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Abstract 
 

Alan Durbin 
Microbial diversity of oligotrophic marine sediments 

(Under the direction of Andreas Teske) 
 

Oligotrophic marine sediments cover nearly 90% of the ocean’s floor, yet in contrast to 

the continental margins, their biogeochemistry and microbiology has been little explored.  

Oligotrophic sediments exhibit dramatic nutrient limitation due to the slow rain rate of 

photosynthetic carbon, and consequently display a greatly expanded zone of higher-

energy electron accepting activities relative to margin sediments.  The working 

hypothesis that the most-energetic available electron acceptor structures subsurface 

microbial communities predicts that different microbial lineages occur in oligotrophic vs. 

organic-rich margin sediments.  This study examines this hypothesis by considering the 

archaeal diversity, as revealed in clone libraries, for an ultraoligotrophic, fully oxic site, 

as well as the archaeal and bacterial diversity of an oligotrophic, oxic/suboxic site.  

Finally, I compare the archaeal diversity of available oligotrophic and representative 

continental margin sites, and find evidence for oligotrophic sediments as hosting a 

distinct, deeply divergent assemblage of Archaea, possibly adapted to exploit the higher-

energy electron acceptors present therein. 
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Microbial Diversity of Oligotrophic Marine Sediments

Introduction.

Marine sediments constitute one of the largest biomes, by area and volume, on planet Earth, and 

have been shown to host microbial communities that may account for 1/10th to 1/3rd of global microbial  

biomass (Parkes et al. 1994, Whitman et al. 1998).  Organic carbon hundreds of thousands to millions of 

years old sustains active microbial communities (e.g.,Wellsbury et al. 2002, D’Hondt et al. 2004, Parkes et 

al.2005, Biddle et al. 2006) with extraordinarily slow community turnover rates of centuries or more 

(Biddle et al. 2006).  Studies of deep marine sediments have so far focused on continental margin 

sediments, where the bulk of carbon burial (Dunne et al. 2007) and large-scale production and consumption 

of methane (D’Hondt et al. 2002, 2004) occur.  Here sulfate, a relatively low-energy electron acceptor, is 

consumed slowly over a scale of meters to hundreds of meters, compared to centimeters to meters in the 

estuarine sediments, due to lower organic substrate input rates.  Beneath the sulfate reduction zone only the 

least energetically favorable electron acceptors persist, such as CO2 or oxidized portions of organic 

molecules.  Thus, as a result of electron donor limitation, availability of only low-energy electron

acceptors, or both, the continental margin deep subsurface exhibits strong energy limitation.

Although the continental margins have been the principal focus of subsurface microbiological and 

geochemical studies to date, abyssal sediments >2000m water depth cover a much larger extent of the 

ocean floor (~89%; Dunne et al. 2007).  Despite accounting for 80% of global surface primary production, 

the abyssal ocean accounts for only 13.5% of deposition and 2% of burial.  While 13.5% is a nontrivial 

amount in terms of balancing geochemical budgets, 2% is nearly negligible; this signals that while a 

significant proportion of global sedimentary remineralization occurs in oligotrophic sediments, only a very 

tiny fraction escapes microbially mediated oxidation. Conversely, this means that microbial communities in 

oligotrophic sediments are under extreme electron donor limitation, causing extreme energy limitation and

contributing to the lowest cell densities yet observed (D’Hondt et al. 2009).
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This energy limitation occurs despite the advantages offered by high-energy oxidants: the slow 

flux of carbon substrates means high-energy electron acceptors are available over a much wider sediment 

depth range in the oligotrophic seafloor compared to the continental shelf.  Although in broad view, 

continental margin sediments can be regarded as anoxic, often there are spatially compressed, millimeter or 

centimeter-scale oxic/suboxic zones at the sediment-water interface (where suboxic is defined by the 

absence of oxygen and lack of sulfide, indicating minimal net sulfate reduction).  At least in the case of 

oxygen, the expanse of these strata principally determines burial efficiency in organic-rich sediments 

(Hartnett et al. 1998).  The greatly expanded oxic or suboxic zones of oligotrophic sediments may be more 

easily-accessible analogues of the compressed oxic and suboxic zones in organic-rich sediments.  

Alternatively, the combination of low electron donor availability and high sediment oxidation state may 

pose unique challenges for microbial life, shaping a fundamentally different habitat in oligotrophic 

sediments.  Lower organic carbon concentrations may come in the form of the least preferable, most 

recalcitrant molecules (Wakeham et al. 1997, Hedges et al. 2001, Lee et al. 2004), and may be more 

inaccessible due to adsorption to minerals (lower organic carbon production means a lower carbon/mineral 

ratio; Dunne et al. 2007).  Oligotrophic suboxic or oxic sediments may be fundamentally different from 

oxic/suboxic strata atop eutrophic sediments due to the interactive effects of different variables, such as the 

combination of high sediment oxidation state and low electron donor availability, leading to higher 

biosynthesis costs as a proportion of cellular energy budget (McCollom and Amend 2005).  Finally, 

different suboxic redox processes are possible in neutral pH, non-sulfidic oligotrophic sediments than in 

suboxic acidic and/or sulfidic margin sediments (Schippers and Jørgensen 2001, 2002, Severmann et al. 

2006).   

The dominant uncultured archaeal lineages identified in the marine subsurface to date (e.g., Teske 

and Sørensen 2008) are principally known from environments with relatively low-energy electron 

acceptors, such as sulfur, sulfate, and CO2.  It is not clear whether the same groups that have been identified 

as dominant subsurface lineages also persist in the more extensive habitat of oligotrophic marine sediments, 

which are geochemically distinct.  Since microbes that specialize in using the most energetic available 

electron acceptor are hypothesized to outcompete other subsurface microbes, the most-energetic available 

electron acceptor may play a key role in structuring microbial communities (e.g. Inagaki et al. 2006).  This 
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expectation is examined in Chapter 1 of this work, a comparison of the archaeal diversity (as revealed in 

16S rRNA clone libraries) of an oxic, ultraoligotrophic sediment column at three near surface sediment 

depths and the overlying water sample from a multicore; this study examines potential gradients in 

microbial diversity between the sediment and water column, and within the sediment itself, when the same 

electron acceptor (oxygen) is shared throughout.  Chapter 2 looks at the archaeal and bacterial 16S rRNA 

gene diversity of an oligotrophic shallow sediment column with oxic and suboxic strata, in conjunction 

with porewater chemical data, the first study to do so at high resolution in oligotrophic sediments.  Finally, 

Chapter 3 examines the oligotrophic seafloor as a potential distinct microbial habitat, compared to the 

better-characterized margin environments, and explores the association of sediment trophic state and the 

appearance of different deeply branching, uncultured archaeal lineages. 

 



 

 

 

Chapter 1: Sediment-Associated Microdiversity within the Marine Group I Crenarchaeota 

 

Introduction 

Most microbiological studies of deep subsurface sediments have focused on organic-rich, reduced 

and anoxic continental margin and slope sediments; these are geochemically and microbiologically distinct 

from organic-poor, oxidized sediments of the open ocean (e.g., D'Hondt et al. 2004). The novel, deeply 

branching archaeal lineages found in 16S rRNA clone libraries from anoxic marine subsurface sediments 

(e.g., Vetriani et al. 1999, Inagaki et al. 2003, Parkes et al. 2005, Sørensen and Teske 2006, Biddle et al. 

2006, Inagaki et al. 2006) differ from those in the oxic water column (e.g., DeLong et al., 1992; Fuhrman et 

al. 1992; DeLong et al. 1994; Fuhrman and Davis 1997; Massana et al. 2000; Bano et al. 2004). Thus, the 

deep marine sedimentary subsurface is regarded as a distinct biome with a specialized, predominantly 

heterotrophic microbial community (Biddle et al. 2006, Lipp et al. 2008) and with a distinct genetic 

repertoire (Biddle et al. 2008). However, this emerging picture of the deep marine sedimentary community 

is strongly biased towards datasets from organic-rich sediments. Oligotrophic marine subsurface sediments 

are massively underrepresented in current subsurface studies (Sørensen et al. 2004; Teske and Sørensen 

2008; Fry et al. 2008) and are therefore of great interest for microbial community analyses.  

The depth distribution of electron acceptors in the subsurface is hypothesized to control the depth 

profile and phylogenetic composition of microbial communities (Teske and Sørensen, 2008), since 

microorganisms that specialize in the highest-energy electron acceptors available have the energetic 

resources to outmultiply and outcompete others. In organic-rich sediments with high rates of organic 

carbon input, microbial activity depletes high-energy electron acceptors such as oxygen and nitrate within a 

few millimiters or centimeters of the sediment-water interface; in oligotrophic ocean basins, the oxic zone 

extends to a scale of tens of centimeters or a meter (Wenzhöfer and Glud 2002).  Ultra-oligotrophic 

sediments underlying the centers of subtropical gyres may be oxic throughout the entire sediment column, 

on a scale of tens of meters (Gieskes and Boulègue 1986).  Thus, if electron acceptor is the dominant factor 
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in structuring marine sedimentary microbial communities, oxidized sediments could host the same 

microbial assemblage as the overlying oxic water column.  To test the working hypothesis of overlapping 

microbial community structure in oxic water column and sediments, this study aims at a detailed 

comparison of aerobic, oligotrophic subsurface communities and aerobic water column communities from 

the South Pacific gyre. 

The principal target microorganisms of this investigation are pelagic Crenarchaeota, the major 

archaeal assemblage in the marine water column, based on quantitative studies using abundance of 

crenarchaeotal lipids (Damsté et al. 2002) and FISH probes specific to Crenarchaeota (Karner et al. 2001, 

Church et al. 2003, Teira et al. 2006, Varela et al. 2008).  The pelagic Crenarchaeota consist predominantly 

of the Marine Group I (MG-I) phylum, based on 16S rRNA clone libraries (DeLong et al., 1992; Fuhrman 

et al. 1992; DeLong et al. 1994; Fuhrman and Davis 1997; Massana et al. 2000, Bano et al. 2004), but also 

include other crenarchaeotal phyla (e.g., Mincer et al. 2007, Coolen et al 2007, Agogué et al. 2008). Two 

cultured representatives of the MG-I crenarchaeota exist: the pure culture isolate Nitrosopumilus maritimus 

(Könneke et al. 2005), and the candidate species Cenarchaeum symbiosum from a natural enrichment 

growing within the tissue of a marine sponge, Axinella sp. (Preston et al. 1996).  

Here, we focused on different phylogenetic groups within the MG-I archaea, and identified groups 

that are specifically recovered from sediments, as opposed to water column MG-I archaea.  Previous work 

has delineated several clades within the MG-I phylogeny, based on 16S rRNA gene sequences and 

bootstrap support for mutually exclusive clusters (Massana et al. 2000, Takai et al. 2004).  Massana et al. 

(2000) adopted a Greek alphabetical nomenclature for the MG-I subphyla, which was followed by Takai et 

al. 2004 and expanded by Sørensen et al. (2004) and this study.  Of these, clade MG-I α (alpha) is the best-

represented in public databases and contains most of the water-column sequences, including 

Nitrosopumilus maritimus.  The sponge-associated candidate species Cenarchaeum symbiosum is rather 

divergent from other MG-I 16S rRNA clades and appears in a separate clade β (beta) (Massana et al. 2000). 

The  MG-I γ (gamma) group includes clones from ambient seawater at Indian and Pacific Ocean 

hydrothermal vents (Takai et al. 2004) and from the North Pacific mesopelagic water column (Mincer et al. 

2007). The MG-I δ (delta) group is a smaller cluster that appears to group within the MG-I γ. Other clades 

encountered in oligotrophic sediments include the ε (epsilon), ζ (zeta), and η (eta) groups (Sørensen et al. 
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2004).  

 

Results. 

 Geochemical and site description data.  

In this study, we examined the phylogenetic structure of MG-I crenarchaeotal communities from 

two oligotrophic South Pacific gyre sites, one from within the gyre abyssal plain at 5076 m depth, at 

41°51’S and 153°06’W (SPG11), and another from just outside the gyre proper at 5306 m depth and 

45°58’S and 163°11’W (SPG12), in conjunction with available geochemical data. Both sediments represent 

the oligotrophic endmembers of microbial community studies. The SPG12 samples are from a gravity core. 

The SPG11 sediment samples were obtained from a multicorer push core; SPG11 supernatant water was 

taken from the same pushcore. Intact microstructures of very fine-grained clay sediment at the sediment-

water interface, and undisturbed oxygen profiles determined ex situ on fresh multicores collected 

simultaneously with the cores sampled in this study, indicated an intact sediment/water interface (Fischer et 

al. 2009). Cores affected by sediment resuspension were easily recognized due to the extremely slow 

settling rate of fine clay sediments, and were not sampled. 

Sedimentation rates and the resulting carbon flux to the sediment are approximate indicators of 

sediment trophic states (D’Hondt et al. 2002). All available geochemical data indicate that sites SPG 11 and 

12 are strongly oligotrophic, SPG11 more so than SPG12. The sedimentation rates for SPG Sites 11 and 12 

are 0.9m/My and 1.8m/My, respectively; they are 4-10 and 2-5 times lower than the rates of the slowest-

accumulating site studied on ODP Leg 201, Peru Basin Site 1231 (D’Hondt et al. 2003; D’Hondt et al., 

2009; Figure 1). The sediment DIC concentrations, indicators of microbial net metabolism, are lower at the 

SPG sites than at the oligotrophic Peru Basin Site 1231 (D’Hondt et al. 2003). For SPG11, alkalinity (96% 

of which is DIC at in situ pH) does not change from the overlying water values (Figure 1A).  Total organic 

carbon (TOC), as determined by the subtraction of total inorganic carbon (TIC) from total carbon (TC) as a 

weight-percent of sediment, was 0.594% in the surface 1cm at SPG11, decreased to 0.49% at 2 cm depth, 

and then more gradually to 0.45% by 9 cm depth (D’Hondt et al. 2009).  Values for SPG12 were not 

available at time of writing. 

 Most of the drawdown of dissolved oxygen at SPG11 occurs over the upper 10 cm of sediment.   
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c[O2] declines from 176.59 µM at 5 cmbsf to 160.95 µM at 25-30 cm depth, a 15.64 µM decrease (Figure 

1A).  In-situ dissolved oxygen profiles of bottom water at different SPG sites, including nearby SPG Site 

10, revealed a bottom-water oxygen concentration of ~220 µM across the SPG.   

 
 
Figure 1. Depth trends in porewater constituents, cell densities and MG-I subclade abundance at SPG11. 
(A) Nitrate, alkalinity, and oxygen data (Fischer et al. 2009, D’Hondt et al. 2009), as well as cell counts 
(D’Hondt et al. 2009).  Values from the overlying water are the topmost values shown, at 0 cmbsf.  (B) 
Abundance of clones belonging to different well-supported MG-I clades, with sampling interval indicated 
by light blue bars.
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Thus, the overall drawdown of oxygen over the upper ~30 cm depth at SPG11 is ~60 µM, after which little 

change is observed (Figure 1A).  Oxygen appears not to be depleted throughout the ~70m sediment column 

(Fischer et al. 2009).  The SPG11 nitrate concentration profile revealed a sharp increase in concentration 

over the upper ~30 cm of sediment, from 33.3 µM in the overlying water to 43.2 µM at 25-30 cmbsf 

(Figure 1A).  The deepest interval sampled for nitrate from the multicore, 30-35 cmbsf, showed a slight 

decline to 41.7 µM, which is consistent with the deep sediment measurements made with the trigger core 

(D’Hondt et al. 2009). 

At Site SPG12, the nitrate, oxygen, and alkalinity profiles indicate slightly more reducing 

conditions than at SPG 11 (Figure 2A).  Oxygen declines from 114.76 µM at 0.05 cmbsf to ~2 µM at 179 

cmbsf, while nitrate declines from 43.8 µM at 10-15 cmbsf to zero at 253-258 cmbsf, suggesting a 

successive depletion or near-depletion of oxygen followed by depletion of nitrate. No multicore or 

overlying water sample was taken for Site SPG12.   The drawdown profile of oxygen appears exponential 

over the upper 100-150 cmbsf, while the buildup of DIC over the same interval appears linear until it 

reaches nearly its maximum value at around 100-150 cmbsf (Figure 2A). Taken together, rates of 

sedimentation, oxygen and nitrate depletion depths, and maximum DIC values indicate that SPG12 is 

significantly more oligotrophic than the most nutrient-limited marine sediments examined during ODP Leg 

201 (D’Hondt et al. 2004). 

Cell counts at site SPG11 revealed a peak in cell densities (4.27x106 cells/mL) at the sediment 

water interface, followed by a 20-fold decline to 2.29x105 cells/mL at 30 cmbsf (Figure 1A).  A slightly 

higher cell density of 3.63x105 was detected at the next deepest interface, 45 cmbsf, and afterwards cell 

concentrations decline more slowly with depth, by less than an order of magnitude from 3.46x104 at 75 

cmbsf to 7.41x103 cells/mL.  Site SPG12 exhibited higher cell abundances than Site SPG11 (Figure 2A). 

The highest recorded densities at Site SPG12 occur not at the very surface but at 70-119 cmbsf; a gravity 

corer could have resulted in the loss of the more-active sediment-water interface.  The subsurface peak in 

cell densities at ~1m depth may be associated with a redox interface between oxygen and reduced nitrogen 

species or metals, possibly supporting lithotrophic metabolisms, and coincides with the depth at which the  
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Figure 2. SPG12 depth trends in porewater constituents, cell densities and MG-I subclade abundance. (A) 
SPG12 nitrate, alkalinity, and oxygen data, as well as cell counts (Fischer et al. 2009, D’Hondt et al. 2009).  
0 cmbsf values for cell counts and oxygen represent overlying water values from the SPG11 multicorer 
samples.  (B) Relative abundance of MG-I subclades with depth at SPG12 with the SPG11 overlying water 
Archaeal clone library included for comparison.  Clone libraries from deeper depths at SPG12 consisted 
solely of non-MG-I Crenarchaeota and Euryarchaeota, discussed elsewhere (Durbin, 2009).  Light blue 
horizontal bars indicate sampling interval.  
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alkalinity maximum begins.  Heterotrophic metabolism likely also plays an important role both through the 

dissimilatory oxidation of organic matter as well as by providing the reducing equivalents responsible for 

generating reduced metals or by production of ammonia or organic N.  This is in contrast with Site SPG11, 

where geochemical profiles suggest dominance of aerobic respiration, and where electron donors are 

insufficient to spark redox cycling of NOX or metals  (Figure 1A, 2A).   

 

 Molecular survey results and phylogenetic analysis. 

 For Site SPG11, 226 nearly full length archaeal 16S rRNA gene clones derived from 3 different 

sediment horizons and from overlying water were sequenced and analyzed. For Site SPG12, 49 nearly full 

length archaeal 16S rRNA gene clones were obtained from the 60-70 cmbsf horizon and 11 from 153-163 

cmbsf.  All sediment-derived sequences and all but 2 water column-derived sequences collected at Site 

SPG11 grouped with the Marine Group I (MG-I) Crenarchaeota (DeLong 1992).  One of the remaining two 

clones grouped with Marine Group II (DeLong 1992), the other with Marine Group III (Fuhrman and Davis 

1997).  Archaeal clone libraries from the 60-70 cmbsf horizon at SPG12 (Figure 2B) yielded solely MG-I 

sequences.  Although few clones were recovered from the 153-163 cmbsf interval, MG-I archaea were also 

recovered in significant proportions at this horizon (4/11 sequences, ~36%), in a putatively suboxic zone 

well into the nitrate drawdown interval.  Remaining sequences from this depth belonged to deeply 

branching Euryarchaeotal lineages (Durbin, 2009).  

A total of 29 unique phylotypes at the 3% OTU level (Figure 3; Table 1) and 76 unique phylotypes 

at the 1% OTU level (Appendix A, Appendix B) were identified.  MG-I subgroups were defined based on 

the major secondary or tertiary clusters visible in the tree with interior branch (IB; Sitnikova et al. 1995) 

support greater than 95%, with the exception of subgroups θ (theta) and ζ (zeta), which had IB support 

>90%.  Non-chimeric representatives of previously delineated subgroups (e.g., Massana et al. 2000, Takai 

et al. 2004, Sørensen, et al 2004) were used to assign labels to subgroups recovered in the current trees.    

The identified clades were found to be stable, and had the same high interior branch support in both trees.  

Major subgroups for the SPG dataset overall were α, η (eta) and υ (upsilon), together accounting for 

253/277 MG1 clones (~90%).  A between-group distance matrix revealed maximum divergences for most 

subgroup pairs of 7-9% (Table 2).  Divergence within most subgroups was shallow, with maxima ranging 
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Table 2.  Average between-clade, within-clade, and maximum within-clade divergence levels for major 
MG-I subgroups recovered in this study. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2. Mean between-clade, within-clade, and maximum within-clade divergences for MG-I subgroups. 
Average between-clade, within-clade, and maximum within-clade divergence levels for major MG-I 
subgroups recovered in this study.  Within-clade distances were not calculated for γ  and ι clades, since very 
few representatives of these were recovered.   All distances were estimated using a composite maximum 
likelihood (ML) substitution model with gamma-corrected site rates.  Maximum within-clade distances 
approximately reflect the phylogenetic depth of clades. α:Nitrosopumilus shows the intragroup diversity 
within the crown-group MG-I α clade containing Nitrosopumilus and most of the SPG α diversity.  
Between-clade distances are not included for α:Nitrosopumilus as a subset of MG-I α. 
 
 
from 2.6-6.2% maximum values, and mean within-group distances of 2.4-3.6%.  The ζ-ε-θ cluster, with by 

interior branch (IB) support of 92%, is of approximately the same phylogenetic depth as the other major 

subgroups. The MG-I α clade containing the cultured MG-I representative, Nitrosopumilus maritimus, was 

supported by an IB value of 99%. 

 The phylogenetic differentiation of MG-I archaea between the water column and sediment, and 

among sediment layers, was clear at a finer taxonomic resolution.    At SPG11, the dominant MG-I 

subcluster in the overlying water was MG-I α, comprising 67/84 MG-I clones (~80%). Fewer clones were 

found for MG-I γ (1 clone), ι (3), η (1) ζ (4), ε (1), and θ (3); 4 sequences were not affiliated with any of 

these groups (Figure 1B, Figure 3). At 3-4 cm sediment depth, MG-I α clones contributed 13 of 32 (~41%) 

clones, along with 3 MG-I η (~9%), 7 υ(~22%), 1 ε, 2 θ, and 6 ungrouped clones (Figure 1B).  Notably, 

MG-I υ and η, both uncommon groups in the overlying water sample, were proportionally more abundant 

at 3-4 cm depth, representing ~22% and ~9% of the archaeal 16S rRNA clone library, respectively. At 10-

11 cm sediment depth, MG-I υ increased to 61% of all clones. At 26-28 cm, the deepest depth analyzed for 

SPG 11, the  

 Mean between-clade distance 

Mean 
within-
clade 

Max. 
within-
clade 

α: Nitrosopumilus      0.01938 0.0489 
α      0.02887 0.0617 
υ 0.0858     0.02654 0.0343 
η 0.0839 0.0555    0.02364 0.0262 
γ 0.0891 0.0827 0.0769     

ζ-ε-θ 0.0946 0.0788 0.0797 0.0872  0.03641 0.0445 
ι 0.1021 0.0655 0.0785 0.0848 0.0609   
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Figure 3. MG-I 16S rRNA gene phylogeny for representative phylotypes from SPG11 and SPG12, using 
3% OTU definition.  Distances were estimated using a neighbor-joining algorithm with gama-corrected site 
rates in MEGA4 (Tamura et al. 2007), using interior-branch node support, on an 800-bp alignment. 
 
 

entire archaeal 16S rRNA clone library consisted of MG-I υ (49/57, ~86%) and η (8/57, ~14%).  Site 

SPG12 lacked a fine-scale depth resolution, and therefore the depth trend of MG-I archaea is harder to infer 

at this site.  However, as in the deepest SPG11 sediment layers, the MG-I clones in the SPG12 sediments 
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consisted almost exclusively of MG-I υ and η.  At the shallowest depth analyzed at SPG12, 60-70cmbsf, 

MG-I υ and η were predominant, with η the most abundant group at 41/49 clones (~84%), along with 7 υ 

clones (~14%) and 1 α clone  (Figure 2B).  The deepest sample at SPG12 to yield any MG-I clones, 153-

163cmbsf depth, resulted in a small number of MG-I η clones, four out of 11 archaeal clones (Figure 2B). 

At deeper sediment depths, MG-I archaea could not be detected, and the archaeal community of SPG 12 

shifted towards entirely different archaeal phyla (Durbin 2009). 

 

 Diversity analysis. 

Based on a whole-phylogeny-based analysis (Schloss and Handelsman 2006), each archaeal 

assemblage at SPG11 was revealed to have a structure significantly different from any other (P <0.00001).  

However, further analysis revealed some statistical similarities between successive communities, in line 

with expectations from the observed depthwise changes in MGI clade relative abundances (Figure 1B, 

Figure 2B).  Comparison of the shared Chao1 richness estimates of the overlying water and 3-4 cmbsf 

assemblages with the estimates for the two assemblages by themselves revealed a large overlap in 

community memberships at both the 1% and 3% OTU levels (Table 3A, B).  Chao1 comparisons between 

3-4 cmbsf and 10-11 cmbsf revealed a small degree of shared diversity at the 1% level, but the Chao1 

estimate for shared 3% OTUs between these communities was greater than the estimate for 10-11 cmbsf 

3% OTU alone, suggesting that these comparisons may be unreliable at extremely low diversity levels and 

small sample sizes.    

The Jaccard index, which considers the total abundance of overlaps in phylotype membership (Yue 

and Clayton 2001), suggested approximately 5-25% of sequences in the SPG11 overlying water (OW) and 

3-4 cmbsf sample sets belonged to shared OTUs (Table 3B).  The ThetaYC estimate, which considers the 

“overlap” in both membership and library-specific relative abundance of OTUs (Yue and Clayton 2005), 

for any comparison involving the overlying water (OW) was highest (~50%) between the OW and 3-4 

cmbsf samples; comparisons of the OW with deeper horizons quickly declined to 0.  Both Jaccard and 

ThetaYC values were highest for comparisons between depths that were closest to each other 
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Figure 4. Lineage-through-time plots of cumulative abundance of OTUs vs. distance. (A) Lineage-through-
time plot of number of OTUs vs distance, in 0.5% increments. (B) Lineage-through-time OTU/distance 
plot, excluding OTUs of less than 2% divergence.  An exponential distribution trendline is included in both.  
(B) shows putative discontinuous bursts in cladogenesis rates, possibly associated with the divergence of 
the major MG-I subgroups recovered in this study, particularly MG-I α.  A value of 0.14% was chosen as 
zero value, since this corresponds to the per-sequence variation introducted by Taq polymerase error (see 
Methods) and so is not natural microdiversity.  All distances were calculated using the ML composite 
model with gamma rate correction in MEGA4. 
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 (i.e., values increase up and to the right in Table 3); an exception to this pattern was the comparison of 60-

70 cmbsf with 26-28 cmbsf; in this case, although these two samples were the closest depthwise, their 

comparison did not exhibit the highest ThetaYC value for any 60-70cmbsf, consistent with these two 

samples deriving from different cores.  In some cases ThetaYC error values overlapped, likely due to low 

sample size.  This pattern of higher similarity for adjacent sediment depths found much stronger statistical 

support in the Jaccard values.  Together, the Jaccard and ThetaYC values for the archaeal 16S rRNA clone 

library data in the SPG11 sediment column are consistent with an archaeal assemblage that transitions in 

structure from one depth to the next: at least one shared 16S rRNA phylotype is abundant in one of two 

adjacent depths, while overall community structure of adjacent horizons is distinct.  These observations are 

consistent with the trend observed from the percent-abundance plots (Figure 1, Figure 2), from an MG-I α -

dominated overlying water sample to an MG-I η and υ dominated sediment community at 3-4 cmbsf and 

below.   

Simpson’s indexes sharply decrease both with shallower depth and when OTUs are defined at 1% 

rather than 3% divergence levels (Table 3), indicating a sharp increase in overall species richness and 

evenness both spatially (towards the water column) and at finer phylogenetic scales.  The Simpson’s indices 

for all MG-I combined (not shown) were 0.003741 for a 0% (unique) OTU, 0.04112 at 1% OTU and 

0.1632 at 3% OTU.   

 A lineage-through-time plot of number of OTUs vs OTU definition distance level revealed that 

~58% of MG-I diversity, or branches, are less than 1% divergent from their closest relatives, with 79 OTUs 

detected at a 1% OTU, compared to 190 unique OTUs, after adjustment for Taq error (see Materials and 

Methods; Acinas et al. 2004), and ~49% of diversity (branches) occurred at less than 0.5% divergence from 

closest relatives (Figure 4A).  This high contribution of finest-scale diversity to total diversity was also 

noted in an extensive sequence effort on coastal bacterioplankton (Acinas et al. 2004).  In the current study, 

an exponential trendline was found to describe the OTU abundance distribution with an r2 value of 0.978, 

although clearly the data depart from this distribution at certain distance levels, particularly at the finest-

scale divergences (Figure 4A).  A consideration of only higher-level OTUs raised the possibility of 

discontinuous intervals of rapid cladogenesis between 3 and 6% divergence levels (Figure 4B), possibly 

associated with the branching of the major subgroups of MG-I represented in this dataset, particularly α, 
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which also has maximum internal divergence levels of ~5-6% (Table 2).   

 

Discussion 

 A central question of this study was to determine if the oxic, oligotrophic sediments underlying the 

majority of the ocean surface represent a distinct microbial habitat, as revealed by a transition in 

community structure from the water column.  The same archaeal phylum, the Marine Group I 

Crenarchaeota, was found to dominate in clone libraries from both the multicore overlying water  and the 

sediment at SPG11, illustrating the major role the shared terminal electron acceptor, oxygen, has in shaping 

available microbial niches.  However, finer-scale analysis revealed that distinct MG-I clades occur in the 

sediment and overlying water. A distinct transition from a putative pelagic to a sedimentary-associated MG-

I assemblage was observed at SPG11, despite sharing a dominant terminal electron accepting activity with 

the water column.  SPG12 shared the same dominant sediment-associated lineages as SPG11 sediment, 

although in a different relative ratio.  These results suggest that different controls and constraints impact 

microbial community structure in the oxic water column and in oxic, ultraoligotrophic sediments.   

  At SPG 11, MG-I subphylum α accounts for ~80% of archaeal clones recovered from the 

overlying water, becomes less abundant at 3-4 cm and 10-11 cm depth, and is not found at 26-28 cm depth.  

This is reflected in the decreasing community-structural similarity (ThetaYC) between the overlying water 

and sediment as deeper horizons are considered (Table 3).  Conversely, groups found sparingly (0-1%) in 

the overlying water, MG-I υ and η, became steadily more abundant with depth, comprising nearly all 

clones at 10-11 cm depth and all at 26-28.  The high Jaccard similarities but low ThetaYC similarities 

between successive depths, combined with low Jaccard and Theta similarities comparing 3-4 cmbsf with 

26-28 cmbsf, indicate that diversity and abundance overlaps are greatest between successive depths.  This 

supports the characterization of the observed diversity pattern as a transition from a water-column (or 

shallowest sediment) MG-I assemblage to a sediment-associated assemblage in deeper sediments.   The 

diversity maximum observed at 3-4 cm depth, where MG-I α, υ and η clones co-occur with some of the 

minor clusters found in the overlying water, e.g. MG-I ε and θ, can be explained as an example of an 

ecotone, wherein the boundary between two biomes hosts greater biodiversity due to the co-occurrence of 

species native to both habitats (Odum and Barrett 2005).  
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 Interestingly, a lineage-through-time plot of number of OTUs vs sequence divergence revealed 

that more than 50% of 16S rRNA gene sequence diversity (i.e., number of branches) occurred at <1% 

divergence (Figure 4A).  The same pattern was observed in studies of coastal marine bacterioplankton 

using extensive rRNA clone library sequencing (Acinas et al. 2004, Thompson et al. 2005). Here, diversity 

at less than 1% 16S rRNA divergence doubled the cumulative number of branches in a whole-community 

phylogenetic tree, compared to diversity seen at more than 1% divergence.  This microdiversity below the 

1% sequence divergence level is interpreted as functionally neutral variation, as judged by genome size 

variation (genome size variation in prokaryotes is principally driven by functional and not junk DNA 

content); competitive and selective forces are too weak to favor a single microhabitat-adapted organism in 

the bulk water column (~1 mL or greater). In contrast, the reduced number of branches at levels at and 

above 1% divergence are indicative of periodic selective sweeps reducing diversity at higher levels 

(Thompson et al. 2005).  Since the MG-I subgroups are posited here to be adapted to sedimentary (or water 

column) conditions, one might expect a similar jump in diversity across the divergence thresholds 

associated with the MG-I subgroups, with putative selective sweeps associated with the foundation of these 

habitat-associated clades (founder effects), followed by relaxed selection which allowed greater diversity to 

accumulate and persist.  The MG-I dataset shows some “jumps” of increasing OTU numbers at moderate 

(4-6.5 %) divergence levels when excluding finest-scale (<2%) diversity (Figure 4B). The major habitat-

associated MG-I subgroups identified in this study, namely MG-I α, υ and η, have intergroup divergences 

of approximately the same divergence level (Table 2).  These intergroup divergences could result from 

selective sweeps or adaptation to certain environments. Subsequent intragroup evolution and accumulation 

of 16S rRNA microdiversity may represent variation that is more or less functionally neutral within the 

context of sediment or water-column environments.  

 At SPG11, the decline in species-level Chao1 diversity with depth, particularly at the 3% OTU 

level (Table 3B), may indicate that deeper sediments are populated by remnants of the near-surface 

community.  The cell counts are consistent with a surface-associated peak in microbial diversity and 

activity that undergoes a sharp dropoff over the upper 30 cm, wherein a much reduced community persists 

deeper into the sediment and declines slowly with depth.  Notably, many of the cell counts made for SPG11 

are below previous detection limits of 1.8x105 (Cragg and Kemp, 1995) or the  4.7x104 cells/mL limit 
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estimated for ODP Leg 201 (D’Hondt et al., 2003), and are lower than any other published number for the 

equivalent sediment horizon in marine sediments (D’Hondt et al. 2003, 2009).  Accurate and precise cell 

counts for such low-biomass sediments were made possible by the recent development of a novel technique 

for separating cells from sediments prior to counting (Kallmeyer et al. 2008).   

This apparent decline in species diversity also may result from diminishing DNA concentration 

with depth, leading to stochastic PCR bias where only a few phylotypes being amplified during initial PCR 

cycles, and subsequently dominate the reaction.  Yet given a conservative 25% recovery of DNA from ~10 

mL of sediment containing at least 100,000-300,000 cells per mL of sediment, and using 10-15% of this in 

each PCR reaction, at least 10,000 MG-I 16S rRNA gene molecules should be present in each PCR, 

assuming the 2/5 ratio of Crenarchaeota to Bacteria found in the deep North Pacific water column (Karner 

et al. 2001). Low DNA concentrations would result in jackpot amplification of only a few sequences being 

amplified early on and dominating all subsequent rounds of amplification.  PCR inhibition could impact the 

amplified sequence diversity similarly, since inhibition result in a few templates randomly amplifying past 

some point at which the reaction is no longer inhibited, resulting in a selective sampling of 16S genes.  In 

this study, three PCR reactions were combined during cloning to minimize jackpot amplification bias. 

Quantitative studies and powerful amplification techniques (e.g., ϕ29 polymerase; Biddle et al. 2008), are 

needed to confirm that a depth-related decline in sequence diversity results from low survivorship and not 

low DNA yield. 

 Metabolic activity of MG-I crenarchaeota in ultra-oligotrophic sediments. 

Cultivation and genomic analysis suggest that the pelagic Crenarchaeota, and the MG-I in 

particular, are either obligate (Nitrosopumilus maritimus; Könneke et al. 2005) or facultative (Cenarchaeum 

symbionsum; Preston et al. 1996, Hallam et al. 2006) nitrifiers.  MG-I Crenarchaeota have been shown to 

be the dominant nitrifiers in the North Sea and northern North Atlantic (Wuchter et al. 2006).  MG-I also 

appear to be the dominant supplier of nitrite to the anammox reaction in the Black Sea, via a tight coupling 

between anaerobic ammonium oxidation (anammox) and microaerophilic or transiently oxic nitrification 

(Lam et al. 2007); through this linkage, pelagic Crenarchaeaota may be responsible for a significant portion 

of fixed nitrogen loss in oxygen minimum zones (Lam et al. 2007, Kuypers et al. 2005).  Estimates based 

on calculations of per-cell autotrophic production (Herndl et al. 2005) suggest that nitrification by meso- 



22 
 

and bathypelagic Crenarchaeaota may regenerate all of the export flux of reduced N below the photic zone 

(Ingalls et al. 2006).  However, comparative quantifications of 16S rRNA genes and ammonia 

monoxygenase genes from the North Atlantic suggests that nitrification is the dominant metabolism for 

MG-I populations only in waters north of 30 °N and in the subphotic zone (Agogué et al. 2008). 

The upper 35 cm of sediment at SPG11 displays a clear vertical mirroring of oxygen and nitrate 

profiles, compatible with nitrification as a net metabolic activity that proceeds to at least ~30 cmbsf.  This 

finding is consistent with the dominance of the putatively nitrifying MG-I crenarchaeota.  Interestingly, the 

sharp decline in clade MG-I α from the water column to 3-4 cmbsf mirrors the sharp drawdown in oxygen 

over the same depth interval, and may also track the decline of substrates consumed by water 

column/sediment-water interface MG-I archaea.  Thus, the shift to the MG-I η and υ groups at SPG11 may 

represent a shift in abundance of electron donors within the sediment, either reduced carbon or nitrogen, 

compared to the water column.  Other explanations may include changes in the lability or accessibility of 

carbon substrates, availability or presence of specific reduced nitrogen species, size constraints due to pore 

size, and differences in viral predation pressure (e.g., Corinaldesi et al. 2007).   

The MG-I sequences at SPG 12 originate from a sediment with different geochemistry; oxygen is 

found in lower concentrations (10-20 µM) at 60-70 cmbsf, compared to near-seawater concentrations 

throughout the sediment column of SPG11.  Oxygen is nearly absent from SPG12 153-163 cmbsf layer 

(<10 uM), where nitrate is being drawn down. Despite these differences in oxygen availability, the MG-I η- 

and υ-dominated deep SPG12 and SPG11 sediment clone libraries are more similar to each other than 

either is to that of SPG11 overlying water.  This supports the interpretation of the MG-I η and υ clades as 

consistently sediment-associated lineages in SPG11 and SPG12 sediments, excluded from the SPG11 water 

column.   

One explanation for differing MG-I assemblage composition is a transition from a predominantly 

nitrifying, autotrophic metabolism to one based on heterotrophic substrates.  Agogué et al. (2008) found a 

roughly one-to-one ratio between 16S rRNA genes and amoA, the marker gene for archaeal nitrification, 

only at the base of the euphotic zone and in subtropical-to-subpolar mesopelagic waters; noting that 

ammonia is in extremely low concentrations elsewhere, they propose that MG-I and other Crenarchaeota in 

bathy- to abyssopelagic waters and in non-subeuphotic tropical seas rely on a metabolism other than 
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ammonia oxidation, presumably heterotrophy.  Further, Agogué et al. (2008) found that the proposed 

metabolic provinces were associated with different phylogroups of MG-I, principally α in the nitrifying 

regions, and γ elsewhere (results not shown).  Thus, the community structure transition observed between 

the overlying water sample and the SPG11 and SPG12 sediment samples, and between SPG11 and SPG12 

sediments, may be due to changing availability of key substrates, and perhaps the energetic feasibility of 

autotrophic nitrification versus heterotrophy. 

The MG-I archaea are found in many different oxic marine environments, and have a strong 

potential to contaminate sediment cores and generally confound habitat-specific phylogenetic signatures of 

any marine biome, if the phylogenetic fine structure and habitat-associated diversification are not 

considered.  Finding a specific association between a habitat within the marine realm, namely between 

oxic/suboxic marine sediments and the MG-I η to MG-I υ clades within the Marine Group I phylum, may 

therefore be important to future investigations of archaeal diversity in the oceans and sediments. The 

specific biogeochemical controls influencing the differentiation of sediment and water column lineages 

remain to be determined; they may possibly reflect a transition from autotrophic nitrification to 

heterotrophic nitrification or heterotrophy, as observed in Agogué et al. (2008).  Here, studies of additional 

sites, perhaps also including fine-scale measurements of organic-N availability and rates of enzyme 

activity, as well as overlying water column samples taken independently of coring, will be required to 

further characterize the oxic marine sediment niche and to discriminate between explanatory hypotheses of 

the observed differences in community structure.  Oxic gyre sediments thus represent a microcosm where 

most-energetic available electron acceptor is shared with the overlying water column, removing a key 

variable and allowing a window into the constraints structuring subsurface microbial communities. 

 

Methods. 

 Geochemical and sedimentation data. 

 The sedimentation rate, estimated as a function of the age of the underlying crust and the thickness 

of the sediment column, was calculated to be ~1.8 m/Myr for SPG12, and ~0.9 m/Myr for SPG11.  Cell 
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abundances and porewater chemistry measurements, including alkalinity, oxygen, and DIN, were 

determined as described elsewhere (Fischer et al. 2009; D’Hondt et al. 2009).   

 Sample collection. 

Samples were obtained during the Knox02-RR cruise in January 2007 from two sites, one on the 

edge of the South Pacific gyre center, South Pacific Gyre Site 11 (SPG11) at 41 51.1281 S, 153 06.3849 W, 

water depth 5076m, and the other, SPG12, in the gyre margin at 45 7.855 S, 163 11.051 W at a water depth 

of 5306m.  All SPG11 samples used in this study were taken from a multicoring device that sampled the 

upper 20-40 cm of sediment, as well as the overlying water.  As soon as the multicorer came on deck, 

multicores containing sediment and overlying water were removed to a 4° C chamber, where all multicore 

subsampling took place.  The near-bottom water column was sampled by dipping two 50-mL Falcon tubes 

into the overlying water of the multicore, which were subsequently frozen at -80° C.  SPG11 multicore 

sediments were sampled by three autoclaved 60mL syringes with the tip cones cut off.  To sample 

sediments, the core barrel was pulled down so that it was nearly flush with the sediment surface.  Syringes 

were then pushed into the sediment, taking care to avoid sampling within ~1cm of the core barrel.  Pulling 

the core barrel down further to just above the bottom of the cutoff syringe, the syringes were pulled 

laterally out of the core.  The sediment was then extruded from the syringe and rounds of sediment were 

sliced off at specific intervals using a flame-sterilized scraper.  Sampling intervals were 1 cm for 0-20 cm 

depth, 2 cm for 20-30 cm depth, and 5 cm for 30-40 cm depth.  Samples from the same interval were 

pooled in a sterile Whirl-Pak bag and then frozen at -80° C.  The sampling horizon was reestablished after 

each syringe sampling by using a flame-sterilized scraper to scrape the sediment flush with the syringe 

depressions.    

SPG12 sediments used in this study were collected via a gravity core, of which total recovery was 

401 cm.   Cores were split into approximately 1m-long sections, which were then further sectioned into ~30 

cm rounds.  Cores were sampled by pushing autoclaved cut-off 60 mL syringes into the core cross section, 

avoiding an approximately 1-2 cm margin inside the core barrel, and then extruding the sample 1 cm at a 

time while slicing off subsamples using a flame-sterilized spatula.  Subsamples were stored in sterile Whirl-

Pak bags or sterile 50-mL Falcon tubes (BD Biosciences) and frozen at -80 until analysis.  
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Nucleic acid extraction, amplification and sequencing. 

 Genomic DNA for SPG12 samples was extracted from samples collected from 60-70 centimeters 

below the sediment surface (cmbsf) and 153-163 cmbsf, using a standard phenol-chloroform extraction 

protocol (Zhou et al. 1996) with some modifications.  For SPG11, sediment horizons at 3-4 cmbsf, 10-

11cmbsf, and 26-28 cmbsf were extracted for DNA, as well as overlying water (OW) from the multicore.  

Blank extractions with only buffer were also carried out under the same conditions as the appropriate 

sample.  

DNA extraction of overlying water was undertaken using ~50 mL of frozen bottom water.  For the 

DNA extraction of SPG11 overlying water, approximately 50 mL of -80 C frozen water was melted and 

filtered first through a 0.2 -µm Anodisc filter (Millipore). The filtrate was pipetted out of the receiving 

flask, and refiltered through a 0.02-µm Anodisc filter.  Both filters were then frozen at -80 °C until DNA 

extraction.  All tools and glassware contacting either the filter or filtrate were baked at 160 °C overnight, 

and previous to use filters were UVC-irradiated for approximately 30 min at a distance of 30 cm from a 15-

watt UVC source.    

To extract genomic DNA, filters were first added to a 60-mL Teflon tube (Oak Ridge) that had 

been baked at 160 °C overnight, and crushed using a baked spatula.  Next were added 5 mL of phenol, 5 

mL of extraction buffer (100 mM phosphate, 250 mM sodium acetate, 50 mM EDTA, 50 mM NaCl, pH 8), 

5g of a 60/40 wt% mix of 0.1 µm and 0.2 µm low-binding zirconium silicate beads (OPS Diagnostics), 10 

µg of poly[dIdC] (Barton et al. 2006) and 20% UVC-irradiated SDS to a final concentration of 0.9%.  This 

mixture was then vortexed at highest speed for 2 minutes, frequently turning the tube on its side to mix 

beads thoroughly.  The remainder of the extraction followed a standard phenol-chloroform protocol (Zhou 

et al. 1996), except that organic phases were extracted twice.  The crude DNA extract was then precipitated 

by adding, sequentially, 2.5 ul/mL of UVC-irradiated GenElute linear polyacrylamide coprecipitant (LPA) 

(Sigma) to maximize precipitation of dilute nucleic acids, 0.5 volume of 7.5 M ammonium acetate 

(NH4CH3COO), and 1 volume of isopropanol.  The precipitation was carried out at -20 °C overnight.   

 Beads used for all SPG12 extractions were a 60/40 mix of 0.1 mm and 0.2 mm low-protein-

binding zirconium silicate beads (Shi 2005) (OPS Diagnostics).  For the fine clay and low biomass 
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sediments of SPG11, a larger amount of sediment (12 g) was used for 10-11 cmbsf and 26-28 cmbsf, and a 

relatively higher bead-to-sediment mass ratio of ~0.3-0.4 was used.  Additionally, beads used for SPG11 3-

4 cmbsf sample were 0.1 mm zirconium silicate beads (Biospec).  All other SPG11 extractions were 

performed with the same 60/40 mix of low-protein-binding zirconium silicate beads.   

 Sediment extraction for both SPG12 and SPG11 proceeded similarly with a few differences, based 

on what resulted in successful DNA recovery.  For SPG12, 7-8 g of sediment was slurried in 7.5 mL of 

extraction buffer (100 mM phosphate, 250 mM sodium acetate, 50 mM EDTA, 50 mM NaCl, pH 8), and 

then added to pre-baked bead-beating canisters containing  zirconium beads with a sediment-to-beads mass 

ratio of ~0.6-0.7.   Approximately 30 µg of a carrier DNA, polydeoxyinosine-polydeoxicytosine 

(poly[dIdC]) (Barton et al. 2006), was then added to act as a blocking agent and to soak up nucleases to 

protect sample DNA.  No carrier DNA was added to the SPG12 70 cmbsf and SPG11 3-4 cmbsf samples, 

as higher cell densities nearer the sediment surface reduced the need for a carrier DNA.    Next, 15 mL of 

pH 8 buffered phenol and 875 µL of 20% sodium dodecyl sulfate were added, and the samples were 

subjected to bead-beating in a Braun MSK Cell Homogenizer for 20 s at high speed.  The remainder of the 

extraction protocol followed a standard phenol-chloroform extraction and cleanup protocol, except that the 

sediment pellet was reextracted with a second volume extraction buffer with no SDS added, and this second 

aqueous phase was processed through the same organic phases as the first, thus re-extracting the organic 

phases and reducing DNA loss.  The crude DNA extract was precipitated by addition of, in order, 2.5 ul/mL 

of UVC-irradiated GenElute linear polyacrylamide coprecipitant (LPA) (Sigma) to maximize precipitation 

of dilute nucleic acids, 0.5 volume of 7.5 M ammonium acetate, and 1 volume of isopropanol.  The 

precipitation was carried out at -20 °C overnight.  Following resuspension in PCR-grade water, the crude 

DNA extract was then processed through a MoBio PowerSoil kit as per manufacturer’s instructions, with 

the omission of Solution C1, used in the cell-disruption step.   

 The primers A8f/A1492r (Teske et al. 2002) were used to amplify an approximately 1500-base 

pair (bp) fragment of the 16S gene of Archaea, for both sample and blank extractions.  Sample PCRs were 

carried out in triplicate and then combined to maximize yield and to minimize “jackpot” amplification bias 

(e.g., Cha and Thilly 1993), wherein by chance a few sequences are amplified early on, and due to low 

DNA concentrations, these initial amplicons dominate subsequent rounds of amplification.  Each 25-µL 
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PCR reaction contained 1 µL (SPG12 60-70 cmbsf), 2 µL (3-4 cmbsf), 10 µL (10-11cmbsf) or 15 µL (26-

28cmbsf) of DNA template, 2.0 µL of dNTP solution (2.5 mM each dNTP), 0.250 µL (1.25 units) Takara 

Bio Inc. SpeedSTAR hot-start Taq  enzyme, 2.5 uL of Takara Fast Buffer I (30mM Mg2+), 1 µL of 100 

mg/mL bovine serum albumin (BSA), and 1.5 uL each of 10 mM forward and reverse primers.  The 

conditions for PCR were as follows: denaturation at 94 °C, followed by 35 cycles, each consisting of 5 s 

denaturation at 94 °C, 15 s at the annealing temperature, and 20 s of elongation at 72 °C, followed by one 

10-minute elongation cycle at 72 °C.  .  Triplicate PCR reactions were then combined, target bands 

extracted and purified from a 2.0% low-melting-point (LMP) agarose (Promega) gel using SYBR Gold and 

the Invitrogen S.N.A.P. Miniprep kit, following the manufacturer’s instructions.  A gel fragment at 

approximately 1500 bp was also extracted and purified for the PCR and extraction negative controls, 

whether or not a band was present.  All purified PCR products were further concentrated by precipitation 

with 0.5 µL of GenElute linear polyacrylamide (LPA) (Sigma).  The pellets were then dried, and 

resuspended in 4-20 uL of PCR H2O.   

Sequencing was performed at the Josephine Bay Paul Center for Molecular Biology and Evolution 

at the Marine Biological Laboratory (Woods Hole, MA), using an ABI Prism 3730 sequencer and the same 

primers used in the initial PCR amplification of each sample.  Sequence traces were trimmed, visually 

checked, and then assembled in Sequencher 4.7 (Genes Codes Corp.).  All SPG sequences, as well as 

closest GenBank relatives identified via BLAST searches, were aligned in ARB (Ludwig et al. 2004) with 

final adjustments made by eye.  Initial NJ trees were made in ARB, containing the GenBank and NCBI 

sequences that would be included in the final phylogenies.  These datasets were then checked for chimeric 

sequences using the GreenGenes pipeline, which first requires alignment using the NAST aligner (DeSantis 

et al. 2006).  Aligned sequences were then submitted to Bellerophon 3, using a window size of 200 bp, a 

“similarity to core set threshold” set to 99%, and the divergence-ratio set to 1.10, the last indicating that a 

sequence will be identified as a chimera if fragments derived from it have ‘parent’ sequences in the 

database that are more than 10% divergent from each other (Huber et al., 2004).  MG-I Crenarchaeota 

sequences were additionally submitted to a more stringent chimera-check, with the same settings as above 

but a divergence ratio of 1.02, which was then repeated 2 additional times.  The second ‘stringent’ run 
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resulted in a much smaller number of identified chimeras, and the third identified none, indicating the 

dataset was completely sanitized at that stringency level.   

 Operational taxonomic units (OTUs) were defined using DOTUR (Schloss and Handelsman 

2005), and a single representative sequence was then selected from each OTU defined at the 1% level to be 

included in phylogenies.  Additionally, 3% OTU representative phylotypes were selected for MG-I 

sequences.  The best model of sequence evolution was then determined using Modeltest 3.7 (Posada and 

Crandall 1998) according to the Akaike information criterion (AIC), and was always a general time 

reversible (GTR) model with a proportion of invariant sites and a gamma distribution of site evolutionary 

rates.   For the MG-I tree, a different approach than bootstrap resampling was necessary, since high 

numbers of sequences can result in serious underestimation of branch support using bootstrap methods 

(Rodrigo 1993, Sitnikova et al 1995, Sanderson and Wojciechowski 2000).  The neighbor joining method 

with gamma corrected site rates can exceed the ability of the ML algorithm to calculate the correct topology 

and branch lengths, at least when a gamma-correction is not also used for the ML algorithm (Tateno et al. 

1994), and performs equally well when considering at least ~1000 sites and low (<~5%) sequence, 

characteristics that nearly approximate the MG-I dataset.  Therefore, a neighbor-joining tree (Saitou and 

Nei 1987), with a maximum-likelihood-estimated model of evolution and a gamma-corrected rate 

distribution, was calculated for the MG-I dataset using MEGA 4.0 (Kumar et al. 2008).  Branch support 

estimated using a 1000-replicate interior branch test (Nei and Kumar 2000), which uses a hypothesis-

testing approach to determine the probability that a particular interior branch has a length greater than 0, 

i.e., that the node in question should not be collapsed into a polytomy.  Values greater than 95% should be 

considered strong support for a particular node (Nei and Kumar 2000).  Using these methods, phylogenies 

were estimated for both the 1% and 3% MG-I OTUs, using the same sequences downloaded from GenBank 

as markers.  

Treeclimber (Schloss and Handelsman 2004) was used to test the hypothesis that the overall 

structure of two communities is statistically the same.  P values indicate the probability that a similar 

association between phylogeny and sample origin would occur by chance (Schloss and Handelsman 2006).  

SONS (Schloss and Handelsman 2006) was used to estimate the Chao1 (Chao 1984) species diversity of 

each depth, as well as cross-comparisons of community structure using abundance-based Jaccard (Smith et 



29 
 

al. 1996, Yue et al. 2001) and Theta (Yue and Clayton 2005) diversity indices.  Both individual community 

Chao1 estimates and estimates of the Chao1 diversity shared between two communities (shared Chao1) 

were calculated.  The abundance-based Jaccard index measures the intersection of the combined 

assemblage of phylotypes, and can be considered the probability that given a phylotype present in one 

assemblage, it is present in both assemblages (Schloss and Handelsman 2006).  By contrast, ThetaYC 

corrects for the differences in relative abundance of phylotypes in each assemblage, taking into account 

both the incidence of shared phylotypes and the similarity of their relative abundances in each assemblage.  

Thus, it can be considered a percentile measure of the similarity of community structures.  

Additionally, a plot of number of unique OTUs versus distance was made based on a collector’s 

curve using all SPG11 and SPG12 MG-I sequences as input, calculated in DOTUR.  A calculation of the 

contribution of Taq error to divergence was made according to Acinas et al. (2004), using an error rate of 

2x10-5 per site per duplication (Klepac-Ceraj et al. 2004) and an average amplicon length of 1400 base 

pairs, yielding an average of 1.6 errors per sequence, or ~0.11%.  This was used as a correction when 

interpreting the OTU# vs. distance collector’s curve.  

 



 

 

 

Chapter 2 

Microbial diversity of oligotrophic abyssal sediments at the southern edge of the South Pacific Gyre 

 

Introduction. 

The organic-rich sediments of continental shelves and slopes are the chief sites of carbon burial on 

Earth, representing ~98% of marine carbon burial by one estimate (Dunne et al. 2007). Numerous 

microbiological studies of deep subsurface sediments with the Ocean Drilling Program (ODP) have focused 

on these locations and have recovered phylogenetically diverse, metabolically active bacterial and archaeal 

communities (D'Hondt et al. 2004, Parkes et al. 2005, Webster et al. 2006; Inagaki et al. 2006, Biddle et al. 

2006, 2008; Lipp et al. 2008; Teske and Sørensen 2006; Teske and Sørensen 2008, Fry et al. 2008). In these 

organic-rich sediments, microbial activity depletes high-energy electron acceptors such as oxygen and 

nitrate within the surface few millimeters to centimeters; beyond this thin surface layer, subsurface 

sediments are entirely dominated by carbon remineralization processes with low standard Gibbs free 

energy, such as sulfate reduction, methanogenesis and fermentations.  

In contrast, only a few microbiological studies have focused on the deep subsurface sediments of 

oligotrophic, open ocean sediments and abyssal basins, e.g., the Peru Basin (ODP Site 1231) and the 

eastern equatorial Pacific (ODP Site 1225) (Sørensen et al. 2004, Teske and Sørensen 2008).  The more 

limited the carbon substrate and electron donor supply, the greater the depth of oxygen penetration.  The 

upper few centimeters to meters of the sediment column contain the zones of maximal metabolic activity 

and cell numbers, which coincide with oxygen depletion and nitrate drawdown (D’Hondt et al., 2004, 

2009).  The microbial communities of these oligotrophic sediments are composed in part of species closely 

related to aerobic seawater Archaea (Sørensen et al. 2004, Durbin et al., 2009) and differ from the microbial 

communities in anoxic, organic-rich sediments (Teske and Sørensen 2008, Fry et al. 2008).  

Microbial analyses of oligotrophic marine sediments require undisturbed cores of the upper 

sediment layers, and sufficient sampling resolution to account for microbial community changes in 
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response to oxygen and nitrate consumption. However, these critical upper sediment layers are generally 

heavily perturbed, resuspended and mixed with seawater by borehole initiation during deep subsurface 

drilling (Lever et al. 2006). To account for missing or low quality data from surficial sediments, deep 

subsurface modeling studies have focused on sediments below threshold depths (1.5 meter, D’Hondt et al. 

2002).  

In this study, we examined the phylogenetic structure of archaeal and bacterial communities from 

an abyssal, oligotrophic, oxic to suboxic sediment column (water depth 5306 m) from the margin of the 

ultraoligotrophic South Pacific Gyre (Site SPG12, position 45°58’S, 163°11’W), by 16S rRNA clone 

library sequencing, in comparison with cell counts and geochemical profiling, using undisturbed gravity 

core samples. The results are discussed with special attention to similar microbial communities from 

surficial marine sediments (7-100cm) of moderately to highly oligotrophic sites (Inagaki et al. 2001, Wang 

et al. 2004, Xu et al. 2005, Wang et al. 2005, Li et al. 2008). 

 

Results. 

Geochemistry. Rates of sedimentation, oxygen and nitrate depletion depths, and maximum DIC 

values indicate that SPG12 is significantly more oligotrophic than the most nutrient-limited marine 

sediments examined from ODP Leg 201.  Net heterotrophy due to remineralization of organic matter to 

CO2 causes an increase in DIC concentration (D’Hondt et al. 2003).  The maximum alkalinity value (of 

which ~96% is DIC at seawater pH) for SPG12 revealed this site to be more oligotrophic than sites 1231 

and 1225, at 3.23 mM vs. 3.6 and 3.98 mM, respectively, and is much lower than the maximum alkalinity 

values found for ODP Leg 201 Peru Margin sites, which range from ~20 mM to ~160 mM DIC (D’Hondt 

et al. 2003, 2009; Figure 5).  The increase in alkalinity (DIC) with depth at SPG12 appears to be linear and 

not exponential in shape, and reaches its maximum and stable value of ~3.2 meq at about 100 cmbsf 

(Figure 5). As at Leg 201 oligotrophic sites, oxygen is depleted on a scale of tens of centimeters of the 

surface (D’Hondt et al. 2004, 2009). Oxygen decreases exponentially from a value of 114.76 µM at 5 

cmbsf to an apparent detection limit of 2-10 µM below ~100-150 cmbsf from, while nitrate declines from a 

value of 43.8 µM at 10-15 cmbsf to 0 µM at 253-258 cmbsf, suggesting drawdown of oxygen followed by 
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depletion of nitrate (no multicore or overlying water sample was taken for Site 12 due to station time 

constraints).  

A total of 373 archaeal and 249 bacterial 16S rRNA gene clones from seven different horizons at 

SPG12 were amplified using the bacterial and archaeal versions of primers 8f/1492r (Teske et al. 2002), 

then cloned, sequenced and analyzed phylogenetically.  

 

 Archaeal diversity and lineage distribution. 

Phylogenetic analysis of the Crenarchaeotal and the Euryarchaeotal 16S rRNA clone libraries 

revealed several characteristics of these archaeal communities at SPG12.  Archaeal phyla found in 

previously studied marine sedimentary environments, such as the Peru Margin, were either not present or 

were very rarely detected in the SPG12 samples. Most archaeal sequences found in the SPG12 sediment 

column formed unnamed, mutually exclusive phylogenetic lineages that contain few representatives in 

Genbank (Figure 6 and 7). The new groups include Marine Benthic Group (MBG) A1 to A3 within the 

crenarchaeota (Figure 7); the MBG-A2 and A3 archaea are new sister lineages of the MBG-A archaea that 

were originally found in North Atlantic sediments (Vetriani et al. 1999). Most of the Euryarchaeotal clones 

are affiliated with four lineages termed here the Deep-Sea Euryarchaeotal Groups (DSEG) 1 to 4 (Figure 

7). DSEG 1 is synonymous with the DSEG lineage (without number) as described previously (Takai et al. 

2001a), which is in turn synonymous with DHVE-3 (Takai and Horikoshi 1999). The only archaea in the 

SPG12 sediments that have cultured representatives are the Marine Group (MG) I archaea, a mostly pelagic 

marine phylum represented so far by aerobic and nitrifying strains (Könneke et al. 2005, Hallam et al. 

2006). For each sediment horizon, total numbers of archaeal clones, phylogenetic affiliation, 1% OTU 

representative phylotypes, Genbank numbers and best BLAST hits are listed in Appendix C.  

The archaeal 16S rRNA gene clone libraries show significant changes with sediment depth. The 

archaeal community above the oxygen depletion depth was found to be distinct from the communities 

found at deeper depths; a clear vertical community succession across the oxic-anoxic transition was evident 

when considering the overall occurrence of different archaeal phyla (Figure 5). The MG I archaea 

dominated the clone libraries in the upper sediment layer, the zone of oxygen and nitrate availability 

(Figure 5). The shallowest depth analyzed at SPG12, 60-70 cmbsf, corresponds to the bottom of the oxic 
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zone, just above the zone of gradual oxygen depletion (80-150 cmbsf) and the zone containing the highest 

recorded cell densities at SPG12 (~70-120 cmbsf) (Figure 5A).  Here, the MG-I subgroups υ (upsilon) and 

η (eta) (Durbin et al. 2009) were predominant, with η the most abundant group at 41/49 clones (~84%), 

along with 7 υ clones (~14%) and 1 α clone. The next sampling horizon with MG-I clones, 153-163cm 

depth, was located in the suboxic zone, and yielded four MG-I η clones within a total sample of 11 archaeal 

clones (Figure 5, Figure 6). Based on sediment and bottom water analyses of other oligotrophic sediments 

and SPG sites, MG-1 υ and η  appear to be specifically sediment-associated and distinct from the MG-I 

clades that typically appear in the water column, supporting their characterization as indigenous members 

of the sediment community (Durbin et al. 2009). 

The archaeal 16S rRNA clone library from 213-223 cmbsf, just above the nitrate depletion depth, 

consisted of a unique archaeal assemblage dominated by novel phylogenetic lineages of uncultured 

euryarchaeota, termed here DSEG-4 (Deep-Sea Euryarchaeotal Group 4) and MBG-A3 (Marine Benthic 

Group A3). DSEG-4 archaea were only found in this depth horizon and accounted for a significant fraction 

of the clones (45/79). Overall, the 213-223 cmbsf horizon had the highest archaeal phylum-level diversity 

of clone libraries with significant sample size (Figure 5); the archaeal clone library included members of 

two crenarchaeotal (MBG-A2,-A3) and three euryarchaeotal (DSEG-3, DSEG-4 and MG-V) lineages. 

 Archaeal clone libraries from deep sediments in the suboxic and nitrate-depleted zone (273-283 

cmbsf, 343-353 cmbsf) were dominated by uncultured crenarchaeota of the MBG-A1 and MBG-A2 

lineages (Figure 5). The MBG-A1 contained 65 of 153 non-MGI Crenarchaeotal sequences from the 

SPG12 sediments, with nearly all clones (64) represented by a single 1% OTU phylotype (Appendix C).  

MBG-A sequences from public databases included several from oligotrophic sediment sequences.  The 

MBG-A2 accounted for 84 sequences and 2 phylotypes of the non-MGI Crenarchaeota.  All existing 

GenBank representatives of MBG-A2 were included in the crenarchaeotal tree (Figure 6), and were derived 

from oligotrophic sedimentary environments, including the eastern equatorial Pacific (Teske and Sørensen 

2008) and western North Pacific (Xu et al. 2005). The MBG-A3 group contained 2 distinct subgroups 

(Figure 6), with one containing 4 SPG sequences represented by one 1% OTU phylotype, as well as a 

sequence from oligotrophic sediments at the East Pacific Rise (Li et al. 2008).  Additional groups related to 

the MBG-A lineages come from very different environments, including hydrothermal vents, terrestrial hot  
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Figure 5. Depth trends in archaeal 16S rRNA clone library composition, porewater constituents, and cell 
counts.  Marine Group I subclade abundance distributions in the upper two sediment layers and in the water 
column are based on Durbin et al. 2009. Porewater nitrate, alkalinity, and oxygen data, as well as cell 
counts (D’Hondt et al 2009) are plotted vs depth.  Zero cmbsf values for cell counts and oxygen represent 
overlying water values from the SPG11 and SPG10 multicorer samples (D’Hondt et al. 2009), respectively, 
since no multicore was available for SPG12.  
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Figure 6. Maximum-Likelihood (ML)- estimated 16S rRNA gene phylogeny of Crenarchaeota, using a 701-
bp alignment, and 1000 iteration ML bootstrap node support.  Black horizontal bars indicate SPG12 
phylotypes.  The scale bar corresponds to expected number of substitutions/site.  
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springs (Barns et al. 1996, Spear et al. 2005), or boreal forest soil in Finland (Finnish Forest Soil Group, 

FFSG; Jurgens et al. 1997) (Figure 6) 

 .The deepest sediment sample was at 401-411 cmbsf, below the nitrate depletion depth, and 

yielded predominantly uncultured euryarcheota of the MG (Marine Group) V and DSEG-1 lineages (Figure 

5, 6).  MG-V accounted for 84/166 or 50% of all euryarchaeotal sequences recovered, with the bulk (79) 

represented by a single 1% OTU (Appendix C); clone library representation of this lineage increases with 

sediment depth (Figure 5).  Only 5 sequences from GenBank grouped within the MG-V lineage, including 

two sequences from a tropical estuary (Singh et al., unpublished), and another from abyssal Antarctic 

Ocean shallow sediments (Gillan and Danis 2007) (Figure 6).  MG-V is the sister lineage to the 

predominantly pelagic marine archaeal group MG-II (DeLong et al. 1992, Delong 1994).  MG-II archaea 

are most abundant in the upper mixed layer of the ocean (Fuhrman et al. 1997, Church et al. 2003, Galand 

et al. 2009) and some are suspected to be at least facultatively phototrophic, via a bacteriorhodopsin proton 

pump (Delong et al. 2006, Frigaard et al. 2006). The MG-V and MG-II groups have 22% sequence 

divergence between each other, less than several of the mean intragroup distances between the new DSEG 

groups in the SPG12 sequence dataset (Table 4). Along with the principally pelagic MG-III (Furhman and 

Davis 1997) and sediment-associated MBG-D (Vetriani et al. 1999) and TMEG (Takai et al. 2001a), the 

MG-V and MG-II lineages are members of a large, but well-supported monophyletic phylum-level group, 

the Thermoplasmatales and their uncultured relatives (Figure 7). 

The SPG12 euryarchaeotal clones included four deeply-branching lineages not abundant or not 

found in clone libraries from the Peru Margin or Peru Trench (Biddle et al. 2006, Inagaki et al. 2006), the 

DSEG/DHVE-3 clade (Takai et al. 2001a, Takai and Horikoshi 1999), here renamed the DSEG-1, as well 

as the novel DSEG-2, DSEG-3, and DSEG-4 (Deep-Sea Euryarchaeotal Groups), defined in the current 

study.  Clones belonging to these lineages were obtained from shallow marine sediments, a suboxic water 

column, hydrothermal vent surfaces, sediments and fluids, and continental deep subsurface; there are no 

cultured members or enrichments (Figure 7).  Corroborating the designation of these lineages as deeply 

branching, distinct, and reciprocally monophyletic phylogroups, the DSEG lineages identified here had 

higher mean differentiation from the next-closest related lineages available in the SILVA SSU REF v. 95 

database than maximum or average intra-group divergences (Table 4).  These phylum-level lineages also  
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Figure 7. Maximum likelihood (ML)-estimated 16S rRNA gene phylogeny of SPG12 Euryarchaeota.  A 
702-base-pair (bp) alignment was used in order to accommodate shorter sequences.  Node support is based 
on 1000 ML bootstrap iterations.  Color coding indicates sequence origin, while SPG12 phylotypes are 
indicated by black horizontal bars.  The scale bar corresponds to 0.1 expected substitutions/site.  

 

have relatively few representatives in public databases (Table 4), with most representatives included in the 

phylogeny (Figure 7).  For example, the second-most abundant Euryarchaeotal lineage at SPG12, DSEG-4 

(Table 5), was represented by only 11 sequences in the SILVA v.95 database of archaeal 16S rRNA gene 

sequences >900bp (Pruesse et al. 2007), released 14 July 2008. A BLAST search (1 April 2009) of a  
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representative DSEG-4 SPG12 sequence returned only 14 sequences with greater than 83% maximum 

identity.   

 Bacterial diversity and lineage distribution. 

The bacterial community showed depth-related changes in clone-library assemblage structure, 

both across the oxic/suboxic interface and with further increasing depth (Figure 8). For every sediment 

horizon, total numbers of bacterial clones, representative phylotypes, Genbank numbers and best BLAST 

hits are listed in Table 5. The clone library from the oxic 60-70 cm layer consisted of members of the 

Alphaproteobacteria, OP11/OD1 candidate phyla, Actinobacteria, Gemmatimonadetes, Planctomycetes, 

and Chloroflexi.  In contrast, 60-90% of all sequences recovered from deeper sediment horizons grouped 

within the Planctomycetes and Chloroflexi phyla (Figure 8). Within these dominant phyla, it was 

determined whether previously defined subgroups were present (e.g., Elshahed et al., 2007, Inagaki et al., 

2006, Morris et al., 2004, Kittelman and Friedrich, 2008, Kirkpatrick et al. 2006, Kohler et al., 2008, 

Harrison et al., 2009) or novel lineages had to be defined. Based on the taxonomic division of the 

Chloroflexi into several subphylum-level groups (Inagaki et al. 2006), the dominant Chloroflexus clade in 

the oxic zone at 60-70 cmbsf was identified as Chloroflexi VIb, whereas in all deeper sediment layers the 

subphylum Chloroflexi IV dominated (Figure 9B).  A single sequence grouped within the SAR202 cluster 

(Morris et al. 2004), here designated the SAR202 branch 5, and several sequences grouped into an 

uncultured cluster within the Anaerolineae.  Among the Planctomycetes, several novel, well-supported 

subphylum-level clusters were abundantly represented in SPG12 sediments, labeled here I, II, III and IV, as 

were several uncultured groups within the Planctomycetaceae (Figure 9A; Appendix D). The appearance 

and abundance of the Planctomycetes subgroups revealed a peak in both class-level diversity and relative 

abundance at 213-223 cmbsf (Figure 8), the zone of nitrate depletion.  A single clone from the zone of 

nitrate depletion (213-223 cmbsf) grouped within the candidate genus Scalindua, which are anaerobic, 

ammonia-oxidizing marine bacteria (Figure 8).  

Other uncultured, division-level bacterial clades recovered in lower numbers included AC-1 

(Harris et al. 2004, Isenbarger et al. 2008), NT-B9 and NT-B2 (Reed et al. 2002), OP11 and OD1 (Harris et 

al. 2004), and Termite Group I (Okhuma and Kudo, 1996, Hongoh et al., 2008) (Figure 9C; Appendix D). A 

group here designated the Abyssal Sediment Group (ASG) may constitute a novel division-level clade of 
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Bacteria; it consisted of a single NCBI sequence, with all other clones of this group recovered from SPG12 

at 60-70 cmbsf, 343-353 cmbsf, and 461-471 cmbsf (Figure 9C).  Among phyla with cultured 

representatives, several clades of Deltaproteobacteria were recovered, including the Nitrospina, 

Desulfobacteriaceae, and SAR324 (Wright et al. 1997) lineages (Figure 9C).   

 

 
Figure 8. Porewater constituent data, cell counts and bacterial clone library composition (phyla and 
class/order abundances) at SPG12.  Included are phylum level clades as upper bars, and class- or order-
level clades for the two dominant phyla, Chloroflexi and Planctomycetes, as lower bars.  SPG12 nitrate, 
alkalinity and oxygen data, as well as cell counts are provided at left (D’Hondt et al. 2009).  0 cmbsf values 
for cell counts and oxygen represent overlying water values from the SPG11 and SPG10 multicorer 
samples, respectively, since no multicore was available for SPG12.   



41 
 

 

 

 

 

 



42 
 

 



43 
 

 

Figure 9.  Neighbor-Joining phylogeny of SPG12 Planktomyces (A), Chloroflexi (B), and other bacterial 
phyla (C), based on a ~1200-bp alignment of bacterial 16S rRNA sequences that passed a 40% 
conservation filter using the filter tool in ARB.  A maximum-composite likelihood substitution model with 
gamma-corrected site rates was used in MEGA4.  Support for clades is provided by 2000-iteration interior 
branch values.  
 

 Archaeal and Bacterial comparative diversity analysis. 

Differences between archaeal community structure in different sediment horizons are supported by 
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different statistical tests. Whole-phylogeny analysis using Treeclimber (Schloss and Handelsman 2006) 

indicated each Archaeal clone library to be significantly different from all others at P <0.00001.  

Abundance-based Jaccard index values ranged from ~0.20 to ~0.36, with overlapping standard errors 

(Table 5A), excepting the 213-223 cmbsf/273-283 cmbsf and 401-411 cmbsf/273-283 cmbsf comparisons, 

both of which showed low between-library similarity.  Because of the small sample size for 163-153 cmbsf, 

these results should be interpreted with caution, as should all comparisons between depth pair values with 

overlapping standard errors.  As the Jaccard index represents the probability that a given phylotype is 

present in both communities, without correcting for the relative abundance of shared phylotypes in each 

community, the archaeal Jaccard values indicate that shared phylotypes form a low but significant portion 

of all archaeal clone libraries, with a few, non-universal exceptions.  Overall community structure 

similarity, as estimated by ThetaYC, ranged from 0 for several comparisons to 0.3470 (+/- 0.0672) for 343-

353 cmbsf/273-283 cmbsf.  Notably, even for depths sharing dominant deeply-branching lineages and even 

1% OTU phylotypes (e.g., 273-283 and 343-353 cmbsf), Jaccard and ThetaYC indices indicated relatively 

low community structure similarity.    

Analysis using Treeclimber on Bacterial clone libraries found all clone libraries to be significantly 

different, with 95% confidence, although P values were larger compared to the Archaeal comparisons.  For 

community structure comparisons, the frequently-used operational taxonomic unit (OTU) definition of 3% 

(Stackebrandt and Goebel 1994) rather than 1% (Stackebrandt and Ebers 2009), due to the high sequence 

richness of this dataset and the slightly greater comparative power a less stringent OTU definition offers.  

These diversity indices (Table 5B) confirmed the patterns observed in the percent-composition figures: a 

distinct community, at both the phylum and subphylum level, for samples from above the oxygen depletion 

depth (60-70 cmbsf), compared to deeper horizons (Figure 8, Table 5B); a gradual increase in the relative 

abundance of Chloroflexi with depth (Figure 8); and a diversity maximum among the Chloroflexi and 

Planctomycetes at 213-223 cmbsf (Figure 8).  
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This last was evident in the uniformly low ThetaYC values for all cross-comparisons with this depth (Table 

5B).  For comparisons between other depths, the highest ThetaYC similarity was generally found for 

immediately adjacent depths, although errors overlap somewhat, possibly due to relatively low sample size.  

This is consistent with a gradual, transitional change in community composition, a trend perhaps driven by 

the increasing proportion of Chloroflexi (Figure 8).  This trend was not as clear in abundance-based Jaccard 

values, which sometimes had high values for non-adjacent depths; this likely reflects the uneven clone 

library size and richness and small sample sizes overall, as well as possibly shared haplotypes abundant 

only one of the two clone libraries under comparison.   Notably, the ThetaYC similarity values tend to 

increase with depth, suggesting a stabilizing community composition, although the present dataset offers 

only a few points to support this.   

 

Archaeal and Bacterial species diversity and rarefaction analysis.  

Rarefaction analysis using either a 1% OTU (Figure 10) or 3% (not shown) OTU definition revealed that 

for all depths, Bacteria diversity was significantly higher than Archaeal diversity.  Slopes of 1% OTU 

bacterial rarefaction curves approached 1 and did not show signs of leveling, suggesting sampling of the 

PCR reaction did not near saturation.  By contrast, all archaeal rarefaction curves stabilized to a particular 

value, suggesting nearly all diversity amplified by PCR was sequenced (Figure 10).  Using a 1% OTU 

definition, this value for Archaea was ~10 species or lower, a result also reflected in Chao1 diversity 

estimates (Table 5A).  Chao1 diversity estimates for bacteria were much higher, and ranged from 34-208 

with 95% confidence intervals ranging from 21-586 for 3% OTUs (Table 5B); it should be noted that such 

measures underestimate true diversity (Hong et al. 2006, Hughes et al. 2001). In addition to low depthwise 

archaeal diversity, several 1% phylotypes were recovered from widely separated depths.  The DSEG-2 1% 

OTU phylotype SPG12_401_411_A1, comprising ~38% of clones from 401-411 cmbsf, also accounted for 

5% of clones at 210-220 cmbsf; the MBG-A2 1% OTU phylotypes were found in abundance at both 273-

283 and 340-350 cmbsf; and finally, MG-V phylotype SPG12_401_411_A20 was found as a single 

representative (~9%) at 153-163 cmbsf, but also made up ~38% and ~53% respectively of clones from the 

343-353 cmbsf and 401-411 cmbsf intervals (Table 5).  

. 
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Figure 10. Rarefaction analysis at 1% OTU resolution for Archaea (gray symbols) and Bacteria (black 
symbols).  
 

Discussion. 

 Several factors likely differentiate the oligotrophic sediment environment from both the 

oxic/suboxic and anoxic strata of organic-rich margin sediments.  High energy electron acceptors are 

available over a wide depth range in oligotrophic sediments, in contrast to eutrophic margin sediments; this 

would generally favor organisms that can take advantage of the additional Gibbs free energy offered by 

higher-energy oxidants compared to organisms performing sulfate reduction, methanogenesis, or 

fermentations.  However, the low availability of electron donors in oligotrophic sediments counteracts the 

advantages of electron acceptor abundance.  The relatively high redox state of oligotrophic sediments may 

also impose an energetic cost in the pathways available for biomass synthesis, which is exacerbated by the 

low availability of reducing equivalents (McCollom and Amend 2005).  Finally, oligotrophic sediments are 

also often found in deep waters and receive extensively degraded organic carbon (Wakeham et al. 1997, 

Hedges et al. 2001, Lee et al. 2004), which may be associated with protective mineral phases.   
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 Additional suboxic redox processes may be possible in non-sulfidic, anaerobic sediments such as 

SPG12, compared to eutrophic sediments.  In highly reduced, sulfidic sediments, metal oxides may be 

unavailable to respiration due to metal sulfide coatings.  Reduced iron in the form of pyrite (FeS2) is 

refractory to oxidation by Mn(IV) or nitrate (Schippers and Jorgensen 2001, 2002), unless the FeS2 is 

coated by Mn(IV) or the iron oxide product is solubilized by chelation with organic ligands, since insoluble 

Fe(III) is the attacking agent (Schippers and Jørgensen 2001, 2002).  Additionally, oxidation of metal 

sulfides produces protons, sometimes resulting in highly acidic environments such as acid mine drainages 

(Edwards et al. 1999); unless this acidity is buffered, for example by oxidation of metal-carbonate minerals 

(Severman et al. 2006, Nercessian et al. 2005), it impacts the feasibility of the metabolism, since the 

thermodynamics of microaerophilic metal oxidation become unfavorable at pHs below 5.5-6 for (Severman 

et al. 2006).  Thus, in neutral pH sediments without metal sulfides, additional metal cycling pathways are 

feasible compared to acidic and/or sulfidic, eutrophic sediments (e.g., Schippers and Jørgensen 2001, 2002; 

Severman et al. 2006).  Although SPG12 is below the carbonate compensation depth (CCD) and does not 

contain significant carbonate content (D’Hondt et al. 2009), the slow substrate input fluxes, and hence slow 

respiration rates, may allow the buffering capacity of seawater to maintain a near-neutral pH.  Together, the 

different types of electron acceptors, higher reaction diversity of those electron acceptors and inorganic 

electron donors, and recalcitrance of deep-sea carbon might be expected to shape a phylogenetically 

distinct microbial community at SPG12 compared to eutrophic margin sediments, either suboxic or anoxic.   

 

 Archaeal diversity and distribution. 

 This study appears to confirm a distinct microbial community at SPG12 for the Archaea.  Some of 

the archaeal lineages recovered from SPG12 sediments are mostly found in oligotrophic marine sediments, 

such as the MBG-A-related Crenarchaeotal lineages (Figure 5, Figure 6).  Other lineages, for example the 

Euryarchaeota DSEG 1-4, show a broader habitat preference, including various marine sediments and 

hydrothermal vent environments, but are consistent members of the SPG12 archaeal community (Figure 5, 

Figure 7). Widespread archaeal groups commonly found in organic-rich subsurface sediments are 

conspicuously absent (e.g., Biddle et al. 2006, Inagaki et al. 2006, Sørensen and Teske 2006, Parkes et al. 

2005). The composition of archaeal clone libraries at SPG12 appears to fluctuate widely with sediment 
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depth, with neighboring sediment horizons having different phylum-level archaeal lineages.  The resulting 

depth distribution appears to reflect the redox zonation of the sediment to some extent (Figure 5): The MG-

I archaea predominate in clone libraries from the oxic portion of the sediment column, and disappear as 

oxygen nears the detection limit. The MBG-A-related lineages are most abundant in the 273-283 cmbsf 

horizon just below the nitrate depletion depth, possibly associated with a redox interface involving metals 

and NOX species, which occur in largest spatial extent in oligotrophic sediments (D’Hondt et al. 2004).  

Both nitrate and manganese (IV) oxides are viable electron acceptors for dissolved, reduced iron (Schippers 

and Jorgensen 2001, 2002; Straub et al. 1996), the form in which Fe(II) would be expected to occur in, 

given the lack of sulfide production suggested by an unchanged sulfate profile (D’Hondt et al. 2009).  If the 

clone libraries at 273-283 and 343-353 cmbsf represent active populations of MBG-A related lineages, the 

fact that they are most abundant in clone libraries below the nitrate depletion depth suggests nitrite or 

manganese(IV) as a possible terminal electron acceptor.   

 By contrast, the DSEG-4 occur solely in the 213-223 cmbsf clone library, just above the nitrate 

depletion depth, and thus nitrate is available to these organisms; along with their absence from more 

surficial clone libraries in the denitrification zone, this would be consistent with a reliance on neutrophilic, 

non-heterotrophic denitrification using iron(II) diffusing up from below (e.g., Straub et al. 1996, Emerson 

and Moyer 1997).  Thermodynamics suggest that manganese(II) can be oxidized by both nitrate and 

oxygen, although available evidence suggests that only oxygen is used in nature (Clement et al. 2009).  The 

detection limit of the instrumentation commonly used to measure oxygen in sediments precludes 

verification of the possibility that microaerophilic manganese oxidation occurs at SPG12, and indeed the 

measured oxygen values never drop below the minimum required for significant manganese(II) oxidation 

to occur (Clement et al. 2009).   Mn(III) may also be important in the extended suboxic zone of SPG12.  

This soluble metal species, indistinguishable from Mn(II) by standard methods, has recently been shown to 

be a key component of the manganese redox cycle in the Black Sea water column, where manganese 

cycling maintains a wider suboxic zone  (without either oxygen or sulfide) than would otherwise be the 

case (Trouwborst et al. 2006).  As Mn(III) can act as either an electron acceptor or donor, this complicates 

the network of redox pathways possible in the suboxic zone or oxic interface at SPG12.  

 Unlike the DSEG-4 or MBG-A-related lineages, MG-V archaea do not appear to have a specific 
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association with the nitrate profile, but rather appear to increase with depth, from just above the nitrate-

depletion zone to the deepest sediment analyzed here, 401-411 cmbsf, excepting the 273-283 cmbsf interval 

where only MBG-A1/A2 were recovered.  While this would appear to rule out denitrification, this 

distribution in clone libraries is consistent with a metal-reducing niche, along with other anaerobic 

heterotrophic metabolisms.   

 

 Bacterial diversity and distribution 

 A key difference between bacterial and archaeal clone library assemblages at SPG12 are the 

gradual depth transitions within the bacterial clone libraries (Figure 8), in contrast to the more 

discontinuous changes of archaeal communities from one depth layer to another (Figure 5).  A continuously 

transitioning bacterial community structure as revealed in clone libraries is supported by ThetaYC values 

(Table 5B).  ThetaYC compares overall community structure similarity and is not biased by shared 

haplotypes abundant in only one community, as are Jaccard indices.  The highest bacterial clone library 

Theta YC values are found for comparisons between ‘adjacent’ sediment horizons, supporting a transition 

from one horizon to the next.  This trend may be driven principally by a steadily increasing proportion of 

the Chloroflexi IV subphylum with depth (Figure 8).   

 The SPG12 bacterial community consisted largely of recognized phylum-level clades, such as the 

Planctomycetes and Chloroflexi, which comprised 60-90% of clones below the (putative) oxygen depletion 

depth.  In contrast to the Archaea, subgroups of the Planctomycetes and Chloroflexi abundant in SPG12 

clone libraries are also dominant in clone libraries from eutrophic margin sediments; for example, the 

dominant Chloroflexi subgroup at SPG12, Chloroflexi IV (Figure 9B), is also abundant at several 

continental margin sites (e.g., Inagaki et al. 2006), and while the dominant Planctomycete clades I and II 

(Figure 9A) found at SPG12 include numerous sequences from another oligotrophic abyssal sediment 

environment (Li et al. 2008), interspersed with these were clones from methane hydrate-associated 

sediments and eutrophic continental shelf sediments.  Thus, it appears that these Planctomycete and 

Chloroflexi clades are metabolically flexible, using a wide array of electron donors and/or acceptors.  It is 

also possible that they specialize in particular substrates that are abundant in marine environments, 

particularly less-labile deposits such as deep marine sediments.  For example, the dominant Chloroflexi 
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clade, IV, is closely related to two obligate reductive dehalogenators, Dehalobium chlorocoercia and 

Dehalococcoides ethenogenes, and is the clade most closely related to these dehalogenators among 

uncultured clades identified from the eutrophic continental margin deep subsurface (Inagaki et al. 2006).  It 

is unclear whether halogenated substrates are particularly abundant in ocean sediments, and especially so in 

recalcitrant sediments such as those at SPG12; it may also be that the dehalogenation pathway is to some 

extent shared by pathways used to degrade recalcitrant carbon. 

 The greatest subphylum diversity of Planctomycetes, including the Anammox clade, was found at 

the 213-223 cmbsf depth, just above the nitrate depletion horizon (Figure 8); these results are similar to a 

previously discovered peak in Planctomycete diversity and abundance at the intersection of nitrate and 

ammonia profiles in the Black Sea water column (Kirkpatrick et al. 2006), and suggest a key N cycling role 

for Planctomycetes in SPG12 sediments.  The deeply divergent anammox clade of Planctomycetes has a 

well-documented role in mediating anaerobic ammonium oxidation in marine environments (e.g., Schmid 

et al. 2007).  Evidence from genomics also implicates another Planctomycete isolate, more closely related 

to the uncultured clades found at SPG12, in nitrogen cycling.  Nitrite/nitrate import and respiration genes 

were found to be predicted highly expressed (PHX) in the genome of the planctomycete, Rhodopirellula 

balthica (Glöckner et al. 2003), suggesting the possibility of denitrification.  Planctomycetes have also been 

shown to be capable of organic fermentations (Schlesner and Stackebrandt 1986), consistent with their 

appearance below the nitrate depletion depth.  Finally, Rhodopirellula balthica was found to host an 

unusually large number of sulfatases, likely involved in allowing more efficient access to sulfated carbon 

skeletons (Glöckner et al. 2003).  Thus, the uncultured Planctomycete lineages abundant in suboxic SPG12 

sediments may also be targeted towards sulfate-ester-linked glycopolymers, abundant in marine snow 

(Passow 2002).  The highly diversified, potentially N-cycling Planctomycetes-dominated bacterial 

community at 213-223 cmbsf was echoed in the highly diversified Archaeal community at this depth 

horizon (Figure 8).   

 In addition to Fe(II) oxidation using Mn(IV)/ nitrate, or metal oxidation with microaerophilic 

c[O2], an additional thermodynamically favorable metabolism for organisms at the nitrate depletion depth is 

ammonia oxidation using manganese (Luther et al. 1997, Hulth et al. 1999).  Although evidence for this 

occurring in nature is lacking (Thamdrup and Dalsgaard 2000), it is possible that the differing pH and 
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sulfide contents of eutrophic continental margin sediments and oligotrophic SPG12 allows anammox with 

manganese to proceed.  

 Although no significant sulfate drawdown is evident from porewater geochemical data (D’Hondt 

et al. 2009), the appearance of Deltaproteobacterias sequences at two depths (213-223 and 343-353 cmbsf), 

including a clone from the sulfate-reducing Desulfobacteriaceae, which has the sulfate-reducing cultured 

representative Desulfobacterium indolicum (Bak and Widdel 1986) as a close relative, suggest the 

possibility of sulfate reduction near and below the nitrate depletion depth at SPG12.  Additionally, a clone 

from 343-353 cmbsf was relatively closely related to Spirochaeta smaragdinae, a sulfur- and thiosulfate-

reducing organotroph (Magot et al. 1997; Figure 9C), and some spirochaetes have been found to belong to 

a syntrophic sulfur-cycling community in gutless worms (Blazejak et al. 2005). The presence of members 

of the Alphaproteobacteria and Gammaproteobacteria in the 60-70 cmbsf, 213-223 cmbsf, and 343-353 

cmbsf intervals also suggests the presence of an oxidative sulfur cycle: several clones are closely related to 

a putative sulfur-oxidizing Alphaproteobacterial oligochaete endosymbiont, AJ890098 (Blazejak et al. 

2006) (Figure 9C).  Thus, it is possible that a cryptic or low-activity sulfur cycle may be present alongside 

electron-accepting processes with higher standard Gibbs free energy, perhaps exploiting an unused set of 

substrates, or a substrate pool that is not associated with readily available metal oxide electron acceptors. 

 

 Archaeal and Bacterial species richness 

The Archaeal and Bacterial clone libraries differed widely in the species diversity as estimated by 

rarefaction and Chao1 indices (Table 5; Figure 10).  Archaea were found to be represented by 4-10 1% 

OTUs for all depths.  In contrast, rarefaction curves of Bacteria did not reach saturation, and Chao1 

estimates, which likely underestimate true diversity (Hughes et al. 2001), indicated several tens to several 

hundreds of bacterial 3% OTU for all depths (Table 5B).  There are three possible explanations for this 

conspicuous difference in bacterial and archaeal OTU diversity: 

 1) If these results are a reasonable approximation of the true diversity of the Archaea and Bacteria 

in situ, highly restricted archaeal diversity might indicate that the oligotrophic sediment biome represents 

an extreme habitat for Archaea, and where only a few specialists thrive. This is consistent with the 

observation that the SPG archaea are distinct from the archaeal lineages abundant at organic-rich margin 
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sites (e.g., Biddle et al. 2006, 2008; Inagaki et al. 2006; Fry et al. 2008).   

2) A second explanation is stochastic PCR bias. If SPG12 Archaea occur in significantly lower 

abundance than Bacteria, their low DNA and target gene concentration leads to stochastically biased PCR 

reactions, diminishing the species diversity detectable in clone libraries. Since bacterial and archaeal cell 

numbers and 16S rRNA gene copy numbers were not quantifiable due to the use of carrier DNA, this 

question remains open in this study. 

3) A third possibility, not mutually exclusive of the previous two, is that the archaeal groups 

recovered from SPG12 may have substitutions in key priming regions, with only rare phylotypes being 

amenable to PCR with 8f/1492r primers.  Several of the novel or uncultured lineages described in this 

work, specifically DSEG-1 through -4 and DHVE-5, are deeply divergent and highly diverse (Table 5).  

Along with DHVE-4 and DHVE-6, these lineages were previously found to form a long-branched 

monophyletic group distinct from other Euryarchaeota, termed DHVEG-II (Takai and Horikoshi 1999, 

Moussard et al. 2006).  Deeply-branching archaeal lineages have mismatches to internal 16S rRNA gene 

primers; for example, a lineage in DHVEG-II clade (DHVE-6) was found to have the second-highest 

mismatch prevalence with a commonly used primer (Teske and Sorensen 2008). Highly selective PCR 

amplification of a few matching archaeal phylotypes from otherwise mismatched groups would produce 

nearly identical archaeal sequences multiple times from different depths, possibly under widely varying 

geochemical regimes (Figure 5; Appendix C). For example, the DSEG-2 phylotype SPG12_401_411_A1, 

comprising ~38% of clones from 401-411 cmbsf, also made up 5% of clones at 210-220 cmbsf; and the 

MBG-A2 phylotypes were found in abundance at both 273-283 and 343-353 cmbsf.  The frequent recovery 

of identical archaeal phylotypes from different samples and PCR reactions is hard to explain by stochastic 

PCR bias only, but suggests the likelihood of primer bias.  

Mismatched PCR primers might be one of the reasons why extant Genbank representatives of 

SPG12 lineages are rare: for example, there are relatively few MG-V, D SEG-2, DSEG-3, and DSEG-4 

sequences in public databases (Table 4); the DSEG and DHVE-5 are also relatively uncommonly 

encountered.  The range of habitats from which these sequences have been recovered, from hydrothermal 

vents to methanogenic coastal sediments (Figure 7), also suggests that sequence rarity is not simply a 

function of a lack of sampling of the appropriate habitat, but is consistent with poor detection in PCR.  A 



55 
 

recently described novel bacterial phylum, the WWE3 division, illustrates the effects of PCR bias. Despite 

representing a significant fraction of the bacterial community in a highly-studied habitat, a sludge reactor, 

the WWE3 was represented by only a single sequence in public databases until its detection by 

metagenomic methods (Guermazi et al. 2008).   

Nevertheless, it is possible that the DHVEG-II and MG-V euryarchaeota form a rare component of 

various habitats, but are most predominant under conditions such as those at SPG12.  Ultimately, the 

explanation for the low Archaeal diversity may in fact be a combination of all three alternatives described 

above.  More research is needed to explore whether the novel lineages detected at SPG12 are indeed 

abundant community members with substitutions in conserved regions of 16S, as suggested here by their 

high abundance in SPG12 clone library studies and phylogenetic placement.  Newly developed, multiple 

PCR primer sets, as well as PCR-independent methods such as whole-genome amplification (Biddle et al. 

2008), are needed to characterize the unique microbial communities in oligotrophic marine deep sediments.   

SPG12 represents an oligotrophic, oxic/suboxic sediment environment that has so far received 

little attention as a distinct microbial habitat.  Indeed, while the extended oxic and suboxic zones of SPG12 

differentiate it geochemically from the anoxic conditions that generally characterize organic-rich sediments, 

there exist oxic/suboxic zones in organic rich sediments, albeit highly compressed.  It remains to be seen 

whether the extended oligotrophic oxic/suboxic zones are microbiologically analogous to the compressed 

high-energy electron acceptor zones of organic rich sediments, which can be a key control on carbon burial 

efficiency (Hartnett et al. 1998).   

 

Methods. 

 Site description and sample collection.   

Samples were obtained during the Knox02-RR cruise in January 2007 from site SPG12, located in the 

margin of the South Pacific Gyre, 45 7.855 S, 163 11.051 W, at a water depth of 5306m, using a ~10 m 

gravity coring device.   Total core recovery was 401 cm for core 1 (TG1) and 498 cm for core 4 (TG4).  

Trigger cores were split into approximately 1m-long sections, which were then further sectioned into ~30 

cm rounds.  Cores were sampled by pushing autoclaved cut-off 60 mL syringes into the core cross section, 

avoiding an approximately 1-2 cm margin inside of the core barrel edge, and then extruding sediment 1 cm 
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at a time while slicing off subsamples using a flame-sterilized spatula.  Subsamples were frozen at -80 until 

analysis.   

 Geochemical and sedimentation data. 

 The sedimentation rate, calculated as a function of the age of the underlying crust and the 

thickness of the sediment column, was estimated to be ~1.8 m/Myr for SPG12.  Cell counts and porewater 

chemistry measurements, including alkalinity, oxygen, DIN, and dissolved metals, were done as described 

elsewhere (D’Hondt et al., 2009).   

 Nucleic acid extraction, amplification and sequencing. 

 Genomic DNA for SPG12 samples was extracted from samples collected from 60-70 centimeters 

below the sediment surface (cmbsf), 153-163 cmbsf, 213-223 cmbsf, 343-353 cmbsf from core 1, and 401-

411 cmbsf and 461-471 cmbsf from core 4, using a standard phenol-chloroform extraction protocol (Zhou 

et al. 1996) with some modifications.  Blank extractions were also performed for all steps.  To begin, 7-8 g 

of sediment was slurried in 7.5 mL of extraction buffer (100 mM phosphate, 250 mM sodium acetate, 50 

mM EDTA, 50 mM NaCl, pH 8), and then added to pre-baked bead-beating canisters containing  zirconium 

beads with a sediment-to-beads mass ratio of ~0.6-0.7.  Beads used for all SPG12 extractions were a 60/40 

mix of 0.1 mm and 0.2 mm low-protein-binding zirconium silicate beads (Shi 2005) (OPS Diagnostics).  

Approximately 30 µg of a carrier DNA, polydeoxyinosine-polydeoxicytosine (poly[dIdC]) (Barton et al. 

2006), was then added.  No carrier DNA was added to the SPG12 60-70 cmbsf sample, as higher cell 

densities nearer the sediment surface reduced the need for a carrier DNA to act as a blocking agent and to 

soak up nucleases to protect sample DNA.   

      Next, 15 mL of pH-8 buffered phenol and 875 µL of 20% sodium dodecyl sulfate was added, and the 

samples were subjected to bead-beating in a Braun MSK Cell Homogenizer for 20 s at high speed, 

followed by centrifugation for 10 minutes at 3500 times gravity (xg).  The remainder of the extraction 

protocol followed a standard phenol-chloroform extraction and cleanup protocol (Zhou et al. 1996), with 

the exception that the sediment pellet was reextracted with a second volume of extraction buffer with no 

SDS added, and this second aqueous phase was processed through the same organic phases as the first, thus 

re-extracting the organic phases and reducing DNA loss.  The crude DNA extract was precipitated 
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overnight at -20° C, after the addition of, in order, 2.5 ul/mL of UVC-irradiated GenElute linear 

polyacrylamide coprecipitant (LPA) (Sigma) to maximize precipitation of dilute nucleic acids, 0.5 volume 

of 7.5 M ammonium acetate (NH4CH3COO), and 1 volume of isopropanol.  The precipitation was carried 

out at -20 °C overnight.  Further purification of crude DNA extract was done by processing extract through 

a MoBio PowerSoil kit as per manufacturer’s instructions, with the exception that Solution C1, used in the 

cell-disruption step, was omitted.   

 The primers A8f/A1492r and B8f/B1492r (Teske et al. 2002) were used to amplify an 

approximately 1500-base pair (bp) fragment of the 16S gene of Archaea and Bacteria, respectively, for both 

sample and blank extractions.  Sample PCRs were carried out in triplicate and then combined to minimize 

“jackpot” amplification bias and to maximize yield.  Each 25-µL PCR reaction contained 1 µL (SPG12 60-

70 cmbsf, SPG12 343-353 cmbsf), 5 µL (SPG12 213-223 cmbsf, SPG12 401-411 cmbsf) or 15 µL (SPG12 

461-471 cmbsf)  of DNA template, 2.0 µL of dNTP solution (2.5 mM each dNTP), 0.250 µL (1.25 units) 

Takara Bio Inc. SpeedSTAR hot-start Taq  enzyme, 2.5 uL of Takara Fast Buffer I (30mM Mg2+), 1 µL of 

100 mg/mL bovine serum albumin (BSA), and 1.5 uL each of 10 mM forward and reverse primers.  The 

conditions for PCR were as follows: denaturation at 94 °C, followed by 35 amplification cycles, each 

consisting of 5 s denaturation at 94 °C, 15 s at the annealing temperature, and 20 s of elongation at 72 °C, 

followed by one 10-minute elongation cycle at 72 °C.  Triplicate PCR reactions were then combined, target 

bands extracted and purified from a 2.0% low-melting-point (LMP) agarose (Promega) gel using SYBR 

Gold and the Invitrogen S.N.A.P. Miniprep kit, following the manufacturer’s instructions.  A gel fragment 

at approximately 1500 bp was also extracted and purified for the PCR and extraction negative controls, 

whether or not a band was present.  All purified PCR products were further concentrated by precipitation 

with 0.5 µL of GenElute linear polyacrylamide (LPA) (Sigma).  The pellets were then dried, and 

resuspended in 4-20 uL of PCR H2O.   

 All SPG sequences, as well as closest GenBank relatives identified via BLAST searches, were 

aligned in ARB (Ludwig et al. 2004) with final adjustments made by eye.  Initial NJ trees were made in 

ARB, containing the GenBank and NCBI sequences that would be included in the final phylogenies.  These 

datasets were then checked for chimeric sequences using the GreenGenes pipeline, using a window size of 

200 bp, a “similarity to core set threshold” set to 99%, and the divergence-ratio set to 1.10, the last 
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indicating that a sequence will be identified as a chimera if fragments derived from it have ‘parent’ 

sequences in the database that are more than 10% divergent from each other (Huber et al., 2004).  MG-I 

Crenarchaeota sequences were additionally submitted to three rounds of a more stringent chimera-check, 

with the same settings as above but a divergence ratio of 1.02.   

 Phylogenetic analysis was conducted separately for the MG-I Crenarchaeota, other Crenarchaeota, 

and Euryarchaeota sequences.  Bacteria phylogenies were estimated first in ensemble in ARB and then split 

into three datasets.  Operational taxonomic units (OTU) were defined using DOTUR (Schloss and 

Handelsman 2005), and a single representative sequence was then selected from each OTU to be included 

in phylogenies.  Final phylogenetic analysis used 99% identity OTUs for Archaea, while 97% OTUs were 

used for Bacteria. Modeltest 3.7 (Posada and Crandall 1998) was used to estimate the best model of 

sequence evolution according to the Akaike information criterion (AIC), and was always a general time-

reversible (GTR) model with a proportion of invariant sites and a gamma distribution of evolutionary rates 

(GTR+I+G).  For the non-MGI crenarchaeotes and the euryarchaeotes, the maximum likelihood tree was 

then estimated using a GTR+I+G model of sequence evolution in TreeFinder version October 2008 (Jobb et 

al. 2004), which automatically calculates gamma distribution and other parameters.  For these two trees, 

ML bootstrap support was estimated using 1000 replicates, and values above 50% were inscribed in the ML 

phylogeny.  The Bacterial phylogenies were estimated using the neighbor-joining algorithm (Saitou and Nei 

1987), a maximum-likelihood-estimated model of evolution and a gamma-corrected rate distribution, in 

MEGA 4.0 (Kumar et al. 2008).  Branch support estimated using a 2000-replicate interior branch (IB) test 

(Nei and Kumar 2000), which uses a hypothesis-testing approach to determine the probability that a 

particular interior branch has a length greater than 0, i.e., that the node in question should not be collapsed 

into a polytomy.  Values greater than 95% should be considered strong support for a particular node (Nei 

and Kumar 2000).   

Treeclimber (Schloss and Handelsman 2004) was used to test the hypothesis that the overall 

structure of two communities is statistically the same.  P values indicate the probability that a similar 

association between phylogeny and sample origin would occur by chance (Schloss and Handelsman 2006).  

DOTUR was used to calculate rarefaction curves, while  SONS (Schloss and Handelsman 2006) was used 

to estimate the Chao1 (Chao 1984) species diversity of each depth, as well as cross-comparisons of 
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community structure using abundance-based Jaccard (Smith et al. 1996, Yue et al. 2001) and Theta (Yue 

and Clayton 2005) diversity indices.  Both individual community Chao1 estimates and estimates of the 

Chao1 diversity shared between two communities (shared Chao1) were calculated.  The abundance-based 

Jaccard index measures the intersection of the combined assemblage of phylotypes, and can be considered 

the probability that given a phylotype present in one assemblage, it is present in both assemblages (Schloss 

and Handelsman 2006).  By contrast, ThetaYC corrects for the differences in relative abundance of 

phylotypes in each assemblage, taking into account both the incidence of shared phylotypes and the 

similarity of their relative abundances in each assemblage.  Thus, it can be considered a percentile measure 

of the similarity of community structures.  

 

 
 
 



 

 

 

Chapter 3 

Abyssal sediment microbial communities: what lives in the other 90% of the seafloor? 

 

Introduction 

 Marine sedimentary microbial communities are key mediators of global biogeochemical cycles 

(e.g., Wellsbury et al.2002, D’Hondt et al. 2002, 2004).  The Domain Archaea accounts for a large portion, 

perhaps the majority, of deep subsurface prokaryotic cells and biomass (Biddle et al. 2006, Lipp et al. 

2008), which in turn constitutes 1/10th to 1/3rd of global biomass (Parkes et al. 1994, Whitman et al. 1998).  

The majority of studies thus far have focused on relatively organic-rich deep subsurface sediments (e.g., 

Parkes et al. 1994, Wellsbury et al. 2002, Reed et al. 2002, D’Hondt et al. 2004, Parkes et al.2005, Sørensen 

and Teske 2006, Biddle et al. 2006, Inagaki et al. 2006, Kendall et al. 2007, Heijs et al. 2008).  However, 

abyssal sediments >2000m water depth cover a much larger extent of the ocean floor (~89%; Dunne et al. 

2007) and, in contrast to margin or coastal sediments, are generally oligotrophic, with very low organic 

carbon content (<1%) and slow rates of deposition (Seiter et al. 2004, Dunne et al. 2007).  Electron 

acceptors such as oxygen or nitrate penetrate these oligotrophic sediments on a scale of meters (D’Hondt et 

al. 2004) or tens of meters (Gieskes and Boulègue 1986, D’Hondt et al. 2009), in contrast to organic-rich 

continental margin or shelf sediments where these strong electron acceptors are used up within centimeters.  

This expansion of the oxic/suboxic zone in oligotrophic sediments is a function of the slow rates of carbon 

deposition.  The combination of higher-energy electron-acceptor type and slower flux of electron donor 

substrates likely imposes distinct constraints on life in oligotrophic marine sediments, which cover the 

majority of the surface of Earth.    

 Several phylum-level uncultured archaeal lineages have been identified as typical, in some cases 

possibly endemic, deep-subsurface sediment-associated groups (Inagaki et al. 2003, 2006; Parkes et al. 

2005; Biddle et al. 2006, 2008; Teske and Sørensen 2006, 2008; Fry et al. 2008).  These include the Marine 

Benthic Group B (MBG-B, Vetriani et al. 1999), a deeply-branching phylum-level lineage; Miscellaneous 
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Crenarchaeotal Group (MCG, Inagaki et al. 2003), a diverse crenarcheotal lineage without close affiliation 

to other Crenarchaeota; South African Gold Mine Euryarchaeotal Group (SAGMEG, Takai et al. 2001a); 

and Marine Benthic Group D (MBG-D, Vetriani et al. 1999), a euryarchaeotal group affiliated with the 

Thermoplasmatales.  All of these are approximately phylum-level in divergence, with the exception of the 

MBG-D, which groups along with the MG-II (DeLong et al. 1992) and MG-III (Furhman and Davis 1997) 

in a well-supported phylum-level clade also containing the Thermoplasmatales (e.g., Durbin 2009).  

However, our current datasets on archaeal community composition in deep marine sediments are biased 

towards organic-rich continental margin sediments (Teske and Sørensen 2008).  Relatively few studies have 

surveyed the archaeal diversity of abyssal or ocean gyre sediments to date (a more or less comprehensive 

list includes Vetriani et al. 1999, Inagaki et al. 2001, Sørensen et al. 2004, Wang et al. 2004, Nercessian et 

al. 2005, Wang et al. 2005, Xu et al. 2005, Gillan and Danis 2007, Li et al. 2008, Tao et al. 2008), with even 

fewer examining the oligotrophic deep subsurface; thus,  the available database for archaeal communities in 

oligotrophic marine subsurface sediments has not yet reached the same coverage as eutrophic sediments.   

Nonetheless, initial datasets from the South Pacific Subtropical Gyre (Durbin, 2009) and a few other 

datasets in the literature point to profoundly different archaeal communities, with little or no overlap at the 

phylum and subphylum level.   

 The highly divergent geochemical setting of oligotrophic compared to eutrophic sediments, with a 

large expanse of high-energy electron acceptor zones, additional possible metal-cycling reactions (see 

Durbin 2009 for discussion), and slow rates of input of recalcitrant organic carbon (e.g., Wakeham et al. 

1997, Hedges et al. 2001), also presents an opportunity to investigate the association of diversity and 

function in marine sedimentary Archaea.  In particular, the redox metabolisms pursued by heterotrophic or 

chemotrophic organisms in oligotrophic sediments are expected to be different.  Since the most-energetic 

available electron acceptor (MEEA) defines the maximum Gibbs free energy available from oxidizing a 

given substrate, lineages that specialize in the MEEA will have more energy to devote to growth and 

reproduction, and are expected to predominate over competing organisms that specialize in less-energetic 

electron-accepting processes.  Thus, the appearance of certain phylogenetic groups in sediments of a 

particular redox state may inform on how subsurface archaeal lineages assort according to metabolism.   

 To approach questions regarding the nature and function of archaeal diversity in the marine 
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subsurface, the current study examines the available molecular and geochemical data from marine 

sediments of a range of trophic states.  Based on research to date, the expectation would be that the archaeal 

phylum- or order-level lineages identified as dominant subsurface lineages in margin sediments (Teske and 

Sørensen 2008) will also dominate in abyssal, oligotrophic sediments, albeit performing different 

metabolisms. 

Sediment sampling depths and degree of nutrient limitation vary among oligotrophic sediment 

studies, while dissolved constituent data is not measured in some cases.  Several sites that might be 

characterized as oligotrophic also appear to have hydrothermal characteristics (e.g., Inagaki et al. 2001, 

Nercessian et al. 2005, Li et al. 2008), lessening their utility in defining the oligotrophic sediment habitat.  

Additionally, oligotrophic sediments often share oxygen- or nitrate-respiring activity with the overlying 

water column, blurring the distinction between oligotrophic sediments and the water column as 

independent microbial habitats.  Several studies of oligotrophic abyssal sediments (Wang et al. 2004, Xu et 

al. 2005, Gillan and Danis 2007) sampled only 3-12 cm below the seafloor (cmbsf) of the sediment column 

and recovered the same archaeal phylum, the Marine Group I Crenarchaeota, that is presumed dominant in 

the overlying water column (e.g. Karner et al. 2001, Church et al. 2003, Agogué et al. 2008).  Because of 

the high potential for cross-contamination and the phylogenetic similarity between oxic sediments and the 

overlying water column, to confidently label MG-I clones collected from oxic sediments as indigenous 

requires stringent contamination controls and/or investigations of the diversity of contamination sources 

(e.g., Durbin, 2009).  Due to these difficulties, MG-I sequences were excluded from the current analysis.   

Of the remaining publications, studies of sedimentary archaeal communities from the central 

South China Sea (Tao et al. 2008), the eastern margin of the South Pacific Gyre (Sørensen et al. 2004), the 

equatorial upwelling zone west of the Galapagos (Teske and Sørensen 2008, Teske et al. 2005), the Mid-

Atlantic Ridge (Nercessian et al. 2005), and the East Pacific Rise (Li et al. 2008) were included.  To 

provide a eutrophic sediment frame of reference, ODP Leg 201 sites 1227 and 1228 from beneath the 

highly productive Peruvian upwelling zone and the methane-clathrate-bearing Peru Trench site 1230 

(Biddle et al. 2006, Sørensen and Teske 2006) were considered.  In addition, methane seep sediments from 

the Mediterranean provide an example of a pelagic, deep-water, yet organic-rich shallow sediment 

environment (Heijs et al. 2008).   
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1.  The sedimentary trophic state spectrum 

 In the following section, we summarize some of the most informative biogeochemical and 

microbiological parameters for oligotrophic marine subsurface sediments.  

 Sedimentation rates. Sedimentation rates can approximate sediment trophic states, albeit with 

some exceptions for high-carbonate or turbidite-associated sedimentation and changing oceanographic 

conditions in the surface ocean, which can all enrich or impoverish deep marine sediments relative to the 

expected trophic state based on surface ocean productivity, or if a significant fraction of sedimentation is 

inorganic carbonate or silicate.  Among ODP Leg 201 sites, Site 1231 is decidedly the slowest-

accumulating site, followed by 1225, while 1230 followed by 1229 were calculated to have the highest 

sedimentation rates (D’Hondt et al. 2003; Table 6).   There is overlap in the sedimentation rates for sites 

1225, 1226, 1227 and 1228, although their trophic states differ. Sedimentation rates at SPG Sites 11 and 12, 

at 0.9m/My and 1.8m/My, respectively, are lower than those at site 1231 by a factor of 4-10 for SPG11 and 

2-5 for SPG12 (Table 7).  The sedimentation rate at SPG11 is 200-fold slower than that at Site 1230, 

dramatically illustrating the different constraints shaping eutrophic margin environments and 

ultraoligotrophic gyre sediments.   

Porewater DIC and organic carbon availability. Concentrations of porewater DIC above or 

below the mean seawater concentration are an indicator of the magnitude and direction of net metabolism 

(D’Hondt et al. 2003).  Net heterotrophy due to remineralization of organic matter to CO2 increases DIC 

concentrations, at least at the more oligotrophic end of the scale.  In highly organic-rich sediments, a large 

fraction of organic carbon may be remineralized not to CO2 but to acetate and/or methane.  Comparisons of 

maximum DIC for Leg 201 sites suggest a hierarchy of trophic states, from highly eutrophic Site 1230, to 

moderately eutrophic sites 1227, 1228, and 1229, to mesotrophic Site 1226, to oligotrophic Sites 1231 and 

1225 (D’Hondt et al. 2003; Table 6).  Alkalinity and not DIC was measured at SPG sites 11 and 12, but 

since DIC composes ~96% of total alkalinity at seawater pH, these values are included for comparison in 

milliequivalents/liter (meq/L; Table 6; D’Hondt et al. 2009).  By this measure, SPG sites 11 and 12 are 

more oligotrophic than sites 1231 and 1225, even taking into account the ~4% discrepancy between total 

alkalinity and DIC.  Alkalinity remains at seawater values throughout the sediment column at SPG11, while 
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SPG12 displays a depthwise increase in DIC comparable in magnitude and rate of change to the rate of 

oxygen depletion.   

Organic carbon availability, like DIC, is also not a direct measure of sediment trophic state, even 

though it represents the available pool of reduced substrates.  Substrate lability and organic carbon 

residence time can vary between sediments with similar organic carbon contents, thus affecting the trophic 

state of the sediment without necessarily changing the sediment organic-carbon percent weight.  This leads 

to some degree of overlap in organic carbon content between sites of possibly different trophic state.  

Nevertheless, organic carbon percent weight can be taken as a rough indicator of trophic state.  Among the 

nutrient-limited sites, organic carbon content values were available only for SPG11at the time of writing. 

They ranged from 0.59% to 0.45% over the upper 9 cmbsf, with little change after the upper 2 cmbsf (Table 

6).  Abyssal sediments, which include the remaining oligotrophic sites considered here, were modeled to 

have 1% or less organic carbon by weight (Seiter et al. 2004).  All eutrophic sites varied between  ~1-10%, 

with  ~4% most typical for the majority of the sediment column (Table 6), and typically decreasing with 

depth.   

Cell densities.  

Cell densities at the SPG sites are the lowest yet recorded for any equivalent depth horizon 

(D’Hondt et al., 2009).  For all sites, cell counts declined with depth, with the lowest value typically being 

the deepest.   Cell counts ranged from 103.9 to 106.6 per cm3 over the upper 2.8 m at SPG11, and 105.4 to 

106.3 per cm3 over the upper ~5 m at SPG12, again setting SPG11 apart (Table 6).  Sites SPG12, 1231, and 

1225 had similar cell counts, over a much broader depth range,  with a lowest value of ~105 for both ODP 

sites and a deepest measurement of 81.6 mbsf for 1231 and 320 mbsf for 1225.  Thus, cell counts were 

lower for the oligotrophic ODP sites than SPG12, but they were higher at the equivalent depth horizon.  

Cell counts tended to range from 106-1010 for the ODP mesotrophic and eutrophic sites over a similar depth 

range as 1231 and 1225, with no trend in lowest recorded value between the meso- and eutrophic sites.  

Oxygen, nitrate and sulfate gradients.   Most-energetic available terminal electron acceptor is a 

key defining parameter of sediment trophic state, since it determines the maximum energy yield per mole 

of substrate respired.  Typically, electron acceptors either diffuse in from overlying seawater (oxygen, 
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nitrate, sulfate), or are deposited via sedimentation (metal oxides; also buried porewater dissolved 

constituents such as oxygen, nitrate and sulfate).  As such, the pattern of electron acceptor depletion 

generally occurs depthwise in order of declining energy yield, and at a rate proportional to the rate of 

organic substrate delivery (D’Hondt et al. 2002, 2004).  Thus, the most nutrient-limited sites are expected 

to have the broadest availability of the highest-energy electron acceptors.   At site SPG12, oxygen declines 

exponentially from 114.76 µM at 5 cmbsf to ~2 µM at 179 cmbsf, while nitrate declines from 43.8 µM at 

10-15 cmbsf to 0 µM at 253-258 cmbsf, suggesting drawdown of oxygen followed by depletion of nitrate 

(Table 7, Figure 5).  Nitrate drawdown is not evident in geochemical profiles for the ultraoligotrophic 

SPG11, and in fact, nitrate may be produced in sediments there (Durbin et al. 2009), while oxygen remains 

at ~160 µM at 280 cmbsf.  This likely indicates oxygen is not depleted throughout the sediment column, 

unless there are deep biotic or abiotic sediment oxygen sinks.  Although oxygen data are not available for 

ODP sites, only sites 1225 and 1231 have nitrate depletion on the scale of centimeters: 10-40 cmbsf for 

1231, and ~150 cmbsf for site 1225, a site that includes a significant amount of carbonate bulk not found at 

site 1231; oxygen is expected to be depleted at shallower depths than nitrate.  

 By contrast, most of the Mediterranean eutrophic deep-sea methane seep sediments had no 

measurable oxygen penetration, except that minute concentrations were available above 6 cmbsf at the 

Kazan mud volcano (Table 6).  Likewise, nitrate was not measurable in two of the three mud volcano sites, 

while nitrate depletion occurred between 6 and 22 cmbsf for the Kazan mud volcano (Table 6).  It is 

expected that the mesotrophic and eutrophic ODP sites have similar oxygen and nitrate penetration depths 

as the methane seep sites (D’Hondt et al. 2002, 2004).  Finally, sulfate was not measurably drawn down at 

either SPG12 site, nor at the oligotrophic ODP sites 1231 and 1225 (Table 6).  Mesotrophic 1226 displayed 

sulfate drawdown but not depletion over the entire sampled sediment column, along with apparent metal 

redox cycling to at least ~70 mbsf and methanogenesis throughout nearly the entire sediment column.  All 

Peru Margin and Peru Trench sites (1227, 1228, 1229, 1230) displayed sulfate depletion within meters to 

tens of meters of a diffusive source (i.e., water column or basement basalt; D’Hondt et al. 2004).   

 Dissolved constituent data was not collected for the South China Sea, Mid-Atlantic Ridge, or East 

Pacific Rise sites.  However, solid-phase chemical data is available for the hydrothermal-precipitate 

sediments at the Mid Atlantic Ridge (Nercessian et al. 2005).  Notably, solid-phase reduced iron and 
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manganese, in the form of mangosanite and siderite, increase downcore over the upper ~40 cmbsf.  This 

suggests reduced metals are oxidized towards the sediment surface (e.g. Severmann et al. 2006), which 

would require a high-energy electron donor such as nitrate or oxygen and indicating a relatively deep 

penetration of these high-energy electron donors.   

 The sites reviewed above appear to fall into several natural groups.  In terms of electron acceptor 

gradients, the tens-of-centimeters to meters scales of oxygen and nitrate depletion, coupled with a lack of 

any sulfate drawdown, unite the oligotrophic sites SPG12, 1231, and 1225, with oligotrophicity decreasing 

in that order; the lack of oxygen depletion at SPG11 sets this ultraoligotrophic site apart.  Mesotrophic site 

1226 displayed sulfate drawdown but not depletion over an ~400 m sediment column, while eutrophic sites 

have oxygen and nitrate penetration depths of centimeters to millimeters, and sulfate depletion depths of 

tens of meters or less.  DIC tracks sediment trophic state closely, as concentrations above background 

represent heterotrophic activity (D’Hondt et al. 2003); maximum DIC values range from seawater 

concentrations for ultraoligotrophic, to >10 mM for oligotrophic sites, and significantly more for eutrophic 

sites.  Other parameters are often somewhat noisier and reflect a less direct relationship to sediment trophic 

state.   

 

2.  Sampling methods. 

 Archaeal 16S rRNA gene sequences from SPG12 were extracted and amplified from sediments 

subsampled from gravity core sections using a sterilized cut-off syringe, at a sampling resolution of 10 cm.  

Archaeal 16S sequences for the Peru Margin ODP sites were derived from the upper sulfate-methane 

transition zone (SMTZ) at site 1227 (37.8 mbsf, Biddle et al. 2006; 35.35, 34.25, 37.75 and 40.35 mbsf, 

Sørensen and Teske 2006), as well as intervals above and below the SMTZ (6.55mbsf, 7.35 mbsf, 21.35 

mbsf, 45.35 mbsf, and 49.85 mbsf; Sørensen and Teske 2006) (Table 7).  Sequences from sites 1229 and 

1230 were derived from the upper and lower SMTZs at 29.4 and 86.8 mbsf respectively for site 1229, and 

from the only SMTZ at site 1230, at 11.0 mbsf (Biddle et al. 2006).  Finally, 1226 was sampled from 

approximately 1.3, 7.2, 26.2, and 45.2 mbsf, all intervals where methane and sulfate profiles suggest both 

methanogenesis and sulfate reduction occurs, while dissolved manganese is present until ~100 mbsf.  ODP  
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sediments were collected and subsampled while avoiding edge contamination and using sterile methods 

(Biddle et al. 2006, Lever et al. 2006).   

 Archaeal 16S rRNA gene sequences for the Mediterranean cold seeps were derived from the upper 

20-30 cm sediments, which were subsampled from a box core using aluminum cores and divided into 2 or 3 

subsections before freezing (Heijs et al. 2007).  Sediments for the Rainbow Vent Field, Mid-Atlantic Ridge 

site were cored via submersible-operated push core, and then extruded and subsectioned into three parts; 

archaeal 16S gene sequences were amplified from the middle, 7.5-15 cmbsf interval, in a carbonate 

(siderite and mangosanite)-rich zone (Nercessian et al. 2005).  Sequences from the South China Sea were 

amplified from an extraction of a 10-cm subsample of a box-core (Tao et al. 2008), while sediments from 

the East Pacific Rise were initially sampled via box-core and subsectioned into 5-10cmbsf, 15-20 cmbsf, 

25-30 cmbsf, and 35-40 cmbsf intervals (Li et al. 2008). 

 

 Diversity survey methods. 

While all studies used slightly different nucleic acid extraction protocols (Table 8), most involved 

chemical cell-membrane disruption with sodium dodecyl sulfate (SDS), mechanical membrane disruption 

with bead beating, and phenol-chloroform extraction (e.g., Zhou et al. 1996).  The sites with the largest 

sample size and most extensive geochemical data, i.e. SPG12, 1231, the Peru Margin, and the 

Mediterranean cold seeps, all used some variation of a SDS/bead beating/phenol-chloroform based 

extraction protocol, although some sequences from 1231 were only amplified using an enzymatic-

lysis+SDS based extraction (Table 7).  Primers used for 16S rRNA gene amplification (Table 7) differed 

between the oligotrophic abyssal-sediment and the organic-rich endmember environments of the Peru 

Margin and Mediterranean cold seeps, although some of the cold seep clone libraries shared a reverse 

primer with the clone libraries from the mid-ocean ridge and South China Sea sites, and 8f (Teske et al. 

2002) was the forward primer for most studies.  Finally, although amplicon size has been shown to 

influence clone library composition, all amplicons considered here (Table 7) fell in a size range within 

which amplicon size variation minimally impacts clone library composition (Huber et al. 2009). 

 

3.  Deep phylogeny of oligotrophic Archaea. 
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 Previous efforts to reconstruct the phylogeny of lineages abundant in oligotrophic sediments have 

suffered from several difficulties.  One, the problem of long-branch attraction: the extremely deep or long 

branches of some oligotrophic sediment lineages are difficult to place in relation to recognized uncultured 

lineages from organic-rich sediments.  This leads to long-branch attraction (LBA) artifacts, wherein even 

well-supported, recognized lineages that have long branches (e.g., the DSEG-#/DHVE-# lineages) can 

cause incorrect placement of other long branches with a less-clear branch point.  Hyperthemophilic lineages 

can also attract each other, and are themselves attracted to the base of the phylogenetic tree, due to their 

convergence to high G+C content of rRNA (Boussau and Gouy 2006, Brochier-Armanet et al. 2008).  

Secondly, the commonly used 16S rRNA gene is simply not long enough to reliably identify the branching 

order of deep lineages, a problem exacerbated when short, partial sequences are used in phylogenetic 

analysis (e.g., Takai et al. 2001a, Takai et al. 2001b).  Many of the deeply branching Archaeal groups have 

multiple large insertions in the 16S rRNA gene, which sometimes causes conserved regions to be 

misaligned in alignments provided in the SILVA database reference tree.  Finally, the definition of a given 

clade may vary between studies and variable levels of statistical support are provided, a problem often 

accompanied by the proliferation of different names for the same group, as exemplified by the DHVEG-II 

lineages originally identified by Takai and Horikoshi (1999) (Figure 11).  As an attempt to address some of 

these difficulties, we constructed phylogenies of the Euryarchaeota (Figure 11) and Crenarchaeota (Figure 

12), using a long alignment guided by conserved sequence motifs and secondary structure, and  a 60% base 

consensus filter so that only relatively conserved sites are considered in analysis. 

 

4.  Archaeal occurrence trends across sites.  

Relative abundances of deeply-branching Archaeal lineages in 16S rRNA gene clone libraries 

from oligotrophic and organic-rich sites are included in Figure 13.  All clades found at the organic-rich 

endmember Peru Margin and Mediterranean mud volcano sites are presented in shades of red or orange in 

Figure 13, with the remainder colored blue.   

 The Peru Margin (ODP sites 1227-1229) and Peru Trench (ODP site 1230), and the Mediterranean 

methane seep sites represent the eutrophic endmember sites for this study (Table 6), with roughly 

overlapping geochemical parameters, albeit with a more active methane cycle at the methane seep site.  A  
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Figure 11.  Neighbor-joining (NJ) 16S rRNA gene phylogeny of Euryarchaeota, using a 972-bp alignment 
originally derived from a 1247-bp alignment that was subjected to a 60% consensus base filter in ARB, so 
that only sites with at least a 60% conserved base were analyzed phylogenetically.  A maximum-composite 
likelihood distance model with gamma rate correction was used for the NJ analysis, with 1000 iterations of 
the interior branch algorithm as clade support values (Sitnikova et al. 1995), in MEGA4 (Tamura et al. 
2007).  This alignment was also subject to ML analysis using TreeFinder (Jobb et al. 2004), using a general 
time-reversible substitution model with a proportion of invariant sites and gamma-distributed site rates 
(GTR+I+G).  1000 iteration maximum-likelihood bootstrap values are the rightmost values above.  
Additionally, ML bootstrap support values from a phylogenetic analysis of 50+ concatenated genes per 
taxon are provided above, in italics, when the same monophyletic group is supported in both NJ and 
concatenated-gene ML phylogenies (Brochier-Armanet et al. 2008).   
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Figure 12.  Maximum-likelihood phylogeny of cultured and major uncultured Crenarchaeotal lineages 
found in oligotrophic sediments, using a GTR+I+G substitution model in TreeFinder (Jobb et al. 2004).  
Support values are based on 1000 maximum-likelihood bootstrap iterations.  Alignment is originally 1247-
bp long, and was trimmed to 968 sites by imposing a 60% consensus-base filter, as in Figure 11.  Hot Water 
Crenarchaeotal Group I, II and III (Nunoura et al. 2005) are additional distinct uncultured phylogroups 
within the crown radiation of Crenarchaeota.  MBG- A4 and pISA7 clade are novel lineages; see text for 
other references.  
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Figure 13.  Percent-abundance of archaeal phyla, excluding MG-I, in clone libraries from all depths at 
oligotrophic, mesotrophic, and eutrophic sites described in Table 6 (A), plus additional putatively 
oligotrophic sites with little or no available geochemical information (B).  The sites included are 
oligotrophic sites SPG12 (Durbin, 2009), ODP Site 1231 (Sørensen et al. 2004), 1225 (Teske and Sørensen 
2008); mesotrophic site 1226 (Klingensmith et al., unpublished); eutrophic sites ODP Leg 201 Peru Margin 
sites (Biddle et al. 2006, Sørensen and Teske 2006), Mediterranean cold seeps (Heijs et al. 2008), and 
putatively oligotrophic sites Rainbow Vent Field (Mid-Atlantic Ridge; Nercessian et al. 2005), East Pacific 
Rise at 13° N (Li et al. 2008), and Xishu Trough, South China Sea (Tao et al. 2008).  All clades found at the 
organic-rich endmember Peru Margin and Mediterranean mud volcano sites were presented in red or 
orange colors, with clades not found at these sites colored blue.  (A) represents all sites with available 
geochemical data indicative of sedimentary trophic state, while (B) consists of sites without such data, but 
which underlie pelagic systems with low surface productivity; additionally, at least one site, the Rainbow 
Vent Field, Mid Atlantic Ridge, shows hydrothermal influences in the form of vent fluid precipitates.   
 

“big four” collection of uncultured archaeal lineages predominate in organic-rich sediment clone libraries 

(e.g., Inagaki et al. 2006, Biddle et al. 2006, Fry et al. 2008) and TAG sequences (Biddle et al. 2008): MCG, 

MBG-B, SAGMEG, and MBG-D.  MCG is the dominant group at the Peru Margin sites, accounting for 

353/572 (62%) clones, while DSAG/MBG-B (Inagaki et al. 2003, Vetriani et al. 1999), which occurs in 

high abundance in clone libraries from the SMTZs (Sørensen and Teske 2006), formed a second dominant 

archaeal clade, at 174/572 (30%) of sequenced clones.  Also present were a small number of SAGMEG 

clones (37/572, 6%) (Takai et al. 2001a), as well as MBG-D (3/572) (Vetriani et al. 1999), and TMEG 

(4/572) (Takai et al. 2001a).  Dominant archaeal phyla recovered from the Mediterranean mud volcano sites 

included ANME-2 (95/237, 40%) (Orphan et al. 2002), MBG-D (62/237, 26%) (Vetriani et al. 1999), 

MBG-B/DSAG (36/237, 15%) (Vetriani et al. 1999, Inagaki et al. 2003), and MCG (19/237, 8%) (Takai et 

al. 2001a, Inagaki et al. 2003) (Figure 11).  By contrast, no ANME 16S rRNA gene sequences were 

recovered from the Peru Margin SMTZ sites in Biddle et al. (2006) or Sørensen and Teske (2006), although 

a small proportion of ANME sequences were found in a later TAG sequencing effort (Biddle et al. 2008). 

 The most oligotrophic site featured in Table 7 is SPG11, where oxygen is present throughout the 

measured sediment column and DIC (alkalinity) does not vary from seawater values.  However, all archaeal 

sequences recovered for this site were MG-I, a group that is not considered in the current study due to the 

lack of appropriate comparisons with the requisite water column contamination controls.  Thus, for the 

current study, SPG12 represents the oligotrophic endmember site.  No MCG, DSAG, MBG-D, or ANME 

clones, and only a single SAGMEG clone, were recovered from SPG12; conversely, the clones abundant in 

the SPG12 library, including MG-V, the DSEG, and DSEG-4 phyla, and the MBG-A-related lineages, were 

not recovered from either of the organic rich environments (Figure 13).  The DHVEG-II lineages (DSEG, 
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DSEG-2, DSEG-3, DSEG-4, DHVE-5 and DHVE-8 ) are almost entirely absent from the eutrophic 

endmember sites, with two exceptions: DSEG-3 is a sparsely populated lineage uncommon in oligotrophic 

or eutrophic datasets but represented in eutrophic endmember clone libraries by a few clones; and  DSEG-

2, which is somewhat abundant in the SPG12 dataset and is also represented by a few clones from 

eutrophic endmember clone libraries, although a deep phylogenetic division separates it into two lineages, 

with only one containing clones from eutrophic endmember sites (Figure 11).  Geochemically, ODP sites 

1225 and 1231 are more similar to SPG12 than to the eutrophic endmember sites, but are nonetheless 

intermediate between the two trophic endmembers.  Likewise, they display an intermediate clone library 

composition, including a significant proportion of groups found at eutrophic sites as well as groups only 

found at oligotrophic sites.  1226, a mesotrophic site, displayed a small proportion of lineages not found in 

the organic-rich endmember sites, although a smaller proportion than the oligotrophic sites, which is in line 

with the trend of decreasing ‘blue’ groups with decreasing oligotrophicity.   

 Sampling depths varied between sites: SPG12 was not sampled deeper than 4 m; neither 1225 nor 

1231 were sampled with high resolution at the surface; and the sediment-water interface and most surficial 

sediments from the eutrophic sites were not sampled at all, hindering cross comparisons.  Presence or 

absence of phyla may simply reflect the lack of samples of equivalent geochemical strata at the different 

sites.  However, as defined in this paper, “oligotrophic sediments” are equated with oxic or suboxic 

conditions, while “eutrophic sediments” are equated with anoxic conditions, since those are the redox 

conditions of the sediment samples from each trophic state, and oxic/suboxic conditions or anoxic 

conditions characterize the bulk of the oligotrophic or eutrophic sediment column.  Additionally, we 

consider here as “organic-rich” associated phyla those groups that are found in any number at the organic-

rich sites.  This simplifies the dataset to phyla that are found in the well-sampled anoxic sediments, and 

phyla that are not.  Assuming that methodological and sampling biases mainly work to reduce the relative 

extent or diversity of a ‘difficult’ phylum but not eliminate it from clone libraries, this conservative 

approach avoids some of the pitfalls of comparing studies that used different experimental methods, and 

avoids making judgment calls over whether, for example, the low relative abundance of a given phylum in 

a eutrophic-site clone library is due to sampling bias or accurately approximates in-situ abundance.  

 The initial expectation of this investigation was that the same archaeal phyla recovered in clone 
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libraries from the well-characterized organic-rich sites, such as the MBG-B/DSAG, MCG, and MBG-D, 

would also compose clone libraries from oligotrophic sites.  Clearly, this hypothesis is not supported by the 

data presented in Figure 13. Eutrophic-endmember archaeal phyla constituted a decreasing proportion of 

membership and abundance along an environmental gradient of indicators, such as maximum DIC 

(alkalinity), sedimentation rate, and organic carbon content, that indicate increasing nutrient limitation and 

increasing extent of oxic and suboxic strata (Figure 13, Table 5).  Thus, some dominant benthic archaeal 

groups, such as the DSAG and MCG, which so far have appeared to characterize the marine subsurface 

based on sampling in organic-rich sediments, may in fact not be universal.   

 

5.  Association of archaeal lineages with high-energy electron acceptors. 

 The proportion of archaeal 16S lineages that do not appear in the two eutrophic endmember clone 

libraries increases almost linearly with increasing oligotrophicity  (as revealed by maximum DIC values 

and other measures; Table 6).  There are three likely drivers of a change in community composition with 

change in trophic state:  

 (1) Oligotrophic sediments are primarily characterized by slow sedimentation rates, leading to a 

 low substrate flux for microbes and hence energy stress.  Microbes in oligotrophic sediments 

 might be adapted to a slow input of organic matter, which would lower the maximum Gibbs free 

 energy of reaction for a given redox process.   

 (2) Since slower substrate input flux leads to slower depletion of electron acceptors, higher energy 

 electron acceptors extend over a larger portion of the sediment column.  Thus, a second driver of 

 the observed pattern may be that subsurface Archaea specialize in the electron acceptor that 

 maximizes the energy yield for a given mole of substrate, leading to different lineages 

 predominating in oligotrophic sediments.   

 (3) Finally, substrate type might be expected to differ for sediments underlying a 3-5km water 

 column, as organic matter changes significantly in composition during sinking (Wakeham et al. 

 2004, Hedges et al. 2001), and is expected to become more refractory overall (Lee et al. 1997).  

 Microbes that can metabolize the large fraction of highly refractory substrates in oligotrophic 

 sediments where competition for electron donors is strong would have an advantage over microbes 
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 not able to use these substrates.    

These variables are collinear to some degree, and distinguishing the primary driver is not possible in the 

current analysis.  It also seems likely that some combination of these three factors determines community 

composition: while electron acceptor specialization may be a determinative factor for one group, another 

group may thrive due to the abundance of particular difficult substrate.   

 A key argument in favor of a higher-energy electron acceptor association for the ‘blue’ lineages 

(Figure 13) is that these lineages are completely absent from the eutrophic endmember clone libraries; 

high-energy electron acceptors are also absent from the depths sampled from eutrophic sites.  By contrast, 

difficult substrates that are hypothesized to be more abundant in oligotrophic sediments would still be 

expected to be present in eutrophic sediments, particularly in the deep subsurface where sediments may be 

millions of years old.  It could also be argued that the increasing abundance of ‘blue’ lineages with 

increasing oligotrophicity is consistent with adaptation to slow substrate fluxes.  However, electron-donor 

limitation affects the community as a whole, and so if this were the driver behind the appearance of 

oligotrophic lineages, one might expect them to account for a much larger proportion of the non-eutrophic 

sites.  A recent review examining similar questions in soil microbes focused mostly on the substrate side of 

metabolism (examining carbon remineralization rate, organic C % weight, silt+clay % weight, soil pH, 

mean annual temperature, and annual soil moisture deficit), and found that only carbon remineralization 

rate, an index of carbon availability to microbes, accounted for a significant proportion (25-36%) of the 

variance in abundance of three dominant groups (the oligotrophic Acidobacteria and the copiotrophic 

Betaproteobacteria and Bacteroidetes; Fierer et al. 2007).  However, the redox environment of soil can be 

highly heterogenous on a small scale (Conrad 1996), whereas the redox environment of marine sediments 

is highly zonated, and so redox specialization, instead of substrate flux specialization, may be more 

paramount in marine sediments.  The linear decrease in ‘blue’ lineages with decreasing oligotrophicity 

could thus be interpreted as due to the decreasing suboxic/oxic proportion of the sediment column as 

carbon flux increases.   

 Primer bias limits the robustness of these arguments.  For example, the relative proportions of 

oligotrophic groups in less oligotrophic sediments may be distorted in favor of eutrophic groups if these 

groups are less susceptible to primer bias, as has been suggested (Durbin 2009).  Similarly, more primer-
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friendly lineages may swamp ‘oligotrophic’ lineages in eutrophic sediments, preventing their detection, and 

a similar argument could be made for why a phase-shift to oligotrophic groups isn’t observed in non-

eutrophic sediments.  However, it is expected that primer bias might lower the overall relative abundance 

and diversity of deeply-branching oligotrophic associated lineages in clone libraries, and not eliminate 

them altogether; as long as the same general trend is preserved, this does not materially affect the 

interpretation of the data in the current study. 

 The lineages depicted in blue in Figure 13 are phylum or class-level lineages (Figure 11, Figure 

12) that are found only in oxic to suboxic oligotrophic sediments and not in eutrophic endmembers, despite 

extensive sampling.  Interestingly, these lineages are often associated with other oxic or suboxic 

environments, and have few or no close relatives found in purely anoxic environments.  This is illustrated 

in Figure 14, which shows the number of independent studies that have recovered a given lineage from a 

particular redox environment, for all relevant sequences in the SILVA SSU Ref v.95 database.  Studies of 

oxic or suboxic environments, including oxic/suboxic sediments or water column, and the typically 

suboxic/oxic environments of hydrothermal fluids and chimney surfaces, account for a majority or plurality 

of groups associated with ‘blue’ lineages (Figure 13), such as the pISA7 Crenarchaeotal and the DHVEG-II 

Euryarchaeotal lineages.  Although at their source hydrothermal fluids are often highly reduced and anoxic, 

they are principally oxic or suboxic when sampled in the thermally habitable region of a mixing gradient 

between an anoxic, hyperthermal source fluid and an oxic endmember (seawater, groundwater or 

atmosphere) (e.g., Amend and Shock 1998, Spear et al. 2005, Dias and Barriga 2006, Rogers and Amend 

2006; but see Kelley et al. 2001).  The second largest group of studies for these ‘blue’ lineages is most often 

studies of environments that have heterogeneous or uncertain redox states, such as soil (e.g., Conrad 1996), 

ground water (e.g., Jakobsen 2007), and hydrothermal sediments (including hydrothermal deposits and 

sediments bathed in hydrothermal fluid; Teske et al. 2002, Severmann et al. 2006, Nercessian et al. 2005, 

Dias and Barriga 2006), where ‘blue’ lineages are hypothesized here to mostly occupy high-energy acceptor 

niches. 

  Another large portion of studies for these lineages are studies of shallow, organic rich sediments.  

While typically these environments are thought of as anoxic, they can be distinguished from the purely 

anoxic environments such as eutrophic deep subsurface sediments or anoxic bioreactors because they often  
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Figure 14.  Habitat-lineage association by study for lineages rarely or not found in eutrophic sediments.  All 
sequences belonging to the relevant clades in SILVA SSU Ref V.95 were examined, with each instance of a 
clade being recovered by a unique study counting as a sample point, and sample points were categorized by 
habitat association.  Habitats were then categorized as being either oxic/suboxic, anoxic, or ambiguous if a 
redox status is uncertain or heterogeneous within a given habitat.  Note that hydrothermal fluids are 
generally sampled not at the ‘source,’ but somewhere along a mixing continuum with an aerobic 
endmember and so are assumed to be primarily suboxic or oxic.  Shallow organic sediments are primarily 
anoxic, although very thin surface layers or microenvironments may be oxic/suboxic.  Sample points with 
example sequence accession numbers are tabulated in Appendix F.   
 
 
have suboxic or oxic layers (e.g., Jørgensen 1977, Mäkelä and Tuominen 2003, Jørgensen et al. 2005, Glud 

2008, Ku et al. 2008), particularly for near-shore marine sediments where mineral input may introduce 

significant metal oxides (Thomas and Bendell-Young 1999, Poulton and Raiswell 2002).  In contrast, the 

typically eutrophic-associated MCG is recovered in a large proportion of studies of purely anoxic sites, 

such as the marine deep subsurface, anaerobic digestors, and freshwater bogs, and a lower proportion of 

suboxic or oxic sites.   They are hypothesized here to occupy less-energetic metabolic niches in habitats of 

heterogeneous or ambiguous redox state.   



80 
 

 These patterns may integrate over some inconsistencies, such as potential minority clades within 

lineages that engage in metabolisms that are non-typical for that lineage, and also reflect uncertainty in 

identifying the exact redox state of the environment from which the clone was recovered, such as the case 

of shallow organic-rich sediments; this is particularly true for unpublished datasets with only brief 

sequence-source descriptions.  Nevertheless, these results are again consistent with a largely suboxic/oxic 

metabolism for the oligotrophic-associated lineages, and suggest an avenue for future research may be 

verifying whether oligotrophic lineages in apparently anoxic environments are actually inhabiting 

suboxic/oxic microniches.   

  

6.  Problems for future research. 

  The biological meaning of different deeply-branching archaeal lineages predominating in 

oligotrophic and eutrophic sediments is unclear. Of course, the correlation between phylogenetic 

composition of clone libraries and sediment trophic state may change as more of the oligotrophic sediment 

column is sampled, particularly deep suboxic sediments, for example. However, if the correlation between 

deep archaeal phylogeny and electron-accepting environment is supported in further study, why is this the 

case? Why do deep phylogenetic divisions exist between archaeal clone libraries from subsurface 

sedimentary environments of different trophic state?  Finding that groups originally identified in 

oligotrophic sediments do in fact exist in eutrophic sediments, but only in suboxic or oxic microniches, 

would be consistent with the idea that metabolic specialization is the defining characteristic of these deep-

branching 16S lineages.  A glance at the phylogenetic trees (Figure 11, Figure 12) and the habitat-lineage 

associations (Figure 14) suggests this may be possible.  For example, some representatives of the DHVEG-

II groups have been recovered from shallow methanogenic sediments of Skan Bay, Alaska (the ‘SBAK’ 

clones; Kendall et al. 2007; Figure 11), sediments that are shallow enough and close enough to land that 

faunal bioturbation and terrigenous input of minerals may lead to a heterogeneous sediment environment 

containing oxic or suboxic microniches, as well as suboxic/oxic surficial microlayers.   

 The complement to this test is to examine at what hierarchical level phylogenetic lineages assort 

between different ‘versions’ of the same electron accepting environment, comparing, e.g., the spatially 

expanded suboxic/oxic strata of abyssal sediments and the suboxic/oxic strata perched on top of deep 
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anoxic sediments.  This would indicate whether factors other than electron acceptor, such as rate of 

substrate flux or substrate lability, can be linked with phylum-level divergences, or only with lower-order 

divergences.  For example, while electron-acceptor specialization may play a key role in the adaptive 

landscape of Archaea, other factors may play a role in niche differentiation in marine subsurface sediments: 

low substrate flux increase biosynthentic costs as a proportion of cellular metabolism in higher-free-energy 

electron-accepting environments, an effect exacerbated in oligotrophic sediments by the severe lack of 

reducing equivalents; however, the importance of this difference relative to total cell energy expenditure is 

unclear (McCollom and Shock 2005).  Such factors may differentiate deep oligotrophic sediment 

environments from even the oxidatively equivalent zones of margin sediments, albeit hypothetically at a 

lower taxonomic rank.  Other factors such as dispersal contingencies or isolation by distance or physical 

barrier will be particularly important to consider when looking at finer-scale biogeography and 

phylogenetic patterns (Hughes-Martiny et al. 2006).  Ultimately, however, even if biogeographical 

approaches can reveal electron acceptor type to be the primary correlate of phylum level divergences, this 

may indicate either exploitation of a given electron acceptor, or adaptation to the conditions associated with 

its use.  Comparative genomics coupled to 16S identification may shed light on those questions, as may 

more extensive, fine-scale geochemical comparisons of suboxic/oxic vs suboxic/oxic environments. 

Several problems exist with standard approaches to assaying microbial diversity of oligotrophic 

sediments.  Because cell densities are low to extremely low, standard in-matrix cell lysis approaches may 

recover inadequate DNA amounts due to adsorption to clay or other mineral particles, which can be highly 

efficient in binding up negatively charged DNA molecules (e.g., Webster et al. 2003).  Other threats to 

DNA yield include nuclease attack and shearing (Roose-Amsaleg et al. 2001).  Whole-sediment extraction 

methods may also co-extract PCR inhibitors (e.g., Barton et al. 2006), which become problematic when 

attempts are made to concentrate DNA extracts to minimize jackpot amplification bias.  A further issue 

when using PCR-based approaches is primer bias, as reviewed by Teske and Sørensen (2008).   DHVE-6, a 

lineage within the DHVEG-II superphylum, had severe mismatch problems with commonly used primers, 

with nearly all primers having one or more mismatches with all DHVE-6 sequences examined (Teske and 

Sørensen 2008).  Further, PCR using primers designed to target ANME euryarchaeota recovered a novel 

deeply-branching Thermoplasmatales clade basal to the MBG-D/TMEG/MG-II/MG-III cluster, from 
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oligotrophic North Pacific Gyre sediments (Wang et al. 2005).  This suggests that new general primers, 

perhaps Euryarchaeota-specific, may uncover significantly greater diversity in energy-limited sediments 

than standard primers.  Existing primer sets likely uncover only a small fraction of diversity even within 

known phyla, a hypothesis that finds support in the extremely low species diversity within the novel 

archaeal groups uncovered at SPG12. 

 

7.  Conclusions. 

The results examined in this review suggest that Archaeal communities undergo a marked shift 

along gradients that determine sediment trophic state.  Archaeal lineages found in oligotrophic, primarily 

oxic to suboxic sediments significantly expand the higher-order taxonomic diversity within the 

Euryarchaeota and Archaea.  These lineages have most often been found in other environments that are 

suboxic or oxic, with some proportion occupying habitats of ambiguous redox state, or a habitat that is 

primarily anoxic with the potential for oxic/suboxic microniches (organic-rich shallow sediments).   Such a 

lineage distribution is consistent with electron acceptor specialization determining in large part the 

distribution of archaeal lineages in the marine subsurface.  Since the phylogenetic groups associated with 

this diversity shift were deeply-branching (possibly class or phylum level), if this premise holds, it is also 

consistent with electron acceptor specialization being a fundamental correlate with archaeal diversification.  

However, phylogenetic assortment by habitat may also reflect most-energetic terminal electron acceptor 

only indirectly, via specialization in the geochemical milieu characteristic of a given electron accepting 

zone, perhaps by parasitism or endosymbiosis.  Further studies are needed to resolve the phylogenetic 

placement of these novel lineages, as well as to explore the relationship between two defining 

characteristics of oligotrophic habitats, nutrient limitation and availability of high-energy electron 

acceptors, and archaeal 16S rRNA gene evolution.   

 

8. Methods.   

This study involved analyzing Archaeal 16S rRNA and 16S rRNA gene sequences from public 

databases, as well as data generated from Cruise Knox02RR South Pacific Gyre site 12 (SPG12).  

Sequences from SPG12 were amplified and sequenced as described in Durbin (2009).  A search for all 



83 
 

available Archaeal 16S sequences from oligotrophic marine sediment sites was conducted first by 

identifying closest relatives to SPG12 Archaeal sequences via BLAST searches and searches within the 

ARB v.95 REF 16S/18S database.  If a sequence was derived from an oligotrophic sediment environment, 

defined as any marine benthic environment not situated on a continental slope or shelf, all sequences from 

the associated publication were imported and aligned in ARB.  Any closest relatives presented in the 

associated publication were also imported and aligned.  Additionally, all sequences from abyssal sites 1231 

(Sørensen and Teske 2004) and 1225 (Teske and Sørensen 2008) of ODP Leg 201 were included.  Further 

internet searches using keywords yielded no additional publications.  For comparison, sequences 

representative of major phylogroups from the sulfate-methane transition zones of sites 1227 (Sørensen and 

Teske 2006, Biddle et al. 2006), 1229 (Biddle et al. 2006), and 1230 (Biddle et al. 2006) were aligned 

manually in ARB, as well as representative sequences from the upper ~40 cm of a Mediterranean 

sapropel/cold seep site (Heijs et al. 2008).   

 Phylogenies were estimated separately for the Crenarchaeota and Euryarchaeota.  After manual 

alignment adjustments, sequences from the assembled oligotrophic dataset longer than 1200 nt, or closest 

relatives longer than 1200 nt, were exported from ARB for phylogenetic analysis.  A base-frequency filter 

excluding sites with a base shared by less than 60% of sequences was estimated separately for the 

Euryarchaeota and Crenarchaeotal datasets to create a more conserved alignment for analysis.  The final 

analyzed alignment with all gaps or missing data excluded consisted of 972 bp for the Euryarchaeota, and 

968 bp for the Crenarchaeota and deeply-branching archaeal lineages.  A maximum likelihood phylogeny 

was then estimated using Treefinder (Jobb et al. 2004).  Support for clades was estimated using 1000 

maximum-likelihood bootstrap replications.  For the Euryarchaeota, the same alignment was used to 

construct a phylogeny using the neighbor-joining algorithm, with a maximum-composite-likelihood-

estimated substitution model and complete deletion of gaps or missing data, in MEGA 4.0 (Tamura et al. 

2007).  Branch support for this phylogeny was estimated using the interior-branch support algorithm 

(Sitnikova et al. 1995), as bootstrap is vulnerable to a conservative bias when large numbers of sequences 

are considered (Sitnikova et al. 1995, Sanderson and Wojciechowski 2000).  The neighbor-joining tree is 

presented inscribed with both interior bootstrap support from the neighbor-joining algorithm, as well as the 

maximum-likelihood bootstrap support values for the monophyly of the lineages contained with the clade.  
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Additionally, bootstrap support values from the concatenated-gene dataset of Brochier-Armanet et al. 

(2008) are included when they support the monophyly of the clades shown in the neighbor-joining tree.  

Phylum affiliations of sequences shorter than 1200 bp were then determined by constructing a NJ tree in 

ARB using a smaller alignment, and/or adding short sequences to the ~1200 nt alignment reference tree via 

the parsimony-add tool in ARB.  Relative abundances of sequences for the different major clades was then 

determined by either counting sequences in ARB, or by using the abundances of representative sequences 

as described in the original publication.   

 To calculate distances between groups, and to align sequences for ML phylogenetic analysis, all 

available sequences greater than 900 bp and found in the SILVA v.95 database (Pruesse et al. 2007), current 

as of June 2008, were included for analysis, with the exception of the DHVE-5 (Takai and Horikoshi 1999), 

a very large and diverse group.  Chimeras were excluded using Bellerophon3 (Huber et al. 2004).  The 

Silva v. 95 SSU REF phylogeny was used to identify those lineages that branch nearest to clades containing 

sequences from Takai and Horikoshi 1999 and sequences previously found to be closest relatives of SPG12 

deep-branching sequences.  These lineages were then re-aligned as necessary, using conserved segments as 

anchors and by optimizing the alignment to reflect likely secondary structure base-pairings.  It was found 

that many lineages had lengthy insertions.  These may be additional loops not accounted for in the 

secondary structure model supplied in ARB, based on the appearance of typical stem-loop sequences 

(Woese et al. 1990) and conserved sequence motifs between insertions found in closely related species.  

Often these insertions caused misalignment of more conserved regions in the alignment supplied in the 

SILVA database.  The complete set of DHVEG-II phylogroups found in Takai and Horikoshi (1999), 

Nercessian et al. (2005), and SPG12 (Durbin, 2009), as well as their closest neighboring clades were 

checked and re-aligned in their entirety with the exception of the DHVE-5.  Only representative sequences 

from DHVE-5 clades that contained or were most closely related to SPG12 and Takai and Horikoshi (1999) 

sequences were examined in this way, due to the large number of sequences from the DHVE-5-related 

groups in the SILVA database.  This re-aligned sequence set was then used to construct a reference tree, and 

from that representative or all available sequences >1200 bp were selected for further analysis using 

MEGA4 or Treeclimber. 

 



 

 

Appendix A.  1% OTU NJ phylogeny for MG-I. 

 
Appendix A.  NJ phylogeny, using a maximum-composite-likelihood model of sequence evolution with 
gamma-corrected site rates and calculated for an 800-base-pair alignment, for SPG11 and SPG12 MG-I 1% 
representative phylotypes (operational taxonomic units; OTUs).   
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Appendix D.  Bacterial 3% OTU phylotype table. 
  

NCBI accession 
number 

Depth, 
cmbsf 

          

      

3% OTU phylotype name 60-70 213-223 273-283 343-353 461-471 Phylogenetic designation 

SPG12_343_353_B100 FJ746084    1  
Alphaproteobacteria-

Rhodospirillaceae 
SPG12_343_353_B101 FJ746085    3 1 Chloroflexi IV 
SPG12_343_353_B103 FJ746086    1  Chloroflexi-ungrouped 
SPG12_343_353_B104 FJ746087   4 5 2 Chloroflexi IV 
SPG12_343_353_B107 FJ746089    1  OP3 
SPG12_343_353_B108 FJ746090    2  SAR406 
SPG12_343_353_B109 FJ746091    1  NT-B9 
SPG12_343_353_B110 FJ746092   1 4  Chloroflexi IV 
SPG12_343_353_B114 FJ746094    1  OP3 
SPG12_343_353_B116 FJ746095    1  Planctomycetes I 
SPG12_343_353_B1 FJ746097  5  1 2 Chloroflexi IV 
SPG12_343_353_B10 FJ746098   2 6 10 Chloroflexi IV 
SPG12_343_353_B11 FJ746099    1  Chloroflexi IV 

SPG12_343_353_B117 FJ746100 3   1  Actinobacteria-Acidomicrobiae 
SPG12_343_353_B119 FJ746101    1 1 Planctomycetes I 
SPG12_343_353_B14 FJ746104   1 4  Chloroflexi IV 
SPG12_343_353_B16 FJ746105  1 2 6 6 Chloroflexi IV 
SPG12_343_353_B17 FJ746106 3   1 1 Chloroflexi VIII 
SPG12_343_353_B18 FJ746107    1  Chloroflexi IV 
SPG12_343_353_B2 FJ746108    1  Planctomycetes-Planctomycetaceae 

SPG12_343_353_B22 FJ746111    2  
Deltaproteobacteria-

Desulfobacterales 
SPG12_343_353_B23 FJ746112  1  2 3 OP8 
SPG12_343_353_B24 FJ746113    1  Planctomycetes I 
SPG12_343_353_B28 FJ746115    1  Deltaproteobacteria-Myxococcales 
SPG12_343_353_B29 FJ746116    1  OP3 
SPG12_343_353_B3 FJ746117    1  Chloroflexi VI 
SPG12_343_353_B30 FJ746118  1  3 3 Chloroflexi IV 
SPG12_343_353_B31 FJ746119  1  1  Chloroflexi IV 
SPG12_343_353_B35 FJ746122 1   1  Planctomycetes II 
SPG12_343_353_B38 FJ746124    1  Gemmatimonadetes 
SPG12_343_353_B41 FJ746127    1  Chloroflexi IV 
SPG12_343_353_B42 FJ746128    1  WS3 
SPG12_343_353_B43 FJ746129    1  WS3 
SPG12_343_353_B44 FJ746130 1 4  1 2 Chloroflexi-Anaerolineae 
SPG12_343_353_B48 FJ746132    1  Planctomycetes II 
SPG12_343_353_B5 FJ746133    1 1 Planctomycetes I 
SPG12_343_353_B51 FJ746134    1  Chloroflexi IV 
SPG12_343_353_B52 FJ746135  1 1 1 1 Chloroflexi IV 
SPG12_343_353_B54 FJ746136    1  Chloroflexi VIII 

SPG12_343_353_B57 FJ746138    2  
Alphaproteobacteria-

Kordiimonadales 

SPG12_343_353_B61 FJ746141 2   1  
Alphaproteobacteria-

Rhodospirillaceae 
SPG12_343_353_B64 FJ746143 1   2 1 ASG 
SPG12_343_353_B66 FJ746144  1  2  Chloroflexi IV 
SPG12_343_353_B69 FJ746146    1  Planctomycetes IV 
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SPG12_343_353_B72 FJ746149    1 1 Planctomycetes I 
SPG12_343_353_B73 FJ746150    1  SAR324 
SPG12_343_353_B75 FJ746152    1  Chloroflexi IV 
SPG12_343_353_B76 FJ746153   1 1  Chloroflexi V 
SPG12_343_353_B80 FJ746156    1  Planctomycetes I 
SPG12_343_353_B82 FJ746158  6  2 2 Planctomycetes I 
SPG12_343_353_B86 FJ746162  1  1  Gemmatimonadetes 
SPG12_343_353_B9 FJ746164    2  Spirochaeta-Spirochaetaceae 
SPG12_343_353_B92 FJ746167    1  Chloroflexi IV 
SPG12_343_353_B99 FJ746169    1  Chloroflexi IV 
SPG12_461_471_B36 FJ746171  1   1 Actinobacteria-Acidomicrobiae 

SPG12_461_471_B37 FJ746172     1 
Alphaproteobacteria-

Rhodospirillaceae 

SPG12_461_471_B43 FJ746177 1 1   1 
Alphaproteobacteria-

Rhodospirillaceae 
SPG12_461_471_B51 FJ746181     1 Chloroflexi IV 
SPG12_461_471_B00 FJ746183     1 SAR406 
SPG12_461_471_B56 FJ746187     1 OP11 
SPG12_461_471_B69 FJ746196  1   1 Planctomycetes II 
SPG12_213_223_B25 FJ746203  1    Planctomycetes II 
SPG12_213_223_B26 FJ746204  2    Planctomycetes III 
SPG12_213_223_B27 FJ746205  1    Chloroflexi IV 
SPG12_213_223_B29 FJ746207  1    Planctomycetes II 
SPG12_213_223_B3 FJ746208  4 4   NT-B2 
SPG12_213_223_B31 FJ746209  1    Chloroflexi IV 
SPG12_213_223_B33 FJ746210  1    Planctomycetes-anammox 
SPG12_213_223_B37 FJ746211  1    Chloroflexi IV 
SPG12_213_223_B45 FJ746215  1    Deltaproteobacteria-Myxococcales 
SPG12_213_223_B46 FJ746216  1    Planctomycetes II 
SPG12_213_223_B49 FJ746217  1    OP11 
SPG12_213_223_B51 FJ746219  1    Deltaproteobacteria-Uncultured 1 
SPG12_213_223_B56 FJ746221  1    Planctomycetes II 
SPG12_213_223_B77 FJ746230  1    Planctomycetes I 
SPG12_213_223_B89 FJ746237  1    Planctomycetes-Planctomycetaceae 
SPG12_213_223_B9 FJ746238  1   1 Planctomycetes-Planctomycetaceae 
SPG12_213_223_B91 FJ746240  1    Planctomycetes-Planctomycetaceae 
SPG12_213_223_B94 FJ746242  1    OP3 
SPG12_213_223_B80 FJ746244  1    Chloroflexi-Anaerolineae 
SPG12_461_471_B12 FJ746248     1 Planctomycetes I 
SPG12_461_471_B2 FJ746251     1 Chloroflexi IV 
SPG12_461_471_B20 FJ746252     1 Chloroflexi VII 
SPG12_461_471_B8 FJ746256     1 Chloroflexi IV 
SPG12_273_283_B13 FJ746261   1   AC1 
SPG12_273_283_B14 FJ746262   2   OP3 
SPG12_273_283_B19 FJ746265   1   Termite group I 
SPG12_273_283_B26 FJ746271   1   Planctomycetes IV 
SPG12_273_283_B3 FJ746274   1   Planctomycetes I 
SPG12_273_283_B30 FJ746275   1   Planctomycetes-Planctomycetaceae 
SPG12_273_283_B34 FJ746278   1   Chloroflexi IV 
SPG12_273_283_B4 FJ746281   1   Bacteroidetes: Sphingobacteria 
SPG12_273_283_B5 FJ746282   1   Chloroflexi IV 
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SPG12_273_283_B6 FJ746283   1   Alphaproteobacteria 
SPG12_60_70_B29 FJ746287 4     OP11 
SPG12_60_70_B36 FJ746290 1     Planctomycetes-Planctomycetaceae 
SPG12_60_70_B37 FJ746291 6     Gemmatimonadetes 

SPG12_60_70_B41 FJ746295 5     
Alphaproteobacteria-

Rhodospirillaceae 
SPG12_60_70_B42 FJ746296 1     Nitrospina-Deltaproteobacteria 
SPG12_60_70_B49 FJ746299 1     Gammaproteobacteria 
SPG12_60_70_B56 FJ746306 1     Chloroflexi VIII 

SPG12_60_70_B57 FJ746307 2     
Alphaproteobacteria-

Rhodospirillaceae 
SPG12_60_70_B65 FJ746315 1     Actinobacteria-Acidomicrobiae 
SPG12_60_70_B69 FJ746318 1     Planctomycetes II 

SPG12_60_70_B70 FJ746319 1     
Alphaproteobacteria-

Rhodospirillaceae 
SPG12_60_70_B71 FJ746320 1     Verrucomicrobia 

SPG12_461_471_B31 FJ746326     1 Chloroflexi IV 
SPG12_213_223_B2 FJ746331   1       Chloroflexi IV 

    37 49 27 86 50   
            249   

 
 Appendix D.  3% OTU phylotype table for Bacteria.  Listed for each clone library is number of individual 
representatives of a given phylotype, with accession number and phylogenetic classification.  Phylotype 
SPG12_343_353_B54 belongs to the Abyssal Sediment Bacterial Cluster, a novel designation, while other 
abbreviations refer to previously published uncultured clades.  Subclades of Planctomycetes and 
Chloroflexi, some introduced in this study, are included, as are the recognized subclades of other major 
phyla, when possible.   
 
 
Appendix E.  Supplementary Methods. 

In addition to performing blank extractions, several procedures were followed to minimize contamination 

from exogenous DNA or PCR products for these low-biomass sediments.  Poly[dIdC] in UVC-permeable 

1.5 mL tubes (MoBio Laboratories) was UV-irradiated for 15 minutes approximately 15 cm from 15-watt 

UVC bulbs in a PCR hood to reduce exogenous 16S gene contamination and to reduce nonspecific 

amplification potential during downstream PCR applications. With the exception of the SPG12 60-70 and 

343-353 cmbsf samples, all steps except for bead-beating and centrifugation were undertaken in a dead-air 

PCR hood that was intermittently UVC-irradiated.  For all samples, the extractions, including 

centrifugation steps, were carried out at room temperature to minimize SDS precipitation.  Blank 

extractions with only buffer were also carried out under the same conditions as the appropriate sample.  For 

the SPG12 60-70 cmbsf and 343-353 cmbsf sample and blank extractions, all aqueous solutions were made 

with nuclease-free PCR-grade water, and were then filtered using an 0.1- µm pore size filter into a flask 

baked at 180 °C overnight.  The aqueous solutions used for the 350 cmbsf sample was additionally 
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submitted to ~30 minutes of irradiation in a plastic bag ~30 cm from a UVC light source.  For all other 

samples and blank extractions, all aqueous solutions were additionally passed through a 10 kDa-molecular 

weight cutoff (MWCO) ultrafiltering device, either an Amicon Plus-15 or Amicon Plus-70 (Millipore), to 

remove exogenous DNA.  In the case of the Amicon Plus-70 apparatus, which is not shipped sterile, the 

receiving cup and filter section were exposed to UVC radiation for 30 minutes to 1 hour.  20% sodium 

dodecyl sulfate solution proved difficult to pass through a 10 kDa MWCO device and so for all samples 

this was irradiated for 30 minutes approximately 30 cm from a UVC PCR hood light source in a plastic 

bag.   

 
 
 
Appendix F.  Habitat-lineage association sample points. 
 
 

Clade Habitat Example Acc. 
DSEG-4   
 Suboxic marine sediments FJ487460 
 Coastal shallow methanogenic sediments DQ522902 
 Hypersaline cyanobacterial mats EU585938 
 Hydrothermal precipitates AB329826 
 Suboxic freshwater pond plankton DQ676273 
 Hydrothermal vent water AB193961 
 Hydrothermal vent water AB301878 
 Cold seep sediments AB189390 
DSEG-3   
 Hydrothermal sediments AB302043 
 Oligotrophic marine sediments EU385997 
 Coastal shallow methanogenic sediments DQ640163 
 Suboxic marine sediments FJ487470 
 Oligotrophic marine sediments AY800211 
 Iron- and sulfur-oxidizing sediment EF687554 
 Hydrothermal sediments AB301978 
 Hot spring water EF444628 
 Mediterranean cold seep AY592520 
 Hydrothermal metal-carbonate sediments AY354110 
 Deep-sea microbial mat AB426447 
 Deep subsurface ground water AB237754 
DSEG-2   
 Hot spring water AF402988 
 Hot spring water AY555816 
 Hydrothermal vent water AB301873 
 Sandy shallow sediment EF208735 
 Suboxic marine sediment FJ487457 
 Hydrothermal vent water DQ910086 
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 Hydrothermal vent water AB213092 
 Mediterranean cold seep AY592549 
 Hypersaline lake shallow sediments EU329799 
 Hydrothermal precipitates AB329763 
 Eutrophic margin sediments AB177269 
 Tropical estuary sediments EF367558 
 Estuarine sediments EU681930 
 Hydrothermal vent chimney AB247870 
 Hydrothermal vent chimney AB293222 
DHVE-5   
 Estuarine sediments AY454684 
 Hot spring water EF444658 
 Hydrothermal chimneys and worm tubes DQ082961 
 Suboxic freshwater pond plankton DQ676246 
 Hypersaline lake shallow sediments EU329766 
 Evaporitic salt crust EF106713 
 Oxic/suboxic ponds AY822001 
 Basalt DQ417472 
 Shallow Antarctic shelf sediments AF424534 
 Hypersaline cyanobacterial mats DQ397352 
 Hydrothermal vent water DQ909977 
 Saline lake shallow sediment AF142929 
 Hydrothermal precipitates AB329839 
 Anoxic water column AF224779 
 Hydrothermal sediments AB197216 
 Sargasso Sea surface water AACY023847387 
 Fish farm sediment AY500128 
 Sulfidic cold spring water AJ631246 
 Deep subsurface ground water AB077228 
 Hydrothermal vent colonization surface AB175599 
 Seafloor hypersaline lake DQ340998 
 Suboxic marine sediment FJ487465 
 Hydrothermal vent water AB019751 
 Sulfurous lake water AM0769832 
 Arctic continental shelf water column EU244290 
 Hydrothermal vent chimney AB293233 
 Hydrothermal vent water AF526959 
MBG-A rels   
 Aspen forest soil EF022172 

 Soil EU306957 
 Meso/bathypelagic seawater EU650259 
 Hot spring water AY861939 
 Meso/bathypelagic seawater EF106847 
 Anaerobic marine water column EU369889 
 Hot spring water AY882837 
 Hydrothermal precipitates AB329801 
 Hydrothermal sediments AB301986 
 Soil DQ278143 
 Freshwater lake AY278081 
 Forest soil AY278100 
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 Oligotrophic marine sediments EU385976 
 Oligotrophic marine sediments EU048593 
 Hydrothermal vent water DQ270602 
 Suboxic marine sediments FJ487456 
 Shallow marine sediments AF119135 
 Hot spring water DQ300328 
 Meso/bathypelagic seawater DQ300527 
 Estuarine sediments DQ641811 
 Estuarine sediments EF367446 
 Hot spring water EF444663 
 Subsurface aquifer DQ190081 
 Rice paddy soil AB243804 
 Shallow peat mire AB262707 
 Hydrothermal vent water AB213098 
 Hot spring water AY555832 
 Deep subsurface ground water AB294269 
 Soil EU570091 
 Boreal forest soil AJ428044 
 Uranium mill tailings AJ535136 
 Acid mine drainage DQ901270 
 Hydrothermal vent water AB193977 
 Eutrophic margin sediments AB177271 
 Bathypelagic seawater EF597687 
 Estuarine sediments AY454565 
 Mangrove sediment EF125516 
 Subsurface aquifer DQ837283 
 Oligotrophic marine sediments AJ870947 
 Estuarine sediments EF680224 
 Hot spring water U63343 
 Hot spring water DQ243758 
 Freshwater lake AJ937878 
 Hydrothermal chimneys EU559696 
 Hydrothermal chimneys AB293209 
 Hydrothermal sediments EF100626 
 Hydrothermal vent water AB167488 
 Hot spring sediment EU635918 
 Minerotrophic fen EU155999 
pISA7   
 Shallow marine sediments AJ299201 
 Hot spring water DQ300338 
 Hydrothermal chimneys AB293216 
 Hydrothermal sediments AB302002 
 Basalt DQ417463 
 Hydrothermal vent water AB213072 
 Hydrothermal chimneys EU555152 
 Hydrothermal chimneys AB247868 
 Hydrothermal sediments EF100630 
 Hydrothermal vent water AB301879 
 Hydrothermal chimneys AB424721 
 Hydrothermal vent water AB019733 
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MCG   
 Estuarine sediments EF367501 
 Estuarine sediments DQ641777 
 Marine sediments/coastal DQ866031 
 Estuarine sediments EU280210 
 Eutrophic margin sediments AB177001 
 Estuarine sediments AY454602 
 Estuarine sediments EU284664 
 Oligotrophic marine sediments EU048654 
 Estuarine sediments DQ363817 
 Bog EU155991 
 Cold seep sediments AJ579325 
 Hot spring water DQ300325 
 Estuarine sediments EF203611 
 Hot spring water AY861924 
 Hot spring sediment EU635929 
 Tidal flat sediment EF125493 
 Hydrothermal mat AB301882 
 Hydrothermal vent water AB301868 
 Hydrothermal fluid AB213062 
 Eutrophic marine sediment AY627509 
 Mediterranean cold seep AY592466 
 Basalt AY704375 
 Lake sediment AB355118 
 Hydrothermal precipitates AB329809 
 Estuarine sediments AB300142 
 Estuarine sediments EF680226 
 Cow rumen AY464796 
 Methanogenic coastal sediment DQ522918 
 Eutrophic margin sediments AY436515 
 Cow manure EU662691 
 Eutrophic margin sediments AB094558 
 Shellfish aquaculture sediment AB116488 
 Eutrophic margin sediments AY093450 
 Terrestrial deep subsurface AF005762 
 Eutrophic margin sediments AB109883 
 Deep subsurface ground water AB237759 
 Soda lake water DQ302468 
 Estuarine sediments AF276442 
 Freshwater lake sediment U59986 
 Freshwater lake AY278094 
 Neutral pH mine biofilm AY082455 
 Sewage sludge AF424768 
 Antarctic shelf shallow sediment AF424526 
 Landfill sludge AJ831142 
 Sludge digestor U81774 
 Sludge digestor EF552166 
 Marsh pore water AM0557704 
 Freshwater particles AF418925 
 Ground water AJ583395 
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 Mine waste AJ535133 
 Rice paddy soil AB243802 
 Rice paddy soil AB288602 
 Bog AJ548933 
 Ground water AB294256 
 Anaerobic sludge digestor AY426476 
 Oil sand tailings pond EF420188 
 Oil contaminated soil AB161339 
 Anoxic water column DQ785306 
 Ground water AJ567215 
 Anaerobic digestor AY835784 
 Hot spring water AY555820 
 Soil EU307004 
 Estuarine sediments EU681927 
 Estuarine sediments EF051149 
 Saline soil AJ969773 
 Freshwater lake AJ937877 
 Estuarine sediments AF118657 
 Cold seep sediments AJ704633 
 Bog AB263705 
 Freshwater lake AM076830 
 Ground water DQ230924 
 Eutrophic marine sediments AB369211 
 Marine sediments/coastal AJ294859 
 Hot spring water DQ243757 
 Hot spring sediment EU239992 
 Hot spring water U63345 
 Hot spring water AB113634 
 Hot spring water L25305 
 Hydrothermal sediments AB302001 
 Hot spring water U63339 
 Basalt AB260058 
 Eutrophic margin sediments AF419653 
 Eutrophic marine sediments AY345169 
 Cold seep sediments AB189389 
 Cold seep sediments AB015273 
 Eutrophic margin sediments AF119129 
 Hot spring water AM039529 
 Ground water DQ841220 
 Hydrothermal fluid AB284822 
 Eutrophic margin sediments AB176996 
 Hot spring water EF444630 
 Oligotrophic marine sediments DQ984834 
 Eutrophic marine sediments EU369873 
 Hydrothermal vent water AB247826 
 Hydrothermal sediments AY354121 
 Eutrophic marine sediments AF328199 
 Eutrophic margin sediments AF004344 
 Cold seep sediments AB362542 
 Eutrophic marine sediment AB426390 
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 Cold seep sediments AB188799 
 Eutrophic marine sediments AY499893 

 
Appendix E.  Habitat-lineage association sample points.  Habitats association was then 
further categorized into a generalized set of habitats, which were then categorized as 
principally or entirely oxic/suboxic, anoxic, or ambiguous, with uncertain or 
heterogeneous redox state.   
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