1-13.9) and UUTUC (9.9; 95% CI, 4-24.5) were increased with the 

presence of VEGF polymorphisms associated with increased cancer risk.  

Consumption of contaminated water or food is the second most common route of 

cadmium exposure among non-smokers. Mollusks, crustaceans, seeds (Oil, Sunflower, and 

flax), peanuts, vegetables, grains, and offals of sea animals are primary food sources for high 

cadmium concentrations[85]. The World Health Organization set a safe intake limit of 7ug 

cadmium/week/kg body weight based on a critical renal cadmium concentration between 100 

and 200ug/g wet weight that corresponds to a urinary threshold limit of 5-10 ug/g creatinine. 

However, studies have reported adverse kidney effects at urinary cadmium levels less than 

0.5 ug/g creatinine, Furthermore, increased endometrial cancer risk was detected in a 

Swedish cohort among persons who consume less than 15ug/day of cadmium through 
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vegetables and cereals[85], suggesting these limits are too high and lower exposures have the 

potential to induce adverse health effects.  

Cadmium can also be absorbed through inhalation from ambiant air and occupational 

environments, but is the least likely route of exposure. Heavy metal mining, metallurgy and 

industrial use of manufacturing nickel-cadmium batteries, pigments, plastic stabilizers, and 

anti-corrosive products are the main reasons for exposures. Although cadmium production 

has decreased in developed countries due to its toxicity, cadmium pollution has increased due 

to waste incineration causing its presence in farm fertilizers and during mud purification.  

Kinetics and metabolism of Cadmium 

 The most efficient absorption of cadmium takes place in the lungs where 25-60% is 

absorbed compared to ingestion where the gastrointestinal tract takes up only 5-10%[86]. On 

average, adults are estimated to absorb 1.4-8ug of cadmium orally[86]. The cadmium 

compound and its solubility highly affect the absorption of oral exposure, while inhalation 

absorption is dependent on compound solubility and particle size. Cadmium can also be 

absorbed through the skin, but this route is less efficient.  

 Once absorbed, cadmium binds to red blood cells or high molecular weight proteins 

in plasma and distributed through out the body. The kidney and liver are the main deposition 

sites for Cd accumulation, which induces the family of metallothineins (MT) that binds the 

majority of cadmium[87]. Persons with chronic Cd exposure usually contain high levels of 

Cd in the renal cortex, levels that increase with body burden and age until 50 to 60 years. 

Cadmium is absorbed by the liver from the blood and bound to MT, where the complex is 

then released back into the cardiovascular system and filtered by glomerular in the 

kidney[81, 86]. Here, Cd is taken up by the renal tubules and cleaved from MT. MT 
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production is low in the kidney and makes tubules vulnerable to insult or cell membrane 

destruction through the activation of reactive oxygen species caused by free unbound 

cadmium[81].  

 The majority of cadmium ingested is excreted mostly in feces[86]. On the other hand, 

Cd is excreted in both urine and feces following inhalation. As exposure prolongs, urine 

excretion will increase, but this will only be a small percentage of the total body burden[86]. 

Accumulating Cd concentrations over time is the main focus of kidney toxicity and has been 

linked to numerous adverse effects.   

Mechanisms of Cadmium Toxicity  

 Both acute and chronic cadmium exposures have been linked to adverse health 

effects, with acute toxicity responsible for injuries to testes, liver, and lungs, while 

obstructive airway diseases, emphysema, end-stage renal failures, diabetic and renal 

complications, deregulated blood pressure, bone disorders, and immune-suppression are 

associated with chronic exposures[88].  The accumulation of cadmium over time and the lack 

of excretion from the body make it highly toxic and dangerous to human health.  In addition 

to these effects, evidence has shown that cadmium is able to promote cancer. Lung cancer 

and cadmium exposure has the strongest association compared to prostate and kidney[89]. 

Cadmium was deemed a category 1 carcinogen by the International Agency for Research on 

Cancer (IARC)[90]. However, cadmium is not genotoxic and exerts its toxicity through 

various mechanisms including the induction of reactive oxygen species (ROS), inhibiting 

DNA repair systems, and altering the genome and epigenome[88]. 

 Probably one of the main mechanisms cadmium influences genome stability is 

through oxidative stress. The induction of ROS following cadmium exposure is a result of 
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indirect processes that involve the decrease of cellular antioxidants and exhalation of ROS by 

mitochondria[91]. Increased hydrogen peroxide levels have been measured with Cd 

concentrations of less than 50uM up to 15 minutes post exposure and were observed to also 

affect permeability of the plasma membrane[92]. Furthermore, Cd-induced oxidative stress 

causes the production of mutagenic lesions, such as 8-oxo-7,8-dihydro-2’-deoxyguanosine 

adducts, as well as increased production of DNA single-strand breaks[91].  Studies have also 

shown that cadmium has the ability to influence antioxidant proteins, such as glutathione-S-

transferase, which play an important role in eliminating ROS. These effects can cause a 

heightened oxidative state that can result in DNA damage and aberrant translation. In 

addition, superoxide anion and hydrogen peroxide release was enhanced in mitochondria 

upon Cd intoxication, enhancing mitochondrial oxidative stress and lipid peroxidation of 

mitochondrial membranes[93, 94]. ROS-induced mitochondria damage could result in the 

alteration of transmembrane potential, release of mitochondrial calcium and upcoupling, 

activation of caspase-3, DNA fragmentation, and apoptosis[88, 95].  

 Several studies have shown a correlation between cadmium exposure and disruption 

of DNA repair mechanisms, such as mismatch repair, nucleotide excision repair, and base 

excision repair[88]. In human kidney 293T cells, Cd suppressed the mismatch repair-

mediated cell cycle arrests in G2 phase after intoxication[96]. Mismatch repair is imperative 

for reconciling base substitutions and insertion-deletion mismatches that can promote 

mutations and cancer. Cd also prevents the xeroderma pigmentosum A protein from binding 

to DNA damage sites, which inhibits the recruitment of nucleotide excision repair proteins. 

It’s postulated that this effect is due to the replacement of zinc in the zinc finger of the 

structure by Cd[97]. In addition, formamidopyrimidine glycosylase and apurinic 
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endonuclease 1 is inhibited and modified by Cd exposure preventing the initiation of base 

excision repair, important for resolution of oxidative-induced base damage and single-strand 

breaks[88, 98]. It’s thought that cadmium targets the zinc finger motif of the 

formamidopyrimidine glycosylase protein to inhibit DNA binding, however, the mechanism 

for the inhibition of apurinic endonuclease 1 is unknown.  

Cadmium exposure has been shown to regulate cell cycle progression through the 

activation of cellular signals and inhibition of DNA methylation. These effects are dose 

dependent, with inhibition of DNA synthesis observed at concentrations above 1uM and 

increased DNA synthesis and cell proliferation at concentrations lower than 1uM. Moreover, 

cell cycle genes and proteins, such as GRB2 and SHC, are upregulated after Cd exposure, 

enhancing the RAS signaling pathway implemented in cell proliferation.  The expression of 

proto-oncogenes C-FOS, C-MYC, and C-JUN has also been induced following Cd exposure. 

Interestingly, the induction of apoptosis by Cd2+ intoxication has been demonstrated in Hela 

cells, bovine endothelial cells, rat normal kidney tubular epithelial cells, and rat glioma 

cells[99-101] through either the extrinsic Fas-FADD caspase-8 pathway initiated by the 

activation of the death receptors at the plasma membrane or the intrinsic pathway induced by 

cellular stress signals activating caspase-9.  The most hallmark genetic effect of Cd exposure 

is the induction of metallothioneins (MT), cysteine-rich heavy metal-binding proteins. MTs 

protect against toxicity by binding to metals and preventing cellular damage caused by 

oxidative stress. Metal response elements located in the proximal promoters of MTs and the 

metal-responsive six zinc fingers transcription factor (MTF-1) help facilitate this response. 

MTs bind cadmium with high affinity preventing it from being absorbed and allowing for its 

detoxification.  



31 

Toxicant Exposure and Angiogenesis   

Environmental exposures have been found to promote tumorigenesis of multiple 

cancers through various mechanisms [102-107]. Vascular endothelial growth factor (VEGF) 

has been established as one of the key promoters of vascular bed expansion [32] and has been 

targeted for anti-angiogenesis therapy, with numerous VEGF blockers approved by the FDA 

to treat metastatic colorectal cancer, non-squamous non-small-cell lung cancer, breast cancer, 

renal cell carcinoma, and recurrent glioblastoma [108].  Thus, VEGF-mediated signal 

pathways and VEGF-induced tissue factor/factor VII (TF/fVII) signal pathway are prioritized 

targets, which are believed to be important in pathological angiogenesis.  

Cadmium and ccRCC 

Cadmium (Cd) is a known environmental and occupational metal compound that has 

the ability to cause kidney toxicity and damage, as well as associated with cancer [109-113].  

The half-life of Cd is very long, with an average of 20 years, due to the lack of biochemical 

mechanisms to excrete it from the body and reabsorption by the kidney[76]. More 

specifically, heavy metals like cadmium can induce nephrotoxicity altering gene expression 

in the kidney, and thus increasing the risk of developing RCC [81, 87, 114]. In addition to 

transcript alterations, numerous studies have found that Cd exposure can result in epigenetic 

deregulation by changing DNA methylation levels, histone modifications, and miRNA 

expression [84, 115-117], which further suggests a possible connection between cadmium 

and ccRCC due to epigenetic modifiers being highly affected in this cancer.  Moreover, 

treatment of Nickel, another heavy metal, was shown to induce the expression of the histone 

demethylase Jumonji domain-containing protein 1A (JMJD1A), a hypoxic response gene that 

regulates HIF1A, and the hypoxia pathway in RCC [118].  Exploring toxicant-induced global 
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expression and epigenetic changes can enhance our understanding of the genetic interactions 

that drive the biological responses to these exposures and their influence on prognostic 

signatures of RCC. 

Concluding Remarks  

Conducting clinically relevant research has become increasingly imperative for 

understanding the underlying biology of diseases. This dissertation provides the foundations 

for risk stratification and ultimately possible therapeutic strategies. I’ve focused exclusively 

on clear cell type RCC, which is a highly distinct molecular entity compared with other renal 

cell carcinoma histologic subtypes. This work attempts to integrate the genetic and 

functional/morphological heterogeneity of primary tumors and molecular influence of 

environmental exposures to develop new theories regarding toxicant exposure and 

heterogeneous disease progression.  

The identification of key molecular profiles of ccRCC and the entities that influence 

them presents the opportunity to make novel and substantive discoveries regarding RCC 

tumor genetics that will advance the field and expand our knowledge of this cancer. 
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CHAPTER 33: CLEARCLODE34: A PROGNOSIC RISK PREDICTOR FOR 

LOCALIZD CLEAR CELL RENAL CELL CARCINOMA 

Introduction 

The majority of Renal Cell Carcinoma (RCC) or kidney cancer patients have the clear 

cell RCC (ccRCC) subtype. Although extensive effort has been devoted to identifying 

molecular biomarkers for RCC, there are few validated markers that aid disease prognosis, 

and none are used routinely in clinical practice[31, 119-123]. Thus, transcriptional 

biomarkers present a potentially target-rich environment towards the goal of improving our 

understanding of underlying ccRCC biology.   

Recently, we identified two subtypes of clear cell RCC, ccA and ccB, based on patterns 

of differential gene expression, which revealed distinct biological signatures[14]. These 

subtypes appear to provide prognostic information, with tumors classified as ccA associated 

with significantly better survival compared to ccB in a retrospective cohort[14]. The ccA/ccB 

classification was subsequently validated in a meta-analysis of 480 ccRCC tumors, 

suggesting this profile may have value for risk stratification[13]. 

Building on this foundation, in the present study we demonstrate the utility of a novel 

tool to identify the ccA and ccB groups in ccRCC. This molecular tool comprises a 34-gene 

expression signature (ClearCode34) and an accompanying protocol for ccA/ccB 

classification. Clinical utility of the classifier is demonstrated by 1) accurate and reproducible 

                                                             
3 Adapted from Samira A. Brooks, A. Rose Brannon, et al. (2014) ClearCode34: A prognostic risk predictor for 
clear cell renal cell carcinoma.  European Urology, 66:77-84. 
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classification of ccRCC tumors into ccA and ccB molecular subtypes, 2) validation of 

prognostic classification in ccRCC samples from The Cancer Genome Atlas (TCGA)[124] 

ccRCC project, 3) adaptation of ClearCode34 to a NanoString probeset for validation in an 

independent cohort of 163 formalin-fixed paraffin-embedded (FFPE) clinical ccRCC 

samples, and 4) constructing a more precise unified model of ccRCC subtype and standard 

clinical variables to assign individual ccRCC patients into clinically informative risk 

categories. 
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Table 2.1: Expression of ClearCode34 
Gene ccRCC Subtype 
MAPT ccA 
STK32B ccA 
FZD1 ccA 
RGS5 ccA 
GIPC2 ccA 
PDGFD ccA 
EPAS1 ccA 
MAOB ccA 
CDH5 ccA 
TCEA3 ccA 
LEPROTL1 ccA 
BNIP3L ccA 
EHBP1 ccA 
VCAM1 ccA 
PHYH ccA 
PRKAA2 ccA 
SLC4A4 ccA 
ESD ccA 
TLR3 ccA 
NRP1 ccA 
C11orf1 ccA 
ST13 ccA 
ARNT ccA 
C13orf1 ccA 
SERPINA3	   ccB 
SLC4A3	   ccB 
MOXD1	   ccB 
KCNN4	   ccB 
ROR2	   ccB 
FLJ23867	   ccB 
FOXM1	   ccB 
UNG2	   ccB 
GALNT10	   ccB 
GALNT4	   ccB 
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Figure 2.1. Workflow for biomarker discovery and order of analyses.  
(A) Steps taken to identify the 34 genes that classify ccA and ccB tumors.  
(B) Diagram of analyses to validate the efficiency of the biomarkers to classify tumors and predict 
prognostic outcomes.    
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Results 

Subtype comparison for prognosis and recurrence in the TCGA dataset 

To evaluate the prognostic utility of the 34-gene classifier (Table 2.1), ClearCode34, 

for ccA and ccB ccRCC tumors, Kaplan-Meier analysis was used to assess tumor recurrence 

and survival rates by subtype assignment in tumor samples from 380 non-metastatic ccRCC 

patients from the TCGA dataset (Table 2.2). Univariate analysis revealed ccB patients 

experienced tumor recurrence earlier and more frequently than ccA (HR, 2.3; 95% CI, 1.6 to 

3.3; P=4.3e-06) (Figure 2.2A).  Moreover, ccB patients had almost three times the risk of 

death from disease (HR, 2.9; 95% Cl, 1.6 to 5.6; P=0.0005) and more than two times the risk 

of death from any cause compared to ccA (HR, 2.4; 95% CI, 1.6 to 3.7; P=2.3e-05) (Figure 

2.2B and C). Competing risk analysis further validated the differences in survival between 

the two subtypes, which showed their specificity as prognostic tools for clear cell renal 

disease (cancer specific survival, P=0.002; overall survival, P=0.037).  
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Table 2.2: Patient Demographics and Clinical Characteristics of TCGA Cohort 
 

Characteristic No. % 
Sex   
     Male 240 64 
     Female 136 36 
Age   
     Median   61  
     Range   29-90  
Ethnicity   
     Caucasian 326 87 
     African American   17   5 
     Hispanic   20   5 
     Asian     8   2 
     Unknown     5   1 
Grade   
     1     6   2 
     2 181 48 
     3 148 39 
     4   36 10  
     Unknown     5   1 
Staging (TNM)   
     I 213 56 
     II   44 12 
     III 116 31 
     IV     3   1 
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Figure 2.2: Tumor classification from TCGA shows distinct prognostic outcomes. 
Prediction Analysis for Microarray (PAM) classified 380 untreated, non-metastatic ccRCC tumors 
from the Cancer Genomic Atlas (TCGA) as either ccA or ccB using the 34-gene classifier 
ClearCode34.  Kaplan-Meier curves were used to calculate recurrence-free survival (RFS) (A), 
cancer-specific survival (CSS) (B), and overall survival (OS) (C) for ccA and ccB patients. ccB-typed 
patients had a median RFS and OS of 53 and 65 months, respectively, while patients with ccA-typed 
tumors had a 50% survival probability of 91 and 94 months for RFS and OS.  
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Biomarker validation in an independent cohort 

Since ClearCode34 demonstrated prognostic value in the TCGA cohort from known 

clinical samples, we next attempted to validate the classifier in an independent group of 

clinical specimens using the NanoString platform.  Applying the classifier to a cohort of 163 

non-metastatic ccRCC archived FFPE samples (Table 2.3), 71 samples were assigned as ccA 

subtype and 92 as ccB, and again, the subtype classifications followed survival patterns seen 

previously (Figure 2.3). In this cohort, ccB cases experienced tumor relapse after 

nephrectomy more frequently (HR, 2.2; 95% CI, 1.4 to 3.4; P<0.0005) (Figure 2.3A) and 

had higher risk of both cancer-specific and overall mortality compared to patients classified 

as ccA (Figures 2.3B (HR: 3.1) and C (HR: 2.2), respectively). Additionally, cancer-specific 

deaths (P= 0.008), but not overall deaths (P=0.398), remained significant between subtypes 

after competing risk analysis.   
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Table 2.3: Patient Demographics and Clinical Characteristics of Clinical Cohort 
Characteristic No. % 
Sex   
     Male   96 59 
     Female   67 41 
Age   
     Median   58  
     Range   19-82  
Ethnicity   
     Caucasian 106 65 
     African American   46 28 
     Hispanic     5   3 
     Asian     1   1 
     Native American     5   3 
Grade   
     G1     3   2 
     G2   72 44 
     G3   72 44 
     G4   15   9 
     Unknown     1   1 
Staging (TNM)   
     I   76 47 
     II   28 17 
     III   50 31 
     IV     2   1 
     Unknown     7   4 
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Figure 2.3: ccRCC classifier recapitulates survival outcomes for subtypes in clinical cohort.  
Whole lysates from 163 non-metastatic archived ccRCC primary tumor samples were subjected to 
NanoString gene expression analysis.  Kaplan-Meier plots of the independent cohort using 
ClearCode34 show ccB patients have significantly lower probabilities of recurrence-free (A), cancer-
specific (B), and overall survival (C) compared to ccA.   
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Prognostic risk models for recurrence in non-metastatic ccRCC patients 

We next sought to determine if a recurrence risk model encompassing both 

ClearCode34 ccRCC subclassification along with stage and grade could be utilized to 

enhance the assessment of patient risk. A Cox model for recurrence was assembled using a 

combined cohort including both the TCGA and clinical cohorts. In the final model, subtype 

classification (P=0.04), grade (G1/2 v. greater) (P=<0.001), and stage (Stage I v. greater) 

(P<0.001) were found to be significant independent variables for predicting recurrence-free 

survival (RFS) (Appendix Table 2.2A). Likelihood ratios verified that subtype status was a 

prognostic factor even after adjustment for stage and grade.  

A training set was randomly selected from the combined cohort and used to train the 

risk prediction model, focusing on recurrence. Thresholds for identifying patients for high 

probability of recurrence within five years following surgical resection were determined by 

Ridge regression, fit to the training set, and used to stratify low, intermediate, and high risk 

groups of relapse (P< 4e-15) (Figure 2.4A). The high-risk- and intermediate test-set groups 

had a median time to recurrence of 19 and 151 months, respectively. The low-risk group 

failed to reach a 50% relapse probability. Similarly, the three risk groups showed similar 

survival trends for cancer-specific death after applying the thresholds determined for RFS 

(P=1.21e-13) (Figure 2.4B).  

Furthermore, we compared our risk assessment tool with existing clinical tools to 

predict death from ccRCC utilizing multivariate (Figure 2.4C) and C-index analysis (Figure 
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2.4D). Our analyses show a clear superiority in assessing risk of ccRCC death using 

prognostic classification (three-risk group model) (Figure 2.4C and D) or raw risk scores 

(Figure 2.4D) compared to the UCLA Integrated Staging System[125]  (UISS) and Mayo 

Clinic Stage, Size, Grade, and Necrosis (SSIGN) score[126].  Thus, utilizing ClearCode34 

enhances risk stratification. 
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Figure 2.4: ClearCode34 prognostic model can evaluate patient risk.  
A randomized training set of 266 patients from the TCGA and clinical cohorts were used to train a 
model to identify low, intermediate, and high-risk groups for tumor recurrence using ccRCC subtype 
status (ccA/ccB), tumor stage, and histologic grade. The model was applied to the test set (n=267) to 
predict recurrence  (A) and cancer-specific death (B), revealing a highly significant risk profile 
integrating clinical and biological features.  Cox regression (C) and C-index (D) analysis validated the 
efficacy of the model using the three risk groups or raw risk scores to predict risk of ccRCC death 
over the established algorithms UISS (UI) and SSIGN (SS) score. 
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Discussion 

We developed ClearCode34 to adapt the ccA/ccB ccRCC classification to the real 

world of clinical practice. ClearCode34 is translatable to multiple gene expression platforms 

and clinically available specimens, which has added value to predicting risk above standard 

clinical and pathologic variables as well as standard ccRCC risk algorithms. The TCGA and 

clinical cohorts afforded testing of the prognostic value of ClearCode34 in independent 

datasets.  The intrinsic subtypes were significantly associated with disease recurrence (RFS), 

cancer-specific survival (CSS), and overall survival (OS), independent of standard clinical 

risk factors. Multivariate analysis for risk of tumor recurrence suggested that the risk 

prediction model including subtype, stage, and grade provided the best model, given the 

available variables.  The model was trained to predict risk groups for tumor recurrence and 

after being applied to a test set, revealed prognostic low, intermediate, and high-risk groups, 

and was also able to predict disease-specific death. Moreover, the model was shown to be a 

better predictor for CSS than established algorithms. 

The primary value of this proposed classification system would be for clinicians caring 

for the majority of patients who present with non-metastatic disease seeking guidance 

regarding post-surgical management. In addition, it must be considered that primary tumors 

from which samples in the current studies are derived may be genetically heterogeneous, or 

clonally divergent from metastases, which may present a challenge in developing tools for 

predicting the behavior of metastatic disease[71]. 

Gene expression-based tools have dramatically altered the landscape of many cancers. 

Such tools are widely used in the classification, risk assessment, and therapeutic selection of 

breast cancers[127-129], and are becoming standard also for the classification of diffuse 
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large B cell lymphoma[130] as well as colon cancer[131, 132]. Other expression-based 

systems have examined ccRCC, and have demonstrated similar patterns associated with 

risk[133]. [22] Because several individual transcripts had previously been associated with 

risk in ccRCC[31, 119-123], we specifically incorporated those features in our model and 

many were included in the final ClearCode34 codeset, validating their relevance in ccRCC 

risk prediction.  

Conclusions 

This work presents a novel integration of molecular profiling with standard clinical 

features to significantly enhance prognostication in ccRCC, thus re-defining the subset of 

patients at greatest risk for recurrence for risk-stratified patient care.   

Patients and Methods 

Patients and Clinical Samples 

95 ccRCC samples were previously analyzed by gene expression microarray, and 

clustered to define the ccA and ccB classifications[14].  From the 95, 72 arrays were chosen 

as references that had previous concordant subtype classifications determined by two 

bioinformatic methods: logical analysis of data (LAD) and ConsensusCluster[13, 14] (Figure 

1A).   

RNA-sequence data of The Cancer Genome Atlas (TCGA) cohort and clinical data 

(last modified on August 23, 2013) were downloaded from https://tcga-data.nci.nih.gov. 

Pathological re-evaluation was performed at the time of analysis by expert members of the 

TCGA Analysis Working Group, and cases that did not definitively represent clear cell 

histology were excluded from further analysis. [9] Recurrence and survival data were taken 
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from the TCGA Biotabs database, with appropriate permissions, with supplementation by the 

clinical TCGA working group database (version April 11, 2013). 

Specimens for the clinical cohort were collected between 1992 and 2010 at the 

University of North Carolina at Chapel Hill (UNC) from patients with non-metastatic 

ccRCC.  

Only patients with localized disease at the time of nephrectomy were used for the 

study. This did include a small number of patients with T4 (locally advanced) lesions, who 

have extensive local disease classified by AJCC as stage IV. No patients received systemic 

therapy for ccRCC before nephrectomy or prior to clinical recurrence. All samples and data 

were obtained with appropriate institutional review board (IRB) approvals.   

TCGA Data Analysis 

TCGA RNA sequence data were normalized to the upper quartile of normal counts.  

For analysis, the data were log-transformed (base 2) and the genes median-centered. 

FFPE Sample Preparation    

FFPE samples were sliced 5-7 microns onto slides or prepared as 10-20 micron scrolls.  

Surface of the tissue sectioned was a minimum of 1 cm2. Xylene was added and washed 

twice with 100% ethanol. Pellets were suspended in 10mM 2-(N-morpholino) ethanesulfonic 

acid (MES) pH 6.5 or Qiagen’s (Maryland, USA) Proteinase K digest (PKD) buffer.  0.5% 

SDS and 5µl Proteinase K (20mg/ml) was added. Suspensions were incubated at 55ºC, 

proteinase K inactivated at 80ºC, and supernatant collected.  
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NanoString Analysis  

The UNC genomics core processed 5µl lysate or 100 nanograms RNA for 

hybridization against NanoString probes, post-hybridization in the nCounter Prep Station, 

and data collection with the nCounter Digital Analyzer (NanoString, Seattle, WA, USA).  

Sample-specific background was subtracted using values from included negative 

controls. Data were normalized using the geometric mean of housekeeping genes and log 

transformed (base 2).  See Appendix methods for details.  

NanoString assay development and quality assessment   

We performed a series of quality controls using five tumors from the microarray 

standards to confirm that NanoString nCounter Analysis System[134] reports transcript 

abundance similarly to microarray (Appendix Figure 2.1A). Equivalent RNA detection was 

found comparing lysates prepared from FFPE to RNA from snap frozen tissue of the same 

tumor. A 20.2% failure rate was observed for preparing adequate lysate for analysis from 

FFPE specimens, with the majority of failures occurring in samples provided as scrolls, in 

which the tumor area could not be estimated. 

Development of a gene expression classifier of ccA or ccB 

To develop a minimal geneset classifier for assigning ccA or ccB subtype, prediction 

analysis of microarray (PAM)[135], a centroid-based classification algorithm, was applied to 

the microarray reference data (Figure 1A).  PAM was used due to its reproducibility in 

subtype classification compared to other centroid-based prediction methods[129].  We 

utilized a list of genes (Appendix Table 2.1A) that encompassed those previously associated 

with ccA/ccB classification[14], genes differentially expressed between the ccA/ccB 

subtypes using significance analysis of microarrays (SAM), and other published markers[31, 
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119, 120, 122, 123]. Ninety-four percent of the tumors were classified correctly (68 out of 

72) using a PAM model of 34 genes (Table 1) based on nearest centroids. This gene list was 

labeled ClearCode34. 

Cross-validation (random 10% left out in each of 50 cycles) was applied to the 

microarray reference set to evaluate the accuracy of the classifier and anticipated 

performance on independent sample cohorts. In addition, unsupervised clustering and 

ConsensusCluster[136] were used to further assess assignment accuracy by the minimized 

gene panel in the microarray standard set by comparing PAM-derived subtype assignments 

with those determined previously[14]. 

A set of 56 biological replicates of the microarray standard set (derived from 32 cases) 

was collected, and these samples were analyzed by NanoString to evaluate the concordance 

of subtype classification by ClearCode34 with previous methods[14]. These samples 

consisted of RNA from frozen and formalin-fixed paraffin embedded tissues and whole 

lysates prepared from either MES or Qiagen’s PKD buffer. After removing 16 misclassified 

samples (derived from 8 cases), PAM correctly classified 95% of the samples and final 

subtype assignments were determined. This sample set, consisting of 40 replicates derived 

from 24 cases, became the reference set for subtype classification. This set forms the tool 

used to make ccA/ccB calls for specimens analyzed by ClearCode34 on all platforms. 

Replicate samples were treated as individual samples for classification.  

Statistical Analysis 

All continuous variables were described with median and range. Recurrence, or 

relapse, was defined as the date from nephrectomy to the date that recurrence or metastasis 

was detected by imaging or pathology report. Cancer-specific survival (CSS) was defined as 
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the time from nephrectomy, to death resulting specifically from ccRCC; patients who 

remained alive, died from other reasons, or had unknown causes of death were censored for 

this outcome at the date of last follow-up or death. Overall survival (OS) was defined as the 

time from the nephrectomy to death of any cause.  The probability of death or recurrence was 

determined by using the Kaplan-Meier method, with log-rank tests assessing the differences 

between the groups. CSS was analyzed using the competing risk method, utilizing the 

“cmprsk” R package. Cox proportional hazard models and likelihood ratio using overall 

survival, cancer-specific survival, and recurrence outcomes were used to compare competing 

survival models.  ccRCC subtype, grade, age, gender, and stage, were modeled as additive 

predictors of outcome. Cox proportional hazard models were used to estimate hazard ratios 

(HR) and 95% CIs.  

Developing a relapse risk model and identifying risk groups 

The combined TCGA and clinical cohort consisted of 532 patients, after removing 11 

patients with missing stage or grade information. The combined cohort was randomly split 

into two sets of equal size for use as training and evaluation cohorts for the prognostic model. 

A multivariable Cox model with ccA/ccB subtype, stage, and Fuhrman grade as additive 

terms was fit with Ridge regression. Ten-fold cross-validation was performed in the training 

set to optimize the penalty parameter. A final model was fit to the entire training set using the 

optimized parameter. All variables are coded as binary, and the sum of the weighted 

variables produce the recurrence risk score (0.3251862 * subtype + 0.2918120 * grade 3 + 

1.0072706 * grade 4 + 0.9506794 * stage II + 1.1947564 * stage III/IV).   

For every case subject, subtype ccA, grade 1/2, and stage I were all given a value of 

zero, while a value of one was assigned for being either ccB-subtyped, grade 3 or 4, or stage 
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II or III/IV. Thresholds of this score were optimized in the training set to identify a group at 

risk for having tumor relapse within 5 years following nephrectomy.  Case subjects with a 

score of .5 or less were assigned to the low-risk group, subjects between .5 and 2 were 

assigned to the intermediate risk group, and subjects with a score of 2 or greater were 

determined to have high-risk of RFS. All weights and thresholds optimized in the training set 

remained fixed to provide unbiased estimates of performance in the evaluation set.   

Methods 

Housekeeping Gene Calculations  

Agilent microarrays of renal cell carcinoma tumors from previously published data[14, 

122] were analyzed to identify stably expressed genes for use as housekeepers.  For 

identification of SNRPD2, the antilog (2) of the data was calculated, and the coefficient of 

variation (CV=Standard Deviation (SD)/average) and maximum fold change 

(MFC=maximum/minimum) were calculated.  For the remaining five housekeeping genes, 

expression data was culled for the suggested housekeepers from NanoString and the top 100 

of [Popovici et al., BMC Bioinformatics 2013] kidney list.  The top two overall (C14orf166 

and RPLP1) and top two NanoString probes (TBP and ABCF1) were chosen.  SD, CV and 

MFC were calculated; genes were sorted on each of these variables and ranked accordingly.  

Duplicate probes with lower SD were removed, to keep worse-case scenario.  A stability 

score was calculated according to [Popovici et al., BMC Bioinformatics 2013] and [de Jonge 

et al., PLoS One 2007] PSS =αLOG(MAX(average-ß,0),2)-stdev, where α is a coefficient to 

control mean expression vs. SD (we set it to 0.25 as the paper did) and ß is the mean 

expression cutoff, which we set to the 25th percentile following the paper or -0.3908466934.  

The PSS was sorted and ranked, with genes that had calculation errors due to negative values 
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being given a rank of 87.  The rank product was then calculated as 

RP=product(ranks)^(1/(n)), where n is the number of ranks available, and RP was sorted.  

The top two overall (C14orf166) and top two NanoString probes (TBP and ABCF1) were 

chosen.  Additionally, CD63 was chosen for having the highest mean value. 

NanoString Data Analysis 

Sample-specific background was subtracted by adding the average of all the negative 

controls to the standard deviation of all the negative controls multiplied by two and 

subtracting this value from the raw values for each gene. Data were normalized using 

previously selected housekeeping genes.  The geometric mean of the housekeeping genes for 

each sample was calculated and summarized across samples.  The overall geometric mean 

was divided by each sample’s geometric mean to create a housekeeping correction factor for 

every sample.  The housekeeping correction factor was then multiplied against the 

background-subtracted values.  Data were log transformed (base 2) for analysis. The overall 

failure rate for the validation cohort using the NanoString platform was 20%, with the 

majority of these failures associated with a subset of FFPE samples that were scrolls, which 

had low amounts of RNA due to the difficulty to measure the amount of tissue. 

ConsensusCluster   

ConsensusCluster was performed using the same methods previously published in 

Brannon et al, 2010[14, 122] and Brannon et al, 2012[13] using K-Means.  
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CHAPTER 3: ALTERNATE METABOLIC PROGRAMS DEFINE REGIONAL 
VARIATION OF RELEVANT BIOLOGICAL FEATURES IN RENAL CELL 

CARCINOMA PROGRESSION 

Introduction 

The heterogeneous biology of most cancers challenges tools that rely on single biopsy 

criteria for making disease-wide assessments. Sporadic clear cell renal cell carcinoma 

(ccRCC) has recently been recognized to display a high level of genetic heterogeneity, based 

on high-throughput sequencing studies of subsampled tumors. These findings reveal a core 

mutational signature, which likely represents early or initiating events, coupled with variable 

secondary mutations, some of which are presumed to be associated with disease 

progression[71, 137]. In addition, recent studies have implicated changes in hypoxia 

regulated gene expression, and key enzymes involved in cellular metabolic programs, as 

potential features linked with progression. In particular, the recent finding of lost fructose 1,6 

bisphosphatase 1 (FBP1) expression in renal tumors implies that metabolic diversions are 

central to ccRCC activity. The regional variation of these and other relevant protein features 

of ccRCC, or the associations with regional metabolic variation has not been previously 

explored. Here, we use positron emission tomography (PET) with fluoridated 2-

deoxyglucose (FDG) in combination with magnetic resonance imaging for structural and 

anatomic resolution, to evaluate the potential for functional metabolic imaging to provide a 

comprehensive and relevant assessment of the disease biology based on regional variation in 

key prognostic and biologic features. 
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Results 

Medical imaging technologies, such as FDG-PET and magnetic resonance imaging 

(MRI), have advanced the field of oncology by characterizing tumor morphology, functional 

activities, and disease monitoring. The fused MRI/PET technology has further improved the 

assessment of soft-tissue for diagnostic purposes[138, 139]. Functional imaging using FDG-

PET has previously been evaluated in ccRCC to predict and evaluate response to systemic 

treatment[1, 140], but such studies have been challenged by the variable uptake of glucose by 

this tumor type, and reporting that was developed around tumors that display homogeneous 

intense FDG uptake. Accordingly, this methodology has yet to be adopted into general 

practice as a screening or disease assessment modality, precisely because of the variability in 

glucose uptake by these tumors[141, 142]. In this study, we used MRI/FDG-PET imaging to 

identify and evaluate heterogeneous regions of ccRCC (Figure 3.1). MRI was used for its 

greater tissue resolution, and FDG-PET for mapping regional uptake variation throughout the 

tumor. We observed a wide range of contrast patterns in ccRCC tumors, including patterns 

displaying low or no FDG uptake (Figure 3.1a), as measured by SUV, standardized uptake 

value, and tumors that were uniformly high in FDG SUV (Figure 3.1b). Interestingly, 

metastatic sites expressed higher FDG-PET intensity compared to the primary tumor (Figure 

1c). Various histologic morphologies were observed within these heterogeneous regions, 

which ranged from the hallmark lipid-filled epithelial cells with distinct cell membranes to 

granular cells with regional necrosis (Figure 3.1d), although notably, regional variation in 

SUV did not strictly correspond to regional necrosis.  
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Figure 3.1: PET/MR imaging characterizes heterogeneous regions of ccRCC that correlate to 
tumor biology.  
Representative PET, MR, and PET/MR fused images depicting low (a), high (b), and heterogeneous 
(c) metabolic activity in clear cell Renal Cell Carcinoma (ccRCC). (c) Five to eight tumor samples 
were obtained from eight ccRCC patients for hematoxylin and eosin (d), immunohistochemistry (e 
and f), and microarray (g) analysis. (d) Normal kidney cortex architecture was observed in the normal 
tissue (yellow) compared to ccRCC (red, blue, and green) that displayed various architectures that 
ranged from classical epithelial cells with clear cytoplasm and distinct membranes to a granular cell 
morphology. Samples with increased Glut1 protein (e and f) and gene expression (g) correlated with 
higher Fluorodeoxyglucose uptake (SUV), suggesting a possible mechanism that supports the greater 
metabolic activity. In contrast, protein (e and f) and gene expression (g) of the fructose-1,6-
bisphosphatase 1 (FBP1) enzyme and the platelet endothelial cell adhesion molecule (PECAM) were 
anti-correlative to SUV.  Images in (e) were captured using a 20X magnification.  
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We also evaluated levels of key proteins implicated in ccRCC in selected tumor 

regions. Hypoxia inducible factors (HIF1A and HIF2A), are commonly stabilized in ccRCC 

due to the high frequency of VHL mutation in this disease[10, 16] and promotes the 

expression of genes that support tumor progression, such as angiogenic factors like the 

vascular endothelial growth factor (VEGF) and the platelet endothelial cell adhesion 

molecule (CD31/PECAM)[18-20]. Metabolic reprogramming is also key in tumor 

progression, especially in ccRCC[15, 143], with both glucose transporters (GLUT1) and key 

metabolic enzymes regulated by the HIF factors. We detected regional variation in these 

features, and in particular we observed reduced protein (Figure 3.1e and f) and mRNA 

(Figure 3.1g) levels of the critical glycolytic enzyme FBP1, as well as a marker of tumor 

vascularity, CD31/PECAM in tumor samples with increased SUV[143]. Specifically 

considering factors that directly regulate glucose metabolism, it was noteworthy to find that 

samples from FDG-PET avid regions expressed higher expression of the glucose transporter 

GLUT1 and lower expression of FBP1 (Figures 3.1e-g), potentially indicating a switch from 

producing glycogen for energy storage to obtaining additional glucose to support increased 

metabolic activity. Downregulation of FBP1 was recently found to be a critical feature of 

progressive ccRCC[144] by enabling glycolytic flux in renal tubular epithelial cells, and this 

data further supports this molecular mechanism. 

 In addition, gene expression profiles which define distinct risk patterns of ccRCC, 

clear cell A (ccA) and B (ccB)[13, 14],[7] have also been observed to display regional 

heterogeneity[71], possibly reflecting the same clonal evolution revealed in DNA sequencing 

studies.  Samples from these regions also displayed distinct gene expression profiles (Figure 

3.2a) of the clear cell A (ccA, good risk) and clear cell B (ccB, poor risk) ccRCC subtypes[7, 
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13, 14]. Similar to previous findings[71], intra-tumor gene expression heterogeneity was 

sometimes evident among samples from the same patient, although most tumors 

demonstrated a majority feature profile (Figure 3.2a), as well as more concordant profiles 

than those from different patients (Appendix Figure 3.2A). In an effort to minimize the 

uncertainty surrounding the influence of tumor heterogeneity on gene expression between 

tumor biopsies[145, 146], we examined the relationship of the ccA/ccB subtyping with 

multiple parameters of the MRI/PET imaging, identifying FDG-PET standardized uptake 

value (SUV) to be the best radiographic parameter for dichotomizing ccA patients from ccB 

(Figure 3.2b). Patients who expressed a complete or predominately ccB subtype had SUVs 

of 2.0 or higher in 50% or more of the tumor volume compared to only 20% or less in tumors 

of ccA patients (Figure 3.2c). Moreover, individually ccB-typed samples had significantly 

higher maximum SUV than ccA. This maximum SUV also correlated with HIF1A (not 

HIF2A, Appendix Figure 3.3A) and GLUT1 protein levels, which could account for the 

shift toward glucose uptake, whereas in good risk ccA classified samples and tumors, FBP1 

protein levels were significantly higher (Figure 3.2d), suggesting possible alternate 

metabolic pathways driving these two subtypes.   
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Figure 3.2: PET dichotomizes ccRCC subtypes by metabolic activity.  
Heterogeneous subtype classification was evident among samples from the same patient (a). 
However, an overall classification trend was observed with all patients. All primary tumor samples 
from Patient 3 were of the ccA subtype and metastatic samples ccB. (b) The uptake of 
Fludeoxyglucose (FDG), a glucose analogue, best distinguished ccA patients from ccB compared to 
MR radiological parameters (Haste, Water, ADC, T1, and Contrast). Patients who largely expressed 
the ccA classification profile were considered ccA and those expressing mostly ccB were considered 
ccB. Only the primary tumor was used to measure tumor means, so Patient 3 was annotated as a ccA 
patient (b and c). Standardized Uptake Value (SUV) of primary tumors was greater than 2.0 in at least 
50% of tumor volume for tumors with a ccB classification while those absent of ccB exceeded SUV 
of 2.0 in 20% or less of tumor volume. (c).  (d) ccB samples had significantly higher maximum SUV 
compared to ccA, as well as increased expression of HIF1 and activation of the glucose transporter 
GLUT1. Interestingly, ccA and ccB-typed samples expressed distinct levels of FBP1, suggesting 
discrete metabolic reprogramming within these two groups.  
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Metabolic dysregulation has widely been considered as a key event in ccRCC 

tumorigenesis due to the high frequency of VHL inactivation and resulting activation of 

hypoxia inducible transcription factors[17, 147], which regulate numerous genes involved in 

metabolism. Therapeutics are being developed and used to target enhanced metabolic 

pathways, such as the mTOR pathway. However, these agents produce either inefficient or 

varied patient responses, underscoring the need for a greater understanding of the complex 

relationships between tumor and host metabolic activities[36, 41, 121, 148]. Recently, the 

ccRCC cancer genome atlas (TCGA) elucidated that patients with unfavorable survival 

outcomes had higher expression of genes involved in early steps of glucose utilization, the 

oxidative pentose phosphate pathway, fatty acid synthesis, and downregulation of the PI(3)K 

pathway, whereas patients with better survival expressed genes involved in glycolysis, Krebs 

Cycle, and AMPK signaling[15].  In our analysis, the ccA and ccB subtypes, and FDG-PET 

glucose uptake patterns, followed similar trends, as ccB (SUV high) samples significantly 

displayed higher expression levels of oxidative pentose phosphate pathway genes whereas 

ccA samples had higher levels of glycolytic and Krebs Cycle genes (Figure 3.3a). 

Surprisingly, FBP1 and other glucose storage genes showed marked differential expression 

between ccA (SUV low) and ccB (SUV high)-typed samples. It was recently demonstrated 

that FBP1 is frequently depleted in ccRCC and may act as a critical mediator of tumor 

progression[144]. We observed that the majority of ccB-typed samples have depleted FBP1 

transcript levels, as compared to ccA, consistent with FBP1 corresponding to steps in disease 

progression or an aggressive phenotype. 
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Figure 3.3: ccRCC subtypes are involved in distinct metabolic pathways.  
Increased metabolic activity is a key event in ccRCC progression and has been postulated to be a 
future target for personalized treatment. (a) ccB patients had significantly higher expression of genes 
associated with the oxidative pentose phosphate pathway (PGLS, HK3, G6PD, PGD, PFKL, and 
ALDOB), while having lower levels of genes involved in glucose storage (G6PC, FBP1, and PCK2), 
showing a shift in metabolism towards glucose synthesis. On the other hand, glycolytic activity 
(PKLR and LDHD) was enhanced in ccA samples compared to ccB, as well as Kreb Cycle genes 
(PDK2, DLD, and PDK4). Red genes were found statistically significant (p-value>0.05) between ccA 
and ccB samples by a Welsh t-test. Similar to the patients in the study, ccA and ccB patients from the 
ccRCC Cancer Genome Atlas (TCGA) (b-h) separated by the activation of distinctive metabolic 
pathways. ccA patients had higher expression of genes associated with glucose storage (b), glycolysis 
(c), and the Krebs Cycle (d) compared to ccB patients. Much like ccB patients in Figure 3a, ccB 
patients had higher expression of genes involved in the oxidative phase of the pentose phosphate 
pathway (e). Interestingly, ccA patients significantly increased expression of genes inhibiting the 
PI(3)K, AKT, and MTOR pathway (f and g), while ccB patients had activation of the mTOR pathway 
and fatty acid synthesis (h), suggesting a possible mechanism for increased HIF1 and GLUT1 
expression in ccB patients (Figure 2d). Welsh t-test was performed to analyze significance of gene 
expression between subtypes (* = p-value>0.05, ** = p-value>0.01, *** = p-value>0.001).   
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Similarly, a metabolic switch was evident between ccA and ccB assigned samples in 

the TCGA dataset. ccA samples demonstrated notably higher glycogen synthesis (Figure 

3.3b), glycolysis (Figure 3.3c), and Krebs Cycle (Figure 3.3d) activity compared to ccB 

samples that had enhanced oxidative pentose phosphate (Figure 3.3e) and mTOR pathway 

(Figure 3.3f) activation. The trend towards a “Warburg effect”-like state identified in the 

ccRCC TCGA was evident with ccA patients who experienced increased AMPK signaling 

(Figure 3.3g) and expression of mTOR pathway inhibition, as compared to the upregulation 

of fatty acid synthesis in ccB patients (Figure 3.3h).  

We performed logistic regression on ccA and ccB samples from our study (Figure 

3.4a) and 380 patient samples from the TCGA (Figure 3.4b) to identify biological variables 

significantly correlated to and predictive of subtype. In our study, ccA samples were best 

defined by genes (pink) and proteins (purple) involved in glucose storage and glycolysis 

(Figure 3.4a). On the other hand, enhanced expression of pentose phosphate pathway genes 

distinguished ccB samples. Higher standard uptake values trended towards ccB (p-

value=0.06), however the sample size limited statistical power. We were able to further 

evaluate metabolic trends that characterized the two subtypes by using RNA-seq data from 

the TCGA (Figure 3.4b).  Similar to previous findings, the most significant genes associated 

with the ccA subtype involved the upregulation of glycogen synthesis (G6PC, FBP1, PCK1, 

and PCK2), glycolysis (PKLR, ENO1, LDHD, LDHA, and PGK1), and Krebs Cycle (PDK2, 

PDK1, ACO2, SDHC, SDHB) in contrast to ccB samples which had significant association 

with the oxidative pentose phosphate pathway (HK3, PGLS, G6PC, TKT, PGD, and PFKM) 

and fatty acid synthesis (FASN, ACACA, and ME1). Interestingly, the PI(3)K pathway 

inhibitors TSC1 and GRB10 were highly associative to the ccA subtype, while mTOR genes 
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(mTOR and RHEB) were enhanced in ccB subtype, again, highlighting metabolic redirection 

in these two prognostic groups (Appendix Figure 3.1A).   
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Figure 3.4: Distinct pathways support ccRCC metabolism.  
Logistic regression was performed to assess which biological features were significantly correlated to 
the ccA and ccB subtypes, with the exclusion of patient effect. (a) A forest plot depicts the association 
of effect estimates (odds ratios) of genes (pink), proteins (purple), and standard uptake values (black) 
with ccA (odds ratios between -10 and  -1) and ccB subtypes (odds ratios between 1 and 5). The 
G6PC and PCK1 genes were highly associated with ccA samples, but weren’t significantly valuable. 
However, FBP1 gene expression was significantly correlated and higher in (p-value=0.014) ccA 
samples. In contrast, ccB samples were associated with the gene expression of G6PD (p-value=0.042) 
and HK3 (p-value=0.052), as well as SUV (p-value=0.06). (b) Similar metabolic trends were 
associated with subtype in the ccRCC TCGA, where enhanced expression of glycogen synthesis 
(G6PC, FBP1, PCK1, and PCK2), glycolysis (PKLR, ENO1, LDHD, LDHA, and PGK1) and Krebs 
Cycle (PKLR, ENO1, LDHD, LDHA, and PGK1) genes were associated with ccA, while oxidative 
pentose phosphate pathway (HK3, PGLS, G6PC, TKT, PGD, and PFKM) and fatty acid synthesis 
(FASN, ACACA, and ME1) genes were upregulated in ccB. (c) Model illustrating the different 
metabolic pathways driving the ccA and ccB subtypes. ccAs generate NADH for the electron 
transport pathway mainly through glycolysis and Krebs Cycle, while fatty acid synthesis is enhanced 
to generate energy through the oxidative pentose phosphate pathway in ccBs. The mTOR pathway 
activity is also enhanced in ccBs driving the expression of HIF1 and thus the target gene GLUT1, 
resulting in higher glucose uptake.  
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Discussion 

Intratumor heterogeneity has been shown to significantly impact the genome of ccRCC 

creating difficulties in revealing underlying molecular events that promote tumorigenesis and 

progression[71, 137]. Thus, biomarkers are urgently needed that provide insight towards 

tumor biological processes, and which have the potential to comprehensively assess the 

whole disease, and which could guide selection of treatment[121, 149, 150]. In this study, we 

provide a novel methodology that incorporates radiographic imaging with multiregional gene 

expression profiling to facilitate the assessment of intratumor heterogeneity and tumor 

progression. The ccRCC subtypes, ccA and ccB, even as defined based on single tissue 

sample specimens, have been validated as prognostic tools for the evaluation of cancer-

specific death. ccA patients have substantially better recurrence-free, cancer-specific, and 

overall survival than patients of the ccB subtype. Here, we have identified that ccB samples 

express higher glucose uptake compared to ccA and ccB-typed tumor present with higher 

overall SUV tumor means compared to ccA. This technique can potentially facilitate a 

comprehensive assessment of the tumor, and the overall disease, without using invasive 

alternatives, especially where biopsy bias is a concern[146]. More importantly, these data 

suggest that a metabolic transition accompanies the differences between ccA and ccB, with 

FBP1 expression as a key factor, and further, that alternate mechanisms for energy 

processing in ccA and ccB tumors that may contribute to their antagonistic survival 

outcomes. ccA tumor cells appear to produce energy through increased glycolysis and Krebs 

Cycle activity, while storing additional glucose through FBP1-controlled glycogen synthesis, 

in keeping with the glycogen-rich histology that is classic for lower grade ccRCC tumors. In 

contrast, metabolic activity in ccB patients is substantially enhanced, with glucose uptake and 
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synthesis increased and storage decreased. The oxidative pentose phosphate pathway is 

elevated and potentially functions as a generator of NADPH for ccB patients, which is likely 

supported via the mTOR pathway (Appendix Figure 3.1A). Future studies are required to 

validate the metabolic mechanisms of the ccA and ccB subtypes. However, this study 

suggests novel therapeutic targets that may improve assessment for prognostic and predictive 

outcomes for ccRCC.   

Methods 

Patients and clinical samples 

All patients were enrolled to an investigator-initiated trial, LCCC1213, using a UNC 

Biomedical IRB approved consent. Enrollment criteria consisted of adequate organ function, 

radiographic confirmation of a renal mass of sufficient size to allow subsampling, and a 

scheduled surgery date. Patients were encouraged to be fasting at the time of the scan, and 

blood sugar was tested prior to imaging. No patients were excluded due to hyperglycemia. In 

total, 13 patients were imaged, but only clear cell RCC patients were included in the primary 

analysis (supplemental table 1), due to the markedly differing biology of other subtypes such 

as papillary RCC[15, 151, 152]. 

Specimens were collected from October 2012 through September 2013 at the 

University of North Carolina directly from the pathology grossing area using the MR-PET 

image map as a guide to select samples corresponding to the desired region of interest. At 

least five fresh kidney specimens were obtained from each patient and were transported back 

to the lab, relabeled, and stored as flash frozen or paraffin embedded specimens for batched 

analysis.  Stage was classified using the American Joint Committee on Cancer’s Cancer 
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Staging Manuel, 7th edition (AJCC-7). A genitourinary oncologist verified pathologic clinical 

variables.  

MRI/PET Acquisition  

Prior to the PET/MR imaging session, 5mCi of FDG was infused intravenously.  

During the FDG uptake period, patients were kept in a quiet room.  40 min after FDG 

infusion, patients were asked to empty their bladder prior to the imaging session. All images 

were acquired using a hybrid PET/MR scanner (Biograph mMR, Siemens HealthCare) 

housed in the Biomedical Research Imaging Center.  A spine coil together with 2 anterior 

body coils were used to cover liver through kidneys.  After acquiring localization images, 

MR attenuation images were acquired first, followed by a breath-hold T2 half-Fourier 

acquisition single-shot turbo spin-echo (HASTE) sequence.  These included multiplanar T2 

weighted images obtained sequentially 5mm in thickness with a 2 mm gap and pre and post 

contrast enhanced T1 weighted images obtained as a volume and reviewed as 3mm 

contiguous images in multiple planes.  The dose of Gadolinium chelate was 0.1 mg/kg.  This 

sequence was repeated twice along the coronal (cor) and axial orientations, respectively.  The 

image parameters for the coronal orientation were as follows: repetition time, 2sec; echo time 

(TE) 94msec; slice thickness, 8 mm for 28 slices with 20% gap; matrix size, 256x256; 

acceleration factor of 3 using GRAPPA; flip angle, 150-degree; and voxel size 2x1.6x8mm3.  

In contrast, with the exception of TE=95msec, number of slices = 24, acceleration factor = 2, 

and voxel size = 1.7x1.4x8mm3, images acquired using an axial orientation used identical 

parameters as that for coronal orientation.  The HASTE images were used for the placement 

of ROIs throughout the tumors.  In contrast to MR imaging, a 4 min single-bed PET 

acquisition covering the kidneys was acquired simultaneously with the above outlined 
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HASTE sequence. PET images were obtained on the same table again using standard 

techniques. Post procedure fusion of the MR and PET images was performed using a 

dedicated workstation (Siemens Medical Solutions, Malvern, PA).  

Image review  

Two physicians reviewed images, one a genitourinary imaging specialist with 20 years 

experience and the other a nuclear medicine specialist with 15 years of experience.  Cases 

were reviewed using a standardized hanging protocol. The high-resolution MR images were 

used to identify anatomic structures. Location of FDG and Gd uptake were identified, 

focusing on the kidney tumor and local metastases.   FDG uptake was quantified using 

standard SUV. An increase of 2 SUV was considered increased avidity. 

Antibodies and Immunohistochemistry  

Rabbit polyclonal antibodies against CD31 (ab28364), FBP1 (HPA005857) and Glut-

1(07-1401) were from Abcam (Cambridge, MA), Sigma Aldrich Corp. (St. Louis, MO) and 

Millipore (Billerica, MA)) respectively. Mouse monoclonal HIF1A clone 54 (610959) was 

from BD Biosciences (San Jose, CA). 

 
IHC was carried in the Bond Autostainer (Leica Biosystems Inc.  Norwell, MA). Slides 

were dewaxed in Bond Dewax solution (AR9222) and hydrated in Bond Wash solution 

(AR9590). Antigen retrieval for all antibodies was performed for 30 min at 100ºC in Bond-

Epitope Retrieval solution1 pH-6.0 (AR9961). After pretreatment slides were incubated with 

FBP1 (1:1500) and Glut-1 (1:2000) for 30 min, CD31 (1:200) for 1h and HIF1A (1:100) for 

3h. Detection of CD31, FBP1 and Glut-1 was performed using Bond™ Polymer Refine 

Detection (DS9900) and Bond™ Polymer Refine Red Detection (DS9390) for HIF1A. 
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Stained slides were dehydrated and coverslipped. Positive and negative controls (no primary 

antibody) were included for each antibody.  

Digital imaging and image analysis 

IHC stained slides were digitally imaged in the Aperio ScanScope XT (Leica) using 

20x objective. HIF1A, Glut-1 and FBP1 slides were analyzed using Aperio Image analysis 

algorithms and Definiens Tissue Studio software (Munich, Germany) was used to measure 

the microvessel density in CD31 stained slides. 

Quantitative Image Analysis 

For each subject, one PET image and five MRI images were analyzed as follows.  The 

PET image was scaled to units of Standard Uptake Value (SUV).  The MR images used 

included a T2-weighted HASTE sequence (referred to as “HASTE"), a water-content image 

from the Dixon sequence used for attenuation correction (referred to as “Water”), an apparent 

diffusion coefficient image (referred to as “ADC”), a t1-weighted image (referred to as 

“T1”), and a contrast image produced from the subtraction of pre-contrast from a post-

contrast image (Referred to as “Contrast”).  The ADC image was already quantified as an 

estimate of a physical quantity, the apparent diffusion coefficient, and was used 

unchanged.  The other MRI images in their raw forms were quantified in arbitrary intensity 

units and so were normalized to the average intensity in a cortical region of the opposite 

healthy kidney. 

Because the PET-MR scanner gives images that are already aligned, the PET and MRI 

images generally did not require an additional alignment step.  However, in two cases, some 

images had to be rigidly translated to align the tumor sites; generally this appeared to be due 

to respiratory motion.  All images were then resampled to the grid of the PET image (2.086 
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mm x 2.086 mm x 2.031 mm).  Regions of interest encompassing the tumors were drawn by 

hand to isolate the tumor volume. 

For each voxel, a set of six image quantities (PET, HASTE, Water, ADC, T1, and 

Contrast) were derived.  Means of these six quantities within the tumor volume were 

computed for each subject.  Further analysis of the PET image included computation of the 

percent of tumor volume exceeding certain SUV thresholds, which were found to be related 

to pathology outcomes. 

Microarray Analysis 

mRNA was extracted from fresh frozen ccRCC tissue specimens using the Qiagen 

AllPrep DNA/RNA Mini Kit (Valencia, CA), amplified, labeled and hybridized against a 

reference[153] on Agilent Whole Human Genome (4 x 44k) Oligo Microarrays. Missing data 

was imputed, log transformed (base 2), and median centered.  

Subtype Classification 

Samples were classified as either ccA or ccB using a reference microarray data set and 

centroid-based classification algorithm previously described[7].   

The Cancer Genome Atlas (TCGA) data analysis  

TCGA RNA sequence data were obtained from dbGAP and normalized to the upper 

quartile of normal counts. For analysis, the data were log-transformed (base 2) and genes 

were median centered.  

Statistical Analysis  

All statistical analyses were performed using the R program (R Project for Statistical 

Computing, Vienna, Austria). A two-sample Welch t-test was used to assess differences 
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between subtypes, with all p-values lower than 0.05 considered significant. Gene and protein 

(H-Scores log2 transformed) expression data were fit with a mixed effects regression model 

using fixed effects for each variable of interest, and a random effect for the patients (nlme 

and lme4 R Packages). Standard errors of the effect estimates were calculated and illustrated 

as a forest plot. Intra-class correlation (ICC) was utilized to measure concordance between 

samples from the same patient and between patients. ICC was calculated for each pair and 

then summarized by mean for each group of paired samples. ICC values for unpaired groups 

were estimated from all samples in the group. Further analysis and plotting of paired and 

unpaired analyses were performed identically. The “irr” R package was used to generate ICC 

estimates.  
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CHAPTER 4: CADMIUM EXPOSURE INFLUENCES ccRCC HETEROGENEITY 

THROUGH AN EPIGENETIC MECHANISM 

Introduction 

 Cadmium (Cd) is a known environmental and occupational metal compound that has 

been linked to various adverse health effects, including cancer[88] [89, 109-113]. Exposure 

to cadmium can occur through multiple sources, however, the most common source is 

through smoking cigarettes. Smoking populations experience higher levels of cadmium 

exposure, as one cigarette may contain 1-2 ug cadmium[80, 81]. The long half-life of Cd of 

approximately 20 to 21 years results in the accumulation of the metal over time, which is 

detrimental to persons with numerous or chronic Cd exposures. The kidney is one of the 

main deposition sites of Cd due to reabsorption from filtered blood by the proximal 

convoluted tubules[86]. More specifically, heavy metals like cadmium can induce 

nephrotoxicity altering gene expression in the kidney, and thus increasing the risk of 

developing Renal Cell Carcinoma (RCC) [81, 87, 114]. In addition to transcript alterations, 

numerous studies have found that Cd exposure can result in epigenetic deregulation by 

changing DNA methylation levels, histone modifications, and miRNA expression [84, 115-

117], which have all been found to be novel hallmark features of the clear cell Renal Cell 

Carcinoma (ccRCC) subtype[15, 59]. Exploring toxicant-induced global expression and 

epigenetic changes can enhance our understanding of the genetic interactions that drive the 

biological responses to these exposures and their influence on signatures of RCC that are 

imperative for prognostics. 
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Clear cell Renal Cell Carcinoma, the most prevalent subtype of RCC or kidney cancer 

in adults, has been established as a highly heterogeneous disease, displaying various 

subpopulations of cells, assorted cell and tumor morphology, and distinct genetic 

signatures[71, 124]. The enhanced genetic heterogeneity of this disease has made it difficult 

to elucidate which mutations are imperative for ccRCC initiation and progression. 

Nonetheless, molecular features of ccRCC have recently emerged that shed light towards 

understanding its underlining biology. Clearcode34, a novel 34-gene risk predictor for 

ccRCC tumor recurrence and cancer-specific death, was recently elucidated and validated to 

classify two subtypes of ccRCC, clear cell A (ccA) and clear cell B (ccB). These subtypes 

conveyed a prognostic value, with tumors displaying the ccA signature associated with better 

recurrence-free, cancer-specific, and overall survival compared to ccB[7]. ccRCC is a tumor 

closely linked to environmental toxicant exposure, and heavy metals like cadmium can 

induce nephrotoxicity altering gene expression in the kidney, and thus increasing the risk of 

developing RCC. Furthermore, ccRCC is associated with chromosome 3p deletions and 

inactivation of genes within that region, such as the Von Hippel-Lindau (VHL) tumor 

suppressor and epigenetic modifiers PBRM1, SETD2, and BAP1[12, 154, 155]. Even with 

the elucidation of these genetic features, the contributions of other 3p genes involved in 

ccRCC are less well understood, but additional effects on gene transcription would be 

expected as a result of chromatin modulating activities. Thus, we aim to evaluate the 

relationship of cadmium exposure to epigenetic reprogramming in ccRCC that may influence 

gene expression heterogeneity and core expression patterns.  

Here, we 1) explore for the first time the influence distinct DNA methylation profiles 

have on the ccA and ccB gene signatures, 2) examine epigenetic alterations in both ccRCC 
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primary tissue and kidney cell lines induced by acute Cd exposure and their affects on the 

expression profile of the cancer, by measuring changes in DNA methylation, which could 

provide a possible mechanism for gene expression changes in target genes associated with 

tumorigenesis. Identifying exposure-related epigenetic changes will inform us of the dynamic 

nature of the regulation of gene expression in ccRCC. 

 

Results 

ccRCC subtypes express distinct DNA methylation profiles  

Since ccRCC is influenced by epigenetic alterations, we decided to first focus on DNA 

methylation and examine the methylation profiles of ccA and ccB within the prognostic tool 

ClearCode34. Multiple primary tumor subsamples taken from 8 patients that underwent 

complete nephrectomy at UNC were subjected to DNA methylation and gene expression 

analysis. Interestingly, samples classified as ccA expressed a hypomethylated signature 

among loci corresponding to ClearCode34 genes expressed higher in ccA-typed samples and 

a hypermethylated profile of loci corresponding to genes enhanced in ccB-typed samples 

(Figure 4.1A and B). In contrast, the ccB-classified samples in our cohort expressed 

increased methylation of ccA-associated ClearCode34 genes and decreased methylation for 

ccB (Figure 4.1A and B). These methylation profiles correlated to the mRNA expression, 

with increased expression of ccA genes in ccA samples and elevated expression of ccB genes 

in ccB samples (Figure 4.1C).  
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Table 4.1: Patient demographics and clinical characteristics.  
Patient Stage Grade Overall Subtype 

Classification 
Smoking 

Status 
Patient 1 II 2 ccA Non-Smoker 
Patient 2 II 2 ccA Non-Smoker 
Patient 3 IV 3 ccA Smoker 
Patient 4 I 2 ccA Non-Smoker 
Patient 5 I 2 ccA Smoker 
Patient 6 II 3 ccB Non-Smoker 
Patient 7 I 2 ccB Non-Smoker 
Patient 8 IV 4 ccB Smoker 
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Figure 4.1. ccRCC subtypes express distinct DNA methylation profiles.A.  
Methylation profiles of 5’ untranslated regions corresponding to loci of ClearCode34 genes. ccA-
associated genes were hypomethylated in ccA samples and hypermethylated in ccB samples, while 
loci of genes highly expressed in ccB samples were hypermethylated in ccA samples and 
hypomethylated in ccB samples. B. The distinct DNA methylation profiles between ccA and ccB-
typed samples were found significant among ccA-associated genes (p<0.001), but not ccB. C. Gene 
expression profiles of ccA samples were contradictory to ccB, with ccA genes enriched in ccA 
samples and ccB genes upregulated in ccB classified samples.   
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ccRCC subtypes are associated with cadmium exposure  

 We wanted to evaluate the relationship of cadmium exposure to epigenetic 

reprogramming in ccRCC that may influence gene expression heterogeneity, so we 

performed ICP-mass spectrometry to measure Cd concentrations in both normal and ccRCC 

tissues.  As expected, normal (Figure 4.2A) and tumor tissues (Figure 4.2B) of patients that 

smoked had higher concentrations of Cd compared to non-smokers. Notably, higher 

concentrations of Cd was detected in normal tissue compared to ccRCC, which has been 

previously observed, maybe due to higher metabolic rates in ccRCC expelling out excess Cd. 

However, no significant trend was observed with smoking status between ccA and ccB-typed 

patients (Figure 4.2C).  

 We next examined the relationship between cadmium concentrations and the ccA and 

ccB prognostic signatures. Surprisingly, ccB samples had increased concentrations of Cd 

compared to ccA, suggesting a possible mechanism between exposure and ccRCC 

heterogeneous gene expression profiles (Figure 4.3A).  Samples with higher cadmium 

concentrations tended to display a “ccB-like” DNA methylation profile of hypermethylation 

of 5’ UTR loci of ccA-associated genes of ClearCode34 and hypomethylated loci of ccB-

associated genes compared to low-Cd samples (Figure 4.3B), further bolstering the link 

between Cd and epigenetic alterations in ccRCC.  
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Table 4.2: Quantity of patient samples used for microarray, DNA methylation, and mass 
spectrometry analysis.  

Patient Microarray DNA Methylation Mass Spectrometry 
Patient 1 5 5 3 
Patient 2 3 NA 2 
Patient 3 2 3 2 
Patient 4 2 1 NA 
Patient 5 2 2 2 
Patient 6 6 4 6 
Patient 7 4 NA 5 
Patient 8 4 4 4 
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Figure 4.2: Cadmium concentrations correlate with smoking status.  
Cadmium (Cd) exposure is a RCC risk factor and is found in high levels in cigarettes and smoking 
populations. Higher concentrations of Cd were detected by ICP-mass spectrometry in (A) normal and 
(B) ccRCC tissues of smokers compared to non-smokers. C. No correlation was identified between 
smoking status and ccA and ccB-typed patients.  
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Cadmium exposure alters ccRCC epigenome 

Multiple exposures besides cadmium could have contributed to the altered epigenome 

between ccA and ccB in the clinical samples, so we wanted to explore the direct effects of 

Cd-induced DNA methylation profiles and whether they associated with prognostic markers 

of ccRCC. Human kidney cells (HKCs) were exposed to 4uM (low dose) and 40uM (high 

dose) Cdcl2 up to two weeks (Figure 4.4A). The low dose was chosen because it represented 

the average micromole measured in ccRCC tissue among the patient cohort and 40uM was 

low enough below the half maximal inhibitory concentration (IC50) (Figure 4.5) to prevent 

cell death.  However, no significant differences were observed between the two 

concentrations or the 1-week and 2 weeks exposures.  

 After exposure to Cdcl2, there was a marked increase of metallothioneins (MT), 

cysteine-rich proteins that have the capacity to bind cadmium to protect against metal 

toxicity and oxidative stress (Figure 4.4B). No expressions of MTs were detected in 

untreated HKCs. Moreover, there was an upregulation in the expression of DNA 

methyltransferases following exposure to cadmium, again suggesting cadmium induces 

epigenetic rearrangement in the kidney (Figure 4.4C). Significant hypermethylation of loci 

corresponding to genes in ClearCode34 was evident in cadmium-treated cells compared to 

untreated (Figure 4.4D), which correlated to heterogeneous expression of ClearCode34 

genes (Figure 4.4E).  
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Figure 4.3: ccRCC poor prognostic marker associated with increased cadmium.  
A) Higher concentrations of cadmium were measured in ccB classified primary ccRCC samples 
compared to ccA. B) Hypomethylation of genes significantly associated with the ccB subtype was 
evident in samples with higher Cd concentrations, while samples with lower Cd expressed DNA 
methylation profiles similar to ccA subtype.  
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Discussion 

Cellular damage due to nephrotoxicity results in acute kidney injury (AKI) [72, 73], 

and can be worsened if untreated to cause chronic kidney damage or promote or exacerbate 

tumorigenesis [74-76]. While it is known that ccRCC can be influenced by chemical 

exposure, it is largely unknown whether there are sustaining effects exposures have on 

distinct gene signatures of this disease, and how these exposures relate to tumor 

heterogeneity and molecular patterns.  We propose to use ClearCode34 as a baseline metric 

to elucidate specific effects of toxicants, such as heavy metals like cadmium, on renal tumor 

gene expression signatures that can provide insight into the molecular phenotypes of ccRCC.  

For the first time, we highlight epigenetic mechanisms supporting the prognostic tool 

ClearCode34, which has been validated as a risk predictor for ccRCC cancer-specific death 

and tumor progression. ccA and ccB samples express distinct DNA methylation profiles that 

inversely correlate to gene expression patterns in ClearCode34 associated with each subtype. 

Variant methylation was observed in the 5’ untranslated regions of loci of the 34 genes 

corresponding to ClearCode34. This region is upstream of transcription start sites and has 

been implemented in regulating transcription and translation[156]. Here, loci associated with 

genes upregulated in ccA-typed samples are demethylated in ccA-classified samples within 

our cohort compared to enhanced methylation of loci corresponding to genes enhanced in 

ccB-typed samples. In contrast, samples classified as ccB in our cohort had higher 

methylation of loci corresponding to ccA genes and lower methylation of loci of genes 

associated with the ccB subtype. These same DNA methylation profiles were observed in 

samples with lower and higher concentrations of cadmium, respectively. Furthermore, 

normal kidney cells exposed to cadmium expressed significantly higher transcript levels of 
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metallothioneins and DNA methyltransferases, regardless of a 4uM or 40uM dose. As a 

result, increased methylation was observed in cells following exposure to cadmium, with 

similar effects between 1 week and 2 week durations, suggesting longer exposures may be 

needed to measure dose-specific responses. Moreover, heterogeneous ClearCode34 gene 

expression profiles of cadmium-treated and untreated cells further bolster the cadmium-

induced influence on the kidney genome and epigenome. This study will help elucidate the 

roles of ccRCC heterogeneity and toxicant exposure on gene expression and epigenetic 

patterns and its potential effects on this cancer. Exploring the range of genome-wide 

expression alterations as a result of tumor heterogeneity and toxicant exposure will enhance 

the understanding of this disease and shed light on future methods to provide a personalized 

care plan for patients with ccRCC. 
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Figure 4.4. Cadmium exposure alters epigenome of primary kidney cells.  
A) HKC cells were cultured with and without cadmium (4 or 40 uM) for two weeks. After every 7 
days, cells were retrieved for DNA/RNA extraction to perform DNA methylation and gene 
expression analysis. B) Following cadmium exposure, transcript levels of metallothioneins were 
upregulated compared to cells untreated. C) Gene expression of DNA methyltransferases increased 
post cadmium exposure, which corresponded to increased methylation of loci in ClearCode34 (D). E) 
Heterogeneous gene expression levels of genes in ClearCode34 between genes with and without 
cadmium.      
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Figure 4.5: HKC cells half maximal inhibitory concentrations of cadmium.  
Results of three independent experiments of HKC cell viability following exposure to cadmium 
chloride for 18 hours. Average inhibitory concentration was 49.6uM.  
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Methods 

Patients and Clinical samples 

Specimens were collected from October 2012 through September 2013 at the 

University of North Carolina directly from the pathology grossing area to select samples 

corresponding to the desired region of interest. At least five fresh kidney specimens were 

obtained from each patient and were transported back to the lab, relabeled, and stored as 

flash frozen or paraffin embedded specimens for batched analysis.  Stage was classified using 

the American Joint Committee on Cancer’s Cancer Staging Manuel, 7th edition (AJCC-7). A 

genitourinary oncologist verified pathologic clinical variables.  

 

Cell Culture 

Human Kidney Cells (HKCs) are a renal proximal tubular cell line. In vitro studies 

were performed at 37°C with 5% CO2. Cells were grown in Dulbecco’s modified Eagle 

media with 10% FBS, nonessential amino acids, L-glutamine, and penicillin/streptomycin. 

Cadmium chloride was dissolved into the media by vortex to equal 4 and 40 micromolar 

concentrations. Cells were plated in triplicate with medium without cadmium, 4uM, and 

40uM concentrations at 1 x 106 in 10cm plates with 10mL of media. Cells were collected for 

DNA/RNA extraction every 7 days for two weeks. After collections, cells were reseeded at 1 

x 106 with and without cadmium.   

Bisulfate Conversion 

DNA was extracted from fresh frozen ccRCC tissue specimens and HKC cells using 

the Qiagen AllPrep DNA/RNA Mini Kit (Valencia, CA). Bisulfite conversion of DNA was 



87 

completed using the Zymo Research EZ DNA Methylation Kit (Irvine, CA). 75ng/uL of 

DNA was used for DNA methylation analysis.  

DNA Methylation Analysis 

DNA Methylation was performed by following the Infinium HD Methylation protocol 

for the HumanMethylation 450K BeadChip as written by the manufacturer (Illumina, San 

Diego, CA). Data was generated as averaged beta values.  

Microarray Analysis 

mRNA was extracted from fresh frozen ccRCC tissue specimens using the Qiagen 

AllPrep DNA/RNA Mini Kit (Valencia, CA), amplified, labeled and hybridized against a 

reference[153] on Agilent Whole Human Genome (4 x 44k) Oligo Microarrays. Missing data 

was imputed, log transformed (base 2), and median centered.  

IC50 calculation 

HKC cells were seeded in 96-well black clear bottom plates at 10,000/mL. 200uL of 

media with and without cadmium was added to each well. Cadmium concentrations started at 

2000 uM and were diluted 3-fold until the concentration of .001uM was reached. Triplicates 

of cells were subjected to each concentration. Following an 18-hour incubation, media was 

removed and cell viability measured by the CellTiter-Glo Luminescent Cell Viability Assay 

(Promega, Madison, WI). Luminescence was measured using a Wallac Envision microplate 

luminometer.   

Subtype Classification 

Samples were classified as either ccA or ccB using a reference microarray data set and 

centroid-based classification algorithm previously described[7].   
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Mass Spectrometry 

Kidney tissue (150 mg) was digested in 7 mL polypropylene screw caps vials with 125 

µL 70% nitric acid at room temperature for 5 hours before overnight incubation in an 85°C 

heating block.  After samples reached room temperature, 100 µL of 30% hydrogen peroxide 

was added and samples put on a 85°C heating block for 4 hours. Vials were cooled and 

vented every twenty minutes for the first hour of incubation. Following incubation, samples 

were diluted to 3 mL with 18Ω ohm deionized water. 

The Agilent Technologies 7500cx (ICP-MS) (Santa Clara, CA. USA) was used to 

quantify total cadmium (Cd).  Analytes were quantified according to published 

protocols[157].  The isotope measured was 111Cd.  External calibration and quality control 

standards were prepared from NIST traceable solutions (High Purity Standards, Charleston, 

SC. USA).  Levels are reported as ng analyte/g kidney. 

Statistical Analysis  

A two-sample Welch t-test was used to assess differences between subtypes, with all p-

values lower than 0.05 considered significant. Average Beta values were log transformed 

(base 2) and median centered to generate heat maps. Heat maps were produced with Java 

TreeView.   
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CHAPTER 5: SUMMARY AND DISCUSSION 

Summary 

 In the U.S, kidney cancer is the sixth leading cause of cancer among men and the 

eighth among women[3]. There are multiple subtypes of this disease, however, over 70% of 

patients with renal tumors have the clear cell (ccRCC) subtype, a tumor associated with 

chromosome 3p deletions and inactivation of the Von Hippel-Lindau (VHL) tumor 

suppressor[4]. This dissertation focused on expanding two recently recognized features of 

ccRCC 1) the genetic and functional/morphological heterogeneity of primary tumors, 

specifically renal tumor prognostic subsets, and 2) the association of renal exposure to 

toxicants and their influence on expression features of renal tumors. Investigating ccRCC 

heterogeneity and possible environmental influences will enhance insight into the molecular 

phenotypes of ccRCC and their correspondence to patient outcome, as well as elucidate 

response to this disease.   

ClearCode34 

 Clear cell renal cell carcinoma (ccRCC) displays variability in risk for developing 

metastatic disease. Thus, tissue-based prognostic biomarkers are needed to better understand 

the underlying biology that supports tumor progression. Recently, we’ve elucidated two 

subtypes of ccRCC, clear cell A (ccA) and clear cell B (ccB).  These subtypes conveyed a 

prognostic value, with tumors displaying the ccA signature associated with better survival 

compared to ccB. We developed and validated a 34-gene subtype predictor (ClearCode34) to 



90 

classify clear cell tumors as ccA and ccB using RNA-sequencing data from ccRCC samples 

from The Cancer Genome Atlas (TCGA) and the NanoString platform using samples 

collected at the University of North Carolina. This molecular tool can be used to analyze risk 

for cancer-specific death and developing metastatic disease. In addition, an algorithm 

including ClearCode34, pathological stage, and Fuhrman grade can efficiently stratify 

patients by risk of tumor recurrence within 5 years following nephrectomy, which was shown 

to perform above and beyond other established risk predictors. ClearCode34 can be used as a 

baseline metric to provide insight into gene expression signatures and molecular phenotypes 

of ccRCC tumors. 

ccRCC Heterogeneity  

 The novel magnetic resonance/positron emission tomography (MR/PET) image 

modality was employed to enrich our understanding of how tumor heterogeneity involving 

hypoxia signaling, metabolism, and vascularity can influence gene expression and thus 

provide fortitude towards predicting clinical outcome and defining individualized treatment. 

In our findings, tumors with increased heterogeneous metabolic derangement and highly 

angiogenic phenotypes on image analysis expressed the ccRCC ccB (poor risk) gene 

signature while those more homogenous expressed the ccA (good risk) gene signature. The 

ccB-typed samples expressed higher levels of fludeoxyglucose (FDG) uptake, the glucose 

transporter GLUT1, and expression of the hypoxia inducible factor alpha-1 (HIF1A), while 

ccA samples expressed significantly higher levels of the gluconeogenic regulatory enzyme 

fructose 1,6-bisposhate (FBP1) and lower FDG uptake, suggesting a possible metabolic 

paradigm that can provide insight towards the physiological mechanisms that drive 

tumorigenesis and tumor heterogeneity. Moreover, glycolytic activity, the Krebs Cycle, and 



91 

glucose synthesis was enhanced in ccA samples. In contrast, ccB samples expressed 

increased oxidative pentose phosphate pathway activity, elevated fatty acid synthesis, and 

PI(3)K/AKT/mTOR pathway activation, postulating an alternate method of producing energy 

for these samples. Utilizing these tools prior to surgical resection has the potential to create 

functional 3D maps to link biological correlates with imaging parameters that will enable 

enhanced knowledge of the biological relationships of heterogeneity and ccRCC.  

Cadmium and ccRCC 

Heavy metals can increase the risk of developing RCC by inducing nephrotoxicity and 

altering gene expression in the kidney, as well as epigenetic deregulation, so we investigated 

the specific effects of heavy metals on renal tumor gene expression signatures that can 

provide insight into the molecular biology of ccRCC. The heavy metal cadmium (Cd) has 

been found to disrupt transcript expression and change DNA methylation levels. We first 

observed that the ccRCC subtypes ccA and ccB have distinct DNA methylation profiles of 

genes corresponding to ClearCode34. ccA samples expressed a hypomethylated profile of 

ccA-associated genes in ClearCode34, which were hypermethylated in ccB samples. On the 

other hand, ClearCode34 genes highly expressed in ccB-classified samples were 

hypermethylated in ccA samples and hypomethylated in ccB samples. Furthermore, we 

measured cadmium concentrations in clinical RCC tissues collected at UNC and observed 

higher Cd concentrations in normal kidney tissue compared to ccRCC, as well as from 

smokers compared to non-smokers. Smoking populations experience higher levels of 

cadmium exposure, as one cigarette may contain 1-2 ug cadmium.  Interestingly, samples 

with higher Cd concentrations were of the ccB subtype and expressed DNA methylation 

profiles similar to ccB-classified samples, suggesting a possible correlation between 
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cadmium exposure and aggressive disease. Similar to clinical samples, primary kidney cells 

exposed to Cd expressed significantly different DNA methylation profiles from untreated 

cells, with heterogeneous methylation of genes in ClearCode34, which correlated with higher 

levels of metallothioneins and DNA methyltransferases. Exploring toxicant-induced gene 

expression and epigenetic reprogramming can enhance our understanding of the biological 

processes that drive ccRCC.   

Discussion 

 This dissertation aims to establish a novel link between intratumoral heterogeneity 

and the related genomic consequences of toxicant exposure that drives ccRCC tumorigenesis. 

Narrowing this gap will enrich the field’s understanding of how tumor heterogeneity 

involving metabolism and vascularity can not only influence gene expression, but also 

provide fortitude towards predicting clinical outcome and determining individualize 

treatment. This body of work integrates a number of innovative elements to tackle this 

problem. 1) I have shown that we can take core elements of complex expression signatures 

and apply them to fixed clinical specimens using NanoString technology. This technology 

will enable my findings to potentially be applied widely in patient populations. 2) My 

analysis of transcription-level intratumoral heterogeneity took place in the context of a highly 

novel clinical trial, using sophisticated technology (MR-PET) that is only available at fewer 

than five institutions in the US. No other strategy has the potential to create a functional 3D 

map of a tumor to link biological correlates with imaging parameters. The innovative 

strategies we have employed have the impact of relating functional imaging findings with 

biological correlates, which may alter clinical practice paradigms across a variety of clinical 

disciplines, as well as developing genetic tools for the future that we have the ability to apply 
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to clinical specimens. 3) I established the novel finding that environmental exposure to 

cadmium can alter the kidney epigenome and influence gene expression signatures through 

epigenetic mechanisms. While it was known that ccRCC could be influenced by chemical 

exposure, we were largely unaware of the effects exposures have on distinct gene signatures 

of this disease, and how these exposures related to tumor heterogeneity and molecular 

patterns.  Together, these findings further inform us of the nature of tumor heterogeneity on 

both core gene expression patterns, and functionally significant variations, and inform how 

these expression patterns relate to overall tumor biology.  

Increasingly, genetic markers and signatures of cancer are being explored to define 

changes to the transcriptome that expand the knowledge of tumor state, progression 

characteristics, and response to therapy. Inactive VHL is the most established biomarker 

found in ccRCC and allows HIF stabilization, with tumors expressing HIF2A associated with 

a poor prognosis compared to tumors expressing both HIF1A and 2A[11, 12], however, this 

effect is modest, and has not found clinical traction. Thus, clinical tools like ClearCode34 are 

urgently needed and may thereby enhance patient treatment planning. Further large-scale 

studies will be mandatory to finalize biological features within the ClearCode34-inclusive 

algorithm to efficiently predict tumor recurrence risk.  

Primary RCC tumors display abundant heterogeneity at multiple levels.  This 

heterogeneity may arise from subclonal populations of cells that display various gene 

mutations[69, 71], and I believe that this extends to different molecular features that 

influence metabolism and angiogenesis.  MRI and FDG-PET imaging can measure these 

features radiographically by detecting metabolic derangement and angiogenic phenotypes.  

Utilizing these tools to identify and define regions of tumors prior to surgical resection will 
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enable enhanced knowledge of the biological relationships of ccRCC heterogeneity, such as 

the amount of ccA or ccB present within a tumor, which can possibly guide clinicians 

towards specific treatment options. Nevertheless, additional studies are needed to identify the 

thresholds of FDG uptake that can correctly determine the prognostic outcomes of patients.  

I hypothesized that toxicant exposures influence the epigenetic patterns of RCC, 

specifically those of HIF targets, contributing to the heterogeneity of this cancer by changing 

core signatures of overall tumor biology. Investigating downstream targets of hypoxia-

inducible factors would be imperative to identifying exposure-related epigenetic changes that 

inform us of the dynamic nature of the regulation of gene expression in ccRCC. For example, 

samples classified as ccB had higher expression of the PI(3)K/AKT/mTOR pathway and 

HIF1A expression, so it would be important to investigate whether ccA samples have 

epigenetic silencing of HIFA and genes within this pathway. The molecular influences of 

other heavy metals and toxicants on renal core signatures should be further examined. 

Trichloroethylene (TCE) is a known compound that has the ability to cause kidney toxicity 

and damage, as well alter global gene expression changes in the kidney[109, 111, 158]. 

Moreover, TCE had been established as a likely human carcinogen by the EPA and National 

Toxicology Program, due to studies showing S-(1,2-dichlorovinyl)-L-cysteine (DCVC), the 

main metabolite produced by TCE, and other metabolites induce renal damage that alters 

genes that are key to kidney pathogenesis[78]. Additionally, nickel treatment was shown to 

induce the expression of the histone demethylase Jumonji domain-containing protein 1A 

(JMJD1A), a hypoxic response gene that regulates HIF1A, and the hypoxia pathway in 

RCC[118]. Exploring the specific effects of acute and chronic exposure to renal toxicants on 
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ccRCC gene-expression signatures will help elucidate the roles of toxicant exposure on gene 

expression and epigenetic patterns of ccRCC. 

 This dissertation has outlined for the first time the role of tumor heterogeneity and 

toxicant exposure on gene expression profiles of Renal Cell Carcinoma.  I have developed a 

molecular tool capable of identifying ccRCC prognostic subtypes and predicting risk for 

developing progressive disease, as well as shed light on the metabolic processes supporting 

these distinct signatures and the specific effects of cadmium-induced DNA methylation 

profiles of ClearCode34. This unique study provides an exclusive way to globally map 

tumors, and specifically collect biologic material from regions of the tumor that are 

functionally defined by MR and PET imaging quantitative parameters. This work attempts to 

integrate gene expression signatures and environmental exposures to develop new theories 

regarding toxicant exposure and heterogeneous disease progression of ccRCC to enhance 

insight into the molecular phenotype of ccRCC tumors and their correspondence to patient 

outcome and response.   
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APPENDIX 

Chapter 2 

 

Figure 2.1A: Quality analysis of NanoString gene expression data. 
(A) Linear regression plots of one tumor lysate extraction replicates (B) and five FFPE and frozen 
RNA extractions show strong correlations with the NanoString platform using 101 genes 
corresponding to the LAD-derived probes. Equivalent RNA measurement was observed between 
RNA extracts from five fresh frozen tumor samples examined by microarray and NanoString (C) and 
between biological replicates of matched FFPE samples (D). 
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Table 2.1A: 121 gene list used to identify 34-gene ccRCC classifier. 
Category  Genes 
120  Probes ACAA2, ACADL, ACAT1, ACBD6, ADFP, AFG3L2, ALDH1A2, ALDH3A2, AP4B1, 

AQP11, ARSE, B3GNT6, B3GALT7, BAT4, BCL2L12, BNIP3L, C5orf19, C11orf1, 
C13orf1, C9orf87, CDH3, CWF19L2, CYB5R2, DREV1, DSCR5, ECHDC3, 
EHBP1, ESD, FAHD1, FAM44B, FLJ11200, FLJ11588, FLJ13646, FLJ14054, 
FLJ14146, FLJ14249, FLJ22104, FLJ23867, FLT1, FZD1, GALNT4, GALNT10, 
GHR, GIPC2, HIRIP5, HOXA4, HOXC10, HSPA4L, IMP-2, ITGA6, KCNE3, 
KIAA0436, KCNK6, KCNN4, LEPROTL1, LOC119710, LOC134147, LOC57146, 
LOC90624, MAOB, MAP7, MAPT, MATN4, MGC32124, MGC33887, MGC40405,  
MRPL21, NETO2, NCE2, NMT2, NPM3, NPR3, NUDT14, OSBPL1A, PDGFD, 
PHYH, PMM1, PRKAA2, PTD012, RAB3IP, RBMX, RDX, RNASE4, SAA4, SLPI, 
SLC1A1, SLC4A1AP, SLC4A4, ST13, STK32B, SYTL1, TCEA3, TCN2, TIGA1, 
TLR3, TPM4, TUSC1, UNG2, USP4, YME1L1, ZADH1 

SAM FOXM1, GPR87, LAMB3, MOXD1, SERPINA3, SLC4A3, SRPX2, TGFB1 
Prognostic 
Markers 

ARNT, BIRC5, CDH5, EDNRB, ENG, EPAS1, KDR, NRP1, RGS5, ROR2, 
VEGFC, VCAM1 
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Table 2.2A: Models of Recurrence-free Survival. 
 
 
Variable 

Univariate 
Model 

HR                P     

Multivariate 
Model 

HR                P 

Final 
Model 

           P 

Subtype* 2.3           <.001 1.66           .02 .04 

Age# 1.6             .01                   .06            -- 
Stage$                   .00     <.001 
    II 3.7           <.001    3.36        <.001 <.001 
    III/IV 5.2           <.001    4.12        <.001 <.001 
Grade||                 <.001    .003 
    3 1.8             .00                     .31 .33 
    4 5.8           <.001    2.45        <.001 <.001 
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Table 2.3A: TCGA sample classification determined by PAM. 
Sample ID ccA Probability ccB  

Probability 
Subtype  

Classification 
TCGA-‐DV-‐5575 9.98E-‐01 1.72E-‐03 ccA 
TCGA-‐A3-‐3347 1.96E-‐13 1.00E+00 ccB 
TCGA-‐A3-‐3349 9.38E-‐01 6.20E-‐02 ccA 
TCGA-‐A3-‐3382 3.92E-‐06 1.00E+00 ccB 
TCGA-‐A3-‐3306 1.00E+00 4.22E-‐06 ccA 
TCGA-‐A3-‐3307 1.00E+00 1.16E-‐10 ccA 
TCGA-‐A3-‐3308 4.23E-‐07 1.00E+00 ccB 
TCGA-‐A3-‐3311 4.09E-‐04 1.00E+00 ccB 
TCGA-‐A3-‐3313 1.05E-‐02 9.90E-‐01 ccB 
TCGA-‐A3-‐3316 1.07E-‐10 1.00E+00 ccB 
TCGA-‐A3-‐3317 2.52E-‐06 1.00E+00 ccB 
TCGA-‐A3-‐3319 9.61E-‐09 1.00E+00 ccB 
TCGA-‐A3-‐3320 1.00E+00 2.17E-‐11 ccA 
TCGA-‐A3-‐3322 1.00E+00 3.97E-‐08 ccA 
TCGA-‐A3-‐3323 1.06E-‐02 9.89E-‐01 ccB 
TCGA-‐A3-‐3324 1.00E+00 2.62E-‐11 ccA 
TCGA-‐A3-‐3325 1.00E+00 5.59E-‐06 ccA 
TCGA-‐A3-‐3328 1.05E-‐03 9.99E-‐01 ccB 
TCGA-‐A3-‐3329 1.00E+00 6.96E-‐10 ccA 
TCGA-‐A3-‐3331 1.00E+00 1.09E-‐09 ccA 
TCGA-‐A3-‐3335 7.85E-‐04 9.99E-‐01 ccB 
TCGA-‐A3-‐3343 1.00E+00 7.68E-‐11 ccA 
TCGA-‐A3-‐3351 1.00E+00 5.72E-‐05 ccA 
TCGA-‐A3-‐3352 1.00E+00 4.83E-‐10 ccA 
TCGA-‐A3-‐3357 1.00E+00 1.08E-‐06 ccA 
TCGA-‐A3-‐3358 1.37E-‐04 1.00E+00 ccB 
TCGA-‐A3-‐3359 1.00E+00 1.10E-‐10 ccA 
TCGA-‐A3-‐3362 1.00E+00 1.28E-‐06 ccA 
TCGA-‐A3-‐3363 3.75E-‐02 9.63E-‐01 ccB 
TCGA-‐A3-‐3365 9.98E-‐01 1.90E-‐03 ccA 
TCGA-‐A3-‐3367 1.00E+00 5.25E-‐08 ccA 
TCGA-‐A3-‐3370 1.00E+00 4.47E-‐07 ccA 
TCGA-‐A3-‐3372 1.00E+00 2.76E-‐09 ccA 
TCGA-‐A3-‐3373 1.00E+00 8.69E-‐07 ccA 
TCGA-‐A3-‐3374 3.78E-‐07 1.00E+00 ccB 
TCGA-‐A3-‐3378 2.17E-‐07 1.00E+00 ccB 
TCGA-‐A3-‐3380 1.00E+00 2.40E-‐06 ccA 
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TCGA-‐A3-‐3385 1.00E+00 9.32E-‐10 ccA 
TCGA-‐A3-‐3387 1.61E-‐10 1.00E+00 ccB 
TCGA-‐AK-‐3426 2.28E-‐11 1.00E+00 ccB 
TCGA-‐AK-‐3427 2.15E-‐02 9.79E-‐01 ccB 
TCGA-‐AK-‐3428 1.00E+00 4.65E-‐04 ccA 
TCGA-‐AK-‐3429 1.00E+00 6.79E-‐09 ccA 
TCGA-‐AK-‐3431 1.34E-‐05 1.00E+00 ccB 
TCGA-‐AK-‐3433 8.04E-‐04 9.99E-‐01 ccB 
TCGA-‐AK-‐3434 1.00E+00 1.61E-‐07 ccA 
TCGA-‐AK-‐3440 1.35E-‐06 1.00E+00 ccB 
TCGA-‐AK-‐3443 8.14E-‐04 9.99E-‐01 ccB 
TCGA-‐AK-‐3445 8.67E-‐10 1.00E+00 ccB 
TCGA-‐AK-‐3450 1.00E+00 3.71E-‐04 ccA 
TCGA-‐AK-‐3451 9.93E-‐01 7.37E-‐03 ccA 
TCGA-‐AK-‐3453 9.15E-‐01 8.55E-‐02 ccA 
TCGA-‐AK-‐3454 1.00E+00 1.26E-‐10 ccA 
TCGA-‐AK-‐3455 1.00E+00 1.02E-‐05 ccA 
TCGA-‐AK-‐3456 2.41E-‐04 1.00E+00 ccB 
TCGA-‐AK-‐3458 1.00E+00 3.21E-‐05 ccA 
TCGA-‐AK-‐3460 1.00E+00 2.46E-‐06 ccA 
TCGA-‐AK-‐3461 3.57E-‐02 9.64E-‐01 ccB 
TCGA-‐AK-‐3465 2.31E-‐05 1.00E+00 ccB 
TCGA-‐AS-‐3777 4.69E-‐07 1.00E+00 ccB 
TCGA-‐B0-‐4693 1.00E+00 4.89E-‐06 ccA 
TCGA-‐B0-‐4694 6.59E-‐08 1.00E+00 ccB 
TCGA-‐B0-‐4696 3.32E-‐07 1.00E+00 ccB 
TCGA-‐B0-‐4698 3.62E-‐08 1.00E+00 ccB 
TCGA-‐B0-‐4707 7.54E-‐08 1.00E+00 ccB 
TCGA-‐B0-‐4713 3.65E-‐06 1.00E+00 ccB 
TCGA-‐B0-‐4718 9.99E-‐01 1.12E-‐03 ccA 
TCGA-‐B0-‐4810 7.07E-‐09 1.00E+00 ccB 
TCGA-‐B0-‐4811 4.31E-‐01 5.69E-‐01 ccB 
TCGA-‐B0-‐4813 1.09E-‐09 1.00E+00 ccB 
TCGA-‐B0-‐4815 1.52E-‐13 1.00E+00 ccB 
TCGA-‐B0-‐4816 9.85E-‐01 1.51E-‐02 ccA 
TCGA-‐B0-‐4817 8.79E-‐08 1.00E+00 ccB 
TCGA-‐B0-‐4818 1.00E+00 6.47E-‐10 ccA 
TCGA-‐B0-‐4821 2.27E-‐09 1.00E+00 ccB 
TCGA-‐B0-‐4823 7.28E-‐02 9.27E-‐01 ccB 
TCGA-‐B0-‐4824 1.00E+00 5.52E-‐09 ccA 
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TCGA-‐B0-‐4827 2.91E-‐06 1.00E+00 ccB 
TCGA-‐B0-‐4833 1.00E+00 3.41E-‐07 ccA 
TCGA-‐B0-‐4834 2.58E-‐05 1.00E+00 ccB 
TCGA-‐B0-‐4837 1.67E-‐07 1.00E+00 ccB 
TCGA-‐B0-‐4838 1.00E+00 3.92E-‐07 ccA 
TCGA-‐B0-‐4839 1.00E+00 5.50E-‐06 ccA 
TCGA-‐B0-‐4842 3.14E-‐06 1.00E+00 ccB 
TCGA-‐B0-‐4843 3.99E-‐08 1.00E+00 ccB 
TCGA-‐B0-‐4848 9.94E-‐13 1.00E+00 ccB 
TCGA-‐B0-‐4849 1.00E+00 1.30E-‐08 ccA 
TCGA-‐B0-‐4852 1.00E+00 3.44E-‐05 ccA 
TCGA-‐B0-‐4945 9.99E-‐01 5.53E-‐04 ccA 
TCGA-‐B0-‐5075 3.07E-‐01 6.93E-‐01 ccB 
TCGA-‐B0-‐5077 1.00E+00 5.66E-‐07 ccA 
TCGA-‐B0-‐5081 1.19E-‐11 1.00E+00 ccB 
TCGA-‐B0-‐5083 4.23E-‐08 1.00E+00 ccB 
TCGA-‐B0-‐5085 1.00E+00 3.82E-‐10 ccA 
TCGA-‐B0-‐5088 2.13E-‐06 1.00E+00 ccB 
TCGA-‐B0-‐5095 1.98E-‐10 1.00E+00 ccB 
TCGA-‐B0-‐5096 2.63E-‐12 1.00E+00 ccB 
TCGA-‐B0-‐5097 2.51E-‐13 1.00E+00 ccB 
TCGA-‐B0-‐5098 1.04E-‐07 1.00E+00 ccB 
TCGA-‐B0-‐5099 1.00E+00 3.38E-‐08 ccA 
TCGA-‐B0-‐5100 1.11E-‐09 1.00E+00 ccB 
TCGA-‐B0-‐5102 1.00E+00 3.32E-‐04 ccA 
TCGA-‐B0-‐5104 1.00E+00 1.22E-‐10 ccA 
TCGA-‐B0-‐5106 1.00E+00 3.76E-‐08 ccA 
TCGA-‐B0-‐5108 2.95E-‐09 1.00E+00 ccB 
TCGA-‐B0-‐5109 7.79E-‐11 1.00E+00 ccB 
TCGA-‐B0-‐5110 1.00E+00 5.36E-‐09 ccA 
TCGA-‐B0-‐5113 1.00E+00 4.42E-‐08 ccA 
TCGA-‐B0-‐5116 1.00E+00 1.14E-‐05 ccA 
TCGA-‐B0-‐5117 2.03E-‐03 9.98E-‐01 ccB 
TCGA-‐B0-‐5119 1.00E+00 3.18E-‐10 ccA 
TCGA-‐B0-‐5120 9.15E-‐01 8.47E-‐02 ccA 
TCGA-‐B0-‐5121 1.00E+00 2.64E-‐08 ccA 
TCGA-‐B0-‐5399 9.84E-‐01 1.55E-‐02 ccA 
TCGA-‐B0-‐5400 1.09E-‐07 1.00E+00 ccB 
TCGA-‐B0-‐5402 1.00E+00 2.69E-‐07 ccA 
TCGA-‐B0-‐5690 1.00E+00 2.83E-‐09 ccA 
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TCGA-‐B0-‐5691 1.24E-‐03 9.99E-‐01 ccB 
TCGA-‐B0-‐5692 1.00E+00 9.34E-‐08 ccA 
TCGA-‐B0-‐5693 1.00E+00 2.20E-‐09 ccA 
TCGA-‐B0-‐5694 2.78E-‐02 9.72E-‐01 ccB 
TCGA-‐B0-‐5695 1.00E+00 7.12E-‐12 ccA 
TCGA-‐B0-‐5696 1.00E+00 8.42E-‐09 ccA 
TCGA-‐B0-‐5697 2.95E-‐07 1.00E+00 ccB 
TCGA-‐B0-‐5698 1.00E+00 8.88E-‐08 ccA 
TCGA-‐B0-‐5699 1.00E+00 2.19E-‐08 ccA 
TCGA-‐B0-‐5701 9.12E-‐04 9.99E-‐01 ccB 
TCGA-‐B0-‐5703 1.00E+00 9.80E-‐08 ccA 
TCGA-‐B0-‐5705 1.00E+00 3.01E-‐11 ccA 
TCGA-‐B0-‐5706 2.24E-‐09 1.00E+00 ccB 
TCGA-‐B0-‐5709 1.13E-‐08 1.00E+00 ccB 
TCGA-‐B0-‐5710 1.00E+00 1.90E-‐07 ccA 
TCGA-‐B0-‐5711 1.00E+00 9.26E-‐09 ccA 
TCGA-‐B0-‐5713 1.00E+00 1.63E-‐10 ccA 
TCGA-‐B0-‐5812 1.00E+00 2.59E-‐04 ccA 
TCGA-‐B2-‐3923 6.02E-‐03 9.94E-‐01 ccB 
TCGA-‐B2-‐3924 1.00E+00 1.23E-‐08 ccA 
TCGA-‐B2-‐4098 4.11E-‐04 1.00E+00 ccB 
TCGA-‐B2-‐4099 1.00E+00 4.01E-‐08 ccA 
TCGA-‐B2-‐4101 1.00E+00 2.72E-‐04 ccA 
TCGA-‐B2-‐4102 1.00E+00 6.06E-‐07 ccA 
TCGA-‐B2-‐5633 6.78E-‐06 1.00E+00 ccB 
TCGA-‐B2-‐5635 1.00E+00 4.31E-‐06 ccA 
TCGA-‐B2-‐5636 9.53E-‐10 1.00E+00 ccB 
TCGA-‐B2-‐5641 4.04E-‐03 9.96E-‐01 ccB 
TCGA-‐B4-‐5378 3.87E-‐08 1.00E+00 ccB 
TCGA-‐B4-‐5832 1.28E-‐06 1.00E+00 ccB 
TCGA-‐B4-‐5834 1.00E+00 2.34E-‐09 ccA 
TCGA-‐B4-‐5835 8.80E-‐03 9.91E-‐01 ccB 
TCGA-‐B4-‐5836 1.00E+00 9.62E-‐08 ccA 
TCGA-‐B4-‐5838 1.19E-‐04 1.00E+00 ccB 
TCGA-‐B4-‐5843 9.69E-‐01 3.14E-‐02 ccA 
TCGA-‐B4-‐5844 1.00E+00 4.50E-‐10 ccA 
TCGA-‐B8-‐4146 1.00E+00 5.46E-‐07 ccA 
TCGA-‐B8-‐4148 1.00E+00 6.52E-‐09 ccA 
TCGA-‐B8-‐4151 1.00E+00 4.23E-‐13 ccA 
TCGA-‐B8-‐4153 1.00E+00 3.87E-‐11 ccA 



103 

TCGA-‐B8-‐4154 1.00E+00 4.24E-‐08 ccA 
TCGA-‐B8-‐4619 1.31E-‐07 1.00E+00 ccB 
TCGA-‐B8-‐4620 2.58E-‐05 1.00E+00 ccB 
TCGA-‐B8-‐4621 2.55E-‐03 9.97E-‐01 ccB 
TCGA-‐B8-‐5158 7.03E-‐11 1.00E+00 ccB 
TCGA-‐B8-‐5159 9.99E-‐01 7.33E-‐04 ccA 
TCGA-‐B8-‐5163 2.39E-‐12 1.00E+00 ccB 
TCGA-‐B8-‐5164 1.00E+00 3.26E-‐06 ccA 
TCGA-‐B8-‐5165 9.19E-‐01 8.14E-‐02 ccA 
TCGA-‐B8-‐5545 1.38E-‐08 1.00E+00 ccB 
TCGA-‐B8-‐5546 5.31E-‐02 9.47E-‐01 ccB 
TCGA-‐B8-‐5549 9.99E-‐01 1.16E-‐03 ccA 
TCGA-‐B8-‐5550 2.18E-‐06 1.00E+00 ccB 
TCGA-‐B8-‐5551 2.38E-‐11 1.00E+00 ccB 
TCGA-‐B8-‐5552 4.14E-‐03 9.96E-‐01 ccB 
TCGA-‐B8-‐5553 1.00E+00 1.25E-‐05 ccA 
TCGA-‐BP-‐4158 1.00E+00 8.72E-‐11 ccA 
TCGA-‐BP-‐4159 9.99E-‐01 1.07E-‐03 ccA 
TCGA-‐BP-‐4160 8.68E-‐01 1.32E-‐01 ccA 
TCGA-‐BP-‐4161 4.06E-‐01 5.94E-‐01 ccB 
TCGA-‐BP-‐4162 1.00E+00 8.63E-‐07 ccA 
TCGA-‐BP-‐4163 4.72E-‐09 1.00E+00 ccB 
TCGA-‐BP-‐4164 1.00E+00 8.58E-‐10 ccA 
TCGA-‐BP-‐4165 1.00E+00 2.33E-‐09 ccA 
TCGA-‐BP-‐4166 1.00E+00 4.94E-‐06 ccA 
TCGA-‐BP-‐4167 5.59E-‐11 1.00E+00 ccB 
TCGA-‐BP-‐4169 9.68E-‐09 1.00E+00 ccB 
TCGA-‐BP-‐4170 1.00E+00 3.81E-‐09 ccA 
TCGA-‐BP-‐4173 1.14E-‐08 1.00E+00 ccB 
TCGA-‐BP-‐4174 1.00E+00 2.33E-‐05 ccA 
TCGA-‐BP-‐4176 2.63E-‐09 1.00E+00 ccB 
TCGA-‐BP-‐4177 2.94E-‐08 1.00E+00 ccB 
TCGA-‐BP-‐4325 1.00E+00 2.72E-‐10 ccA 
TCGA-‐BP-‐4326 9.65E-‐09 1.00E+00 ccB 
TCGA-‐BP-‐4327 1.00E+00 9.32E-‐06 ccA 
TCGA-‐BP-‐4329 8.31E-‐01 1.69E-‐01 ccA 
TCGA-‐BP-‐4330 9.93E-‐01 7.08E-‐03 ccA 
TCGA-‐BP-‐4332 1.00E+00 2.40E-‐05 ccA 
TCGA-‐BP-‐4334 1.65E-‐05 1.00E+00 ccB 
TCGA-‐BP-‐4337 1.27E-‐07 1.00E+00 ccB 
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TCGA-‐BP-‐4338 3.07E-‐11 1.00E+00 ccB 
TCGA-‐BP-‐4340 1.00E+00 5.21E-‐10 ccA 
TCGA-‐BP-‐4341 1.00E+00 9.48E-‐09 ccA 
TCGA-‐BP-‐4343 1.93E-‐08 1.00E+00 ccB 
TCGA-‐BP-‐4345 5.04E-‐10 1.00E+00 ccB 
TCGA-‐BP-‐4346 2.47E-‐05 1.00E+00 ccB 
TCGA-‐BP-‐4347 1.00E+00 7.47E-‐10 ccA 
TCGA-‐BP-‐4349 1.00E+00 7.59E-‐09 ccA 
TCGA-‐BP-‐4351 1.17E-‐04 1.00E+00 ccB 
TCGA-‐BP-‐4355 9.98E-‐01 2.32E-‐03 ccA 
TCGA-‐BP-‐4756 1.90E-‐02 9.81E-‐01 ccB 
TCGA-‐BP-‐4758 1.00E+00 2.27E-‐07 ccA 
TCGA-‐BP-‐4759 1.00E+00 1.65E-‐04 ccA 
TCGA-‐BP-‐4760 5.28E-‐11 1.00E+00 ccB 
TCGA-‐BP-‐4761 1.14E-‐09 1.00E+00 ccB 
TCGA-‐BP-‐4762 7.14E-‐06 1.00E+00 ccB 
TCGA-‐BP-‐4763 4.78E-‐06 1.00E+00 ccB 
TCGA-‐BP-‐4765 9.71E-‐01 2.93E-‐02 ccA 
TCGA-‐BP-‐4766 1.00E+00 4.81E-‐10 ccA 
TCGA-‐BP-‐4768 1.00E+00 8.72E-‐07 ccA 
TCGA-‐BP-‐4769 8.92E-‐10 1.00E+00 ccB 
TCGA-‐BP-‐4770 1.32E-‐08 1.00E+00 ccB 
TCGA-‐BP-‐4774 1.00E+00 2.96E-‐11 ccA 
TCGA-‐BP-‐4775 1.00E+00 9.99E-‐09 ccA 
TCGA-‐BP-‐4777 1.00E+00 4.67E-‐04 ccA 
TCGA-‐BP-‐4781 1.38E-‐08 1.00E+00 ccB 
TCGA-‐BP-‐4782 1.25E-‐05 1.00E+00 ccB 
TCGA-‐BP-‐4784 4.28E-‐11 1.00E+00 ccB 
TCGA-‐BP-‐4789 1.00E+00 4.19E-‐04 ccA 
TCGA-‐BP-‐4790 1.40E-‐07 1.00E+00 ccB 
TCGA-‐BP-‐4795 1.82E-‐10 1.00E+00 ccB 
TCGA-‐BP-‐4797 3.59E-‐09 1.00E+00 ccB 
TCGA-‐BP-‐4799 1.91E-‐05 1.00E+00 ccB 
TCGA-‐BP-‐4801 1.00E+00 4.28E-‐05 ccA 
TCGA-‐BP-‐4803 1.00E+00 1.16E-‐04 ccA 
TCGA-‐BP-‐4804 4.99E-‐11 1.00E+00 ccB 
TCGA-‐BP-‐4807 9.99E-‐01 1.25E-‐03 ccA 
TCGA-‐BP-‐4959 6.36E-‐01 3.64E-‐01 ccA 
TCGA-‐BP-‐4960 1.05E-‐06 1.00E+00 ccB 
TCGA-‐BP-‐4961 9.70E-‐01 3.01E-‐02 ccA 
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TCGA-‐BP-‐4962 2.91E-‐07 1.00E+00 ccB 
TCGA-‐BP-‐4963 8.94E-‐01 1.06E-‐01 ccA 
TCGA-‐BP-‐4964 8.29E-‐01 1.71E-‐01 ccA 
TCGA-‐BP-‐4967 7.18E-‐03 9.93E-‐01 ccB 
TCGA-‐BP-‐4968 1.00E+00 1.50E-‐08 ccA 
TCGA-‐BP-‐4969 1.00E+00 8.14E-‐11 ccA 
TCGA-‐BP-‐4970 1.91E-‐06 1.00E+00 ccB 
TCGA-‐BP-‐4971 4.41E-‐07 1.00E+00 ccB 
TCGA-‐BP-‐4972 1.00E+00 2.31E-‐04 ccA 
TCGA-‐BP-‐4973 1.00E+00 1.07E-‐09 ccA 
TCGA-‐BP-‐4975 1.00E+00 1.17E-‐06 ccA 
TCGA-‐BP-‐4976 1.00E+00 1.75E-‐10 ccA 
TCGA-‐BP-‐4977 9.23E-‐01 7.72E-‐02 ccA 
TCGA-‐BP-‐4981 1.00E+00 3.83E-‐09 ccA 
TCGA-‐BP-‐4982 1.00E+00 1.08E-‐05 ccA 
TCGA-‐BP-‐4983 1.91E-‐11 1.00E+00 ccB 
TCGA-‐BP-‐4985 2.23E-‐11 1.00E+00 ccB 
TCGA-‐BP-‐4987 1.00E+00 1.00E-‐10 ccA 
TCGA-‐BP-‐4988 4.45E-‐07 1.00E+00 ccB 
TCGA-‐BP-‐4989 8.18E-‐03 9.92E-‐01 ccB 
TCGA-‐BP-‐4991 1.00E+00 3.29E-‐06 ccA 
TCGA-‐BP-‐4992 1.51E-‐03 9.98E-‐01 ccB 
TCGA-‐BP-‐4993 9.99E-‐01 1.15E-‐03 ccA 
TCGA-‐BP-‐4994 8.78E-‐02 9.12E-‐01 ccB 
TCGA-‐BP-‐4995 9.72E-‐01 2.79E-‐02 ccA 
TCGA-‐BP-‐4998 6.58E-‐08 1.00E+00 ccB 
TCGA-‐BP-‐4999 1.00E+00 8.86E-‐09 ccA 
TCGA-‐BP-‐5000 8.55E-‐06 1.00E+00 ccB 
TCGA-‐BP-‐5001 1.00E+00 7.98E-‐09 ccA 
TCGA-‐BP-‐5004 1.00E+00 5.64E-‐08 ccA 
TCGA-‐BP-‐5006 1.00E+00 9.84E-‐10 ccA 
TCGA-‐BP-‐5007 1.00E+00 6.39E-‐10 ccA 
TCGA-‐BP-‐5008 1.03E-‐02 9.90E-‐01 ccB 
TCGA-‐BP-‐5009 1.72E-‐07 1.00E+00 ccB 
TCGA-‐BP-‐5010 9.95E-‐10 1.00E+00 ccB 
TCGA-‐BP-‐5168 1.00E+00 1.20E-‐10 ccA 
TCGA-‐BP-‐5169 3.27E-‐10 1.00E+00 ccB 
TCGA-‐BP-‐5170 4.32E-‐06 1.00E+00 ccB 
TCGA-‐BP-‐5173 1.00E+00 9.98E-‐06 ccA 
TCGA-‐BP-‐5174 1.00E+00 7.51E-‐05 ccA 
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TCGA-‐BP-‐5175 8.67E-‐07 1.00E+00 ccB 
TCGA-‐BP-‐5176 1.00E+00 1.03E-‐09 ccA 
TCGA-‐BP-‐5177 9.99E-‐01 9.35E-‐04 ccA 
TCGA-‐BP-‐5180 5.22E-‐01 4.78E-‐01 ccA 
TCGA-‐BP-‐5181 1.00E+00 6.48E-‐11 ccA 
TCGA-‐BP-‐5182 9.01E-‐08 1.00E+00 ccB 
TCGA-‐BP-‐5183 1.00E+00 4.02E-‐04 ccA 
TCGA-‐BP-‐5187 8.32E-‐01 1.68E-‐01 ccA 
TCGA-‐BP-‐5189 2.62E-‐07 1.00E+00 ccB 
TCGA-‐BP-‐5190 1.00E+00 1.07E-‐06 ccA 
TCGA-‐BP-‐5191 9.92E-‐08 1.00E+00 ccB 
TCGA-‐BP-‐5192 1.00E+00 1.89E-‐11 ccA 
TCGA-‐BP-‐5194 1.00E+00 2.06E-‐07 ccA 
TCGA-‐BP-‐5195 8.54E-‐01 1.46E-‐01 ccA 
TCGA-‐BP-‐5196 2.65E-‐10 1.00E+00 ccB 
TCGA-‐BP-‐5198 6.13E-‐13 1.00E+00 ccB 
TCGA-‐BP-‐5199 1.14E-‐07 1.00E+00 ccB 
TCGA-‐BP-‐5200 1.00E+00 5.64E-‐08 ccA 
TCGA-‐BP-‐5202 1.00E+00 1.77E-‐10 ccA 
TCGA-‐CJ-‐4634 1.00E+00 5.42E-‐12 ccA 
TCGA-‐CJ-‐4635 9.96E-‐01 4.22E-‐03 ccA 
TCGA-‐CJ-‐4636 1.03E-‐04 1.00E+00 ccB 
TCGA-‐CJ-‐4639 1.00E+00 1.68E-‐09 ccA 
TCGA-‐CJ-‐4640 3.95E-‐02 9.61E-‐01 ccB 
TCGA-‐CJ-‐4643 1.00E+00 1.31E-‐10 ccA 
TCGA-‐CJ-‐4869 2.02E-‐07 1.00E+00 ccB 
TCGA-‐CJ-‐4872 1.92E-‐05 1.00E+00 ccB 
TCGA-‐CJ-‐4873 1.50E-‐07 1.00E+00 ccB 
TCGA-‐CJ-‐4874 1.00E+00 2.08E-‐10 ccA 
TCGA-‐CJ-‐4876 5.23E-‐01 4.77E-‐01 ccA 
TCGA-‐CJ-‐4878 1.00E+00 1.90E-‐04 ccA 
TCGA-‐CJ-‐4881 1.90E-‐09 1.00E+00 ccB 
TCGA-‐CJ-‐4882 2.23E-‐10 1.00E+00 ccB 
TCGA-‐CJ-‐4884 3.30E-‐01 6.70E-‐01 ccB 
TCGA-‐CJ-‐4886 1.00E+00 2.07E-‐06 ccA 
TCGA-‐CJ-‐4889 1.56E-‐06 1.00E+00 ccB 
TCGA-‐CJ-‐4891 3.09E-‐09 1.00E+00 ccB 
TCGA-‐CJ-‐4892 1.00E+00 2.84E-‐09 ccA 
TCGA-‐CJ-‐4893 1.00E+00 4.41E-‐08 ccA 
TCGA-‐CJ-‐4894 9.91E-‐01 9.14E-‐03 ccA 
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TCGA-‐CJ-‐4897 1.00E+00 1.19E-‐09 ccA 
TCGA-‐CJ-‐4899 5.75E-‐04 9.99E-‐01 ccB 
TCGA-‐CJ-‐4901 1.87E-‐11 1.00E+00 ccB 
TCGA-‐CJ-‐4902 7.72E-‐07 1.00E+00 ccB 
TCGA-‐CJ-‐4903 1.00E+00 2.29E-‐06 ccA 
TCGA-‐CJ-‐4905 1.00E+00 1.93E-‐09 ccA 
TCGA-‐CJ-‐4907 2.95E-‐03 9.97E-‐01 ccB 
TCGA-‐CJ-‐4908 8.59E-‐02 9.14E-‐01 ccB 
TCGA-‐CJ-‐4912 3.50E-‐02 9.65E-‐01 ccB 
TCGA-‐CJ-‐4916 1.00E+00 9.26E-‐07 ccA 
TCGA-‐CJ-‐4920 9.53E-‐08 1.00E+00 ccB 
TCGA-‐CJ-‐5671 1.08E-‐10 1.00E+00 ccB 
TCGA-‐CJ-‐5672 9.46E-‐01 5.44E-‐02 ccA 
TCGA-‐CJ-‐5675 1.00E+00 3.77E-‐07 ccA 
TCGA-‐CJ-‐5676 2.99E-‐06 1.00E+00 ccB 
TCGA-‐CJ-‐5679 1.32E-‐08 1.00E+00 ccB 
TCGA-‐CJ-‐5683 1.00E+00 1.85E-‐09 ccA 
TCGA-‐CJ-‐5684 1.00E+00 7.67E-‐08 ccA 
TCGA-‐CJ-‐5686 6.50E-‐01 3.50E-‐01 ccA 
TCGA-‐CJ-‐5689 1.65E-‐04 1.00E+00 ccB 
TCGA-‐CJ-‐6027 5.63E-‐10 1.00E+00 ccB 
TCGA-‐CJ-‐6030 4.37E-‐07 1.00E+00 ccB 
TCGA-‐CJ-‐6031 2.17E-‐11 1.00E+00 ccB 
TCGA-‐CJ-‐6032 1.00E+00 9.40E-‐10 ccA 
TCGA-‐CW-‐5581 1.00E+00 1.41E-‐07 ccA 
TCGA-‐CW-‐5583 1.00E+00 2.95E-‐06 ccA 
TCGA-‐CW-‐5584 1.00E+00 1.87E-‐06 ccA 
TCGA-‐CW-‐5587 1.00E+00 2.70E-‐06 ccA 
TCGA-‐CW-‐5589 1.00E+00 1.34E-‐06 ccA 
TCGA-‐CW-‐6088 1.00E+00 1.26E-‐08 ccA 
TCGA-‐CW-‐6090 1.00E+00 9.89E-‐05 ccA 
TCGA-‐CW-‐6093 1.00E+00 5.34E-‐09 ccA 
TCGA-‐CW-‐6097 1.05E-‐12 1.00E+00 ccB 
TCGA-‐CZ-‐4853 1.00E+00 2.49E-‐09 ccA 
TCGA-‐CZ-‐4854 3.69E-‐11 1.00E+00 ccB 
TCGA-‐CZ-‐4856 1.00E+00 2.94E-‐07 ccA 
TCGA-‐CZ-‐4858 3.84E-‐11 1.00E+00 ccB 
TCGA-‐CZ-‐4859 1.00E+00 3.69E-‐11 ccA 
TCGA-‐CZ-‐4862 2.13E-‐04 1.00E+00 ccB 
TCGA-‐CZ-‐4863 1.00E+00 8.64E-‐06 ccA 
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TCGA-‐CZ-‐4864 1.00E+00 1.02E-‐09 ccA 
TCGA-‐CZ-‐4866 9.99E-‐01 1.42E-‐03 ccA 
TCGA-‐CZ-‐5452 8.37E-‐01 1.63E-‐01 ccA 
TCGA-‐CZ-‐5453 1.00E+00 3.47E-‐12 ccA 
TCGA-‐CZ-‐5457 1.00E+00 1.73E-‐09 ccA 
TCGA-‐CZ-‐5458 6.02E-‐01 3.98E-‐01 ccA 
TCGA-‐CZ-‐5463 1.00E+00 9.60E-‐10 ccA 
TCGA-‐CZ-‐5465 1.00E+00 1.20E-‐09 ccA 
TCGA-‐CZ-‐5467 1.00E+00 1.26E-‐08 ccA 
TCGA-‐CZ-‐5469 4.50E-‐09 1.00E+00 ccB 
TCGA-‐CZ-‐5470 9.21E-‐01 7.90E-‐02 ccA 
TCGA-‐CZ-‐5982 1.00E+00 1.88E-‐08 ccA 
TCGA-‐CZ-‐5984 3.70E-‐11 1.00E+00 ccB 
TCGA-‐CZ-‐5985 1.48E-‐02 9.85E-‐01 ccB 
TCGA-‐CZ-‐5986 1.00E+00 5.49E-‐10 ccA 
TCGA-‐CZ-‐5988 8.10E-‐08 1.00E+00 ccB 
TCGA-‐CZ-‐5989 1.00E+00 7.98E-‐07 ccA 
TCGA-‐DV-‐5565 6.59E-‐02 9.34E-‐01 ccB 
TCGA-‐DV-‐5566 9.99E-‐01 7.05E-‐04 ccA 
TCGA-‐DV-‐5567	   7.58E-‐10 1.00E+00 ccB 
TCGA-‐DV-‐5569	   4.36E-‐01 5.64E-‐01 ccB 
TCGA-‐DV-‐5574	   2.17E-‐09 1.00E+00 ccB 
TCGA-‐DV-‐5576	   6.37E-‐09 1.00E+00 ccB 
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Table 2.4A: PAM classification of Clinical cohort. 
Sample ID ccA 

Probability 
ccB 

Probability 
Subtype 

Classification 
57	   2.05E-‐01	   7.95E-‐01	   ccB	  
45	   5.22E-‐01	   4.78E-‐01	   ccA	  

71	   6.18E-‐01	   3.82E-‐01	   ccA	  

163	   6.08E-‐01	   3.92E-‐01	   ccA	  

197	   6.56E-‐01	   3.44E-‐01	   ccA	  

219	   7.43E-‐01	   2.57E-‐01	   ccA	  

247	   4.21E-‐01	   5.79E-‐01	   ccB	  

601	   1.47E-‐01	   8.53E-‐01	   ccB	  

578	   4.39E-‐01	   5.61E-‐01	   ccB	  

641	   2.33E-‐01	   7.67E-‐01	   ccB	  

787	   6.92E-‐01	   3.08E-‐01	   ccA	  

625	   1.37E-‐01	   8.63E-‐01	   ccB	  

94	   7.55E-‐01	   2.45E-‐01	   ccA	  

62	   5.34E-‐01	   4.66E-‐01	   ccA	  

266	   2.35E-‐01	   7.65E-‐01	   ccB	  

485	   3.38E-‐01	   6.62E-‐01	   ccB	  

737	   5.37E-‐01	   4.63E-‐01	   ccA	  

753	   3.19E-‐01	   6.81E-‐01	   ccB	  

138	   7.95E-‐01	   2.05E-‐01	   ccA	  

570	   6.85E-‐01	   3.15E-‐01	   ccA	  

581	   7.14E-‐01	   2.86E-‐01	   ccA	  

785	   8.16E-‐02	   9.18E-‐01	   ccB	  

642	   7.67E-‐02	   9.23E-‐01	   ccB	  

244	   1.88E-‐01	   8.12E-‐01	   ccB	  

743	   7.18E-‐01	   2.82E-‐01	   ccA	  

296	   8.74E-‐02	   9.13E-‐01	   ccB	  

311	   1.40E-‐01	   8.60E-‐01	   ccB	  

436	   1.16E-‐01	   8.84E-‐01	   ccB	  

49	   5.46E-‐08	   1.00E+00	   ccB	  

87	   3.04E-‐06	   1.00E+00	   ccB	  

187	   1.48E-‐04	   1.00E+00	   ccB	  

209	   9.99E-‐01	   1.38E-‐03	   ccA	  

282	   9.99E-‐01	   6.16E-‐04	   ccA	  

358	   1.83E-‐05	   1.00E+00	   ccB	  

431	   1.66E-‐06	   1.00E+00	   ccB	  

47	   3.57E-‐07	   1.00E+00	   ccB	  

48	   4.26E-‐06	   1.00E+00	   ccB	  
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59	   9.70E-‐04	   9.99E-‐01	   ccB	  

76	   9.98E-‐01	   1.72E-‐03	   ccA	  

88	   5.69E-‐02	   9.43E-‐01	   ccB	  

92	   9.47E-‐01	   5.29E-‐02	   ccA	  

128	   6.16E-‐02	   9.38E-‐01	   ccB	  

143	   4.47E-‐05	   1.00E+00	   ccB	  

160	   1.36E-‐04	   1.00E+00	   ccB	  

162	   8.20E-‐08	   1.00E+00	   ccB	  

173	   1.94E-‐02	   9.81E-‐01	   ccB	  

181	   1.72E-‐02	   9.83E-‐01	   ccB	  

186	   1.76E-‐02	   9.82E-‐01	   ccB	  

191	   1.82E-‐04	   1.00E+00	   ccB	  

201	   9.99E-‐01	   6.30E-‐04	   ccA	  

250	   9.62E-‐01	   3.76E-‐02	   ccA	  

258	   9.97E-‐01	   2.86E-‐03	   ccA	  

260	   9.28E-‐01	   7.20E-‐02	   ccA	  

280	   9.74E-‐01	   2.58E-‐02	   ccA	  

486	   8.51E-‐01	   1.49E-‐01	   ccA	  

494	   9.86E-‐01	   1.40E-‐02	   ccA	  

549	   3.12E-‐03	   9.97E-‐01	   ccB	  

559	   9.38E-‐01	   6.16E-‐02	   ccA	  

560	   9.32E-‐05	   1.00E+00	   ccB	  

561	   9.99E-‐01	   1.16E-‐03	   ccA	  

571	   1.00E+00	   9.98E-‐05	   ccA	  

576	   9.74E-‐01	   2.59E-‐02	   ccA	  

587	   1.00E+00	   3.54E-‐05	   ccA	  

598	   4.86E-‐03	   9.95E-‐01	   ccB	  

600	   4.35E-‐03	   9.96E-‐01	   ccB	  

610	   9.12E-‐01	   8.77E-‐02	   ccA	  

668	   8.34E-‐01	   1.66E-‐01	   ccA	  

44	   1.80E-‐03	   9.98E-‐01	   ccB	  

63	   1.49E-‐06	   1.00E+00	   ccB	  

64	   9.98E-‐01	   2.37E-‐03	   ccA	  

83	   1.98E-‐04	   1.00E+00	   ccB	  

104	   9.98E-‐01	   2.34E-‐03	   ccA	  

127	   9.14E-‐03	   9.91E-‐01	   ccB	  

144	   9.95E-‐01	   4.55E-‐03	   ccA	  

145	   9.92E-‐01	   7.70E-‐03	   ccA	  

150	   1.08E-‐02	   9.89E-‐01	   ccB	  

154	   8.78E-‐01	   1.22E-‐01	   ccA	  
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188	   9.61E-‐01	   3.94E-‐02	   ccA	  

193	   8.70E-‐04	   9.99E-‐01	   ccB	  

286	   9.09E-‐01	   9.07E-‐02	   ccA	  

287	   1.00E+00	   1.47E-‐04	   ccA	  

301	   9.98E-‐01	   2.21E-‐03	   ccA	  

318	   9.77E-‐01	   2.33E-‐02	   ccA	  

408	   1.00E+00	   7.71E-‐05	   ccA	  

428	   9.57E-‐01	   4.32E-‐02	   ccA	  

487	   1.00E+00	   2.67E-‐05	   ccA	  

512	   9.99E-‐01	   5.32E-‐04	   ccA	  

537	   9.83E-‐01	   1.73E-‐02	   ccA	  

579	   9.98E-‐01	   1.81E-‐03	   ccA	  

586	   9.99E-‐01	   9.34E-‐04	   ccA	  

591	   9.03E-‐01	   9.71E-‐02	   ccA	  

657	   9.98E-‐01	   1.60E-‐03	   ccA	  

704	   3.66E-‐02	   9.63E-‐01	   ccB	  

788	   9.82E-‐01	   1.81E-‐02	   ccA	  

840	   9.94E-‐01	   6.32E-‐03	   ccA	  

75	   9.85E-‐01	   1.54E-‐02	   ccA	  

77	   9.83E-‐01	   1.71E-‐02	   ccA	  

99	   1.00E+00	   4.89E-‐04	   ccA	  

158	   5.85E-‐04	   9.99E-‐01	   ccB	  

109	   9.04E-‐02	   9.10E-‐01	   ccB	  

147	   5.91E-‐04	   9.99E-‐01	   ccB	  

149	   1.38E-‐03	   9.99E-‐01	   ccB	  

185	   3.54E-‐07	   1.00E+00	   ccB	  

223	   9.12E-‐01	   8.80E-‐02	   ccA	  

228	   4.11E-‐02	   9.59E-‐01	   ccB	  

252	   4.21E-‐04	   1.00E+00	   ccB	  

279	   2.48E-‐06	   1.00E+00	   ccB	  

455	   1.27E-‐03	   9.99E-‐01	   ccB	  

461	   4.90E-‐06	   1.00E+00	   ccB	  

509	   1.00E+00	   2.59E-‐06	   ccA	  

569	   6.81E-‐04	   9.99E-‐01	   ccB	  

607	   1.00E+00	   2.23E-‐04	   ccA	  

644	   4.26E-‐06	   1.00E+00	   ccB	  

794	   5.73E-‐06	   1.00E+00	   ccB	  

823	   9.99E-‐01	   7.19E-‐04	   ccA	  

227	   2.25E-‐02	   9.78E-‐01	   ccB	  

433	   9.99E-‐01	   7.22E-‐04	   ccA	  
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440	   1.00E+00	   1.67E-‐05	   ccA	  

550	   4.21E-‐02	   9.58E-‐01	   ccB	  

566	   9.99E-‐01	   1.44E-‐03	   ccA	  

758	   8.46E-‐08	   1.00E+00	   ccB	  

40	   4.64E-‐07	   1.00E+00	   ccB	  

74	   9.08E-‐07	   1.00E+00	   ccB	  

112	   1.85E-‐07	   1.00E+00	   ccB	  

165	   1.02E-‐03	   9.99E-‐01	   ccB	  

167	   6.92E-‐08	   1.00E+00	   ccB	  

189	   5.17E-‐05	   1.00E+00	   ccB	  

249	   2.26E-‐07	   1.00E+00	   ccB	  

261	   1.00E+00	   4.93E-‐04	   ccA	  

274	   3.40E-‐05	   1.00E+00	   ccB	  

292	   1.66E-‐04	   1.00E+00	   ccB	  

337	   4.45E-‐04	   1.00E+00	   ccB	  

357	   9.40E-‐07	   1.00E+00	   ccB	  

366	   1.55E-‐05	   1.00E+00	   ccB	  

370	   2.30E-‐05	   1.00E+00	   ccB	  

395	   8.54E-‐05	   1.00E+00	   ccB	  

396	   1.22E-‐03	   9.99E-‐01	   ccB	  

398	   6.01E-‐02	   9.40E-‐01	   ccB	  

427	   1.85E-‐03	   9.98E-‐01	   ccB	  

463	   1.92E-‐07	   1.00E+00	   ccB	  

466	   8.85E-‐08	   1.00E+00	   ccB	  

478	   3.14E-‐06	   1.00E+00	   ccB	  

490	   1.43E-‐04	   1.00E+00	   ccB	  

499	   5.46E-‐04	   9.99E-‐01	   ccB	  

515	   2.02E-‐02	   9.80E-‐01	   ccB	  

544	   7.48E-‐06	   1.00E+00	   ccB	  

562	   9.35E-‐01	   6.55E-‐02	   ccA	  

584	   9.99E-‐01	   9.22E-‐04	   ccA	  

620	   1.00E+00	   2.31E-‐04	   ccA	  

623	   2.82E-‐05	   1.00E+00	   ccB	  

661	   4.55E-‐04	   1.00E+00	   ccB	  

687	   1.00E+00	   2.89E-‐04	   ccA	  

719	   1.00E+00	   4.00E-‐04	   ccA	  

763	   2.02E-‐05	   1.00E+00	   ccB	  

779	   9.99E-‐01	   7.72E-‐04	   ccA	  

815	   1.00E+00	   7.27E-‐07	   ccA	  

126	   6.95E-‐03	   9.93E-‐01	   ccB	  
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242	   9.75E-‐03	   9.90E-‐01	   ccB	  

413	   7.87E-‐05	   1.00E+00	   ccB	  

439	   1.35E-‐03	   9.99E-‐01	   ccB	  

452	   6.11E-‐07	   1.00E+00	   ccB	  

630	   1.27E-‐02	   9.87E-‐01	   ccB	  

183	   4.68E-‐06	   1.00E+00	   ccB	  

541	   8.95E-‐01	   1.05E-‐01	   ccA	  

297	   8.86E-‐06	   1.00E+00	   ccB	  

693	   5.59E-‐07	   1.00E+00	   ccB	  
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Chapter 3 

Basic MR/PET physics 

In PET imaging, a radiotracer compound labeled with a positron emitting radionuclide, 

e.g. 18F-FDG, is injected into the patient. The radiotracer decays by emitting a positron, 

which annihilates with an electron.  The annihilation produces two 511 KeV photons 

traveling in opposite directions along a straight line.  The PET scintillation detectors 

surrounding the patient as coincidence events, which, subsequently, are reconstructed as 

tomographic images, may detect these photons.  PET images show the tracer distribution in 

the tissue.    MR imaging relies on an interaction between magnetic field and magnetic 

moment of protons. Radio-frequency pulses are usually applied to alter magnetization to 

create magnetic flux that induces electrical current, aka MR signal, in MR receiving coils.  

MRI can provide high-resolution anatomical images with excellent soft tissue contrast, which 

complement the high sensitivity of PET imaging in detecting physiological and molecular 

process of biological systems.  In addition to the structural information, MR can also provide 

physiological, functional and metabolic information using novel MR Blood oxygenation 

level dependent (BOLD), functional MRI, MR perfusion, Diffusion Tensor Imaging (DTI), 

MR spectroscopy/chemical shift imaging techniques.  More importantly, MR does not 

impose a risk of ionizing radiation to patients.  

MR/PET mechanism 

MR-PET, developed over the past 5 years, is a new tool for identifying and staging 

cancer treatment.  Similar to CT-PET, functional images are superimposed over static 

images. MR-PET has been reported feasible in several small populations ( Czerin). In 

retrospective studies, MR-PET was equal in diagnostic accuracy to CT-PET (Czerin). MR- 
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PET in has been reported superior to CT-PET in identification of liver metastases, 

malignant bone lesions and accurate assessment of T stage in a mixed tumor population[41, 

159, 160]. Diffusion imaging was reported as particularly valuable. Large prospective studies 

have not yet been performed. MR-PET is of particular value in children and young women to 

avoid ionizing radiation. 

PET images are obtained simultaneously or in adjacent scanners and fused during a 

single imaging session. Multiple pulse sequences and imaging planes in tandem with Gd 

chelates and PET tracers provide excellent anatomic and functional imaging in the brain and 

pelvis. Fusion of ultra-fast MR sequences and PET images obtained during quiet breathing 

can be problematic in abdomen although less so in the retroperitoneum. 
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Table 3.1A: Demographics of patients used in MRI/PET-FDG study. 
Sample 
Name 

Tumor 
Size (cm) 

Grade Stage Number of 
primary sites 

Number of 
metastatic sites 

Patient 1 8.6 2 II 5 NA 
Patient 2 8.9 2 II 3 NA 
Patient 3 8 3 IV 2 4 
Patient 4 3.5 2 I 2 NA 
Patient 5 3.6 2 I 2 NA 
Patient 6 4.2 3 III 6 NA 
Patient 7 6.3 2 I 4 NA 
Patient 8 17 4 IV 4 4 
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Table 3.2A Standard uptake values (SUV) and ccRCC subtype classifications for MR/PET-
FDG samples.  

Sample Name Tumor Site Tumor Mean 
(SUV) 

Max SUV Subtype 

 
 
Patient 1 

 2.33   
Site 1  2.3 ccA 
Site 2  2.4 ccA 
Site 3  2.8 ccA 
Site 4  2.8 ccA 
Site 5  2.5 ccB 

 
 
Patient 2 

 2.26   
Site 1  4 ccB 
Site 2  2.6 ccA 
Site 3  2.2 ccA 

 
 
 
Patient 3 

 1.27   
Site 1  3 ccA 
Site 2  3.5 ccA 
Met 1  3.5 ccB 
Met 2  3.3 ccB 
Met 3  3 ccA 
Met 4  2.8 ccB 

 
Patient 4 

 1.79   
Site 1  3 ccA 
Site 2  2.8 ccA 

 
Patient 5 

 1.4   
Site 1  2.3 ccA 
Site 2  1.8 ccA 

 
 
 
Patient 6 

 2.17   
Site 1  2.6 ccB 
Site 2  2.8 ccB 
Site 3  3.2 ccB 
Site 4  3.5 ccB 
Site 5  2.7 ccB 
Site 6  2.3 ccB 

 
 
Patient 7 

 2.48   
Site 1  3.4 ccB 
Site 2  2.9 ccA 
Site 3  3 ccB 
Site 4  3.2 ccB 

 
 
 
 
Patient 8 

 4.87   
Site 1  6.4 ccB 
Site 2  6.2 ccB 
Site 3  5.2 ccB 
Site 4  6.2 ccB 
Met 1  NA ccB 
Met 2  NA ccB 
Met 3  NA ccB 
Met 4  NA ccB 
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Figure 3.1A: Clear cell A and B subtypes obtain energy through distinct metabolic pathways.  
Clear cell A (orange)-typed samples tend to produce energy through glycolysis and the Krebs Cycle, 
while ccB samples (blue) enhance fatty acid synthesis and increase activity of the oxidative pentose 
phosphate pathway, shutting down glycogen synthesis to support enhanced metabolism. Genes 
highlighted in orange are significantly higher (p-value<0.05) in samples classified as ccA and those in 
blue are higher in ccB samples.  
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Figure 3.2A: ccRCC subtypes have intra-tumor genomic similarities.  
Intra-class correlation analysis, with 95% confidence intervals, was performed on samples biopsied 
from eight ccRCC patients. a, Expression profiles of all expressed genes from microarray analysis 
were more similar among ccA and ccB-typed samples from the same patient (yellow) compared to 
those from individuals (grey). b, Similar to expression profiles including all genes, profiles of the 34-
gene subtype classifier used to assign ccA/ccB classification, ClearCode34, exhibited stronger 
concordance with identically typed samples from the same tumor compared to those between 
different patients, suggesting core gene expression profiles are evident even in the presence of tumor 
heterogeneity.    
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Figure 3.3A: HIF2 expression in ccA and ccB-typed samples.  
Samples of the ccA and ccB subtype express similar HIF2 protein levels compared to higher HIF1 
protein expression in ccB samples (Figure 2d). 
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