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ABSTRACT

KELLY BODWIN: Methods of Association Mining by Variable-to-Set Affinity Testing
(Under the direction of Andrew B. Nobel and Kai Zhang)

Statistical data mining refers to methods for identifying and validating interesting patterns from

an overabundance of data. Data mining tasks in which the objective involves pairwise relationships

between variables are known as association mining. In general, features sought by association

mining methods are sets of variables, often small subsets of a larger collection, that are more

associated internally than externally. Methods vary in both the measure of association that is

studied and the algorithm by which associated sets are identified. This dissertation discusses provide

a generalized framework for association mining called Variable-to-Set Affinity Testing (VSAT).

Unlike conventional techniques for clustering or community detection, which usually maximize

a score from a dissimilarity or adjacency matrix, the VSAT approach is an adaptive procedure

grounded in statistical hypothesis testing principles. The framework is adaptable to a broad class

of measurements for variable relationships, and is equipped with theoretical guarantees of error

control.

This dissertation also presents in detail two new association mining methods built in the VSAT

framework. The first, Differential Correlation Mining (DCM), identifies variable sets that have

higher average pairwise correlation in one sample condition than in another. Such artifacts are of

scientific interest in many fields, including statistical genetics and neuroscience. Differential Cor-

relation Mining is applied to high-dimensional data sets in these two fields. The second method,

Coherent Set Mining (CSM), is a novel approach to association mining in binary data. Dichotomous

observations are assumed to derive from a latent variable of interest via thresholding. The Coher-

ent Set Mining method identifies variable sets that are strongly associated in the latent measure,

despite distortions in the association structure of the observed data due to the thresholding pro-

cess. Coherent Set Mining is applied to problems in text mining, statistical genetics, and product

recommendation.
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“The unpredictable and the predetermined unfold together to make everything the way it is. It’s

how nature creates itself, on every scale, the snowflake and the snowstorm. It makes me so happy.

To be at the beginning again, knowing almost nothing. [...] When you push the numbers through

the computer you can see it on the screen. The future is disorder. A door like this has cracked

open five or six times since we got up on our hind legs. It’s the best possible time to be alive, when

almost everything you thought you knew is wrong.”

- Valentine Coverly, Arcadia (Tom Stoppard, 1993)
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CHAPTER 1

Introduction

The field of statistics first developed as a way of drawing conclusions from limited observations.

Today, statisticians face a nearly opposite challenge: how to glean meaningful information from an

ever-growing supply of data. The term “data mining”, once a controversial epithet for questionable

practices, now refers optimistically to the practice of extracting valuable material that has been

buried in debris. In general, data mining methods seek notable patterns among noisy observations.

Many such methods are exploratory, in that they focus on discovery rather than verification. Sta-

tistical data mining, more specifically, makes use of modeling and testing principles both to identify

patterns and to make probabilistic claims about their validity. As available data becomes higher

dimensional and more complex, approaches to problems of statistical data mining must continue

to adapt in response.

This dissertation introduces novel statistical methods for the branch of data mining known as

association mining. In general, association mining is concerned with detecting relational (or second-

order) structure between variables. For example, a company might study association between its

employees, with the goal of identifying distinct social subgroups or of understanding how low-level

employees interact with management. Association structures of interest vary by data type and by

research question. Most commonly, association mining targets take the form of subsets of variables

that are either strongly internally associated or all associated with a common external feature. The

work in this dissertation is specifically concerned with the former.

The discussion thus far has used the term “association” in the broadest possible sense to

mean any quantification of a relationship between two variables. However, the choice of a specific

association measure is a crucial element of any association mining method. Broadly speaking, there

are two ways to measure association:
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1. Distance or dissimilarity.

Often, information about variables can be summarized in a single dissimilarity matrix,

where entries represent pairwise relationships. In some cases, these matrices are calculated

from data. For instance, if variables represent points in a vector space, the relationship

between two points can be represented by a distance metric. In other cases, dissimilarity

matrices are observed directly rather than computed. Such is the case in the analysis of

networks, where available data takes the form of a set of variables (or nodes) and a set of

links (edges) between the nodes. Edges may be weighted, taking on continuous values, or

unweighted, consisting of 0/1 indicators of presence or absence. The measure of association

between two variables is therefore the value (or presence) of the edge between those variables.

In general, association mining based on dissimilarity measures or on network data is not

statistical, in that the measures of association are treated as non-random. However, ran-

domness can be introduced via addition of noise to dissimilarity measures or assumption of

generating models. A prominent example of this is the Erdos-Renyi random graph model

(Robins et al., 2007), which assumes an observed unweighted network was created by ran-

domized edge assignments.

2. Estimators for statistical dependence.

When data can reasonably be considered random samples from a population, it makes

sense to infer relationships via estimates of parameters. Perhaps the most commonly studied

parameter is the standard product-moment correlation,

cor(X,Y ) :=
EXY − EX EY√

var(X) var(Y )

The advantage of mining for association in the form of correlation is that two variables with

nonzero correlation necessarily have nonzero dependence, and thus a “true” relationship may

be said to exist. There are many alternatives to product-moment correlation, including partial

correlation, rank-based correlation and covariance. It also should be noted that estimators

β̂ for the coefficients in a regression model Y = βX + ε may also be regarded as association

measures estimating dependence.
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One limitation of the correlation and related dependence measures is that they capture

only linear relationships between variables. More complex dependence can be represented by

summary statistics of graphical models, see e.g. Anderson (1959) Chapter 9 for further detail.

Recent work has also produced useful estimators of nonlinear dependence, notably: Székely

et al. (2007) defines the distance correlation, which is equal 0 for a variable pair if and only

if the variables are independent; and Zhang (2017) proposes a distribution-free procedure for

detecting dependence. Tan et al. (2002) provides a thorough overview of the many other

available measures of dependence.

The methods in this dissertation are strictly statistical, and so content will primarily focus on

association mining in the context of estimators for statistical dependence. Section 1.4.2 provides a

more in-depth discussion of the consequences of different measures of association, as a motivation

for the new measure (and corresponding mining methodology) introduced in Chapter 4.

1.1 Contributions and Outline

This dissertation consists of an in-depth treatment of two new methods for association mining:

Differential Correlation Mining (DCM) and Coherent Set Mining (CSM). Differential

Correlation Mining is an algorithm for discovering variable sets that exhibit different correlation

structure across two predefined sample conditions. Coherent Set Mining offers a method for mining

for latent association structure from binary thresholded observations. Both methods are built on

a novel algorithmic framework for mining strongly associated variable sets (or “communities”),

known as Variable to Set Affinity Testing (VSAT).

The remainder of this document begins with a brief overview of the major association mining

methods that pertain to the topics in this dissertation and a discussion of related work to motivate

the Differential Correlation Mining and Coherent Set Mining methods. Chapter 2 details in general

terms the VSAT approach to association mining, and provides an important general theoretical

result. Chapters 3 and 4 contain the full details, theoretical results, and real data applications for

Differential Correlation Mining and Coherent Set Mining respectively. Finally, Chapter 5 closes

with a final discussion and suggestions for future directions of inquiry.
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1.2 Background: methods of association mining

Existing work in data mining can be characterized as either unsupervised or supervised. Unsu-

pervised learning consists of searching for patterns in data without regard to a predictive goal. In

supervised studies, datasets consist of a limited number observations for which a ground truth is

known, from which one usually makes inferences about future behavior. For example, simple linear

regression infers the nature of a linear relationship between a measurement x and random variable

Y from observed pairs (xi, yi)
n
i=1. Data mining tasks can also be semi-supervised, in that a ground

truth is known about only some of the available observations. This “training data” is then used to

infer information about the remaining (or future) observations.

Perhaps the most well known class of unsupervised association mining methods is clustering

algorithms. Clustering is the practice of dividing variables into groups, or clusters, that are highly

internally associated. Typically, clustering methods seek a partition of the variables, such that

each variable is assigned to exactly one cluster. In some settings, finding a partition of data is not

appropriate to the research question at hand. For example, consider the problem of identifying

social group memberships based on an observed Facebook friendship network. A strict partition of

individuals does not capture the desired structure, since people may belong to many social groups

or even none at all. Clustering tasks on networks are often referred to as community detection (cf.

Fortunato (2010); Newman (2006) among others).

Although the methods of this dissertation are unsupervised, association mining also plays a

role in some supervised and semi-supervised approaches. Most notable are classification and ma-

trix completion problems. Classification refers to analyses of data for which there exist pre-specified

categories. Typically, category labels are known for a given subset of observations, and new observa-

tions are assigned to categories based on their association with known members. Matrix completion,

by contrast, usually assumes one has incomplete observations for a number of variables. One then

“completes” the matrix by filling in missing values with estimates derived from similar variables.

Chapter 5.3 discusses the use of association mining in matrix completion problems and suggests a

future direction for improvement on these algorithms.

A thorough overview of the broad area of unsupervised association mining is provided by Everitt

et al. (2011). This section provides a basic introduction to two of the most common methods of
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clustering, which will provide a standard basis of comparison for the new methods discussed in this

thesis, as well as for an area of supervised association mining that has a close relationship to the

methods in this dissertation.

• k-means clustering.

The k-means clustering algorithm consists of a simple iterative update to minimize an

objective. The algorithm begins with a randomly chosen k data observations, designated

as “centroids”. The remaining observations are then assigned membership in one of the k

clusters characterized by the centroids, in such a way as to minimize the total sum of squared

error for the partition. The centroids are then updated to be the geometric centers of each

of these clusters, and the process is repeated until convergence. The k-means method is

similar to the common K-nearest neighbors approach, in that both cluster objects around

a centroid. However, K-nearest neighbors analyses do not produce a partition, but rather

study individual target objects via the K closest objects.

There are two main reasons for the ubiquity of the k-means method. First, it is extremely

computationally efficient, and can be run quickly and without large memory demands even

for very high dimensional data. Second, it has a close tie to dimension reduction techniques.

When a dataset consists of observations in d dimensions, it is common to use Principal

Component Analysis (PCA) to reduce the dimension before applying k-means. The practice of

dimension reduction before clustering includes a class of methods known as spectral clustering.

PCA and k-means share a unique relationship even among spectral clustering methods due

to a theoretical link between clusters centers and dimensions (Ding and He, 2004).

• Hierarchical clustering.

Broadly, hierarchical clustering refers to the practice of progressively joining or separating

variables according to some criteria. This process can be agglomerative (or “bottom up”),

where variables begin as singletons and are merged sequentially, or divisive (“top-down”)

where the set of variables is split many times. Hierarchical clustering is extremely flexible,

as any choice of metric (or linkage criteria) can be used to determine thresholds for joining
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or splitting variable sets. For example, Section 4.5.1 compares the results of hierarchical

clustering for a variety of choices of linkage metrics.

The output objects of a hierarchical clustering algorithm are dendrograms indicating at

what height, or value of the linkage criteria, variable sets were divided/merged. To select a

particular partition of the data, one typically determines a cutoff height of the dendrogram.

When hierarchical clustering appears in this thesis, as a basis for comparison in simulation

studies, we circumvent this problem by comparing our methods only to the best possible

choice of cutoff as determined by “oracle” information about the true nature of simulated data.

However, in practice, the decision about where to cut a dendrogram has enormous influence

on the results. Contributions to the field of hierarchical clustering generally involve suggested

algorithms for cutting a dendrogram for a particular data setting and linkage criteria.

• Variable selection by penalized regression.

As a rule, data mining is descriptive rather than predictive; that is, its primary purpose is to

use observations to identify structure in variables, rather than to forecast future observations.

Regression analysis, on the other hand, is commonly used for prediction. Recent work has

adapted regression principles to methods of variable selection. Perhaps the most notable

examples are the penalized regression techniques of Tibshirani (1996) and Zou and Hastie

(2005), which use an L1 and L2 penalty (respectively) to forcibly reduce the number of

explanatory variables incorporated in the model. In many applications, researchers are more

interested in which covariates are selected for inclusion rather than the predictive power of

the model. For instance, in statistical genetics, one may use penalized regression to determine

which genes among thousands are most correlated with a particular phenotypic response.

Although regression-based variable selection is indeed an example of mining for association

structure, it differs from the focus of this dissertation in its directionality. To apply penalized

regression, one must first designate a response variable and many possible explanatory vari-

ables. Selected covariates represent those variables that are associated with the response. By

contrast, our focus in this work is the identification of variable sets that are internally associ-

ated with each other ; that is, we are interested in association mining from a single collection

of variables without regard to a response.
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1.3 Differential Correlation Mining

In many statistical problems, one has two datasets that measure the same variables under

different conditions. It is common in the analysis of such data to assume that the samples in each

dataset are generated from two underlying distributions. Even when the data is high dimensional,

differences between the distributions may be present for only a small number of variables, and it is

often of interest to identify these key variables. Most often, differential behavior between sample

groups is measured by first-order statistics, which are functions of a single variable. Familiar

first-order statistics include the sample mean and the sample variance. A well-studied example of

first-order differential analysis is the study of differential gene expression in microarrays (see Cui

and Churchill (2003) for a canonical example, or Soneson and Delorenzi (2013) and the references

therein for an overview of several methods). Other applications of first-order differential analysis

include text analysis for authorship identification (Stamatatos, 2009), studies of brain functionality

based on regional activation (Phan et al., 2002), and investigation of cultural bias in standardized

testing (Wainer and Braun, 2013).

The use of first-order statistics allows for analysis of only a single variable at a time. To study

relationships between pairs of variables, one requires a measure of association such as correlation.

Kriegel et al. (2009) provides a survey of clustering methods for high-dimensional data based on

correlation distance. Datta and Datta (2002) and Jiang et al. (2004) and the references therein

give an overview of methods developed specifically for clustering of gene expression. In general,

typical clustering or community detection methods must be adapted for application to correlation

distances to correct for bias (see e.g. MacMahon and Garlaschelli (2015) for an illustrative example).

In applications of non-differential correlation mining, variable groups may represent, e.g., social

groups communication networks (Lewis et al., 2008), genes in common protein pathways (Jiang

et al., 2004), or functionally similar brain regions (Greicius et al., 2002).

While there is a large literature on clustering and community detection via correlation, there

is relatively little work comparing association across two sample conditions. The many insights

obtained from ordinary correlation studies lead us to believe that a second-order differential ap-

proach, or differential association mining, will be of scientific interest. As in all association mining,

features of interest derive from pairwise behavior of variables; however, in the differential setting,
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one studies two different sets of variable relationships. In some cases, simply taking the difference

of dissimilarity matrices and applying ordinary clustering methods would suffice. However, most

second-order statistics - including the linear correlation coefficient - require a more careful treat-

ment. For instance, two sample correlation matrices will exhibit vastly different random behavior

based on the sample sizes of the corresponding datasets, and will have a complex dependency

structure when the corresponding population correlation matrices are not the identity.

Chapter 3 introduces Differential Correlation Mining (DCM), a new method of second

order comparative analysis that identifies sets of variables such that the average pairwise correlation

between variables in the set is higher in one sample condition than in another. The method does

not make use of auxiliary information, apart from the separation of samples into pre-determined

groups (e.g. treatment vs control). Differential Correlation Mining is theoretically applicable to

both low and high dimensional settings and is computationally feasible for high dimentional data

(105 variables).

1.3.1 Example: TCGA

The following real-world example provides a brief illustration of and motivation for Differential

Correlation Mining . Figure 1.1 shows a differentially correlated variable set identified by the

DCM procedure in real data from The Cancer Genome Atlas (TCGA) Research Network (http:

//cancergenome.nih.gov/). The two sample conditions under consideration are Her-2 type breast

cancer tumors and Luminal B type tumors, as classified by (Perou et al., 2000). Further results for

the TCGA dataset are provided in Section 3.7.

Figure 1.1 shows the sample correlation matrices within each tumor type, restricted to a set of

202 variables consisting of a set of size 102 selected by DCM (A), and 100 randomly chosen variables

(B). The variables B are included for contrast, and to show that the differential correlation observed

in A is not present in the entire dataset. The figure illustrates the second-order behavior and the

differential nature of the variable set A. The block pattern in the upper left corner of the Her-

2 matrix shows that every entry in the correlation matrix of A is large, suggesting that all the

variables of A are strongly pairwise correlated. The Luminal B sample correlation shows a similar

pattern, but it is much less pronounced. No such pattern is seen among the variables in B.
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Figure 1.1: Sample correlation matrices for each of two breast cancer tumor subtypes, showing observed
DC clique (A) and random genes (B) .

In general, the results of Differential Correlation Mining are distinct from those found by first-

order analysis (e.g. differential expression). For example, Figure 1.2 shows the relative differential

expression, overall expression level, and differential variation for the above estimated DC clique A.

In this plot, all genes in the study (p =15,785) are ranked by (a) t statistic of differential mean

expression between Her-2 and Luminal B samples, (b) overall expression in Her-2 samples, and (c)

ratio of sample variations (F statistic) for Her-2 versus Luminal B samples. The histograms in

Figure 1.2 show the ranking of the genes in A. The overall uniformity of the histograms indicates

that the variables in the observed DC clique A do not exhibit standard first-order differential

behavior.

Figure 1.2: Ranks of genes in observed DC clique (A) out of 15,785 total genes.

(Ranked by: Differential expression, as measured by p-values of 2-sample t-tests; mean overall expression among

Her-2 samples; and ratio of sample variances between Her-2 and Luminal B.)
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By targeting differentially correlated variable sets, the Differential Correlation Mining method

identifies variables whose joint behavior is different across sample conditions. The results are

readily interpretable as sets of variables that interact strongly under one sample condition but only

weakly (or not at all) under another.

1.3.2 Related work

Much existing work is either directly related to differential association or may be reasonably

adapted to such a paradigm. In what follows, let R1,R2 denote the population correlation matrices

of two data distributions, and let R̂1, R̂2 denote the corresponding sample correlation matrices.

1. Mining from single correlation matrices.

Non-differential correlation mining has been well-studied, typically in the context of clus-

tering. These methods may be applied in the differential case by separately clustering the

correlation matrices R̂1, R̂2 and comparing results.

2. Detection of isolated changes in correlation structure.

Existing approaches to differential correlation mining are largely based on examining in-

dividual variables for changes in second-order structure across two sample conditions. For

example, one may treat R̂1 and R̂2 as the adjacency matrices of two fully connected, weighted

networks, and then look for variables whose connectivity pattern is very different across the

two networks (Xia et al., 2014; Gill et al., 2010). Most methods approach differential corre-

lation mining by developing a statistic to measure the change in pairwise correlations of an

individual variable: Hu et al. (2010) uses the covariance distance (total difference of covari-

ances), Choi and Kendziorski (2009) uses a direct difference of sample correlations, Fukushima

(2013) uses the difference of Fisher transformed sample correlations, and Liu et al. (2010) use

a filtration (or thresholding) step before summing square correlation differences. These meth-

ods then permute samples across the two classes to measure the significance of the original

differential correlation. Significant variables may then be selected by an appropriate multiple

testing procedure.

3. Estimation and hypothesis testing.
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There has been a great deal of theoretical work devoted to testing equality of high-

dimensional covariance and correlation matrices. When the sample size n is substantially

larger than the dimension p, classical results are applicable, e.g., likelihood ratio tests as

discussed in Anderson (1958) and Muirhead (1982), or results like those of Steiger (1980)

for testing individual sample correlation. In the high-dimensional (p > n) setting, Cai et al.

(2010), Cai and Jiang (2011), and Cai et al. (2014) have developed minimax rate optimal tests

for the equality of covariance matrices under sparsity assumptions. Results for correlation

(rather than covariance) are less prevalent; recent work includes tests for sets of sample cor-

relation coefficients (Donner and Zou, 2014), tests for rank-based correlation matrices (Zhou

et al., 2015), and tests for detecting overall dependence (Bassi and Hero, 2012).

In some cases, optimal testing procedures can inform methods for estimation of high-

dimensional covariance and correlation matrices. Particularly relevant is the work of Cai

and Zhang (2014), which yields an estimator for the difference matrix D = R1 −R2. This

estimator is implemented and discussed further in Section 3.6. Other approaches to high-

dimensional estimation include: Bickel and Levina (2008), who discuss a thresholding esti-

mator for covariance matrices; Peng et al. (2008), who estimate partial correlations in sparse

regression models; and Rajaratnam et al. (2008), who make use of graphical model techniques

for covariance matrix estimation.

4. Direct mining of differential correlation

Finally, the work of Sheng et al. (2016) proposes an approach to correlation mining by test-

ing subsections of the difference of correlation matrices R1−R2. Like Differential Correlation

Mining, the proposed method seeks to identify groups of differentially correlated variables by

appealing to classical asymptotic results. However, the method relies on a sequential testing

and screening procedure that is infeasible for high dimensional settings (∼ 102 or more). As

such, despite the close relationship between this method and Differential Correlation Mining,

we were not able to include it in the simulation study in Chapter 3.
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1.4 Association Mining in Binary Data

The majority of well-known association mining methods are implicitly designed for continuous

data. However, in some common settings, data may take the form of binary (0/1) observations.

For example, purchasing information - known as market basket data - often consists of observations

about d items available for purchase by n buyers. The resulting data matrix X ∈ {0, 1}n×d, where

Xij indicated whether buyer i bought item j, therefore may be interpreted as n samples of a d-

dimensional binary random variable. It may be of interest to identify association structure in these

d variables from the n samples.

In its basic form, this problem is not distinct from ordinary clustering and community detection

methods. Algorithms like hierarchical clustering may be applied to any dissimilarity matrix, so as

long as an appropriate measure of association is chosen, these methods still apply. However, binary

data presents a unique challenge when it comes to standardization. Consider standardizing a vector

in {0, 1}n such that the sample mean is 0 and the sample variance is 1. The values {0, 1} are then

each transformed to a different pair of values. No real transformation has been applied to the

data; it is still dichotomous. Measurements such as product-moment correlation, which rely on a

standardization step, are therefore not as appropriate as metrics for associations studies.

A further challenge arises when samples are not treated identically. Measures of association that

involve an unweighted average over sample quantities, such as L1 and L2 distances, are unequipped

to account for different behavior between buyers. In continuous data, differences between samples

are often swept under the rug via pre-processing of data, usually by sample-standardizing before

variable-standardizing. This option is less appealing in the binary case.

The method introduced in Chapter 4, Coherent Set Mining (CSM), was developed to be flexible

to sample heterogeneity without disregarding the inherent dichotomous nature of binary observa-

tions. The following simple application motivates the need for such an approach, and give an

overview of existing work in association mining that is specific to binary data.

1.4.1 Example: Grocery Store Data

The package arules (Hahsler et al., 2012) in R supplies software for several common frequent

itemset mining and association mining methods. Also included in this package is a dataset from
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grocery store transactions, Groceries, intended as ideal data for exploring and testing association

mining methods. This dataset consists of observed 9835 transactions for 169 items. Tables 1.1 and

1.2 show the results of applying the well-known eclat algorithm and our new method, Coherent Set

Mining, to the grocery store data. Since eclat screens for itemsets with support above a certain

threshold, we applied the method with many thresholds. Table 1.1 shows the results for a threshold

that yielded a moderate number of reasonably-sized itemsets. The Coherent Set Mining method,

by contrast, is fully automatic and so the contents Table 1.2 are simply the direct output of the

method.

The results in Table 1.1 lack an obvious interpertation. All three frequent sets contain whole

milk, the most common item in the Groceries dataset. Intuitively, this makes sense, because the

eclat algorithm seeks itemsets that appear in a large percentage of transactions; thus, items which

are puchased more often overall are more likely to appear in frequent sets. The itemsets in Table

1.2, on the other hand, are readily interpretable in terms of real world grocery needs. For instance,

Set 1 in Table 1.2 is easily recognizeable as a ham and cheese sandwich, Set 5 contains drinks one

might buy for a party, and Set 7 evidently corresponds to baking staples.

Table 1.1: Results from eclat with support threshold = 0.05

1. whole milk, other vegetables

2. whole milk, rolls/buns

3. whole milk, yogurt

This example is provided to briefly justify the need for a new approach to association mining

in binary data. Chapter 4 offers an in-depth discussion of settings where existing methods are

susceptible may be measuring association that is not of scientific interest. The Coherent Set Mining

approach is designed with such settings in mind, to work around challenges like the overall frequency

of whole milk and produce more meaningful results such as those in Table 1.2.

1.4.2 Related Work

• Clustering with binary association measures.
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Table 1.2: Results from CSM

1. white bread, processed cheese, ham

2. canned beer, soda, shopping bags

3. pip fruit, tropical fruit

4. root vegetables, herbs, beef, other vegetables, pork,

chicken

5. soda, bottled water, bottled beer, red/blush wine, canned

beer

6. berries, whipped/sour cream

7. sugar, flour, baking powder

8. Instant food products, hamburger meat

9. waffles, chocolate, long life bakery product, specialty

bar, candy, specialty chocolate, salty snack, chocolate

marshmallow

In principle, existing methods for clustering or community detection can easily be applied

to binary data; one need only specifiy a measure of dissimilarity. However, there are many

options for how best to infer relationships between variables from binary observations. (Choi

et al., 2010) provide an overview of 76 different suggested dissimilarity measures (some of

which are mathematically equivalent). Notable among these are the Phi Coefficient, which

is equal to product-moment correlation, and the Jaccard distance, which considers a ratio

of co-occurance to individual occurance. Some prior work also addresses the case of binary

observations directly. Li and Li (2005) provide a general framework and methodology for

clustering binary data, and Neuhaus et al. (1991) summarizes classic methods for analyzing

correlated binary data.

• Frequent itemset mining and association rules.

Association mining in binary data is sometimes known as itemset mining, due to the

prevalance of market basket data, in which variables take the form of items available for pur-

chase, and observations (or transactions) represent an individual buyer’s choice to purchase

or not purchase each item. Associated itemsets, then, are items which tend to be bought

together, which can be valuable information to researchers for purposes of advertising, inven-
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tory control, and so forth. Methods for mining in market basket data fall under the heading

of frequent itemset mining or association rules. In general, approaches to frequent itemset

mining are non-stochastic; instead of modeling the data, they proceed by screening datasets

for sets of items whose support - or percentage of buyers who purchased the entire itemset -

is above a certain threshold. For example, a frequent itemset discovered from grocery store

purchases might take the form {milk, eggs, bread}.

The study of frequent itemsets and association rules arguably began with the work of

Agrawal et al. (1996), which introduced the apriori algorithm. This method is built on the

apriori principle: that for an itemset to be frequent, all of its subsets must also be frequent.

The apriori approach vastly reduces the number of itemsets that must be screened to search a

dataset exhaustively. Subsequent methods improved on apriori by both algorithmic solutions

and computational improvements. Some notable examples include eclat (Zaki et al., 1997a),

MAFIA (Burdick et al., 2001), COBBLER (Pan et al., 2004), fp-close Grahne and Zhu

(2003), and CHARM (Zaki and Hsiao, 2002). Zaki et al. (1997b), Prabha et al. (2013), (Zaki

et al., 1999) and the references therein provide an excellent summary of early and recent work

in frequent itemset mining. There are also some exceptions to the non-stochastic nature of

itemset mining. Zhang et al. (2008) estimates the probability of itemsets exceeding a specified

frequency, rather than simply screening for itemsets exceeding a threshold. Aggarwal et al.

(2009) and Tong et al. (2012) take more complex model-based approaches to data uncertainty.

Instead of screening for high support, they screen for high expected support under a probability

model.

In general, frequent itemset mining methods are built to handle data that has a potentially

very large number of samples (transactions). However, the number of items is taken to be

moderate (commonly on the order 102 or less), since algorithms typically rely on screening

all possible item subsets of many sizes. More recent work in itemset mining addresses the

challenge of high dimensional data, in which the number of items studied may be very large

(usually 104 or more). Such methods are known as colossal itemset mining. (Here “colossal”

refers to the number of total items being searched for frequent sets, rather than the size of the

discovered itemsets or the number of samples.) As with itemset mining in small data, existing
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methods are primarily non-stochastic, and the research focus is algorithmic and computational

alternatives to an exhaustive search over all possible itemsets. For important examples, see

Liu et al. (2006), Sohrabi and Barforoush (2012), and Zhu et al. (2007). Unfortunately,

public software is not readily available for large data, and foundational small-data methods

like apriori and eclat are still the norm in analyses of market basket data.
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CHAPTER 2

Variable-to-Set Affinity Testing

2.1 Introduction

In general terms, the goal of the association mining algorithms in this dissertation is to identify

subsets of variables that are more associated internally than externally. Classical approaches to

problems of this type typically rely on an optimization algorithm. That is, every variable set or

every partition is given a score intended to measure the strength of in-group versus out-group

association. For example, in k-means clustering (MacQueen, 1967), a particular partition is scored

by the within-cluster sum of squared distances to means. These methods then apply a maximization

(or minimization) procedure with the goal of identifying clusters or communities with high (or low)

scores.

There three main challenges inherent to such approaches. First, if one has a moderate to large

number of variables, it is in most cases computationally intractable to find global optima for a

score. Instead, methods most commonly apply algorithms guaranteed to reach local optima, then

run these localized procedures many times and select the “best” output. For instance, the k-means

algorithm consists of a greedy iterative procedure to refine k cluster centers until the within sum-of-

squares distance to center is locally minimized. Since the locally minimal choice of cluster centers

may be different depending on the starting point, it is common to apply k-means multiple times to

a particular dataset and report only the most optimal partition.

Secondly, even if the global optimum for an association score is accessible, most methods do not

come equipped with any kind of assessment for statistical significance of the results. Any dataset

that is fed to a score maximization type clustering method will yield a result, even if no true

association structure exists in the data. There have been some attempts to quantify the statistical

significance by assuming an underlying generative model; for example, Liu et al. (2008) assigns

significance to clusters under the assumption of an underlying multivariate Gaussian distribution,
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and Lancichinetti et al. (2011) imposes a model on networks and then measures significance of

communities based on asymptotic extreme value results. It is also sometimes possible to derive

measure of significance via a bootstrapping or permutation-based approach, see e.g. Jakobsson and

Rosenberg (2007). However, these solutions all represent ex post facto assessments of clusters or

communities; statistical principles are not embedded in the search algorithm itself.

Finally, existing methods of clustering and community detection commonly require crucial user

input. In k-means and many other clustering methods, one must pre-select k, the number of

clusters. In hierarchical clustering, the final selected partition depends on the choice of where

to cut the dendrogram. For community extraction methods, it is usually necessary to specify a

score threshold above which a community is considered “interesting”. Reliance on user-specified

information weakens the conclusions of association mining as compared to a fully data-driven

method.

As a response to some of the limitations of existing association mining techniques, the methods

in this dissertation make use of the Variable-to-Set Testing (VSAT) algorithmic framework

first introduced by Wilson et al. (2014). VSAT is a general approach to statistical association

mining based in hypothesis testing principles. Methods built from the VSAT algorithm enjoy

many advantages over classical clustering and community detection, such as flexibility to unusual

data types and/or particular measures of association. Associated variable sets selected by VSAT

algorithms have natural statistical interpretations and error control guarantees. Because VSAT type

methods choose variable sets adaptively from significance testing results, one need not pre-specify

a number or size of clusters or a score cutoff. Finally, implementations of VSAT algorithms tend

in general to be computationally efficient. Importantly, the VSAT approach is not an optimization

procedure. No score is involved; rather, sets are chosen organically via testing-based iterative

update.

At present, two VSAT type methods are available for association mining in networks: The ESSC

method of Wilson et al. (2014), for community extraction on unweighted random networks, and the

CCME method of Palowitch et al. (2016), which generalizes ESSC to weighted networks. Chapters

3 and 4 detail two more VSAT type methods for association mining. This chapter generalizes the

VSAT framework for non-network settings, particularly in the context of the methods in this thesis,

and provides a simple theoretical guarantee.
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2.2 The variable-to-set testing algorithm

The VSAT algorithm relies on the determination of a population quantity of interest, a test

statistic, and a null model. The choice of measure of association and assumptions about data for a

particular analysis dictate the appropriate test statistic and null. This chapter provides a discussion

of the VSAT framework in terms of a general choice of measure of association.

Formally, define ζ(j, A) to be a measure of affinity between variable j and variable set A ⊂ [d].

In general, ζ(j, A) is a function of the set of pairwise associations a(j, k) between j and {k : k ∈ A}

for some choice of association measure a(·, ·). Most VSAT methods will define ζ(j, A) to be a simple

average over k ∈ A, that is, ζ(j, A) := |A|-1
∑

k∈A a(j, k). For example, to mine for highly correlated

variable sets, one might set a(j, k) to be the population correlation ρjk between variables j and k,

then let ζ(j, A) be the average of these correlations. In general, however, ζ(j, A) may be chosen

to reflect the association structure of interest in a particular research problem. Given a choice of

ζ(j, A), the VSAT algorithm is designed to use statistical principles to search for ζ-connected

sets, defined as follows.

Definition 1. (ζ-connected set) An index set A ⊂ [d] with at least two elements is ζ-connected

with regard to an affinity measure ζ(·, ·) if

(i) for all j ∈ A, ζ(j, A) > 0, and

(ii) for all j /∈ A, ζ(j, A) ≤ 0.

A ζ-connected set may be thought of as “closed”, in the sense that only elements in the set

have positive affinity (as measured by ζ) with the rest of the set. The VSAT search procedure for

ζ-connected sets is summarized as follows.

1. Initialization: Set A0 ⊂ [d].

2. Testing: Given At, simultaneously test hypotheses for the affinity of j ∈ [d] to At,

H0(j) : ζ(j, At) = 0 vs H1(j) : ζ(j, At) > 0 (2.1)
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by an appropriate multiple testing procedure.

3. Update: Set At+1 = { j : H0(j) was rejected }.

4. Iteration: Repeat steps 3 and 4 until At = At′ := A∗.

5. Output: If A∗ is not empty, select it as an estimated ζ-connected variable set.

6. Repetition: Repeat steps 2-5 as many times as desired, or until no further sets are

found.

Steps 2-5 may be considered a refinement process, during which a proposed ζ-connected set At

is updated in accordance with the results of simultaneous hypothesis tests. Regardless of the size of

initial set A0, the size of output sets A∗ is chosen adaptively by the application of multiple testing.

Furthermore, because updates require statistical significance, not every initial set A0 is guaranteed

to produce convergence to a non-empty set A∗.

If t′ = t − 1, the sets A∗ are fixed points of convergence of the VSAT algorithm in that

further updates will not change the elements of A∗. When t′ 6= t − 1, the algorithm has reached

a cycle of three or more sets At, . . . , At′ that will continue ad infimum as the algorithm continues.

Although these sets are not as ideal as fixed points, which are discussed below, they are often highly

overlapping and may be of interest. Particular implementations of VSAT methods take different

approaches to cycles. For the remainder of this chapter, we restrict our discussion only to fixed

points, or stable sets, which have several desirable properties.

Definition 2. (Stable Set) Let Uα(A,X) denote the index set of the rejected hypothesis tests for

ζ(j, A) = 0 from observed data X. An index set A∗ ⊂ [d] is a stable set in X if Uα(A∗,X) = A∗.

Note, trivially, that A∗ = ∅ is always stable set, albeit not one of scientific interest. There is a

close relationship between nonempty stable sets and the ζ-connected variable sets they approximate.

A stable set A∗ has the property that for hypothesis tests H0(j) : ζ(j, A) = 0 performed on a

particular observed dataset,

(i) for all j ∈ A, H0(j) was rejected, and
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(ii) for all j /∈ A, H0(j) was accepted.

It is clear that A∗ exhibits the properties of Definition 1 up to a level of statistical significance. As

such, the VSAT algorithm is a natural approach to estimating ζ-connected sets from data X.

2.3 Deriving hypothesis tests

The crucial element of the VSAT algorithmic framework is the ability to test the hypotheses

in (2.1) for a desired affinity measure ζ. In order to develop a VSAT type method for a particular

association mining setting, one requires

1. A random vector or matrix X, containing information about variables 1, . . . , d

2. A test statistic S(j, A|X) for ζ(j, A) ; and

3. A null model P0 specifying the distribution of S(j, A|X) when ζ(j, A) = 0.

The test statistic S(j, A |X) will in most cases be a direct estimator for ζ(j, A) from X, such that

large positive values provide evidence for ζ(j, A) > 0. Then, p-values pertaining to the hypotheses

in (2.1) can be computed from an observed dataset X by

p(j, A |X) := P0 (S(j, A |X) > S(j, A |X)) . (2.2)

In other words, the p-values measure the extremity of the observed data X under the a null distri-

bution on X.

The determination of the null distribution P0 is an important aspect of developing a VSAT type

method. The null should reflect, in some sense, an association structure that is not of scientific

interest. In some settings, datasets X will consist of n i.i.d observations of a d-dimensional random

vector X. Then, it is often possible to derive an asymptotic approximation for P0 via a central

limit theorem, under the null assumption ζ(j, A) = 0 and mild regularity conditions on P0. For

example, a simple test statistic for the average correlation between j and A, is the average of sample

correlations, computed in the usual way from samples of X. Steiger and Hakstian (1982) provides a

central limit theorem for a vector of sample correlations under mild conditions. Chapter 3 provides

a more extensive derivation of this type of approximation.
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In other settings, X may simply represent a single instance of a dissimilarity matrix. Such is

the case in the existing VSAT methods for networks (Wilson et al. (2014), Palowitch et al. (2016)).

Observed data in these cases takes the form of a network or a series of networks, represented by

a node set [d] and a (possibly weighted) edge set E capturing relationships between nodes. To

perform inference on these artifacts, a specific null generative model is assumed appropriate to the

data context. Then, the distribution P0 on S(j, A |X) can be derived from this null model.

Remark: Ancillary Statistics. Commonly, the null measure P0, or asymptotic approxima-

tion thereof, will depend on an unknown parameter η that has no bearing on the measure ζ of

interest, but that nonetheless must be estimated from data. For instance, in the example of basic

correlation mining, the asymptotic distribution supplied by Steiger and Hakstian (1982) depends in

part on the covariance between sample correlations, for which an explicit form is derived in terms

of the population moments. In practice, one must estimate the covariances from sample estimates

of moments in order to compute p-values. Ideally asymptotic results regarding P0 continue to hold

when η is replaced by a data-driven estimate η̂.

2.4 Flexibility in objective

An association mining method by the VSAT approach is fully specified by a choice of S(j, A |X

estimating ζ(j, A) and a null model P0. Therefore, in principle, one can use this framework to

perform association mining for any data feature of scientific interest that can be reasonably rep-

resented as a ζ-connected set for some ζ. Notions of pairwise variable relationships that do not

lend themselves well to the creation of a single summarizing dissimilarity matrix, necessary for

most association mining methods, are still possible to study under via VSAT algorithm. The two

methods derived in this thesis, Differential Correlation Mining and Coherent Set Mining, take full

advantage of the flexibility inherent to the VSAT algorithm.

2.4.1 VSAT and Differential Correlation Mining

As introduced in 1.3.2, the Differential Correlation Mining (DCM) method was created to

identify variable sets that are more highly correlated in one sample condition than in another. In
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terms of the VSAT framework,

ζ(j, A) =
1

|A|
∑
k∈A

(R1 −R2)jk and S(j, A |X) =
1

|A|
∑
k∈A

(
R̂1 − R̂2

)
jk
, (2.3)

where R1,R2 are population correlation matrices under two sample conditions and R̂1, R̂2 are

the usual sample correlation matrices computed from observed datasets of samples from the two

conditions, X1 and X2. In the Differential Correlation Mining method, P0 is approximated by a

Gaussian measure based on a central limit theorem for S.

The VSAT flexibility comes into play with regard to the covariance matrix of the test statistic,

{cov (S(j, A), S(k,A))}j,k∈A, which is needed to approximate P0. If one were to apply ordinary

clustering or community detection to the adjacency matrix
(
R̂1 − R̂2

)
, one would not be account-

ing for variability in average correlations of a set A. The Differential Correlation Mining method

allows us to estimate the necessary covariance from data, and therefore to test ζ(j, A) directly. Es-

timated ζ-connected sets are then interpretable as variable sets that have higher average pairwise

correlation in the first sample condition, up to a level of statistical significance.

2.4.2 VSAT and Coherent Set Mining

Section 1.4.2 introduced the challenges of association mining from binary observations, and

gave an example of data for which existing methods are not appropriate. Our approach to this

problem, described in detail in Chapter 4, is to model binary data as a thresholded version of

unobserved latent data. The measure of association of interest is the correlation in the latent data,

i.e., a(j, k) = cor(Zj , Zk) for some latent variable Z ∈ Rd and ζ(j, A) is the average of correlations

between Zj and {Zk}k∈A. However, only a thresholded version of Z given by X ∈ {0, 1}d is

observed. In this setting, one does not have enough information to directly estimate the correlation

structure of Z. That is, it is not possible to craft a test statistic that is a reasonable estimator for

ζ(j, A).

Fortunately, the VSAT approach does not require an estimator for ζ(j, A), only a procedure for

testing departures from ζ(j, A) = 0. The Coherent Set Mining method relies on a carefully define

a statistic S(j, A |X), referred to as “coherence”, such that large values of S(j, A |X) are evidence
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for large values of ζ(j, A). Our null model P0 is then derived in part from a central limit theorem,

and in part from imposed null assumptions about the thresholding of Z to X.

Coherent Set Mining, in other words, is an association mining method capable of estimating

ζ-connected sets, even though ζ itself cannot be estimated. The power of the VSAT framework lies

in its flexibility to uncommon choices of ζ driven by unique data, and to choices of P0 driven by

specific research questions

2.5 Control of global familywise error under the null

Since VSAT algorithms incorporate a multiple testing step at each iteration of the set update

process, it is reasonable to expect that error control properties hold for the entire procedure. Indeed,

it can be shown that in an idealized setting for small α, the probability of false identification is

controlled.

This result, while simple, is important: it guarantees that in data where no signal is present

(as defined by P0), the probability of any stable set being present is controlled at level α. Inter-

estingly, (2.4) is a familywise error control property, even though the multiple testing procedure

of (Benjamini and Hochberg, 1995) only controls False Discovery Rate. Theorem 1 allows us to

have confidence that stable sets discovered by a VSAT type algorithm are likely to reflect true

population structure.

Theorem 1. (VSAT global error control)

Fix α ∈ (0, 0.15]. Let A(X, α) be the class of all stable sets of a VSAT algorithm using the

Benjamini-Hochberg multiple testing procedure (Benjamini and Hochberg, 1995) at level α. Assume

that for any A ⊆ [d], the p-values {p(j, A |X) : j ∈ [d]} are independent and uniformly distributed.

Then,

P0
(
|A(X, α)| > 0

)
< α . (2.4)

where P0 denotes the probability under the null model for X.

2.5.1 Example

The result of Theorem 1 is powerful, but it relies on strong assumptions about the p-values in a

VSAT update step; namely, that they are uniform and independent. Typically, in VSAT methods
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asymptotic uniformity of p-values can be guaranteed by deriving a limiting distribution on the test

statistic. Independence, however, is not always a reasonable assumption. The following example

provides a setting where both conditions of Theorem 1 are met.

Example 2.1. Let P = {pjk} ∈ [0, 1](d×d) be a matrix of fixed probabilities, with pjk not neces-

sarily equal to pkj . Define the measure of affinity for an index j and a set A ⊂ [d] to be

ζ(j, A) =
1

|A|
∑
k∈A

pjk −
1

d− |A|
∑
k∈AC

pjk . (2.5)

Let X ∈ {0, 1}(d×d) be a random matrix with Xjk ∼ Bernoulli(pjk), all independently. Suppose

i.i.d. copies X(1), . . . ,X(n) are observed. Define the test statistic for an index j and a set A ⊂ [d]

to be

S(j, A |X) =
1

n

n∑
i=1

 1

|A|
∑
k∈A

Xjk(i)−
1

d− |A|
∑
k∈AC

Xjk(i)

 . (2.6)

Finally, let the null model P0 be that pj1 = . . . = pjd = pj for every j. Then, ζ(j, A) = 0 for all j

and for any A ⊂ [d]. ♦

The data in Example 2.1 can be interpreted as a set of i.i.d. samples of a directed unweighted

network. For example, the data might represent observations of behavior over time for a group of

individuals, with Xjk(i) representing whether individual j visited the Facebook page of individual

k on day i. Then, a ζ-connected set under the definition of ζ(j, A) would be a group of individuals

who visit each others pages on average more than they visit other people’s. The null model may

be interpreted as an assumption that each individual visits all her friend’s pages equally often.

Since observations Xjk(i) are binary, S(j, A |X) is bounded in [1,−1]. Therefore, since

S(j, A |X) is a sum of bounded i.i.d. variables, an ordinary central limit theorem applies. Note

that the mean of S(j, A |X) is 0 under the null model, and its variance is given by

var(S(j, A |X)) =
1

n

 1

|A|2
∑
k∈A

var(Xjk) +
1

(d− |A|)2
∑
k∈AC

var(Xjk)


=

1

n

(
1

|A|
+

1

(d− |A|)

)
pj(1− pj) . (2.7)
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It is straightforward to show that

p̂j :=
1

nd

n∑
i=1

∑
k∈[d]

Xjk (2.8)

is a consistent estimator for pj under the null. Then, σ̂(j, A) := dn-1(d − |A|)-1(p̂j(1 − p̂j) is

consistent for the variance of S(j, A |X). Therefore, under P0, for fixed A, p-values given by

p(j, A |X) = 1− Φ

(
S(j, A |X)

σ̂(j, A)

)
, (2.9)

where Φ(·) is the standard normal cdf, are asymptotically uniformly distributed. Finally, due to the

fact that pjk 6= pkj and that the variables Xjk are independent, it follows that S(j, A |X) and p̂j are

independent of S(k,A |X) and p̂k for any j 6= k. Then, p(j, A |X) and p(k,A |X) are independent

for j 6= k. We conclude that the setting in Example 2.1 asymptotically satisfies the conditions of

Theorem 1.

2.5.2 Proof

Define Cm := {A : |A| = m}. By construction of the Benjamini-Hochberg procedure, the event

that A ∈ Cm is a fixed point only if

⋂
j∈A

{
p(j, A; X) ≤ mα

d

} ⋂ ⋂
j∈[d]\A

{
p(j, A |X) >

mα

d

}
(2.10)

Since the p-values are independent and uniformly distributed, this implies that for any A ∈ Ck,

P0
(
uα(A) = A

)
=
(mα
d

)m (
1− mα

d

)d−m
(2.11)

Define Am(X, α) to be the class of all stable sets of size m. Then, using equation 2.11 and a union

bound,

P0
(
|Am(X, α)| > 0

)
≤
(
d

m

)(mα
d

)m (
1− mα

d

)d−m
(2.12)

Applying the inequality
(
d
m

)
≤ 1√

2π
( edm )m gives

√
2π P0

(
|Am(X, α)| > 0

)
≤ (eα)m

(
1− mα

d

)d−m
≤ (eα)m
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Since A(X, α) = ∪Am, a union bound gives

√
2π P0

(
|A(X, α)| > 0

)
≤

d∑
m=2

(eα)m =
d∑

m=1

(eα)m − (eα)

As α ≤ 0.15 < 1/e, the sum on the right-hand side is a geometric series. Thus,

√
2π P0

(
|A(X, α)| > 0

)
≤ eα[1− (eα)d]

1− eα
− eα ≤ (eα)2

1− eα
(2.13)

We want to show that P0
(
|A(X, α)| > 0

)
≤ α, i.e., that

(eα)2

1− eα
≤
√

2πα . (2.14)

Re-arranging, we find that α ≤ .15 <
√

2π(e2 +
√

2πe)−1 satisfies (2.14).
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CHAPTER 3

Differential Correlation Mining

3.1 Introduction

Given data obtained under two sampling conditions, it is often of interest to identify variables

that behave differently in one condition than in the other. In this chapter, we present a method for

differential association mining called Differential Correlation Mining (DCM). The Differential

Correlation Mining method identifies differentially correlated sets of variables, with the property

that the average pairwise correlation between variables in a set is higher under one sample condition

than the other. Differential Correlation Mining is a VSAT-style algorithm, so updates are performed

via hypothesis testing of individual variables, based on the asymptotic distribution of their average

differential correlation.

We refer to the target variable sets of Differential Correlation Mining as differentially correlated

(DC) cliques. In a graph, a clique is a set of nodes that is fully connected, in the sense that there

is an edge between every pair of nodes in the set. Informally, a DC clique is a set of variables such

that each variable in the set has a positive (usually large) average differential correlation with the

other variables in the set. More formally, let R1,R2 be the d × d population correlation matrices

of the distributions underlying sampling conditions 1 and 2, respectively. Let A ⊂ [d], where [d] is

the index set {1, ..., d}, and define

∆(j, A) =
1

|A|
∑
k∈A

(R1 −R2)jk (3.1)

to be the average difference of correlations between variable j and variables in index set A. Here

the subscript jk denotes the element in the j-th row and k-th column of the corresponding matrix,

and |A| is the cardinality of the set A. We formally define DC cliques as follows.
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Definition 3. Let R1,R2 be given and let ∆(·, ·) be defined as in (3.1). An index set A ⊆ [d] with

at least two elements is a DC clique for R1 −R2 if

1. ∆(j, A) > 0 if and only if j ∈ A,

2. The set A cannot be written as a disjoint union of nonempty index sets A1, A2 ⊂ [d] such

that A1 and A2 satisfy condition 1 above.

Condition 1 ensures that no relevant variables are omitted from a DC clique (every variable

that is positively differentially correlated relative to the set A is included in A) and that a DC clique

does not contain any extraneous elements. Condition 1 implies that a DC clique has larger average

pairwise correlation under the first distribution than under the second. Condition 2 ensures that a

DC clique cannot be subdivided into two smaller DC cliques. Importantly, the definition places no

conditions on the correlation matrices R1 and R2. In particular, R1 and R2 need not be sparse,

and need not satisfy any structural constraints such as bandedness. For a given pair R1,R2, it

may happen that no DC cliques exist, or that the entire variable set forms a DC clique.

Note that the definition of DC cliques is not symmetric: in general, the DC cliques for R1−R2

will be different from those for R2 −R1. The difference lies not in the relational structure itself,

but rather in how we order the sample conditions (1 or 2). For example, in biological data, one

sample group may involve a treatment condition, while the other is a reference or control group.

A DC clique for R1 −R2 would contain genes that are more highly correlated in Condition 1 than

Condition 2, for example, a protein pathway that is more active in Condition 1. This structure is

illustrated in Figure 1.1.

The asymmetry in DC cliques could be eliminated by replacing the relevant section of (3.1)

by a symmetric notion of difference such as |R1 −R2|. However, a variable set based on absolute

difference (or similar) could contain a mixture of elements with positive correlation to A and

elements with negative correlation to A. Such mixed groups would not exhibit the unified block

structure of the type seen in Figure 1.1. Further, large variable sets with strong average negative

correlation cannot occur. Simple algebra shows that since R1 is positive definite, the average

pairwise correlation in Condition 1 of any set A with m elements must be at least - 1
(m−1) .

As defined above, DC cliques are features of the underlying population distributions of the data.

In practice, we will replace R1,R2 with estimates from observations, accounting for the uncertainty
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in these estimators, to select empirical DC cliques. The broad objective of Differential Correlation

Mining is to use observed data to identify DC cliques, or approximations of these, without prior

knowledge of the identity, number, or size of the DC cliques present in the population. It is worth

noting that the Differential Correlation Mining algorithm and supporting analysis described here

are easily adapted to a non-differential correlation mining algorithm. An implementation of a

correlation mining procedure is included along with the public DCM software.

Notation. In what follows, we assume that the data under condition 1 consists of n1 independent

samples drawn from a distribution F1 with correlation matrix R1, and that the data under condition

2 consists of n2 independent samples drawn from a distribution F2 with correlation matrix R2. Let

X1 = (U1, ...,Ud) ∈ Rn1×d and X2 = (V1, ...,Vd) ∈ Rn2×d denote the resulting data matrices

in standard sample-by-variable form. Thus Uj ∈ Rn1 denotes the measurements of variable j

under condition 1, while Vj ∈ Rn2 denotes the measurements of variable j under condition 2. Let

X1,A = (Uj)j∈A and X2,A = (Vj)j∈A denote the restriction of X1 and X2, respectively, to a variable

set A ⊂ [d]. Similarly, let R1,A and R2,A denote the correlation matrices under the distributions

of F1 and F2 restricted to the variables in A.

Let Ũj and Ṽj be the standardized versions of Uj and Vj respectively, such that ‖Ũj‖ =

‖Ṽj‖ = 1, and define X̃1 = (Ũ1, ..., Ũd) and X̃2 = (Ṽ1, ..., Ṽd). Finally, let R̂1 and R̂2 denote

the usual sample correlation matrices of X1 and X2, respectively (and R̂1,A and R̂2,A those of the

appropriate restricted datasets). Thus
(
R̂1

)
jk

= ĉor (Uj ,Uk) =
(
X̃t1X̃1

)
jk

and a similar relation

holds for R̂2.

3.2 The Differential Correlation Mining Method

The Differential Correlation Mining procedure has two main components: initialization and set

update. These are discussed in detail in Sections 3.3 and 3.4. In brief, the Differential Correlation

Mining procedure first employs a simple greedy algorithm to select an initial variable set A. Once

the initial set is determined, it is passed to an update algorithm that iteratively refines the set,

making use of a hypothesis testing framework to test variables for differential correlation. When

an estimated DC clique is found, a residualization process prepares the data for further search by

removing the differential correlation of the discovered set.
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An important advantage of this type of approach is that the number and size of output sets are

chosen adaptively based on testing principles. The Differential Correlation Mining method does

not require pre-specification of number of clusters (as in kmeans), nor does it require an additional

decision about cluster size (as in hierarchical clustering). Rather, the multiple testing procedure in

the iterative step of Differential Correlation Mining naturally determines the number of variables in

an output set. Differential Correlation Mining also differs from typical clustering procedures in that

it does not require the calculation of a full d×d dissimilarity matrix, which can be a computational

advantage in high dimensional data.

The Differential Correlation Mining procedure is summarized below. Detailed pseudocode is in

Appendix A.

The Differential Correlation Mining Method

1. Initialization: Identify a good initial variable set A using a greedy algorithm that identifies

a local maximum of a simple score function.

2. Iteration: Refine the initial set A. At each iterative step, repeat the following until

termination.

B Test the differential correlation of each variable j with respect to A. Let A′ be the

set of variables with significant differential correlation, as determined by an FDR

controlling multiple testing procedure.

B Terminate if A′ = A or a cycle is observed.

B Update: Set A to be A′.

3. Return: Output variable set A.

4. Residualization: Remove the effect of the DC clique A.

5. Repeat search with new initial set as many times as desired.
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Iterative updating using multiple testing was first applied by Wilson et al. (2014) in the context

of community detection for binary networks. Differential Correlation Mining makes use of the same

search paradigm; however, a fundamentally different treatment is required to address differential

correlation. In particular, the work of Wilson et al. (2014) performs hypothesis tests based on a fully

constructed null model, whereas Differential Correlation Mining requires no structural assumptions

on the null distribution of the data beyond equal correlation (R1 = R2) and some mild moment

conditions (see Theorem 2).

3.2.1 Minor Algorithmic Details

Residualization In general, we expect multiple DC cliques in a dataset. The residualization

step allows the Differential Correlation Mining procedure to search the same dataset many times,

avoiding repeated results. Suppose an empirical DC clique A has been selected. Our approach is

to estimate a rank one approximation of correlation matrices R̂1,A and R̂2,A via factor analysis

(Harman, 1960). We then substitute the relevant submatrices, X1,A and X2,A, with residualized

data for which the estimated rank one correlation has been removed. Methods of estimation and

removal of low-rank correlation have been well established in the literature. In the DCM software,

we use the implementation of Friguet et al. (2012) for the R Statistical Software version and the

method of Bishop (2006) for the Matlab version.

By opting for rank-one approximation, we are taking a conservative approach to residualization.

It is conceivable that the correlation structure of A is of higher rank. If so, A may be selected more

than once; however, since each time the data is being further residualized, we are guaranteed to

eventually remove all structure of A. In practice, we have yet to encounter a duplicate result from

real data.

Minimality. A nonempty fixed point A of the set update procedure has the property that,

analogously to Definition 3, H0(j, A) is rejected if and only if j ∈ A. The second condition of

Definition 3, however, is not guaranteed in general. It is possible that Differential Correlation

Mining may select a large set that in truth consists of two (or more) disjoint population DC cliques.

These cases are well addressed by the residualization step. When a conglomerate estimated DC

clique is residualized, the joint structure is removed, leaving behind the individual structure of the
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disjoint DC cliques. Further runs of the Differential Correlation Mining algorithm are then able to

identify the separate DC cliques.

In extreme cases, the sampled data may be such that the disjoint DC cliques are, by chance,

correlated enough to have negligible remaining individual structure after residualization. This

correlation may render the multiple DC cliques indistinguishable in the data from a combined DC

clique.

Cycles. Under certain conditions, the main search procedure terminates in a cycle of two or

more sets. When the set update procedure oscillates between two sets A1 and A2, we restart the

search on the intersection A = A1∩A2. In this case, the algorithm usually converges to fixed point

in the vicinity of the intersection. If the oscillation persists, we output the intersection A = A1∩A2.

This overlap set has the property that H0(j, A) will be rejected for all j ∈ A1, A2, so it is worth

attention as an empirical DC clique.

Cycles of length greater than two are rarely observed in real or simulated data. However, to

protect against longer cycles leading to infinite loops, the algorithm terminates at a maximum

iteration limit.

Completion. In principle, the Differential Correlation Mining procedure can be run from many

initial sets. In practice, we consider the procedure to have been “run to completion” if every

variable has been included in at least one initial set and/or output set. Our implementation of

the method is thus designed to randomly choose seed sets at each run from among the remaining

unused variables. Note that this approach does not prevent variables from appearing in multiple

output sets.

Data cleaning. Certain data artifacts that contradict our base assumptions can skew the DCM

results. The software implementation is built to detect and remove (a) missing data, (b) rows or

columns with more than 10% zeros, and (c) rows with approximately zero variance. Further, the

software checks for extreme deviations from normality, which might indicate improper tail behavior,

as well as large overall correlation difference between conditions. These cases are flagged for the

user, but not forcibly prevented.
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3.3 Initialization

The set update procedure in the second step of Differential Correlation Mining readily identifies

variables that are significantly differentially correlated relative to a given variable set A, and is

most effective when the initial set of variables exhibits at least low levels of differential correlation.

(When applied to a randomly chosen set of variables, the set update procedure typically returns an

empty set.) The core search procedure could be run exhaustively, beginning with every variable set

A ⊂ [d], but this is not computationally feasible for data sets of high or moderate dimension. As an

alternative, we identify initial variable sets exhibiting a moderate degree of differential expression

using a greedy search procedure. We then pass this initial skeleton clique to the set update process

to be fleshed out into a final estimated DC clique.

The initialization procedure seeks a local maximum of the score function

S(A) =
∑
j,k∈A

{
(n1 − 3)1/2 ϕ

(
R̂1

)
− (n2 − 3)1/2 ϕ

(
R̂2

)}
jk

(3.2)

where ϕ is the element-wise Fisher transformation of sample correlations, namely

ϕ(r) =
1

2
log

(
1− r
1 + r

)
. (3.3)

To find a local maximizer of S(·), we begin with a random seed A. We consider only pairwise

swaps in which we replace an element of A with one from Ac. The set A is then updated by making

the swap that produced the largest increase in the score. Since exactly one element is added and

removed at each stage, the size of the variable set remains constant. Because of the random seeding,

the algorithm is not purely deterministic. However, in practice the same local maximum is reached

from most seeds.

We make use of the variance-stabilizing Fisher transformation in the initialization procedure

as a way of roughly capturing significance of differential correlation instead of simply maximizing

over absolute differences R̂1 − R̂2. The transformation, and subsequent weighting by degrees of

freedom, ensures that the first and second terms in the sum are approximately standardized. As

such, sets maximizing S(·) are good ballpark guesses for true DC cliques. In the core set update

procedure (Section 3.4), we employ a precise testing approach to measure significance of average

34



(a) Sample correlation, Condition 1 (b) Sample correlation, Condition 2

Figure 3.1: Sample correlation of simulated data.

differential correlation, so the initial sets need not be perfect. It is simply computationally more

efficient to “warm-start” the algorithm with a reasonable set than to apply the core refinement

procedure from random starting points.

Importantly, the cardinality of A is user-specified (with a default of 50). Due to the subsequent

set update procedure, which adaptively chooses the size of a final output set A∗, we need not be

completely confident in our choice of initial choice of cardinality. We also can generally expect re-

sults of the initialization procedure to be similar for similar cardinalities |A| = m. As an illustration

of this phenomenon, we demonstrate the behavior of the initializing algorithm on artificial data.

We generate 101 samples of a Gaussian random of 2,000 variables for each of two conditions. In

Condition 2, the data is fully uncorrelated. In Condition 1, we include five correlated blocks with

different correlation strength. Figure 3.1 shows the sample correlations for this simulated dataset.

It is clear that five distinct DC cliques are present, with decreasing signal size. A good initial-

izing search procedure would have two properties: First, that when true DC cliques, selected sets

of the correct size usually approximate these well; and second, that if the chosen cardinality m of

the search procedure is too small or too large, selected sets will be sub- or super-sets of the true

DC cliques. We find that our initializing method indeed exhibits these properties, as illustrated by

Figures 3.2 and 3.3 for the artificial dataset.
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(a) 500 initial sets, without removal (b) First 10 initial sets, with removal

Figure 3.2: Overlap between initialized sets and DC cliques.

Figure 3.2(a) shows the percent of times, out of 500 separate runs with different random seeds,

the initializing algorithm with m = 50 selected each of the DC cliques at less than 5% error. The

algorithm selects one of the first three DC cliques nearly perfectly a high percentage of the time.

Figure 3.2(a) shows 10 runs of the initializing algorithm, this time with the selected set removed

from consideration in future seeds after each run. This figure shows that all five DC cliques are

discovered to some degree in the first five runs of the initializing procedure. Although DC cliques

4 and 5 were never found in the 500 runs of 3.2(a), Figure 3.2(b) makes it clear that these lesser

cliques are discoverable once the overshadowing signal of the stronger cliques is ignored.

In Figure 3.3, 5 distinct variable sets were selected for each value of m, and these are plotted

according to their difference of average sample correlation. Colored points indicate that the set

had at least 90% overlap with one of the true DC cliques in Figure 3.1. It is clear that even for

misspecified m, the initializing procedure mostly selects sets that either contain or are contained

by true DC cliques.

Pseudocode for the implementation of the initializing algorithm is provided as supplemental

material. A closely related method is implemented in Section 3.6 for comparison with Differential

Correlation Mining.
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Figure 3.3: Initial sets at various sizes, colored by overlap with true DC cliques

3.4 Core set update procedure

The heart of the Differential Correlation Mining procedure is the set update algorithm, which

makes use of multiple testing principles to iteratively refine a variable set A. Recall that the goal

of Differential Correlation Mining is to estimate DC cliques from the data. To this end, the set

update procedure is designed to identify variable sets exhibiting the properties of a true DC clique

up to a level of statistical significance.

Consider a single iterative step, at which we update a given variable set A. We wish to determine

whether each variable j (including those in A itself) ought to be included in the updated set A′.

Since our eventual goal is to discover a DC clique, we perform hypothesis tests based upon the

principles of Definition 3. For a given variable set A, the tests for variable j may be written as

H0(j;A) : ∆(j, A) = 0 vs. H1(j, A) : ∆(j;A) > 0 . (3.4)
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Recall that ∆(j, A), as defined in (3.1), is a difference of average pairwise correlations between j

and elements of A, so (3.4) is a test of differential correlation relative to the fixed set A. We then

update the set A to A′ = {j : H0(j, A) was rejected} by simultaneous multiple hypothesis testing.

This process continues until a fixed point A = A′ is reached.

To test the hypotheses in (3.4), we require a test statistic. A natural choice is the corresponding

sample quantity,

∆̂(j, A) =
1

|A|
∑
k∈A

(R̂1 − R̂2)jk. (3.5)

In addition to being a straightforward choice, this test statistic exhibits several desirable properties

discussed in Section 3.5.

Let δ(j, A) denote the realized value of the test statistic ∆̂(j, A) for a particular dataset. It

is clear that large positive values of δ(j, A) provide support for the alternate hypothesis in (3.4),

while values that are negative or close to zero provide evidence in favor of the null. Thus, to test

the hypotheses, for each j = 1, . . . , d we calculate a p-value of the form

p(j, A) = P0
(

∆̂(j, A) > δ(j, A)
)
, (3.6)

where the probability P0 is the (unknown) distribution of ∆̂(j, A) under the null hypothesis

∆(j, A) = 0. Since we make no assumptions about the distributions of data under Conditions

1 and 2 , we make use of asymptotic results to approximate the above probability. We show in

Section 3.5.2 that, under appropriate regularity assumptions, and for large enough sample sizes n1

and n2,

p(j, A) ≈ 1− Φ

(
δ(j, A)

σ̂0(j, A)

)
, (3.7)

where σ̂20(j, A) is an estimate of the variance of ∆̂(j, A) that can be computed from the available

data. (The exact form of σ̂20 is given in Section 3.10.2.)

The collection of p-values {p(j, A)}dj=1 measure the significance of the differential correlation of

each variable relative to A. To select a set of significant variables A′, we apply the modified FDR

procedure of Benjamini and Yekutieli to the p-values. Specifically, we carry out the following steps

1. Order the p-values {p(j, A)}dj=1 as {p(1), ...,p(d)}.
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2. Define the cutoff index k∗ by

k∗ = max

k : p(k) <

 d∑
j=1

1/j

−1(kα
d

) . (3.8)

3. Let A′ = {j : p(j;A) ≤ p(k∗)}.

Recall that we impose no assumptions on the structure of correlation matrices R1 and R2.

In particular, it is possible that p-values p(j, A) and p(k,A) may be negatively correlated. For

example, it is common in genetics for individual pairs of genes to exhibit negative correlation; in

this case, a low p-value for one gene will imply a high p-value for the other. Most common multiple

testing methods assume independence or positive dependency between p-values. The possibility

of negative dependency of p-values necessitates a more conservative multiple testing method such

as that of of Benjamini and Yekutieli (2001), which controls the expected False Discovery Rate at

level α under negative dependence.

The main search procedure terminates when it degenerates (A = ∅) or converges (A = A′ 6= ∅).

For the degenerate case, the interpretation is simple: the initial set (chosen in the first step of the

Differential Correlation Mining procedure) was not significantly differentially correlated. In the

second case, we have identified an empirical DC clique, in the sense that by design, a nonempty

fixed point A meets the first requirement of a DC clique in Definition 3 up to a level of statistical

significance. The only other possible outcome of the iterative search procedure is a multi-set cycle,

which is discussed in Section 3.2.1.

3.5 Properties of the Test Statistic

We now discuss some properties of the test statistic ∆̂(j, A) used in the calculation of p-values

for the set update procedure.

3.5.1 Geometric Interpretation

The equation for ∆̂(j, A) given in (3.5) expresses the test statistic directly in terms of average

differential correlation. However, we may also write ∆̂(j, A) in an alternate form that yields an in-

formative geometric interpretation. Let Ũj ∈ Rn1 and Ṽj ∈ Rn2 be the standardized measurements
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of variable j under sample conditions 1 and 2, respectively; and let

W1 :=
1

|A|
∑
k∈A

Ũk and W2 :=
1

|A|
∑
k∈A

Ṽk (3.9)

be the vector means of the standardized measurements of the variables in A under each condition.

It is easily shown that

1

|A|
∑
k∈A

ĉor (Uj ,Uk) = W t
1Ũj = ‖W1‖ ĉor

(
Ũj ,W1

)

and therefore

∆̂(j, A) = ‖W1‖ ĉor
(
W1, Ũj

)
− ‖W2‖ ĉor

(
W2, Ṽj

)
.

Note that the vector Ũj and the vectors {Ũk : k ∈ A} lie on the surface of an (n1 − 2)-

dimensional sphere embedded in Rn1 , and that W1 is the geometric center (centroid) of the latter

collection. The norm ||W1|| is between 0 and 1; large values of ||W1|| correspond to the centroid

being closer to the surface of the sphere, indicating that the vectors {Ũk : k ∈ A} are tightly

clustered, or equivalently, highly intercorrelated. Thus the quantity ‖W1‖ ĉor
(
W1, Ũj

)
weights

the similarity of Uj and the centroid W1 according to the overall similarity of the vectors {Ũk :

k ∈ A}. Similar remarks apply to {Ṽk : k ∈ A} and W2. The statistic ∆̂(j, A) is the difference of

the summary measures in conditions 1 and 2.

Figure 3.4 gives a simple two-dimensional representation of the geometric picture discussed

above. In Condition 1, Uj is not strongly correlated with W1, but ‖W1‖ is large because the

vectors indexed by A are tightly clustered. In Condition 2, Vj is strongly correlated with W2, but

‖W2‖ is small because the vectors indexed by A are not tightly clustered. In this example, ∆̂(j, A)

is close to zero, and we would likely conclude no differential correlation is present.

3.5.2 Asymptotic distribution of the test statistic

We now discuss the asymptotic distribution of ∆̂(j, A), from which the p-values used in Section

3.4 are derived. First, we make note of a classical result concerning sample correlations.

Theorem 2. (Steiger and Hakstian, 1982) Let R be a d × d correlation matrix, and R̂ the

corresponding sample correlation matrix based on n i.i.d. samples of d-variate data with finite 4th
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Figure 3.4: Geometric representation of data in two dimensions.

moment. Let P and P̂ be the vectorized versions of the matrices, of dimension d2 × 1. Then, as n

tends to infinity
√
n
(
P̂−P

)
⇒ Nd2 (0,Σ) ,

where Σ is a d2 × d2 covariance matrix for which a general form is given equations (3.1-3.5) in

Browne and Shapiro (1986).

Using Theorem 2 one may evaluate the asymptotic distribution of ∆̂(j, A), which is a function

of P and P̂.

Corollary 1. Let A be a fixed index set and let ∆̂(j, A) be defined as in (3.5), with sample cor-

relation matrices R̂1 and R̂2 based on n1 and n2 independent samples from distributions F1 and

F2 respectively. Let σ20(j, A) := var
(

∆̂(j, A) |H0

)
, where H0 is the null hypothesis in (3.4). Then,

under H0,

∆̂(j, A)

σ0(j, A)
⇒ N (0, 1) (3.10)

as min(n1, n2)→∞.

A proof of Corollary 1 is supplied in Section 3.10.1.

In practice, the variance σ20(j, A) is not known. We can use the results in Steiger and Hakstian

(1982) for the asymptotic variance of ∆̂(j, A), which leads to a consistent estimator σ̂0(j, A), the
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derivation of which is detailed in Section 3.10.2. We note that regardless of the size of A, the

calculation of σ̂0(j, A) requires basic operations on only three n1 vectors and three n2 vectors.

Such algebraic simplification is important, since in practice the variance estimate must be calculated

separately for every variable j ∈ [d] and for multiple iterative steps of the Differential Correlation

Mining algorithm.

Remark. The results of Corollary 1 apply to variable sets of fixed cardinality (|A| = m) as

n1 and n2 tend to infinity. In practice, one may encounter variables sets for which m > n1, n2.

Simulations suggest that the Differential Correlation Mining algorithm still identifies DC cliques

with high success and controls false discovery in such settings even when the cardinality of |A|

greatly exceeds the sample size.

3.6 Simulation Study

To test the Differential Correlation Mining method against possible alternatives, we imple-

mented a simple study of performance on simulated data. We created artificial datasets containing

a single DC clique and compared the results of several methods to the known truth. Although the

simulated setting is not a perfect representation of real data situations, it readily illustrates the

advantages of Differential Correlation Mining as opposed to existing methods.

3.6.1 Simulated Data

We generated data with a single embedded DC clique, consistent with Definition 3. Our study

varied the following parameters: size of the DC clique (m), total number of variables (d), strength of

the true correlations in each sample condition (ρ1 and ρ2), and samples sizes of the two conditions

(n1 and n2). In both sample conditions, the DC clique signal was layered on top of either (a)

uncorrelated Gaussian noise or (b) a randomly real data sample from The Cancer Genome Atlas

gene expression data. For an illustration of the form of the simulated data, refer to Figure 3.1 and

the discussion thereof, where the data has five DC cliques rather than only one, but is otherwise

generated in an identical fashion.
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3.6.2 Methods implemented

To compare Differential Correlation Mining to alternate approaches, we implemented or adapted

representative methods from those discussed in Section 1.3.2 to search for DC cliques.

Detection of isolated changes (DCP). Although the goal of Differential Correlation Mining is

to identify sets of variables, certain existing methods are designed to find individual (or isolated)

variables whose correlations structure changes across conditions. The Differential Correlation Pro-

file (DCP) method of Liu et al. (2010) is one such approach, using permutation of samples to

determine the significance of correlation difference for each individual variable. Importantly, this

approach identifies a list of individual differentially correlated variables, rather than a united set.

For the purposes of this study, we treated the collection of selected variables as an estimated DC

clique.

Mining a single correlation matrix (WGCNA, NetTop). One approach to mining differential

correlation is to analyze each sample condition separately, then compare results. The Network

Topology (NetTop) method of Bockmayr et al. (2013) creates network representations for each of

the two sample conditions by thresholding the corresponding Fisher-transformed sample correlation

matrices. Connected components that appear in one network and not the other are considered to

be differentially correlated variable sets.

The Weighted Gene Co-Expression Network Analysis (WGCNA) method of Langfelder and

Horvath (2008) is a hybrid approach which mines for clusters (or “modules”) in a single correlation

matrix, then tests each module for differential expression across conditions. Thus, although the

WGCNA method involves both differential and second-order elements, it is not designed to search

for DC cliques or similar structures. For the purposes of this simulation study, we applied WGCNA

to samples from condition 1 only. We then tested the output module for differential correlation

via a standard t-test over sample correlations in conditions 1 and 2. In this way, we attempted to

only select variable sets exhibiting differential correlation, even though WGCNA does not naturally

identify modules with this property.

Mining dissimilarity matrices (hclust, D-Est, DiffCoEx). Another possible approach is to

summarize differential correlation in a single dissimilarity matrix, then select variable sets via

ordinary clustering methods. We implemented a straightforward version of this approach, applying
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hierarchical clustering to the difference of sample correlation matrices, R̂1 − R̂2. To circumvent

the challenge of selecting a cutoff in the dendrogram, we instead chose the first cluster of size less

than or equal to the true DC clique. (In practice, the true size would not be known, so we would

be less sure of the “best” cutoff point.) We also applied this idealized hierarchical clustering to D̂,

the estimator suggested in Cai and Zhang (2014) for directly estimating D = R1 −R2. Finally,

the DiffCoEx method of Tesson et al. (2010) is a modification of WGCNA; a dissimilarity matrix is

created based on adjusted sample correlations, then the clustering approach of WGCNA is applied.

3.6.3 Results

We applied the seven proposed methods (DCM, DCP, NetTop, WGCNA, hclust, D-EST, and

DiffCoEx) to several simulated datasets at each of many parameter combinations. We found that

all methods behaved similarly with regard to changes in sample sizes n1, n2 and clique size m

(relative to d). Here, we present only the results regarding the correlation signal size (ρ1 vs. ρ2)

and the different background types, to illustrate key differences in performance between methods.

By default, the other parameters were set to be n1 = n2 = 100, m = 100, and d = 1000.

The success of the methods was measured by the false positive rate (FPR), the percentage of

variables in a selected set that were not in the seeded DC clique, and the true discovery rate (TDR),

the percentage of detected variables from the true DC clique. That is, if B was the output variable

set of a procedure and A = (1, . . . ,m) was the embedded DC clique, then

False Positive Rate =
|B \A|
|B|

and True Discovery Rate =
|B ∩ A|
|A|

.

To control false discovery, we disregarded output variable sets with more than 5% FPR. Figure

3.5 shows the percent of variables in the seeded DC clique that were successfully identified by

each method (the TDR) after false discovery screening, for various strengths of true differential

correlation (ρ1 − ρ2 grows). Figure 3.6 examines the scenario where ρ1 = ρ2 6= 0; that is, when

correlation was present in both sample conditions but not differential. Figure 3.6 shows the size of

selected variable sets - ideally, DC mining methods would return no results in these cases. All result

reflect an average of 10 simulations at each data point, with all other parameters set to default

values.
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(a) Gaussian noise background (b) Real data background

Figure 3.5: True discovery rates when false positive controlled at 0.05 level.

(a) Gaussian noise background (b) Real data background

Figure 3.6: Sizes of incorrect variables sets when no differential correlation is present.
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Figure 3.7: Detection rate for various dimensions.
(m = 100, ρ1 = 0.3, ρ2 = 0.1)

DCM was able to control false positives in all cases except for some error when there was very

low signal in the real data background, which may be due to actual signal being present in the

randomized real data. Differential Correlation Mining also began to reliably detect DC cliques at

a lower signal (around a correlation difference of 0.2 at the default parameters) than every method

except WGCNA with Gaussian background. We find that this discovery rate is not noticeably

affected by the total number of variables d; Figure 3.7 provides evidence of stable discovery rate

for Differential Correlation Mining over different values of d.

In randomized real data (Figure 3.5b), WGCNA did not control the false positive rate. This

is because WGCNA is a method for non-differential analysis, so when applied to Condition 1 data,

it (correctly) identifies many correlated variables - even though these are often equally correlated

in Condition 2. Although we have adapted the method to test selected modules for differential

correlation, true DC cliques are obscured by existing non-differential structure.

The hclust and D-EST approaches behave as expected: because we chose a cutoff of the

hierarchical clustering dendrogram by size, our approach necessarily returns a nonempty variable
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set. This caused the false positive rate to be high for small or no signal. Similarly, NetTop relies

on a thresholding procedure to maximize differences between conditions, so it is likely to find signal

even when none is present. However, even if the false positives were perfectly controlled in some

way, these methods show a lower detection point than Differential Correlation Mining.

DiffCoEx performed the strongest in our simulations, as it was able to control false discovery

in most cases while still detecting DC cliques at a reasonable rate. Differential Correlation Mining,

however, proved more sensitive without sacrificing error control.

Finally, DCP, and any approach that seeks isolated structure rather than unified sets, is likely

to greatly overselect variables in the uncorrelated background case because the mutual behavior

of the variables in a DC clique will induce some correlation structure in the extraneous variables.

Figure 1.1 illustrates this phenomenon, as there is some pattern in the cross correlation between

variables in B and A. This result emphasizes the danger of the common approach of looking

for isolated changes in correlation structure of individual variables, rather than searching for DC

cliques: vestigial correlation patterns may be misleading.

Remark. We also implemented versions of the iterative testing update procedure using different

hypothesis testing approaches, including a Normal approximation to Fisher-transformed data and a

classic likelihood ratio test as derived in Muirhead (1982). We found that neither approach yielded

a higher discovery rate (with controlled FDR) than Differential Correlation Mining.

3.6.4 Computation

Figure 3.8 shows the computation times for all tested methods on a log scale and an absolute

scale. Since modern datasets tend to have dimension in the tens or hundreds of thousands of

variables, the exponential differences between method runtimes are crucial to the practicality of

analysis. All methods except the basic hclust required exponentially more runtime than Differential

Correlation Mining.

One important limitation of common approaches to correlation mining (including DCP, D-Est,

hclust, and NetTop) is that memory demands scale on the order of at least d2, as they necessitate

estimation of full d by d dissimilarity matrices. Permutation- or repetition-based methods such as

DCP and NetTop are even more infeasible in high dimensions, since they require the computation

of a d by d correlation matrix for each of many permutations (this is why the simulations were
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(a) Log scale (b) Exact scale

Figure 3.8: Computation time to find a single variable set.

truncated in Figure 3.8). An advantage of Differential Correlation Mining is that only a the |A|×d

portion of sample correlation matrices corresponding to proposed set A must be computed at any

given time.

3.7 Data Analysis: TCGA

As introduced in Figure 1.1, we applied the Differential Correlation Mining procedure to data

from The Cancer Genome Atlas, with samples from two pre-determined breast cancer subtypes:

Her-2 and Luminal B. The dataset consisted of 51 tissue samples from the Her-2 subtype and 152

samples from the Luminal B subtype. A total of 14 empirical DC cliques (more correlated in Her-2

than in Luminal B) were discovered, ranging in size from 8 to 102 genes. These sets are summarized

in Table 3.1, which is ordered by a rough measure of “signal” calculated from the square root of

the set size multiplied by the average differential correlation of the set. The gene memberships of

the sets are available in Table B.1 in Appendix B.

To illustrate how this information may be useful to genomic research, we briefly discuss one

of the discovered gene sets. The set of interest contained 48 genes, listed alphabetically in Table

3.2. These genes are found to be highly associated with immune response, particularly the HLA
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Table 3.1: Summary of DC cliques found in TCGA data

Label Size Mean Corr, Her-2 Mean Corr, Lum-B

1 31 0.85 0.05
2 102 0.74 0.40
3 48 0.62 0.04
4 22 0.89 0.07
5 73 0.48 0.07
6 59 0.48 0.03
7 123 0.35 0.05
8 63 0.53 0.18
9 30 0.45 0.08
10 32 0.52 0.16
11 25 0.50 0.16
12 15 0.48 0.08
13 13 0.49 0.07
14 8 0.42 0.09

Table 3.2: Genes selected in empirical DC Clique for Her2 vs. Luminal B samples.

AGER amt APOL1 ARPC4 B2M BATF2 BTN3A2
BTN3A3 C19orf38 calml4 CCDC146 CHKB-CPT1B echdc1 ETV7
EXOSC10 FBXO6 GBP1 GBP4 GJD3 gnb3 HLA-A
HLA-B HLA-C HLA-E HLA-F HLA-H HSH2D IDO1

IL15 Irf1 LOC115110 LOC400759 LOC91316 micB Myo15b
OASL PILRB Rec8 Rufy4 SAMD9L SEC31B STAT1
tap1 Tapbp TTLL3 TXNDC6 Ube2l6 Zbp1

(Human Leukocyte Antigen) gene class, represented by six of the genes in the set (emphasized

in bold). Researchers are interested in understanding how and why some cancer subtypes trigger

immune response while others do not. For example, Iglesia et al. (2014) showed that prognosis was

improved for patients with Her-2 and Basal-like subtypes showing higher immunoreactive response.

Further exploration of DC cliques such as the one in Table 3.2 may further understanding of the

gene interactions that drive immune response.

Although no methods besides Differential Correlation Mining are feasible for data of this size,

we compared the performance of Differential Correlation Mining and related methods in a limited

set of the TCGA data. We included the first large DC clique selected by Differential Correlation

Mining (size 102) and 500 randomly selected genes. Table 3.3 shows the output of competing

methods applied to this data. For the primary selected set for each method, we measure the

number of genes that overlapped with the DC clique and the number that did not. Using the
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Table 3.3: Results from competing methods, compared to Differential Correlation Mining result

Method Size Found Num in DC Clique FDR TDR

hclust 270 101 0.63 0.99
WGCNA 87 74 0.15 0.73

DCP 56 50 0.11 0.49
D-Est 100 71 0.29 0.70

DiffCoEx 6 6 0.00 0.06
NetTop 332 99 0.70 0.97

selected DC clique from Differential Correlation Mining as a reference, we compute the False and

True Discovery Rates for each method as in Section 4.

3.8 Data Analysis: The Human Connectome Project

The Human Connectome Project is a multi-institutional venture aimed at mapping functional

connections between parts of the human brain. The project has collected vast amounts of brain

scan data, all of which is publicly available to researchers online at www.humanconnectome.org.1

In this analysis, we made use of a dataset from the “500 Subjects MR” data release, which con-

sists of functional magnetic resonance imaging (fMRI) brain scans for 542 healthy adult subjects.

Participants performed a variety of tasks during the MR scan, designed to isolate certain types of

brain functionality. Measurements of brain activation were taken at frequent time steps over the

course of the tasks (316 steps for language tasks; 284 for motor tasks) at locations corresponding

to ∼30,000 voxels (the brain’s white matter interior) and ∼60,000 greyordinates (the grey matter

brain surface). We applied Differential Correlation Mining to data from a single subject.2 Our

analysis compared two task categories:

Language-based tasks: During the scan, subjects were told brief stories and asked to answer

questions after each one about what they were told.

Motor-based tasks: Subjects were attached to motion sensors at the hands, feet, and tongue.

They were then asked to move one appendage at a time, in blocks of repetitions.

1Data was available in pre-processed form; see http://www.humanconnectome.org/about/project/

MR-preprocessing.html for further detail.

2Subject #101006, a 35-year-old female.
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Differential Correlation Mining was applied the data for 91,282 brain locations to find DC cliques

of voxels and greyordinates that exhibit more correlation over time during language tasks than

during motor tasks, as measured by sample correlation across measurements at time steps. On a

home computer, this process took under a minute to find the first DC clique, running in Matlab.

Continuing to completion took approximately an hour. No additional methods were applied, as the

dataset was too large to be computationally feasible for any of the approaches suggested in Section

3.6. The DCM algorithm discovered 10 total empirical DC cliques, summarized in Table 3.4.

Table 3.4: Summary of DC cliques found in Human Connectome Data

Label Size Mean Corr, Lang Tasks Mean Corr, Motor Tasks

1 1688 0.2000 0.1000
2 137 0.2044 0.0506
3 407 0.1856 0.0143
4 111 0.2497 0.0359
5 377 0.1658 0.0097
6 82 0.3253 0.0639
7 266 0.1649 0.0121
8 259 0.1482 0.0098
9 198 0.1732 0.0116
10 20 0.2981 0.1019

The first empirical DC clique selected by Differential Correlation Mining is very large, contain-

ing 1688 nodes located on the cortical surface. These nodes, or “greyordinates”, are visualized as

points on the smoothed exterior of the brain in Figure 3.9. The clear locational pattern in the nodes

- despite the fact that the analysis did not take location into account - is striking. Additionally, the

empirical DC clique in Figure 3.9 includes a concentrated group in the rear of the left cortex. This

general brain region is known to be specifically associated with language processing and auditory

input (Wernicke’s Area, see Wang et al. (2015)).

We also studied two other artifacts of the data for comparison, displayed in Figure 3.10. First,

we identified the 1000 nodes exhibiting the strongest differential first-order behavior. These show

higher mean activation during the language tasks than during the motor tasks, as measured by

standard two-sample t-tests. We saw a clear grouping of nodes in the right frontal lobe. This

pattern is unsurprising and appears in many studies of brain functionality that examine differential

activation for language processing (Voets et al., 2006). This basic first-order analysis suggests that

differential correlation is not redundant. None of the empirical DC cliques selected by Differential

51



Figure 3.9: Brain locations of DC clique for languages tasks versus motor tasks.

(a) High differential mean activation.
(Right cortex, exterior view.)

(b) High correlation during language tasks.
(Left cortex, interior view.)

Figure 3.10: Brain locations showing high first-order differences and high non-differential correlation.

Correlation Mining show high frontal lobe concentration; instead, they exhibit “trail-like” patterns

such as the ones shown in Figure 3.9.

Second, we identified 1000 nodes found to be highly correlated over time for the language task

data, irrespective of their behavior in the motor task data. These nodes were observed to be very

tightly grouped in the interior left hemisphere. This is likely due to the nature of data measurement:

fMRI brain scans measure oxygen flow in the brain, so measurements for adjacent regions tend to

“blur” and show high artificial correlation (Derado et al., 2010). In this case, the same node set is

also highly correlated during motor tasks, suggesting that it is likely a byproduct of data collection.

Even if this node set does represent a meaningful result - regions, perhaps, that are universally

correlated regardless of task - it is not differential.
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This example illustrates the advantage of taking a differential approach like Differential Cor-

relation Mining. Effects due to fMRI-driven spatial correlation or strong universal correlation can

drown out signal that is truly specific to a particular sample condition. By comparing language

tasks to the similar but distinct condition of motor tasks, we are able to isolate signals that are

unique to language processing. The fact that the identified DC cliques show emergent locational

patterns suggests that Differential Correlation Mining is capturing a true facet of the data rather

than arbitrary correlation. Since this output is unique in form, while maintaining some consistency

with known brain functionality, we believe it merits further scientific investigation.

3.9 Discussion

There is ample motivation in data for methods of differential second-order analysis, especially

in the area of statistical genetics, where analyses of differential correlation are beginning to emerge.

We argue that the Differential Correlation Mining method represents an important new tool in

differential association mining. There are three main advantages of Differential Correlation Mining

over existing methods:

1. Differential Correlation Mining is designed to search specifically for DC cliques, a precisely

defined population quantity. Simulation suggests that the Differential Correlation Mining

method will detect cliques within reasonable error at a much lower signal threshold than

existing methods. We believe the DC clique structures has scientific merit in many settings,

including those demonstrated in the data analyses in this chapter.

2. Since Differential Correlation Mining is an VSAT-type algorithm, with foundations in classical

and asymptotic theory, the analysis accounts for random behavior and results are interpretable

in a hypothesis testing framework. In particular, control of false positives is guaranteed

theoretically in ideal settings and holds in complex simulations.

3. The initialization and core update procedures of Differential Correlation Mining do not require

the computation of a d× d dissimilarity matrix, nor do they rely on permutation scores. As

such, DCM has low memory demands and computation time even for very large data, without

sacrificing accuracy. The efficiency of DCM allowed us to study differential correlation in two
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very high dimensional settings: gene expression data (∼ 104 variables) and fMRI brain scan

data (∼ 105 variables). Both these datasets are beyond the computation limits of the alternate

methods discussed in Section 3.6 without access to extraordinary computing resources.

Software packages in R and Matlab for the Differential Correlation Mining procedure are publicly

available at http://github.com/kbodwin/Differential-Correlation-Mining.

3.10 Proofs and Derivations

3.10.1 CLT for difference of sample correlations (Corollary 1)

Let A be a fixed index set and let ∆̂(j, A) be defined as in (3.5), with sample correlation matrices

R̂1 and R̂2 based on n1 and n2 independent samples from distributions F1 and F2 respectively. Let

σ20(j, A) := var
(

∆̂(j, A) |H0

)
, where H0 is the null hypothesis in (3.4). Then, under H0,

∆̂(j, A)

σ0(j, A)
⇒ N (0, 1) (3.11)

as min(n1, n2)→∞.

Proof: For clarity, we first examine only one “half” of ∆̂(j, A). Let

r̄1(j, A) =
1

|A|
∑
k∈A

(
R̂1

)
jk

and ρ̄1(j, A) =
1

|A|
∑
k∈A

(R1)jk . (3.12)

Note that r̄1(j, A) is a linear function of R̂1 and that ρ̄1(j, A) is the same function applied to the

population correlation matrix R1. It follows from Theorem 2 that

√
n1

(
r̄1(j, A)− ρ̄1(j, A)

τ21 (j, A)

)
⇒ N (0, 1) , (3.13)

with τ21 (j, A) := var
(√
n1 r̄1(j, A)

)
, which has a finite limiting value that can be expressed as the

mean of appropriate elements of the covariance matrix Σ in the theorem. To apply this result for

the full test statistic, we note that ∆̂(j, A) = r̄1(j, A)− r̄2(j, A). Samples from F1 are independent

of those from F2, so r̄1(j, A) is independent of r̄2(j, A), and thus ∆̂(j, A) is asymptotically normal.
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Under the null hypothesis in (3.4), ρ̄1(j, A) = ρ̄2(j, A), and hence the mean of the limiting

distribution of ∆̂(j, A) is 0. The variance of ∆̂(j, A) can be expressed as the weighted sum

σ20(j, A) =
τ21 (j, A)

n1
+
τ22 (j, A)

n2
. (3.14)

3.10.2 Variance Estimator

Let rjk be the sample correlation of Uj and Uk, and let rA := 1
|A|
∑

k∈A rjk. Let Y and W be

vectors of length n1 such that for i = 1, 2, ..., n1

Wi :=
1

|A|
∑
k∈A

Ũik , and Yi :=
1

|A|
∑
k∈A

rjkŨ
2
ik . (3.15)

Let τ̂1(j, A) be the consistent variance estimator given by equation (5.1) of Steiger and Hakstian

(1982),

τ̂1 =
1

|A|2
∑
k,l∈A

[
rjjkl +

1

4
rjkrjl(rjjjj + rjjkk + rjjll + rkkll)

]
, (3.16)

where

rjkls :=

n1∑
i=1

ŨijŨikŨilŨis . (3.17)

An equivalent form for τ̂1(j, A) is given by

τ̂1(j, A) =
1

n1

n1∑
i=1

{
r2A
4
Ũ4
ij − rAWi Ũ

3
ij +

(
rAYi

2
+ W 2

i

)
Ũ2
ij − WiYi Ũij +

Y 2
i

4

}
. (3.18)

Proof. We begin by expanding (3.16),
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τ̂1 =
1

|A|2
∑
k,l∈A

[
rjjkl +

1

4
rjkrjl(rjjjj + rjjkk + rjjll + rkkll)

− 1

2
rjk(rjjll + rjkkl) −

1

2
rjl(rjjjk + rjkll)

]

=
1

|A|2
∑
k,l∈A

rjjkl +
1

4
r2Arjjjj +

1

2|A|
∑
j∈A

rjkrArjjkk +
1

4|A|2
∑
k,l∈A

rjkrjlrkkll

− 1

|A|
∑
j∈A

rArjjjk −
1

|A|2
∑
k,l∈A

rjkrjkkl .

We then derive equivalent matrix forms for each summation. Here ◦, as in W◦2, denotes

elementwise exponentiation of a vector.

1

|A|2
∑
k,l∈A

rjjkl =
1

n1

n1∑
i=1

 1

|A|2
∑
k,l∈A

ŨikŨil

 Ũ2
ij =

1

n1

(
W◦2)t Ũ◦2i .

1

|A|
∑
k∈A

rjkrjjkk =
1

n1

n1∑
i=1

(
1

|A|
∑
k∈A

rjkŨ
2
ik

)
Ũ2
ij =

1

n1
Yt Ũ◦2i .

1

|A|2
∑
k,l∈A

rjkrjlrkkll =
1

n1

n1∑
i=1

(
1

|A|
∑
k∈A

rjkŨ
◦2
ij

)2

=
1

n1
Yt Y .

1

|A|2
∑
k,l∈A

rjkrjkkl =
1

n1

n1∑
i=1

(
1

|A|
∑
k∈A

rjkŨ
2
ij

)(
1

|A|
∑
k∈A

Ũik

)
Ũij =

1

n1
(W ·Y)t Ũi .

Substituting the above into the expanded equation for τ̂1(j, A) gives

n1τ̂1 =
1

4
r2A1tŨ◦4i + rA

[
1

2
Yt Ũ◦2i − WtŨ◦3i

]
+
(
W◦2)t Ũ◦2i − (W ·Y)t Ũi +

1

4
1t Y◦2 ,

and we may rewrite the vector operations into a single summation over elements,

τ̂1(j, A) =
1

n1

n1∑
i=1

{
r2A
4
Ũ4
ij − rAWi Ũ

3
ij +

(
rAYi

2
+ W 2

i

)
Ũ2
ij − WiYi Ũij +

Y 2
i

4

}
. (3.19)
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Remark . We note that although the estimator τ̂1(j, A) is consistent for a very general set of

sampling distributions, it may in some cases converge slowly. For very small sample sizes, we find

the estimator to be negatively biased; that is, tests involving this estimator may be anticonservative.

Although the full DCM procedure appears in simulations to control false positive rate even for small

sample sizes, we caution against its use when min(n1, n2) < 30.
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CHAPTER 4

Coherent Set Mining for Binary Data

4.1 Introduction

In this chapter, we introduce Coherent Set Mining (CSM), a new method of association mining

in binary data. Coherent Set Mining makes use of a VSAT-type algorithm for extracting associated

variable sets. Our approach relies a new measure of association, coherence, which is designed

to be identified with latent-space relationships between variables when only thresholded binary

observations are observed. We propose an estimator for coherence built upon a novel null model

and corresponding consistent estimation of parameters. Relevant significance tests for coherence

are derived from asymptotic results. We demonstrate the effectiveness of Coherent Set Mining via

applications in text mining, music recommendation, and genetics.

4.1.1 The problem of non-identical samples

As discussed in Chapter 1.4.2, many existing association mining methods are applicable (or

even tailored specifically) to binary data. These techniques cover a variety of approaches: some

treat observed data as stochastic, some seek to maximize an association score, and some simply

screen observations for pre-defined features. However, one similarity in common methods is that

measures of association or dissimilarity treat observations as homogeneous. Frequent itemset mining

deals with raw counts of equally weighted transactions, and in statistical association mining, models

typically assume that samples are i.i.d. or approximately so. In reality, the assumption of identically

distributed or indistinguishable samples may not be reasonable. For example, in market basket

data, it may be unrealistic to assume that all buyers tend to buy the same overall number of items.

Variation in available spending money, household size, etc. may effect the quantity of items that a

particular buyer is inclined to purchase. To further illustrate the problems that arise from giving
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all samples equal treatment, consider the following toy dataset, consisting of 12 samples (buyers)

and 14 items.

Buyers

1 2 3 4 5 6 7 8 9 10 11 12

Item 1 0 0 0 0 0 1 0 1 1 1 1 1

Item 2 0 0 0 0 0 0 1 1 1 1 1 1

Item 3 1 1 1 1 1 1 0 0 0 0 0 0

Item 4 1 1 1 1 1 0 1 0 0 0 0 0

Item 5 1 1 1 1 0 1 0 0 0 0 0 0

Item 6 1 1 1 0 1 0 1 0 0 0 0 0

Item 7 1 1 0 1 1 1 0 0 0 0 0 0

Item 8 1 0 1 1 1 0 1 0 0 0 0 0

Item 9 0 1 1 1 1 1 0 0 0 0 0 0

Item 10 1 1 1 1 1 0 1 0 0 0 0 1

Item 11 1 1 1 1 1 1 0 0 0 0 1 0

Item 12 1 1 1 1 1 0 1 0 0 1 0 0

Item 13 1 1 1 1 1 1 0 0 1 0 0 0

Item 14 1 1 1 1 1 0 1 1 0 0 0 0

Figure 4.1: Toy Dataset

Consider the item pairs (Item 1, Item 2) and (Item 3, Item 4). These two sets show

identical behavior, in that both are purchased by five buyers, neither is purchased by six buyers,

and only one is purchased by one buyer. Thus, any measure of association for which the order of

buyers does not matter will consider these two sets to be equally internally associated. Common

measures of association in literature for binary data, such as frequent itemset mining and association

mining, include the following.

• The support of an itemset. This is the percentage of buyers who bought the full itemset.

support(1, 2) = support(3, 4) = 5/11 = 0.455
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Generally, methods of frequent itemset mining screen for support over a particular threshold.

• The confidence of an itemset with respect to a particular item is the support of the full set

divided by the support of the item.

confidence(2→ 1) = confidence(4→ 3) = 5/5 = 1

Methods of association rule mining typically screen for confidence over a given threshold.

• The Manhattan distance. This is the L1 norm between the observed item vectors, i.e., the

number of buyers who buy one item but not the other.

d1(1, 2) = d1(3, 4) = 1 (out of 12)

• The Jaccard coefficient (Jaccard, 1901). This is a measure of similarity between binary vectors,

that divides the intersection of the items by their union.

dJ(1, 2) = dJ(3, 4) = 5/6 = 0.833

• The Pearson correlation. This is the inner product of standardized item vectors.

ρ12 = ρ34 = 0.667

As discussed in Chapter 1, these measures of association differ in their interpretation: dis-

similarity, distance, or statistical dependence. However, for the toy dataset, they all indicate that

(Item 1, Item 2) is a highly associated pair with association equal to that of (Item 3, Item 4).

In other words, no matter what algorithmic approach one takes to association mining or to testing

for significant association, with these measures the conclusions will be the same for sets (Item 1,

Item 2) and (Item 3, Item 4). To illustrate this, consider taking an agglomerative hierarchical

clustering approach, such as that described in Section 1.2, to perform association mining on the

toy dataset. For any measure of association from those above, which treat buyers identically, the

dendrogram for the hierarchical joining process will look identical to Figure 4.2 up to the scaling
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of the height. It is clear that if (Item 1, Item 2) is considered an associated set, (Item 3, Item

4) must also be part of an associated set. (In fact, in this data, the sets (Item 3, Item 5) and

(Item 4, Item 6) appear even more strongly associated than (Item 1, Item 2).)

Figure 4.2: Hierarchical clustering dendrogram for toy dataset.

Despite the results of these common approaches, it is not clear that we should believe there is

any association structure in items 3-14 aside from an overall pattern in buyer behavior. Buyers 1-5

bought most available items, while buyers 8-12 bought only three items each. Items 3 and 4 may

not be meaningfully related beyond the fact that they both respond to differences between buyers.

That is, it may not be true that an individual buyer’s decision about Item 3 is in any way influenced

by his decision about Item 4. Items 1 and 2, on the other hand, show similar buying patterns that

can not be explained by buyer differences. Buyers who do not purchase many items overall still tend

to purchase Items 1 and 2 together, which is a strong indicator of a true relationship between these

items. For an association mining method to treat these the sets (Item 1, Item 2) and (Item 3,

Item 4) differently, a new measure of association is required.

The goal of the method described in this chapter is to analyze association between binary

variables beyond what be attributed to patterns sample (buyers) behavior. In continuous data,

observations can be easily transformed to be roughly identically distributed, e.g., by standardizing

the data matrix to achieve identical low-order moments for each sample. In general, such transfor-

mations are not appropriate for binary data, as they can only translate 0/1 dichotomous data to a
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(a) Sample correlation (b) Sample coherence

Figure 4.3: Association matrices based on correlation and coherence for toy dataset.

different pair of numerical values. The remainder of this chapter is devoted to defining and testing

a new measure of association, coherence, that incorporates the concept non-identical buyers into a

formal model.

Figure 4.3 illustrates the difference between coherence and standard linear correlation. 4.3(a)

is the sample correlation matrix for the toy dataset, for which we expect (Item 1, Item 2) and

(Item 3, Item 4) to have the same values. 4.3(b) is the estimated coherence matrix, calculated

by the methods outlined in this chapter, for the toy dataset. In 4.3(b), (Item 1, Item 2) remains

associated, but all other associations are devalued since they are not distinguishable from the overall

pattern in the data. When the full Coherent Set Mining procedure is applied to this data, only

one set, (Item 1, Item 2) is identified, which is consistent with the pattern of coherence seen in

Figure 4.3(b).

In the rest of this chapter, a formal model and definition is given for coherence, and the Coherent

Set Mining procedure is described in detail and applied to both artificial and real data.

4.2 Coherence

Our approach is based on a latent-space model for binary data. In what follows, we will assume

that we wish to infer associations between jointly distributed variables Z = (Z1, . . . , Zd)
t ∈ Rd,

as measured by linear correlation. We further assume that instead of observing Z, we observe

62



X ∈ {0, 1}d, a binary random vector derived by thresholding Z in accordance with some random

parameter θ ∈ Rd. A feature of this model, and the key to the misleading association structure in

Figure 4.1, is that association in X is a result of both association structure of Z and that of θ. To

perform association mining on latent vector Z, we require a measure of association calculated from

X that bypasses θ. The following definition formalizes the latent model from which we will define

an appropriate measure of association.

Definition 4. (Basic model) Let Z ∼ ϕ be a real-valued d-dimensional random vector, Z =

(Z1, . . . , Zd)
t. For j = 1, . . . , d let Fj denote the marginal cdf of Zj, where Fj is taken to be contin-

uous with quantile function F -1
j . Let θ ∼ ν be a d-dimensional random vector, θ = (θ1, . . . , θd)

t ∈

(0, 1)d, that is independent of Z. Let X ∈ {0, 1}d be defined by X = I
{
Z > F -1(θ)

}
, that is, X is

defined elementwise by

Xj = I
{
Zj > F -1

j (θj)
}

(4.1)

for j = 1, . . . , d.

We assume θ takes values in (0, 1)d since, trivially, if θj = 1 or 0, Xj is nonrandom. Standard

results and the continuity of Fj ensure that Fj(Zj) is uniformly distributed for any joint measure

on Z, so that E [Xj |θ] = θj and the marginal distribution of Xj is fully specified by the marginal

distribution of θj . The joint distribution of X, however, derives from both θ and Z. Thus, the

pair (Xj , Xk) may be associated even when (Zj , Zk) are not. Beyond continuity of Fj , Definition 4

imposes no assumptions on the form of ϕ or ν. The Coherent Set Mining approach to modeling ν,

detailed in Section 4.4, assumes that randomness in θ, and therefore association between individual

components (θj , θk), derives from a common univariate random variable τ . However, in principle

the definition of coherence and corresponding asymptotic results are valid for any choice of ϕ and

ν that satisfies certain mild conditions.

For an illustrative example, consider the case of market basket data. A possible interpretation of

the model is to let Z represent the desirability of each available item at a grocery store to a random

shopper. Although buyers will, at random, have different item preferences, in some settings it is

reasonable to assume that the desirability of items for each buyer comes from a common underlying

distribution captured by Z. Individual variables Zj may have a wide range of means and variance,

as some items are naturally more universally popular or controversial than others (e.g., eggs versus
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SPAM). Variables in Z may also be highly dependent, for example, a person who strongly desires

peanut butter may be far more likely to also strongly desire jelly.

If one were to somehow gather direct i.i.d. samples of Z from many buyers, one might reasonably

estimate item-item correlations. However, data measuring the abstract notion of “desirability” is

difficult to obtain. Perhaps a survey questionnaire or carefully designed behavioral experiment

could access Z, but these techniques are expensive and require experts to design and execute.

Instead, data may easily be collected in the form of purchasing behavior of buyers, which is a

natural proxy for desirability. In other words, one can observe a binary vector X ∈ {0, 1}d for each

customer representing whether or not each item was bought or not. Generally speaking, association

in Z will translate to X; that is, if two items are mutually desirable, it is uncommon for one to

be purchased without the other. (Nobody buys peanut butter without jelly.) However, purchasing

behavior is not a direct consequence of item desirability; a buyer’s decisions are also influenced by

factors like wealth. These external factors will determine the desirability cutoffs θj above which

item j is bought. More money to spend at the store means that the cutoffs will be lower. Even

if a wealthy shopper and a non-wealthy shopper have the same attitude towards desirability of

items, the wealthy shopper is still likely to buy many more total items. A pair of expensive,

highly desirable items may nearly always either both be purchased by wealthy shoppers or neither

purchased by shoppers who cannot afford the items. Thus, we may observe that two items are

rarely purchased one without the other - even if they have no association in terms of desirability.

Simply put, differences between buyers (θ) can produce association structure in transactions X

even when desirability Z has none.

We now provide a simple example of a setting in which X has association induced by θ despite

independence in Z.

Example 4.1. Let Z ∼ Nd(u, Id), for some fixed u ∈ Rd and Id is the d× d identity matrix. Let

θ1 = . . . = θd, with

θj =


ε with probability 1/2,

1− ε with probability 1/2

(4.2)
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for some 0 < ε < 1/2, and let X = I
{
Z > Φ-1(θ) + u)

}
, where Φ(·) is the standard Normal cdf.

Then, for any j 6= k, Zj is independent of Zk, but cov (Xj , Xk) > 0, since

EXjXk − EXj EXk =

(
ε2

2
+

(1− ε)2

2

)
−
(

1

2

)2

=
1

4
− ε(1− ε) . (4.3)

♦

As ε approaches 0, the covariance between Xj and Xk gets arbitrarily close to 1/4, which is

the maximum possible for binary variables. In other words, because individual variables Zj are

simultaneously thresholded at either very large or very small values, we are likely to observe Xj =

Xk = 0 or Xj = Xk = 1 for any pair (j, k). In the market basket example, this corresponds to

purchases from non-wealthy and wealthy buyers respectively. Then, the covariance structure of Z

represents association (or lack thereof) unique to the items, without the effect of the buyer. The

absence of dependence in Z does not prevent dependence in X produced by the dependence in θ.

Common measures of association may indicate - correctly - that structure exists in X, even when

the vector of interest Z has none. To isolate the structure in Z in our analysis, we introduce the

concept of coherence.

Definition 5. (Coherence) As in Definition 4, let Z ∼ ϕ and θ ∼ ν be independent, and let X

be such that X = I
{
Z > F -1(θ)

}
. Then, the coherence between Xj and Xk with respect to θj and

θk is

ψ(j, k) = Eϕ,ν

[
(Xj − θj) (Xk − θk)√
θj(1− θj) θk(1− θk)

]
, (4.4)

where the expectation is taken over the joint distribution of (X,θ) inherited from (ν, ϕ).

If θ is non-random, the coherence reduces to standard Pearson correlation between binary variables

Xj and Xk with fixed means θj and θk. A simple conditioning argument shows that, like correlation,

the coherence ψ(j, k) is contained in [−1, 1] for any j, k ∈ [d], with values close to 1 or -1 indicating

stronger dependence. However, while correlation directly measures dependence between Xj and

Xk, coherence is designed to measure dependence between Zj and Zk only.

Under Definition 4, ψ(j, k) depends only on the joint distributions of (θj , θk) and of (Zj , Zk).

Coherence is not identifiable without knowledge of the distributions ϕ, ν on Z and θ. Model

assumptions for the Coherent Set Mining method are discussed in Section 4.4. In general, multiple
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measures on Z may produce the same coherence. For example, for any Z such that Zj is independent

of Zk, ψ(j, k) = 0. This feature of the framework is neither a limitation nor a lack of specificity;

rather, it is the key characteristic that separates variable dependence in Z from that in θ. Nonzero

coherence indicates that X is conditionally dependent given θ, which implies dependence in Z.

For this reason, coherence serves as a reasonable proxy for studying latent association in Z from

observations of X.

In general, not all forms of dependence in Z result in nonzero coherence - as in ordinary

product-moment correlation, only linear association is captured. Further, while nonzero coherence

guarantees dependence in (Zj , Zk), it does not guarantee a specific type of association; specifically,

it does not guarantee positive covariance between Zj and Zk. However, as the following proposition

shows, in a basic Gaussian setting an equivalence does hold.

Proposition 1. Let θ ∼ ν and Z ∼ Nd(u,Σ) for fixed u ∈ Rd and Σjj = σ2 for all j. Then, for

any ν,

ψ(j, k) > 0 if and only if Σjk > 0 . (4.5)

Proposition 1 is proven in Section 4.8.5 . Note, importantly, that the latent Gaussian model for Z

is not an assumption of the Coherent Set Mining method. It merely provides a familiar setting in

which coherence is easily interpretable as a surrogate for underlying correlation.

4.3 Testing for Coherent Sets

Our goal in Coherent Set Mining is to discover coherent sets of variables, defined as follows.

Definition 6. (Coherent Set) Let ψ(·, ·) be defined as in Definition 6, for a particular model

X = I
{
Z > F -1(θ)

}
. A subset A ⊂ {1, . . . , d} is a coherent set if

(i) ψ(j, A) > 0 for j ∈ A, and

(ii) ψ(j, A) ≤ 0 for j /∈ A.

where ψ(j, A) is the average coherence between j and A; that is,

ψ(j, A) :=
1

|A|
∑

k∈A\{j}

ψ(j, k) . (4.6)
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Coherent sets are self-contained variable sets such that each element has positive average co-

herence with the rest of the set, while no element outside the set does. Since average coherence

is a population quantity, in practice it must be estimated from observations. We will assume

observations are i.i.d. copies Xi = I
{
Zi > F -1(θi)

}
as in Definition 4. These observations are sum-

marized in data matrix X = (X1, . . . ,Xn)t ∈ {0, 1}n×d, relative to Z = (Z1, . . . ,Zn)t ∈ Rn×d and

Θ = (θ1, . . . ,θn)t ∈ Rn×d. We lay the foundation for the full Coherent Set Mining method by first

discussing properties when both X and Θ are observed.

Definition 7. (Idealized sample coherence) Given observed data matrices X and Θ, the ide-

alized sample coherence between variables Xj and Xk is

ψ̂(j, k) =
1

n

n∑
i=1

Uij Uik where Uij :=
Xij − θij√
θij(1− θij)

. (4.7)

The formula in (4.7) is a straightforward estimator for coherence if sample matrices (X,Θ) are

available: the expectation in (4.4) is replaced with an average over sample quantities. We refer

to this estimator as a “idealized” quantity, because θ is taken to be observed. We later discuss

estimation of θ, which is not observed in practical settings. For the time being, however, we will

proceed as though (X,Θ) is available, in order to show useful properties of the idealized sample

coherence.

Since idealized sample coherence is an average of i.i.d.

copies of UjUk, it is unbiased for E [UjUk] = ψ(j, k) ∈ [−1, 1]. However, for small samples,
∣∣∣ψ̂(j, k)

∣∣∣
maybe be larger than 1. Proposition 2 ensures that for large enough sample size it will fall in (or

arbitrarily close to) the range [−1, 1]. In large sample settings this allows us interpret the idealized

sample coherence as indicating strong positive association when values are close to 1 and strong

negative association near -1.

Proposition 2. If supj≤d θj = op(1) and E
[
θ-1j

]
= o(n) for all j ∈ [d], then for any ε > 0 and any

j, k,

P
(∣∣∣ψ̂(j, k)

∣∣∣ > 1 + ε
)
→ 0 (4.8)

as n→∞.
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Proposition 2 is proven in Section 4.8.2. The assumptions for this result are closely related to

conditions (ii) and (iii) in Theorem 3, which establishes a full central limit theorem for the idealized

sample coherence.

The results of Proposition 2 allow us to interpret ψ̂(j, k), but not to perform inference about it.

To apply the Coherent Set Mining procedure (fully outlined in Section 4.5), we require a procedure

for testing whether an item Xj , j ∈ [d], is coherent with a set A ⊂ [d]. That is, we must test

hypotheses of the form

H0(j) : ψ(j, A) = 0 vs. H1(j) : ψ(j, A) > 0 , (4.9)

with ψ(j, A) as in (4.6). The obvious corresponding test statistic is the average sample coherence

between Xj and {Xk}k∈A denoted by ψ̂(j, A). In practice an exact p-value for ψ̂(j, A) cannot

be computed without knowledge of ϕ, ν, so we use an asymptotic approximation. Theorem 3

guarantees asymptotic normality of this test statistic, under appropriate conditions. We now lay

out the notation and assumptions for this theorem.

For purposes of asymptotic approximation, we assume that both the sample size n and the

number of variable dn are increasing. Formally, for each n let Z1, . . . ,Zn
i.i.d.∼ ϕn and θ1, . . . ,θn

i.i.d.∼

νn, where Zi = (Zi1, . . . , Zidn)t and θi = (θi1, . . . , θidn)t. Denote the marginal cdfs of Zij by Fjn

and define Xij = I {Zij > Fjn(θij)} for i ∈ [n], j ∈ [dn].

We then consider the coherence between a particular variable and a sequence of variable sets.

Fix j and for each n let An ⊂ [dn]\{j} with mn := |An|. Let ψ̂n denote the average idealized

sample coherence ψ̂(j, An), and let σ2n := var(
√
nψn). Define

σ̂2n :=
1

n

n∑
i=1

 1

mn

∑
k∈An

UijUik

2

, (4.10)

which will serve as an estimator for σ2n. Let Ψ̄n(An) denote the average of the matrix of pairwise

coherences for variables in An, i.e.,

Ψ̄n(An) :=
1

m2
n

∑
j,k∈An

ψn(j, k) . (4.11)
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Finally, let s2jn be the expected conditional variance of Xj under (ϕn, νn), that is,

s2jn = Eνn
[

1

θj(1− θj)

]
. (4.12)

Theorem 3. (Limiting Distribution) Let Z ∼ ϕn, θ ∼ νn, and Xj = I {Zj > θj} . Fix j and

for each n let An ⊂ [dn]\{j} be an index set with cardinality |An| = mn. Let Ψ̄n(An) be the average

of the coherence matrix for An, as in (4.11). Assume that

(i) For each n, Zj is independent of {Zk}k∈An under ϕn;

(ii) lim
n→∞

(
sup

k∈{j}∪An

θk

)
= op(1); and

(iii)

 1

mn

∑
k∈An

s2jns
2
kn

 Ψ̄n(An)-2 = o(n) .

Then,
√
n

(
ψ̂n(j, An)

σ̂n(j, An)

)
d−→ N (0, 1) as n→∞. (4.13)

Theorem 3 is proven in Section 4.8.5. The assumption of independence between Zj and

{Zk}k∈An implies the null hypothesis in (4.9), ψ(j, An) = 0, since independence between Zj and

Zk guarantees that ψ(j, k) = 0. Conditions (ii) and (iii) say, roughly, that the marginal prob-

abilities θik get small asymptotically, but not too quickly. This can be interpreted as a sparsity

constraint: as the number of samples (n) and variables (dn) grows, the expected number of 1’s in

the data matrix Xn = (X1, . . . ,Xn)t must not become too high or too low, or it is impossible to

infer association.

Although a general version of Condition (iii) is provided, there are readily interpretable settings

under which this condition holds. For example, a common assumption in showing a central limit

theorem is that variance of a particular variable grows slower than the sample size. Analogously,

suppose we assume that the relevant conditional variances of observations Xj are bounded in the

sample size,  1

mn

∑
k∈An

s2jns
2
kn

 = o(n) . (4.14)

Then, for (ii) to hold, we need Ψ̄n(An)-1 = O(1). There are two simple settings for which this is

true.
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1. Coherence of An bounded away from zero. In practice, we are interested in sets An with large

average pairwise coherence. This implies a strong condition on the asymptotic strength of

the coherence of An may be appropriate. If in addition to (4.14), one assumes Ψ̄n(An) > ρ

for all n and for some fixed ρ > 0, then (iii) holds regardless of the set sizes mn.

2. Non-negative coherence of An and bounded set size. Recall that Ψ̄n(An) is an average over

an array of pairwise coherences ψ(k, `) : k, ` ∈ An. We may therefore rewrite it in terms of

diagonal and off-diagonal terms,

Ψ̄n(An) =
1

m2
n

∑
k∈An

ψn(k, k) +
1

m2
n

∑
k 6=`∈An

ψn(k, `) (4.15)

=
1

mn
+

(
1−m-1

n

2

)(
mn

2

)-1 ∑
k 6=`∈An

ψn(k, `) , (4.16)

where the last line follows from the fact that ψn(k, k) = 1 for any n by definition. If one

assumes that the average of off-diagonal elements of Ψn(An) is non-negative, then Ψ̄n(An) ≥

m-1
n . Then, if mn < M for some fixed M , Ψ̄n(An)-1 is bounded even if the off-diagonal

coherences are shrinking in n.

These are, of course, not the only two possible settings for asymptotic normality of the idealized

sample coherence. In general, Theorem 3 holds in any settings for which Condition (iii) is fulfilled.

In particular, (4.14) may be weakened and corresponding assumptions may be made about the

off-diagonal behavior of Ψn(An) and/or the rate of mn. Note, importantly, that the conditions of

Theorem 3 only explicitly involve the sample size n and the size mn of the sets of interest An, not

the total size of the dataset dn. However, Condition (ii), which requires that θj is shrinking, is

best understood as a sparsity condition for over a growing number of variables dn. (The results in

Section 4.4 do require assumptions on the relative rates of dn and n.)

In brief, Theorem 3 guarantees the approximate normality of the test statistic for average

coherence, under an appropriate null hypothesis, even for growing sets An. Our approach to

testing the hypotheses in (4.9) is therefore to calculate p-values from the Normal approximation,

pv(j, A) = 1− Φ-1

(
ψ̂(j, A)

σ̂(j, A)

)
, (4.17)
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where σ̂(j, A) is calculated as in (4.10).

4.4 Model assumptions and parameter estimation

The results of Section 4.3 suggests an hypothesis testing procedure based on the idealized

sample coherence, which requires that Θ = (θ1, . . . ,θn)t is observed alongside X = (X1, . . . ,Xn)t.

In practice, samples of θ are not observed. Our approach is to derive consistent estimators for Θ

from observations X. We then treat these estimates as observed values and insert them directly into

the idealized sample coherence equation (4.7). Although this plug-in approach does not account for

the variance in the estimation of Θ, our positive results from simulation and applications, as well as

the theoretical consistency of our estimators, leads us to believe this is a reasonable approximation.

In order to estimate Θ from X, we assume that for each j,

θj = 1− exp(−ταj) , (4.18)

where αj is a single fixed parameter and τ ∼ π is a univariate random variable. In other words, we

assume that the dependence structure and randomness of θ derives from a single shared random

parameter τ . Differences between the marginal distributions of θ1, . . . , θd are then entirely captured

by the fixed parameters α = (α1, . . . , αd). In the buyer-item paradigm, we may interpret τ as the

wealth of a particular buyer, who is randomly selected from the population, and αj as a measure

of the overall prevalence of a particular item. We are thus assuming that the probability of buyer

i purchasing an item j is fully determined by wealth (τi) and an inherent quality of the item

(αj). A similar model known as Poisson factorization is used by Gopalan et al. (2014) and in

subsequent work to model expected counts by an exponentiated product of random sample and

variable parameters.

This model imposes a rank-one structure on the marginal sample expectations θij . The num-

ber of quantities to estimate is reduced from (n × d) parameters {θij} to (n + d) parameters

(α1, . . . , αd, τ1, . . . , τn). This reduction and model specification allows us to estimate Θ from X

under certain mild conditions.
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4.4.1 Parameter estimation

As in Section 4.3, we assume that both the sample size n and the number of variables dn

are increasing, and that Z ∼ ϕn, θ ∼ νn and Xj = I {Zj > Fjn(θj)}. Under the assumption

of (4.18), νn is fully specified by a univariate measure π with τ ∼ π and a set of parameters

αn = (α1n, . . . , αdnn). We first derive a method of moments estimator for αn that is consistent

under certain conditions by integrating out τ . Let µn = (µn1, . . . , µndn)t denote the unconditional

mean of X, that is, µjn := En [Xj ]. We can then write the µjn as a function of αjn,

µjn = g(αjn) :=

∫
T

(
1− e-t αjn

)
π(t)dt , (4.19)

where T is the support of π. Note that g(·) = 1 −Mτ (·), where Mτ (·) is the moment generating

function of τ . Then, if π is such that Mτ (·) is continuous and invertible, g(·) will also be a continuous

invertible function. In these cases, there exists a straightforward estimator for αjn via µjn,

α̂jn = g-1(µ̂jn) = g-1(Xj) , (4.20)

where Xj is the sample mean
∑n

i=1Xij . Theorem 4 guarantees the consistency of this estimator.

Theorem 4. Let µjn, g(·) and α̂jn be as in (4.19) and (4.20). If µjn = o(1), µ-1jn = o(n), and g(·)

is an invertible function with continuous inverse, then

∣∣∣∣ α̂jnαjn
− 1

∣∣∣∣ p−→ 0. (4.21)

for every j ∈ [dn].

Theorem 4, which is proven in Section 4.8.5, provides a procedure for estimating αn under

typical conditions. To estimate Θ, we must also estimate the unobserved values of random variables

(τ1, . . . , τn), which we denote by (τ01 , . . . , τ
0
n). Consider the posterior distribution of τi given Xi =

(Xi1, . . . , Xidn)t and αn, which we denote by π(· |Xi,αn). A straightforward estimator for τ0i is

the posterior mean,

E [τi |Xi,αn] =

∫ ∞
0
t π(t |Xi,αn) dt . (4.22)
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The following result guarantees consistency of the posterior mean. We appeal directly to

Theorem 4.1 of Choi et al. (2008), which requires the following condition on the prior π for τ .

Condition 5.1. For each δ > 0 there exist sets S1, S2, . . . such that diameter of each set is less

than δ, ∪k≥1Sk = R+, and
∑

k≥1
√
π(Sk) <∞.

In essence, Condition 5.1 is a concentration condition for π, guaranteeing that the measure is not

too spread out over the range of τ .

Theorem 5. (Choi et al. (2008)) Suppose that Condition 5.1 holds and that π(· |Xi,αn) is

bounded. Then, for every ε > 0,

P
(∣∣E [τi |Xi,α]− τ0i

∣∣ > ε
)
→ 0 (4.23)

as n→∞, where the probability is taken over the measure of Xi from (ϕn, νn).

In practice αn is not known, so we instead estimate τ0i by plugging in consistent estimates

(α̂1n, . . . , α̂dnn), i.e.,

τ̂i = E [τi |Xi, α̂n] =

∫ ∞
0
t π(t |Xi, α̂n) dt . (4.24)

Then, for every n and for i ∈ [n], j ∈ [dn], θij is estimated by θ̂ij = τ̂iα̂jn. The following example

demonstrates a derivation of θ̂ij by the process suggested in Theorems 4 and 5.

Example 4.2. Let τ be exponentially distributed with mean 1/λ. Then, the mgf of τ is Mτ (s) =

λ
(λ−s) , which is continuous and invertible, so the condition of Theorem 4 is satisfied. Note that

EXj = αj(λ+ αj)
-1. Therefore, the estimator

α̂j = g-1(Xj) =
λXj

1−Xj

(4.25)

is therefore consistent as long as α-1
j = o(n) by Theorem 4. Furthermore, the exponential prior

satisfies Condition 4.1 (details may be found in Section 4.8.5), so the posterior means for τ0i are

consistent by Theorem 5. ♦
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4.4.2 Implementation

The consistent estimators derived in Theorems 4 and 5 rely on the parent distribution π, and

thus the function g(·), being known. In practice, we generally do not know the distribution of τ .

Our approach is therefore to approximate the consistent estimators via an empirical distribution

function. According to Theorems 4 and 5, estimators τ̂i and α̂j will solve

Xj =

∫ ∞
0

(
1− e-tαjn

)
π(t) dt and

∂π(t |Xi, α̂n)

∂t

∣∣∣∣
τ̂i

= 0 . (4.26)

We circumvent the problem of the prior being unknown by replacing π in the above with the

empirical distribution function

fn(t) =


1
n if t ∈ {τ01 , . . . , τ0n},

0 otherwise,

(4.27)

where τ0i is the unknown realized value of τi. We then define estimators τ̃i and α̃j to be the solutions

to

X̄j =
1

n

n∑
i=1

(
1− e-τ̃i,α̃j

)
and

∂L(t |Xt, α̃j)

∂t

∣∣∣∣
τ̃i

= 0 . (4.28)

Essentially, α̃j is the empirical MOM estimator for the fixed parameter αj , and τ̃i is the fre-

quentist MLE estimator for τ0j . Although these equations have no closed form solution, they can

be computed to within a desired error. The results of Theorems 4 and 5 provide reassurance, since

α̃j , τ̃i are empirical analogs to consistent estimators α̂j , τ̂i.

In the Coherent Set Mining software, we also supply an option to compute τ̂1, . . . , τ̂n and α̂n

under an assumed exponential prior, as in Example 4.1. This option should only be used when

there is a compelling reason to believe the prior π is known to be exponential with a certain rate λ.

Despite the theoretical advantages of the estimators with known prior, we find the flexible empirical

approach is more flexible for most settings since π is commonly unknown.
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4.5 The Coherent Set Mining Algorithm

We are now prepared to present the full version of the Coherent Set Mining algorithm, which

appeals to the results of Sections 4.2 and 4.4. Given observed data X ∈ {0, 1}n×d, the method

proceeds a follows.

1. Estimation: Compute Θ̃, the matrix of estimates of means θij , as in Section 4.4.2.

2. Initialization: Set A0 = {j} for some j ∈ [d].

3. Testing:

B Given At, for each j ∈ [d], compute ψ̂(j, At) and σ̂(j, At) from X̃ and Θ̃ as in Section

4.2.

B Compute p-values {p1, . . . ,pd} as in (4.17).

B Simultaneously test hypotheses

H0(j) : ψ(j, A`) = 0 vs H1(j) : ψ(j, A`) > 0

by applying the multiple testing procedure of Benjamini and Yekutieli (2001) to the

set of p-values.

4. Update: Set At+1 = { j : H0(j) was rejected }.

5. Iteration: Repeat steps 3 and 4 until At = At′ := A∗ for some t′ < t.

6. Output: If A∗ is not empty, select it as an empirical coherent itemset.

7. Repetition: Repeat steps 2-5 as many times as desired, or for every initial j ∈ [d].

4.5.1 Simulation Study

We first demonstrate the effectiveness of the Coherent Set Mining algorithm via artificial data.

Proposition 1 provides us with a convenient generative model for binary data with controlled
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strength of association. Given parameters n, d, ρ, k, we simulated data matrix Z ∈ Rn×d by drawing

n multivariate Gaussian samples of dimension d, with covariance matrix I + Ω, where Ωjk = ρ for

j, k ≤ m, j 6= k, and 0 otherwise. We then generate parameters τ and α from hyperparameters

λ, a, b by τi ∼ Expo(λ), αi ∼ Beta(a, b). Finally we created Θ as in (4.18), and thresholded Z as in

(4.1) to create binary matrix X.

By Proposition 1, the population coherence of elements of X is directly related ρ. Thus, by

varying our values of ρ, we were able to study the effect of strength of signal on performance of

the Coherent Set Mining algorithm. We also studied changes in dimensions {n, d,m} and hyper-

parameters {λ, a, b}. In general, changes to (a, b) did not meaningfully affect the results, since

they only alter the values of α, which are considered fixed quantities. Increases in the num-

ber of observations (n, d) or the size of the signal block (m) improved algorithm performance,

as we would expect. We do not include these results here, since they do not speak to differ-

ences in performance between methods. For our study of ρ, remaining parameters were set to

{n = 101, d = 1000,m = 100, λ = 1, a = 1, b = 1}, and for our study of λ the same with ρ = 0.4.

Remark. In this study, we do not include methods of Frequent Itemset Mining. These procedures

are designed for very low dimensional datasets (d ∼ 100). Since CSM is intended primarily to apply

to high dimensional data, our simulation study consists of datasets too large for Frequent Itemset

Mining to be computationally feasible.

The success of the compared methods was measured by the false positive rate (FPR), the

percentage of variables in a selected set that were not in the seeded coherent set, and the true

discovery rate (TDR), the percentage of detected variables from the true coherent set. That is, if

B was the output variable set of a procedure and A = (1, . . . ,m) was the embedded correlated set,

then

FPR =
|B \A|
|B|

and TDR =
|A \B|
|A|

.

In addition to Coherent Set Mining, we applied four competing methods to generated data.

Measures of (dis)association for these methods were:

1. L1 Dist: The L1 or “Manhattan” distance between sample vectors,

dl1(j, k) =

n∑
i=1

|Xij −Xik| (4.29)
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2. L2 Dist: The L2 or Euclidean distance between sample vectors.

dl2(j, k) =

(
n∑
i=1

(Xij −Xik)
2

)1/2

(4.30)

3. Binary Dist: A distance metric based on treating binary data as on/off bits and comparing

the individual frequency of two variables to their joint frequency,

dbin(j, k) =
(
∑n

i=1Xij) (
∑n

i=1Xik)

(
∑n

i=1XijXik)
(4.31)

4. Correlation Distance: A transformation of the ordinary product-moment correlation be-

tween two sample vectors,

dcorr(j, k) =
√

2(1− ĉor (Xj , Xk)) . (4.32)

For each of the four distance metrics, we applied hierarchical clustering. We selected a cutoff for

the dendrogram based on our knowledge of the true embedded set, such that the selected cluster

was as close to the correct size as possible.

We also included a an ordinary correlation mining (CM, a VSAT procedure adapted from the

methods of Chapter 3) to the true underlying data matrix Z, as a benchmark. Of course, we expect

this method to naturally perform better than Coherent Set Mining itself, since it is applied to the

latent data that is ordinarily not accessible. We include it here to better understand the effects

thresholding on the sensitivity of association mining.

Figure 4.4 shows the True Discovery Rate for all methods as a function of the strength of

the true correlation (ρ) in the latent embedded set. Figure 4.4 (a) represents the data setting of

interest, where τ is taken to be random (in this case, exponentially distributed with rate 1), while

(b) corresponds to the classic setting of non-hierarchical i.i.d. samples. It is clear from the superior

performance of the latent CM approach that, as one would expect, thresholding continuous data

greatly reduces the level at which signal can be detected. However, Coherent Set Mining is able to

reliably detect latent correlation at around ρ = 0.5 (for the baseline parameter choices of k, n, d).

All other methods are unreliable in this setting even for large values of ρ, and only the clustering
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based on correlation detects signal at all. Figure 4.4 (b) is striking: even when τ is nonrandom,

distance-based clustering is unable to detect latent correlation. This is likely because the three

distance metrics (L1, L2 and Binary) do not account for differences in mean behavior between

variables. Not only are samples not appropriately adjusted for randomness in τ , but variables

are not treated with proper heterogeneity. Only the correlation distance weights variable behavior

appropriately in accordance with mean and variance, and therefore only this clustering was able to

detect latent correlation.

Figure 4.5 also shows True Discovery Rate for all methods, this time as a function of the rate

λ for the exponential distribution on τ . (For these simulations, we fix ρ at an intermediate value

of 0.6.) Note that E [τ ] = 1/λ and E
[
τ2
]

= 1/λ2, so large values of λ correspond to less variance

in τ . We expect that when τ fluctuates enormously, the induced correlation in θ will completely

drown out the latent correlation of Z, so the detection rate should increase with λ. Indeed, this is

the pattern we see for CSM. At low values of λ, none of the methods detect structure (except, of

course, CM, which is not subject to the limitations of the random thresholding). As λ increases,

CSM and to a lesser extent the correlation approach, increase in detection.

Finally, since error control is an important aspect of any VSAT approach, Figure 4.6 shows the

raw counts of incorrectly selected variables per set. Figure 4.7 displays the false discovery rate for

all tested methods as a percentage of the total identified set, which can be misleading for small

set sizes but is nevertheless of interest. In general, CSM and the latent clustering CM control

error and do not identify many false variables. When τ is nonrandom (Figure 4.7(a)) and the

latent signal is weak, CSM is prone to over-fitting and thus does not control error as a percentage.

However, the sets of incorrectly discovered variables are extremely small (Figure 4.6(b)), so this is

not cause for too much concern. In cases where it is of scientific importance to control FDR as a

percentage of output sets, one could consider disregarding all results below a certain size.

All other methods are susceptible to correlation induced by the randomness in τ , and so they

do not control false discovery error in any sense.
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(a) τ Exponentially distributed with rate 1

(b) τ nonrandom

Figure 4.4: True discovery rate (when false positive rate < 0.05) by signal latent correlation strength.
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Figure 4.5: True discovery rate (when false positive rate < 0.05) at ρ = 0.6 by rate of exponential
distribution on τ .
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(a) τ Exponentially distributed with rate 1 (b) τ nonrandom

Figure 4.6: Number of incorrect variables selected, by signal latent correlation strength.

(a) τ Exponentially distributed with rate 1 (b) τ nonrandom

Figure 4.7: False discovery rate by signal latent correlation strength.

4.6 Application: Wordsets in Shakespeare plays

The Coherent Set Mining algorithm is applicable to any binary dataset, and is particularly well-

suited to data where the samples may not be identically distributed. Word usage in documents
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presents an ideal data source for this paradigm. Text analysts are often interested in finding sets

of words that appear together frequently (for an overview of relevant history, see e.g. Salton and

McGill (1986)). However, we usually expect documents to vary enormously in length; thus, even

if word choice is identical across documents, we expect to observe a non-identical distribution of

word presence. By searching for coherent rather than frequent word sets, we are able to extract

word groups that are truly associated in a meaningful way, rather than simply appearing frequently

together in longer documents.

We used the online database http://shakespeare.mit.edu/ to download the text of all known

Shakespeare plays. We then created a binary dataset for the 1638 unique words that appeared in

more than one play and that were used in at least one, but not all, of the 429 acts of Shakespeare’s

twenty tragedies/histories . That is, a “1” in the data matrix indicated that a particular word

appeared at least once in a particular act of a play.

In addition to the Coherent Mining Method, for comparative purposes we also applied a Text

Frequency - Inverse Document Frequency (TF-IDF) clustering procedure to the Shakespeare data.

TF-IDF (Ramos et al., 2003) is a method of standardization for textual data that adjusts observed

word frequencies by their importance to differences between documents. Most commonly, TF-IDF

adjusted data takes the form of a raw count of a word multiplied by the log ratio of total documents

to documents containing that word. That is, let X ∈ Nn×d be a matrix of word counts for d words

in n documents. Then, for word j and document i,

Xtf-idf(i, j) = Xij log

(
n∑n

i=1 I {Xij > 0}

)
.

Although TF-IDF can technically be applied to binary observations, it is intended for count

data. In this analysis we applied TF-IDF to the word count data for the Shakespeare texts, even

though Coherent Set Mining only had access to the binary matrix. Clusters were selected by

performing hierarchical clustering on the TF-IDF data matrix by ordinary euclidean distance. The

dendrogram was cut at a height that yielded a similar number of clusters as the Coherent Set

Mining results, for comparison. (Clusters with more than 50 words were considered “background”

and disregarded.)
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The Coherent Set Mining software identified 56 coherent word sets from this data, displayed

in their entirety in Appendix C. The TF-IDF approach identified 38 associated words sets. On

the whole, in both cases these word sets have obvious semantic and/or linguistic themes. For the

sake of discussion, Table 4.1 displays five selected coherent word sets, and Table 4.2 displays seven

words sets from the TF-IDF clustering that roughly correspond to those in Table 4.1.

Table 4.1: Selected coherent word sets in Shakespearean tragedies

1. earth, heaven

2. thousand, ten, twenty

3. she, her, lady, madam, husband, wife, queen, woman, daughter, shes,

marriage, me, tell, sister, herself, sweet

4. hast, dost, art, thy, wilt, thee, thine, thou, death, shalt, canst, didst, ill,

sweet, ah, hadst, if, thyself, away, father, eyes, boy, villain, child, mine,

mother, kill, wert, me, then, die, o, flesh, am, cheeks, leave, young, sight

5. king, duke, majesty, lords, france, prince, grace, god, princely, unto, liege,

sovereign, crown, english, french, highness, uncle, princes, arms, lord,

gracious, subjects, cousin, soul, title, now, blood, fathers, then, until,

queen, father, traitor, yield, son, right, royal, john, forward, brother,

doth, presence, heir, war, sons, embrace, hath, guilty

Table 4.2: Selected word sets in Shakespearean tragedies clustered by TF-IDF adjusted distance

1. arm, arms, base, blood, body, day, doth, earth, eye, farewell, foul, hand,

hands, head, heaven, mouth, myself, power, proud, royal, saint, soul,

souls, sweet, tale, tongue

2. five, hundred, knight, morrow, today

3. beauty, fair, ladies

4. dead, death, deed, didst, eyes, kill, killd, life, tender, wilt
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Set 1 in Table 4.1 is a typical two-word related pair, ”earth, heaven”. Many such pairs with

obvious relationships were selected by both methods. Set 1 in Table 4.2 also joined “earth” and

”heaven”, but also included many other words in the set. The second set in both analyses captured

a numerical relationship, and the third sets are clearly concerned with feminine words. Perhaps

most compelling is Set 4 in Table 4.1, which is mostly marked by language rather than meaning

- the words are almost entirely from Old English. Set 4 in 4.2 shares some of the same words, is

not obviously a linguistically joined word set (nor are any of the further results in Appendix C).

Finally, Set 5 in Table 4.1 represents an easily interpretable word set identified by Coherent Set

Mining, concerning royalty and titles, that has no equivalent in the TF-IDF results.

The results of Coherent Set Mining on text data are encouraging for several reasons. First,

identified word sets have clear interpretation. In a rough sense, this illustrates the notion of

“coherence” as a meaningful relationship that is distinct from surface-level association; the word

sets in Table 4.1 have clear thematic interpretations. Second, relationships in the resulting word

sets may be semantic or linguistic. Word sets like “earth, heaven” are validating, but they provide

no new information in terms of scientific knowledge. However, the ability to extract word sets like

Set 4 that have a deeper linguistic connection may have applications in rigorous studies of language

structure. Finally, the comparison between Coherent Set Mining and the popular TF-IDF approach

highlights the advantages of CSM. The results of Coherent Set Mining were similar, and perhaps

even more nuanced and complete, than those of TF-IDF, even though TF-IDF analyzed full word

counts, rather than binary observations. Additionally, the use of the VSAT framework in CSM

allowed for overlapping word sets and a selection process that did not require a choice of cut

level on a dendrogram. It is worth noting that the hierarchical clustering approach requires the

calculation of a full 1638× 1638 distance matrix. In larger datasets, such as the one in Section 4.7,

this approach would not be computationally convenient.

4.7 Application: Similar Music Artists

Music streaming services such as Pandora, Last.fm, and Spotify offer users the opportunity

to discover new musical artists based on existing preferences. These companies have developed

complex algorithms for finding similar artists based on era, genre, user ratings, etc. The Coherent
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Set Mining framework provides a novel means of artist matching based on coherence. To preserve

the directionality of a recommendation approach, instead of seeking coherent sets, we seek coherent

neighborhoods, consisting of the set of all items that have positive coherence with a chosen target

set A. That is, given a set A of preferred artists for an individual, we would like to recommend a

neighborhood of similar artists around A. Such neighborhoods are easily estimated by performing

only a single iterative step of the Coherent Set Mining algorithm. By considering coherence rather

than other similarity measures, we are able to identify related artists (as measured by listener

history) without skewing the results towards globally popular music or allowing differences in

listener behavior to mask artist associations.

As an example of this approach, we analyzed a dataset provided by Celma (2010) downloaded

from the last.fm public API. The data consists of listening history for 1893 anonymized users,

covering 17,632 unique artists. The data was converted to a binary matrix, where a 1 indicates

that a particular user listened at least once to a particular artist. We then applied the single-step

Coherent Set Mining algorithm for each individual artist.

Two results of the coherent neighborhood analysis of the last.fm data are in Tables 4.3 and

4.4. We also include the top five user-chosen descriptive tags for each artist, to show the type of

metadata that might alternatively be used to group artists.1 Interestingly, although the coherent

neighborhoods tend to have clear themes, they do not directly represent the closest artists to the

seed based on genre or musical style. For example, the coherent neighborhood in Table 4.3 for

“Hannah Montana”, a fictional country star from a Disney TV show portrayed by Miley Cyrus,

consisted of Cyrus herself and many other singers who got their start on Disney shows (Demi

Lovato, Selena Gomez, Ashley Tisdale). Similarly, although many musicians produce similar music

to Paul McCartney, the coherent neighborhood in Table 4.4 consists only of the Beatles and fellow

Beatles members. This suggests that unsupervised grouping based on coherence may capture links

between artists that are not apparent from subjective expert analysis of musical similarities.

1Top tags were selected by the percent of times the tag appeared for the artists versus overall in the dataset. Tags
were limited to top 100 most popular, to avoid single-user or single-artist tag strings, e.g. “David Bowie” or “Songs
for my breakup with Maria.”
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Table 4.3: Coherent neighborhood for “Hannah Montana”

Artist Top 5 Tags

Hannah Montana love at first listen, pop rock, soundtrack, amazing, female vocalist

Miley Cyrus <3, catchy, love at first listen, amazing, pop rock

Rihanna rnb, ballad, sexy, love, dance

Katy Perry pop rock, <3, catchy, love, love at first listen

Britney Spears catchy, female, sexy, amazing, dance

Ke$ha love at first listen, dance, <3, pop, catchy

Lady Gaga dance, female vocalist, love at first listen, catchy, sexy

Demi Lovato love at first listen, <3, pop rock, catchy, female vocalist

Avril Lavigne pop rock, canadian, pop punk, female, love at first listen

Taylor Swift country, <3, catchy, love, amazing

Selena Gomez & the Scene <3, pop rock, love at first listen, catchy, love

Ashley Tisdale <3, catchy, pop rock, ballad, awesome

Hilary Duff favorites, amazing, sexy, pop rock, dance

Christina Aguilera ballad, sexy, soul, rnb, amazing

Jonas Brothers pop rock, <3, love, love at first listen, amazing

Beyoncé rnb, sexy, soul, ballad, female vocalist

Glee Cast cover, love at first listen, love, catchy, soundtrack

Table 4.4: Coherent neighborhood for “Paul McCartney”

Artist Top 5 Tags

Paul McCartney sad, classic rock, cool, british, beautiful

The Beatles 60s, classic rock, british, psychedelic, <3

George Harrison classic rock, 70s, singer-songwriter, sad, british

John Lennon classic rock, singer-songwriter, 70s, british, male vocalists

4.8 Proofs and Derivations

4.8.1 Coherence and latent correlation (Proposition 1)

Proposition 1. Let θ ∼ ν and Z ∼ Nd(u,Σ) for fixed u ∈ Rd and Σjj = σ2 for all j. Then, for

any ν,

ψ(j, k) > 0 if and only if Σjk > 0 . (4.33)
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Proof. By definition, ψ(j, k) > 0 if and only if E [(Xj − θj)(Xk − θk)] > 0. We proceed by condi-

tioning on θ.

E [(Xj − θj)(Xk − θk) |θ] = E [XjXk |θ]− θjθk

= P (Xj = 1, Xk = 1 |θ)− θjθk

= P (Zj < qj , Zk < qk | qj , qk)− P (Zj < qj | qj)P (Zk < qk | qk) . (4.34)

When Σjk = 0, P (Zj < qj , Zk < qk) = P (Zj < qj)P (Zk < qk) for any values of qj , qk, so (4.34) is

0. Further, by Slepian’s Lemma (Slepian, 1962), (4.34) is greater than zero if and only if Σjk > 0.

Taking the expectation of both sides of (4.34) completes the proof.

4.8.2 Asymptotic bound on idealized sample coherence (Proposition 2)

Proposition 2. If supj≤dn θj = op(1) and E
[
θ-1j

]
= o(n) for j ∈ [dn], then for any ε > 0 and any

j, k,

P
(∣∣∣ψ̂(j, k)

∣∣∣ > 1 + ε
)
→ 0 (4.35)

as n→∞.

Proof. We first show that if E
[
θ-1j

]
= o(n) and E

[
θ-1k
]

= o(n), then

E
[
U2
j U

2
k

]
= o(n) . (4.36)

To prove (4.36), note that it is possible to express U2
j in terms of Xj and θj as follows,

U2
j = Xj

(
1− θj
θj

)
+ (1−Xj)

(
θj

1− θj

)

= Xj

(
1− 2θj
θj

)
+

(
θj

1− θj

)
. (4.37)
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Then,

E
[
U2
j U

2
k |θ

]
= E [XjXk |θ]

(
(1− 2θj)(1− 2θk)

(1− θj)(1− θk)θjθk

)
+ E [Xj |θ]

(
(1− θj)θk
θj(1− θk)

)

+ E [Xk |θ]

(
(1− θk)θj
θk(1− θj)

)
+

(
θjθk

(1− θj)(1− θk)

)

≤ (1− 2θj)(1− 2θk)

(1− θj)(1− θk)
√
θjθk

+
(1− θj)θk
(1− θk)

+
(1− θk)θj
(1− θj)

+
θjθk

(1− θj)(1− θk)
,

where the last line follows from the identify for binary random variables E [XjXk] ≤
√
E [Xj ]E [Xk].

Finally, we note that since θj , θk = op(n), for large enough n we have that θj < (1−θj) and similarly

for θk. Then, E
[
U2
j U

2
k |θ

]
≤
√
θjθk

-1 ≤ θ-1j + θ-1k , which proves (4.36).

It then follows that var
(
ψ̂(j, k)

)
→ 0 as n→∞, and therefore

∣∣∣ψ̂(j, k)− ψ(j, k)
∣∣∣ p−→ 0. Since

|ψ(j, k)| < 1 by construction, this proves the result.

4.8.3 CLT for idealized sample coherence (Theorem 3)

Theorem 3. Let Z ∼ ϕn, θ ∼ νn, and Xj = I {Zj > θj} . Fix j and for each n let An ⊂ [dn]\{j}

be an index set with cardinality |An| = mn. Let Ψ̄n(An) be the average of the coherence matrix for

An, as in (4.11). Assume that

(i) For each n, Zj is independent of {Zk}k∈An under ϕn;

(ii) lim
n→∞

(
sup

k∈{j}∪An

θk

)
= op(1); and

(iii)

 1

mn

∑
k∈An

s2jns
2
kn

 Ψ̄n(An)-2 = o(n) .

Then,
√
n

(
ψ̂n(j, An)

σ̂n(j, An)

)
d−→ N (0, 1) as n→∞. (4.38)
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Proof. For convenience, denote

Uij =
Xij − θij√
θij(1− θij)

and Vn,i =
1

mn

∑
k∈An

Uik , (4.39)

so that Uij is the standardization of Xij and Vn,i is the sample-wise average of Uik : k ∈ An. Let

σ2n = var(
√
nψn). In terms of these, the idealized sample coherence and an estimator for σ2n are

given by, respectively,

ψ̂n(j, An) =
1

n

n∑
i=1

UijVn,i and σ̂2n(j, An) =
1

n

n∑
i=1

U2
ijV

2
n,i . (4.40)

Since (Xi,θi) are i.i.d. copies of the pair (X,θ), we may regard Uij as i.i.d. copies of Uj and Vn,i

as copies of a random variable Vn. It follows from the definition of Vn,i that

EV 2
n =

1

n2

∑
k,`∈An

E [UkU`] (4.41)

which by definition is simply the average coherence of An, Ψ̄n(An).

The Lindeberg-Feller condition states that a sufficient condition for (4.38) is that for every

ε > 0,

lim
n→∞

1

n-1 σ2n

n∑
i=1

E

[(
UijVn,i
n

)2

I
{
|UijVn,i|

n
> εn-1/2 σn

}]
= 0 , (4.42)

or equivalently,

lim
n→∞

1

nσ2n

n∑
i=1

E
[
U2
ijV

2
n,i I

{
|UijVn,i| > εn1/2 σn

}]
= 0 . (4.43)

Since Uij , Vn,i are i.i.d. copies, the identities in (4.40) give

var
(
ψ̂n

)
=

1

n2

n∑
i=1

E
[
U2
ij V

2
n,i

]
= n-1E

[
U2
j V

2
n

]
(4.44)

Then, (4.43) reduces to

lim
n→∞

E
[
U2
j V

2
n I

{
|Uj Vn| > εn1/2 σn

}]
EU2

j V
2
n

= 0 . (4.45)

89



By Cauchy-Schwarz, it suffices to show that

lim
n→∞

(
EU4

j V
4
n

(EU2
j V

2
n )2

)1/2

P
(
n-1/2|UjVn| > εσn

)1/2
= 0. (4.46)

Markov’s inequality gives

P
(
n-1/2|Uj Vn| > εσn

)
≤
E
[
U2
j V

2
n

]
n ε2 σ2n

= ε-2n-1 . (4.47)

An application of Lemma 1 then completes the proof of (4.43). It remains only to show that σ̂2n is

consistent for σ2n. Note that σ̂2n is unbiased for σ2n, since it is an average of i.i.d. copies of U2
jiV

2
n,i.

The variance of σ̂2n is given by

var
(
σ̂2n
)

=
1

n

(
E
[
U4
j V

4
n

]
− E

[
U2
j V

2
n

]2)
(4.48)

Recall that U2
j and V 2

n are conditionally independent given θ, and that by the definition of U2
j ,

E
[
U2
j

]
= E

[
U2
j |θ

]
= 1 for all j. Then,

E
[
U2
j V

2
n

]
= E

[
E
[
U2
j V

2
n |θ

]]
= E

[
E
[
U2
j |θ

]
E
[
V 2
n |θ

]]
(4.49)

= E
[
V 2
n

]
(4.50)

≤ E

 1

n

∑
j∈A

U2
j

 = 1 , (4.51)

where the last line follows from Cauchy-Schwartz. Since E
[
U2
j V

2
n

]
≤ 1, (4.48) holds when (4.52)

holds, and so another application of Lemma 1 completes the full proof.

Lemma 1. Under the conditions of Theorem 3,

E
[
U4
j V

4
n

]
(EU2

j V
2
n )2

= o (n) . (4.52)
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Proof. First, we show that for any k ∈ [dn],

E
[
U4
k

]
< E

[
2

θk(1− θk)

]
. (4.53)

We will show (4.53) using the identity

U4
k = I {Xk = 1}

(
1− θk√
θk(1− θk)

)4

+ I {Xk = 0}

(
−θk√

θk(1− θk)

)4

. (4.54)

Recall that E [Xk | θk] = θk. Then, using the above identity, a simple rearrangement of terms and

conditioning on θk gives,

E
[
U4
k

]
= E

[
E
[
Xk

(
(1− θk)2

θ2k

)
+ (1−Xk)

(
θ2k

(1− θk)2

)
|θ
]]

= E
[(

(1− θk)2

θk

)
+

(
θ2k

(1− θk)

)]

= E
[

(1− θk)3 + θ3k
θk(1− θk)

]
.

Finally, θk ∈ (0, 1), (1− θk)3 + θ3k < 2.

By Holder’s inequality, EV 4
n can be expanded and bounded by

EV 4
n =

1

m4
n

∑
j,k,`,h∈An

E [UjUkU`Uh] ≤ 1

m4
n

∑
j,k,`,h∈An

(
EUj 4EU4

k EU4
` EU4

h

)1/4
(4.55)

From condition (i) of Theorem 4 and the definitions of Uj and Vn, we may conclude that Uj and

Vn are conditionally independent given θ. By the argument in (4.49), E
[
U2
j V

2
n

]
= EV 2

n ≤ 1.

Therefore,

E
[
U4
j V

4
n

]
E
[
U2
j V

2
n

]2 =
EU4

j EV 4
n

E [V 2
n ]2

≤
EU4

j

EV 2
n

 1

mn

∑
k∈An

E
[
U4
k

]1/44

. (4.56)
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A substitution from the bound in (4.53) reduces (4.52) to the condition

E
[

2

θj(1− θj)

] 1

mn

∑
k∈An

E
[

2

θk(1− θk)

] (EV 2
n )-2 = o(n) , (4.57)

or equivalently, using the definition of sjn from (4.12),

4s2jn

 1

mn

∑
k∈An

s2kn

 Ψ̄n(An)-2 = o(n) , (4.58)

which holds by assumption (iii) of Theorem 3.

4.8.4 Parameter estimation (Theorem 4)

Theorem 4. Let µjn, g(·) and α̂jn be as in (4.19) and (4.20). If

(i) µjn = o(1),

(ii) µ-1jn = o(n), and

(iii) g(·) is an invertible function with continuous inverse, then∣∣∣∣ α̂jnαjn
− 1

∣∣∣∣ p−→ 0. (4.59)

Proof. For simplicity, we will suppress the dependence on n in the notation of µjn and αjn.

Recall that by definition,
∣∣∣ α̂jn

αjn
− 1
∣∣∣ = α-1

jn|g-1(X ·j) − g-1(µjn)|. Because g-1(·) is continuous, the

mean value theorem guarantees that for each j ∈ [dn],

g-1(X ·j)− g-1(µjn) = (g-1)′(µ̃jn)
(
X ·j − µjn

)
(4.60)

where µ̃jn is between X ·j and µjn, and (g-1)′ is the derivative of g-1. As g-1(·) is continuous, (g-1)′(·)

is bounded. We thus reduce (4.59) to the equivalent asymptotic statement,

µ-1jn|X ·j − µjn| → 0 . (4.61)
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Note that X ·j is a sum of i.i.d. observations of Bernoulli random variables (X1j , . . . , Xnj), each of

which has finite fourth moment (EX4
ij < 1), and variance µjn(1− µjn). Thus, a basic application

of the CLT guarantees
√
n
|X ·j − µjn|√
µjn(1− µjn)

= Op(1) (4.62)

Since (1− µjn)→ 1 by (ii) and
√
n
√
µjn → 0 by (iii), the proof is complete.

4.8.5 Example 4.2

Claim. The prior τ ∼ expo(λ) satisfies Condition 5.1, i.e., for each δ > 0 there exist sets

S1, S2, . . . such that diameter of each set is less than δ, ∪k≥1Sk = R+, and
∑

k≥1
√
π(St) <∞.

Proof. Fix δ > 0 and set Sk = [(k − 1)δ, kδ] for k = 1, 2, . . .. Then,

π(Sk) =

∫ kδ

(k−1)δ
λe−λxdx = e−λkδ

(
1− e−λδ

)
. (4.63)

Since λδ > 0, we conclude that

∞∑
k=1

√
π(Sk) ≤

∞∑
k=1

exp

(
−kλα

2

)
< ∞ , (4.64)

so the condition is satisfied.
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CHAPTER 5

Conclusions and Future Work

This dissertation has provided an in-depth discussion of two new methods of statistical associ-

ation mining, DCM and CSM, both derived from a framework of variable-to-set affinity testing. In

addition to having sound foundations in statistical principles, these methods have proven effective

in a variety of real data studies. We are particularly encouraged by the ongoing collaborations that

have been established with regard to DCM results for statistical genetics (Section 3.7). However,

despite our confidence in these methods, some interesting theoretical questions still remain:

• Does the general global error control result for VSAT (Theorem 1) hold in the presence of

non-uniform or non-independent p-values? Can a version of this result be shown in a non-null

setting?

• Can the central limit theorem for ∆̂(j, A) used in the DCM method (Corollary 1) be extended

to allow the set size |A| = m to grow with the sample size n?

• Do the approximations to consistent estimators given in 4.4 have any similar consistency

properties?

In addition to extending existing theory, there are many possible future projects suggested by

the work in this dissertation. Below, I detail three major directions for future work.

5.1 Prediction after VSAT

At present, the development of VSAT type methods has focused on unsupervised learning;

the objective is to identify ζ-connected sets, not to use ζ to categorize future measurements. In

principle, however, I believe the results of VSAT algorithms may lend themselves to prediction

and classification tasks. Consider, for example, the DCM data setting. Samples are assumed to

come from two known sample conditions, from which we identify differentially correlated variable
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sets. Suppose that after applying DCM to a particular dataset, we were to subsequently observe a

sample for which the condition is unknown. Could the results of DCM be leveraged to classify the

new sample?

A predictive method based on VSAT results could proceed as follows

1. Define ζ such that large values of ζ correspond to differences between a target sample cate-

gories and the remaining samples.

2. Apply a VSAT type algorithm to identify ζ-connected sets A1, . . . , An.

3. Given a new sample i, calculate the change in ζ for each of {A1, . . . , An} when the sample is

included.

4. Test the change in ζ due to including sample i for significance, to determine if i belongs in

the target category.

In essence, this approach makes use of the VSAT framework to determine which variables, out

of many, characterize a sample category of interest. We may then use this limited set of variables

to test the category membership of a new sample. For example, consider the DCM application to

TCGA gene expression data in Section 3.7. This analysis relies on a pre-determined separation

between Her-2 and Luminal B type tumor samples. Perhaps the results of this analysis could be

used to classify tumor samples with unknown cancer type.

5.2 Correlation mining with continuous response

In the DCM project, we expanded single-dataset correlation mining to a comparative setting.

We may also consider expanding this notion further to measure how intracorrelation of a group

of variables changes with a response. That is, suppose we have a random variable X ∈ Rd such

that the joint distribution of X depends on a parameter y ∈ R, i.e. X | y ∼ Fy. The parameter y

may be interpreted as a response quantity, such as survival rate for a diseased individual. If one

were interested in how the mean behavior of X changes with y, a regression approach would be

appropriate. It is also sometimes of interest to understand how the association in X changes with

y.
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Suppose the correlation between two variables Xj , Xk from X can be represented as a function

of y, i.e.,

gjk(y) = cor (Xj , Xk | y) . (5.1)

Assume that for each sample i, we observe both Xi and a corresponding yi. Then, it may be of

interest to identify variable sets in which gjk(y) changes with y. That is, we may consider searching

for variable sets A such that ∑
j,k∈A

gjk(y)

is increasing in y. This represents a generalization of the DCM setting, in that if y ∈ {0, 1} the

model reduces to looking for correlation differences across sample conditions y = 1 and y = 0.

A VSAT approach is clearly appropriate to this question. However, the challenge lies in the

development and analysis of a test statistic measuring the behavior of gij(y) when y is nonbinary.

The formulation of such a statistic is a complex question; in practice, we would likely observe

a response vector y = (y1, ..., yn) and corresponding variable values X1, . . . ,Xn. Thus, we only

have a single observation of X for each value of y, and we cannot compute sample correlations

ĉor (Xj , Xk | y) directly.

A project of this nature would represent a useful contribution to data analysis, especially in

the realm of bioinformatics. Researchers are often interested in discovering subsets of genes whose

groupwise behavior drives a phenotypic response. This work would open the door to a more nuanced

study, as it would allow for continuous phenotypic metrics.

5.3 A VSAT approach to collaborative filtering

Collaborative filtering is a method used by many recommendation algorithms to predict a

preferences or rankings of songs, movies, etc. The key idea is to use preference information across

many individuals to predict the preferences of a single individual, under the assumption that if

two people agree on one topic, they are likely to agree on others. Existing methods tend to take a

“nearest neighbors” approach known as collaborative filtering:

1. Calculate the similarity between all users and the target user i. (e.g. correlation of rankings,

covariance, etc)
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2. Identify the m users with most similarity towards user i

3. Predict user i’s rating of item j by some aggregate of the m nearest neighbors. (e.g, average,

weighted by similarity average, etc)

Linden et al. (2003) provides and in-depth discussion of the collaborative filtering recommendation

approach in the case of amazon.com purchases. Collaborative filtering can also be thought of as a

“matrix completion” problem, in the sense that user i’s potential rating of item j is a missing data

point to be filled in. Candès and Tao (2010) and Candes and Recht (2012) are common methods of

matrix completion for recommendation. For surveys of collaborative filtering and matrix completion

methods, see e.g. Breese et al. (1998); Sarwar et al. (2001)

As a simple illustration, suppose we observe ratings for 3 people on a scale of 1-10, for 10

movies:

Movie

A B C D E F G H I K

Person 1 1 3 4 9 7 NA NA NA NA NA

Person 2 NA 2 5 NA 6 9 3 NA 1 1

Person 3 8 NA 6 1 5 NA 5 7 1 4

The goal, then, is be to predict the ratings of Person 1 from 2 and 3. (In practice, we would

likely have datasets for tens of thousands of people and possibly hundreds of movies.) A very basic

approach would be to note that Person 2 has very similar ratings to Person 1. Then, we would take

Person 1 to be the “nearest neighbor” of Person 2, and we would predict that Person 2 has the

same ratings as Person 1 for Movies E-K (excluding Movie H, for which Person 2 has no ratings).

There are a few notable weaknesses with this type of approach:

1. The identification of the N nearest neighbors can be computationally costly.

2. One must decide how best to aggregate the data from the N nearest neighbors to predict an

individual.

3. A decision must be made about which size N to use.

4. Methods must be able to handle missing data (i.e. unrated items).
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5. Correlation may be induced by patterns in items. That is, if one movie is naturally more

likely to be rated highly than another, we will see users have similar rating patterns even if

they aren’t actually similar in preference.

The collaborative filtering framework is an ideal setting for a VSAT algorithm. As in Coherent

Set Mining, a careful choice of ζ and P0 can account for overall differences in user behavior and

in item popularity, as well as properly handle missing data points. Estimates of ζ-neighborhoods

around an individual are then a good choice of “neighbors” from which to predict that individual’s

unobserved preferences.

An advantage of this approach is that we can use dissimilarity data as well as similarities. That

is, we can find neighborhoods around a user j such that ζ(j, A) is positive and neighborhoods in

which ζ(j, A) is negative. For example, in the above sample data, we may also note that Person

3 has very different ratings from Person 1, especially about movies A and E. We might expect,

then, that Persons 1 and 3 will also have opposite opinions about other movies. If we properly

weight the data from Persons 2 and 3, in accordance with their (dis)similarity to Person 1 (and the

uncertainty thereof), we bring more information to bear in our estimate of Person 1’s ratings.

The VSAT approach to collaborative filtering also comes equipped with a natural method

of prediction from a neighborhood. Instead of directly averaging the preferences of the users in

the ζ-neighborhood of a user j, we can make use of a weighted average, with weights given by

individual associations ζ(j, k). I believe that the results of such a method would be useful in many

recommendation contexts.
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“There are known knowns. These are things we know that we know. There are known

unknowns. That is to say, there are things that we know we don’t know. But there are also

unknown unknowns. There are things we don’t know we don’t know.”

-Donald Rumsfeld, U.S. Department of Defense briefing (2002)

99



APPENDIX A: PSEUDOCODE FOR DCM

Algorithm 1 Initial Search Procedure

1: procedure InitDCM(X1,X2, k) . Target output size k.

2: F1,F2 ← Fisher transformed correlation matrices of X1,X2.

3: B ← index set of size k chosen uniformly at random

4: repeat

5: S =
∑
i,j∈B

(F1 − F2)ij

6: for a in B, r in BC do . Possible swaps

7: Sar =
∑

i,j∈B∪{r}�{a}

(F1 − F2)ij

8: end for

9: a∗, r∗ ← maximizers of Sar subject to Sa∗r∗ > S.

10: B ← B ∪ {r∗}�{a∗} . Best swap

11: until no such a∗, r∗ exist

12: return B

13: end procedure
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Algorithm 2 Core Search Algorithm

1: procedure DCM(X1,X2, A) . Initial index set A

2: Aprev ← ∅

3: cycle← 0

4: repeat

5: t = 1 or 2 . Sample class label

6: mt ← mean ({Xt}A)

7: for i in 1, · · · , p do

8: rti ← ĉor (Xti ,mt)

9: T̂i ← m1r1i −m2r2i . Sample test statistic.

10: H0,i : Ti = 0

11: pi ← P
(
Ti ≥ T̂i |H0,i

)
. DC variable p-values

12: end for

13: Anext = {i : H0,i rejected by FDR controlled multiple testing}

14: if Aprev = Anext then . Check for cycles.

15: Aprev ← A

16: A← A ∩Anext

17: cycle+ = 1

18: else . Update sets.

19: Aprev ← A

20: A← Anext

21: end if

22: until Anext = Aprev or Anext = ∅ or cycle = 2

23: return A

24: end procedure
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APPENDIX B: ADDITIONAL TCGA GENE LISTS

Table B.1: Gene lists for TCGA data

1. PDE3A, SPTBN2, FMOD, SLC26A2, FAM84A, RHOBTB2, CTSF, NAT10, S100P, CCS, PARM1, ALG8, KCTD21, ITGA10, CD59,

C11orf80, NARS2, CGREF1, USP35, GALNT4, PTPRN2, CAPRIN1, ATP8B5P, FBXO3, EIF3M, PAIP2B, RCE1, AVPI1, TFF3, LOXL4,

PPAPDC1B

2. SELL, IL2RB, RAMP3, CLIC5, PLA1A, LEF1, TMEM176A, PTGER2, CST7, SASH3, CD2, CD4, MYO1F, RASGRP1, CXCR3, FMNL1,

RSPO3, FERMT3, LAPTM5, CD3D, CLIC2, RASAL3, ARHGAP9, ACAP1, TRAF3IP3, GZMA, FAM20A, PTPN7, GPRIN3, SERPINF2,

TMEM176B, CD37, CSF1, CARD11, CD5, LRRC8C, GIMAP4, NKG7, DOK2, STX11, CD7, INPP5D, CD6, JAK3, ICAM2, CCL5,

RAB37, MAP4K1, LCK, KLRK1, SEPT1, PRF1, AIF1, AMICA1, MFNG, ITM2A, LCP2, CD3E, SPI1, SLA2, GIMAP5, CD96, IL2RG,

CXCL13, TBC1D10C, WAS, GIMAP6, HCK, SNRK, TNFRSF1B, SELPLG, CCR5, CYTH4, SNX20, RGS18, CD52, IKZF1, PLEK,

CD247, ZDHHC2, CSF2RA, CSF2RB, ARHGAP25, CD83, TIGIT, CSF1R, GMFG, PRCP, CD8A, PIK3R5, HCST, ITGAL, PIK3CD,

SRGN, ITGB2, ZAP70, GGTA1, FLI1, DOCK10, NCKAP1L, PLEKHO2, EBF1

3. AGER, Ube2l6, Irf1, echdc1, ARPC4, ETV7, amt, LOC400759, IDO1, HLA-E, PILRB, HLA-F, GJD3, GBP4, STAT1, BATF2, Rufy4,

FBXO6, GBP1, calml4, SAMD9L, SEC31B, CCDC146, HLA-H, APOL1, EXOSC10, Myo15b, LOC115110, OASL, HLA-A, LOC91316,

Tapbp, B2M, HLA-B, tap1, TTLL3, TXNDC6, IL15, BTN3A2 ,BTN3A3, micB, Rec8, C19orf38, Zbp1, CHKB-CPT1B, HSH2D, gnb3,

HLA-C

4. STAG3, BVES, MAP3K7, RRAGD, C6orf170, LYRM2, MDN1, UBE2J1, CASP8AP2, TRMT11, POP7, PILRB, EPHB4, ZCWPW1,

GNB2, GIGYF1, ANKRD6, UFSP1, CNPY4, MCM7, HSPA4L, LRCH4

5. CCDC78, C2orf27A, COLQ, CASC1, SPATA17, FAM154B, C2orf77, CCDC19, C10orf79, ZMYND10, IQCK, WDR54, UNC5CL,

TMEM121, WDR66, HOXC6, COL9A2, PIH1D2, EVL, FER1L4, ALKBH3, C11orf74, NAT1, CCDC30, PRICKLE4, MORN1, C1orf88,

OSCP1, SPA17, KCNJ8, MESDC1, C14orf79, MYL9, EYA2, CCDC74B, AHNAK2, CADM1, C10orf116, MTL5, SEMA3F, C1orf192,

ZNF137, C5orf49, C14orf174, GAS6, DNAH7, HOXC9, CCNL2, CCDC103, GATA3, MGST3, CXCL14, C2orf81, C9orf116, ZNF239,

PRR7, RSPH1, BAI2, CCDC114, C19orf51, KCNK1, CROCC, RIPK3, RPP30, RARA, IGFBP4, FZD7, FAM176B, TPPP3, RHOT2,

LRRC49, NEK11

6. HPGD, HERC3, SRD5A1, ZNF518B, SC5DL, SEPP1, FKBP5, ALOX15B, APOD, ZNF689, LACTB, ADHFE1, MPV17L, ACPP,

SLC41A2, AFMID, IDH1, GALC, CROT, LIMS1, STEAP4, AADAT, PXMP4, ANXA4, AACS, CASP10, GPRC5B, SCP2, SMPDL3A,

LACTB2, NSUN2, KYNU, CYP1B1, CYP2R1, APLP2, UBE2G1, DHRS2, HIBADH, MAOA, SLC5A3, KLHL8, AMACR, SGK1, HERC4,

OPHN1, ALDH1A3, CLCN7, NPC1, DBI, ABHD6, FITM2, MAML2, PKIB, AK3L1, RMND5A, GPR109A, CTH, AGFG1, CTBS

7. C6orf97, LRRC34, FLOT1, NUCKS1, MDM4, STK19, EXOC2, ZBTB9, CCDC39, SYNGAP1, CMYA5, TCEAL6, ZBTB12, KIAA1529,

CREB3L4, FAR1, WDR52, HSD17B4, GAMT, PABPC1L, RERG, CHRD, GLI3, ABAT, PCSK6, DCAF10, TMEM231, RBM39, TRERF1,

PRRT2, ZNF692, RDBP, NPHP1, ZNF83, ZNF516, GPSM3, GALNT6, POLN, CCDC14, IFT140, ESR1, DCLRE1A, BBC3, POLL,

WASH7P, UQCC, CHST15, SLC7A2, TCEAL3, C10orf78, KITLG, EFHC1, RHBDL1, MPP2, C6orf154, RCOR3, GTF2H4, TPRN, NEK2,

ZDHHC6, EHMT2, ZNF525, ZNF37B, TRAF2, GADD45G, TMPRSS3, NSL1, SFI1, C3orf52, SCAND2, ARL3, MGEA5, POLH, BAT1,

TAF9B, SEPT8, MAP3K12, KIAA1407, RMND1, TRPV1, GATA3, IGF1R, KIAA0040, LOC143188, LRRC56, LOC678655, ZNF187,

C1orf203, LOC729375, LOC100129550, RAB40C, PRR3, BRD2, LOC283050, DACH1, RGS11, GPR77, C5orf30, LRDD, HMGN4, ANXA6,

ANKRD10, BAT4, VPS52, AGAP11, RPS6KC1, PAAF1, SHROOM2, PARP10, NUAK2, RANGRF, TTC30B, ZNF137, CLSTN2, ABCC5,

TTC30A, C1orf113, DTX3, ANXA9, PLCD4, FNBP4, LZTS2, C1orf226

8. C19orf66, HCP5, HLA-A, IFIT5, ATHL1, UBE2L6, IRF7, TRIM21, HSH2D, OASL, IFIT3, DDX58, HLA-F, IFIT2, RTP4, PSMB8,

IFIT1, HLA-B, SAMD9, IFI27, UBA7, PFDN6, HERC6, PSMB9, HLA-H, GBP1, XAF1, RPF1, C19orf38, TREX1, MX2, C3orf62,

ZNF404, IFI35, C10orf4, RIBC2, DDX60L, GBP4, B2M, RING1, IRF9, IFITM1, PARP14, IFI27L1, MX1, SIGIRR, LOC115110, PARP12,

CCDC18, LOC339047, REC8, PPP1R11, DDAH2, EXOSC10, CCDC101, MESDC1, FAM193B, SYNC, ZC3H11A, CARD16, ZBTB22,

PPM1K, ZSCAN16

9. PHF10, PHC2, WDTC1, SBK1, ZNF362, RCC2, CCDC23, MMP25, MAD2L2, ZNRF1, HNRNPA0, PTMA, PARD6G, HIST1H4J,

FAM54B, MARCKSL1, TMEM50A, DYNLT1, TMEM88, CDK5R1, FOXP4, H3F3A, SYTL3, PATZ1, CMIP, KPTN, DCLK1, C1orf144,

HMGN3, CAPS

10. SIK2, CREB3L2, GPRIN3, CAPN9, RALGAPA2, DOCK4, CDKL5, ERN1, NAGLU, KIAA1147, ANKRD36BP1, BAG4, MLL3, LMTK2,

ADAM9, PLEKHA2, FAM63B, MPP7, DENND1B, PRKAA1, SERINC5, SGK196, TRMT2B, SEC24A, UGGT1, AVL9, GOLGA4,

PRKAR2A, PARD3B, LOC283922, XYLT1, HIPK3
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11. PPP2R3A, SLC23A2, MLL, CBL, MGA, NBEAL1, RC3H2, MAP3K2, TTF2, ZFP91, CNTN1, DOCK10, RASA2, NPHP3, ZNF318,

C10orf18, DSP, HIPK1, MLX, RNF214, FAM168A, NOTCH2, ARL10, PPARA, SAMD8

12. MYO10, FAM105B, BEST1, PDZD2, PAPD7, NLRX1, CLPTM1L, ELF4, SMURF1, CCT5, KIAA0947, IFRD1, GRB10, PLEKHA8,

CXorf56

13. PLAT, LEF1, C12orf68, TBX2, METRNL, MSX1, PSD, THBD, FBXL15, MIF, ZNF628, C7orf50, CHST12

14. ZMYND17, GALNTL1, C9orf46, CNIH2, HMGN2, CIRBP, HOXD9, CCL5
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APPENDIX C: ADDITIONAL SHAKESPEARE TEXT RESULTS

Table C.1: Coherent word sets in Shakespearean tragedies

1. them, cheer

2. young, boy

3. spirit, now

4. prithee, yet

5. our, whence

6. fury, on

7. image, hand

8. think, opinion

9. than, more

10. small, much

11. courage, on

12. he, his

13. going, go

14. than, rather

15. my, fight

16. noble, present

17. on, deed

18. did, wast

19. when, past

20. move, our

21. earth, heaven

22. well, fare

23. hate, do

24. war, people

25. speak, speaks

26. our, cries

27. cruel, most

28. being, against

29. our, hearing

30. mother, make

31. hath, spend

32. else, pleasure

33. your, welcome

34. which, parts

35. man, wits

36. go, humour

37. much, health

38. met, no

39. least, our

40. less, would

41. vile, out

42. our, affairs

43. above, from

44. there, brow

45. ours, our, us

46. too, indeed, time

47. he, his, powers

48. soon, hath, ere

49. thousand, ten, twenty

50. us, are, labour

51. had, twas, been

52. brothers, if, brother, were

53. she, her, lady, madam, husband, wife, queen,
woman, daughter, shes, marriage, me, tell, sister,
herself, sweet

54. hast, dost, art, thy, wilt, thee, thine, thou, death,
shalt, canst, didst, ill, sweet, ah, hadst, if, thyself,
away, father, eyes, boy, villain, child, mine, mother,
kill, wert, me, then, die, o, flesh, am, cheeks, leave,
young, sight

55. king, duke, majesty, lords, france, prince, grace,
god, princely, unto, liege, sovereign, crown, english,
french, highness, uncle, princes, arms, lord, gra-
cious, subjects, cousin, soul, title, now, blood, fa-
thers, then, until, queen, father, traitor, yield, son,
right, royal, john, forward, brother, doth, presence,
heir, war, sons, embrace, hath, guilty

56. pray, has, sir, fellow, good, know, indeed, theres,
ha, does, knave, hes, whats, matter, said, hon-
est, think, would, some, time, go, can, faith, nay,
am, thats, most, lady, beseech, ont, ay, say, marry,
could, ist, prithee, you, yourself, well, tis, fit, ones,
yes, such, so, thing, em, no, how, very, fool, wife,
tell, put, sorry, are, what, there, better, her, never,
sirrah, out, shes, sure, tot, one, your, much, ho
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Table C.2: Word sets in Shakespearean tragedies clustered by TF-IDF adjusted distance

1. ah, tears

2. child, lady

3. city, enter

4. english, french

5. father, son

6. gates, town

7. god, grace

8. letter, villain

9. mad, sing

10. oath, swear

11. thou, thy

12. you, your

13. anon, falstaff, four

14. art, dost, thee

15. beauty, fair, ladies

16. husband, wife, woman

17. peace, right, whose

18. plague, rascal, rogue

19. brothers, children, mighty, suit

20. drunk, tonight, watch, wine

21. fellow, says, sirrah, whoreson

22. gracious, heir, sovereign, unto

23. feast, murder, revenge, sent, witness

24. five, hundred, knight, morrow, today

25. to, awake, dream, gentlemen, sleep, tomorrow

26. hear, honourable, mark, read, speak, wrong

27. age, cause, honour, most, nature, noble, poor

28. die, fight, fly, hurt, quarrel, slain, soldiers, sword

29. against, church, forsworn, hang, holy, law, mayst,
need, priest

30. court, ha, marry, old, said, shadow, silence, very,
yea

31. dead, death, deed, didst, eyes, kill, killd, life, ten-
der, wilt

32. within, call, coward, devil, door, faith, fat, hast,
prithee, seven, two

33. appear, bears, denied, durst, endure, faults, gown,
humour, justice, letters, roman, yourselves

34. ancient, bravely, damned, discharge, mistress,
neighbour, quiet, receive, stuff, troth, warrant,
whether, wicked

35. does, drink, gods, ho, indeed, ist, madness, matter,
nay, pray, sense, t, theres, think, tis, whats

36. ass, beast, beggar, below, dog, fools, forgot, hadst,
hate, ild, mend, mere, misery, shouldst, thief,
thine, thyself, want, wealth, wert, wouldst

37. arm, arms, base, blood, body, day, doth, earth,
eye, farewell, foul, hand, hands, head, heaven,
mouth, myself, power, proud, royal, saint, soul,
souls, sweet, tale, tongue

38. aside, between, business, confess, conscience,
drown, face, fie, free, hes, home, lost, marriage,
methought, please, pluck, pound, presence, purse,
red, sea, sentence, side, thousand, truth, wear,
white, wit, work, worthy, youre
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APPENDIX D: ADDITIONAL LAST.FM RESULTS

Table D.1: Coherent neighborhood for “Slayer”

Artist Top 5 Tags

Slayer thrash metal, heavy metal, metal, power metal, death metal

Iron Maiden heavy metal, metal, power metal, hard rock, seen live

Metallica thrash metal, heavy metal, metal, hard rock, awesome

Megadeth thrash metal, heavy metal, metal, cool, power metal

Motrhead heavy metal, hard rock, metal, thrash metal, uk

Black Sabbath heavy metal, hard rock, metal, classic rock, 70s

Pantera thrash metal, heavy metal, power metal, metal, 90s

Judas Priest heavy metal, hard rock, metal, classic rock, thrash metal

Sepultura thrash metal, death metal, brazilian, heavy metal, metal

Kreator thrash metal, metal, heavy metal, power metal, german

Anthrax thrash metal, heavy metal, metal, cool, american

AC/DC hard rock, heavy metal, classic rock, 70s, metal

Children of Bodom melodic death metal, death metal, power metal, metal, gothic

Death death metal, progressive metal, melodic death metal, thrash metal, metal

Exodus thrash metal, heavy metal, metal, 80s, rock

Led Zeppelin 70s, classic rock, progressive rock, hard rock, blues

Testament thrash metal, heavy metal, death metal, metal, seen live

Deep Purple hard rock, progressive rock, classic rock, heavy metal, 70s

Table D.2: Coherent neighborhood for “Brandy”

Artist Top 5 Tags

Brandy ballad, rnb, sexy, soul, hip-hop

Rihanna rnb, ballad, sexy, love, dance

Mariah Carey rnb, soul, love, ballad, female

Beyonce rnb, sexy, soul, ballad, female vocalist

Christina Aguilera ballad, sexy, soul, rnb, amazing

The Pussycat Dolls rnb, sexy, favorites, dance, pop

Jennifer Lopez female, rnb, female vocalist, dance, sexy

Ciara rnb, hip hop, hip-hop, sexy, amazing

Janet Jackson rnb, female, sexy, soul, female vocalist
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Table D.3: Coherent neighborhood for “Creedence Clearwater Revival”

Artist Top 5 Tags

Creedence Clearwater Revival 60s, classic rock, 70s, folk, blues

Led Zeppelin 70s, classic rock, progressive rock, hard rock, blues

The Doors psychedelic, 60s, classic rock, blues, rock

The Rolling Stones 60s, classic rock, blues, 70s, british

The Beatles 60s, classic rock, british, psychedelic, <3

Pink Floyd progressive rock, psychedelic, classic rock, 70s, 60s

AC/DC hard rock, heavy metal, classic rock, 70s, metal

Deep Purple hard rock, progressive rock, classic rock, heavy metal, 70s

Queen classic rock, 70s, hard rock, 80s, progressive rock

Black Sabbath heavy metal, hard rock, metal, classic rock, 70s

The Who 60s, classic rock, uk, hard rock, 70s

Jimi Hendrix blues, psychedelic, classic rock, 60s, funk
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