
REGRESSION LEARNING FOR 2D/3D IMAGE REGISTRATION

Chen-Rui Chou

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in

the Department of Computer Science.

Chapel Hill
2013

Approved by:

Stephen M. Pizer

Sha X. Chang

David S. Lalush

J. S. Marron

Marc Niethammer



c© 2013

Chen-Rui Chou

ALL RIGHTS RESERVED

ii



ABSTRACT

CHEN-RUI CHOU: REGRESSION LEARNING FOR 2D/3D IMAGE
REGISTRATION.

(Under the direction of Stephen M. Pizer.)

Image registration is a common technique in medical image analysis. The goal of im-

age registration is to discover the underlying geometric transformation of target objects

or regions appearing in two images. This dissertation investigates image registration

methods for lung Image-Guided Radiation Therapy (IGRT). The goal of lung IGRT is

to lay the radiation beam on the ever-changing tumor centroid but avoid organs at risk

under the patient’s continuous respiratory motion during the therapeutic procedure.

To achieve this goal, I developed regression learning methods that compute the pa-

tients 3D deformation between a treatment-time acquired x-ray image and a treatment-

planning CT image (2D/3D image registration) in real-time. The real-time computation

involves learning x-ray to 3D deformation regressions from a simulated patient-specific

training set that captures credible deformation variations obtained from the patients

Respiratory-Correlated CT (RCCT) images. At treatment time, the learned regressions

can be applied efficiently to the acquired x-ray image to yield an estimation of the pa-

tients 3D deformation. In this dissertation, three regression learning methods - linear,

non-linear, and locally-linear regression learning methods are presented to approach

this 2D/3D image registration problem.
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Chapter 1: Introduction

1.1 Image Registration for Medical Image Analysis

Image registration is a common technique in medical image analysis. The goal of

image registration is to discover the underlying geometric transformation of target

objects or regions appearing in two images. In many medical situations doctors need

to understand transformation of the target (e.g., organs or tissues) between two images

before making any medical decisions. Therefore, image registration is a fundamental

task of medical image analysis.

Many current medical imaging techniques compute 3D image data by reconstruc-

tion of a collection of 2D projection images acquired at various angles, e.g., CT (Com-

puted Tomography). Their 3D image quality (volumetric information) increases with

the number of angular samples of projection images. Image registration between two

high-quality 3D images has shown good estimation of the underlying transformation

(Vercauteren et al. (2009); Rohr et al. (2001); Christensen et al. (1996a); Rueckert et al.

(1999); Pluim et al. (2003)).

However, in medical applications where the target anatomy or object of interest is

dynamic, the acquisition and reconstruction of a high-quality 3D image is too slow to

represent the target position and shape in real time. In addition, acquiring high-quality

3D CT images throughout a therapeutic procedure may impose extra radiation dose

on patients and introduce radiation disease.
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1.2 Challenges of Image Registration as Guidance for Radiation Therapy

One medical application of registration is lung Image-Guided Radiation Therapy (IGRT).

The goal of lung IGRT is to lay the radiation beam on the ever-changing tumor centroid

under the patient’s continuous respiratory motion but to avoid organs at risk (OAR)

during the therapeutic procedure. Therefore, image registration between high-quality

3D images can not provide timely information of the tumor location.

Recent advances of IGRT registration methods suggest a new direction: 2D/3D

image registration. 2D/3D image registration for IGRT estimates the underlying 3D

transformation between a high-quality 3D image acquired at planning time and a small

set of projections that can be quickly acquired at treatment time.

2D/3D image registration computes 3D transformations based on information of

the 2D projection intensities. It estimates a 3D transformation where the projection

intensities of the transformed 3D volume match the target projection intensities. Due to

the mismatch in the registration dimensions, the 2D/3D image registration problem is

ill-posed: the unknowns (transformations at all 3D pixels) are orders of magnitude more

than the given constraints (intensity differences at all projection pixels). Therefore, in

order to solve the 2D/3D image registration, one needs to impose more spatial or

temporal constraints on the transformation.

For rigid transformations, one can easily impose the global transformation con-

straint and reduce the unknown to the six Euler transformation parameters. For non-

rigid transformations, current 2D/3D image registration methods (Li et al. (2011a,

2010); Liu et al. (2010)) introduce a spatial constraint on the 3D transformations: in-

stead of computing over every possible transformation, the methods compute over a

parameterized subspace of the possible transformations. The possible transformation

subspace can be formed by linear combinations of the transformation bases observed

in the patient’s 4D CTs at treatment-planning time (Ch. 4).
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At treatment time, with the constrained and parameterized transformations the

2D/3D image registration method now is a more well-posed problem with a low-

dimensional unknown space of parameters: optimizing the transformation parameters

(dimension < 10) by matching the target projection intensities (dimension > 100, 000)

and the projection intensities of the estimated 3D volume.

Another challenge for registrations in IGRT is the computation time. To have

a real-time1 registration method that can deal with more than 10 registrations per

second, the optimization-based 2D/3D image registration approach (Li et al. (2011a,

2010)) above requires GPU acceleration on the iterative calculation of the objective

function’s Jacobian and a good initialization of the parameters (Ch. 2). Given the fact

that a good initialization of the optimizing parameters is not normally available, in

this dissertation I seek a new solution by regression learning that can provide efficient

2D/3D image registration in IGRT without requirements on initialization.

1.3 A Brief Outline of the Proposed Methods

The idea of regression learning is as follows: if we have a way to sample the patient’s

credible 3D transformations and simulate the corresponding projection intensity pat-

terns, at treatment-planning time we can create a patient-specific training set of projec-

tion intensity and transformation pairs and thereby learn a set of regression functions

that map projection intensities to 3D transformations. Using this at treatment time,

given a projection intensity pattern we can apply those learned regression functions

and efficiently estimate the patient’s deformation.

In this dissertation, three types of regression functions (linear, nonlinear, and locally-

linear regressions) have been investigated for learning from the patient-specific training

1 10 registrations per second is considered as real-time computation given the fact that current CBCT
projection acquisition rate is about 10 Hz Li et al. (2011a).
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sets.

1.3.1 Linear Regression Learning

The linear-regression-learning method is called Correction via Limited-Angle Residues

in External beam Therapy (CLARET), which learns a global linear regression function

that maps projection intensities into the transformation parameters. At treatment

time the patient’s transformation parameters can be estimated iteratively (CLARET-

itr) or non-iteratively (CLARET-nonitr) by the projection residues between the target

projection and the calculated projection of currently-estimated image (Ch. 5). The

purpose of iterating the estimation is to have a more accurate registration. The method

has appeared in Chou et al. (2010b,a, 2011b,c,a, 2013).

1.3.2 Non-linear Regression Learning

The nonlinear-regression-learning method is called Registration Efficiency and Accu-

racy through Learning Metrics on Shape (REALMS). To relax the strong linear assump-

tion (between transformation parameters and projection intensities) made in CLARET,

REALMS learns distance metrics for non-linear kernel regressions between the trans-

formation parameters and the projection intensities. This method is a non-iterative

method: at treatment time, the transformation parameters are interpolated once from

the training parameters weighted by kernels equipped with the learned distance metric

(Ch. 6). The method has been appeared in Chou et al. (2012); Chou and Pizer (2012).

1.3.3 Locally-linear Regression Learning

In addition to the linear and nonlinear regression learning methods, I also investigate

the feasibility of learning linear regressions in a local transformation neighborhood,

which I call “local-learning”, or “locally-linear learning” for the rest of the dissertation.
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The local-learning version of the non-iterative CLARET is called Local-CLARET

(L-CLARET). The goal of L-CLARET is to find a balance between the strong linear

assumption in CLARET and the time-consuming non-linear learning in REALMS. In-

stead of learning a global linear mapping, L-CLARET learns linear regression mappings

for every local training parameter neighborhood to obtain better regression fitting. At

treatment time, the acquired projection is first classified into a training local neighbor-

hood by efficient decision forest classification based on projection image visual features.

Second, the transformation parameters are estimated with the linear regression of this

local training neighborhood (Ch. 7). The method has appeared in Chou and Pizer

(2013).

1.4 Thesis and Contributions

Thesis: Regression learning provides a new solution to the image registration problem.

Learning patient-specific intensity-to-shape regressions allows efficient, accurate, and

robust 2D/3D image registration for image-guided radiation therapy.

The contributions of this dissertation are the following:

(1) The development of four regression-learning-based 2D/3D image registration meth-

ods for image-guided radiation therapy.

a. CLARET (Correction via Limited-Angle Residues in External Beam Therapy)

b. REALMS (Registration Efficiency and Accuracy through Learning Metric on

Shape)

c. L-CLARET (Local CLARET)

(2) The implementation of CLARET, L-CLARET, REALMS and L-REALMS into

software.
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(3) The iterative versions of the four methods in (1): enhancing registration accuracy

by iterative estimation.

(4) The development of scattering removal and intensity correction on the digitally

reconstructed radiographs (DRR) and the treatment-time radiographs to allow

the commensurate intensity comparison required by the proposed methods.

(5) The evaluation of CLARET, L-CLARET and REALMS for lung IGRT with sim-

ulated and real patient cone-beam radiographs, including comparisons to an

optimization-based 2D/3D registration approach.

(6) The evaluation of CLARET for head-and-neck IGRT with simulated and real

patient Nanotube Stationary Tomosynthesis (NST) (Maltz et al. (2009)) radio-

graphs.

1.5 Overview of Chapters

The rest of this dissertation is organized as follows: Chapter 2 describes existing image

registration methods. Chapter 3 describes the IGRT clinical background. Chapter 4

describes parameterizing the transformation for IGRTs. Chapters 5, 6 and 7 respec-

tively describe and evaluate the CLARET, the REALMS, and the L-CLARET meth-

ods. Chapter 8 describes the comparative evaluations of those methods in the lung

IGRT. Chapter 9 summarizes the methods, discusses the results and their problems,

and presents future work.
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Chapter 2: Image Registration

Image registration, i.e., finding the underlying geometric transformation between two

images, is widely used in many fields. That is, given a source image I0 : Ω ⊂ Rd → R

(d is the image dimensionality, e.g., d = 2, 3) and a target image I1 : Ω → R, find

a reasonable transformation map φ : Ω → Rd such that the transformed source im-

age I0(φ) is similar to the target image I1 (Modersitzki (2004)). In computer vision,

for example, scientists use image registration to understand pixel correspondence in

stereographic projections for 3D scene reconstruction (Blais and Levine (1995)). In

medical image analysis, scientists use image registration to understand possible trans-

formations appearing in a sequence of images for pathological staging of a disease (Fox

et al. (2001)), population analysis (Lorenzen et al. (2006); Cootes et al. (2004); Bhatia

et al. (2004); Davatzikos et al. (1996)), atlas based segmentations (Isgum et al. (2009);

Aljabar et al. (2009); Collins and Evans (1997); Wu et al. (2007)), or aligning images

from multiple modalities of the same patient (D’Agostino et al. (2003); Gaens et al.

(1998); Roche et al. (1998); Maes et al. (1997)). With its popularity, there is a variety

of image registration methods developed for various purposes. The classic variational

approach for image registration can be formulated as an energy minimization process

that finds a displacement field u : Ω→ Rd between two images through minimizing an

energy function consisting of a data attachment term ED and a regularization term ER

(Hajnal and Hill (2010); Modersitzki (2004); Broit (1981); Bajcsy and Broit (1982)).

The following is an example of an image registration framework:
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u = arg
u

min ED(I0(φ), I1) + λER(u), (2.0.1)

where φ = Id+u; λ is the Lagrange multiplier (Bellman (1986)). The data attachment

term measures the image dissimilarity using some distance measure on intensities:

L2-norm (Belongie et al. (2002); Rueckert et al. (1999)), cross-correlation (Lewis (1995);

Roche et al. (1998)), mutual information (Pluim et al. (2003); Maes et al. (1997); Gaens

et al. (1998); D’Agostino et al. (2003)). The regularization term uses a physical model

that regularizes either the output displacement field: elastic model (Rohr et al. (2001))

and diffusion model (Horn and Schunck (1981)) or the time-varying velocity field: fluid

model (Christensen et al. (1996a)). With this framework, image registration can be

classified into two types: methods using a parameterized transformation (2.1) and

methods using non-parameterized transformation (2.2).

2.1 Parametric Registration

Image registration without regularization, i.e., led solely by the data attachment en-

ergy ED in Eq. 2.0.1, is ill-posed: the dimension of the unknown displacements is

d-fold more than the dimension of the known intensity pairs (source and target). To

reduce the unknown dimension and make the registration problem more well-posed

(#unknowns≤#knowns), one can parameterize the transformation to obtain a low-

dimensional descriptor of the displacement. Thus, instead of optimizing over the entire

displacement field, the registration now only requires optimization over that limited

number of parameters. Two basic parametric registration methods are rigid and affine

registrations. Transformations in rigid (Maes et al. (1997)) and affine (Jenkinson and

Smith (2001)) registrations can be modeled globally by 6 Euler parameters and 12

affine parameters, respectively (d = 3). Most parametric registration methods model

transformations by linear models (B-Splines: Rueckert et al. (1999, 2006), Principal

8



Component Analysis (PCA): Li et al. (2011a); Liu et al. (2010); Chou et al. (2013),

trigonometric functions: Reddy and Chatterji (1996); Chen et al. (1994), Radial Ba-

sis Functions (RBF): Chui and Rangarajan (2003); Fornefett et al. (2001); Bookstein

(1989)). In the following sections, I respectively describe the global parameterization

by PCA (Section 2.1.1) and the local parameterization by B-Splines (Section 2.1.2).

2.1.1 Global Parameterization by Linear Analysis (PCA)

If there exists a set of displacement fields of the target object/region, one can parame-

terize the transformation globally by doing linear analysis based on this a prior displace-

ment fields, e.g., PCA. This global parametric method assumes that the displacement

field u at pixel/voxel location x can be represented by m parameters c = (c1, c2, ..., cm)

as the scores on their eigenmode basis functions b = {b1, b2, ..., bm}:

u(x, c,b) =
m∑
k=1

ckbk(x), (2.1.1)

where ck ∈ R and bk : Ω→ Rd.

With this parameterization, we can re-write the optimization in Eq. 2.0.1 as follows:

c = arg
c

min ED(I0(Id + u(c,b)), I1) + λER(u(c,b)), (2.1.2)

If the set of a priori displacement fields was computed via a variational framework

with regularization that guarantees smoothness (Liu et al. (2010); Chou et al. (2013)),

then the analyzed eigenmode basis functions and their linear combinations will be

smooth too. Therefore, we can drop the regularization term and let the registration

be driven solely by data attachment. Data attachment can be measured as the sum of

squared differences in intensity for every image voxel/pixel x (Belongie et al. (2002);

Rueckert et al. (1999)):
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c = arg
c

min

ˆ
Ω

(I0(x + u(x, c,b))− I1(x))2dx (2.1.3)

The final displacement field can be computed by Eq. 2.1.1, using the basis functions

b and the optimized parameters c.

The advantage of this parametric method is that the space of transformations can

be greatly reduced by PCA (Li et al. (2011b); Liu et al. (2010); Li et al. (2011a)), so the

registration optimization problem is well-posed (#unknown transformation parameters

� #known intensity pairs). With only a few parameters to optimize, the method is

also efficient.

The downside of this parametric approach is that it cannot produce a displacement

field outside of the space spanned by those eigenmode basis functions. This constraint

discourages registration of objects of high shape variability where no prior displacement

sets can include all its variations.

2.1.2 Local Parameterization by B-Splines

If there is no a priori knowledge of the object’s transformation, one can still parame-

terize the transformation space by B-Splines (De Boor et al. (1978)) and optimize over

the B-Spline parameters for registration. For example, Free-Form Deformation (FFD)

registration (Rueckert et al. (1999, 2006)) uses cubic B-Spline functions to deform an

object by manipulating an underlying mesh of control points. The resulting deforma-

tion produces a smooth and continuous transformation. FFD registration samples an

nx × ny × nz mesh of control points c = {c1,1,1, ..., ci,j,k, ..., cnx,ny ,nZ} at grid points

(d = 3) and takes transformations at control points φ = {φ1,1,1, ..., φi,j,k, ..., φnx,ny ,nZ}

(where φ : Ω→ Rd) as the parameters. FFD registration minimizes the image dissim-

ilarity by optimizing over the transformation at those control points. Transformations
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at voxels (x, y, z) other than the control points are interpolated by the four cubic B-

Spline functions b = {b0, b1, b2, b3} (where bk : Ω→ R) among the nearby 3×3×3 = 27

control points.

φ(x, y, z) =
3∑
p=0

3∑
q=0

3∑
r=0

bp(
x

nx
−
⌊
x

nx

⌋
)bq(

y

ny
−
⌊
y

ny

⌋
)br(

z

nz
−
⌊
z

nz

⌋
)φi+p, j+q, k+r, (2.1.4)

where i =
⌊
x
nx

⌋
− 1, j =

⌊
y
ny

⌋
− 1, k =

⌊
z
nz

⌋
− 1, b0(∆) = (1−∆)3

6
, b1(∆) = (3∆3−6∆2+4)

6
,

b2(∆) = (−3∆3+3∆2+3∆+1)
6

, and b3(∆) = ∆3

6
.

The advantages of B-Spline-based FFD registration are (1) it can parameterize the

transformation without a priori information, (2) B-Splines are locally controlled, which

makes it computationally efficient (that is, it doesn’t need to update the whole image

volume for a parameter update), and (3) it can optimize over various transformation

scales by multi-level registrations using sparse-to-dense control points (Rueckert et al.

(1999, 2006)). The registration solution is also unique when the number of control

points is less than one third of the number of image voxels.

2.2 Non-parametric Registration

In FFD registration, when sampling control points at every image voxel, the resulting

transformation will have the most flexibility. Like FFD registration that uses fully-

sampled control points, non-parametric registration grants an independent transfor-

mation for each voxel. However, this high flexibility makes the registration problem

ill-posed. To make it more well-posed, scientists have come up with various regular-

ization approaches that impose physical models to the transformations. Based on the

regularization types, they can be briefly categorized into the following registrations.

Diffusion-based registrations (Thirion (1998); Horn and Schunck (1981); Fischer
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and Modersitzki (2002)) penalize gradient magnitudes of the displacement field in the

regularization energy:

Ediff
R (u) =

1

2

n∑
d=1

ˆ
Ω

‖∇ud(x)‖2 dx (2.2.1)

Elastic registrations (Rohr et al. (2001); Broit (1981); Bajcsy and Kovacic (1989);

Christensen et al. (1994a,b); Gee et al. (1997)) penalize the elastic potential of the

displacement field u in the regularization energy:

Eelas
R (u) =

ˆ
Ω

λ+ µ

2
‖∇ · u(x)‖2 +

µ

2

n∑
d=1

‖∇ud(x)‖2 dx (2.2.2)

where the constants λ, u > 0 describe material properties.

However, both of the above regularization energies discourage transformations of

large displacements. The recently popular Large Deformation Diffeomorphic Metric

Mapping (LDDMM) framework using the fluid-flow analogy (Christensen et al. (1996a);

D’Agostino et al. (2003); Bro-Nielsen and Cotin (1996); Christensen et al. (1996b);

Christensen (1994); Dupuis et al. (1998)) allows large displacements. Instead of regu-

larizing the displacement fields, it regularizes the time-dependent velocity fields from

fluid mechanics:

Efluid
R (u) =

ˆ
Ω

ˆ 1

t=0

‖vt(x)‖V dx, (2.2.3)

where the flows vt: Ω → V (t ∈ [0, 1]) are time-dependent velocity fields that are

elements of a Hilbert space V : Ω→ Rd with inner product < ·, · >V . The norm ‖vt‖V

can be expressed as < Lvt, Lvt >L2 regularized by the differential operator L frequently

taken from fluid mechanics: L = α∇2+β(∇·)∇+γ and α, β, γ > 0. The α term controls

the smoothness of the transformation, the β term controls the compressibility of the

fluid, and γ penalizes the total size of the transformation.
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The fluid-flow-based LDDMM framework can be written in the following form (Beg

et al. (2005)):

v = arg min

v : φ̇t = vt(φt)

ˆ
Ω

ˆ 1

t=0

‖vt(x)‖V dt+
1

σ2

∥∥I0(φ−1
t=1(x))− I1(x)

∥∥
L2
dx (2.2.4)

where φt=1(x) describes the final transformation (t = 1) at the voxel location x in the

“target” image I1. The transformation at time T of a voxel location x can be integrated

as follows:

φT(x) = φt=0(x) +

ˆ T

0

vt(φt(x))dt (2.2.5)

where φt=0(x) = x.

“As shown in Dupuis et al. (1998) and Trouve (1995), enforcing a sufficient amount

of smoothness on the elements of the space V of allowable velocity vector fields ensures

that the solution to the differential equation φ̇t = vt(φt), t ∈ [0, 1], vt ∈ V is in the

space of diffeomorphisms.”1 Therefore, the solution satisfying Eq. 2.2.4 is an LDDMM

solution in the following two senses: (1) as shown in Christensen et al. (1996b) the

fluid-flow approach provides a large deformation coordinate system transformation, and

(2) as shown in Miller and Younes (2001), Trouve (1995) and Miller et al. (2002), in

contrast to Christensen et al. (1996b), the length of the shortest path inf
´ 1

t=0
‖vt(x)‖V dt

connecting images I0 to I1 defines a metric in the image space.

However, LDDMM is not the only method that produces diffeomorphic transfor-

mations. Many other registration methods (Vercauteren et al. (2009); Rueckert et al.

1 Quoted from Beg et al. (2005).
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(2006); Ashburner (2007)) have been recently revised to guarantee large and diffeomor-

phic transformations by regularizing the time-dependent velocity fields.

For medical image analysis, it is of considerable interest to compute transforma-

tions that preserve properties such as smoothness of curves, surfaces or other features

associated to anatomy. Therefore, diffeomorphic transformations, which are smooth

transformations with smooth inverse, are of considerable interest as curves, surfaces,

and anatomy topology is preserved, and coordinates are transformed consistently. In

Ch. 4 I use this LDDMM framework to discover diffeomorphic transformations among

a time series of 3D images.
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Chapter 3: Image-Guided Radiation Therapy

3.1 Treatment planning1

A CT image taken of patients in the treatment position is used for the radiotherapy

treatment planning process. Using this image, the tumor and the normal organ struc-

tures at risk are segmented, the radiation field is designed, and the radiation dose is

computed. This reference CT should contain information as to where volumetrically

the tissue to be treated is. There are three main volumes in radiotherapy planning.

The first is the position and the extent of gross tumor, i.e., what can be seen or im-

aged; this is known as the gross tumor volume (GTV). Developments in imaging have

contributed to the definition of the GTV. The second volume contains the GTV, plus

a margin for sub-clinical disease spread which therefore cannot be fully imaged; this

is known as the clinical target volume (CTV). The CTV is important because this

volume must be adequately treated to achieve cure. The third volume, the planning

target volume (PTV), allows for uncertainties in planning or treatment delivery. It is a

geometric concept designed to ensure that the radiotherapy dose is actually delivered

to the CTV. See Fig. 3.1.1 for visualization of those target volumes. Radiotherapy

planning must also consider critical normal tissue structures, known as organs at risk

(OAR). In some specific circumstances, it is necessary to add a margin analogous to the

PTV margin around an OAR to ensure that the organ cannot receive a higher-than-safe

1 The major component of this section is quoted from Burnet et al. (2004)
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dose; this gives a planning organ at risk volume. This applies to an organ such as the

spinal cord, where damage to a small amount of normal tissue would produce a severe

clinical manifestation (Burnet et al. (2004)).

Figure 3.1.1: Planning volumes for a patient with a WHO grade 4 glioma (glioblas-

toma). (a) Planning CT showing a contrast-enhancing tumor. (b) The GTV is the

visible tumor. (c) A margin for microscopic spread has been added to make the CTV;

the margin is the same in all directions except that it is restricted by the skull. (d) The

PTV has added to the CTV to account for uncertainties in planning and execution of

treatment; this extends beyond the inner table of the skull. (Burnet et al. (2004))

After delineating the target volumes and the organs at risk volumes, the trajectories

and modulation (cross-sectional radiation pattern) of the treatment radiation beam can

be inversely planned. That is, given a set of PTVs and OARs, the plan must specify

several treatment trajectories and modulation from various angles such that the accu-

mulated radiation dose at those PTVs is at the prescribed level and the accumulated

radiation dose at those OARs is at a safe level. See Fig. 3.1.2 for illustration.

16



Figure 3.1.2: Treatment planning through simulation of the radiation. The outermost

pink contour is the PTV. (Vandemeulebroucke et al. (2009))

3.2 Treatment-time Image Guidance

Fig. 3.2.1 shows a typical IGRT environment: an adjustable patient couch and a

rotating Cone-Beam CT imager (CBCT, 3.3.1) mounted on a linear accelerator. Before

radiation treatment, a 3D image acquired by the CBCT imager will be used to measure

the patient’s setup deviation between the planning and treatment CT volumes. The

amount of setup deviation can be calculated by 3D/3D image registration of the volume

of interest to allow accurate setup for daily treatment. The setup deviation can then

be corrected rigidly by shifting and rotating the couch position and orientation such

that the CT volumes match.

The patient’s intra-fraction movements or deformations can be detected by the

CBCT imager as well. Radiation oncologists can ask the patient to hold his/her breath,

take sequential x-ray projections for 3D image reconstruction, and determine if the tar-

get volume is inside the planned region. The other trending approach takes advantage

of (1) fast x-ray projection acquisition and (2) fast image registration by GPU accel-

eration and estimates the patient’s transformation directly from x-ray projections in
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real-time.

Figure 3.2.1: An Elekta radiation treatment machine (Capital Radiation Therapy

(2013)) with an x-ray imager mounted.

The clinical goal for registration accuracy is 2 mm in the patient plane. The de-

tected patient transformations at treatment deliveries can be used for a follow-up dose

accumulation study. The purpose of the dose accumulation study is to allow the next

treatment fraction to compensate for those regions that have been over-dosed and those

regions that have been under-dosed.

3.3 Treatment Imaging Geometry

This section describes two IGRT imaging geometries investigated for this dissertation:

Cone-Beam CT (3.3.1) and Nanotube Stationary Tomosynthesis (3.3.2).
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3.3.1 Cone-beam CT (CBCT)

A CBCT is a rotational imaging system with a single radiation source and a planar

detector, which may be mounted on a medical linear accelerator. This pair rotates by

an angle of up to 2π during IGRT, taking projection images Ψ during traversal (Fig.

3.3.1(a)). A limited-angle rotation provides a shortened imaging time and lowered

imaging dose. For example, a 5◦ rotation takes ∼ 1 second. In my application, CBCT

projections were acquired in a half-fan mode. Half-fan mode means that the imaging

panel (40 cm width by 30 cm height, source-to-panel distance 150 cm) is laterally

offset 16 cm to increase the CBCT reconstruction diameter to 46 cm. The method’s

linear operators are trained for projection angles over 360 degrees at 1 degree intervals

beforehand at planning time. At treatment time my proposed methods will choose a

learned regression that is closest to the current projection angle.

3.3.2 Nanotube Stationary Tomosynthesis (NST)

An NST is a stationary imaging system may be mounted on a medical linear accelerator

so as to perform imaging without interfering with treatment delivery. As illustrated

in Fig. 3.3.1(b), it consists of an arrangement of radiation sources arrayed around the

treatment portal, together with a planar detector. The geometry thus is fixed and

known beforehand. Firing the sources in sequence produces a sequence of projection

images at different orientations. Each projection image requires ∼ 200 ms.
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(a) (b)

Figure 3.3.1: (a) Short arc CBCT geometry: rotational imaging system depicting a

30◦arc. The image detector is laterally offset for half-fan acquisition. (b) The NST

geometry: stationary sources array with angle θ = 22.42◦

3.4 Projection Intensity Pattern by a Local Normalization Scheme

X-ray scatter is a significant contributor to the cone-beam CT projections. However,

the regression estimators of my proposed methods are not invariant to the projection

intensity variations caused by x-ray scatter. Therefore, I implemented a normalization

filter (3.4.1) and a subsequent histogram matching scheme (3.4.2) that when applied

to both learning-time computed projections and registration-time target projections,

generate commensurate intensities between these two images.

3.4.1 Local Gaussian Normalization

To account for variations caused by x-ray scatter, a 2D Gaussian-weighted normaliza-

tion is performed on each pixel in the learning projections (Fig. 3.4.1(d)) and in the

target projections (Fig. 3.4.1(b)). To calculate the normalized value Ψ′(x; θ) at pixel

location x = (x1, x2) and projection angle θ, I subtract a Gaussian-weighted spatial
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mean µ′(x1, x2) from the raw pixel value Ψ(x1, x2) and divide it by a Gaussian-weighted

standard deviation σ′(x1, x2).

Ψ′(x1, x2) =
Ψ(x1, x2)− µ′(x1, x2)

σ′(x1, x2)
(3.4.1)

µ′(x1, x2) =

∑x1+A
ξ=x1−A

∑x2+B
η=x2−B [K(ξ, η; 0, w) ·Ψ(ξ, η)]∑x1+A

ξ=x1−A
∑x2+B

η=x2−BK(ξ, η; 0, w)
(3.4.2)

σ′(x1, x2) =

(∑x1+A
ξ=x1−A

∑x2+B
η=x2−B [K(ξ, η; 0, w) ·Ψ(ξ, η)− µ′(x1, x2)]2∑x1+A
ξ=x1−A

∑x2+B
η=x2−BK(ξ, η; 0, w)

) 1
2

(3.4.3)

where 2A + 1 and 2B + 1, respectively, are the number of columns and rows in the

averaging window centered at (x1, x2); the function K is an isotropic Gaussian with

marginal standard deviation w. I choose A, B, and w to be appropriate values (dis-

cussed in Ch. 5.5.2) to perform a local Gaussian-weighted normalization for my target

problem.

3.4.2 Histogram Matching

In order to correct the intensity spectrum differences between the normalized learning

projection Ψ′learning and the normalized target projection Ψ′target, a function Fω of in-

tensity to achieve non-linear cumulative histogram matching within a region of interest

ω is applied. To avoid having background pixels in the histogram, the region ω is de-

termined as that pixel set whose intensity values are larger than the mean value in the

projection. That is, Fω is defined by

Fω(Hf (Ψ
′
target)) ≈ Hf (Ψ

′
learning) (3.4.4)
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where Hf is the cumulative histogram profiling function. The histogram matched

intensities Ψ?
target (Fig. 3.4.1(c)) are calculated through the mapping:

Ψ?
target = Ψ′target ◦ Fω (3.4.5)

(a) (b)

(c) (d)

Figure 3.4.1: (a) A raw Cone-Beam CT (CBCT) projection (target projection), (b)

a local Gaussian normalized CBCT projection (normalized target projection), (c) his-

togram matched CBCT projection (normalized and histogram matched target pro-

jection) and (d) a local Gaussian normalized DRR of a Fréchet mean CT (learning

projection) from a lung dataset. As shown in the images, after normalization and his-

togram matching, the intensity contrast in the target projection becomes closer to that

in the learning projection.
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Chapter 4: Transformation Parameterization for IGRTs

To make the 2D/3D image registration robust, my methods limit the patient’s trans-

formation to a shape space. In order to have efficient registration, my methods also

represent the patient’s transformation with low-dimensional global parameters C. The

following sections (4.1 and 4.2) detail the shape space formulation and parameterization

for both rigid and non-rigid transformations.

4.1 Rigid Transformation

In IGRT sites where the patient’s motion is mainly rigid (e.g., head and neck), the

patient’s motion can be modeled explicitly as the variation in the Euler’s six dimensional

rigid space:

C = (tx, ty, tz, rx, ry, rz) (4.1.1)

where tx, ty, tz are the translation amounts in cm along the world’s coordinate axes x,

y, z, respectively; and rx, ry, rz are the rotations in degrees about the image center,

around the world coordinate axes x, y, and z, in succession.

4.2 Non-Rigid Transformation

In IGRT sites, where the patient’s motion is mainly non-rigid (e.g., lung and abdominal

IGRT), like others (Liu et al. (2010); Li et al. (2011a)) my methods model the non-

rigid transformation (deformation) as a linear combination of a set of basis deformations
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calculated through principal component analysis (PCA). In lung and abdominal IGRT

where the patient’s deformation is dominated by respiration, a cyclically varying set of

3D images across respiration cycle {Jτ : Ω ⊂ R3 over time τ} are available at treatment

planning time. From these a mean image J̄ and a set of deformations φτ : Ω → R3

between Jτ and J̄ can be computed. The basis deformations are chosen to be the

primary eigenmodes of the set of deformations {φτ}. The computed mean image J̄ will

be used as the reference image I throughout this dissertation. The following sections

will detail the computation pipeline.

4.2.1 Deformation Shape Space and Mean Image Generation

In order to obtain a reference image that better represents the mean point in the

patient’s respiratory cycle, my methods compute a Fréchet mean image J that is an

intrinsic mean image on the patient’s respiratory manifold. The Fréchet mean image J

can be computed by an LDDMM (Large Deformation Diffeomorphic Metric Mapping)

framework (Beg et al. (2005)) from the cyclically varying set of 3D images {Jτ over

time τ}. The Fréchet mean, as well as the diffeomorphic deformations φ from the mean

to each image Jτ , are computed using a fluid-flow distance metric dfluid (Lorenzen et al.

(2006)):

J = arg
J
min

N∑
τ=1

dfluid(J, Jτ )
2 (4.2.1)

= arg
J
min

(
N∑
τ=1

ˆ 1

0

ˆ
Ω

||vτ,γ(x)||2dxdγ +
1

α2

ˆ
Ω

||J(φ−1
τ (x))− Jτ (x)||2dx

)
(4.2.2)

where Jτ (x) is the intensity of the pixel at position x in the image Jτ , vτ,γ is the

fluid-flow velocity field for the image Jτ in flow time γ , α is the weighting variable on

the image dissimilarity, and φτ (x) describes the deformation at the pixel location x:
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φτ (x) = x+
´ 1

0
vτ,γ(x)dγ.

The mean image J and the deformations φτ are calculated by gradient descent

optimization. The set {φτ over τ} can be used to generate the deformation shape space

by the following statistical analysis.

4.2.2 Statistical Analysis

Starting with the diffeomorphic deformation set {φτ}, one can represent this diffeomor-

phic set by doing analysis on their initial momenta (Wang et al. (2007); Zhong and Qiu

(2010); Niethammer et al. (2011)), e.g., on vτ,0 for registering Jτ to J̄ . However, the

goal of the IGRT application is to do fast, and probably real-time, image registration.

Although registration leveraging the analyzed space of the initial momenta will help

to generate realistic diffeomorphic transformations constrained to the transformation

space a priori, the registration evolution at treatment time is still time-consuming.

Therefore, instead of analyzing the space of the initial momenta, my methods find a

set of linear deformation basis functions φipc by doing PCA on the diffeomorphic set.

The linear combination of the scores λiτ (basis function weights) and the corresponding

basis functions φipc yield a final transformation φτ in terms of these basis functions.

φτ = φ+
N∑
i=1

λiτ · φipc (4.2.3)

A subset of n eigenmodes that capture 95% of the total variation are chosen, and they

let the n basis function weights λi form the n-dimensional parameterization C.

C = (c1, c2, · · · , cn) (4.2.4)

= (λ1, λ2, · · · , λn) (4.2.5)
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Chapter 5: Linear Regression Learning (CLARET)

This chapter begins with describing the general framework for the proposed 2D/3D

registration methods (5.1). Section 5.2 details the proposed CLARET method that

can do efficient registration using linear regression. The method’s application for rigid

registration involves a multi-scale learning scheme that is also detailed in Section 5.3. I

describe the experimental setup in Section 5.4. In Section 5.5 I show CLARET’s rigid

(5.5.1) and non-rigid (5.5.2) 2D/3D registration results on synthetic and real test cases.

5.1 General 2D/3D Registration

The goal of the 2D/3D registration is to infer 3D transformations from 2D projections.

I denote the projection intensity at pixel location x = (x1, x2) and projection angle θ

as Ψ(x; θ). Ψ(θ) ⊂ R1×P (P is the dimension of the 2D projection). The registration

is formulated as an iterative process. Let I denote the 3D reference image and I(t) de-

note the 3D image at iteration t. The estimated 3D image region’s motion/deformation

parameters Ĉ(t): R → Rn (n is the number of parameters) define a geometric trans-

formation T (Ĉ(t)): Rn → R3 in a space determined from one or more 3D images. I(t)

is T (Ĉ(t)) applied to I(0): Eq. 5.1.1.


I(t) = I(0) ◦ T (Ĉ(t))

I(0) = I

T (0) = Id

(5.1.1)
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Id is the identity transformation.

The Ĉ(t) are calculated by the estimated parameter updates ∆Ĉ(t): R→ Rn: Eq.

5.1.2. 
Ĉ(0) = 0

Ĉ(t) = Ĉ(t− 1) + ∆Ĉ(t)

(5.1.2)

The estimated parameter updates are obtained from the projection intensity residues

R ⊂ R1×P (P is the dimension of the 2D projection) between the target 2D projections

Ψ(x; θ) and the computed projections P(x, I(t− 1); θ) ⊂ R1×P of the transformed 3D

source image at iteration t− 1: Eq. 5.1.3.

R[Ψ(x; θ),P(x, I(t− 1); θ)] = Ψ(x; θ)−P(x, I(t− 1); θ) (5.1.3)

After parameter estimation in each iteration, an image transformation (Eq. 5.1.1)

is required in order to produce updated computed projections for the parameter esti-

mation in the next iteration.

The projection operator simulates the imaging process. For example, according to

the medical literature, to simulate a 3D image’s x-ray projections from its 3D volume

(DRRs) (Sherouse et al. (1990)), a ray-casting scheme can be used to compute the

photon attenuation through a given imaging geometry (Fig. 5.1.1). Although Eq.

5.1.3 indicates a simple subtraction of the projection of the 3D image from the target

projection, in actual clinical application one must apply additional processing to both

the DRR and the real radiograph to remove the low varying additive scattering effect

in the target projections.
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Figure 5.1.1: An x-ray projection is simulated by ray-casting on a 3D image volume.

The dashed lines and arrows indicate the ray directions.

One way to obtain the estimated parameter updates ∆Ĉ(t) is by minimizing the sum

of squared joint intensity residues R† at various angles: θ1, θ2, ..., θA over the parameter

updates ∆C.

∆Ĉ(t) = arg
∆C

min
∥∥∥R†[Ψ,P(I(0) ◦ T (Ĉ(t− 1) + ∆C))]

∥∥∥2

L2

(5.1.4)

The joint intensity residues R† ⊂ R1×P·A are defined as a concatenation over the

residues at available projection angles: R† = (Rθ1 ,Rθ2 , · · · ,RθA) with

dimension=1×P ·A. Without parallelization, iterative computations to carry out this

optimization are structurally slow as it involves the time-consuming evaluation of the

functional Jacobian at each iteration. Moreover, the optimization may easily converge

to a local minimum since the energy functional in Eq. 5.1.4 is not convex. See Section

5.5.2 for a detailed evaluation of the optimization-based approach.
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5.2 Efficient Linear Approximation of ∆C

Instead of adapting the traditional approach (Markelj et al. (2012); Zollei et al. (2001);

Li et al. (2010, 2011a); Russakoff et al. (2005, 2003); Weese et al. (1997); Fu and

Kuduvalli (2008); Yao and Taylor (2003); Pickering et al. (2009); Sarrut and Clippe

(2001); Rohlfing et al. (2002); Knaan and Joskowicz (2003)) as characterized in Eq.

5.1.4, I propose an alternative method (CLARET) to calculate the parameter updates

∆C ⊂ R1×n using a learned linear operator W ⊂ RP·A×n applied to projection intensi-

ties. At each iteration of the registration, the method estimates the motion/deformation

parameter updates by applying a linear operator to the current joint intensity residue

R† ⊂ R1×P·A. That is,

∆Ĉ(t) = R†[Ψ,P(I(t− 1))] ·W, (5.2.1)

where t = 1, 2, · · · , tmax. Typically, tmax ≤ 10 are satisfactory.

The computation in Eq. 5.2.1 only involves matrix multiplications by W, computa-

tion of the projections P, and subtractions (Eq. 5.1.3). Therefore, this registration can

be computed efficiently. The calculation of the linear operator W involves a machine

learning process described in detail in Section 5.3. Due to the machine learning process

and the fast linear operation, the proposed CLARET method shows a more robust and

faster registration than the optimization-based approach. See Section 5.5.2 for some

comparisons.

5.3 Linear Regression Learning

From the motion/deformation shape space the CLARET method calculates the linear

operator that correlates sampled shape parameters with the corresponding projection

intensity residue vectors. I describe the regression learning that calculates the linear
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operators in Section 5.3.1 and an efficient sampling strategy in Section 5.3.2.

5.3.1 Learning Regressions from Residues to Shape Parameters

The regression learning is similar to that in the Active Appearance Model (AAM)

(Cootes et al. (2001)). As detailed in Chapter 4, a collection of shape parameters

{Cκ ⊂ R1×n over cases κ} are sampled for learning. Each case is formed by a selection

of parameter settings. The training uses deviations from the reference image, such

that ∆C = Cκ. Linear regression is used to correlate the sampled parameters Cκ in

the κth case with the co-varying projection intensity residue set {Rκ,θ ⊂ R1×P over the

projection angles θ}. Rκ,θ(x) is computed as the intensity difference at pixel location

x = (x1, x2) between the projection at angle θ of the mean image I: Ω ⊂ R3 → R (or an

untransformed 3D image for the rigid case) and the projection of the image I ◦ T (Cκ)

transformed with the sampled model parameter Cκ:

Rκ,θ(x) = P(x, I ◦ T (Cκ); θ)−P(x, I; θ) (5.3.1)

The method concatenates the residues at each projection angle to formulate a residue set

in a vector R†κ ⊂ R1×P·A = (Rκ,θ1 ,Rκ,θ2 , · · · ,Rκ,θA) and computes a linear regression

for all cases κ = 1, 2, · · · , K:



C1

C2

...

CK


≈



R†1

R†2
...

R†K


·W (5.3.2)
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The regression matrix W ⊂ RP·A×n that yield the best least square fitting to the

training set can be computed via a pseudo-inverse (Peters and Wilkinson (1970)):

W = (R†ᵀR†)−1R†ᵀC (5.3.3)

where R ⊂ RK×P·A and C ⊂ RK×n.

5.3.2 Efficient Sampling

To provide adequate regression learning, C must be sufficiently sampled to capture

all the shape variations. I have designed an efficient scheme to sample the shape

parameters. Each shape parameter ci is collected from the combinations of ±3σi and 0

where σi is the standard deviation of the basis function weights λi observed at treatment

planning time.

5.3.3 Linear Assumption for Iterative Estimation

The linear assumption between deformation parameters and intensity residues allows

the method to estimate parameter differences not only from a fixed reference deforma-

tion but also from other deformations in the shape space. For example, assume there is

a linear regression estimator W that has been trained to estimate deformation param-

eters C ⊂ RK×n from a collection of K training deformation parameter values. Now

consider two training parameter values Cp ⊂ R1×n and Cq ⊂ R1×n. Recall that the

linear regression estimator W ⊂ RP·A×n is designed to estimate their values from their

intensity residues, R†p ⊂ R1×P·A and R†q ⊂ R1×P·A respectively, from the reference DRR

(Eq. 5.3.4 and Eq. 5.3.5). R†p = P(I ◦ T (Cp))−P(I), and R†q = P(I ◦ T (Cq))−P(I).

Cp = R†p ·W (5.3.4)
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Cq = R†q ·W (5.3.5)

Notably, the regression result that estimates deformations from the mean to the

training images can estimate the update in Cq to produce Cp from their intensity

residue difference: R†p −R†q as well. See Eq. 5.3.6.

Cp −Cq = {R†p −R†q} ·W (5.3.6)

With this property the method can perform efficient regression learning. It only

needs to train deformation differences from a single reference deformation (C = 0), but

the learned regression can estimate deformation update from any deformations as well.

If the underlying deformation-to-intensity-residues relationship is not nearly linear,

the error will propagate. Other proposed methods described in Ch. 6 and Ch. 7 are

trying to relax this strong assumption of linearity.

5.4 Experimental Setup

The experimental setups for evaluating the method are described in this section. In

IGRT the 3D image I is the planning CT, and the target projection images Ψ are

treatment-time imaging kV projections. In particular, the kV projections are produced

by (1) a rotational CBCT (Cone-beam CT) imager or (2) the stationary NST (

Nanotube Stationary Tomosynthesis) imager specified in Maltz et al. (2009). See Sec-

tions 3.3.1 and 3.3.2 for the geometries. The experimental setups for head-and-neck

and lung IGRTs are detailed in Sections 5.4.1 and 5.4.2, respectively.
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5.4.1 Head-and-neck IGRT

In head-and-neck IGRT, the geometric differences of the skull between planning time

and treatment time can be represented by a rigid transformation. Therefore, at treat-

ment planning time, CLARET samples clinically feasible variations (±2 cm in transla-

tions, ±5◦ in rotations) in the Euler 6-space C to capture the treatment-time patient’s

motions. With a single planning CT I of the patient, the computed learning projec-

tions P(I ◦ T (C); θ) are generated by transformation of the feasible variations T (C)

and projection from a given angle θ of the transformed 3D volume I ◦ T (C).

In the registration, CLARET iteratively applies the linear operators to estimate the

rigid transformation from the 2D intensity residues formed by the difference between

the normalized target projections Ψ? and the normalized projections computed from

the currently estimated rigid transformation applied to the planning-time 3D image.

5.4.2 Lung IGRT

A consideration in lung IGRT is that respiratory motion introduces non-rigid trans-

formations. At treatment planning time, 10-phase RCCT set (Respiratory-Correlated

CTs) collected at planning time serve as the cyclically varying 3D images {Jτ over the

phase τ}. This image set is used to generate the deformation shape space C. From

these RCCTs, a Fréchet mean image J and its deformations φτ to the corresponding

images Jτ are calculated via an LDDMM framework 4.2.2. Fig. 5.4.1(c) shows an

example respiratory Fréchet mean image.
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(a) (b) (c)

Figure 5.4.1: Coronal slices of (a) Respiratory-Correlated CT (RCCT) at the End-

Expiration (EE) phase (b) RCCT at the End-Inspiration (EI) phase and (c) Fréchet

mean CT generated via the Large Deformation Diffeomorphic Metric Mapping frame-

work from the RCCT dataset.

The deformation basis functions φpc are then generated by PCA on the deformation

set {φτ over phase τ}. Liu et al. (2010); Chou et al. (2013) has shown that a shape space

with three eigenmodes adequately captures 95% of the total variance of respiratory

variations experienced at treatment time. Fig. 5.4.2 shows the first two principal

deformation basis functions.

To generate feasible variations in the deformation space C for learning the linear

operator W, CLARET samples parameters within three standard deviations of the

means of the basis function weights derived from the RCCT image set. From the

Fréchet mean image the computed projections P(x, I ◦ T (C); θ) are generated by

(1) transformation based on the feasible variations T (C) and (2) projection from a

given angle θ to the transformed 3D volume I ◦ T (C).
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(a) (b)

Figure 5.4.2: The (a) first and (b) second principal deformation basis functions analyzed

from a lung RCCT dataset. Colored lines indicate heated body spectrum presentations

of the deformation magnitudes. As shown in the images, the first principal motion

consists of anterior-posterior expansion and contraction of the lung, and the second

principal motion is along the superior-inferior direction. Compass in the figure:
−→
X :

Left to Right (LR);
−→
Y : Anterior to Posterior (AP);

−→
Z : Superior to Inferior (SI).

Just prior to treatment, the Fréchet mean image obtained at planning time is rigidly

registered to the CBCT for correcting patient position. During treatment with planar

imaging, CLARET iteratively applies the linear operators W to estimate the weights C

on the basis functions φpc from current 2D intensity residues. The residues are formed

by the difference between the normalized and histogram matched target projections

Ψ? (Fig. 3.4.1(c)) and the normalized projections (Fig. 3.4.1(d)) computed from the

presently estimated deformation applied to the Fréchet mean image.
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5.5 Results

Sections 5.5.1 shows rigid registration using the NST imaging system for the head-and-

neck IGRT. Section 5.5.2 shows non-rigid registration using projection images from

CBCT scans acquired with the rotational imaging system for lung intra-treatment

IGRT. Section 5.5.2 compares registration accuracy and efficiency of CLARET and an

optimization-based approach.

5.5.1 Rigid Registration Results

CLARET’s rigid registration is tested by synthetic treatment-time projections and by

real phantom projections, as described in Sections 5.5.2 and 5.5.2, respectively. The

registration quality was measured by the mean absolute error (MAE ) and mean target

registration error (mTRE ). The MAE in any of the parameters of C is the mean, over

the test cases, of the absolute error in that parameter. The mTRE for a test case is

the mean displacement error, over all voxels in a 16× 16× 16 cm3 bounding box (the

probable tumor region) centered on the pharynx in the planning CT I.

mTRE :=

(∑χ
i=1(yi ◦ T (Ctrue)− yi ◦ T (Cest))

2

χ

) 1
2

(5.5.1)

where χ is the number of pixels in the probable tumor region, yi = (y1, y2, y3) is the tuple

of the ith voxel position, and Ctrue, Cest are the true and the estimated transformation

parameters, respectively.

Synthetic Treatment Projections

I used noise-added DRRs (digitally reconstructed radiographs) of target CTs as the

synthetic treatment-time projections. The DRRs (Fig. 3.4.1(a)) were generated to

simulate the NST projections with dimension 128×128 and pixel spacing 3.2 mm (Fig.
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5.1.1). The target CTs were transformed from the patient’s planning CT by taking

normally distributed random samples of the translation and rotation parameters within

the clinical extent: ±2 cm and ±5◦, respectively. The planning CTs have a voxel size

of 1.2 mm lateral, 1.2 mm anterior-posterior, and 3.0 mm superior-inferior.

Zero mean, constant standard deviation Gaussian noise was added to the DRRs

to generate the synthetic projections. The standard deviation of the noise was chosen

to be 0.2 × (mean bony intensity - mean soft tissue intensity). This noise level is far

higher than that produced in the NST system. An example synthetic projection is

shown in Fig. 3.4.1(b).

(a) (b) (c)

Figure 5.5.1: (a) A raw DRR from a x-ray source in the NST (b) DRR with Gaussian

noise added (c) the NST geometry of two opposing x-ray sources

I first studied how many projection images are needed for CLARET’s learning to

obtain sub-voxel accuracy. The results on 30 synthetic test cases of a head-and-neck

dataset, displayed in Fig. 5.5.2, show that two projection images are sufficient to

achieve sub-CT-voxel accuracy. Fig. 5.5.2 also shows the method’s accuracy improves

with more projections. However, the redundant projections may contribute error in the

parameter estimation. Therefore, the 4-projection geometry (Fig. 5.5.2), which used

the middle x-ray source on each imaging bank, produced the sufficient and necessary

number of projections to capture the simulated rigid motions. Fig. 3.4.1(c) shows the
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geometry of the two opposing x-ray sources that generated the two projection images

in the study. The choice of opposing sources is chosen such that the maximum angle

between images ( 22.5◦) is formed with the NST system.

Figure 5.5.2: Boxplot results of errors in varying the number of projections used. Red

dots are the outliers. Projections of equally spaced sources were used.

Table 7.1 shows the statistics of the errors in each rigid parameter from 90 syn-

thetic test cases generated from three patients’ planning CTs (30 cases for each CT).

The CLARET registration used only the two opposing NST projection images (Fig.

3.4.1(c)).

(mm; ◦) Tx Ty Tz Rx Ry Rz mTRE

MAE 0.094 0.302 0.262 0.1489 0.0248 0.1540 0.524

SE 0.008 0.022 0.075 0.011 0.001 0.030 0.076

Table 5.1: Mean absolute errors (MAE) and standard error (SE) of the absolute errors

of the six rigid parameters obtained from 90 synthetic test cases in which CLARET

registration used two synthetic NST projection images.
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Real Treatment Projections

CLARET’s rigid registration was also tested on a head phantom dataset. NST pro-

jections (dimension: 1024 × 1024; pixel spacing: 0.4 mm) of the head phantom were

downsampled to dimension 128 × 128 with a pixel spacing of 3.2 mm (Fig. 5.5.3(a)).

The dimension of the planning CT is 512×512×96 with a voxel size of 3.43 mm3. The

comparison standard was obtained by rigidly registering the combined set of 52 NST

projections to the planning CT by the l-BFGS optimization (Nocedal (1980)) of the

similarity metric in projection space. This is not a good validation, but with no ground

truths available optimization using all the projection images is our best try. Also, re-

sults in Frederick et al. (2010) suggest that 2D/3D registration accuracy is higher than

limted-angle-reconstructed-3D/3D registration accuracy for the NST geometry. The

initial mTRE over the head region was 51.8 mm. To deal with this exceptionally large

initial deviation1, CLARET trained regressions at 4 scales: W1,W2,W3, and W4. At

the sth scale of training (s = 1, 2, 3, and 4), each rigid parameter is collected from

the combinations of E · (5 − s)/4 and 0 where E ⊂ R is an extreme value selected

for capturing this large setup deviation: tx, ty, tz = 80 mm; tx, ty, tz = 20 degrees.

In the registration stage the calculated multiscale linear operators are applied sequen-

tially, from W1 to W4, to give new estimations of the rigid parameters from large to

small scale. The rationale behind this is that CLARET’s regression accuracy is tied

to the locality of the transformation: one should learn different regressions for differ-

ent transformation local neighborhoods to have more accurate estimation. For rigid

registration that has to deal with a high range of patient movements, e.g., from 5 cm

to 1 mm, this multi-scale learning is used to estimate parameters in a coarse-to-fine

fashion. For non-rigid registration, the iterative version of CLARET did not apply this

1 Clinical initial setup deviations for head-and-neck IGRTs are 8.88± 2.53 mm. (Zeidan et al. (2007))
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multi-scale learning. However, later in Ch. 7 I propose a noniterative and locally-linear

regression learning framework that learns more accurate regression estimators for each

deformation neighborhood.

With the 4-scale training (S = 4), CLARET obtained a sub-CT-voxel mTRE of 3.32

mm using only two projections in 5.81 seconds. It was computed on a 16-core laptop

GPU (NVIDIA GeForce 9400m) where the parallelization is limited. A factor of 32

speed-up (˜0.18 seconds per registration) can be expected when using a 512-core GPU.

As shown in Fig. 5.5.3(b) and 5.5.3(c), CLARET accuracy improves with increased

number of projections and scales in the multi-scale learning process. The registration

time is approximately linear with the number of projections used.

(a) (b) (c)

Figure 5.5.3: (a) One of the test NST projections of a head phantom. (b) Time plots

and (c) error plots of CLARET’s registrations on a real head-and-neck phantom dataset.

Registrations were accelerated on a 16-core laptop GPU (NVIDIA GeForce 9400m).

5.5.2 Non-rigid Registration Results

CLARET’s non-rigid registration is tested with synthetic and real patient cone-beam

projections, as described in Sections 5.5.2 and 5.5.2, respectively. In Section 5.5.2,

CLARET’s registration accuracy and efficiency are also compared to the state-of-the-

art method (Li et al. (2011a)) that uses the optimization approach. RCCT datasets

(CT dimension 512×512×120; voxel size 1 mm lateral × 1 mm anterior-posterior × 2.5
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mm superior-inferior) were generated with an 8-slice scanner (LightSpeed, GE Medical

Systems) by acquiring multiple CT images for a complete respiratory cycle at each

couch position while recording patient respiration (Real-time Position Management

System, Varian Medical Systems). The CT projections were retrospectively sorted

(GE Advantage 4D) to produce 3D images at 10 different respiratory phases.

Synthetic Treatment Projections

DRRs of the target CTs were used as the synthetic treatment-time projections. The

DRRs were generated to simulate projections from a rotating kV imaging system (Sec-

tion 3.3.1) mounted on the gantry of the medical accelerator (TrueBeam, Varian Med-

ical Systems). The target CTs were deformed from the patient’s Fréchet mean CT

by taking normally distributed random samples of the coefficients of the first three

PCA-derived deformation eigenmodes of the patient’s RCCT dataset (Section 4.2).

For each of the 10 CLARET registrations, I used a single simulated coronal pro-

jection (dimension 128× 96; pixel spacing 3.10 mm) at angle 14.18◦ (Fig. 3.4.1(d)) as

input. The registration quality was then evaluated by measuring the 3D tumor centroid

difference between the CLARET-estimated CT and the target CT. 3D tumor centroids

were calculated from active contour (geodesic snake) segmentations (Yushkevich et al.

(2006)). As shown in Table 5.2, after registration CLARET reduces the centroid error

more than 85%.

Case # 1 2 3 4 5 6 7 8 9 10

Before 8.2 21.3 21.8 20.1 9.9 10.2 10.9 15.7 14.9 19.9

After 1.3 0.8 1.5 3.3 0.8 1.3 0.5 1.6 2.1 2.7

% reductions 85 96 93 84 92 87 95 90 86 86

Table 5.2: 3D tumor centroid error (mm) before and after CLARET’s registration for

the 10 randomly generated test cases.
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CLARET’s registration quality was also studied in terms of average DVF (Dis-

placement Vector Field) error over all cases and all CT voxels versus different angular

spacings used in learning. Registrations using two projections with four different angle

separations were tested by 30 randomly generated test cases. Fig. 5.5.4(a) shows that

the average DVF error is small with appropriately large angular separations. How-

ever, tumor motion or respiratory motion may not be visible or inferable in projections

from certain angles. For example, the tumor may be obscured by denser organs (e.g.,

mediastinum). In Fig. 5.5.4(a) the respiration motion may not be inferable from the

projection at 9.68◦ resulting in a larger error in the parameter estimation.

I also studied CLARET’s registration quality by measuring the average DVF error

versus the number of projections used for learning. For each number of projections,

I generated 30 random test cases. Fig. 5.5.4(b) shows no particular trend. As a

result, I used a single projection to test CLARET’s non-rigid registration for the real

patient data in the next section. Also, giving the comparable number of outliers, the

comparisons are valid for both plots.
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(a) (b)

Figure 5.5.4: Boxplots of average displacement vector field errors when varying

(a) the angular spacing and (b) the number of projections used for CLARET’s non-rigid

registration. Red dots are the outliers. In (a), two projections for each test were used.

For the zero-degree test case, only one projection was used. In (b), DRRs spanning

9.68◦ about 14.18◦ were used in each test. The single projection was tested at 14.18◦

(see Fig. 3.4.1(d)).

Real Treatment Projections

CLARET was also tested using 5 lung patient datasets consisting of projections from

patient CBCT scans acquired with the rotational imaging system (Section 3.3.1).

CLARET 2D/3D registration used a single coronal CBCT projection at angle 14.18◦

and downsampled (original dimension 1024 × 768 and pixel spacing 0.388 mm) to

128× 96 with 3.10 mm pixel spacing (Fig. 3.4.1(a)). Separate registrations were done

using projections at the EE (End-Expiration) and EI (End-Inspiration) phases. Prior

to 2D/3D registration, the Fréchet mean image was rigidly registered to the patient’s

CBCT image so as to align the vertebral anatomy in both images. I measured the dif-

ference in 3D tumor centroid position (Fig. 5.5.6(a)) between the CLARET-estimated

CT and the reconstructed CBCT at the same respiratory phase as the projection used
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in the 2D/3D registration. The RMS window width was set to 32.0 mm for the Gaus-

sian normalization for this imaging geometry, which was predetermined to yield the

smallest 3D centroid error in one lung dataset (Fig. 5.5.5). Future studies should check

whether this window size is also best for other datasets.

Figure 5.5.5: 3D tumor centroid error plots on a lung dataset for varying width of the

Gaussian window used for CLARET’s local Gaussian normalization.

The results shown in Table 5.3 suggest a consistency in registration quality between

the synthetic image tests and real projection image tests. The mean and standard

deviation of 3D tumor centroid errors following 2D/3D registration are 2.66 mm and

1.04 mm, respectively.2 The average computation time is 2.61 seconds on a 128-core

GPU, NVIDIA GeForce 9800 GTX. A factor of four speed-up (to 0.65 seconds) can

be expected when using a 512-core GPU for acceleration.

The clinical goal is to improve tumor localization during treatment using CLARET.

Assuming a mean lung tumor motion extent of about 10 mm, the standard deviation

is about one-third of the motion extent, or 3 mm. In order to improve on current

clinical practice (i.e., no image guidance during treatment) an mTRE of 2 mm or less is

2 The errors include an uncertainty in tumor position in the CBCT projections, owing to variability
in the manual segmentations in the CBCT reconstructions, and residual tumor motion within the
EE and EI phase intervals. Based on repeatability measurements of the manual segmentations, the
standard deviation in manually determined tumor 3D position is 1 mm.

44



desirable. Furthermore, since most of the motion is in the superior-inferior direction, it

is desirable to achieve an mTRE of 2 mm or less in that direction. Our results show that

CLARET achieves the clinically desired accuracy: the mean and standard deviation

of the 2D tumor centroid error on the patient plane (left-right and superior-inferior

directions) after registration is 1.96 mm and 1.04 mm, respectively. CLARET reduces

positional errors in directions along the plane of the projection more than in the out-

of-plane direction. As shown in Table 5.3, except in cases from patient #1 most of the

percent 2D error reductions in the imaging plane (which was coronal) are larger than

the percent error reductions in the out-of-plane direction. This is expected because

2D/3D registration with a single projection is more sensitive to tumor displacements in

the image plane but less sensitive to scale changes due to out-of-plane displacements.

Fig. 5.5.6(b) shows the 3D meshes of the tumors in the Fréchet mean CT, the

CBCT at EE, and the estimated CT of a lung dataset for visual validation. As shown

in the figure, the tumor position in the CLARET-estimated CT is superior to that in

the mean image, as expected physiologically for the EE phase. Fig. 5.5.7 shows the

same 3-space lines in the mean CT, the reconstructed CBCT at the EE phase and

the CLARET-estimated CT of a lung dataset. The intersections of the lines with the

tumor centroid in the CBCT are in better agreement with the CLARET-estimated CT

than with the mean CT, indicating that CLARET can accurately locate the tumor in

the plane of the projection (coronal plane) and corroborating the results of Table 5.3.
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(a) (b)

Figure 5.5.6: (a) Transaxial image with manual segmented tumor contours in the recon-

structed CBCT at one respiratory phase of a lung dataset (patient 3). The contours

were used for 3D centroid calculation. (b) Tumor meshes in the Fréchet mean CT

(white), in the target CBCT at the EE respiratory phase (blue) and in the CLARET-

estimated CT (red) of a lung dataset (patient 2). The background is a coronal slice of

the mean CT for illustration. The overlap between the estimated and the target tumor

meshes indicates a good registration.
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(a) (b) (c)

Figure 5.5.7: The same 3-space lines in (a) the mean CT, (b) the reconstructed CBCT

at the EE phase and (c) the estimated CT of the same lung dataset used in figure

5.5.6(b). Upper row: lines indicate the tumor centroid in the CBCT at the EE phase;

lower row: lines indicate the diaphragm contour in the CBCT at the EE phase.

Comparison to an Optimization-based Registration Method

CLARET’s registration accuracy and efficiency have been compared to an optimization-

based method similar to that in the state-of-the-art method (Li et al. (2011a)). The

optimization-based method I implemented optimizes Eq. 5.1.4 (with ρ = 2) using the

l-BFGS quasi-Newton algorithm (Nocedal (1980)). To make fair comparisons, I used

the same deformation shape space, the same initializations, the same GPU acceleration
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for the projection operator P, and the same testing datasets.3

For the comparisons, 30 randomly sampled synthetic deformations were used as the

test cases for each of the five lung patients. The deformations were sampled randomly

within ±3 standard deviations of deformations observed in the patient’s RCCT. For

each test case, a single coronal CBCT projection (dimension: 1024× 768 downsampled

to dimension: 128 × 96) was simulated from the deformed Fréchet mean CT as the

target projection. Both methods were initialized with the realistic Fréchet mean image

with no deformation: Ĉ(0) = 0 in Eq. 5.1.2.

For CLARET, each training deformation parameter ci (i = 1, 2, 3) was collected

from the combinations of ±3σi, ±1.5σi, and 0 where σi is the standard deviation of

the ith eigenmode weights observed in the patient’s RCCT. Therefore, for sampling on

three eigenmodes, a total of 125 training deformations are sampled for each patient.

Registration accuracy was measured by the average registration error distance over

the lung region. As Fig. 5.5.8 shows, CLARET yielded more accurate results than the

l-BFGS optimization-based registration in almost every test case in all five patients.

Table 5.4 showed statistical comparisons of the registration accuracy. The maximum

error produced by CLARET among the 30×5=150 test cases is only 0.08 mm where

the maximum error produced by l-BFGS is 13.15 mm, which is 164 times higher than

CLARET. The smaller median error and error standard deviation also showed that

CLARET is more accurate and more robust than the l-BFGS optimization-based ap-

proach.4

In term of registration speed, Fig. 5.5.9 showed that CLARET is faster than l-BFGS

in every test case and has relatively small variation in speed. The statistical results

3 Despite this my implementation is not completely the same as the method in Li et al. (2011a), but
I had no access to the implementation in Li et al. (2011a).

4 Note that the l-BFGS optimization-based approach also yields accurate registration with a mean
mTRE of 0.54 mm.
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shown in Table 5.5 indicate that the longest registration time produced by CLARET

is still shorter than the shortest time produced by l-BFGS.

As our results show, in my implementations CLARET is more robust, accurate, and

faster than the l-BFGS optimization.

mTRE (mm) min. max. median mean std

CLARET 1.1e−5 0.08 2.3e−4 1.5e−3 7.4e−3

l-BFGS 2.0e−4 13.15 8.8e−3 0.54 2.01

Table 5.4: Registration accuracy (mTRE) statistics on the five patient data: CLARET

vs. the l-BFGS optimization. std=standard deviation

time (s) min. max. median mean std

CLARET 0.94 5.15 1.73 1.95 0.74

l-BFGS 5.29 78.73 19.30 23.76 14.41

Table 5.5: Registration time statistics on the five patient data: CLARET vs. the

l-BFGS optimization. std=standard deviation
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Figure 5.5.8: Mean target registration error (mTRE) on test data generated from five
patients (pt1-pt5): CLARET vs. the l-BFGS optimization vs. the initial error before
registration.
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Figure 5.5.9: Registration time on the five patient datasets (pt1-pt5): CLARET vs.
the l-BFGS optimization.
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Chapter 6: Nonlinear Regression Learning

In this chapter, I present another 2D/3D registration method that relaxes the strong

linear assumption made in CLARET. It uses a nonlinear neighborhood analysis ap-

proach and calculates the patient’s treatment-time 3D deformations by kernel regres-

sion. The method is called Registration Efficiency and Accuracy through Learning

Metric on Shape (REALMS ). Specifically, each of the patient’s deformation param-

eters is interpolated using a weighting Gaussian kernel on that parameter’s training

case values. In each training case, its parameter value is associated with a correspond-

ing training projection image. The Gaussian kernel is formed from distances between

training projection images. This distance for the parameter in question involves a Rie-

mannian metric on projection image differences. At planning time, REALMS learns

the parameter-specific metrics from the set of training projection images using a Leave-

One-Out (LOO) training that best fits to the training set.

REALMS applies the metric learning idea first introduced in Weinberger and Tesauro

(2007) to the 2D/3D image registration problem. In particular, in order to make the

metric learning work for the high dimensional (D � 103) projection space, REALMS

uses a specially-designed initialization approximated by CLARET’s linear regression

as detailed in Section 6.2.2. The results have led to substantial error reduction when

the special initialization is applied. As shown in the result, the linear regression im-

plied metrics can directly be used for registration to prevent the time-consuming LOO

training.
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The rest of the chapter is organized as follows: in Section 6.1, I describe REALMS’s

novel registration scheme that uses kernel regression. In Section 6.2, I describe the

metric learning scheme and the specialized initialization in REALMS. I show synthetic

and real results in Section 6.3.

6.1 2D/3D Registration Framework

This section details REALMS’s 2D/3D registration framework. REALMS uses kernel

regression (Eq. 6.1.1) to interpolate the patient’s n 3D deformation parameters

C = (c1, c2, · · · , cn) separately from the on-board projection image Ψ(θ) where θ is the

projection angle. It uses a Gaussian kernel KMi,σi with width σi and a metric tensor Mi

on projection intensity differences to interpolate the patient’s ith deformation parameter

ci from a set of N training projection images {P(I ◦ T (Cκ); θ) | κ = 1, 2, · · · , N} sim-

ulated at planning time. Specifically, the training projection image, P(I ◦ T (Cκ); θ),

is the DRR of a 3D image deformed from the patient’s planning-time 3D mean im-

age I with sampled deformation parameters Cκ = (c1
κ, c

2
κ, · · · , cnκ). T and P are the

warping and the DRR operators, respectively. P simulates the DRRs according to the

treatment-time imaging geometry, e.g., the projection angle θ.

In the treatment-time registration, each deformation parameter ci in C can be

interpolated with the following kernel regression:

ci =

N∑
κ=1

ciκ ·KMi,σi(Ψ(θ),P(I ◦ T (Cκ); θ))

N∑
κ=1

KMi,σi(Ψ(θ),P(I ◦ T (Cκ); θ))

, (6.1.1)

KMi,σi(Ψ(θ),P(I ◦ T (Cκ); θ)) =
1√

2πσi
e
−
d2
Mi (Ψ(θ),P(I◦T (Cκ);θ))

2(σi)2 , (6.1.2)
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d2
Mi(Ψ(θ),P(I ◦ T (Cκ); θ)) = (Ψ(θ)−P(I ◦ T (Cκ); θ))

ᵀMi(Ψ(θ)−P(I ◦ T (Cκ); θ)),

(6.1.3)

where KMi,σi is a Gaussian kernel (kernel width= σi) that uses a Riemannian metric

Mi in the squared distance d2
Mi and gives the weights for the parameter interpolation in

the regression. The minus signs in Eq. 6.1.3 denote pixel-by-pixel intensity subtraction.

REALMS uses the same deformation space parameterization as CLARET’s (See

Section 4.2). In the next section, I describe how it learns the metric tensor Mi and

decides the kernel width σi.

6.2 Metric Learning at Planning Time

6.2.1 Metric Learning and Kernel Width Selection

REALMS learns a metric tensor Mi ⊂ RP×P with a corresponding kernel width σi

for the patient’s ith deformation parameter ci using a Leave-One-Out (LOO) train-

ing strategy. At planning time, it samples a set of N deformation parameter tuples

{Cκ = (c1
κ, c

2
κ, · · · , cnκ) | κ = 1, 2, · · ·N} to generate training projection images

{P(I ◦ T (Cκ); θ) | κ = 1, 2, · · · , N} where their associated deformation parameters are

sampled uniformly within three standard deviations of the scores λτ observed in the

RCCT. For each deformation parameter ci in C, REALMS finds the best pair of the

metric tensor Mi† and the kernel width σi† that minimizes the sum of squared LOO

regression residuals Lci among the set of N training projection images:

Mi†, σi† = arg
Mi,σi

minLci(Mi, σi), (6.2.1)
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Lci(Mi, σi) =
N∑
κ=1

(
ciκ − ĉiκ(Mi, σi)

)2

, (6.2.2)

ĉiκ(M
i, σi) =

∑
χ 6=κ

ciχ ·KMi,σi(P(I ◦ T (Cκ); θ),P(I ◦ T (Cχ); θ))∑
χ 6=κ

KMi,σi(P(I ◦ T (Cκ); θ),P(I ◦ T (Cχ); θ))
, (6.2.3)

where ĉiκ(M
i, σi) is the estimated value for parameter ciκ interpolated by the metric

tensor Mi and the kernel width σi from the training projection images χ other than

κ; Mi needs to be a positive semi-definite (p.s.d) matrix to fulfill the pseudo-metric

constraint; and the kernel width σi needs to be a positive real number.

To avoid high-dimensional optimization over the constrained matrix Mi, I structure

the metric tensor Mi as a rank-1 matrix formed by a basis vector ai ⊂ RP×1:

Mi = aiaiᵀ (6.2.4)

Therefore, we can transform Eq. 6.2.1 into an optimization over the unit vector ai

where ‖ai‖2 = 1:

ai†, σi† = arg
ai,σi

minLci(aiaiᵀ, σi) (6.2.5)

Then we can rewrite the squared distance d2
Mi = d2

aiaiᵀ used in the Gaussian kernel

KMi,σi as follows:

d2
aiaiᵀ(P(I ◦ T (Cκ); θ),P(I ◦ T (Cχ); θ)) = (aiᵀ · rκ,χ)ᵀ(aiᵀ · rκ,χ), (6.2.6)

rκ,χ = P(I ◦ T (Cκ); θ)−P(I ◦ T (Cχ); θ), (6.2.7)

where rκ,χ ⊂ RP×1 is a vector of intensity differences between normalized projection

56



images generated by parameters Cκ and Cχ; and ai is a metric basis vector where the

magnitude of the inner product of ai and the intensity difference vector rκ,χ, aiᵀ · rκ,χ

gives the distance for the parameter ci (Eq. 6.2.6).

The learned metric basis vector ai† and the selected kernel width σi† form a weighting

kernel Kai†ai†ᵀ,σi† to interpolate the parameter ci in the registration (see Eq. 6.1.1).

6.2.2 Linear-Regression Implied Initial Metric

Since the residual functional L (see Eq. 6.2.1) that we want to minimize is non-convex,

a good initial guess of the metric basis vector a is essential. Therefore, REALMS

uses a vector wi as an initial guess of the metric basis vector ai for the parameter ci.

Let W ⊂ RP×n =

(
w1 w2 · · · wn

)
list these initial guesses. The matrix W is

approximated by a multivariate linear regression (Eq. 6.2.8 and Eq. 6.2.9) between the

projection difference matrix R ⊂ RN×P = (r1r2 · · · rN)ᵀ and the parameter differences

matrix ∆C. In particular, the projection difference vector rκ = P(I◦T (Cκ); θ)−P(I; θ)

is the intensity differences between the DRRs calculated from the deformed image

I ◦ T (Cκ) and the DRRs calculated from the mean image I (where C = 0).

∆C =



c1
1 c2

1 · · · cn1

c1
2 c2

2 · · · cn2
...

...
. . .

...

c1
N c2

N · · · cnN


−0 ≈



rᵀ1

rᵀ2
...

rᵀN


·
(

w1 w2 · · · wn

)
= WᵀR (6.2.8)

W = (RᵀR)−1Rᵀ∆C (6.2.9)

This is just the regression that was used to train CLARET.

The inner product of the matrix W, calculated by the pseudo-inverse in Eq. 6.2.9,
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and the projection intensity difference matrix R, WᵀR, gives the best linear approxi-

mation of the parameter differences ∆C from the mean image (C = 0). Therefore, we

use wi as the initial guess of the metric basis vector ai for the parameter ci.

As alternative to using this LOO process of optimization, this linear regression

implied metric can be directly used as the final metric for parameter interpolation

at registration time. This allows an efficient metric learning that prevents the time-

consuming LOO training.

6.2.3 Optimization Scheme

REALMS uses a two-step scheme to optimize the metric basis vector ai and the kernel

width σi in Eq. 6.2.5.

First, for each candidate kernel width σi, it optimizes the metric basis vector ai

using the quasi-Newton method (specifically, the BFGS method) with the vector wi as

the initialization. The gradient of the function Lci with respect to ai can be stated as

∂Lci
∂ai

=
2
√

2

σi
ai

N∑
κ=1

(ĉiκ−ciκ)
N∑
χ=1

(ĉiχ−ciχ)Kaiaiᵀ,σi(P(I ◦T (Cκ); θ),P(I ◦T (Cχ); θ))rκ,χr
ᵀ
κ,χ

(6.2.10)

Second, REALMS selects a kernel width σi† among the candidate kernel widths

where its learned metric basis vector ai† yields minimum LOO regression residuals Lci

for parameter ci.

6.3 Results

REALMS’s registration accuracy and efficiency were tested by synthetic (6.3.1) and real

(6.3.2) datasets. In Chapter 8, I also compare its accuracy and efficiency to CLARET

and the state-of-the-art optimization-based method (Li et al. (2011a)).
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6.3.1 Synthetic Tests

Coronal DRRs (dimension: 64 × 48) of the target CTs were used as synthetic on-

board cone-beam projection images. The target CTs were deformed from the patient’s

Fréchet mean CT by normally distributed random samples of the first three deformation

parameters.1 600 synthetic test cases were generated from 6 lung datasets and the

registration quality was measured by the average mTRE (mean Target Registration

Error) over all cases and all voxels at tumor sites. With REALMS’s registrations, the

average mTRE and its standard deviation are down from 6.89 ± 3.53 mm to 0.34 ±

0.24 mm using N = 125 training projection images. The computation time for each

registration is 11.39± 0.73 ms (87.79 registrations per second) on an Intel Core2 Quad

CPU Q6700.

As shown in Fig. 6.3.1, REALMS reduces the minimum errors produced by kernel

regressions that use the Euclidean metric (Mi = I). In particular, the REALMS metric

learned by the LOO optimization best minimizes the error for all three parameters.

However, per results shown in the figure, the REALMS’s initial metric learned by

linear regression (CLARET) already yielded good registration accuracy.

1 In my lung datasets, the first three deformation parameters captured more than 95% lung variation
observed in their RCCT.
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(a) (b) (c)

Figure 6.3.1: Average mTREs over 600 test cases projected onto the (a) first, (b)

second, and (c) third deformation basis vector versus the candidate kernel widths using

N = 125 training projection images.

Fig. 6.3.2 shows the computation time and registration accuracy tradeoff in REALMS.

(a) (b)

Figure 6.3.2: (a) Time and (b) accuracy v.s. the number of training projection images

N .

6.3.2 Real Tests

REALMS was also tested on 6 lung datasets with an on-board CBCT system where

a single coronal on-board CB projection (dimension downsampled to 64 × 48 for ef-

ficient computation) at both EE (End-Expiration) and EI (End-Inspiration) phases

were used for the testing. See the top image of Fig. 6.3.4(b) for illustration. For each

dataset, we generated N = 125 training DRRs to learn the metrics and select opti-

mal interpolation kernel widths. The learned metrics and the selected kernel widths

were used to estimate deformation parameters for the testing of EE and EI on-board
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projections. The estimated CTs were deformed from the Fréchet mean CT with the es-

timated deformation parameters. The results were validated with reconstructed CBCTs

at target phases.2 Table 6.1 shows the 3D Tumor Centroid Differences (TCDs) between

REALMS-estimated CTs and the reconstructed CBCTs at the same respiratory phases.

Tumor centroids were computed via Snake active segmentations. As shown in Table

6.1, REALMS reduces the TCD from 5.58±3.14 mm to 2.56±1.11 mm in 10.89±0.26

ms (91.82 fps).

dataset# TCD at EE phase (mm) TCD at EI phase (mm) Time (ms)

1 2.42 (9.70) 4.06 (7.45) 10.40

2 3.60 (4.85) 3.60 (4.89) 10.92

3 2.30 (8.71) 3.60 (4.03) 10.91

4 1.27 (2.69) 2.80 (2.29) 10.91

5 0.70 (9.89) 3.28 (8.71) 11.15

6 1.98 (2.03) 1.12 (1.72) 11.08

Table 6.1: Tumor Centroid Differences (TCD) after REALMS’s registration at EE and

EI phases of 6 lung datasets. Numbers inside the parentheses are the initial TCDs.

Fig. 6.3.3 illustrates an example REALMS registration on a lung dataset where the

tumor, the diaphragm, and most of the soft tissues are correctly aligned.

2 The CBCTs were reconstructed by the retrospectively-sorted CB projections at target breathing
phases.
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(a) (b)

Figure 6.3.3: (a) Image overlay of the reconstructed CBCT at EE phase (red) and the

Fréchet mean CT (green) (b) Image overlay of the reconstructed CBCT at EE phase

(red) and the REALMS-estimated CT (green) calculated from an on-board cone-beam

projection image at EE phase. The yellow areas are the overlapped region.

6.3.3 The Learned Metric Basis Vector

The learned metric basis vector ai† will emphasize projection pixels that are significant

for the distance calculation of the deformation parameter ci (e.g., give high positive

or high negative values). As shown in Fig. 6.3.4(a), the learned metric basis vector

a1† emphasized the diaphragm locations and the lung boundaries as its corresponding

deformation basis vector φ1
pc covers the expansion and contraction motion of the lung.

See the bottom image of Fig. 6.3.4(b) for illustration.
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(a) (b)

Figure 6.3.4: (a) Initial guess of the metric basis vector a1 = w1 (top) and the op-

timized metric basis vector a1† (bottom) of a lung dataset. They are re-shaped into

the projection image domain for visualization. Both very dark and very light pixels

contribute the most to the distance calculation of the parameters. As shown in the

figure, the diaphragm locations and the lung boundaries (yellow boxes) were empha-

sized after metric learning. (b) Top: a coronal on-board CB projection at EE phase of

the lung dataset used in (a). The yellow boxes in (a) and (b) correspond to the same

2D locations. Bottom: the first deformation basis vector φ1
pc (the color arrows indicate

heated object spectrum maps of the deformation magnitudes) overlaid with the volume

rendering of the Fréchet mean CT of the lung dataset used in (a). For this dataset, φ1
pc

covers the expansion and contraction motion of of the lung.
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Chapter 7: Locally-linear Regression Learning

As presented in Ch. 5, CLARET learns global linear regressions that map projection

intensities to their associated deformation parameters based on a sampling from the

whole deformation space. At treatment time the learned patient-specific regressions

are iteratively applied to refine the estimation of the patient’s deformation parameters.

In Ch. 6, I showed that REALMS is an even faster regression learning method that

does not need to iterate for refinement. It estimates the patient’s deformation param-

eters by learning good global projection distance metrics for deformation parameter

interpolation via nonlinear kernel regressions.

However, due to the variable projection-to-deformation relationships in various re-

gions of the deformation space, a global regression learned from the whole deformation

space is a rough approximation of the underlying relationship. As a result, the regis-

tration accuracy is limited by the global learning methods.

This chapter presents a novel local learning method that partitions the deformation

space, learns a projection-to-deformation relationship for each partition and at appli-

cation time identifies the nearest partition for an unseen x-ray image and applies the

learned local relationship of the identified partition to yield better approximation. The

method improves the regression learning method described in Ch. 5 as an example.

The results show that the method’s local regression learning yields a more accurate and

still efficient 2D/3D deformable registration.
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7.1 Method Overview

The method generates large-scale training samples and finds normalized graph cuts

(Shi and Malik (2000)) that best separate the training samples into a given number

of training partitions. In each training partition the method learns linear regression

matrices that map the training projection intensities to the training deformation pa-

rameters. At treatment time, the method decides which training partition the target

deformation resides in by a trained decision forest (Criminisi et al. (2011), an approach

that has shown success in many medical applications) based on projection image inten-

sities and gradients of various image regions in the target projection image. The linear

regressions learned for the forest-decided partition are applied to the target projection

intensities to yield the desired deformation.

The purpose of the local regression learning is to obtain a better regression fitting to

the training set. Due to the nonlinear relationships between the deformation parameters

and the projection intensities, fitting a globally linear regression to approximate this

nonlinear relationship is mathematically inappropriate.

This section presents a locally-linear regression learning method that can more flexi-

bly approximate this nonlinear relationship. It comprises two stages: training and treat-

ment application. There are five steps in the training stage. First, the patient’s prior

deformation space is parameterized by an LDDMM (Large Deformation Diffeomorphic

Metric Mapping) framework from the patient’s treatment-planning RCCT. Second, the

method samples training deformation parameters and simulates corresponding x-ray

projection images, or DRRs (Digitally-Reconstructed Radiographs), from CT volumes

warped by the sampled training deformations. Third, the method partitions the train-

ing projection images recursively by normalized graph cuts using Euclidean distances of

the deformation parameters. Fourth, the method computes a linear regression between

the deformation parameters and the covarying projection intensities for each training

65



partition. Finally, in order to classify an unseen projection image into a nearest training

partition in the treatment application stage, in the training stage the method trains a

set of decision trees, or a decision forest, for deciding the local training partition based

on the projection image intensities and gradients of various image regions. In the

treatment application stage, given a target projection image the method estimates the

deformation parameters of the patient by first classifying the target projection image

into a training partition and then using the learned linear regression of that partition

to yield the estimation.

7.2 Training Stage

7.2.1 Deformation Space Formulation

The method uses the deformation space formulation described in Ch. 4. Recall that the

method constrains the patient’s deformation to a space spanned from the deformation

observed in the patient’s treatment-planning RCCT consisting of 10 phase images. The

weights λiτ on each deformation eigenmode i yield a deformation φτ in terms of these

deformation eigenmodes: φτ = φ+
∑10

i=1 λ
i
τ · φipc.

7.2.2 Training Space Sampling

In preparation of the partitioning, the method uniformly samples S scores on each

deformation eigenmode within ±3 standard deviations of the eigenmode scores observed

in the planning RCCT. For 3-dimensional parametrization of the deformation space,

a total N = S3 sampled deformation parameters {Cκ}κ=1,2,...,N are used to warp the

Fréchet mean image, and the training projection images {Pκ}κ=1,2,...,N are simulated

from those warped mean images. In order to make the intensity comparable between

the training projections and treatment-time target projections, the method normalizes

both training and target projections with a local Gaussian normalization method and
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a histogram matching method described in Sections 3.4.1 and 3.4.2.

7.2.3 Training Space Partitioning

To partition the training projections, the method uses a hierarchical separation ap-

proach that is similar to the normalized graph cuts method (Shi and Malik (2000)).

The graph cuts are decided based on the Euclidean distance of the deformation param-

eters, a criterion similar to that used in the multidimensional scaling (MDS) method

(Kruskal (1964)).

The goal of the training space partitioning is to separate the training space such

that the Euclidean distance of the deformation parameters in each partition is mini-

mized. Different from the traditional graph cut approach that generates an “affinity”

matrix, the method generates an N × N “dissimilarity” matrix D where the entries

Di,j = ‖Ci −Cj‖2 are the distances of the deformation eigenmode weights between

training samples i and j. N is the number of training samples. Having the dissimi-

larity matrix computed, like previous literature stated in (Shi and Malik (2000)) the

method computes the first k smallest eigenvalues and their eigenvectors V1, V2, .., Vk of

the dissimilarity matrix D if 2k partitions are needed. The eigenvector with the small-

est eigenvalue, V1, is an approximation to the NP-hard normalized graph cut problem:

training samples close to each other will have similar values in the eigenvector (have

close dissimilarity maps). Therefore, the method sorts the training samples by their

values in V1 and partitions the training samples into two by the median value. The final

partitioning is computed by recursively separating the training set using the eigenvec-

tors with the next smallest eigenvalues.
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7.2.4 Local Regression Learning

The method approximates the nonlinear relationship between the projection intensities

and the deformation parameters by fitting a linear regression Wi
L that linearly maps the

projection intensities to the ith deformation parameter ciκ∈L for each training sample κ

in each local training partition L (local deformation neighborhood): ciκ∈L ≈ Pκ∈L ·Wi
L

where Wi
L = (Pᵀ

κ∈L ·Pκ∈L)−1 ·Pᵀ
κ∈L · ciκ∈L.

7.2.5 Decision Forest Training

In order to efficiently classify an unseen target projection into a training partition in

the application stage, the method constructs a decision forest F in the training stage.

The decision forest F consists of M binary trees T1, T2, .., TM with depth d. In this work

M = 100 and d = 5 are used. In each tree, a tree traversal of the target projection

selects the nearest training projection images. With the 100 tree traversals the method

classifies the target projection image into the same partition as its most frequently

selected nearest training projection image’s. The tree traversal is guided by a sequence

of binary decisions made at tree nodes based on the “visual features” of the target

projection image. The visual features used in this work are 6: mean intensity, mean

intensity difference, mean intensity gradients along two projection axes, and mean

intensity gradient differences along two projection axes of 1, 000 random box pairs

(random positions and sizes).

The method constructs such a decision forest through a supervised learning on the

training set: in each tree the binary decisions made at tree nodes are to select visual

features and their thresholds to partition the training projection images such that

training projection images with close deformation parameter values will traverse to the

same leaf node. Specifically, for each binary tree Tδ the method randomly selects 400

candidate visual features Vδ out of the total 1, 000 × 6 = 6, 000 visual features V . At
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each tree node N in the tree Tδ the method selects the qth visual feature VqN among the

150 candidate visual features VN randomly sampled from Vδ (VqN ∈ VN ⊂ Vδ ⊂ V) and

the threshold ξ for the selected visual feature VqN such that after the binary partition

by the threshold, the total variance of the deformation parameters is minimized or

equivalently, the information gain is maximized: for training samples κ in tree node N ,

arg
q,ξ

max Var{Cκ∈N} −Var{Cκ∈N |VqN (Pκ) > ξ} −Var{Cκ∈N |VqN (Pκ) < ξ} (7.2.1)

With optimizations (7.2.1) at all tree nodes in all trees, training projection images

traversing to the same leaf nodes in a tree have the same visual feature responses to the

binary decisions and similar deformation parameter values. The random selection of

the candidate features for each tree and for each node provides an efficient and robust

discriminative learning from the high dimensional feature space (Breiman (2001)). The

method records the leaf node indices that the training projection images visited in each

tree for classification in the treatment application stage.

7.3 Treatment Application Stage

In the treatment application stage, a previously unseen target projection image is pre-

processed to remove the additional photon scattering using the local Gaussian normal-

ization method and histogram matching method described in Sections 3.4.1 and 3.4.2.

The method then classifies the target projection image into a local training partition by

the trained regression forest. Finally, the target deformation parameters are estimated

by the local linear regressions learned from that local partition. With the efficient forest

classification and the fast parameter estimation by regressions that only involve matrix

multiplication, the whole registration process can be computed in real time.
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7.3.1 Forest Classification

The classification consists of two steps: first, each tree traversal of the target projection

image yields a neighborhood set of training projection images that visit the same leaf

node. For 100 trees the method computes the most frequently visited training projection

image from the 100 neighborhood sets. Second, the method assigns the target projection

image the same partition as its nearest training neighbor’s.

7.3.2 Regression Estimation

With the training partition L∗ classified, the method uses the learned linear regression

Wi
L∗ of that training partition to estimate the deformation parameter citarget from the

target projection intensities Ptarget: c
i
target = Ptarget ·Wi

L∗ .

7.4 Results

The local regression method has been validated on 500 synthetic treatment-time de-

formations and 5 real treatment-time deformations sampled from 5 lung datasets (pt1

to pt5). In the synthetic tests, target projection images were the DRRs computed

from the Fréchet mean image warped by random treatment-time deformations sampled

from the patient’s deformation eigenmode space within ±3 standard deviations of the

weights observed in the patient’s RCCT. Having the ground truths of the deformation

parameters, the synthetic tests were used to analyze the optimal training settings (e.g.,

the number of training samples and partitions) in terms of the method’s registration

accuracy and efficiency. Moreover, to better understand the importance of the local

regression, the accuracy of the forest classification and the accuracy of the local re-

gression are also compared in this section. In the next chapter (Chapter 8), I also

compare its accuracy and efficiency to CLARET, REALMS, and the state-of-the-art
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optimization-based method (Li et al. (2011a)).

7.4.1 The Datasets

Five lung datasets have been tested for this local regression method. Each dataset

consists of 10 treatment-planning RCCT, a target cone-beam CT (CBCT) projection

(coronal-view, dimension down-sampled to 128 × 96) scanned at the patient’s end-of-

expiration (EE) phase, and a validating 3D EE-phase CBCT reconstructed at treatment

time. As shown in Fig. 7.4.1 those five datasets represent very different pathological

states and imaging fields of views (FOVs). For example, patient 1 and 4 (pt 1 and

4) have a shorter CT scan along the superior-inferior (SI) direction and therefore the

simulated projections have truncations; Patient 4 has only one lung, and patient 5 has

an extended view toward the abdominal region. For all five patient datasets, their target

projections were all imaged in the patients’ EE phases. The estimated deformations

are validated by treatment-time reconstructed cone-beam CTs (CBCTs) at the same

EE phases. In particular, the results measure mean target registration errors (mTREs)

as (1) the tumor centroid differences (for real tests) or (2) the average deformation

differences of a lung voxel (for synthetic tests) between the estimated CTs (Fréchet

mean images warped by the estimated deformations) and the validating CBCTs (for

real tests) or the ground truth target CTs (for synthetic tests). Tumors were manually

segmented in both CTs and CBCTs.
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pt1 pt2 pt3 pt4 pt5

Figure 7.4.1: The 5 lung datasets. Top row: the middle coronal slices of the patients’

Fréchet mean CT images. Second row: DRRs of the Fréchet mean CT images. Third

row: target projection images at the end-of-expiration (EE) phase. Fourth row: vali-

dating reconstructed cone-beam CTs (CBCTs) at the EE phases.

7.4.2 Synthetic Tests

For each lung dataset, 100 testing projections and testing deformation parameters were

randomly sampled in the patient’s deformation eigenmode space. The registration

accuracy and efficiency have been tested with a varying number of training samples

and with varying number of partitions.

Training Space Sampling and Partitioning

Five different numbers of partitions have been chosen for testing: 1, 2, 4, 8, and 16

partitions. The method partitions the training samples recursively by normalized graph

cuts. As shown in Fig. 7.4.2, the method first separates the training space along the

first deformation eigenmode because it contributes the greatest variation of the training

deformations.

72



Forest Classification

Also shown in Fig. 7.4.2, the decision forest successfully classifies most of the testing

samples into the correct training partitions. The erroneous partition assignments only

happen on the partition boundaries.

#partitions=1 #partitions=2 #partitions=4

#partitions=8 #partitions=16 #partitions=16 (3D)

Figure 7.4.2: Training samples partitioning and forest classification results of a lung

dataset. Circular dots are 213 training samples in the deformation eigenmode space.

Square dots are the 100 random testing samples colored by different partitions decided

by the forest.

Forest Classification vs. Local Regression Accuracy

Forest classification selects a nearest training neighbor for each testing target projection

image. The deformation parameters of the selected nearest neighbor can be used as

a rough estimation, and the further local regression provides refinements of the forest

classification. To demonstrate the refinement improvement of the local regression, 500

synthetic tests were generated from the 5 lung datasets (100 tests each). The accuracy is
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measured by the mean deformation error appearing in the lung. As shown in Fig. 7.4.3,

both forest classification and the local regression accuracy improved greatly with an

increasing number of training samples. However, the accuracy of the forest classification

converges to 0.5 mm whereas the local regression converges to 0.05 mm, which shows

a 10-fold error reduction.

Figure 7.4.3: Average deformation errors of a lung voxel in the 100 synthetic tests for

each patient with varying numbers of training samples. The registration accuracy of

the forest classification (F) is compared with the accuracy of the forest classification

followed by local regression (F+R). In the figures the local regression uses the optimal

number of training partitions that yields the most accurate registration.
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The More Partitions, the Better?

Registration time and accuracy have been investigated with the number of the training

partitions used. Fig. 7.4.4 shows the registration error slightly reduces and then in-

creases with the number of training partitions. This suggests that the local regression

enhances the registration accuracy if the a proper partition of the training space is ap-

plied. For the results shown in the figure, with the N = 213 training samples the linear

regressions best fit to a smaller partition rather than to the entire training set. The

increasing errors observed in the over-partitioning situations (the number of partitions

> 8) are the results of overfitting to partitions of insufficient training samples.

In terms of registration time, since the global regression learning does not require the

forest classification, the mean computation time for the regression inference is only 10

ms. For local regression learning, Fig. 7.4.5 shows that it yields minimum registration

time (forest classification time + local regression time) when 4 training partitions are

used, and the registration is still real-time.

As per the more accurate registration accuracy and the still-in-real-time speed, the

local regression learning is better than the global regression learning.
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Figure 7.4.4: Average deformation errors of a lung voxel in the 100 synthetic tests for

each patient with varying numbers of training partitions for 213 training samples.
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Figure 7.4.5: Average registration time of the 100 synthetic tests for each patient with

varying numbers of training partitions for 173 (left) and 213 (right) training samples.

Optimal registration time is more distinguishable when using larger training sample

sets.

7.4.3 Real Tests

Results on Real Datasets by the Optimal Partitioning Learned from Patient-

Specific Synthetic Tests

For registration of the real datasets, Table 7.1 compares the registration time and

accuracy between the global and local learning methods. Results of the local learning

method use the optimal training settings suggested by the synthetic tests, e.g., for

patient 2, the number of training samples=213 and the number of partitions=4. As

shown in the table, the local learning method is more accurate than the global learning

method. Its computation time is still real-time even with the extra forest classification

(that is not used by the global learning). The mean 3D tumor centroid errors e3D

over the five datasets are 3.73 mm and 2.61 mm for the global and the local learning,

respectively. The error reduction made by this local learning has no particular trend in

favoring specific directions (neither directions in-plane nor the out-of-plane direction).

In addition, for target projection images having a more abdominal FOV like patient
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5’s, the great error reduction (from 6.65 to 2.78 mm) shows the method’s ability to

learn the nonlinear relationship between the projection intensities and the deformation

parameters as the abdomen undergoes more nonlinear motions than the lung.

Global learning pt1 pt2 pt3 pt4 pt5

#partitions 1 1 1 1 1

e3D (mm) 4.18 1.94 3.78 2.12 6.65

e2D (mm) 4.16 1.84 3.74 1.88 6.52

e⊥(mm) 0.4 0.6 0.54 0.97 1.27

Time (s) 0.001 0.001 0.001 0.001 0.001

Local learning pt1 pt2 pt3 pt4 pt5

#partitions 4 4 4 4 2

e3D (mm) 3.23(22%) 1.85(4.6%) 3.08(18%) 2.11(0.4%) 2.78(58%)

e2D (mm) 3.19(23%) 1.78(-0.5%) 3.03(19%) 1.97(-4.7%) 2.70(58%)

e⊥(mm) 0.5(-24%) 0.5(16%) 0.52(3.7%) 0.74(23%) 0.64(49%)

Time (s) 0.06 0.07 0.07 0.06 0.07

Table 7.1: Registration time and accuracy of the five real datasets. The accuracy

is measured by the tumor centroid differences, e, between the estimated CTs and the

validating CBCTs. e3D: 3D errors; e2D: errors on the patient plane (coronal plane);

e⊥: errors orthogonal to the patient plane (out-of-plane direction). Numbers inside the

parentheses are the percentage error reduction from global learning.

Is the Learned Optimal Partitioning Still Optimal for the Real Dataset?

Fig. 7.4.6 shows the registration accuracy and time vs. the number of training par-

titions of the 5 real datasets. As shown in the figure, the optimal number of training

partitions that yields the smallest registration error is 4, which agrees with the synthetic
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results, except that the advantage of having 4 partitions is stronger here than with the

synthetic tests. However, different from the synthetic results, the registration error does

not increase when more than 4 training partitions are used. One possible cause for this

inconsistency is that the optimal number of training partitions depends on the distri-

bution of the target projection images in the training deformation space. For example,

the synthetic target projection images are distributed in the whole training deformation

space whereas the real target projection images are all in the EE phases, which lie in

a region close to the boundaries of the training deformation space (see boundaries in

the sub-figures in Fig. 7.4.2). Consequently, regressions fitted to a smaller training

partition will tend to have better estimation of this extreme testing deformation.

Figure 7.4.6: Registration accuracy (left) and time (right) vs. the number of training

partitions on 5 real lung datasets.
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Chapter 8: Comparisons

Registration accuracy has also been compared between the proposed regression-based

methods and the optimization-based method. Section 8.1 compares registration results

on synthetic data obtained from the patient-specific RCCT datasets, and Section 8.2

compares registration results on real CB projection data. Discussion on picking the

winning method among the proposed methods is presented in Section 8.3.

8.1 Synthetic Tests

For each method Fig. 8.1.1 shows the cumulative error distribution of a total of 150

synthetic random tests generated from the 5 patient datasets. Initial errors (“init” in

the legend of the figure) in the 150 test cases range from 1 to 10 mm. The registration

errors are reported as the mean Target Registration Error (mTRE) of a lung voxel over

millions of voxels over the 150 synthetic random tests. Since the deformation is zero in

almost all the voxels, this yields sub-millimeter mTREs even though the maximum error

is 10 mm. However, for comparisons this error measurements are still valid. Detailed

explanations of the acronyms in Fig. 8.1.1 are as follows:

• init: initial deviations obtained from the mean CT.

• l-BFGS: The state-of-the-art optimization-based registration using a quasi-Newton

l-BFGS optimizer.

• CLARET(125)-1(itr.): iterative CLARET using 125 training images.
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• CLARET(125)-1: noniterative global CLARET using 125 training images.

• Forest(125): forest classification using 125 training images.

• REALMS(125)-1: REALMS registration using 125 training images.

• CLARET(9261)-1: noniterative global CLARET using 9261 training images.

• CLARET(9261)-2: noniterative local CLARET using 9261 training images and 2

partitions.

• CLARET(9261)-4: noniterative local CLARET using 9261 training images and 4

partitions.

• CLARET(9261)-8: noniterative local CLARET using 9261 training images and 8

partitions.

• CLARET(9261)-16: noniterative local CLARET using 9261 training images and

16 partitions.

• Forest(9261): forest classification using 9261 training images.
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Figure 8.1.1: Registration accuracy distribution comparisons between the proposed and

the optimization methods. The numbers in the parentheses are the numbers of training

images used. The numbers that follow the dashed line are the numbers of partitions

used for localized regression learning.

8.1.1 Iterative vs. Noniterative CLARET

As shown in the Section 5.5.2 and in the figure below (Fig. 8.1.1), the iterative CLARET

with 125 training images, CLARET(125)-1(itr), greatly reduced the error from the

noniterative global CLARET, CLARET(125)-1. The iterative version of CLARET

showed the best registration accuracy among all of the proposed methods including the

traditional optimization-based method (l-BFGS). However, due to its iterative nature,

its computation time is far greater than those noniterative ones. See Table 8.1.

(ms) CLARET(125)-1(itr.) CLARET(9261)-1 CLARET(9261)-4 REALMS(125)-1 l-BFGS

Time 1950± 740 1.22± 0.62 80.65± 4.61 11.39± 0.73 23760± 14410

Table 8.1: Registration time between the proposed and the optimization methods.
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When using many training images, e.g., 9261 training images, forest classifica-

tion showed an improvement by a factor of four, but the noniterative CLARET,

CLARET(9261), showed an improvement by a factor of ten. This indicates that

CLARET’s registration accuracy can be greatly improved not only by iterating the

method but also by using a larger training set. This property supports the noniterative

CLARET to do efficient and accurate registration at treatment time. As the compu-

tation time stated in Table 8.1, noniterative CLARETs are at least 20-fold faster than

the iterative one.

8.1.2 Global vs. Local CLARET (noniterative)

Registration results of the noniterative CLARETs with various numbers of partitions

have also been compared. As shown in Fig. 8.1.1, when using 9261 training images

CLARET with 4 partitions, CLARET(9261)-4, yields more accurate registrations than

the global CLARET, CLARET(9261)-1. Although the local CLARET is slower than

the global CLARET due to the additional forest classification, the whole computation

is still real-time (see Table 8.1).

8.1.3 REALMS vs. Others

As for REALMS registration using 125 training images, REALMS(125)-1, its accuracy

is between the forest classification and the noniterative CLARET, CLARET(125)-1.

The sources of the REALMS’s insufficient accuracy may come from the following two

points: (1) The non-convexity of the leave-one-out residual (Eq. 6.2.1 and Eq. 6.2.2)

prevents the optimization from finding the optimal metric and kernel width. (2) Over-

fitting. REALMS’s learned metric may overfit to the training set since it has too many

parameters (weightings on the x-ray intensities) embedded in a nonlinear regression

model. However, as will be stated in the next section, REALMS registration on the
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real tests actually works pretty well compared to results on the synthetic tests. Further

discussion on this phenomenon will be provided in the next section.

8.2 Real Tests

Registration accuracy between the proposed methods and the optimization-based method

have also been compared using the 6 real datasets. Largely, the results are consistent

with the synthetic tests. In particular, in this real test, one new hybrid method was

compared. The hybrid method used the optimization-based method but initialized from

the results yielded by the global noniterative CLARET (CLARET+l-BFGS). Results

of this hybrid method barely reduced errors from the optimization-based method that

initialized from the mean shape (l-BFGS). This suggests that the error metrics used

for the optimization-based method, namely Sum of Squared Difference (SSD), may not

be valid. Future work should investigate the potential of error metrics for this 2D/3D

registration problem.

Another noticeable mismatch between the synthetic tests and the real tests is in

the REALMS results. REALMS performed worse in the synthetic tests but had shown

pretty good accuracy on the real datasets. One potential reason of this phenomenon

is that in the real datasets, there might be a greater nonlinear component between the

projection intensity and the deformation parameters. As a result, REALMS, which

uses the nearest neighbor approximation, can capture this higher nonlinear variation

better.
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Figure 8.2.1: Box plots of the registration accuracy on real datasets for the proposed

and the optimization-based method.

8.3 Which One is the Winning Method?

Which one is the winning method? It’s a hard call and should depend on your tar-

get applications. Table 8.2 lists rankings in terms of accuracy and computation time

for the five methods - CLARET(125)-1(itr.), CLARET(9261)-1, CLARET(9261)-4,

REALMS(125)-1, and l-BFGS based on the synthetic tests. Generally speaking, if

your target application does not require a real-time (<100 ms/registration) speed, the

iterative CLARET may be your best choice since it yields the best accuracy. If your

target application does require a real-time speed, you may consider using the local

CLARET trained from a large training set, CLARET(9261)-4, as it can be computed

in real time and still yield the second best accuracy. If your target application requires
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a higher standard of computation speed (e.g., <30 ms/registration), like fluoroscopy-

to-CT registrations in the interventional surgery (Markelj et al. (2012); Roth et al.

(2004)), you may consider using the global CLARET trained from a large training set,

CLARET(9261)-1, as your registration method. If your target application requires a

higher standard of computation speed (e.g., <30 ms/registration) and the image feature

to transformation relation is known to be nonlinear, you may consider using REALMS

to do registration since it uses a real-time and nonlinear registration model. Finally, if

there is no a priori information of the object’s transformation, you should use one of

the traditional optimization-based methods (parametric PCA-based (Li et al. (2011a)),

FFD (Rueckert et al. (2006, 1999)); non-parametric diffusion-based (Vercauteren et al.

(2009); Horn and Schunck (1981)), elastic-based (Rohr et al. (2001)), and fluid-based

(Christensen et al. (1996a); Beg et al. (2005)) registrations) since they do not require

a training set.

CLARET(125)-1(itr.) CLARET(9261)-1 CLARET(9261)-4 REALMS(125)-1 l-BFGS

Accuracy +++++ +++ ++++ + ++

Time ++ +++++ +++ ++++ +

Table 8.2: Which one is the winning method? Comparisons by rankings: the one has

a higher ranking will have more ’+’ signs.

In application to abdominal IGRT, Zhao et al. (2013) recently developed a localized

REALMS method that applies global-to-local metrics for parameter refinement. The

method has shown an improved registration accuracy over the global REALMS with

real-time computation.
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Chapter 9: Conclusions and Discussion

Regression learning provides a novel solution to image registration problems, especially

for registration between different image dimensions where the information of the un-

derlying transformation is missing in the image with the lower dimension. By learning

regressions between the transformations (by few global parameters) and the covarying

image features, it can better estimate the latent transformations from the target image

features. Per results shown in Ch. 8, regression learning for 2D/3D image registration

in IGRT has been shown to be more robust, more accurate, and more efficient than the

traditional optimization-based approach.

Revisit Thesis and Contributions

The contributions of this dissertation are the following:

(1) The development of four regression-learning-based 2D/3D image registration meth-

ods for image-guided radiation therapy.

a. CLARET (Correction via Limited-Angle Residues in External Beam Therapy)

At training time, the method learns linear regressions between the deformation

parameters and the covarying x-ray intensity residues. The linear regression is

learned to fit the simulated training set generated from the patient’s treatment-

planning CT images. At treatment time, it iteratively applies the learned regres-

sions on previously unseen x-ray images to estimate the deformations.
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Clinical usage of the iterative CLARET: if your target application does not require

>30 registrations per second, the iterative CLARET may be your best choice since

it yields the best accuracy. For 2D/3D registrations in lung IGRT, it yields an

average error of 2.3 mm in 3D.

b. REALMS (Registration Efficiency and Accuracy through Learning Metric on

Shape)

At training time, the method learns nonlinear kernel regressions between the de-

formation parameters and the covarying x-ray intensities. The kernels are Gaus-

sian kernels that measure deformation similarities from projection distances with

given kernel widths. Projection distances are equipped with Riemannian met-

rics. The method learns the projection distance metrics and the kernel widths

that best fit to the simulated training set generated from the patient’s treatment-

planning CT images (by a linear regression approximation or an LOO training).

At treatment time, it applies the learned regressions on previously unseen x-ray

images to estimate the deformations without iteration.

Clinical usage: If your target application requires >30 registrations per second

and the image feature to transformation relation is known to be nonlinear, you

may consider using REALMS. For 2D/3D registrations in lung IGRT, it yields

an average error of 3 mm in 3D.

c. L-CLARET (Local CLARET)

At training time, the method learns multiple locally-linear regressions between the

deformation parameters and the covarying x-ray intensities. Each linear regres-

sion is learned to fit a local deformation neighborhood in the simulated training

set generated from the patient’s treatment-planning CT images. The deforma-

tion neighborhoods are recursively separated by normalized graph cuts with a
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given number of partitions. At treatment time, the method classifies a previously

unseen x-ray image to its closest deformation neighborhood by a trained decision

forest based on the optimized visual features and their thresholds. Then it uses

the learned regressions in the chosen neighborhood on the x-ray intensities to

estimate the deformations without iteration.

Clinical usage of the noniterative CLARET: If your target application require >10

registrations per second, you may consider using the local CLARET trained from

a large training set as your registration method. If your target application requires

>30 registrations per second, you may consider using the global CLARET trained

from a large training set as your registration method. For 2D/3D registrations in

lung IGRT, it yields an average error of 2.7 mm in 3D.

(2) The implementation of CLARET, L-CLARET, and REALMS into software. Code

is available under http://www.cs.unc.edu/∼cchou

(3) The iterative versions of the four methods in (1): enhancing registration accuracy

by iterative estimation.

(4) The development of scattering removal and intensity correction on the digitally

reconstructed radiographs (DRR) and the treatment-time radiographs to allow

commensurate intensity comparison.

(5) The evaluation of CLARET, L-CLARET, REALMS and L-REALMS for lung

IGRT with simulated and real patient cone-beam radiographs, including com-

parisons to an optimization-based 2D/3D registration approach.

(6) The evaluation of CLARET for head-and-neck IGRT with simulated and real pa-

tient NST radiographs.
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Regression learning methods stated in contributions (1)-(4) have been studied in this

dissertation. Linear and nonlinear regression learning between the transformation and

the image features have been detailed in Ch. 5 and Ch. 6. Regression learning from the

global and local training sets have been detailed in Ch. 7. Iterative and non-iterative

regression estimation has also been detailed among those chapters. Evaluations of the

proposed methods stated in contributions (5)-(6) have also been studied individually

in Ch. 5-7 and comparatively in Ch. 8.

On the basis of these contributions, I have established the following thesis:

Thesis: Regression learning provides a new solution to the image registration prob-

lem. Learning patient-specific intensity-to-shape regressions allows efficient, accurate,

and robust 2D/3D image registration for image-guided radiation therapy.

Problems and Future Work

How should you select the appropriate regression learning method for your target prob-

lem? The choice among the above methods should be decided case by case. One can

get some clues by answering the following questions: are the target transformation

parameters linear or nonlinear to the image features? Linear for all the training data,

or linear for some local training set? If the transformation-to-image-feature relation-

ship is linear, does your application particularly require computation speed (faster

non-iterative approach) or does it particularly require accuracy (iterative approach for

higher accuracy)?

Generally speaking, for medical images, image features are massive. As a result,

with a simple multivariate linear model it is easy to find a solution in this high di-

mensional feature space that fits well to the training set. Using a more regularized

optimization like lasso (Tibshirani (1994)), the linear model can yield a meaningful so-

lution. However, if the image feature space of choice is low-dimensional (e.g., landmark
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positions), then a linear model may not have a solution. In that case, one could use

a more complex nonlinear model to understand the relationship (Ch. 6), or one could

use locally-linear model to understand the relationship efficiently (Ch. 7). The former

takes O(N2) time for training and O(N) time for registration), and the latter takes

O(N) time for both training and registration. N is the number of training images.

However, regression learning does not work for all image registration problems,

even for the patient-specific problem that has been the target of the research of this

dissertation. The limitation of this regression learning approach comes from five issues:

1. Lack of training data: if there are no prior transformations from which to learn,

regression learning is not applicable.

2. Target outside of the training space: if the target transformation is not in the prior

training transformation space, the method will produce inaccurate estimation.

3. Inadequate image features to learn: if the image features extracted from the

training and target images are “variant” even under the same transformation, the

proposed regression learning would not work. For example, in high-noise imaging

situations like fluoroscopy in intervention surgery, it is key to select image features

that are invariant between training and target times.

4. Modeling error : if the transformation-to-image-feature relationship is linear, fit-

ting a nonlinear model will have an overfitting problem. On the other hand, if

the transformation-to-image-feature relationship is nonlinear, a linear model will

underfit the data.

5. Projection resolution mismatch: Limited by the CT resolution, which usually has

a resolution no better than 1 mm3, the DRRs simulated from the CT images can

only have a resolution of 1 mm2. However, the real projection images usually
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have a better resolution of 0.3 mm2. This mismatch in resolution will introduce

errors in the regression inference.

Future work beyond this dissertation should try to overcome the aforementioned lim-

itations. For examples, for (1), one can transport other patient’s training data and

build a training space for that patient or use nearest-neighbor search to select “near-

est” patients and use the patients’ training spaces as the patient’s training space. For

(2), one can online train the space close to the target image to extend the training

space on the fly. For (3), one can implement an feature selection process that selects

representable image features that are invariant in both training and target images un-

der the same transformation. For (4), one can heuristically build a model and increase

or decrease its complexity to obtain the optimal model. For (5), one can downsample

and correspondingly blur the resolution for the real projection images to yield more

commensurate intensity comparisons for regression inference.
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